Motorola ATCA 717 User Manual

PENT/ATCA717  
Reference Guide  
P/N 6806800A15A  
April 2006  
Contents  
PENT/ATCA717  
3
4
PENT/ATCA717  
PENT/ATCA717  
5
6
PENT/ATCA717  
Appendix A Troubleshooting  
PENT/ATCA717  
7
Tables  
Introduction  
Installation  
Controls, Indicators, and Connectors  
BIOS  
Devices’ Features and Data Paths  
Maps and Registers  
8
PENT/ATCA717  
Figures  
Installation  
Controls, Indicators, and Connectors  
BIOS  
Devices’ Features and Data Paths  
10  
PENT/ATCA717  
Using This Guide  
This Reference Guide is intended for users qualified in electronics or electrical  
engineering. Users must have a working understanding of Peripheral Component  
Interconnect (PCI), AdvancedTCAR, and telecommunications.  
Conventions  
Notation  
Description  
57  
All numbers are decimal numbers except when used with  
the notations described below.  
0000000016  
or 0x00000000  
Typical notation for hexadecimal numbers (digits 0 through  
F), e.g. used for addresses and offsets  
00002  
Same for binary numbers (digits are 0 and 1)  
or 0b0000  
x
Generic use of a letter  
n
Generic use of numbers  
0.75  
Decimal number  
Bold  
Used to emphasize a word  
Courier  
Courier+Bold  
Italics  
Used for on−screen output  
Used to characterize user input  
For references, table, and figure descriptions  
Notation for variables and keys  
Notation for buttons and optional parameters  
Repeated item (example: A1, A2, A3, ..., A12)  
<text>  
[text]  
...  
No danger encountered. Pay attention to important  
information  
Possibly dangerous situation: slight injuries to people or  
damage to objects possible  
12  
PENT/ATCA717  
 
Notation  
Description  
Dangerous situation: injuries to people or severe damage to  
objects possible  
Abbreviations  
Abbreviationa  
Descriptiona  
A
A
AC  
Alternating Current  
ANSI  
API  
American National Standards Institute  
Application Programming Interface  
APIC  
Advanced Programmable Interrupt  
Controller  
ATA  
Advanced Technology Attachment  
ATCA  
Advanced Telecommunications Computing  
Architecture  
B
B
BIOS  
BMC  
Basic Input/Output System  
Base Board Management Controller  
C
C
CMC  
CMOS  
CPU  
Common Mezzanine Card  
Complementary Metal Oxide Semiconductor  
Central Processing Unit  
D
D
DDR  
Double Data Rate  
DMA  
DPLL  
DRAM  
Direct Memory Access  
Digital Phase Locked Loop  
Dynamic Random Access Memory  
E
E
ECC  
EMC  
EN  
Error−Correction Code  
Electromagnetic Compatibility  
European Norm  
ESCD  
ESD  
Extended System Configuration Data  
Electrostatic Sensitive Device  
F
F
FAE  
Field Application Engineers  
PENT/ATCA717  
13  
Abbreviationa  
FCC  
Descriptiona  
Federal Communications Commission  
First In First Out  
FIFO  
FPGA  
Field−Programmable Gate Array  
Field Replacable Unit  
FRU  
G
G
GND  
Ground  
I
I
IDE  
Integrated Device Electronics  
IEC  
International Electric Code  
IPMB  
IPMC  
IPMI  
ISA  
Intelligent Platform Management Bus  
Intelligent Platform Management Controller  
Intelligent Platform Management Interface  
Industry Standard Architecture  
ISO  
International Organization for  
Standardization  
L
L
LCCB  
LED  
LFM  
LPC  
Line Card Clock Building Block  
Light Emitting Diode  
Linear Feet per Minute  
Low Pin Count  
M
M
MAC  
N
Media Access Control  
N
NEBS  
Network Equipment Building System  
Nonvolatile Random Access Memory  
NVRAM  
O
O
OEM  
OOS  
Original Equipment Manufacturer  
Out−Of−Service  
P
P
PCB  
Printed Circuit Board  
PCI  
Peripheral Component Interconnect  
Power Entry Module  
PEM  
PICMG  
PCI Industrial Computer Manufacturers  
Group  
PMC  
PCI Mezzanine Card  
POST  
PROM  
Power−On Self−Test  
Programmable Read−Only Memory  
14  
PENT/ATCA717  
Abbreviationa  
Descriptiona  
R
R
RAM  
ROM  
RTC  
Random Access Memory  
Read−Only Memory  
Real Time Clock  
RTM  
Rear Transition Module  
S
S
S.M.A.R.T.  
SATA  
Software Maintenance and Reference Tool  
Serial ATA  
SCSI  
Small Computer System Interface  
Sensor Data Record  
SDR  
SDRAM  
Synchronous Dynamic Random Access  
Memory  
SELV  
SMI  
Safety Extra Low Voltages  
Serial Management Interface  
Serial Presence Detect  
SPD  
SPI  
Serial Peripheral Interface  
Static Random Access Memory  
Serial Read−Only Memory  
SRAM  
SROM  
U
U
UL  
Underwriters Laboratory Inc.  
Universal Serial Bus  
USB  
V
V
VGA  
Video Graphics Array  
VLAN  
Virtual Local Area Network  
Revision History  
Order No.a  
222282  
Rev.  
AA  
AB  
Date  
Description  
June 2004  
January 2005  
Preliminary Reference Guide  
Final release version  
222282  
222282  
AC  
February 2005 Corrected naming of Ethernet  
controllers Intel 82546EB/GB and  
82540EM  
225444  
AA  
March 2005  
Corrected figure showing the switch  
locations; corrected description of  
SW4−1 default setting; enhanced  
description of redundant BIOS  
feature  
PENT/ATCA717  
15  
Order No.a  
Rev.  
Date  
Description  
226132  
AA  
May 2005  
Changed logo, copyright, ... from  
Force Computers to  
Motorola;generalized safety notes  
regarding maximum combined  
power dissipation of installed PMC  
modules; in power requirements:  
added exceptions applicable to US  
and Canada; in standard  
compliances: removed IEC60068  
(officially withdrawn) and  
UL94V−0/1 (already covered by  
60950 and NEBS) standard; added  
section "Restoring BIOS Default  
Settings"; added "Restore BIOS  
Default Settings" procedure; added  
info on redundant FPGA feature  
(section Devices Features and  
Datapaths−>FPGA); in switch  
setting description and Flashes  
section: renamed boot flash to  
default flash and user flash to  
backup flash; extended description  
of redundant flash feature; in  
standard compliances section:  
added note on NEBS compliance  
and grounding; adapted figures  
showing the blade face plate to new  
Motorola face plate; added note to  
section "Updating BIOS"; updated  
list of IPMI sensors in section:  
Intelligent Platform Management  
Controller  
in section "Switch Settings"  
extended description of "Clear  
CMOS RAM" and "Serial COM port  
swapping" switch ; extended section  
BIOS−>Serial Console  
Redirect−>Default Configuration;  
added section "About this Manual"  
16  
PENT/ATCA717  
Order No.a  
Rev.  
Date  
Description  
6806800A15A  
April 2006  
Created separate manual for blade  
used in AXP systems; Changed  
parallel ATA connector pinout;  
modified description of on−board  
switches SW4−1, SW4−2 and SW4−4  
(default settings were changed);  
updated description of Ethernet  
switch configuration (new routing);  
updated PMC Pn4 pinout  
description; extended description of  
face plate LEDs; updated  
description of P23 backplane  
connector pinout; added section:  
BIOS−>Crisis Recovery Mode;  
updated on−board switch  
description: crisis recovery switch  
no more reserved;changed location  
of two temperature sensors and  
adapted list of IPMI sensors;  
removed references to full mesh  
routing: no longer an available  
option; in blade installation:  
removed warning regarding plastic  
handles (new handles are used  
now); updated ordering information  
PENT/ATCA717  
17  
Other Sources of Information  
For further information refer to the following documents.a  
Note:aCheck the Motorola literature catalog for errata sheets that may be applicable to  
the blade.a  
Company or  
Organisation  
www.  
Document  
Motorola  
motorola.com/co ACC/ARTM−717 Installation Guide  
mputing  
ACC/CABLE/RJ45/DSUB Installation Information  
ACC/ATCA−715/HDD Installation Guide  
aa  
aa  
ACC/ATCA−715/HDD−SATA Installation Guide  
aa  
aa  
aa  
aa  
ACC/ATCA*CMC*MODULE Installation Guide.  
PENT/ATCA−715/717/7105/7107: Control via IPMI  
Programmer’s Guide Guide  
PENT/ATCA−715/717/7105/7107 BIOS Information  
Sheeta  
Intel  
aa  
intel.com  
aa  
6300ESB I/O Controller Datasheet  
82540EM Gigabit Ethernet Controller Documentation  
82546EB/GB Gigabit Ethernet Controller Documentation  
82802AC Firmware Hub (FWH) Datasheet  
82870P2 PCI/PCI−X 64−bit Hub 2 (P64H2) Datasheet  
E7501 Memory Controller Datasheet  
aa  
aa  
aa  
aa  
aa  
aa  
IPMI V1.5 Specifications  
Pentium M Processor Technical Documents  
Marvell  
PCI−SIG  
marvell.com  
pcisig.com  
Prestera DX160 16−Port Gigabit Ethernet Packet  
Processor Documentationa  
PCI Local Bus Specification Revision 2.2  
PCI−X Addendum to the PCI Local Bus Specification 1.0  
18  
PENT/ATCA717  
 
Company or  
Organisation  
www.  
Document  
PICMG  
picmg.org  
PICMG 3.0 Revision 1.0 Advanced TCA Base  
Specification  
PICMG 3.1 Revision 1.0 Specification  
Ethernet/Fiber Channel for AdvancedTCA Systems  
SMSC  
smsc.com  
LPC47S422 Enhanced Super I/O Controller Datasheets  
and Application Notes  
PENT/ATCA717  
19  
Safety Notes  
This section provides safety precautions to follow when installing, operating, and  
maintaining the product.  
We intend to provide all necessary information to install and handle the product in this  
manual. However, as the product is complex and its usage manifold, we do not guarantee  
that the given information is complete. If you need additional information, ask your  
Motorola representative.  
The product has been designed to meet the standard industrial safety requirements. It  
must not be used except in its specific area of office telecommunication industry and  
industrial control.  
Only personnel trained by Motorola or persons qualified in electronics or electrical  
engineering are authorized to install, remove or maintain the product. The information  
given in this manual is meant to complete the knowledge of a specialist and must not  
be taken as replacement for qualified personnel.  
EMC  
The blade has been tested in a standard Motorola system and found to comply with the  
limits for a Class A digital device in this system, pursuant to part 15 of the FCC Rules,  
EN 55022 Class A respectively. These limits are designed to provide reasonable  
protection against harmful interference when the system is operated in a commercial  
environment.  
The blade generates and uses radio frequency energy and, if not installed properly and  
used in accordance with this guide, may cause harmful interference to radio  
communications. Operating the system in a residential area is likely to cause harmful  
interference, in which case the user will be required to correct the interference at his  
own expense.  
Installation  
Damage of Circuits  
Electrostatic discharge and incorrect blade installation and removal can damage circuits  
or shorten their life.  
Before touching the blade or electronic components, make sure that you are working in  
an ESD−safe environment.  
Data loss  
Removing the blade with the blue LED still blinking causes data loss.  
Wait until the blue LED is permanently illuminated, before removing the blade.  
20  
PENT/ATCA717  
 
Damage of Blade and Additional Devices and Modules  
Incorrect installation of additional devices or modules may damage the blade or the  
additional devices or modules.  
Before installing or removing an additional device or module, read the respective  
documentation  
Operation  
Blade damage  
Blade surface  
High humidity and condensation on the blade surface causes short circuits.  
Do not operate the blade outside the specified environmental limits. Make sure the  
blade is completely dry and there is no moisture on any surface before applying power.  
Do not operate the blade below 0°C.  
Blade Overheating and Blade Damage  
Operating the blade without forced air cooling may lead to blade overheating and thus  
blade damage.  
When operating the blade, make sure that forced air cooling is available in the shelf.  
When operating the blade in areas of electromagnetic radiation ensure that the blade is  
bolted on the system and the system is shielded by enclosure.  
Injuries or short circuits  
Blade or power supply  
In case the ORing diodes of the blade fail, the blade may trigger a short circuit between  
input line A and input line B so that line A remains powered even if it is disconnected  
from the power supply circuit (and vice versa).  
To avoid damage or injuries, always check that there is no more voltage on the line that  
has been disconnected before continuing your work.  
Switch Settings  
Blade Malfunction  
Switches marked as ’reserved’ might carry production−related functions and can cause  
the blade to malfunction if their setting is changed.  
Therefore, do not change settings of switches marked as ’reserved’. The setting of  
switches which are not marked as ’reserved’ has to be checked and changed before  
blade installation.  
Blade Damage  
Setting/resetting the switches during operation can cause blade damage.  
Therefore, check and change switch settings before you install the blade.  
PENT/ATCA717  
21  
Environment  
Always dispose of used blades according to your country’s legislation, if possible in an  
environmentally acceptable way.  
PMC Modules  
Limited Power on PMC Modules and RTMs  
The blade does not provide an extra fuse for PMC modules and RTMs.  
PMC modules and RTMs used together with the blade have to be qualified according  
to the following standards: IEC 60950−1, EN 60950−1, UL 60950−1, CAN/CSA C22−2 No  
60950−1  
Excession of blade‘s power consumption  
Exceeding the maximum combined power dissipation of installed PMC modules may  
damage the blade.a  
Make sure that the combined power dissipation of installed PMC modules on the 3.3V  
and 5V rail does not exceed 60W.  
PMC Module Malfunctioning  
Processor PMC modules (as defined in ANSI/VITA 32−2003) can be operated in two  
different modes: monarch and non−monarch mode.a  
Make sure to operate any installed processor PMC modules (as defined in ANSI/VITA  
32−2003) only in non−monarch mode.a  
Damage of Installed Hard Disk  
If PPMC/270 or PPMC/280 modules are installed into PMC slot 1 or 2, the heat radiated  
by the heat sink of theses PMC modules heats up an installed hard disk that may be  
installed at the same time.a  
If PPMC/270 or PPMC/280 modules are installed into PMC slot 1 or 2, make sure not to  
have a hard disk installed at the same time.a  
Battery  
Blade/System damage  
Incorrect exchange of lithium batteries can result in a hazardous explosion.a  
Therefore, exchange the battery as described in this manual.  
Data loss  
If the battery does not provide enough power anymore, the RTC is initialized and the  
data in the NVRAM is lost.  
Therefore, exchange the battery before seven years of actual battery use have elapsed.  
22  
PENT/ATCA717  
Data loss  
Exchanging the battery always results in data loss of the devices which use the battery  
as power backup.a  
Therefore, back up affected data before exchanging the battery.  
Data loss  
If installing another battery type than is mounted at blade delivery may cause data loss  
since other battery types may be specified for other environments or may have a  
shorter lifetime.  
Therefore, only use the same type of lithium battery as is already installed.  
PENT/ATCA717  
23  
Sicherheitshinweise  
Dieser Abschnitt enthält Sicherheitshinweise, die bei Installation, Betrieb und Wartung  
des Produkts zu beachten sind.  
Wir sind darauf bedacht, alle notwendigen Informationen, die für die Installation und den  
Betrieb erforderlich sind, in diesem Handbuch bereit zu stellen. Da es sich jedoch um ein  
komplexes Produkt mit vielfältigen Einsatzmöglichkeiten handelt, können wir die  
Vollständigkeit der im Handbuch enthaltenen Informationen nicht garantieren. Falls Sie  
weitere Informationen benötigen sollten, wenden Sie sich bitte an die für Sie zuständige  
Geschäftsstelle von Motorola.  
Das Produkt erfüllt die für die Industrie geforderten Sicherheitsvorschriften und darf  
ausschließlich für Anwendungen in der Telekommunikationsindustrie und im  
Zusammenhang mit Industriesteuerungen verwendet werden.  
Installation, Wartung und Betrieb dürfen nur von durch Motorola ausgebildetem oder  
im Bereich Elektronik oder Elektrotechnik qualifiziertem Personal durchgeführt  
werden. Die in diesem Handbuch enthaltenen Informationen dienen ausschließlich  
dazu, das Wissen von Fachpersonal zu ergänzen, können es aber in keinem Fall  
ersetzen.  
EMV  
Das Blade wurde in einem Motorola Standardsystem getestet. Es erfüllt die für digitale  
Geräte der Klasse A gültigen Grenzwerte in einem solchen System gemäß den  
FCC−Richtlinien Abschnitt 15 bzw. EN 55022 Klasse A. Diese Grenzwerte sollen einen  
angemessenen Schutz vor Störstrahlung beim Betrieb des Blades in Gewerbe− sowie  
Industriegebieten gewährleisten.  
Das Blade arbeitet im Hochfrequenzbereich und erzeugt Störstrahlung. Bei  
unsachgemäßem Einbau und anderem als in diesem Handbuch beschriebenen Betrieb  
können Störungen im Hochfrequenzbereich auftreten.  
Warnung! Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im  
Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt  
werden, angemessene Maßnahmen durchzuführen.  
Installation  
Beschädigung von Schaltkreisen  
Elektrostatische Entladung und unsachgemäßer Ein− und Ausbau von Blades kann  
Schaltkreise beschädigen oder ihre Lebensdauer verkürzen.  
Bevor Sie Blades oder elektronische Komponenten berühren, vergewissern Sie sich,  
daß Sie in einem ESD−geschützten Bereich arbeiten.  
24  
PENT/ATCA717  
 
Datenverlust  
Wenn Sie das Blade aus dem Shelf herausziehen, und die blaue LED blinkt noch,  
gehen Daten verloren.  
Warten Sie bis die blaue LED durchgehend leuchtet, bevor Sie das Blade herausziehen.  
Beschädigung des Blades und von Zusatzmodulen  
Fehlerhafte Installation von Zusatzmodulen, kann zur Beschädigung des Blades und  
der Zusatzmodule führen.  
Lesen Sie daher vor der Installation von Zusatzmodulen die zugehörige  
Dokumentation.a  
Betrieb  
Beschädigung des Blades  
Hohe Luftfeuchtigkeit und Kondensat auf der Oberfläche des Blades können zu  
Kurzschlüssen führen.  
Betreiben Sie das Blade nur innerhalb der angegebenen Grenzwerte für die relative  
Luftfeuchtigkeit und Temperatur. Stellen Sie vor dem Einschalten des Stroms sicher,  
dass sich auf dem Blade kein Kondensat befindet und betreiben Sie das Blade nicht  
unter 0°C.  
Überhitzung und Beschädigung des Blades  
Betreiben Sie das Blade ohne Zwangsbelüftung, kann das Blade überhitzt und  
schließlich beschädigt werden.  
Bevor Sie das Blade betreiben, müssen Sie sicher stellen, dass das Shelf über eine  
Zwangskühlung verfügt.  
Wenn Sie das Blade in Gebieten mit starker elektromagnetischer Strahlung betreiben,  
stellen Sie sicher, dass das Blade mit dem System verschraubt ist und das System  
durch ein Gehäuse abgeschirmt wird.  
Verletzungen oder Kurzschlüsse  
Blade oder Stromversorgung  
Falls die ORing Dioden des Blades durchbrennen, kann das Blade einen Kurzschluss  
zwischen den Eingangsleitungen A und B verursachen. In diesem Fall ist Leitung A  
immer noch unter Spannung, auch wenn sie vom Versorgungskreislauf getrennt ist  
(und umgekehrt).  
Prüfen Sie deshalb immer, ob die Leitung spannungsfrei ist, bevor Sie Ihre Arbeit  
fortsetzen, um Schäden oder Verletzungen zu vermeiden.  
PENT/ATCA717  
25  
Schaltereinstellungen  
Fehlfunktion des Blades  
Schalter, die mit ’Reserved’ gekennzeichnet sind, können mit produktionsrelevanten  
Funktionen belegt sein. Das Ändern dieser Schalter kann im normalen Betrieb  
Störungen auslösen.a  
Verstellen Sie nur solche Schalter, die nicht mit ’Reserved’ gekennzeichnet sind.  
Prüfen und ändern Sie die Einstellungen der nicht mit ’Reserved’ gekennzeichneten  
Schalter, bevor Sie das Blade installieren.  
Beschädigung der Blade  
Das Verstellen von Schaltern während des laufenden Betriebes kann zur Beschädigung  
des Blades führen.  
Prüfen und ändern Sie die Schaltereinstellungen, bevor Sie das Blade installieren.  
Umweltschutz  
Entsorgen Sie alte Batterien und/oder Blades stets gemäß der in Ihrem Land gültigen  
Gesetzgebung, wenn möglich immer umweltfreundlich.  
PMCModule  
Begrenzte Leistung auf dem PMC−Modul und RTM  
Das Blade verfuegt ueber keine Sicherung fuer PMC−Module und RTMs.  
PMC−Module und RTMs, die zusammen mit dem Blade eingesetzt werden, muessen  
gemaess den folgenden Standards qualifiziert sein: IEC 60950−1, EN 60950−1, UL  
60950−1, CAN/CSA C22−2 No 60950−1  
Ueberschreitung der zulaessigen Leistungsaufnahme des Blades  
Wird die maximal zulaessige Leistungsaufnahme fuer alle installierten PMC−Module  
zusammen ueberschritten, so kann dies zu einer Beschaedigung des Blades fuehren.a  
Stellen Sie sicher, dass die Leistungsaufnahme aller installierten PMC−Module  
zusammen auf der 3.3V− und 5V−Schiene insgesamt 60W nicht ueberschreitet.  
Fehlfunktion von PMC−Modulen  
Prozessor−PMC−Module (ANSI/VITA 32−2003) koennen generell in zwei Modi  
betrieben werden: Monarch− und Nonmonarch−Modus.a  
Betreiben Sie auf dem Blade installierte PMC−Module (ANSI/VITA 32−2003) nur im  
Nonmonarch−Modus.  
26  
PENT/ATCA717  
Beschaedigung einer installierten Festplatte  
Falls PPMC/270 oder PPMC/280−PMC−Module in PMC−Slot 1 oder 2 installiert sind,  
erhitzen die Kuehlkoerper dieser PMC−Module eine moeglicherweise gleichzeitig  
installierte Festplatte.a  
Falls PPMC/270− oder PPMC/280−PMC−Module in den PMC−Slots 1 oder 2 installiert  
sind, stellen Sie sicher, dass keine Festplatte zur gleichen Zeit auf dem Blade installiert  
ist.  
Batterie  
Beschaedigung des Blades/des Systems  
Fehlerhafter Austausch von Lithium−Batterien kann zu gefährlichen Explosionen  
führen.a  
Fuehren Sie den Austausch so durch, wie er in diesem Manual beschrieben ist.  
Datenverlust  
Wenn die Batterie nur noch ungenügend geladen ist, wird der RTC zurückgesetzt und  
Daten im NVRAM gehen verloren.a  
Tauschen Sie daher die Batterie innerhalb einer Zeit von spätestens sieben Jahren aus.a  
Datenverlust  
Der Austausch der Batterie führt unweigerlich zu Datenverlust bei Bauteilen, die die  
Batterie als Backup verwenden.a  
Sichern Sie daher alle Daten, die bei Austausch der Batterie verloren gehen.a  
Datenverlust  
Wenn Sie einen anderen Batterietyp installieren als der, der bei Auslieferung des  
Blades installiert war, kann Datenverlust die Folge sein, da die neu installierte Batterie  
für andere Umgebungsbedingungen oder eine andere Lebenszeit ausgelegt sein  
könnte.  
Verwenden Sie daher den gleichen Batterietyp, der bei Auslieferung des Blades  
installiert war.  
PENT/ATCA717  
27  
About this Manual  
Introduction  
About this Manual  
This Reference Guide provides the information you need to install, access and operate the  
blade.a  
Organization of this Manual  
The Reference Guide is organized as follows.a  
Table 1: Organization of this Manual  
Chapter  
Description  
Using this Guide  
Lists all conventions and abbreviations used in this manual and  
outlines the revision history  
Other Sources of Information  
Safety Notes  
Lists related documentation and specifications  
Provides safety relevant information when handling the product  
German translation of the Safety Notes section  
Sicherheitshinweise  
Introduction  
Provides a basic overview of the features of the product and this  
manual  
Installation  
Outlines the installation requirements, hardware accessories,  
switch settings, installation and removal procedures  
Controls, Indicators and  
Connectors  
Describes the LEDs, keys, and connectors of the product  
BIOS  
Describes the basic features of the blade’s BIOS. Also explains how  
to restore the BIOS default settings and how to connect to the blade  
using the serial console redirect feature.a  
Devices’ Features and Data Paths Provides detailled information on the devices, such as controllers,  
CPU etc., used on the blade and how they are interconnected  
Maps and Registers  
Provides information that is relevant for programmers, such as  
register reference and memory mapsa  
Battery Exchange  
Describes how to exchange the blade’s on−board battery  
Feedback  
Motorola welcomes and appreciates your comments on its documentation. We want to  
know what you think about our manuals and how we can make them better. Mail  
comments to:  
S
Motorola GmbH  
ECC Embedded Communication Computing  
Lilienthalstr. 15  
85579 Neubiberg−Munich/Germany  
PENT/ATCA717  
29  
 
Introduction  
About this Manual  
S
reader−[email protected]  
In all your correspondence, please list your name, position, and company. Be sure to  
include the title, part number, and revision of the manual and tell how you used it.  
30  
PENT/ATCA717  
Features  
Introduction  
Features  
The PENT/ATCA−717 is an AdvancedTCA compliant single blade computer offering  
high processing performance. Four on−board PMC sites, GBit Ethernet connection to the  
AdvancedTCA Base and Fabric interface as well as standard I/O interfaces make it ideal  
for telecommunication and datacom applications. An on−board 16−port Ethernet switch  
allows switching between PMC sites, Base and Fabric interface and the base board.aaa  
Important features are:  
S
S
S
S
S
S
S
S
S
S
S
Pentium M processor with up to 1.8 GHz speed  
Up to four GByte main memory DDR2 SDRAM with ECC protection  
Designed for PICMG 3.0 and 3.1 compliant systems  
16−port Ethernet switch with host interface for configuration and management  
Redundant AdvancedTCA Base interface  
Up to eight AdvancedTCA Fabric Channel interfaces  
Four 64−bit/100MHz PCI−X compliant PMC slots  
Two USB 2.0 interfaces at face plate  
Optional on−board CompactFlash and 2.5 inch hard diska  
Support for Windows 2000/2003 and Carrier Grade Linux Ed. 3.1  
Intelligent Platform Management Controller (IPMC) compliant to IPMI V.1.5 with  
redundant IPMB support  
S
S
Support for four PMC Modules with Telecom clocking synchronization  
Different accessory kits, for example:  
Rear Transition Modules (RTMs)  
CMC debug module  
Hard disk accessory kit  
Cable accessory kits  
PENT/ATCA717  
31  
 
Introduction  
Standard Compliances  
Standard Compliances  
Standard  
Description  
UL 60950−1  
Legal safety requirements  
EN 60950−1  
IEC 60950−1  
CAN/CSA C22.2 No 60950−1  
EN 55022  
EN 55024  
EMC requirements on system level (predefined  
Motorola system)  
EN 300386  
FCC Part 15a  
ANSI/IPC−A610 Rev.C Class 2  
ANSI/IPC−7711  
Manufacturing Requirements  
ANSI/IPC−7721  
ANSI−J−001...003  
ISO 8601  
Y2K compliance  
NEBS Standard GR−63−CORE,  
NEBS Standard GR−1089 CORE  
NEBS level three  
Product is designed to support NEBS level three.  
The compliance tests must be done with the  
customer target system.  
PICMG 3.0 R1.0  
Defines mechanics, blade dimensions, power  
distribution, power and data connectors, and  
system management  
Note:aThis blade contains an embedded power source rated >150W. To achieve NEBS  
compliance on system level, Shelf Ground (chassis ground) and Logic Ground (logic  
signal return) have to be connected. The connection may be implemented inside the  
shelf, e.g. at the backplane, or the shelf has to provide a possibility to lead Logic  
Ground out of the shelf for external connection to Central Office Ground. For further  
information refer to Telcordia GR−1089−CORE, section 9.8.2, requirement R9−14.a  
32  
PENT/ATCA717  
 
Ordering Information  
Introduction  
Ordering Information  
When ordering the board variants, upgrades and accessories, use the order numbers  
given below.  
Product Nomenclature  
In the following you find the key for the product name extensions.aa  
PENT/ATCA−717/xx−yyyy  
aa  
xx  
Main memory in GByte  
CPU frequency in MHz  
yyyy  
Order Numbers  
The table below is an excerpt from the blade’s ordering information. Ask your local  
Motorola representative for the current ordering information.aaaa  
Note:aThis manual describes the blades listed below (PCA revision 1.3) and is  
delivered with these blades. For blades with other PCA revisions refer to the manuals  
that are delivered with those blades.a  
Table 2: Ordering Information  
Order Number  
PENT/ATCA−717/  
Description  
123065  
2G−1800  
Two GByte main memory, 1800 MHz CPU  
frequency; (PCA revision 1.3)aa  
123066  
4G−1800  
Four GByte main memory, 1800 MHz CPU  
frequency; (PCA revision 1.3)  
The table below is an excerpt from the blade’s accessories ordering information. Ask your  
local Motorola representative for the current ordering information.aaaa  
Table 3: Accessories Ordering Information  
Order Number  
Accessory  
Description  
123036  
ACC/ARTM−717  
Rear transition module for  
PENT/ATCA−717 bladesa  
Provides access to four serial interfaces  
deriving from PMCs as well as two USB  
2.0, two serial, two SATA and one  
keyboard/mouse interface; supports  
PPMC−280 modules installed on the  
PENT/ATCA−717  
120980  
ACC/ATCA−715/HDD  
Parallel ATA hard disk  
PENT/ATCA717  
33  
 
Introduction  
Ordering Information  
Order Number  
Accessory  
Description  
122240  
122241  
121793  
122242  
ACC/ATCA−715/HDD−SATA  
ACC/ATCA−CMC−MODULE  
ACC/CABLE/RJ45/DSUB  
ACC/CABLE/PMC/RJ45  
Serial ATA hard disk  
CMC module for debugging  
Adapter cable: RJ−45 <−> DSUB  
Splitter cable for accessing serial  
interfaces of installed PMC*8260/DS1  
or PPMC*280 modules  
121792  
ACC/CABLE/USB  
Adapter cable: mini USB B−male <−>  
USB A female  
34  
PENT/ATCA717  
2
Installation  
PENT/ATCA717  
35  
 
Installation  
Action Plan  
Action Plan  
To install the blade, the following steps are necessary and described in detail in the  
sections of this chapter. The installation takes about five minutes.  
Start installation  
Make sure power and  
environmental  
requirements are met  
Set onboard switches, if  
applicable  
Install onboard hardware  
accessories, if applicable  
Install Rear Transition  
Module, if applicable  
Install blade  
Install cable accessories,  
if applicable  
Installation  
finished  
36  
PENT/ATCA717  
 
Requirements  
Installation  
Requirements  
In order to meet the environmental requirements, the blade has to be tested in the system  
in which it is to be installed.a  
Before you power up the blade, calculate the power needed according to your  
combination of blade upgrades and accessories.  
Environmental Requirements  
The environmental conditions must be tested and proven in the shelf configuration used.  
The conditions refer to the surrounding of the blade within the user environment.aaa  
Note:a  
S
The environmental requirements of the blade may be further limited down due to  
installed accessories, such as hard disks or PMC modules, with more restrictive  
environmental requirements  
S
Operating temperatures refer to the temperature of the air circulating around the  
blade and not to the actual component temperature.  
S
S
Blade damage  
Blade surface  
High humidity and condensation on the blade surface causes short circuits.  
Do not operate the blade outside the specified environmental limits. Make sure the  
blade is completely dry and there is no moisture on any surface before applying  
power. Do not operate the blade below 0°C.  
Blade Overheating and Blade Damage  
Operating the blade without forced air cooling may lead to blade overheating and  
thus blade damage.  
When operating the blade, make sure that forced air cooling is available in the  
shelf.  
Table 4: Environmental Requirements  
Requirement  
Operating  
Non−Operating  
Temperature  
0°C to +55°C (may be  
further limited by  
installed  
–40°C to +85°C (may be  
further limited by  
installed accessories)aa  
accessories)aaaa  
Temp. Change  
a+/– 0.5°C/min  
a+/– 1°C/min  
PENT/ATCA717  
37  
 
Installation  
Requirements  
Requirement  
Operating  
Non−Operating  
Rel. Humidity  
5% to 95% non  
5% to 95% non condensing  
condensing at +40°  
at +40°C  
Altitude  
Vibration  
20 to 2000Hz  
Shock  
–300 m to +3,000 m  
–300 m to +13,000 m  
2 g(RMS) random  
5 g/30 ms half sine  
aa  
2 g(RMS) random  
15 g/11 ms half sine  
Free Fall  
1,200 mm/all edges and  
corners (packed state)  
100 mm/3 axis (unpacked)  
To guarantee proper blade operation, you have to make sure that the temperatures at the  
following locations are not exceeded. If not stated otherwise, the temperatures should be  
measured by placing a sensor exactly at the given locations.aaa  
Location No.  
Component  
Temperature Limit  
100 °C  
1
2
3
4
5
Pentium M CPU 1)  
Intel 82540EM Gbit Ethernet controller  
Intel 6300ESB Southbridge  
Lithium battery  
100 °C  
105 °C  
70 °C  
Intel 82546EB/GB Dual Gbit Ethernet  
controller  
90 °C  
6
7
8
9
Electrolytic capacitor CE9902  
Electrolytic capacitor CE9903  
Ericsson DC/DC converter  
QM48T DC/DC converter  
100 °C  
100 °C  
90 °C  
115 °Ca  
(105 °C coated blade variant)  
10  
Power MOSFET IRF 6603  
105 °C  
1)  
Temperature must be measured via on−die sensor which can be accessed via IPMI  
38  
PENT/ATCA717  
 
Requirements  
Installation  
Figure 1: Location of Critical Blade Temperature Spots (Blade Top Side)  
PENT/ATCA717  
39  
 
Installation  
Requirements  
10  
Figure 2: Location of Critical Blade Temperature Spots (Blade Bottom Side)  
Power Consumption  
The blades power requirements depend on the installed hardware accessories. If you  
want to install accessories on the board, the load of the respective accessory has to be  
added to that of the blade.In the following table you will find typical examples of power  
requirements with and without accessories installed. For information on the accessories’  
power requirements, refer to the documentation delivered together with the respective  
accessory or consult your local Motorola representative for further details.aaaa  
The blade must be connected to a TNV−2 or a safety−extra−low−voltage (SELV) circuit. A  
TNV−2 circuit is a circuit whose normal operating voltages exceed the limits for a SELV  
circuit under normal operating conditions, and which is not subject to overvoltages from  
telecommunication networks.  
Table 5: Power Requirements  
Characteristic  
Value  
Rated Voltage  
Exception in the US and Canada  
−48VDC to −60VDC  
−48VDC  
Operating Voltage  
Exception in the US and Canada  
−40.5VDC to −72VDC  
−40.5VDC to −60VDC  
40  
PENT/ATCA717  
 
Requirements  
Installation  
Characteristic  
Value  
3.6A  
75W  
Max. current  
Max. power consumption of blade equipped with  
4 GByte SDRAM without accessories  
Max. total power consumption of all four PMC  
sites  
60W  
65W  
Max. total power consumption of all installed  
blade accessories (PMCs + hard disk)  
The blade provides two independent power inputs according to the AdvancedTCA  
Specification. Each input has to be equipped with an additional fuse of max. 90A located  
either in the shelf where the blade is installed or the power entry module (PEM).  
PENT/ATCA717  
41  
Installation  
Switch Settings  
Switch Settings  
The blade provides the on−board switches SW2, SW3, SW4 and SW7. The following figure  
shows their location. Note that in the switch drawings the switch handle is represented by  
a little white square and that the shown switch settings reflect the default switch  
settings.aaa  
Figure 3: Location of On−board Switches  
42  
PENT/ATCA717  
 
Switch Settings  
Installation  
S
S
Blade Malfunction  
Switches marked as ’reserved’ might carry production−related functions and can  
cause the blade to malfunction if their setting is changed.  
Therefore, do not change settings of switches marked as ’reserved’. The setting of  
switches which are not marked as ’reserved’ has to be checked and changed before  
blade installation.  
Blade Damage  
Setting/resetting the switches during operation can cause blade damage.  
Therefore, check and change switch settings before you install the blade.  
Table 6: Switch Settings  
Switch  
SW2−1  
SW2−2  
SW2−3  
Description  
Reserved (default: OFF)  
Reserved (default: OFF)  
Clear CMOS RAM contentaa  
OFF: Normal operation (default)  
ON: Clear CMOS RAM  
For the exact procedure of how to clear the CMOS RAM content,  
i.e. restore the default BIOS settings, refer toasection "Restoring  
SW2−4  
BIOS crisis recovery mode  
OFF: Disabled (default)  
ON: Enabled  
SW3−1  
SW3−2  
SW3−3  
SW3−4  
Reserved (default: OFF)  
Reserved (default: OFF)  
Reserved (default: OFF)  
Serial COM interface swapping at blade start−up  
OFF: No swapping (default)  
As a result, COM1 and COM2 are accessible at an installed RTM,  
COM3 and COM4 are accessible at an installed CMC module  
ON: COM1 is swapped with COM 3, and COM 2 is swapped  
with COM 4  
As a result, COM1 and COM2 are accessible at an installed CMC  
module, and COM3 and COM4 are accessible at an installed  
RTM  
PENT/ATCA717  
43  
 
Installation  
Switch Settings  
Switch  
Description  
Note: the routing described above is only applicable to BIOS  
versions w 2.0.0. Earlier BIOS versions used a different routing.  
For further information refer to  
theaPENT/ATCA−715/717/7105/7107 BIOS Information Sheeta  
which can be downloaded from the former Force Computers  
S.M.A.R.T. server or the Motorola literature catalog web site.a  
Note: The COM port swapping can also be enabled via a System  
Boot Option IPMI command. COM port swapping is enabled if  
either the switch or the IPMI command or both enable it. For  
further details about the System Boot Option IPMI command,  
refer to theaPENT/ATCA−715/717/7105/7107: Control via IPMI  
Programmer’s Guide.  
SW4−1  
SW4−2  
Backup boot flash boot block write protection  
OFF: Write−enabled (default)  
ON: Write−disableda  
For details on the flash devices and the blade’s redundant BIOS  
Default boot flash boot block write protection  
OFF: Write−enabled (default)  
ON: Write−disabled  
For details on the flash devices and the blade’s redundant BIOS  
SW4−3  
SW4−4  
Reserved (default: OFF)  
Backup boot flash data/instruction block write protection  
OFF: Write−enabled (default)a  
ON: Write−disabled  
For details on the flash devices and the blade’s redundant BIOS  
SW7−1  
SW7−2  
Routing of PMC slot 1 Pn4 connector pins 30 and 31  
OFF: Pin 30 and 31 are routed to zone 3 backplane connector and  
are available as PMC I/O signals (default)  
ON: Pin 30 and 31 hold clock reference signals generated by  
clock synchronization building block  
Routing of PMC slot 2 Pn4 connector pins 30 and 31  
OFF: Pin 30 and 31 are routed to zone 3 backplane connector and  
are available as PMC I/O signals (default)  
ON: Pin 30 and 31 hold clock reference signals generated by  
clock synchronization building block  
44  
PENT/ATCA717  
Switch Settings  
Installation  
Switch  
Description  
SW7−3  
Routing of PMC slot 3 Pn4 connector pins 30 and 31  
OFF: Pin 30 and 31 are routed to zone 3 backplane connector and  
are available as PMC I/O signals (default)  
ON: Pin 30 and 31 hold clock reference signals generated by  
clock synchronization building block  
SW7−4  
Routing of PMC slot 4 Pn4 connector pins 30 and 31  
OFF: Pin 30 and 31 are routed to zone 3 backplane connector and  
are available as PMC I/O signals (default)  
ON: Pin 30 and 31 hold clock reference signals generated by  
clock synchronization building block  
PENT/ATCA717  
45  
Installation  
OnBoard Hardware Accessories  
OnBoard Hardware Accessories  
The following hardware upgrades can be installed on the blade:  
S
S
S
S
PMC modules  
Hard Disk  
CompactFlash card  
CMC module  
PMC Modules  
The blade provides four PMC slots supporting PCI/PCI−X based PMC modules. When  
operated in PCI mode, PMC modules run at 33/66Mhz, when operated in PCI−X mode  
they run at 66/100MHz. All four PMC slots use a signaling level of 3.3V.aaaaa  
The four PMC slots are numbered from 1 to 4. Their location is shown in the following  
figure.a  
46  
PENT/ATCA717  
 
OnBoard Hardware Accessories  
Installation  
Figure 4: Location of PMC Slots  
PMC slots 1 and 2 belong to one PCI segment and PMC slots 3 and 4 belong to another  
PCI segment. Within the same PCI segment, it is possible to install two PMC modules of  
different modes (PCI/PCI−X) and speeds (33/66/100 MHz). The PMC module with the  
overall lower performance (combination of speed and PCI mode) determines the speed  
and PCI mode of the second PMC module.aaa  
Example:aA PMC module supporting PCI−X/66MHz is installed into PMC slot 1 and a  
PMC module supporting PCI/66MHz is installed into PMC slot 2. In this case both PMC  
modules are operated in PCI/66 MHz mode because the PMC module with the overall  
less performance is the one supporting PCI/66 MHz and consequently the second PMC  
module is operated in this mode as well.a  
Before installing PMC modules, the following general safety notes must be observed.a  
PENT/ATCA717  
47  
 
Installation  
OnBoard Hardware Accessories  
S
Limited Power on PMC Modules and RTMs  
The blade does not provide an extra fuse for PMC modules and RTMs.  
PMC modules and RTMs used together with the blade have to be qualified  
according to the following standards: IEC 60950−1, EN 60950−1, UL 60950−1,  
CAN/CSA C22−2 No 60950−1  
S
Excession of blade‘s power consumption  
Exceeding the maximum combined power dissipation of installed PMC modules  
may damage the blade.a  
Make sure that the combined power dissipation of installed PMC modules on the  
3.3V and 5V rail does not exceed 60W.  
S
S
PMC Module Malfunctioning  
Processor PMC modules (as defined in ANSI/VITA 32−2003) can be operated in two  
different modes: monarch and non−monarch mode.a  
Make sure to operate any installed processor PMC modules (as defined in  
ANSI/VITA 32−2003) only in non−monarch mode.a  
Damage of Installed Hard Disk  
If PPMC/270 or PPMC/280 modules are installed into PMC slot 1 or 2, the heat  
radiated by the heat sink of theses PMC modules heats up an installed hard disk  
that may be installed at the same time.a  
If PPMC/270 or PPMC/280 modules are installed into PMC slot 1 or 2, make sure not  
to have a hard disk installed at the same time.a  
S
Damage of Rear Transition Module and Blade  
The ACC/ARTM−717 was designed to be used in conjunction with PPMC/270 or  
PPMC/280 modules modules installed on the blade at the same time.  
In order to avoid damage of the blade or RTM, only use the ACC/ARTM−717 in  
conjunction with PPMC/270 or PPMC/280 modules.  
Installation Procedure  
1. Connect PMC module carefully to PMC slot  
2. Make sure that 15 mm standoffs of PMC module cover mounting holes of the  
blade.  
3. Place screws delivered with PMC module into mounting holes  
4. Fasten screws  
Removal Procedure  
1. Remove screws  
2. Disconnect PMC module carefully from slot  
48  
PENT/ATCA717  
OnBoard Hardware Accessories  
Installation  
Hard Disk  
The blade allows to install one 2.5" hard disk which may be connected to either an  
on−board parallel or serial Advanced Technology Attachment (ATA) interface connector.  
The hard disk can be mounted directly on the blade without the need for an additional  
wire.aaa  
Figure 5: Location of On−Board Hard Disk  
The serial ATA interface supports up to 150 MByte/s data transfer rate and the parallel  
ATA supports all PIO and DMA modes up to Ultra ATA100. Hard disks which are  
connected to the parallel ATA interface act as master.a  
Two hard disk accessory kits are available for the blade. One is called  
ACC/ATCA−715/HDD and contains a parallel ATA hard disk drive. The second is called  
ACC/ATCA−715/HDD−SATA and contains a serial ATA hard disk drive.a  
Installing a Hard Disk  
PENT/ATCA717  
49  
 
Installation  
OnBoard Hardware Accessories  
1. Position hard disk above blade so that the blades parallel ATA or serial ATA or  
SATA connector faces the hard disks interface connector  
2. Connect hard disk with blades connectora  
3. Turn blade to face its bottom side  
4. Fasten four screws to blade’s bottom side  
Removing a Hard Disk  
1. Removing Hard Disk  
2. Place blade on table with blade’s bottom side facing you  
3. Remove four screws holding hard disk  
4. Carefully remove hard disk from blades’s parallel ATA or SATA connector  
5. Store hard disk and screws in a safe place in case you want to use the accessory  
kit components again  
CompactFlash Disk  
The blade provides a connector to install a CompactFlash card of type I and II.aaa  
50  
PENT/ATCA717  
 
OnBoard Hardware Accessories  
Installation  
Figure 6: Location of CompactFlash Disk Connector  
The CompactFlash card is operated in True IDE mode and is connected to the secondary  
IDE interface where it acts as IDE master.a  
CompactFlash Installation  
1. Open locking bow  
2. Check that disks connectors face the CompactFlash socket  
PENT/ATCA717  
51  
 
Installation  
OnBoard Hardware Accessories  
3. Plug CompactFlash into socket  
4. Close locking bow over CompactFlash disk  
Note:aThe locking bow must enclose the disk completely.a  
Removal Procedure  
1. Open locking bow  
2. Take CompactFlash disks ends and pull CompactFlash disk carefully out of  
socket  
3. Close locking bow again  
CMC Debug Module  
A CMC debug module is available as accessory kit for the blade. It is called  
ACC/ATCA−CMC−MODULE and provides two serial and one keyboard/mouse  
interface at its face plate. The CMC debug module is installed into PMC slot 4. For further  
details refer to theaACC/ATCA−CMC−MODULE Installation Guide.aa  
52  
PENT/ATCA717  
 
Rear Transition Modules  
Installation  
Rear Transition Modules  
At the time of writing this manual the following Rear Transition Modules (RTMs) was  
available for the blade: ACC/ARTM−717aa  
It provides the following interfaces:a  
S
S
S
S
S
Two USB 2.0  
Two RS−232  
Keyboard/Mouse  
One serial ATA  
Four RS−232 interfaces routed from PMC modules installed on the base blade  
Note:a  
S
S
Refer to the RTM documentation for the RTM installation procedure  
Check the documentation of the system where you operate the blade and the RTM  
for any restrictions that may apply to the blade or the RTM  
S
No hot−swap is supported for the RTMs  
The RTM furthermore incorporates an Intelligent Platform Management Interface  
Controller (IPMC) which enables you to monitor the RTM’s temperature and voltage  
sensors. For further information, refer to theaACC/ARTM−715/717/7105/7107: Control via  
IPMI Programmer’s Guideawhich can be downloaded from the former Force Computers  
S.M.A.R.T. server or the Motorola literature catalog.a  
PENT/ATCA717  
53  
 
Installation  
Blade Installation  
Blade Installation  
The blade is fully compatible to the AdvancedTCA standard and is designed to be used in  
AdvancedTCA shelfs. Since the installation and removal procedures are different for  
powered and nonpowered shelfs, they are described in separate sections.aaaaa  
Damage of Circuits  
Electrostatic discharge and incorrect blade installation and removal can damage circuits  
or shorten their life.  
Before touching the blade or electronic components, make sure that you are working in  
an ESD−safe environment.  
Installation into Powered Shelves  
Installation Procedure  
1. Ensure that the top and bottom ejector handles are in the outward positionaa  
2. Insert blade into the shelf by placing the top and bottom edges of the blade in  
the card guides of the shelf. Ensure that the guiding module of shelf and blade  
are aligned properly.a  
3. Carefully slide the blade into the shelf until you feel resistance.a  
If an RTM is already installed in the same slot, be careful not to bend any pins of the  
P30 to P32 backplane connectors.a  
4. Hook the lower and the upper handle into the shelf rail recesses  
5. Fully insert the blade and lock it to the shelf by pressing the two components  
of the lower and the upper handles together and turning the handles towards  
the face plate  
As soon as the blade is connected to the backplane power pins, the blue LED is  
illuminated.a  
When the blade is completely installed, the blue LED starts to blink. This indicates that  
the blade announces its presence to the shelf management controller.  
Note:aIf an ARTM is connected to the front blade, make sure that the handles ofabotha  
the ARTM and the front blade are closed in order to power up the blade‘s payload.  
6. Wait until the blue LED is switched OFFa  
The switched off blue LED indicates that the blade‘s payload has been powered up  
and that the blade is active.a  
54  
PENT/ATCA717  
 
Blade Installation  
Installation  
7. Tighten the face plate screws which secure the blade to the shelfa  
8. Connect cables to the face plate, if applicable  
Removal Procedure  
1. Remove face plate cables, if applicableaa  
2. Unfasten the screws of face plate until the blade is detached from shelf  
3. Open the lower and the upper handle by pressing the two handle components  
together and turning the handles outwarda  
The blue LED blinks indicating that the blade power−down process is on−going.a  
4. Wait until the blue LED is illuminated permanently  
Note: if the LED continues to blink, a possible reason may be that upper layer software  
rejects the blade extraction request.a  
Data loss  
Removing the blade with the blue LED still blinking causes data loss.  
Wait until the blue LED is permanently illuminated, before removing the blade.  
5. Remove the blade from the shelf  
Installation in Nonpowered Shelves  
Installation Procedure  
1. Power down the shelfaa  
2. Ensure that the top and botton ejector handles are in the outward position  
3. Insert blade into the shelf by placing the top and bottom edges of the blade in  
the card guides of the shelf. Ensure that the guiding module of shelf and blade  
are aligned properly.a  
4. Slide the blade into the shelf until you feel resistance  
If an RTM is already installed in the same slot, be careful not to bend any pins of the  
P30 to P32 backplane connectors.a  
5. Hook the lower and upper handle into the shelf rail recessed  
6. Fully insert the blade and lock it to the shelf by pressing the two components  
of the lower and upper handles together and turning the handles towards the  
face plate  
PENT/ATCA717  
55  
 
Installation  
Blade Installation  
7. Tighten the face plate screws which secure the blade to the shelf.a  
8. Connect cables to the face plate, if applicable  
Removal Procedure  
1. Remove face plate cables, if applicableaa  
2. Unfasten the screws of the face plate until the blade is detached from the shelf  
3. Open the lower and the upper handle by pressing the two handle components  
together and turning the handles outward  
4. Remove the blade from the shelf  
56  
PENT/ATCA717  
 
Cable Accessory Kits  
Installation  
Cable Accessory Kits  
At the time of writing this manual the following cable accessory kits are available:aa  
S
S
S
ACC/CABLE/PMC/RJ−45  
ACC/CABLE/RJ45/DSUB  
ACC/CABLE/USB  
Note:aCheck with your local Motorola representative for the availability of further  
accessory kits.a  
ACC/CABLE/PMC/RJ45  
The ACC/CABLE/PMC/RJ45 is an accessory kit compiled for the ACC/ARTM−717 rear  
transition module. It contains a splitter cable which allows to access the serial interfaces of  
PPMC−280 modules installed on the front blade via the ARTM−717 face plate.  
ACC/CABLE/RJ45/DSUB  
The ACC/CABLE/RJ45/DSUB/5E is an accessory kit containing a shielded cable of 2m  
length and an RJ−45/DSUB adapter plug. The cable provides Null−modem functionality  
which enables you to connect a laptop to the serial interface of the blade. The cable can be  
connected to either an installed CMC module or RTM.  
ACC/CABLE/USB  
The ACC/CABLE/USB/5E is an USB adapter cable of 200 mm length which converts the  
mini USB face plate connectors to USB A female.  
PENT/ATCA717  
57  
 
3
Controls, Indicators, and Connectors  
58  
PENT/ATCA717  
 
Face Plate  
Controls, Indicators, and Connectors  
Face Plate  
The following figure shows the connectors, keys and LEDs available on the face plate.a  
P
M
C
1
OOS  
OK  
ACT  
HDD  
U
S
B
P
M
C
2
1
U
S
B
2
P
M
C
3
R
E
S
E
T
H/S  
P
M
C
4
Figure 7: Face Plate  
LEDs  
The following figure shows all LEDs available at the face plate.aaa  
PENT/ATCA717  
59  
 
Controls, Indicators, and Connectors  
Face Plate  
OOS  
OK  
ACT  
HDD  
H/S  
Figure 8: Location of Face Plate LEDs  
The meaning of these LEDs is described in the following table.a  
Table 7: Face Plate LEDs  
LED  
Description  
OOS  
Out Of Serviceaa  
Red: Blade out of service  
OFF: Blade working properly  
OK  
Payload power statusaa  
Green: Supply voltages are within threshold values  
OFF: Supply voltages are outside threshold values  
ACT  
Redundancy status  
Amber: Blade is active  
OFF: Blade is stand−by  
60  
PENT/ATCA717  
 
Face Plate  
Controls, Indicators, and Connectors  
LED  
Description  
HDD  
After power−up or reset  
If no valid BIOS image has been found, the LED is lit red and the  
blade enters into BIOS crisis recovery mode.a  
Note that the enterring into BIOS crisis recovery mode can also be  
enforced via the on−board switch SW2−4.a  
For further details about the BIOS crisis recovery mode, refer  
During booting  
During booting this LED indicates the boot status. For each task the  
BIOS POST executes, the LED is toggled between red and green.a  
During normal blade operation:  
Now the LED indicates the combined parallel/serial ATA activity or is  
used as user LED. Toggling between both modes is done via the LED  
control registeraa  
In user mode:  
Depending on the FPGA LED control register, the LED is either red,  
green or OFF.a  
In parallel/serial ATA activity mode:  
Green: Combined activity of parallel and serial ATA interfaces.a  
OFF: No activity  
H/S  
FRU State Machineaa  
During blade installation  
Permanently blue: On−board IPMC powers up  
Blinking blue: Blade communicates with shelf manager  
OFF: Blade is active  
During blade removal  
Blinking blue: Blade notifies shelf manager of its desire to deactivate  
Permanently blue: Blade is ready to be extracted  
Keys  
The blade provides one face plate reset key.a  
PENT/ATCA717  
61  
 
Controls, Indicators, and Connectors  
Face Plate  
Reset  
Key  
P
M
C
3
R
E
S
E
T
Figure 9: Location of Reset Key  
On pressing it, a hard reset is triggered and all attached on−board devices are reset.  
Note:aThe IPMC is not reset via this key.a  
Connectors  
The blade provides two mini USB 2.0 connectors of type AB at its face plate. They  
correspond to the USB interfaces 1 and 2. An adapter cable accessory kit called  
ACC/CABLE/USB is available for the blade. It converts the mini USB male face plate  
connectors to USB female connectors.aaa  
62  
PENT/ATCA717  
 
Face Plate  
Controls, Indicators, and Connectors  
ACT  
HDD  
USB 1  
U
S
B
1
P
M
C
2
USB 2  
U
S
B
2
Figure 10: Location of USB Connectors  
Their pinout is given below.a  
+5V  
1
2
3
4
5
USB_X_D  
USB_X_D+  
n.c.  
GND  
Figure 11: Face Plate USB Connector Pinout  
PENT/ATCA717  
63  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
OnBoard Connectors  
The blade provides the following on−board connectors:  
S
S
S
S
S
S
CompactFlash  
PMC  
Parallel ATAa  
Serial ATA  
CMC  
ATCA backplane connectors  
Note:aThe blade may provide further on−board connectors. These are used for debug  
purposes only and are therefore not documented in this guide.a  
CompactFlash  
The CompactFlash connector is standard and is therefore not further described in this  
guide.a  
PMC  
The blade provides the four PMC sites PMC#1 to PMC#4. For each PMC site the four  
PMC connectors Pn1 to Pn4 are provided. See the following figure.aaa  
64  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
Figure 12: Location of PMC Connectors Pn1 to Pn4  
The connectors Pn1 to Pn3 implement the PMC pinouts as specified by the IEEE P1386.1  
standard. Therefore they are not documented in this guide. The connector Pn4 contains  
PMC I/O signals and is described in the following.a  
Pn4 carries the following types of signals:  
S
S
S
S
Power signals (GND)  
Clock signals (CLK_*, NETREF))  
Signals routed to on−board Ethernet switch (ETH*_)  
Signals routed to RTM (PMC_IO_*)  
Part of the signals that are routed to the on−board switch and RTM (with the exception of  
PMC_IO_25, 26, 28, 29, 30 and 31) are grouped into length−matched differential pairs of  
100 impedance.a  
PENT/ATCA717  
65  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
On the PMC sites 1 and 4, two Ethernet ports (signals named ETH*_) are routed to the  
on−board switch. On the PMC sites 2 and 3, only one port is routed to the on−board  
switch. The following two figures show the connector pinouts.aaa  
n.c.  
n.c.  
1
2
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
}
}
}
}
}
{
{
{
n.c.  
n.c.  
3
4
n.c.  
n.c.  
5
6
8
n.c.  
n.c.  
7
n.c.  
n.c.  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
GND  
GND  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
ETHB_DA+  
ETHB_DA−  
GND  
ETHB_DC+  
ETHB_DC−  
GND  
Diff. Pair  
Diff. Pair  
Diff. Pair  
ETHB_DB+  
ETHB_DB−  
NETREF  
PMC_IO_25  
n.c.  
ETHB_DD+  
ETHB_DD−  
n.c.  
PMC_IO_26  
PMC_IO_28  
CLK8_A or PMC_IO_30  
n.c.  
PMC_IO_34  
PMC_IO_36  
PMC_IO_38  
PMC_IO_40  
PMC_IO_42  
PMC_IO_44  
PMC_IO_46  
PMC_IO_48  
n.c.  
PMC_IO_52  
PMC_IO_54  
n.c.  
PMC_IO_58  
PMC_IO_60  
PMC_IO_62  
PMC_IO_64  
Diff. Pair  
{
PMC_IO_29  
CLK8_B or PMC_IO_31  
PMC_IO_33  
PMC_IO_35  
PMC_IO_37  
PMC_IO_39  
PMC_IO_41  
PMC_IO_43  
PMC_IO_45  
PMC_IO_47  
PMC_IO_49  
PMC_IO_51  
PMC_IO_53  
PMC_IO_55  
PMC_IO_57  
PMC_IO_59  
PMC_IO_61  
PMC_IO_63  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
{
{
{
}
}
}
}
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
{
{
{
{
{
Diff. Pair  
}
Diff. Pair  
Diff. Pair  
}
}
Figure 13: PMC Sites 1 and 4 − Pn4 Connector Pinout  
66  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
ETHA_DA+  
ETHA_DA−  
GND  
ETHA_DB+  
ETHA_DB−  
GND  
ETHB_DA+  
ETHB_DA−  
GND  
ETHB_DB+  
ETHB_DB−  
NETREF  
ETHA_DC+  
ETHA_DC−  
GND  
ETHA_DD+  
ETHA_DD−  
GND  
ETHB_DC+  
ETHB_DC−  
GND  
ETHB_DD+  
ETHB_DD−  
n.c.  
PMC_IO_26  
PMC_IO_28  
CLK8_A or PMC_IO_30  
n.c.  
PMC_IO_34  
PMC_IO_36  
PMC_IO_38  
PMC_IO_40  
PMC_IO_42  
PMC_IO_44  
PMC_IO_46  
PMC_IO_48  
n.c.  
PMC_IO_52  
PMC_IO_54  
n.c.  
PMC_IO_58  
PMC_IO_60  
PMC_IO_62  
PMC_IO_64  
1
2
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
}
{
{
{
3
4
6
8
5
7
Diff. Pair  
}
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
Diff. Pair  
}
Diff. Pair  
{
Diff. Pair  
}
PMC_IO_25  
n.c.  
Diff. Pair  
}
PMC_IO_29  
CLK8_B or PMC_IO_31  
PMC_IO_33  
PMC_IO_35  
PMC_IO_37  
PMC_IO_39  
PMC_IO_41  
PMC_IO_43  
PMC_IO_45  
PMC_IO_47  
PMC_IO_49  
PMC_IO_51  
PMC_IO_53  
PMC_IO_55  
PMC_IO_57  
PMC_IO_59  
PMC_IO_61  
PMC_IO_63  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
{
{
{
}
}
}
}
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
Diff. Pair  
{
{
{
{
{
Diff. Pair  
}
54  
56  
58  
Diff. Pair  
}
}
60  
62  
Diff. Pair  
64  
Figure 14: PMC Sites 2 and 3 − Pn4 Connector Pinout  
Note:a  
S
The signals available at pins 30 and 31 depend on the settings of the on−board  
switches SW7−1 to SW7−4. Seeasection "Switch Settings" on pagea42a for further  
details.a  
S
By default, the PMC I/O Ethernet signals (ETH_xxx) are routed to the on−board  
switch via magnetics. As an assembly option the magnetics can be by−passed and  
the Ethernet signals can be accessed via an installed PMC uplink module from  
Motorola. Consult your local Motorola representative for details.a  
S
By default the signals at pins 61 to 64 are routed the zone 3 connectors where they  
are available as PMC I/O signals. As an assembly option these signals can be routed  
to the on−board Ethernet switch as further 100BaseTX interface. Consult your local  
Motorola representative for details.a  
Parallel ATA Connector  
The blade provides one parallel Advanced Technology Attachment (ATA) connector  
which allows to connect a 2.5" hard disk to the blade. The location of this connector is  
shown in the following figure.aaa  
PENT/ATCA717  
67  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
Figure 15: Location of Parallel ATA Connector  
The pinout of the connector is as follows.a  
68  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
IDE1_RST#  
GND  
2
1
IDE1_D7  
IDE1_D8  
IDE1_D9  
IDE1_D10  
IDE1_D11  
IDE1_D12  
IDE1_D13  
IDE1_D14  
IDE1_D15  
KEY  
4
3
IDE1_D6  
6
8
5
IDE1_D5  
7
IDE1_D4  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
9
IDE1_D3  
11  
IDE1_D2  
13  
IDE1_D1  
15  
IDE1_D0  
17  
GND  
19  
IDE1_DREQ  
GND  
21  
IDE1_IOW#  
GND  
23  
IDE1_IOR#  
GND  
25  
27 IDE1_IORDY  
IDE1_CSEL  
GND  
29  
31  
33  
35  
37  
39  
41  
43  
IDE1_DACK#  
IDE1_INT  
IDE1_A1  
IDE1_A0  
IDE1_CS0#  
IDE1_DASP#  
5V  
n.c.  
IDE1_CBLID#  
IDE1_A2  
IDE1_CS1#  
GND  
5V  
n.c.  
GND  
Figure 16: Parallel ATA Connector Pinout  
Serial ATA Connector  
The blade provides one Serial Advanced Technology Attachment (SATA) connector which  
allows to connect a hard disk to the blade. The location of the SATA connector is shown in  
the following figure.aaa  
PENT/ATCA717  
69  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
Figure 17: Location of Serial ATA Connector  
The pinout of the SATA connector is given in the following figure.a  
70  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
GND  
1
2
3
4
5
6
7
1
SATA0_TX+  
SATA0_TX−  
GND  
SATA0_RX−  
SATA0_RX+  
GND  
7
1
3.3V  
3.3V  
3.3V  
GND  
GND  
GND  
5V  
1
2
3
4
5
6
7
5V  
5V  
8
9
GND  
RSV  
12V  
12V  
12V  
12V  
10  
11  
12  
13  
14  
15  
15  
CMC Module Connector  
The blade provides one CMC connector which allows to connect a CMC debug module to  
the blade. A CMC debug module is available as accessory kit for the blade. The CMC  
module uses the same mounting holes as PMC slot #4.a  
PENT/ATCA717  
71  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
Figure 18: Location of CMC Connector  
The pinout of the CMC connector is given in the following figure.a  
72  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
V3P3  
V3P3  
1
2
RS232_1_DCD−  
RS232_1_RXD  
RS232_1_TXD  
RS232_1_DTR−  
RS232_3_DCD−  
RS232_3_RXD  
RS232_3_TXD  
RS232_3_DTR−  
GND  
RS232_1_DSR−  
RS232_1_RTS−  
RS232_1_CTS−  
RS232_1_RI−  
RS232_3_DSR−  
RS232_3_RTS−  
RS232_3_CTS−  
RS232_3_RI−  
GND  
3
4
5
6
8
7
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
KBD_DATA  
KBD_CLK  
VP5_KBD  
GND  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GND  
Reserved  
Reserved  
Reserved  
Reserved  
n.c.  
Reserved  
n.c.  
MSE_DATA  
MSE_CLK  
GND  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GND  
Reserved  
Reserved  
Reserved  
GND  
Reserved  
Reserved  
VP12  
Reserved  
V3P3  
Reserved  
V3P3  
For further information about the CMC module refer to theaACC/ATCA−CMC−MODULE  
Installation Guide.aa  
AdvancedTCA Backplane Connectors  
The AdvancedTCA backplane connectors reside in the three zones 1 to 3 as specified by  
the AdvancedTCA standard and are called P10, P20, P22, P23, P30, P31, and P32. The  
location of these connectors is shown in the following figure.aaa  
PENT/ATCA717  
73  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
The pinouts of all these connectors are given in this section.a  
The connector residing in zone 1 is called P10 and carries the following signals:  
S
S
S
S
S
S
Power feed for the blade (ABP_VM48_x_CON and ABP_RTN_A_CON)  
Power enable (ABP_ENABLE_x)  
IPMB bus signals (APMB_P10_IPMB0_x_yyy)  
Geographic address signals (ABP_P10_HAx)  
Ground signals (ABP_P10_SHELF_GND and GND)  
Reserved signals  
74  
PENT/ATCA717  
OnBoard Connectors  
Controls, Indicators, and Connectors  
21 17  
13  
16  
1
4
33  
34  
30  
32  
31  
28  
29  
25  
27  
26  
24 20  
Reserved  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
1
2
Reserved  
Reserved  
Reserved  
3
4
ABP_P10_HA0  
ABP_P10_HA1  
ABP_P10_HA2  
ABP_P10_HA3  
ABP_P10_HA4  
ABP_P10_HA5  
ABP_P10_HA6  
ABP_P10_HA7  
ABP_P10_IPMB0_A_SCL  
ABP_P10_IPMB0_A_SDA  
ABP_P10_IPMB0_B_SCL  
ABP_P10_IPMB0_B_SDA  
n.c.  
5
6
7
ABP_P10_SHELF_GND  
GND  
8
9
ABP_ENABLE_B  
ABP_RTN_A_CON  
ABP_RTN_B_CON  
n.c.  
10  
11  
12  
13  
14  
15  
16  
17  
n.c.  
ABP_ENABLE_A  
ABP_VM48_A_CON  
ABP_VM48_B_CON  
Figure 19: P10 Backplane Connector Pinout  
Zone 2 contains the three connectors P20, P22 and P23. They carry the following types of  
signals:  
S
S
S
Telecom clock signals (CLKx_)  
Base interface signals (BASE_)  
Fabric channel interfaces (FAB_)  
Some of the pins provided by P20, P21 and P23 are defined as optional in the  
AdvancedTCA specification and are unused on the blade. If the AdvancedTCA  
specification defines these signals as input signals, they are terminated on the blade and  
marked as "TERM_" in the following pinouts. In all other cases the pins are unconnected  
and consequently marked as "n.c.".a  
The pinouts of P20, P21 and P23 are as follows.a  
PENT/ATCA717  
75  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
a b  
c d  
e f  
g h  
d
a
b
c
1
2
CLK_1A+  
1
CLK1B+  
CLK1B−  
CLK1A−  
n.c.  
2
3
TERM_RX4_UP+ TERM_RX4_UP−  
n.c.  
3 n.c.  
4 FAB8_TX+  
5 n.c.  
TERM_RX2_UP+ TERM_RX2_UP−  
n.c.  
4
FAB8_RX+  
FAB8_RX−  
FAB8_TX−  
n.c.  
5
TERM_RX15_2+ TERM_RX15_2−  
TERM_RX15_0+ TERM_RX15_0−  
TERM_RX14_2+ TERM_RX14_2−  
TERM_RX14_0+ TERM_RX14_0−  
TERM_RX13_2+ TERM_RX13_2−  
TERM_RX13_0+_ TERM_RX13_0−  
6 n.c.  
6
n.c.  
7 n.c.  
7
n.c.  
8 n.c.  
8
n.c.  
9 n.c.  
9
n.c.  
10 n.c.  
10  
n.c.  
Figure 20: P20 Backplane Connector Pinout − Rows A to D  
a b  
c d  
e f  
g h  
h
g
e
f
CLK2A+  
CLK_2B−  
CLK_2A−  
CLK_2B+  
1
2
1
2
CLK_3A+  
n.c.  
CLK_3B−  
CLK_3A−  
n.c.  
CLK_3B+  
TERM_RX3_UP−  
TERM_RX1_UP−  
TERM_RX15_3−  
TERM_RX15_1−  
TERM_RX14_3−  
TERM_RX14_1−  
TERM_RX13_3−  
TERM_RX13_1−  
TERM_RX3_UP+  
TERM_RX1_UP+  
TERM_RX15_3+  
TERM_RX15_1+  
TERM_RX14_3+  
TERM_RX14_1+  
TERM_RX13_3+  
TERM_RX13_1+  
3
3
n.c.  
n.c.  
4
4
n.c.  
n.c.  
5
5
n.c.  
n.c.  
6
6
n.c.  
n.c.  
7
7
n.c.  
n.c.  
8
8
n.c.  
n.c.  
9
9
n.c.  
n.c.  
10  
10  
Figure 21: P20 Backplane Connector Pinout − Rows E to H  
a b  
c d  
e f  
g h  
d
a
b
c
1
2
n.c.  
1
2
TERM_RX7_2+  
TERM_RX7_2−  
n.c.  
FAB7_TX+  
FAB7_RX+  
FAB7_RX−  
FAB7_TX−  
n.c.  
3 n.c.  
3
TERM_RX6_2+  
FAB6_RX+  
TERM_RX6_2−  
FAB6_RX−  
4 FAB6_TX+  
5 n.c.  
4
FAB6_TX−  
n.c.  
5
TERM_RX5_2+  
FAB5_RX+  
TERM_RX5_2−  
FAB5_RX−  
6 FAB5_TX+  
7 n.c.  
6
FAB5_TX−  
n.c.  
7
TERM_RX4_2+  
FAB4_RX+  
TERM_RX4_2−  
FAB4_RX−  
8 FAB4_TX+  
9 n.c.  
8
FAB4_TX−  
n.c.  
9
TERM_RX3_2+  
FAB3_RX+  
TERM_RX3_2−  
FAB3_RX−  
10 FAB3_TX+  
10  
FAB3_TX−  
Figure 22: P22 Backplane Connector Pinout − Rows A to D  
76  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
a b  
c d  
e f  
g h  
h
g
e
f
n.c.  
TERM_RX7_3−  
TERM_RX7_1−  
TERM_RX6_3−  
TERM_RX6_1−  
TERM_RX5_3−  
TERM_RX5_1−  
TERM_RX4_3−  
TERM_RX4_1−  
TERM_RX3_3−  
TERM_RX3_1−  
n.c.  
TERM_RX7_3+  
1
2
1
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
TERM_RX7_1+  
TERM_RX6_3+  
TERM_RX6_1+  
TERM_RX5_3+  
TERM_RX5_1+  
TERM_RX4_3+  
TERM_RX4_1+  
TERM_RX3_3+  
TERM_RX3_1+  
2
n.c.  
3
3
n.c.  
4
4
n.c.  
5
5
n.c.  
6
6
n.c.  
7
7
n.c.  
8
8
n.c.  
9
9
n.c.  
10  
10  
Figure 23: P22 Backplane Connector Pinout − Rows E to H  
a b  
c d  
e f  
g h  
d
a
b
c
1
2
n.c.  
1
2
TERM_RX2_2+  
TERM_RX2_2−  
n.c.  
FAB2_TX+  
FAB2_RX+  
TERM_RX1_2+  
FAB1_RX+  
BASE_DB1+  
BASE_DB2+  
n.c.  
FAB2_RX−  
TERM_RX1_2−  
FAB1_RX−  
BASE_DB1−  
BASE_DB2−  
n.c.  
FAB2_TX−  
n.c.  
3 n.c.  
3
4 FAB1_TX+  
5 BASE_DA1+  
6 BASE_DA2+  
7 n.c.  
4
FAB1_TX+  
BASE_DA1−  
BASE_DA2−  
n.c.  
5
6
7
8 n.c.  
8
n.c.  
n.c.  
n.c.  
9 n.c.  
9
n.c.  
n.c.  
n.c.  
10 n.c.  
10  
n.c.  
n.c.  
n.c.  
Figure 24: P23 Backplane Connector Pinout − Rows A to D  
a b  
c d  
e f  
g h  
h
g
e
f
n.c.  
TERM_RX2_3−  
n.c.  
TERM_RX2_3+  
1
2
1
2
FAB2T_TX+  
n.c.  
FAB2T_RX−  
TERM_RX3_1−  
FAB1T_RX−  
BASE_DD1−  
BASE_DD2−  
n.c.  
FAB2T_TX−  
n.c.  
FAB2T_RX+  
TERM_RX3_1+  
FAB1T_RX+  
BASE_DD1+  
BASE_DD2+  
n.c.  
3
3
FAB1T_TX+  
BASE_DC1+  
BASE_DC2+  
n.c.  
FAB1T_TX−  
BASE_DC1−  
BASE_DC2−  
n.c.  
4
4
5
5
6
6
7
7
n.c.  
n.c.  
n.c.  
n.c.  
8
8
n.c.  
n.c.  
n.c.  
n.c.  
9
9
n.c.  
n.c.  
n.c.  
n.c.  
10  
10  
Figure 25: P23 Backplane Connector Pinout − Rows E to H  
PENT/ATCA717  
77  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
Zone 3 contains the three connectors P30 to P32. They are used to connect an RTM to the  
blade and carry the following signals  
S
S
S
S
S
S
S
S
Serial (RS232_x_yyyy)  
Serial ATA (SATAx_yyy)  
USB (USBxy)  
Keyboard/Mouse (KBD_xxx, MS_xxx)  
IPMI (IPMB1_xxx, ISMB_xxx))  
Power (VP12_RTM, V3P3_RTM)  
PMC user I/O (PMCx_IO_yy)  
General control signals (BD_PRESENTx, RTM_PRSNT_N, RTM_RST_KEY*,  
RTM_RST*)  
a b  
c d  
e f  
g h  
d
c
a
b
R232_2_RXD  
1
2
RS232_2_RTSRS232_2_CTS−  
R232_2_TXD  
1
RS232_2_DCD−  
RTM_GPO  
USB0+  
RS232_2_DSRRS232_2_RI−  
RS232_2_DTR−  
n.c.  
2
3
3
n.c.  
n.c.  
4
USB1+  
n.c.  
USB1−  
n.c.  
USB0−  
4
n.c.  
5
n.c.  
5
n.c.  
6
n.c.  
n.c.  
n.c.  
6
SATA0_TX+  
n.c.  
7
SAT0_RX+  
n.c.  
SATA0_RX−  
n.c.  
SATA0_TX−  
n.c.  
7
8
8
IPMB1_SCL  
VP12_RTM  
9
IPMB1_V3P3  
V3P3_RTM  
ISMB_ALERT_N  
V3P3_RTM  
IPMB1_SDA  
VP12_RTM  
9
10  
10  
Figure 26: P30 Backplane Connector Pinout − Rows A to D  
a b  
c d  
e f  
g h  
h
g
e
f
RS232_4_RXD  
RS232_4_CTS−  
1
2
RS232_4_TXD  
RS232_4_RTS−  
1
2
RS232_4_DCD−  
KBD_DAT  
n.c.  
RS232_4_RI−  
MS_CLK  
n.c.  
RS232_4_DTR−  
RS232_4_DSR−  
MS_DAT  
n.c.  
3
KBD_CLK  
3
4
n.c.  
4
n.c.  
n.c.  
5
n.c.  
n.c.  
5
n.c.  
n.c.  
6
n.c.  
n.c.  
6
SATA1_TX+  
n.c.  
SATA1_RX−  
n.c.  
7
SATA1_TX−  
n.c.  
SATA1_RX+  
n.c.  
7
8
8
BD_PRESENT−  
VCC_RTM  
RTM_RST−  
9
RTM_PRSNT_N  
n.c.  
RTM_RST_KEY−  
SMB_CLK  
9
SMB_DATA  
10  
10  
Figure 27: P30 Backplane Connector Pinout − Rows E to H  
78  
PENT/ATCA717  
 
OnBoard Connectors  
Controls, Indicators, and Connectors  
a b  
c d  
e f  
g h  
d
c
a
b
PMC1_IO_26  
1
2
PMC1_IO_25  
PMC1_IO_30  
PMC1_IO_39  
PMC1_IO_47  
PMC1_IO_55  
PMC1_IO_64  
PMC2_IO_35  
PMC2_IO_43  
PMC2_IO_51  
PMC2_IO_59  
n.c.  
PMC1_IO_28  
1
PMC1_IO_34  
PMC1_IO_37  
PMC1_IO_45  
PMC1_IO_53  
PMC1_IO_62  
PMC2_IO_33  
PMC2_IO_41  
PMC2_IO_49  
PMC2_IO_57  
V3P3_RTM  
PMC1_IO_36  
PMC1_IO_44  
PMC1_IO_54  
PMC1_IO_63  
PMC2_IO_31  
PMC2_IO_40  
PMC2_IO_48  
PMC2_IO_60  
VCC_RTM  
2
PMC1_IO_42  
3
3
PMC1_IO_52  
4
4
PMC1_IO_61  
5
5
PMC2_IO_29  
6
6
PMC2_IO_38  
7
7
PMC2_IO_46  
8
8
PMC2_IO_58  
9
9
VP12_RTM  
10  
10  
Figure 28: P31 Backplane Connector Pinout − Rows A to D  
a b  
c d  
e f  
g h  
h
g
e
f
PMC1_IO_29  
PMC1_IO_35  
1
2
PMC1_IO_31  
PMC1_IO_33  
1
2
PMC1_IO_38  
PMC1_IO_46  
PMC1_IO_58  
PMC2_IO_26  
PMC2_IO_34  
PMC2_IO_42  
PMC2_IO_52  
PMC2_IO_61  
n.c.  
PMC1_IO_43  
PMC1_IO_51  
PMC1_IO_59  
PMC2_IO_30  
PMC2_IO_39  
PMC2_IO_47  
PMC2_IO_55  
PMC2_IO_64  
n.c.  
PMC1_IO_40  
PMC1_IO_48  
PMC1_IO_60  
PMC2_IO_28  
PMC2_IO_36  
PMC2_IO_44  
PMC2_IO_54  
PMC2_IO_63  
n.c.  
PMC1_IO_41  
PMC1_IO_49  
PMC1_IO_57  
PMC2_IO_25  
PMC2_IO_37  
PMC2_IO_45  
PMC2_IO_53  
PMC2_IO_62  
n.c.  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
Figure 29: P31 Backplane Connector Pinout − Rows E to H  
a b  
c d  
e f  
g h  
d
c
a
b
PMC3_IO_26  
1
2
PMC3_IO_25  
PMC3_IO_30  
PMC3_IO_28  
1
2
PMC3_IO_34  
PMC3_IO_42  
PMC3_IO_52  
PMC3_IO_61  
PMC4_IO_29  
PMC4_IO_38  
PMC4_IO_46  
PMC4_IO_58  
VP12_RTM  
PMC3_IO_37  
PMC3_IO_45  
PMC3_IO_53  
PMC3_IO_62  
PMC4_IO_33  
PMC4_IO_41  
PMC4_IO_49  
PMC4_IO_57  
V3P3_RTM  
PMC3_IO_39  
PMC3_IO_47  
PMC3_IO_55  
PMC3_IO_64  
PMC4_IO_35  
PMC4_IO_43  
PMC4_IO_51  
PMC4_IO_59  
n.c.  
PMC3_IO_36  
PMC3_IO_44  
PMC3_IO_54  
PMC3_IO_63  
PMC4_IO_31  
PMC4_IO_40  
PMC4_IO_48  
PMC4_IO_60  
VP5_RTM  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
Figure 30: P32 Backplane Connector Pinout − Rows A to D  
PENT/ATCA717  
79  
 
Controls, Indicators, and Connectors  
OnBoard Connectors  
a b  
c d  
e f  
g h  
h
g
e
f
PMC3_IO_29  
PMC3_IO_35  
1
2
PMC3_IO_31  
PMC3_IO_33  
1
2
PMC3_IO_38  
PMC3_IO_46  
PMC3_IO_58  
PMC4_IO_26  
PMC4_IO_34  
PMC4_IO_42  
PMC4_IO_52  
PMC4_IO_61  
n.c.  
PMC3_IO_43  
PMC3_IO_51  
PMC3_IO_59  
PMC4_IO_30  
PMC4_IO_39  
PMC4_IO_47  
PMC4_IO_55  
PMC4_IO_64  
n.c.  
PMC3_IO_40  
PMC3_IO_48  
PMC3_IO_60  
PMC4_IO_28  
PMC4_IO_36  
PMC4_IO_44  
PMC4_IO_54  
PMC4_IO_63  
n.c.  
PMC3_IO_41  
PMC3_IO_49  
PMC3_IO_57  
PMC4_IO_25  
PMC4_IO_37  
PMC4_IO_45  
PMC4_IO_53  
PMC4_IO_62  
n.c.  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
Figure 31: P32 Backplane Connector Pinout − Rows E to H  
80  
PENT/ATCA717  
 
4
BIOS  
PENT/ATCA717  
81  
 
BIOS  
Introduction  
Introduction  
BIOS (Basic Input Output System) provides an interface between the operating system  
and the hardware of the blade. It is used for hardware configuration. Before loading the  
operating system, BIOS performs basic hardware tests and prepares the blade for the  
initial boot−up procedure.  
During blade production, identical BIOS images are programmed into the blades boot  
and user flash. By default the blade boots from the boot flash. It is possible to select  
between boot and user flash as device to boot from. This is done via a OEM IPMI  
command. For further details refer to theaPENT/ATCA−715/717/7105/7107: Control via  
IPMI Programmer’s Guideawhich can be downloaded from the Motorola literature catalog.  
The presence of two redundant flash devices also allows for updating the BIOS image  
without affecting running processes.aaa  
The BIOS used on the blade is based on the Phoenix 4.0 Release 6.0 BIOS with several  
Motorola extensions integrated. Its main functions are:  
S
S
S
S
Hardware set−up utility for setting configuration data  
Multiboot for a flexible boot order  
Serial console redirection for remote blade configuration  
Software upgrade utility  
Note:aThe BIOS contains on−line documentation which provides detailed description  
of all BIOS functions. Therefore the description in this manual is restricted to the main  
BIOS functions.a  
The BIOS set−up program is required to configure the hardware of the blade. This  
configuration is necessary for operating the blade and connected peripherals. It is stored  
in the battery backed−up CMOS memory as well as in the blade’s boot flash.a  
Whenever you are not sure about configuration settings, restore the default values. They  
are provided in case a value has been changed and you wish to reset settings. To restore  
the default values, press <F9> in setup.  
Note:a  
S
S
Loading the BIOS default values will affect all set−up items and will reset options  
previously altered.a  
If you set the default values, the displayed default values are not yet stored to be  
effective for the next boot. They are just loaded to be displayed. However, they  
become effective if the BIOS setup is exited after changes have been saved.  
82  
PENT/ATCA717  
 
Introduction  
BIOS  
The BIOS complies to the following specifications:  
S
S
S
S
S
Plug and Play BIOS Specification 1.0A  
PCI BIOS Specification 2.1  
SMBIOS Specification 2.3  
BIOS Boot Specification 1.01  
PXE 2.0  
PENT/ATCA717  
83  
BIOS  
Serial Console Redirection  
Serial Console Redirection  
The firmware of the blade provides a serial console redirection feature. This allows  
remote blade configuration by connecting a terminal to the blade via a serial  
communication link.a  
The terminal can be connected to display VGA text information. Terminal keyboard input  
is redirected and treated as a normal PC keyboard input. The serial console redirection  
feature can be configured via setup utility.  
Note:aIf serial console redirection is enabled the terminal represents an option and is  
not necessarily required for boot−up procedure.a  
Requirements  
For serial console redirection, the following is required:  
S
S
Terminal which supports a VT100 or ANSI modea  
NULL−modem cable  
Terminal emulation programs such as TeraTermPro can be used. In order to use  
TeraTermPro via the function keys, the keyboard configuration file of TeraTermPro has to  
be modified as follows:  
Table 8: Key Codes for Terminal Emulation Program  
Function Key  
Key Code  
PF1  
PF2  
59  
60  
Default Configuration  
By default, the blade can be accessed via the serial interface COM1. This interface is, by  
default, accessible via an installed RTM through an RJ−45 connector. If no RTM is present  
or you wish to access COM1 from the blade’s face plate, COM1 can alternatively be made  
accessible at an installed CMC module. Whether COM1 is available via RTM or CMC  
module depends on the setting of the on−board switch SW3−4 which enables/disables  
COM port swapping. The following table provides details.aaa  
Setting of SW3−4  
OFF (default)  
ON  
COM1 is accessible via:  
RTM (upper serial connector)  
CMC module (upper serial connector)  
84  
PENT/ATCA717  
 
Serial Console Redirection  
BIOS  
Note:a  
S
The COM port routing described above is only applicable to BIOS versions w 2.0.0.  
Earlier BIOS versions used a different routing. For details refer to  
theaPENT/ATCA−715/717/7105/7107 BIOS Information Sheeta which can be  
downloaded from the Motorola literature catalog web site.  
S
COM port swapping can also be enabled via an IPMI System Boot Options  
command. COM port swapping is enabled if either the on−board switch 3−4, the  
IPMI System Boot Options command or both enable it.a  
A NULL−Modem cable is available as accessory kit for the blade. It converts the RJ−45  
connector to a standard DSUB connector which can be connected to a remote terminal.  
The following communication parameters are used by default:  
S
S
S
S
S
S
Baud rate: 9600  
No handshake  
PC ANSI  
8 data bits  
No parity  
1 stop bit  
All configuration parameters listed above can be modified via the BIOS.a  
Connecting to the Blade  
In order to connect to the blade using the serial console redirect feature, proceed as  
follows:.  
Procedure  
1. Configure terminal to communicate using the same parameters as in BIOS  
setup  
2. Connect terminal to NULL−modem cable  
3. Connect NULL−modem cable to COM port you have selected in BIOS setup  
4. Start up blade  
PENT/ATCA717  
85  
 
BIOS  
BIOS Crisis Recovery Mode  
BIOS Crisis Recovery Mode  
Immediately after a reset or power−up a routine in the boot flash boot block is invoked  
which checks whether a valid BIOS image is available. If no valid image is found and  
consequently the blade is unable to boot, the blade enters into BIOS crisis recovery mode.  
In this mode a routine tries to load a BIOS crisis recovery image from a disk drive  
connected to the blade’ s USB interface. The BIOS crisis recovery image is basically a mini  
DOS with minimum functionality which replaces the corrupted image.a  
A valid BIOS crisis recovery image can be downloaded from the former Force Computers  
SMART server or the Motorola website as part of the BIOS upgrade kit which which is  
available for this blade. The image is accompanied by readme files which describe how to  
create the BIOS upgrade/recovery disk and how to to replace a corrupted BIOS with the  
BIOS crisis recovery image.a  
If the blade has enterred BIOS crisis recovery mode,the face plate LED "HDD" is lit ed.  
After the BIOS recovery image has been successfully flashed, the LED is lit green.a  
Note:aFlashing the BIOS crisis recovery image may take up to two minutes. In order to  
avoid blade damage, it is absolutely important not to interrupt the flashing process.  
Therefore wait until the LED is lit green again, which indicates a successful flashing.a  
86  
PENT/ATCA717  
 
Changing Configuration Settings  
BIOS  
Changing Configuration Settings  
When the system is turned on or rebooted, the presence and functionality of the system  
components is tested by POST (Power−On Self−Test).a  
Press <F2> when requested. The main menu appears. It looks similar to the menu shown  
in the following figure. Note that the layout may slightly vary with new BIOS versions.a  
Figure 32: Main Menu  
Note:a  
S
S
Make sure that BIOS is properly configured prior to installing the operating system  
and its drivers.  
If you save changes in setup, the next time the blade boots BIOS will configure the  
system according to the setup selections stored. If those values cause the system  
boot to fail, reboot and enter setup to get the default values or to change the  
selections that caused the failure. If the boot fails or is interrupted three times in a  
row, the default values are then loaded automatically.  
In order to navigate in setup, use the arrow keys on the keyblade to highlight items on the  
menu. All other navigation possibilities are shown at the bottom of the menu.  
Additionally, an item−specific help is displayed on the right side of the menu window.  
PENT/ATCA717  
87  
 
BIOS  
Selecting The Boot Device  
Selecting The Boot Device  
There are two possibilities to determine the device from which BIOS attempts to boot:  
S
S
Via setup to select a permanent order of boot devices  
Via boot selection menu to select any device for the next boot−up procedure only  
Via Setup  
1. In the menu line, select [Boot]  
A menu similar to the one shown in the following figure appears. Note that the layout  
may vary slightly with new BIOS versions.a  
2. Select [Boot Device Priority]  
A menu similar to the one shown in the following figure appears. Note that the layout  
may vary slightly with new BIOS versions.a  
88  
PENT/ATCA717  
 
Selecting The Boot Device  
BIOS  
3. Select the order of the devices from which BIOS attempts to boot the operating  
system  
If BIOS is not successful at booting from one device, it tries to boot from the next device  
on the list.  
If there is more than one device of the same type, e.g. several hard disks, the displayed  
entry represents the first of these devices as specified in the boot configuration via setup.  
The same options determine the order in which POST installs the devices and the  
operating system assigns device letters. BIOS supports up to two floppy devices to which  
the operating system may assign, e.g. drive letters A: and B:. The drives C:, D:, E: etc. are  
reserved for hard−disk drives.  
Note:aThere is not always an exact correspondence between the order specified in  
setup and the letters assigned by the operating system. Many devices, such as legacy  
option ROMs, support more than one device that can be assigned to several letters. If  
the CD−ROM drive should have a letter coming before the one assigned to the hard  
drive, move it in front of the hard drive. The group of bootable add−in cards refers to  
devices with non−multiboot−compliant BIOS option ROM from which you can boot  
the operating system.a  
Via Boot Selection Menu  
To enter the boot menu, press <ESC> during POST. The menu that appears looks similar  
to the one shown in the following figure. Note that the layout may vary slightly with new  
BIOS versions.a  
PENT/ATCA717  
89  
 
BIOS  
Selecting The Boot Device  
Figure 33: Boot Menu  
Continue with one of the following options:  
a) Override existing boot sequence by selecting another boot device from the boot order  
list or  
b) Select [Enter Setup] to enter setup utility or  
c) Press <Esc> to return to POST screen and continue with previous boot sequence  
Note:aIf the selected device does not load the operating system, BIOS reverts to the  
previous boot sequence.  
90  
PENT/ATCA717  
 
Restoring BIOS Default Settings  
BIOS  
Restoring BIOS Default Settings  
The blade provides an on−board configuration switch that allows to clear the blade’s  
CMOS and thus to restore the BIOS default settings. In order to restore the BIOS default  
settings using this switch, you have to proceed as follows.aa  
Procedure  
1. Remove the blade from the system  
2. Set the on−board switch SW2−3 to ON  
Seeasection "Switch Settings" on pagea42afor the exact location of SW2−3  
3. Install and power up the blade  
Note that the blade will not boot, because the "Clear CMOS RAM" switch SW2−3 is  
set to ON.a  
4. Remove the blade from the system again  
5. Set switch SW2−3 to OFF  
Now the BIOS default settings are restored.a  
PENT/ATCA717  
91  
 
BIOS  
Updating BIOS  
Updating BIOS  
For the blade a BIOS upgrade kit is offered. It is available via the former Force Computers  
S.M.A.R.T. web site or the Motorola web site.aaa  
Note:aWhen upgrading the BIOS, all BIOS settings are reset to their default state.a  
92  
PENT/ATCA717  
 
BIOS Messages  
BIOS  
BIOS Messages  
If your system fails after you made changes in the setup menus, you may be able to  
correct the problem by entering setup and restoring the original values.a  
Message  
Explanationa  
Corrective Action  
nnnn Cache SRAM Passed  
nnnn is amount of system  
cache in KBytes  
None  
successfully tested  
CDROM Drive Identified  
Autotyping identified  
CD−ROM Drive  
None  
Diskette drive A  
Drive A: or B: fails the BIOS Check that drive is defined  
errorDiskette drive B error POST disk tests. Drive is  
with proper disk type in  
setup, that disk drive is  
selected via setup but  
either not present or defect. attached correctly and that  
controller is enabled.  
Entering SETUP ...  
Starting setup program  
None  
Extended RAM Failed at  
offset: nnnn  
Extended memory not  
working or not configured  
properly at offset nnnn  
Check if memory modules  
are installed correctly.  
Otherwise contact your  
local sales representative or  
FAE for further support.  
nnnn Extended RAM Passed  
Failing Bits: nnnn  
nnnn is amount of RAM in None  
MBytes successfully tested.  
nnnn is a map of the bits at Check if memory modules  
the RAM address (in  
system, extended or  
shadow memory) which  
failed the memory test.  
Each 1 (one) in the map  
indicates a failed bit.  
are installed correctly.  
Otherwise contact your  
local sales representative or  
FAE for further support.  
Fixed Disk 0 Failure  
Fixed Disk 1 Failure  
Fixed Disk Controller  
Failure  
Fixed disk not working or  
not configured properly  
Check if fixed disk is  
attached properly. Run  
setup to be sure the  
fixed−disk type is correctly  
identified.  
Fixed Disk 0...3 Identified Autotyping identified  
None  
specified fixed disk  
Incorrect Drive A type −  
run SETUP  
Type of floppy drive not  
correctly identified in setup drive in setup.  
Check for correct floppy  
Incorrect Drive B type −  
run SETUP  
Keyblade controller error  
Keyblade controller failed  
test  
Replace keyblade  
PENT/ATCA717  
93  
 
BIOS  
BIOS Messages  
Message  
Explanationa  
Corrective Action  
Keyblade error  
Keyblade not working  
Check for correct keyblade  
connection.  
Keyblade error nnn  
BIOS discovered a stuck  
Replace keyblade, check for  
key and displays scan code stuck keys  
nn for stuck key  
Operating system not found  
Parity Check 1 nnnn  
Operating system cannot  
be located on either drive  
A: or drive C:.  
Enter setup and check if  
fixed disk and drive A: are  
properly identified.  
Parity error found in  
Check for correct memory  
system bus. BIOS attempts module types.  
to locate address nnnn and  
display it on screen. If it  
cannot locate the address, it  
displays ????.  
Parity Check 2 nnnn  
Parity error found in  
Check for correct memory  
system bus. BIOS attempts module types.  
to locate address nnnn and  
display it on the screen. If it  
cannot locate the address, it  
displays ????.  
Press <F1> to resume, <F2>  
to setup  
Displayed after any  
recoverable error message  
Press <F1> to start boot  
process or <F2> to enter  
setup and change any  
settings.  
Previous boot incomplete −  
Default configuration used  
Previous POST did not  
complete successfully.  
POST loads default values  
and offers to run setup. If  
failure was caused by  
incorrect values and they  
are not corrected, the next  
boot will likely fail.  
Run setup to restore  
original configuration. This  
error is cleared the next  
time the system is booted.  
Real time clock error  
Real−time clock fails BIOS  
test  
May require blade repair  
Resource allocation  
Possible interrupt or  
Run ISA or EISA  
conflict on motherblade −  
Run Configuration Utility  
interface resource conflict.  
Configuration Utility to  
resolve resource conflict.  
Shadow RAM Failed at  
offset: nnnn  
Shadow RAM failed at  
offset nnnn of the 64k block representative or FAE for  
Contact your local sales  
at which error was  
detected.  
further support.  
nnnn Shadow RAM Passed  
nnnn is amount of shadow None  
RAM in KBytes  
successfully tested  
94  
PENT/ATCA717  
BIOS Messages  
BIOS  
Message  
Explanationa  
Corrective Action  
System battery is dead −  
Replace and run SETUP  
The NVRAM (CMOS) clock Replace battery and run  
battery indicator shows the setup to reconfigure  
battery is dead.  
system.  
System BIOS shadowed  
System BIOS copied to  
shadow RAM  
None  
System cache error Cache  
disabled  
RAM cache failed BIOS  
test. BIOS disabled cache  
Contact your local sales  
representative or FAE for  
further support.  
System CMOS checksum bad −  
run SETUP  
System NVRAM (CMOS)  
has been corrupted or  
modified incorrectly,  
Run setup and reconfigure  
system either by getting  
default values and/or  
making your own  
perhaps by an application  
program that changes data selections.  
stored in NVRAM (CMOS).  
System RAM Failed at  
offset: nnnn  
System RAM failed at offset Check for correct memory  
nnnn in the 64k block at  
which the error was  
detected.  
modules. Otherwise  
contact your local sales  
representative or FAE for  
further support.  
nnnn System RAM Passed  
System timer error  
nnnn is amount of system  
RAM in KBytes  
successfully tested  
None  
Timer test failed  
Requires repair of system  
blade  
UMB upper limit segment  
address: nnnn  
Address nnnn of the upper None  
limit of upper memory  
blocks indicates released  
segments of BIOS which  
may be reclaimed by a  
virtual memory manager.  
Video BIOS shadowed  
Video BIOS successfully  
copied to shadow RAM  
None  
Invalid System  
Configuration Data run  
configuration utility  
Enter setup and use  
advanced configuration  
option to reset  
configuration data (due to  
corrupted ESCD data).  
PENT/ATCA717  
95  
BIOS  
BIOS Post Codes  
BIOS Post Codes  
The following table lists BIOS post codes applicable to the used Phoenix 4.0 Release 6.0  
BIOS. The BIOS POST codes are stored in the blades Port 80 register and can also be  
obtained by reading an on−board IPMI sensor. For details refer to  
theaPENT/ATCA*715/717/7105/7107: Control via IPMI Programmer’s Guide which can  
be downloaded from the Motorola literature catalog.aaa  
Table 9: Standard BIOS Post Codes  
Post Code Description  
02  
03  
04  
06  
07  
08  
09  
0A  
0B  
0C  
0E  
0F  
10  
11  
Verify real mode  
Disable non−maskable interrupt (NMI)  
Get CPU type  
Initialize system hardware  
Disable shadow and execute code from the ROM  
Initialize chipset with initial POST values  
Set IN POST flag  
Initialize CPU registers  
Enable CPU cache  
Initialize caches to initial POST values  
Initialize I/O component  
Initialize the local bus IDE  
initialize power management  
Load alternate registers with initial POST values  
Restore CPU control word during warm boot  
Initialize PCI bus mastering devices  
Initialize keyboard controller  
BIOS ROM checksum  
12  
13  
14  
16  
17  
18  
1A  
1C  
20  
22  
Initialize cache before memory autosize  
8254 programmable interrupt timer initialization  
8237 DMA controller initialization  
Reset programmable interrupt controller  
Test DRAM refresh  
Test 8742 keyboard controller  
96  
PENT/ATCA717  
 
BIOS Post Codes  
BIOS  
Post Code Description  
24  
26  
28  
29  
2A  
2C  
2E  
2F  
30  
32  
33  
36  
38  
3A  
3C  
3D  
41  
42  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4E  
4F  
50  
51  
Set ES segment register to 4GB  
Enable gate A20 line  
Autosize DRAM  
Initialize POST memory manager  
Clear 512KB base RAM  
RAM failure on address line xxxx  
RAM failure on data bits xxxx of low byte of memory bus  
Enable cache before system BIOS shadow  
RAM failure on data bits xxxx of high byte of memory bus  
Test CPU bus clock frequency  
Initialize Phoenix Dispatch Manager  
Warm start shut down  
Shadow system BIOS ROM  
Autosize cache  
Advanced configuration of chipset registers  
Load alternate registers with CMOS values  
Initialize extended memory for RomPilot  
Initialize interrupt vectors  
POST device initialization  
Check ROM copyright notice  
Initialize I20 support  
Check video configuration against CMOS  
Initialize PCI bus and devices  
Initialize all video adapters in system  
QuietBoot start (optional)  
Shadow video BIOS ROM  
Display BIOS copyright notice  
Initialize MultiBoot  
Display CPU type and speed  
Initialize EISA board  
PENT/ATCA717  
97  
BIOS  
BIOS Post Codes  
Post Code Description  
52  
54  
55  
58  
59  
5A  
5B  
5C  
60  
62  
64  
66  
67  
68  
69  
6A  
6B  
6C  
6E  
70  
72  
76  
7C  
7D  
7E  
80  
81  
82  
83  
84  
Test keyboard  
Set key click if enabled  
Enable USB devices  
Test for unexpected interrupts  
Initialize POST display service  
Display prompt "Press F2 to enter SETUP"  
Disable CPU cache  
Test RAM between 512KB and 640KB  
Test extended memory  
Test extended memory address lines  
Jump to UserPatch1  
Configure advanced cache registers  
Initialize Multi Processor APIC  
Enable external and CPU caches  
Setup system management mode (SMM) area  
Display external L2 cache size  
Load custom defaults (optional)  
Display shadow area message  
Display possible high address for UMB recovery  
Display error messages  
Check for configuration errors  
Check for keyboard errors  
Set up hardware interrupt vectors  
Initialize Intelligent System Monitoring  
Initialize coprocessor if present  
Disable onboard super I/O ports and IRQ’s  
Late POST device initialization  
Detect and install external RS232 ports  
Configure non−MCD IDE controllers  
Detect and install external parallel ports  
98  
PENT/ATCA717  
BIOS Post Codes  
BIOS  
Post Code Description  
85  
Initialize PC compatible PnP ISA devices  
Reinitialize onboard I/O ports  
Configure motherboard configurable devices (optional)  
Initialize BIOS data area  
86  
87  
88  
89  
Enable non−maskable interrupts (NMI’s)  
Initialize extended BIOS data area  
Test and initialize PS/2 mouse  
Initialize floppy controller  
8A  
8B  
8C  
8F  
90  
Determine number of ATA drives (optional)  
Initialize hard disk controllers  
Initialize local bus hard disk controllers  
Jump to UserPatch2  
91  
92  
93  
Build MPTABLE for multi processor boards  
Install CD ROM for boot  
95  
96  
Clear huge ES segment register  
Fixup multi processor table  
Search for option ROM’s  
97  
98  
99  
Check for SMART drive (optional)  
Shadow option ROM’s  
9A  
9C  
9D  
9E  
9F  
A0  
A2  
A4  
A8  
AA  
AC  
AE  
Set up power management  
Initialize security engine (optional)  
Enable hardware interrupts  
Determine number of ATA and SCSI drives  
Set time of day  
Check key lock  
Initialize typematic rate  
Erase F2 prompt  
Scan for F2 key stroke  
Enter setup  
Clear boot flag  
PENT/ATCA717  
99  
BIOS  
BIOS Post Codes  
Post Code Description  
Check for errors  
B0  
B1  
B2  
B4  
B5  
B6  
B7  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
Inform RomPilot about the end of POST  
POST done − prepare to boot operating system  
One short beep  
Terminate QuietBoot (optional)  
Check password  
Initialize ACPI BIOS  
Prepare boot  
Initialize DMI parameters  
Initialize PnP option ROM’s  
Clear parity checkers  
Display multiboot menu  
Clear screen  
Check virus and backup reminders  
Try to boot with interrupt 19  
Initialize POST Error Manager (PEM)  
Initialize error logging  
Initialize error display function  
Initialize system error handler  
PnP dual CMOS (optional)  
Initialize notebook docking (optional)  
Initialize notebook docking late  
Motorola check (optional)  
Extended checksum (optional)  
Redirect Int 15h to enable remote keyboard  
Redirect Int 13 to Memory Technologies Devices such as ROM, RAM,  
PCMCIA, and serial disk  
CC  
CD  
CE  
Redirect Int 10h to enable remote serial video  
Re−map I/O and memory for PCMCIA  
Initialize digitizer and dispaly messagea  
100  
PENT/ATCA717  
BIOS Post Codes  
BIOS  
Post Code Description  
D2  
aa  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
E1  
E2  
E3  
E4  
E5  
Unknown interrupt  
The following are for boot block in Flash ROM  
Initialize the bridgea  
Initialize the CPUa  
Initialize the system timera  
Initialize system I/Oa  
Check recovery boota  
Checksum BIOS ROMa  
Go to BIOSa  
Set Huge Segmenta  
Initialize Multi Processora  
Initialize OEM special codea  
Initialize PIC and DMAa  
Initialize Memory typea  
Initialize Memory sizea  
Shadow Boot Blocka  
System memory testa  
Initialize interrupt vectorsa  
Initialize Run Time Clocka  
Initialize videoa  
Initialize System Management Menagera  
Output one beepa  
Clear Huge Segementa  
Boot to mini DOSa  
Boot to Full DOSa  
Initialize the bridgea  
Initialize the CPUa  
Initialize the system timera  
Initialize system I/Oa  
Check recovery boota  
PENT/ATCA717  
101  
BIOS  
BIOS Post Codes  
Post Code Description  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
Checksum BIOS ROMa  
Go to BIOSa  
Set Huge Segmenta  
Initialize Multi Processora  
Initialize OEM special codea  
Initialize PIC and DMAa  
Initialize Memory typea  
102  
PENT/ATCA717  
5
Devices’ Features and Data Paths  
PENT/ATCA717  
103  
 
104  
PENT/ATCA717  
Block Diagram  
Devices’ Features and Data Paths  
Block Diagram  
RS232  
KBD/MSE  
(via CMC  
Module)  
RS232  
(via CMC  
Module)  
2x USB 2.0  
Pentium M  
CPU  
DDR SDRAM  
DDR SDRAM  
Compact  
Hard Disk  
Flash  
PCI Bridge  
P64H2  
Host Bridge  
MCH E7501  
PCIX  
64bit/100 MHz  
Parallel ATA  
Parallel ATA  
South Bridge  
Intel 6300ESB  
PMC#1 PMC#2 PMC#3 PMC#4  
SATA  
RS232  
LPC  
Boot Flash  
PCI  
PCIX  
PMC I/O  
Super I/O  
32 bit  
64 bit  
User Flash  
IPMC  
LPC47S422  
33 MHz  
66 MHz  
82546EB/GB  
Ethernet  
Controller  
Switching Unit  
Clock  
Synchr.  
Glue Logic  
FPGA  
Clock  
82540EM  
Ethernet  
Controller  
IPMBL  
PMC I/O  
SMI  
Power Supply  
Module  
KB/MS  
RS232  
2x IPMB 0  
2x 48V  
Figure 34: Base Board Block Diagram  
PENT/ATCA717  
105  
 
Devices’ Features and Data Paths  
CPU  
CPU  
The used Central Processing Unit (CPU) is a Pentium M processor. The CPU provides 32  
kBytes of on−die data and instruction cache as well as two MByte L2 cache.aaa  
An on−die temperature sensor measures the CPU temperature. It is connected to the  
blade’s Intelligent Peripheral Management Controller (IPMC). This way software can  
monitor the CPU temperature via IPMI.aaa  
106  
PENT/ATCA717  
 
Host Bridge  
Devices’ Features and Data Paths  
Host Bridge  
The used host bridge is an Intel E7501 Memory Controller Hub (MCH) device. It is part of  
the Intel Plumas chipset and provides bus control signals, address and data paths for  
transfers between the CPU front side bus, main memory and the four hub interfaces  
provided by the host bridge.aaa  
Host Interface  
The host interface supports a 64−bit wide data bus and a 32−bit wide address bus. The  
data bus is quadpumped and runs at 100 MHz, resulting in a total bandwidth of 3.2 GB/s.  
The memory bus is double pumped and supports an address range of up to 4 GByte. Its  
bandwidth is 200 Mb/s per data line resulting in a total bandwidth of 128 x 200MB/S =  
3.2GB/s.a  
Memory Interface  
The memory interface is a 144−bit wide SDRAM interface supporting 64, 128, 256 and 512  
MBit DDR SDRAM technology. The bus speed is 100 MHz running synchronously to the  
front side bus. Additionally ECC is supported.a  
Although theoretically up to 16 GByte are supported by the memory interface, the actual  
maximum memory size is limited to 4 GByte due to the CPUs 32−bit address bus.a  
Hub Interfaces  
The Host Bridge provides the four hub interfaces A, B, C and D.a  
Hub interface A is quad pumped, 8−bit wide and runs at 66 MHz. It is connected to the  
South Bridge and provides a maximum data transfer rate of 266MByte/s. Parity  
protection is provided for hub interface A. Any parity errors are detected by the host  
bridge and reported to the South Bridge, which in turn generates an NMI.a  
The hub interfaces B, C and D are octal pumped, 16−bit wide and run at 66 MHz. The  
maximum data transfer rate provided by each hub interface is 1.066 GByte/s.a  
ECC protection is provided for hub interfaces B, C and D. Any ECC errors are detected by  
the host bridge and reported to the South Bridge, which in turn generates an NMI.a  
PENT/ATCA717  
107  
 
Devices’ Features and Data Paths  
South Bridge  
South Bridge  
The used South Bridge is an Intel 6300ESB I/O controller hub device. It provides the  
interface between the Host Bridge and the legacy I/O. Integrated into the South Bridge  
are:aa  
S
S
S
S
S
Two 8237 DMA controllers  
One 8254 counter timer  
Interrupt controller  
Real−time clock  
Watchdog  
The interfaces provided by the South Bridge include:a  
S
S
S
S
S
S
S
S
S
Hub interface 1.5  
PCI 2.2 interface  
PCI−X 1.0 interface  
Two parallel ATA interfaces  
Two serial ATA interfaces  
Two serial RS−232 interfaces  
Four USB interfaces  
LPC interface  
SMBus interface  
Interrupt Controller  
The interrupt controller residing in the South Bridge is 8259A−compliant and runs in PIC  
mode.a  
The interrupts of the four PMC slots are merged and are routed through an FPGA to the  
interrupt controller where they are mapped to ISA compatible interrupts.a  
The interrupt controller is also able to generate CPU Non−Maskable Interrupts (NMIs).  
Possible sources of NMIs are:aa  
S
Memory ECC and parity errors  
108  
PENT/ATCA717  
 
South Bridge  
Devices’ Features and Data Paths  
S
S
Hub interface ECC and parity errors  
PCI bus parity errors  
RealTime Clock  
The Real−Time Clock (RTC) resides inside the South Bridge and is sourced by an external  
32.768 crystal providing a frequency tolerance of 20 ppm. The RTC provides 242 bytes  
backed−up CMOS RAM and is fully compliant to:aa  
S
S
S
S
DS1287  
MC14618  
Y2K  
PC87911  
Watchdog  
The Southbridge incorporates a two−stage watchdog timer. For details refer to the Intel  
6300ESB I/O controller documentation. On expiry, the watchdog is able to issue a blade  
reset.a  
PCIX Interface  
The PCI−X interface is 64−bit wide and runs at 66 MHz. It is compliant to the PCI−X 1.0  
specification. On the board 3.3V signalling level is used and an 82546EB/GB dual  
Ethernet controller is connected to the PCI−X interface.a  
Parallel ATA Interfaces  
The South Bridge provides two separate parallel Advanced Technology Attachment  
(ATA) interfaces: one primary and one secondary parallel ATA interface. Both interfaces  
support all Programmed I/O (PIO) modes as well as all Direct Memory Access (DMA)  
modes up to Ultra ATA/100. The combined parallel and serial ATA interface traffic is  
indicated by a face plate LED.a  
Primary Parallel ATA Interface  
The primary parallel ATA interface is connected to an on−board 2.5" hard disk which can  
be mounted on the blade. The hard disk operates as IDE master.a  
PENT/ATCA717  
109  
 
Devices’ Features and Data Paths  
South Bridge  
Secondary Parallel ATA Interface  
The secondary parallel ATA interface is connected to an on−board CompactFlash  
connector which supports CompactFlash cards of type I and II. An inserted card runs in  
true IDE mode and is master on the secondary parallel ATA interface.a  
USB Interfaces  
The South Bridge provides four USB interfaces. Two are routed to the blades face plate  
and two to the rear transition module. All interfaces are compliant to the USB 2.0  
standard.a  
PCI Interface  
The South Bridge provides a 32−bit/33 MHz PCI interface that is compliant to the PCI 2.2  
specification. Up to four external PCIbus master devices are supported and a 3.3V  
signaling level is used.  
Serial ATA Interfaces  
The South Bridge provides two Serial Advanced Technology Attachment (SATA)  
interfaces which are compliant to the SATA 1.0 specification and support a data transfer  
rate of up to 1.5GByte/s. One interface is routed to the Zone 3 connector and is accessable  
via an installed RTM. One interface is routed to an on−board SATA connector to which a  
SATA hard disk can be connected.a  
Serial RS232 Interfaces  
The South Bridge provides two serial full−duplex RS232 interfaces. Supported baud rates  
are: 600, 1200, 2400, 4800, 9600, 19200, 38400 and 115200 kb/s. Both serial interfaces are  
+/− 15 KV ESD protected.  
Both interfaces correspond to the blades serial interface ports 1 and 3. Serial interface port  
1 is routed via a zone 3 connector to an installed RTM. Serial interface port 3 is accessible  
via an installed CMC module. The BIOS maps the serial interfaces ports to the desired  
I/O addresses (COM ports) and interrupts.aaaaa  
LPC Interface  
The South Bridge provides a 4−bit wide Low Pin Count (LPC) interface running at 33  
MHz. It has the following devices attached to it:  
S
Super I/O  
110  
PENT/ATCA717  
 
South Bridge  
Devices’ Features and Data Paths  
S
S
S
Boot flash  
User flash  
Glue Logic FPGA  
SMBus Interface  
The following table lists all devices which are connected to the South Bridge via its SMBus  
interface:aaaa  
Device Name  
Device Type  
SMBus Address  
SPD EEPROM (contains memory  
configuration data of memory module,  
used by BIOS)  
24C02  
0xA0  
SPD EEPROM (contains memory  
configuration data of memory module,  
used by BIOS)  
24C02  
0xA1  
Host Bridge  
PCI bridge  
Intel E7501  
P64H2  
0x60  
0xC0  
0x44  
South Bridge  
6300ESB  
PENT/ATCA717  
111  
 
Devices’ Features and Data Paths  
Super I/O  
Super I/O  
The used Super I/O is a Standard Microsystems Corporation LPC47S422 device. It  
provides the following interfaces:aa  
S
S
S
S
Two serial interfaces  
Floppy disk interface  
Keyboard/Mouse interface  
Parallel interface  
Serial Interfaces  
The Super I/O device provides two serial full−duplex RS232 interfaces. Supported baud  
rates are: 600, 1200, 2400, 4800, 9600, 19200, 38400 and 115200 kb/s. Both serial interfaces  
are +/− 15 KV ESD protected.  
Both interfaces correspond to the blades serial interface ports 2 and 4. Serial interface port  
2 is routed via a zone 3 connector to an installed RTM. Serial interface port 4 is accessible  
via an installed CMC module. The BIOS maps the serial interface ports to the desired I/O  
addresses (COM ports) and interrupts.aaaaa  
Floppy Disk Interface  
The floppy disk interface is unused on the blade.a  
Keyboard/Mouse Controller  
The Super I/O integrates an 8042H compatible keyboard/mouse controller. The  
corresponding interfaces are accessible via RTM and CMC debug module.a  
Parallel Interface  
The parallel interface is unused on this blade.  
112  
PENT/ATCA717  
 
Flash Devices  
Devices’ Features and Data Paths  
Flash Devices  
The blade provides two redundant boot flash devices: one default boot flash and one  
backup boot flash. During blade production, both flashes are programmed with identical  
BIOS images. The presence of two redundant flash devices allows for remotely updating  
BIOS images from the operating level without interrupting running processes and  
without being affected by possibly corrupt BIOS images. The backup boot flash,  
furthermore, can be used to store customized images. Note that in this case the redundant  
BIOS feature is no longer available.a  
Both flash devices are Intel−compatible firmware hubs that are connected to the LPC  
interface of the South Bridge. Each flash device has a unique four bit LPC device ID. Bit 1  
to 3 of the device ID are fixed to 0. Bit 0 is controlled by a boot flash select signal provided  
by the IPMC in such a way that bit 0 of one flash is set to 0 while bit 0 of the other flash is  
set to 1 and vice versa. The following figure shows the implementation on  
hardware−level.a  
Default Boot  
Flash  
ID0  
ID1  
ID2  
IPMC  
ID3  
Boot Flash  
Select Signal  
Backup Boot  
Flash  
ID0  
ID1  
ID2  
ID3  
Figure 35: Boot Flash LPC Device ID Control  
The blade’ s CPU always boots from the boot flash with the LPC device ID 0. Thus the  
boot flash select signal of the IPMC allows to select the flash device that the CPU is to  
boot from.a  
An IPMI Set System Boot Options command allows to control the boot flash select signal  
and thus select between the default and backup boot flash as device to boot from. For  
details refer to theaPENT/ATCA−715/717/7105/7107: Control via IPMI Programmer’s Guidea  
which can be downloaded from the former Force Computers S.M.A.R.T. server or the  
Motorola literature catalog.aaaaaaaa  
By default, the data/instruction areas of the default and backup boot flash are writable.  
This is necessary because during booting the BIOS writes some configuration data back to  
PENT/ATCA717  
113  
 
Devices’ Features and Data Paths  
Flash Devices  
some reserved spaces in the data/instruction area. The boot block of default and backup  
boot flash are writeable per default, too. The on−board switches SW4−1, SW4−2 and  
SW4−4 allow to enable/disable the write−protection of both default and backup boot flash  
as well as the data/instruction area of the backup boot flash.a  
114  
PENT/ATCA717  
FPGA  
Devices’ Features and Data Paths  
FPGA  
The FPGA implements the following functions:aaaaa  
S
S
S
S
S
S
S
LPC interface  
IPMC interface  
Clock synchronization extensions  
Reset controller  
Interrupt routing unit  
Miscellaneous glue logic  
Ethernet switch interface  
The FPGA loads its configuration stream from one of two EEPROMs which are connected  
to the FPGA. One EEPROM serves as default, the second as backup EEPROM. The IPMC  
controls which EEPROM the configuration stream is loaded from. After IPMC startup the  
FPGA loads its configuration stream from the default EEPROM. An IPMI System Boot  
Options command allows to select between default and backup EEPROM. For details  
about switching between default and backup FPGA refer to  
theaPENT/ATCA−715/717/7105/7107: Control via IPMI Programmer’s Guideawhich can be  
downloaded from the Motorola literature site.aaa  
LPC Interface  
The LPC interface is compliant to the Intel LPC specification 1.1 and connects the FPGA to  
the South Bridge.a  
IPMC Interface  
The FPGA is connected to the on−board IPMC and implements the following IPMC  
related features:  
S
S
S
Two Block Transfer interfaces  
Port 80 register  
IPMC extensions  
Block Transfer Interfaces  
Two Block Transfer interfaces (BT) reside inside the FPGA. Each provides one control and  
status register, two 64−byte FIFOs and an interrupt mask register. Both BT interfaces are  
PENT/ATCA717  
115  
 
Devices’ Features and Data Paths  
FPGA  
compliant to the IPMI specification V1.5 Rev. 1.0 and share one Interrupt Source register.  
The first BT interface is used as the only System Interface and uses IPMI channel 0x0F.  
The second BT interface uses IPMI channel 0x06.aaa  
Port 80 Register  
The FPGA provides an 8−bit wide register to store POST codes. The register is located at  
I/O address 8016.. It is only readable for the IPMC and read−writeable for the host. The  
IPMC polls this register to monitor the boot up sequence of the board. The content of the  
port 80 register can also be obtained and read via IPMI.a  
IPMC Extensions  
The FPGA implements three registers which are only visible for the IPMC. These registers  
reflect the following:  
S
S
S
S
S
CPU core voltage identifier  
Frame signal on LPC bus  
System and parity errors on PCI buses  
Enabling/disabling of backplane signals used for electronic keying  
Alert signals  
Clock Synchronization Extensions  
The FPGA contains extensions which are related to the AdvancedTCA clock  
synchronization feature. These extensions include:  
S
Registers accessible via host and IPMC for controlling and monitoring clock  
synchronization  
S
S
SPI interface for controlling DPLL device  
Programmable clock dividera  
Reset Controller  
The FPGA contains part of the blades reset logic. Furthermore it provides two registers  
which allow to determine the source of the last reset issued and to mask resets.a  
Reset Types  
Two different types of resets are possible: hard resets and soft resets.a  
116  
PENT/ATCA717  
 
FPGA  
Devices’ Features and Data Paths  
During a hard reset all internal registers, state machines and caches of the CPU are reset.  
Furthermore all on−board PCI devices as well as the host bridge are reset.a  
During a soft reset the CPU is reset, with the exception of the internal caches and state  
machinesaaa  
Reset Sources  
The following table lists all possible reset sources and the corresponding reset types.aaa  
Table 10: Reset Sources  
Reset Source  
Hard Reset  
Soft Reset  
Software reset  
x
x
x
x
x
x
x
Watchdog inside Southbridge  
Power−up reset  
Face plate reset key  
RTM reset  
IPMC reset  
Keyboard reset  
x
Interrupt Routing Unit  
The FPGA is used for fixed interrupt routing on the blade.a  
All interrupts from PCI devices are routed via the FPGA to the South Bridge. All other  
interrupts are routed to the Super I/O device from where they are routed to the South  
Bridge.a  
Miscellaneous Glue Logic  
The miscellaneous glue logic includes:  
S
S
S
S
S
Serial interface  
Reset mask and source register  
Flash control register  
PMC status register  
Shut−down register  
PENT/ATCA717  
117  
 
Devices’ Features and Data Paths  
FPGA  
S
S
LEDs  
Version register  
Serial Interface  
The FPGA provides routing options of one of the two serial interfaces provided by the  
Southbridge. This feature is intended for Motorola−internal purposes and should be  
ignored. .a  
Reset Mask and Source Register  
The FPGA provides two registers which allow to obtain the last reset source and to mask  
Flash Control Register  
The FPGA provides one register which allows to monitor the boot and user flash  
write−protection status as well as to control the write−protection of the boot flash boot  
PMC Status Register  
The FPGA provides one register which allows to monitor the status of the four PMC sites.  
ShutDown Register  
The FPGA provides one register which allows to control the blades’ FRU−EN signal.  
LEDs  
The FPGA provides a register to control the HDD LED available at the face plate. This  
LED indicates the combined parallel and serial ATA activity or is operated in user LED  
Version Register  
This register allows to obtain the current FPGA version. Seeasection "Version Register" on  
118  
PENT/ATCA717  
 
Intelligent Platform Management Controller  
Devices’ Features and Data Paths  
Intelligent Platform Management Controller  
The blade provides an Intelligent Platform Management Controller (IPMC) unit based an  
the 8−bit Atmel ATmega AVR microcontrollers. The IPMC is fully compliant to the IPMI  
V1.5 standard and provides the following interfaces:aaa  
S
S
S
S
S
IPMB0A and IPMB0B available via the backplane  
IPMB−L connected to rear transition modulea  
I2C interfaces connected to on−board PMCs slots and sensors  
Analog−to−Digital Conversion (ADC)interfaces connected to on−board sensors  
Digital I/O interfaces connected to on−board sensors  
One of the main tasks of the IPMC is to control the power up and power down of the  
blade. For this purpose the IPMC is connected to the on−board power supply module via  
control and status lines. Various on−board IPMI sensors provide detailed information on  
the current power status of the blade to any interested party connected to the IPMI  
network.a  
The following figure gives an overview of the IPMI structure used on−board.aaa  
RTM  
Blade  
Host  
FPGA  
IPMBL  
Atmega 32L  
PMC 1  
IDROM  
IPMC  
PMC 2  
PMC 3  
PMC 4  
I2C  
I2C MUX  
IPMB0A  
IPMB0B  
I2C  
Atmega 64L  
Dig. I/O  
ADC  
Backplane  
SPI  
Sensors  
Atmega 8L  
Atmega 8L  
ADC  
ADC  
IPMBL  
Power Supply  
Module  
Control and  
Status Signals  
Figure 36: IPMI Structure  
For details about accessing the IPMC via IPMI commands as well as Sensor Data Records  
(SDRs) and Field Replacable Unit (FRU) information provided by the blade, refer to the  
"PENT/ATCA−715/717/7105/7107 Control via IPMI Programmer’s Guide" which can be  
downloaded from the Motorola literature catalog.a  
PENT/ATCA717  
119  
 
Devices’ Features and Data Paths  
Intelligent Platform Management Controller  
Sensors  
The blade provides various sensors which are accessible via IPMI. Some of these sensors  
measure on−board temperatures. Their names and locations are shown in the following  
figure.aaa  
Memory Temp  
CPU Board Temp  
(other side of PCB)  
CPU Die Temp  
12V DCDC Temp  
Ambient Temp  
Figure 37: IPMI Temperature Sensors  
Other sensors available on−board include voltage sensors and sensors which provide  
particular status information. A summary of all sensors is given in the following table.a  
120  
PENT/ATCA717  
 
Intelligent Platform Management Controller  
Devices’ Features and Data Paths  
Table 11: On−board Sensors Accessible via IPMI  
Sensor Name  
Type of  
What Does It Measure?  
Sensor Type Availability  
Measurement  
Ambient Temp  
Temperature  
Ambient temperature near Compact  
flash connector  
Analog  
Always  
Memory Temp  
CPU Board Temp  
CPU Die Temp  
Voltage +1.8V  
Temperature  
Temperature  
Temperature  
Voltage  
Temperature of on−board memorya  
Board temperature near the CPU  
CPU temperature  
Analog  
Analog  
Analog  
Analog  
Always  
Always  
Always  
+1.8V voltage level  
While  
Payload  
powered  
ON  
Voltage +1.5V  
Voltage +3.3V  
Voltage +5V  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
+1.5V voltage level  
+3.3V voltage level  
+5V voltage level  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
While  
Payload  
powered  
ON  
While  
Payload  
powered  
ON  
While  
Payload  
powered  
ON  
Voltage +12V  
Voltage +1.05V  
Voltage +1.25V  
Mem Volt +1.2V  
+1.2V voltage level  
+1.05V voltage level  
+1.25V voltage level  
While  
Payload  
powered  
ON  
While  
Payload  
powered  
ON  
While  
Payload  
powered  
ON  
+1.2V voltage level of the memory  
termination voltage  
While  
Payload  
powered  
ON  
PENT/ATCA717  
121  
 
Devices’ Features and Data Paths  
Intelligent Platform Management Controller  
Sensor Name  
Type of  
What Does It Measure?  
Sensor Type Availability  
Measurement  
Mem Volt +2.5V  
Voltage  
+2.5V voltage level of the memory  
supply voltage  
Analog  
While  
Payload  
powered  
ON  
Sw Volt +1.2V  
Voltage  
+1.2V voltage level of Ethernet switch Analog  
chip  
While  
Payload  
powered  
ON  
CPU THERM TRIP Temperature  
CPU has stopped execution because  
CPU temperature has exceeded safe  
limits  
Discrete  
Discrete  
Discrete  
While  
Payload  
powered  
ON  
ICH PROC HOT  
Temperature  
Status  
CPU temperature has reached  
maximum safe operating limit  
While  
Payload  
powered  
ON  
FPGA  
FPGA programming status  
While  
PROGRAMMED  
Payload  
powered  
ON  
Sw Volt +2.5V  
CPU CORE Volt  
715 Watchdog  
Voltage  
Voltage  
Status  
+2.5V voltage level of Ethernet switch Analog  
chip  
While  
Payload  
powered  
ON  
CPU core voltage level  
Discrete  
While  
Payload  
powered  
ON  
Watchdog status  
RTM presence  
ATCA IPMB0  
POST status  
Discrete  
Discrete  
Discrete  
Discrete  
Always  
Always  
Always  
715 RTM HotSwap Status  
715 IPMB0 State  
715 POST Code  
IPMB status  
Status  
While  
Payload  
powered  
ON  
PCI BUS ERR  
Status  
PCI bus status  
Discrete  
While  
Payload  
powered  
ON  
122  
PENT/ATCA717  
Intelligent Platform Management Controller  
Devices’ Features and Data Paths  
Sensor Name  
Type of  
What Does It Measure?  
Sensor Type Availability  
Measurement  
715 FPGA Version  
Version  
FPGA version of ATCA−715  
Discrete  
Always  
after  
payload has  
first been  
powered  
ON  
FW Revision ISC0  
FW Revision ISC1  
715 IPMC  
Revision  
Revision  
Revision of the Intelligent Slave  
Controller 0 (ISC0) firmware  
Discrete  
Discrete  
Always  
Always  
Always  
Revision of the Intelligent Slave  
Controller 1 (ISC1) firmware  
Status  
Status  
IPMC status  
Discrete  
Discrete  
SYS FW  
BIOS boot progress  
While  
PROGRESS  
Payload  
powered  
ON  
Boot Error  
Status  
BOOT error  
Discrete  
Analog  
While  
Payload  
powered  
ON  
Supply Current  
12V DCDC Temp  
Current  
12V payload current  
While  
payload  
powered  
ON  
Temperature  
Temperature at 12V DC/DC converter Analog  
While  
payload  
powered  
ON  
For further details refer to the "PENT/ATCA−715/717/7105/7107 Control via IPMI  
Programmer’s Guide" which can be downloaded from the Motorola literature catalog.  
I2C Addresses  
The blade provides one IDROM which is attached to the IPMC via an I2C bus. The I2C  
address of the IDROM is 0xA0.a  
PENT/ATCA717  
123  
 
Devices’ Features and Data Paths  
Clock Synchronization Interface  
Clock Synchronization Interface  
AdvancedTCA systems provide a telecom clock synchronization interface which allows to  
synchronize elements within a telecommunication network. The telecom clock  
synchronization interface consists of three redundant clock buses (CLK1, CLK2 and  
CLK3) which are available at the system backplane. Each clock bus is implemented as a  
differential pair of MDS/LDS signals which connects to each system slot.aaa  
In compliance with the AdvancedTCA PICMG 3.0 specification, CLK1 and CLK2 are used  
as system clocks and CLK3 is used as reference clock.a  
The blade provides a clock synchronization building block which allows to synchronize  
the four on−board PMC modules to the system clock and to derive a reference clock. The  
main components of the clock synchronization building block as well as the main signal  
paths are shown in the following figure.aaa  
Backplane  
Blade  
Oscillator  
PMC Slots  
CLK_0  
CLK_1  
CLK_2  
CLK_3  
SYNC_B  
SYNC_A  
Clock  
Buffer  
NETREF_B  
SYS_CLK_B  
SEC  
SYNC_0  
SYNC_1  
SYNC_2  
SYNC_3  
NETREF_A  
SYS_CLK_A  
Clock  
Buffer  
PRIM  
RCVD_CLK_0  
RCVD_CLK_1  
RCVD_CLK_2  
RCVD_CLK_3  
NET_REF  
FPGA  
A B A B A B  
CLK  
1
2
3
Figure 38: Clock Synchronization Building Block  
The key component of the clock synchronization building block is the DPLL device  
ACS8525 from Semtech. Its main features include:  
S
Software programmable output clock synthesis (CLK_0, 1, 2, 3)  
124  
PENT/ATCA717  
 
Clock Synchronization Interface  
Devices’ Features and Data Paths  
S
8 kHz frame clock/pulse with programmable pulse width and polarity  
(SYNC_0,1,2,3))  
S
S
S
S
S
Automatic hit−less switch−over if one system clock fails  
Activity monitor for system clocks  
Phase build−out for output clock phase continuity during switch−over  
Meets jitter requirements up to OC−3 line rates  
Programmable reference clock divider  
The DPLL is clocked by an external oscillator running at 12.8 MHz. Two clock buffers  
provide a separate clock and synchronization signal for each of the four on−board PMC  
sites. The FPGA contains extensions which are related to the clock synchronization  
building block. Some of these extensions include registers that are accessible via the host  
and which allow to control and monitor the functionality of the clock synchronization  
PENT/ATCA717  
125  
Devices’ Features and Data Paths  
Power Supply Module  
Power Supply Module  
The blade is fed via two redundant −48V inputs. Both are converted via a DC/DC  
converter to an intermediate voltage of +12V. This voltage, in turn, is converted via  
further DC/DC converters to on−board voltages which are used by the on−board devices.  
A −48V/+3.3V DC/DC converter converts the −48V input voltage to +3.3V which is used  
to feed the IPMC and power−up logic.  
The blades power up and power down cycles are under full control of the IPMC. It  
controls both the −48V/+12V DC/DC converter as well as power−up logic which controls  
the remaining on−board DC/DC converters. If the IPMC detects a failure on any of the  
local on−board voltages, it shuts off the entire blade power.aaa  
The blades power supply structure is shown in the following figure.a  
+5V  
DC  
DC  
48V_A  
+3.3V  
+2.5V  
DC  
DC  
DC  
+12V  
48V_B  
Return_A  
Return_B  
DC  
DC  
DC  
DC/DC  
Enable  
Control  
Status  
...  
DC  
CPU Core  
Voltage  
PowerUp  
Logic  
IPMC  
DC  
48V_A  
Power Good  
48V_B  
DC  
+3.3V  
Return_A  
Return_B  
DC  
Figure 39: Blade Power Supply Structure  
126  
PENT/ATCA717  
 
PCI Bridge P64H2  
Devices’ Features and Data Paths  
PCI Bridge P64H2  
The Intel P64H2 PCI bridge provides two PCI/PCI−X interfaces. Each interface is  
connected to two PMC sites. The P64H2 device supports peer−to−peer communication  
between the two PCI/PCI−X interfaces. This way no host intervention is required when  
PMC sites connected to different PCI/PCI−X interfaces communicate with each other. In  
PCI mode up to 533 MHz/s transfer rate is possible, in PCI−X up to 800 MByte/s.a  
PENT/ATCA717  
127  
 
Devices’ Features and Data Paths  
Switching Unit  
Switching Unit  
The on−board switching unit is based on the Marvell 98DX160 Ethernet layer 2+ switch  
and provides switching functionality between on−board Ethernet ports, PMC sites and  
the backplane interfaces. It provides 16 Ethernet switching ports as well as one Serial  
Management interface (SMI) and one additional Ethernet port for configuration.aaa  
Features  
Important features of the switching unit are:aaa  
S
S
S
S
S
S
S
S
2 MByte internal memory  
Host management interface  
Support for 1000 MII/GMII/RGMII and 1000Base−X  
Manual and auto−negotiation  
Support for jumbo frame length of 10KByte packets  
On−chip 4K MAC address table  
4K VLANs with 256 active VLANs  
Flexible VLAN assignment for protocol− port− and tag−based VLANs  
Management Interface  
The switching unit provides two management interfaces towards the host: one slave  
Serial Management Interface (SMI) and one CPU Ethernet port. The SMI interface is  
accessible via FPGA registers and supports read and write accesses to address mapped  
entities. The CPU Ethernet port is constituted by an Intel 82540EM GBit Ethernet  
controller which is connected to the PCI interface of the blades South Bridge.aaa  
Routing Options  
The blade is designed to support dual−dual star backplanes. However, the currently  
available blade variants support only dual star backplanes. Ask your local Motorola  
representative for more information on available blade variants and switch options.a  
Starting with blade revision 1.2, the blade provides support for PICMG 3.1 Option 2. This  
is achieved by configuring two fabric interface ports as one 2 GBit Ethernet trunc. Details  
are given below.a  
128  
PENT/ATCA717  
 
Switching Unit  
Devices’ Features and Data Paths  
At blade start−up the Ethernet switch reads a serial PROM which contains switch  
configuration information such as predefined Virtual Local Area Networks (VLANs).a  
The following table shows how the Ethernet interfaces are distributed across the 16  
Ethernet switch ports.a  
Table 12: Ethernet Switching Unit −Ethernet Port Distribution  
Interfaces  
Number of Ethernet Ports  
PMC sites  
2 x 1 and 2 x 2  
Host Ethernet  
Base interface  
Fabric interface  
Update channel interface  
Total  
2 x 1  
2 x 1  
2 x 1 and 2 x 2  
16  
Four VLANs are predefined. Each backplane Ethernet interface is assigned to one  
separate VLAN. On−board Ethernet interfaces, however, belong to more than one  
VLAN.a  
The fabric interfaces are attached to tagged VLANs, and the base interfaces to untagged  
VLANs.a  
The following figure illustrates the VLAN configuration.a  
PENT/ATCA717  
129  
 
Devices’ Features and Data Paths  
Switching Unit  
Host A 14  
Host B 15  
8+4 Fabric channel 1  
9+7 Fabric channel 2  
10 Fabric channel 3  
11 Fabric channel 4  
PMC 1A n/a  
PMC 1B  
0
PMC 2A  
PMC 2B  
5
1
PMC 3A  
PMC 3B  
6
2
PMC 4A n/a  
PMC 4B  
12 Base channel 1  
13 Base channel 2  
3
Tagged VLAN  
Untagged VLAN  
Figure 40: VLAN Configuration  
The following table summarizes the Ethernet switch configuration by listing Ethernet  
interfaces, port numbers, VLAN IDs and Ethernet types.a  
130  
PENT/ATCA717  
 
Switching Unit  
Devices’ Features and Data Paths  
Note:aOnly port 0 and 1 of the fabric channels are used.a  
Table 13: Ethernet Switching Unit − Port Assignment  
Switching Unit  
Port Number  
Destination  
Interface Type  
ID of Untagged  
VLAN  
ID of Tagged  
VLAN  
0
PMC 1B  
1000BaseT  
1000BaseT  
1000BaseT  
1000BaseT  
1000BaseBX  
1000BaseT  
1000BaseT  
1000BaseBX  
1000BaseBX  
1000BaseBX  
1000BaseBX  
1000BaseBX  
1000BaseT  
1000BaseT  
1000BaseBX  
3
3
3
3
2
2
2
3
2
5
5
5
5
4
4
4
5
4
5
4
1
PMC 2B  
2
PMC 3B  
3
PMC 4B  
4
Fabric channel 1T  
PMC 2A  
5
6
PMC 3A  
7
Fabric channel 2T  
Fabric channel 1  
Fabric channel 2  
Fabric channel 3  
Fabric channel 4  
Base channel 1  
Base channel 2  
8
9
10  
11  
12  
13  
14  
Primary base  
board/82546EB/G  
B Ethernet  
controller  
15  
Secondary base  
board/82546EB/G  
B Ethernet  
1000BaseBX  
3
5
controller  
PENT/ATCA717  
131  
 
6
Maps and Registers  
132  
PENT/ATCA717  
 
I/O and Memory Maps  
Maps and Registers  
I/O and Memory Maps  
The following table shows the blades main address map.a  
Table 14: Memory Address Map  
Base Address  
FFF0.000016  
FFE0.000016  
0000.000016  
Size  
Device  
1 MByte  
1 MByte  
Up to 4GByte  
Boot Flash  
User Flasha  
Main Memory  
The I/O addresses of all on−board functional units are listed below.aaa  
Table 15: I/O Address Map  
Device  
Base Address  
DMA Controller #1  
Interrupt Controller #1  
Timer  
00016...01F16aand 08016...09F16  
02016...03F16  
04016...05F16  
Keyboard/Mouse  
Real−Time Clock  
06016...06F16  
07016...07F16  
Port 80  
08016  
Interrupt Controller 2  
DMA Controller 2  
IPMI Block Transfer Interface 1  
IPMI Block Transfer Interface 2  
Glue Logic FPGA Index Register  
Ethernet Switch Management Interface  
Secondary Parallel ATA  
Primary Parallel ATA  
Floppy Disk  
0A016...0BF16  
0C016...0DF16  
0E416a− 0E616  
0E816a− 0EA16  
10016a– 10116  
15016...15516  
17016...17816aor 37616, 37716  
1F016...1F816aor 3F616, 3F716  
3F016...3F516  
COM 1  
2F816...2FF16aor 2E816...2EF16aor  
3E816...3EF16aor 3F816...3FF16  
COM 2  
2F816...2FF16aor 2E816...2EF16aor  
3E816...3EF16aor 3F816...3FF16  
PENT/ATCA717  
133  
 
Maps and Registers  
I/O and Memory Maps  
Device  
Base Address  
COM 3  
2F816...2FF16aor 2E816...2EF16aor  
3E816...3EF16aor 3F816...3FF16  
COM 4  
2F816...2FF16aor 2E816...2EF16aor  
3E816...3EF16aor 3F816...3FF16  
134  
PENT/ATCA717  
Hardware Interrupts  
Maps and Registers  
Hardware Interrupts  
The following table lists the blades hardware interrupts and the corresponding interrupt  
sources.a  
Note:aAll interrupts marked with an asterisk (*) must not be used for PCI interrupt  
routing.  
Table 16: Hardware Interrupts  
Interrupt  
IRQ0*  
IRQ1*  
IRQ2*  
IRQ3  
Interrupt Source  
Timer  
Keyboard  
Input of interrupt controller #2  
COM 2 or COM 4  
IRQ4  
COM 1  
IRQ5  
COM 3  
IRQ6  
IPMI Block Transfer interface  
IRQ7  
PCI  
IRQ8*  
IRQ9  
Real time clock  
PCI  
IRQ10  
IRQ11  
IRQ12  
IRQ13*  
IRQ14  
IRQ15  
PCI  
PCI  
Reserved or Mouse (PS/2)  
Coprocessor  
Reserved or primary parallel ATA  
Reserved or secondary parallel ATA  
PENT/ATCA717  
135  
 
Maps and Registers  
PCI Devices  
PCI Devices  
The following figure shows the on−board PCI device structure.aaa  
Bus #5  
PCI I/O Bridge  
Dev. No. = 3  
PMC#1  
PMC#2  
PMC#3  
PMC#4  
Dev. No. = 31  
PCI  
Dev. No. = 1  
Dev. No. = 2  
PCI  
Bus #3  
Host Bridge  
PCI  
PCI  
Bus #4  
Dev. No. = 2  
Dev. No. = 29  
PCI  
Dev. No. = 4  
Dev. No. = 4  
PCI  
South Bridge  
Dev. No. = 30  
Intel  
82540EM  
PCI  
Bus #2  
Bus #1  
PCI  
Bus #0  
ETH#2  
PCI  
PCI  
Intel  
82546EB/GB  
Dev. No. = 28  
ETH#0/1  
Dev. No. = 4  
ETH#0/1  
Figure 41: PCI Structure  
The following table lists the PCI devices interrupt signals which are routed to the South  
Bridge. BIOS allows to map these signals to standard ISA interrupts.aaa  
Table 17: PCI Device Interrupts  
PCI Device PCI IRQ  
Device IDSEL PCI Bus  
No.  
PMC 1  
PMC 2  
PMC 3  
PMC 4  
ETH 2  
PIRQA_N|PIRQB_N|PIRQC_N|PIRQD_N  
3
1
2
4
4
4
19  
17  
18  
20  
20  
20  
5
5
4
4
2
1
PIRQA_N|PIRQB_N|PIRQC_N|PIRQD_N  
PIRQA_N|PIRQB_N|PIRQC_N|PIRQD_N  
PIRQA_N|PIRQB_N|PIRQC_N|PIRQD_N  
PIRQC_N  
ETH 0|1  
PIRQA_N|PIRQB_N  
136  
PENT/ATCA717  
 
FPGA Registers  
Maps and Registers  
FPGA Registers  
The FPGA provides various control and status registers. Some of these registers are  
accessible from the CPU host via the LPC bus, some by the IPMC, others by both. In the  
following all registers will be described which are accessible from the CPU. These  
registers are listed in the following table.aaa  
Table 18: Registers Accessible from CPU via LPC Bus  
Address Range  
Data  
Description  
Width  
0xE4 − 0xE6  
0xE8 − 0xEA  
0x80  
8 bit  
8 bit  
8 bit  
8 bit  
IPMI Block Transfer Interface 0  
IPMI Block Transfer Interface 1  
Port 80  
0x100  
Index Address Register (used for accessing further FPGA  
registers)a  
0x101  
8 bit  
8 bit  
Index Data Register (used for accessing further FPGA registers)  
Ethernet Switch Management Interface  
0x150 − 0x155  
The FPGA provides further registers. In order to access them, first write the index address  
corresponding to the register to the Index Address Register, and then perform either a  
read or write access on the Index Data Register. All registers that can be accessed this way  
are listed in the following table.a  
Table 19: Index Addresses of Registers Accessible from CPU via LPC Bus  
Index Address  
Data  
Description  
Width  
0x00  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
8 bit  
Reset Source Register  
Reset Mask Register  
0x01  
0x02  
Flash Control and Status Register  
LED Control Register  
PMC Status Register  
Shut Down Register  
0x03  
0x04  
0x05  
0x30 – 0x3F  
0x40  
Clock synchronization interface  
Serial PROM Update Register  
Access Control Register  
Version Register  
0x41  
0xFF  
All other  
Reserved  
PENT/ATCA717  
137  
 
Maps and Registers  
FPGA Registers  
IPMI Block Transfer Interface Registers  
The host can access the IPMC via the two Block Transfer (BT) Interfaces 0 and1. Both are  
fully compliant to the IPMI specification V1.5. Each BT interface provides the following  
registers.aa  
Table 20: IPMI Block Transfer Interface Registers  
Address Offset  
Data Width  
8 bit  
Description  
0x00  
0x01  
0x02  
Control and status register  
Buffer Register  
8 bit  
8 bit  
Interrupt mask register  
Control and Status Register  
This register is used by the IPMC and the host CPU for various control functions.a  
Buffer Register  
This register provides access to an IPMC−to−Host and Host−to−IPMC buffer. The buffer  
has a size of 64 bytes and contains command streams between host and IPMC.a  
Interrupt Mask Register  
The host uses this register to mask interrupts generated by the IPMC.a  
Port 80 Register  
This read−only 8−bit wide register, which is located at the I/O address 8016astores the  
results obtained from the POST (Power On Self Test).a  
Ethernet Switch Management Registers  
The following registers consitute an Ethernet management interface accessible by the  
host. The registers allow to configure and control the operation of the on−board Ethernet  
switch. The Ethernet management interface conforms to the IEEE 802.3 management draft  
standard. The base address of these registers is 0x150.aaa  
Table 21: Ethernet Switch Management Registers  
Address Offset  
Register  
0016  
0116  
Command and Status Register  
PHY address register  
138  
PENT/ATCA717  
 
FPGA Registers  
Maps and Registers  
Address Offset  
Register  
0216  
0316  
0416  
0516  
Lower data register  
Upper data register  
Clock divider register  
I2C Control and Status Register  
Command and Status Register  
This register controls the transfer of configuration data to and from the Ethernet switch.a  
Table 22: Command and Status Register  
Bit  
4..0  
5
Description  
Access  
r/w  
PHY internal register address  
Command flag  
r/w  
0: Perform write access  
1: Perform read access  
6
7
Read Error Flag  
0: PHY responds to read access  
1: Error occurred  
r/wc  
r
Interface Status  
0: Ready  
1: Busy (wait until ready is indicated  
before initiating new access)  
Data Registers  
These registers contain the data that is read from or sent to the Ethernet switch.  
Clock Divider Register  
This register allows to program the frequency of the Ethernet Switch Management clock.a  
I2C Control and Status Register  
The Ethernet switch obtains its configuration data from a PROM device that is connected  
to it. This register allows to access this PROM and is used for PROM updates.a  
Reset Registers  
The blade provides two registers which are related to blade resets:aaaaa  
S
Reset source register (index address 0x00)  
PENT/ATCA717  
139  
 
Maps and Registers  
FPGA Registers  
S
Reset mask register (index address 0x01)  
The reset source register stores the source of the most recent reset. A write access clears  
this register.Each bit is associated with one reset source. If the bit is set to one, the  
corresponding reset has occurred. After a reset has occurred, this register should be  
cleared. Otherwise, after the next reset of another source, more than one bit is set and you  
may not be able to determine the most recent reset source.a  
Table 23: Reset Source Register  
Bit  
Signal  
Description  
Default  
Access  
0
PWR_ON  
0: No reset  
12  
r/w  
1: Power−on reset  
1
2
3
4
5
WDG_RES  
PB_RES  
0: No reset  
1: Watchdog reset  
02  
02  
02  
02  
02  
r/w  
r/w  
r/w  
r/w  
r/w  
0: No reset  
1: Face plate push button reset  
PMC_RST  
RTM_RES  
CPU_RST  
0: No reset  
1: PMC slots reset  
0: No reset  
1: RTM reset  
0: No reset  
1: CPU reset issued by Host  
Bridge  
6
7
PCI_RES  
0: No reset  
1: Legacy PCI bus reset  
02  
02  
r/w  
r/w  
IPMI_RES  
0: No reset  
1: IPMC building block reset  
The reset mask register allows to enable/disable particular resets. If a bit is set, the  
corresponding reset is enabled, otherwise it is disabled.a  
Note:aIPMC, legacy PCI and power−on reset cannot be enabled/disabled via this  
register.a  
Table 24: Reset Mask Register  
Bit  
0
Signal  
Description  
Default  
Access  
r
Reserved  
02  
12  
1
WDG_RES  
Watchdog reset  
0: Disabled  
r/w  
1: Enabled  
140  
PENT/ATCA717  
 
FPGA Registers  
Maps and Registers  
Bit  
Signal  
Description  
Default  
Access  
2
PB_RES  
Face plate push button Reset  
0: Disabled  
1: Enabled  
12  
r/w  
r/w  
r/w  
r/w  
3
4
5
DB_RES  
ITP debug reset  
0: Disabled  
1: Enabled  
12  
12  
12  
RTM_RES  
PMC_RSTa  
RTM reset  
0: Disabled  
1: Enabled  
PMC slots reset  
0 : Disabled  
1: Enabled  
6
7
Reserved  
Reserved  
02  
02  
r
r
Flash Control and Status Register  
This register, which is accessible via the index address 0x02, indicates the status of the  
default and backup boot flash regarding write−protection, crisis recovery and booting.  
Additionally, this register allows to set the write−protection of the default boot flash  
data/instruction area.aa  
Table 25: Miscellaneous Switch Status Register  
Bit  
Description  
Default  
Access  
0
Default boot flash boot block write  
protection  
02  
r
0: Write−protected  
1: Write−enabled  
1
Default boot flash data/instruction block  
write protection (provided that bit 4 is set,  
software can set this status)  
0: Write−protected  
12  
r/w  
1: Write−enabled  
2
3
Backup boot flash boot block write  
protection  
0: Write−protected  
1: Write−enabled  
02  
r
r
Backup boot flash data/instruction block  
write protection  
02  
0: Write−protected  
1: Write−enabled  
PENT/ATCA717  
141  
 
Maps and Registers  
FPGA Registers  
Bit  
Description  
Default  
Access  
4
Select status of default and backup boot  
flash write protection  
02  
r
0: Write−protection determined by  
on−board switches  
1: Write−protection determined by this  
register  
6:5  
7
Indicates flash that is booted from  
002: Default boot flash  
012: Backup boot flash  
002  
12  
r
r
Crisis recovery (indicates status of crisis  
recovery switch)  
0: Crisis recovery  
1: Normal operation  
LED Control Register  
This register, which is accessible via the index address 0x03, allows to control the bicolor  
face plate HDD LED. This LED can be operated in parallel/serial ATA status indication  
mode and user mode. Toggling between both modes is possible via this register.a  
In parallel/serial ATA status indication mode the LED shines GREEN and indicates the  
combined activitiy of all serial and parallel ATA interfaces. In user mode, the LED can be  
controlled to be red, green and OFF.aaa  
Table 26: LED Control Register  
Bit  
Description  
Default  
Access  
1..0  
Controls LED in user mode  
002: OFF  
012  
r/w  
012: Red  
102: Green  
112: Reserved  
2
Toggles between user mode and parallel/serial ATA 02  
status indication mode  
r/w  
0: User mode  
1: Parallel/serial ATA status indication mode  
3
6
General purpose output on connector P30/pin A3  
0: O/P is low  
1: O/P is open  
12  
12  
r/w  
r
Serial COM interface swapping  
02: No swapping  
12: COM 1 is swapped with COM3, and COM 2 is  
swapped with COM 4  
7..5  
Reserved  
0002  
r
142  
PENT/ATCA717  
 
FPGA Registers  
Maps and Registers  
PMC Status Register  
This register, which is accessible via the index address 0x04, indicates the current status of  
all four on−board PMC sites.aaa  
Table 27: PMC Status Register  
Bit  
Description  
Default  
Access  
0
PMC slot 1  
0: Empty  
r
1: Populated  
1
2
3
4
PMC slot 2  
0: Empty  
1: Populated  
r
PMC slot 3  
0: Empty  
1: Populated  
r
PMC slot 4  
0: Empty  
1: Populated  
r
Routing of PCIX_PMC_INT_N interrupts 02  
02: Interrupts are routed to FPGA output  
signals PIRQA−D_N  
r/w  
12: Interrupts are routed to FPGA output  
signals PXIRQ_N0−3  
6:5  
7
Reserved  
0002  
aa  
r
r
Indicates if PMC slots are ready for PCI  
enumeration  
0: Not ready  
1: Ready  
Shut Down Register  
This write−only register, which is accessible via the index address 0x05, allows to pull  
down the FRU_EN signal to GND and thus initiate a blade power−down.a  
This register was introduced because the FRU_EN signal is under normal operation  
controlled by the IPMC. If the IPMC however is is not operating anymore, for example  
during a firmware upgrade, the FRU_EN signal is released and remains in the state it  
previously had been in. In this case it may be necessary to explicitly pull down FRU_EN  
via this register.a  
Bit  
Description  
Access  
7:0  
Pull down FRU_EN signal  
w
001111002: Pull down FRU_EN  
PENT/ATCA717  
143  
 
Maps and Registers  
FPGA Registers  
Clock Synchronization Interface Registers  
These registers are related to the clock synchronization building block of the blade. These  
registers are primarily used to:aa  
S
S
S
S
S
S
Select system clock 1 or 2 from back plane  
Select system or reference clock for DPLL input  
Enable reference clocks A and B to the backplane  
Select recovered clock source  
Determine programmable reference clock divider value  
Determine reference clock pulse width  
Note:aMotorola offers a device driver to access the clock synchronization interface.  
Instead of directly accessing the clock synchronization interface via the registers  
described in this section, it is strongly recommended to use this driver. Ask your local  
Motorola representative for details.a  
The following clock synchronisation interface registers are available:  
Table 28: Clock Synchronisation Interface Registers  
Index Address  
Register  
3016  
3116  
3216  
3316  
3416  
3516  
3616  
SPI Address register  
SPI Data register  
DPLL Input Select and Control register  
Reference Clock Divider register  
Lower Reference Clock Divder register  
Upper Reference clock Divider register  
Reference Clock Pulse Width register  
SPI Interface Registers  
The used DPLL device ACS8525 from SEMTECH provides a Serial Peripheral Interface  
(SPI) which provides external access for device setup and controlling. Software that  
wishes to access the DPLL device has to first set the desired address in the SPI Address  
register followed by either a read or write access to the SPI data register. For details about  
configuring the DPLL device, refer to its data sheet.a  
144  
PENT/ATCA717  
 
FPGA Registers  
Maps and Registers  
DPLL Input Select and Control Register  
Table 29: DPLL Input Select and Control Register  
Bit  
Description  
Default  
Access  
0
Selects DPLL clock sourcea  
0: System clock  
02  
r/w  
1: Reference clock  
1
Selects system clock source CLK1 or CLK2 02  
r/w  
0: CLK2  
1: CLK1  
2
3
Unused  
02  
12  
r
r
SPI interface is ready for access  
0: Wait  
1: SPI Ready  
4
5
6
7
Enabling of 2 kHz system clock interrupt  
0: Disabled  
1: Enabled  
02  
02  
r/w  
r
2 kHz system clock interrupt status  
0: Not active  
1: Interrupt pending  
Clear 2 kHz system clock interrupt  
Writing 0 clears the interrupt  
Read accesses always return 0  
r/w  
r/w  
Reset signal for DPLL  
0: Reset asserted  
02  
1: Normal operation  
Reference Clock Source Register  
Table 30: Reference Clock Source Register  
Bit  
Description  
Default  
Access  
1..0  
Selects clock source for reference clock  
002: RCVD_CLK_0  
002  
r/w  
012: RCVD_CLK_1  
102: RCVD_CLK_2  
112: RCVD_CLK_3  
3..2  
Selects interrupt rate for interrupt  
002  
r/w  
LCCB_INT_N clocked by 2 kHz system  
clock reference  
002: 500 µs  
012: 1 ms  
102: 10 ms  
112: 1 s  
PENT/ATCA717  
145  
 
Maps and Registers  
FPGA Registers  
Bit  
Description  
Default  
Access  
4
Enable reference clock CLK3_A  
0: Disabled  
02  
r/w  
1: Enabled  
5
6
7
Enable reference clock CLK3_B  
0: Disabled  
1: Enabled  
02  
12  
12  
r/w  
r/w  
r/w  
Selects if clock divider is bypassed  
0: Divide clock  
1: Bypass divider  
Selection between pulse/clock on  
REF_CLK output signal  
0: Pulse enabled  
1: Pulse disabled  
Reference Clock Divider Registers  
The FPGA contains a clock divider which can be used in systems where the reference  
clock frequency does not match the recovered clock frequency. The clock divider is able to  
scale down a recovered clock frequency to the desired reference clock frequency. The scale  
down grade can be controlled via the upper and lower reference clock divider registers  
described in this section. Both registers correspond to the upper and lower divider of the  
division factor between recovered and reference clock. The division factor can be changed  
by software at any time. The new division factor becomes active with any new clock cycle  
avoiding spikes or truncated clock cycles. A plausibility check of register values is not  
required.a  
Examples of recovered and reference clock frequencies and the corresponding division  
factors are given in the following table.a  
Table 31: Examples of Division Factors Between Recovered and Reference Clock  
Recovered Clock Frequency  
8 KHz  
Reference Clock Frequency  
Division Factor  
8 KHz  
1a  
1.544 MHz  
8 KHz  
193  
256  
2430  
4860  
9720  
1a  
2.048 MHz  
8 KHz  
19.44 MHZ  
8 KHz  
38.88 MHz  
8 KHz  
77.76 MHz  
8 KHz  
19.44 MHz  
19.44 MHz  
146  
PENT/ATCA717  
 
FPGA Registers  
Maps and Registers  
Recovered Clock Frequency  
Reference Clock Frequency  
19.44 MHz  
Division Factor  
38.88 MHz  
77.76 MHz  
2
4
19.44 MHz  
Note:aIf the division factor is 1, i.e. no clock division is done, the clock divider should  
be bypassed. This can be done via the reference clock source register.a  
Lower Divider Register  
Table 32: Lower Divider Register  
Bit  
Description  
Default  
Access  
7..0  
Divider lower byte  
0116  
r/w  
Upper Divider Register  
Table 33: Upper Divider Register  
Bit  
Description  
Default  
Access  
7..0  
Divider upper byte  
0016  
r/w  
Reference Clock Pulse Width Register  
This register determines the width of the reference clock high pulse in numbers of  
recovered clock cycles. The minimum pulse width is 150ns. If the clock divider is  
bypassed or the reference clock frequency is not 8 kHz, no pulse is generated.a  
Table 34: Reference Clock Pulse Width Register  
Bit  
Description  
Default  
Access  
7..0  
Pulse width of reference clock signal  
0116  
r/w  
Serial PROM Update Register  
The FPGA image is stored in two redundant PROMS.This register is used by upper layer  
software to control the upgrade of the FPGA image. Consult your local Motorola  
representative for the availability of new FPGA image versions and upgrade software.a  
Version Register  
This register indicates the version of the FPGA. The initial value is FE16aand is counted  
down with each new release.a  
PENT/ATCA717  
147  
 
Maps and Registers  
FPGA Registers  
Table 35: Version Register  
Bit  
Description  
Default  
Access  
7..0  
FPGA version  
FD16a(at the time of  
r
writing this guide)  
Access Control Register  
This register determines the current owner of the following interfaces:  
S
S
S
Clock synchronisation building block interface  
Ethernet switch management interface  
SPROM update interface  
The current owner of each interface is either the IPMC or the host CPU.a  
Only the current owner has write access to the corresponding registers. The  
non−proprietor has only read access.a  
If the non−proprietor wants to become owner, it has to request ownership from the  
current owner. The current owner then has to grant ownership by inverting the bit  
corresponding to the interface.a  
Table 36: Access Control Register  
Bit  
Description  
Default  
Access  
0
Indicates the current owner of the clock  
02  
r/w  
synchronisation building block interface  
0: Hosta  
1: IPMC  
1
Indicates current owner of Ethernet switch 12  
management interface  
0: Host  
1: IPMC  
r/w  
r/w  
r
2
Indicates the current owner of the SPROM 02  
update interface  
0: Host  
1: IPMC  
7..3  
Reserved  
000002  
148  
PENT/ATCA717  
 
A
Troubleshooting  
PENT/ATCA717  
149  
 
Troubleshooting  
Error List  
Error List  
A typical ATCA system is highly sophisticated. This chapter can be taken as an error list  
for detecting erroneous system configurations and strange behaviors. It cannot replace a  
serious and sophisticated presales and postsales support during application development.  
If it is not possible to fix a problem with the help of this chapter, contact your local sales  
representative or Field Application Engineer (FAE) for further support.  
Problem  
Possible Reason  
Solution  
Blade does not work  
Backplane voltage is too  
low.  
Check that all backplane  
voltages are within their  
specific ranges.  
Check that power supply is  
capable to drive the  
respective loads.  
Blade does not start  
No valid BIOS was found.  
Make sure a valid BIOS  
PROM is installed  
150  
PENT/ATCA717  
B
Battery Exchange  
PENT/ATCA717  
151  
 
Battery Exchange  
Battery Exchange  
Battery Exchange  
The blade contains an on−board battery. Its location is shown in the following figure.a  
Figure 42: Location of On−board Battery  
The battery provides data retention of seven years summing up all periods of actual data  
use. Motorola therefore assumes that there usually is no need to exchange the battery  
except, for example, in case of long−term spare part handling.aa  
S
Board/System damage  
Incorrect exchange of lithium batteries can result in a hazardous explosion.a  
Therefore, exchange the battery as described in this chapter.  
152  
PENT/ATCA717  
 
Battery Exchange  
Battery Exchange  
S
Data loss  
If the battery does not provide enough power anymore, the RTC is initialized and  
the data in the NVRAM is lost.  
Therefore, exchange the battery before seven years of actual battery use have  
elapsed.  
S
S
Data loss  
Exchanging the battery always results in data loss of the devices which use the  
battery as power backup.a  
Therefore, back up affected data before exchanging the battery.  
Data loss  
If installing another battery type than is mounted at board delivery may cause data  
loss since other battery types may be specified for other environments or may have  
a shorter lifetime.a  
Therefore, only use the same type of lithium battery as is already installed.  
Exchange Procedure  
1. Remove old battery  
PCB and battery holder damage  
Removing the battery with a screw driver may damage the PCB or the battery holder.  
To prevent this damage, do not use a screw driver to remove the battery from its holder.  
2. Locate the ’+’ sign on the new battery. It indicates the positive terminal of the  
battery.a  
3. Insert the battery into the blade’s battery holder in such a way that the ’+’ on  
top of the battery is face up  
PENT/ATCA717  
153  
Index  
A
B
Restore default settings . . . . . . . . . 43,a91  
C
154  
PENT/ATCA717  
 
D
E
F
H
I
L
M
PENT/ATCA717  
155  
N
O
P
R
S
T
U
156  
PENT/ATCA717  

Mr Coffee PRX30 User Manual
Memorex M Flyer User Manual
HTC Touch Pro2 TM1630 User Manual
Fujitsu MCP3064SS User Manual
FieldServer Kahl HCS R User Manual
Echo Bear Cat CHF9540H User Manual
DeLonghi DCU50T Series User Manual
DCS none User Manual
Bogen CDC 3 User Manual
Blackberry Curve 8500 User Manual