Texas Instruments Universal Operational Amplifier Single Dual Quad (SOIC) Evaluation Module with Shutdown SLOU061A User Manual

User’s Guide  
April 2001  
Mixed-Signal Products  
SLOU061A  
Preface  
Related Documentation From Texas Instruments  
Amplifiers and Comparators Data Book (literature number  
SLOD002). This data book contains data sheets and other  
information on the TI operational amplifiers that can be used with this  
evaluation module.  
Power Supply Circuits Data Book (literature number SLVD002).  
This data book contains data sheets and other information on the TI  
shunt regulators that can be used with this evaluation module.  
FCC Warning  
This equipment is intended for use in a laboratory test environment only. It  
generates, uses, and can radiate radio frequency energy and has not been  
tested for compliance with the limits of computing devices pursuant to subpart  
J of part 15 of FCC rules, which are designed to provide reasonable protection  
against radio frequency interference. Operation of this equipment in other  
environments may cause interference with radio communications, in which  
case the user at his own expense will be required to take whatever measures  
may be required to correct this interference.  
Trademarks  
PowerPAD is a trademark of Texas Instruments.  
iii  
iv  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1  
1.2  
Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Evaluation Module Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
Physical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Area 100Single Device SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Area 200Dual Device SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Area 300Quad Device SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
General Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
EVM Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
EVM Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
3
Example Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Schematic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Inverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Noninverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Sallen-Key Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Sallen-Key High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
Two Operational Amplifier Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
Quad Operational Amplifier Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
v
Figures  
21  
22  
23  
24  
25  
26  
27  
Area 100 SchematicSingle Device, SOIC (8-pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Area 200 SchematicDual Device, SOIC (14-pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Area 300 SchematicQuad Device, SOIC (16-pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
Maximum Power Dissipation vs Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
EVM Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
EVM Board LayoutTop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
EVM Board LayoutBottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
31  
32  
33  
34  
35  
36  
37  
Inverting Amplifier with Dual Supply Using Area 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Noninverting Amplifier with Single Supply Using Area 100 . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Single Operational Amplifier Differential Amplifier With Single Supply Using Area 100 . . 3-4  
Sallen-Key Low-Pass Filter With Dual Supply Using Area 200 . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Sallen-Key High-Pass Filter With Single Supply Using Area 200 . . . . . . . . . . . . . . . . . . . . . 3-7  
Two Operational Amplifier Instrumentation Amplifier With Single Supply Using Area 200 3-9  
Quad Operational Amplifier Instrumentation Amplifier With Dual Supply Using Area 300 3-11  
Table  
21  
Dissipation Rating Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
vi  
Chapter 1  
Introduction  
This users guide describes the universal operational amplifier single, dual,  
quad (SOIC) evaluation module (EVM) with shutdown (SLOP248). The EVM  
simplifies evaluation of Texas Instruments surface-mount op amps with or  
without shutdown feature.  
Topic  
Page  
1.1 Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1.2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1-1  
Design Features  
1.1 Design Features  
The EVM board design allows many circuits to be constructed easily and  
quickly. There are three circuit development areas on the board, and each  
uses IC amplifiers in the SOIC package. Area 100 is for a single operational  
amplifier (op amp), with or without shutdown. It also features offset nulling pin  
pads. Area 200 is for a dual op amp, with or without shutdown. Area 300 is for  
a quad op amp, with or without shutdown. A few possible circuits include:  
Voltage follower  
Noninverting amplifier  
Inverting amplifier  
Simple or algebraic summing amplifier  
Difference amplifier  
Current to voltage converter  
Voltage to current converter  
Integrator/low-pass filter  
Differentiator/high-pass filter  
Instrumentation amplifier  
Sallen-Key filter  
The EVM PCB is of two-layer construction, with a ground plane on the solder  
side. Circuit performance should be comparable to final production designs.  
1.2 Power Requirements  
The devices and designs that are used dictate the input power requirements.  
Three input terminals are provided for each area of the board:  
Vx+  
GNDx  
Vx–  
Positive input power for area x00 i.e., V1+ area 100  
Ground reference for area x00 i.e., GND2 area 200  
Negative input power for area x00 i.e., V3area 300  
Each area has four bypass capacitors two for the positive supply, and two  
for the negative supply. Each supply should have a 1-µF to 10-µF capacitor for  
low-frequency bypassing and a 0.01-µF to 0.1-µFcapacitorforhigh-frequency  
bypassing.  
When using single-supply circuits, the negative supply is shorted to ground by  
bridgingC104orC105inarea100, C209orC210inarea200, orC311orC312  
in area 300. Power input is between Vx+ and GNDx. The voltage reference  
circuitry is provided for single-supply applications that require a reference  
voltage to be generated.  
1-2  
Introduction  
Chapter 2  
Evaluation Module Layout  
This chapter shows the universal operational amplifier single, dual, quad  
(SOIC) evaluation module (EVM) with shutdown board layout, schematics of  
each area, and describes the relationships between the three areas.  
Topic  
Page  
2.1 Physical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.2 Area 100Single Device SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.3 Area 200Dual Device SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.4 Area 300Quad Device SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.5 General Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . 27  
2.6 Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.7 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2-1  
Physical Considerations  
2.1 Physical Considerations  
The EVM board has three circuit development areas. Each area can be  
separated from the others by breaking along the score lines. The circuit layout  
in each area supports an op amp package, voltage reference, and ancillary  
devices. The op amp package is unique to each area as described in the  
following paragraphs. The voltage reference and supporting devices are the  
same for all areas. Surface-mount or through-hole components can be used  
for all capacitors and resistors on the board.  
The voltage reference can be either surface-mount or through-hole. If  
surface-mount is desired, the TLV431ACDBV5 or TLV431AIDBV5 adjustable  
shunt regulators can be used. If through hole is desired, the TLV431ACLP,  
TLV431AILP, TL431CLP, TL431ACLP, TL431ILP, or TL431AILP adjustable  
shunt regulators can be used. Refer to Texas InstrumentsPower Supply  
Circuits Data Book (literature number SLVD002) for details on usage of these  
shunt regulators.  
Each passive component (resistor or capacitor) has a surface mount 1206  
footprint with through holes at 0.2spacing on the outside of the 1206 pads.  
C105, C106, C107, C207, C208, C209, C312, C314, and C315 have a surface  
mount 1210 footprint with through holes at 0.2spacing on the outside of the  
1210 pads. Therefore, either surface-mount or through-hole parts can be  
used. The potentiometer for the offset nulling feature in area 100 can also be  
either a surface-mount or a through-hole unit.  
Figures 21 through 23 show schematics for each of the board areas. The  
schematics show all components that the board layout can accommodate.  
These should only be used as reference, since not all components will be used  
at any one time.  
2-2  
Evaluation Module Layout  
Physical Considerations  
2.2 Area 100Single Device SOIC  
Area 100 uses 1xx reference designators, and is compatible with a single op  
amp, with or without shutdown, packaged as an 8-pin SOIC. This  
surface-mount package is designated by a D suffix in TI part numbers, as in  
TxxxxCD, TxxxxID, etc.  
Offset nulling can be extremely important in some applications. The EVM  
accommodates TI IC op amps that provide this feature. The input offset can  
be adjusted by connecting a 100-kpotentiometer between terminals 1 and  
5 of the device and connecting the wiper to VCCvia a resistor (R101) as  
shown below. This resistor is used to fine tune the offset adjustment. For  
example, when using the TLC070 or TLC071 device and a 100-knulling  
potentiometer, the offset voltage adjustment is ±10 mV when R101 is 5.6 kΩ  
and ±3 mV when R101 is 20 k.  
When using the nonshutdown version of the device, pin 8 of the IC is a no  
connect.  
Figure 21 shows the area 100 schematic.  
Figure 21. Area 100 SchematicSingle Device, SOIC (8 pin)  
C110  
V1+  
R114  
V1+  
R112  
V1+  
C109  
R110  
C107  
C108  
A101–  
GND1  
U101  
R109  
R103  
7
SD  
OUT  
2
8
C105  
C104  
A102–  
6
R104  
3
+
V1–  
5
A103+  
4
1
Power Supply Bypass  
R108  
A104+  
V1–  
V1–  
R107  
R102  
R105  
R106  
A1 FLT  
C103  
V1+  
VREF1  
C101  
R111  
U102  
R101  
C102  
V1–  
C106  
R113  
Voltage Reference  
2-3  
Evaluation Module Layout  
Physical Considerations  
2.3 Area 200Dual Device SOIC  
Area 200 uses 2xx reference designators, and is compatible with dual op  
amps, with or without shutdown, packaged as an 8-pin (without shutdown) or  
14-pin (with shutdown) SOIC. This package is designated by a D suffix in TI  
part numbers, as in TxxxxCD.  
When using the nonshutdown version of the device, ensure that the IC is  
aligned at the top of the IC pad arraythe last six PCB pads (three on each  
sidepins 5, 6, 7, 8, 9, and 10) will not be used.  
Figure 22 shows the area 200 schematic.  
Figure 22. Area 200 SchematicDual Device, SOIC (14 pin)  
C211  
R216  
V2+  
R212  
V2+  
C215  
R221  
A201–  
V2+  
6
14  
R220  
R219  
C206  
C207  
A2/SD  
2
A202–  
1
GND2  
R218  
A2OUT  
3
+
4
A203+  
U201a  
1/2 Dual Op Amp  
C209  
C210  
A204+  
V2–  
V2–  
R217  
R214  
A2 FLT  
C214  
V2–  
Power Supply Bypass  
C212  
R215  
C213  
R210  
C203  
R207  
C202  
V2+  
VREF2  
R211  
U202  
R206  
R204  
B201–  
9
C208  
B2/SD  
R203  
R201  
12  
11  
R213  
B202–  
13  
U201b  
R205  
B2OUT  
+
B203+  
1/2 Dual Op Amp  
Voltage Reference  
B204+  
R202  
R208  
B2 FLT  
C205  
R209  
C204  
C201  
2-4  
Evaluation Module Layout  
Physical Considerations  
2.4 Area 300Quad Device SOIC  
Area 300 uses 3xx reference designators, and is compatible with quad op  
amps, with or without shutdown, packaged in a 14-pin (without shutdown) or  
16-pin (with shutdown) SOIC. This surface-mount package is designated by  
a D suffix in TI part numbers, as in TxxxxID.  
When using the nonshutdown version of the device, ensure that the IC is  
aligned at the top of the IC pad arraythe last two PCB pads (one on each  
sidepins 8 and 9) will not be used.  
Figure 23 shows the area 300 schematic.  
2-5  
Evaluation Module Layout  
Physical Considerations  
Figure 23. Area 300 SchematicQuad Device SOIC (16 pin)  
C302  
R302  
V3+  
R304  
V3+  
C313  
C314  
C301  
R301  
A301–  
GND3  
V3+  
4
R303  
R306  
C311  
C312  
AB3/SD  
A3 OUT  
2
3
8
A302–  
1
V3–  
R305  
+
A303+  
U301A  
V3–  
Power Supply Bypass  
13  
A304+  
V3–  
R308  
R309  
C310  
R318  
R314  
C308  
A3 FLT  
C305  
R307  
C304  
R310  
B301–  
C303  
R312  
R313  
6
5
B302–  
7
B3 OUT  
R317  
+
B303+  
U301B  
B304+  
R315  
R316  
B3 FLT  
C306  
R311  
C307  
C317  
R323  
C316  
R325  
C309  
R322  
C301–  
R324  
R327  
CD3/SD  
C3 OUT  
11  
12  
9
C302–  
10  
R326  
+
C303+  
C324  
U301C  
R331  
C321  
C304+  
R329  
R339  
R330  
R332  
C3 FLT  
C320  
D301–  
R328  
C318  
R333  
R335  
15  
14  
D302–  
16  
U301D  
D3 OUT  
R334  
C319  
+
D303+  
D304+  
R336  
R338  
R321  
D3 FLT  
C323  
V1+  
VREF3  
R337  
C322  
R320  
R319  
U302  
C325  
C315  
Voltage Reference  
2-6  
Evaluation Module Layout  
General Power Dissipation Considerations  
2.5 General Power Dissipation Considerations  
For a given θ , the maximum power dissipation is shown in Figure 24 and is calculated by the  
JA  
following formula:  
T
T  
MAX  
A
P
D
JA  
Where:  
P
= Maximum power dissipation of Txxxx IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JC CA  
JA  
θ
= Thermal coefficient from junction to case  
= Thermal coefficient from case to ambient air (°C/W)  
JC  
θ
CA  
Figure 24. Maximum Power Dissipation vs Free-Air Temperature  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
SOIC (16-pin)  
Package  
T
= 150°C  
J
Low-K Test PCB  
θ
= 114.7°C/W  
JA  
1.5  
SOIC (8-pin)  
Package  
Low-K Test PCB  
1
0.5  
0
SOIC (14-pin)  
Package  
Low-K Test PCB  
55  
25  
5
35  
65  
95  
125  
T
A
Free-Air Temperature °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Table 21.Dissipation Rating Table  
θ
θ
T
A
25°C  
JC  
JA  
PACKAGE  
(°C/W)  
(°C/W)  
POWER RATING  
D (8)  
D (14)  
D (16)  
38.3  
176  
710 mW  
26.9  
122.3  
114.7  
1022 mW  
25.7  
1090 mW  
2-7  
Evaluation Module Layout  
EVM Component Placement  
2.6 EVM Component Placement  
Figure 25 shows component placement for the EVM board.  
Figure 25. EVM Component Placement  
2-8  
Evaluation Module Layout  
EVM Board Layout  
2.7 EVM Board Layout  
Figures 26 and 27 show the EVM top and bottom board layouts,  
respectively.  
Figure 26. EVM Board LayoutTop  
2-9  
Evaluation Module Layout  
EVM Board Layout  
Figure 27. EVM Board LayoutBottom  
2-10  
Evaluation Module Layout  
Chapter 3  
Example Circuits  
This chapter shows and discusses several example circuits that can be  
constructed using the universal operational amplifier EVM. The circuits are all  
classic designs that can be found in most operational amplifier design books.  
Topic  
Page  
3.1 Schematic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.2 Inverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.3 Noninverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.4 Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.5 Sallen-Key Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.6 Sallen-Key High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.7 Two Operational Amplifier Instrumentation Amplifier . . . . . . . . . . . . 38  
3.8 Quad Operational Amplifier Instrumentation Amplifier . . . . . . . . . 310  
3-1  
Schematic Conventions  
3.1 Schematic Conventions  
Figures 31 through 36 show schematic examples of circuits that can be  
constructed using the universal operational amplifier EVM with shutdown. The  
components that are placed on the board are shown in bold. Unused  
components are blanked out. Jumpers and other changes are noted. These  
examples are only a few of the many circuits that can be built.  
3.2 Inverting Amplifier  
Figure 31 shows area 100 equipped with a single operational amplifier  
configured as an inverting amplifier using dual power supplies.  
Basic setup is done by choice of input and feedback resistors. The transfer  
function for the circuit as shown is:  
R112  
R109  
V
V
OUT  
IN  
To cancel the effects of input bias current, set R105 = R112 || R109, or use a  
0-jumper for R105 if the operational amplifier is a low input bias operational  
amplifier.  
Figure 31. Inverting Amplifier With Dual Supply Using Area 100  
C110  
R114  
V1+  
R112  
V1+  
C109  
R110  
R112  
R109  
A101–  
V1+  
V
= V  
OUT  
IN  
SD  
A OUT  
C107  
0.1 µF  
C108  
10 µF  
8
R109  
R103  
7
2
A102–  
6
R104  
GND1  
3
+
4
A103+  
U101  
C105  
0.1 µF  
C104  
10 µF  
R102  
R105 = R112 II R109,  
or Short if Using Low  
Input Bias Op Amp  
A104–  
+
V1–  
V1–  
V
in  
V1–  
Power Supply Bypass  
R105  
C101  
R106  
A1 FLT  
C103  
V1+  
C102  
R108  
VREF1  
2
6
3
+
1
5
R111  
C
R107  
C106  
Optional  
U102  
R
100 k  
5.6 k  
A
R113  
R101  
V1–  
Voltage Reference  
Not Used  
3-2  
Example Circuits  
Noninverting Amplifier  
3.3 Noninverting Amplifier  
Figure 32 shows area 100 equipped with a single operational amplifier  
configured as a noninverting amplifier with single-supply power input.  
Basic setup is done by choice of input and feedback resistors. The transfer  
function for the circuit as shown is:  
R112  
R109  
V
V
1
VREF1  
OUT  
IN  
The input signal must be referenced to VREF1.  
To cancel the effects of input bias current, set R102 = R112 || R109, or use a  
0-jumper for R102 if the operational amplifier is a low input bias operational  
amplifier.  
The TL431 adjustable precision shunt regulator, configured as shown,  
provides a low impedance reference for the circuit at about 1/2 V1+ in a 3 V  
system. Another option is to adjust resistors R113 and R111 for the desired  
VREF1 voltage. The formula for calculating VREF1 is:  
R111 R113  
VREF1  
1.24 V  
R113  
Figure 32. Noninverting Amplifier With Single Supply Using Area 100  
V1+  
R114  
C109  
C110  
V1+  
R112  
V1+  
C107  
C108  
R110  
R109  
0.1 µF  
10 µF  
R112  
R109  
A101+  
V
= V  
1 +  
+ VREF4  
OUT IN(  
)
GND1  
Jumper 102 to VREF1  
7
8
C104  
2
3
C105  
SD  
1 OUT  
A102–  
6
R104  
V1–  
R103  
R102  
+
4
A103+  
U101  
Power Supply Bypass  
V1+  
V1–  
A104–  
V1–  
+
C101  
R105  
V
in  
R108  
2.2 kΩ  
R106  
1 FLT  
C103  
VREF1 = 1.24 V  
C102  
C106  
10 µF  
R111  
C
R102 = R112 II R109,  
or Short if Using Low Input  
Bias Op Amp  
Input Signal With  
Reference to VREF1  
U102 = TLV431ACDBV5  
R
A
2
6
5
R113  
3
+
1
Voltage Reference  
R107  
100 k  
Optional  
R101  
V1–  
5.6 k  
3-3  
Example Circuits  
Differential Amplifier  
3.4 Differential Amplifier  
Figure 33 shows area 100 equipped with a single operational amplifier  
configured as a differential amplifier using a voltage reference and single  
power supply.  
Basic setup is done by choice of input and feedback resistors. The transfer  
function for the circuit as shown is:  
R112  
IN  
R109  
V
V
VREF1  
OUT  
Where:  
R102  
R103  
R112  
R109  
The TLV431 adjustable precision shunt regulator, configured as shown,  
provides a low impedance reference for the circuit at about 1/2 V1+ in a 3-V  
system. Another option is to adjust resistors R111 and R113 for the desired  
VREF1 voltage. The formula for calculating VREF1 is:  
R111 R113  
VREF1  
1.24 V  
R113  
Figure 33. Single Operational Amplifier Differential Amplifier With Single Supply Using  
Area 100  
R114  
C109  
C110  
R112  
V1+  
R110  
101–  
V1+  
R112  
V
= V  
in  
+ V  
REF1  
V1+  
7
out  
(R109 )  
C107  
0.1 µF  
C108  
10 µF  
R109  
R103  
8
+
2
1/SD  
1OUT  
102–  
6
R104  
GND1  
V
in  
3
+
4
103+  
U101  
C105  
Jumper  
C104  
R102  
104+  
V1–  
V1–  
R112  
R109  
R102  
R103  
=
Power Supply Bypass  
V1+  
V1–  
C101  
R105  
R106  
A1 FLT  
C103  
R108  
2.2 kΩ  
C102  
VREF1 = 1.24 V  
Jumper 104+ to VREF1  
R111  
C106  
10 µF  
C
A
U102  
TLV431ACDBV5  
R
R113  
Voltage Reference  
3-4  
Example Circuits  
Sallen-Key Low-Pass Filter  
3.5 Sallen-Key Low-Pass Filter  
Figure 34 shows area 200 equipped with a dual operational amplifier  
configured as a second-order Sallen-Key low-pass filter using dual-power  
supplies.  
Basic setup is done by proper choice of resistors R and mR, and capacitors  
C and nC. The transfer function is:  
V
OUT  
1
2
V
IN  
j
Q
f
o
f
o
1
f
f
Where:  
And  
1
f
o
2
m nRC  
m n  
Q
m
1
Figure 34. Sallen-Key Low-Pass Filter Wwith Dual Supply Using Area 200  
R216  
C211  
R212  
Jumper  
V2+  
C215  
V2+  
R221  
A201–  
V
V
1
out  
in  
=
2
1(f/fo) + (j/Q)(f/fo)  
V2+  
6
C206  
0.1 µ F  
C207  
10 µ F  
14  
R220  
A2/SD  
2
A202–  
1
R218  
R
GND2  
R219  
mR  
A2OUT  
1/2 Dual Op Amp  
3
+
U201A  
A203+  
4
C209  
0.1 µ F  
C210  
10 µ F  
A204+  
V2–  
1
V2–  
R217  
fo =  
Q =  
2π mn RC  
+
V2–  
mn  
m+1  
Power Supply Bypass  
C212  
V
R215  
in  
R214  
A2 FLT  
C214  
C213  
nC  
V2+  
R207  
C202  
C203  
R210  
R206  
VREF2  
R204  
R203  
Jumper  
B201–  
R211  
C
9
B2/SD  
12  
11  
C208  
B202–  
U202  
13  
R205  
B2OUT  
R
A
R201  
R202  
+
U201B  
B203+  
1/2 Dual Op Amp  
R213  
B204+  
Not Used  
R209  
Voltage Reference  
Not Used  
R208  
C204  
B2 FLT  
C205  
C201  
3-5  
Example Circuits  
Sallen-Key High-Pass Filter  
3.6 Sallen-Key High-Pass Filter  
Figure 35 shows area 200 equipped with a dual operational amplifier  
configured as a second-order Sallen-Key high-pass filter using single-supply  
power input.  
Basic setup is done by proper choice of resistors R and mR, and capacitors  
C and nC. Note that capacitors should be used for components R201 and  
R205, and a resistor for C201. The transfer function for the circuit as shown  
is:  
2
f
f
o
VOUT  
VIN  
VREF2  
2
j
Q
f
f
o
1
f
f
o
Where:  
And  
1
f
o
2
n
m n RC  
m n  
Q
1
The TL431 adjustable precision shunt regulator, configured as shown,  
provides a low impedance reference for the circuit at about 1/2 V2+ in a 5 V  
system. Another option is to adjust resistors R211 and R213 for the desired  
VREF2 voltage. The formula for calculating VREF2 is:  
R211 R213  
VREF2  
2.50 V  
R213  
3-6  
Example Circuits  
Sallen-Key High-Pass Filter  
Figure 35. Sallen-Key High-Pass Filter With Single Supply Using Area 200  
R216  
C211  
V2+  
R212  
R221  
C215  
Jumper  
A201–  
V2+  
V2+  
14  
6
C206  
0.1 µF  
C207  
10 µF  
R220  
R219  
A2/SD  
2
A202–  
1
GND2  
A2OUT  
R218  
3
+
A203+  
U201A  
4
1/2 Dual Op Amp  
Not Used  
C210  
C209  
R217  
A204+  
V2–  
V2–  
V2–  
Power Supply Bypass  
R215  
C212  
R214  
A2 FLT  
C213  
C214  
R207  
C202  
C203  
R206  
Jumper  
9
VREF2 = 2.5 V  
V2+  
R204  
2
(f/fo)  
B201–  
V
= V  
+ VREF2  
OUT  
IN  
2
1+(j/Q)(f/fo) (f/fo)  
R203  
R202  
12  
B2/SD  
B2OUT  
R210  
2.2 kΩ  
B202–  
13  
U201B  
11  
+
B204+  
1/2 Dual Op Amp  
fo =  
mR  
R201  
R205  
nC  
R211  
C208  
10 µF  
1
C
A
B203+  
2π mn RC  
U202  
C
R
mn  
m+1  
TL431ACLP  
+
Q =  
C204  
R209  
R213  
V
in  
R208  
B2 FLT  
C205  
C201  
R
Jumper B204 + to VREF2  
Voltage Reference  
3-7  
Example Circuits  
Two Operational Amplifier Instrumentation Amplifier  
3.7 Two Operational Amplifier Instrumentation Amplifier  
Figure 36 shows area 200 equipped with a dual operational amplifier  
configured as a two-operational-amplifier instrumentation amplifier using a  
voltage reference and single power supply.  
Basic setup is done by choice of input and feedback resistors. The transfer  
function for the circuit as shown is:  
2R212 R212  
V
V
1
VREF2  
OUT  
IN  
R220  
R221  
Where:  
R212 = R206 and R221 = R203  
To cancel the effects of input bias current, set R217 = R212 || R220 and set  
R202 = R206 ||R203, or use a 0-jumper for R217 and R202 if the operational  
amplifier is a low input bias operational amplifier.  
The TLV431 adjustable precision shunt regulator, configured as shown,  
provides a low impedance reference for the circuit at about 1/2 V2+ in a 3 V  
system. Another option is to adjust resistors R211 and R213 for the desired  
VREF2 voltage. The formula for calculating VREF2 is:  
R211 R213  
VREF2  
1.24 V  
R213  
3-8  
Example Circuits  
Two Operational Amplifier Instrumentation Amplifier  
Figure 36. Two Operational Amplifier Instrumentation Amplifier Wwith Single Supply  
Using  
Area 200  
C211  
R216  
Jumper A201 to B2OUT  
R212  
C215  
R221  
R217 = R212 II R220  
or Short if Using Low Input  
Bias Op Amp  
2R212  
R220  
R212  
R221  
A201–  
V
= Vin(1+  
+
)+ V  
OUT  
REF2  
Jumper  
R218  
V2+  
14  
R220  
R219  
6
1
2
A2/SD  
A2OUT  
A202–  
V2+  
3
+
A203+  
U201A  
4
1/2 Dual Op Amp  
R217  
V2+  
A204+  
V2–  
R212 = R206  
R221 = R203  
C206  
C207  
0.1 µF  
10 µF  
GND2  
C212  
R215  
C213  
R214  
Jumper  
A202to B201–  
C209  
C210  
A2 FLT  
C214  
V2–  
+
V2–  
Power Supply Bypass  
V2+  
V
in  
C203  
R206  
R207  
C202  
Jumper VREF2 to B202–  
R204  
R210  
2.2 kΩ  
B201–  
VREF2 = 1.24 V  
Jumper  
R203  
Jumper  
R205  
9
12  
11  
B2/SD  
B2OUT  
B202–  
R211  
13  
R201  
C208  
10 µF  
C
A
B203+  
+
U201B  
1/2 Dual Op Amp  
U202  
R
TLV431ACDBV5  
R202  
B204+  
R213  
R202 = R206 II R203  
or Short if Using Low Input  
Bias Op Amp  
R209  
Voltage Reference  
R208  
C204  
B2 FLT  
C205  
C201  
3-9  
Example Circuits  
Quad Operational Amplifier Instrumentation Amplifier  
3.8 Quad Operational Amplifier Instrumentation Amplifier  
Figure 37 shows area 300 equipped with a quad operational amplifier  
configured as a quad-operational-amplifier instrumentation amplifier using a  
dual power supply.  
Basic setup is done by choice of input and feedback resistors. The transfer  
function for the circuit as shown is:  
(
)
R303 2 R302  
R325  
R309  
V
V
V
INA  
OUT  
INB  
R303  
Where:  
R302 = R318, R309 = R316, and R325 = R329  
(
)
R303 2 R302  
R325  
R309  
A
101 as shown  
V
R303  
To cancel the effects of offset errors, adjust V (D304+) by applying an extra  
adj  
signal.  
3-10  
Example Circuits  
Quad Operational Amplifier Instrumentation Amplifier  
Figure 37. Quad Operational Amplifier Instrumentation Amplifier With Dual Supply Using  
Area 300  
R304  
C302  
V3+  
2.5 = V3+  
R302  
0.1 µF  
C314  
10 µF  
GND3  
10 µF  
2.5 = V3–  
R301  
C301  
C313  
5 kΩ  
A301–  
V3+  
4
R303  
100 Ω  
0.1 µF  
C312  
AB3/SD  
A3 OUT  
2
3
C311  
8
A302–  
1
Jumpers  
+
A303+  
U301A  
13  
R306  
R308  
R305  
V3–  
Power Supply Bypass  
A304+  
V3–  
R309 A3 FLT  
+
R307  
C304  
10 kΩ  
V
INA  
C305  
R323  
C317  
C303  
R325  
R322  
C316  
C301–  
10 kΩ  
R324  
R327  
Jumpers  
R326  
CD3/SD  
C3 OUT  
11  
12  
9
C302–  
10  
+
C303+  
C310  
R314  
C308  
U301C  
10 kΩ  
C304+  
R318  
R329  
C3 FLT  
R330  
R310  
B301–  
5 kΩ  
R328  
C318  
R312  
C320  
6
B302–  
7
Jumpers  
B3 OUT  
5
+
B303+  
C319  
U301B  
R313  
R315  
R317  
B304+  
B3 FLT  
R316  
+
R311  
C307  
10 kΩ  
V
INB  
C306  
C309  
R321  
V3+  
VREF3  
C324  
R331  
C321  
R320  
U302  
R339  
R332  
C315  
Jumper  
D301–  
R319  
R333  
R335  
15  
14  
D3 OUT  
D302–  
16  
U301D  
Voltage Reference  
R334  
+
D303+  
D304+  
R336  
Jumper  
R338  
D3 FLT  
C323  
+
R337  
C322  
V
adj  
C325  
3-11  
Example Circuits  
3-12  
Example Circuits  

Westcott Halo 1060 User Manual
Sony Xplod CDX M730 User Manual
Sony XCD SX910UV User Manual
Sony WALKMAN D NF401 User Manual
Sony Handycam HDRXR350 User Manual
Sony DSCH90B User Manual
Sony DFW V500 User Manual
Sharp Printing Calculator EL2192RII User Manual
Sanyo Eneloop MQN04 U 4 3UTG User Manual
Samsung M20BN User Manual