Texas Instruments Computer Hardware MSP430x11x1 User Manual

MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Low Supply Voltage Range 1.8 V – 3.6 V  
Serial Onboard Programming  
Ultralow-Power Consumption  
Low Operation Current,  
1.3 µA at 4 kHz, 2.2 V  
Programmable Code Protection by Security  
Fuse (C11x1 Only)  
Family Members Include:  
160 µA at 1 MHz, 2.2 V  
MSP430C1111: 2KB ROM,128B RAM  
MSP430C1121: 4KB ROM, 256B RAM  
MSP430F1101: 1KB + 128B Flash Memory  
(MTP ), 128B RAM  
MSP430F1121: 4KB + 256B Flash Memory  
(MTP ), 256B RAM  
Available in a 20-Pin Plastic Small-Outline  
Wide Body (SOWB) Package and 20-Pin  
Plastic Thin Shrink Small-Outline Package  
(TSSOP)  
Five Power Saving Modes:  
(Standby Mode: 0.8 µA,  
RAM Retention Off Mode: 0.1 µA)  
Wake-Up From Standby Mode in 6 µs  
16-Bit RISC Architecture, 125 ns  
Instruction Cycle Time  
Basic Clock Module Configurations:  
– Various Internal Resistors  
– Single External Resistor  
– 32 kHz Crystal  
– High Frequency Crystal  
– Resonator  
DW OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TEST  
VCC  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
P1.2/TA1  
P1.1/TA0  
P1.0/TACLK  
P2.4/CA1/TA2  
P2.3/CA0/TA1  
– External Clock Source  
16-Bit Timer With Three Capture/Compare  
Registers  
P2.5/R  
osc  
SS  
V
XOUT  
Slope A/D Converter With External  
Components  
XIN  
RST/NMI  
P2.0/ACLK  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D  
Conversion  
P2.1/INCLK  
P2.2/CAOUT/TA0  
description  
The Texas Instruments MSP430 series is an ultralow-power microcontroller family consisting of several devices  
featuringdifferentsetsofmodulestargetedtovariousapplications. Themicrocontrollerisdesignedtobebattery  
operated for an extended-application lifetime. With 16-bit RISC architecture, 16 bit integrated registers on the  
CPU, and a constant generator, the MSP430 achieves maximum code efficiency. The digitally-controlled  
oscillator provides fast wake-up from all low-power modes to active mode in less than 6 s.  
Typicalapplicationsincludesensorsystemsthatcaptureanalogsignals, convertthemtodigitalvalues, andthen  
process the data and display them or transmit them to a host system. Stand alone RF sensor front end is another  
area of application. The I/O port inputs provide single slope A/D conversion capability on resistive sensors. The  
MSP430x11x series is an ultralow-power mixed signal microcontroller with a built in 16-bit timer and fourteen  
I/O pins. The MSP430x11x1 family adds a versatile analog comparator.  
The flash memory provides added flexibility of in-system programming and data storage without significantly  
increasing the current consumption of the device. The programming voltage is generated on-chip, thereby  
alleviating the need for an additional supply, and even allowing for reprogramming of battery-operated systems.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
MTP = Multiple Time Programmable  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Terminal Functions  
TERMINAL  
NAME  
P1.0/TACLK  
I/O  
DESCRIPTION  
NO.  
13  
14  
15  
16  
17  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input  
P1.1/TA0  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK/TCK  
I/O General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming  
and test  
P1.5/TA0/TMS  
18  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for  
device programming and test  
P1.6/TA1/TDI  
19  
20  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal  
P1.7/TA2/TDO/TDI  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input  
during programming  
P2.0/ACLK  
8
9
I/O General-purpose digital I/O pin/ACLK output  
P2.1/INCLK  
I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
P2.2/CAOUT/TA0  
P2.3/CA0/TA1  
P2.4/CA1/TA2  
10  
11  
12  
3
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/comparator_A, output  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/comparator_A, input  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/comparator_A, input  
I/O General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency  
P2.5/R  
osc  
RST/NMI  
TEST  
7
I
I
Reset or nonmaskable interrupt input  
1
Select of test mode for JTAG pins on Port1. Must be tied low with less than 30 k(F11x1).  
VCC  
2
Supply voltage  
V
SS  
4
Ground reference  
XIN  
6
I
Input terminal of crystal oscillator  
XOUT  
5
I/O Output terminal of crystal oscillator  
TDO or TDI is selected via JTAG instruction.  
short-form description  
processing unit  
The processing unit is based on a consistent, and orthogonally-designed CPU and instruction set. This design  
structure results in a RISC-like architecture, highly transparent to the application development, and noted for  
its programming simplicity. All operations other than program-flow instructions are consequently performed as  
register operations in conjunction with seven addressing modes for source, and four modes for destination  
operands.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
short-form description (continued)  
CPU  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Program Counter  
Stack Pointer  
All sixteen registers are located inside the CPU,  
providing reduced instruction execution time. This  
reduces a register-register operation execution  
time to one cycle of the processor.  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
Four registers are reserved for special use as a  
program counter, a stack pointer, a status register,  
and a constant generator. The remaining twelve  
registers are available as general-purpose  
registers.  
R5  
Peripherals are connected to the CPU using a  
data address and control buses and can be  
handled easily with all instructions for memory  
manipulation.  
General-Purpose Register  
General-Purpose Register  
R14  
R15  
instruction set  
The instructions set for this register-register architecture provides a powerful and easy-to-use assembly  
language. The instruction set consists of 51 instructions with three formats and seven addressing modes.  
Table 1 provides a summation and example of the three types of instruction formats; the addressing modes are  
listed in Table 2.  
Table 1. Instruction Word Formats  
Dual operands, source-destination e.g. ADD R4, R5  
R4 + R5 R5  
Single operands, destination only  
Relative jump, un-/conditional  
e.g. CALL R8  
e.g. JNE  
PC (TOS), R8 PC  
Jump-on equal bit = 0  
Most instructions can operate on both word and byte data. Byte operations are identified by the suffix B.  
Examples:  
Instructions for word operation  
Instructions for byte operation  
MOV  
ADD  
PUSH  
SWPB  
EDE,TONI  
#235h,&MEM  
R5  
MOV.B  
ADD.B  
PUSH.B R5  
EDE,TONI  
#35h,&MEM  
R5  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
s
d
SYNTAX  
MOV Rs, Rd  
EXAMPLE  
MOV R10, R11  
OPERATION  
Register  
R10 R11  
Indexed  
MOV X(Rn), Y(Rm)  
MOV EDE, TONI  
MOV &MEM, &TCDAT  
MOV @Rn, Y(Rm)  
MOV @Rn+, RM  
MOV #X, TONI  
MOV 2(R5), 6(R6)  
M(2 + R5) M(6 + R6)  
M(EDE) M(TONI)  
Symbolic (PC relative)  
Absolute  
M(MEM) M(TCDAT)  
M(R10) M(Tab + R6)  
M(R10) R11, R10 + 2 R10  
#45 M(TONI)  
Indirect  
MOV @R10, Tab(R6)  
MOV @R10+, R11  
MOV #45, TONI  
Indirect autoincrement  
Immediate  
NOTE: s = source d = destination Rs/Rd = source register/destination register Rn = register number  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
instruction set (continued)  
Computedbranches(BR)andsubroutinecalls(CALL)instructionsusethesameaddressingmodesastheother  
instructions. These addressing modes provide indirect addressing, ideally suited for computed branches and  
calls. The full use of this programming capability permits a program structure different from conventional 8- and  
16-bit controllers. For example, numerous routines can easily be designed to deal with pointers and stacks  
instead of using flag type programs for flow control.  
operation modes and interrupts  
The MSP430 operating modes support various advanced requirements for ultralow-power and ultralow energy  
consumption. This is achieved by the intelligent management of the operations during the different module  
operation modes and CPU states. The advanced requirements are fully supported during interrupt event  
handling. An interrupt event awakens the system from each of the various operating modes and returns with  
the RETI instruction to the mode that was selected before the interrupt event. The different requirements of the  
CPU and modules, which are driven by system cost and current consumption objectives, necessitate the use  
of different clock signals:  
Auxiliary clock ACLK (from LFXT1CLK/crystal’s frequency), used by the peripheral modules  
Main system clock MCLK, used by the CPU and system  
Subsystem clock SMCLK, used by the peripheral modules  
low-power consumption capabilities  
The various operating modes are controlled by the software through controlling the operation of the internal  
clock system. This clock system provides many combinations of hardware and software capabilities to run the  
application with the lowest power consumption and with optimized system costs:  
Use the internal clock (DCO) generator without any external components.  
Select an external crystal or ceramic resonator for lowest frequency or cost.  
Select and activate the proper clock signals (LFXT1CLK and/or DCOCLK) and clock pre-divider function.  
Apply an external clock source.  
Four of the control bits that influence the operation of the clock system and support fast turnon from low power  
operating modes are located in the status register SR. The four bits that control the CPU and the system clock  
generator are SCG1, SCG0, OscOff, and CPUOff:  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
status register R2  
15  
Reserved For Future  
Enhancements  
rw-0  
9
8
7
6
5
4
3
2
N
1
0
V
SCG1  
rw-0  
SCG0  
rw-0  
OscOff  
rw-0  
CPUOff  
rw-0  
GIE  
rw-0  
Z
C
rw-0  
rw-0  
rw-0  
rw-0  
The bits CPUOff, SCG1, SCG0, and OscOff are the most important low-power control bits when the basic  
function of the system clock generator is established. They are pushed onto the stack whenever an interrupt  
is accepted and thereby saved so that the previous mode of operation can be retrieved after the interrupt  
request. During execution of an interrupt handler routine, the bits can be manipulated via indirect access of the  
data on the stack. That allows the program to resume execution in another power operating mode after the  
return from interrupt (RETI).  
SCG1:  
The clock signal SMCLK, used for peripherals, is enabled when bit SCG1 is reset or disabled if  
the bit is set.  
SCG0:  
The dc-generator is active when SCG0 is reset. The dc-generator can be deactivated only if the  
SCG0 bit is set and the DCOCLK signal is not used for MCLK or SMCLK. The current consumed  
by the dc-generator defines the basic frequency of the DCOCLK. It is a dc current.  
The clock signal DCOCLK is deactivated if it is not used for MCLK or SMCLK or if the SCG0 bit  
is set. There are two situations when the SCG0 bit cannot switch off the DCOCLK signal:  
1. DCOCLK frequency is used for MCLK (CPUOff=0 and SELM.1=0).  
2. DCOCLK frequency is used for SMCLK (SCG1=0 and SELS=0).  
NOTE:  
When the current is switched off (SCG0=1) the start of the DCOCLK is delayed slightly. The delay  
is in the µs-range (see device parameters for details).  
OscOff:  
CPUOff:  
The LFXT1 crystal oscillator is active when the OscOff bit is reset. The LFXT1 oscillator can only  
be deactivated if the OscOff bit is set and it is not used for MCLK or SMCLK. The setup time to  
start a crystal oscillation needs consideration when oscillator off option is used. Mask  
programmable(ROM)devicescandisablethisfeaturesothattheoscillatorcanneverbeswitched  
off by software.  
The clock signal MCLK, used for the CPU, is active when the CPUOff bit is reset or stopped if it  
is set.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the memory with an address range of  
0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction  
sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
WDTIFG (Note1)  
KEYV (Note 1)  
Power-up, external reset, watchdog  
Reset  
0FFFEh  
15, highest  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
NMIIFG (Notes 1 and 4)  
OFIFG (Notes 1 and 4)  
ACCVIFG (Notes 1 and 4)  
NMI, oscillator fault, flash memory  
access violation  
0FFFCh  
14  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
13  
12  
11  
10  
9
Comparator_A  
Watchdog timer  
Timer_A  
CAIFG  
maskable  
maskable  
maskable  
WDTIFG  
CCIFG0 (Note 2)  
CCIFG1, CCIFG2, TAIFG  
(Notes 1 and 2)  
Timer_A  
maskable  
0FFF0h  
8
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
7
6
5
4
P2IFG.0 to P2IFG.7  
(Notes 1 and 2)  
I/O Port P2 (eight flags – see Note 3)  
I/O Port P1 (eight flags)  
maskable  
maskable  
0FFE6h  
0FFE4h  
3
2
P1IFG.0 to P1IFG.7  
(Notes 1 and 2)  
0FFE2h  
0FFE0h  
1
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module  
3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0–5) are implemented on the 11x1 devices.  
4. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple software access  
is provided with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
OFIE:  
Watchdog timer enable signal  
Oscillator fault enable signal  
NMIIE:  
ACCVIE:  
Nonmaskable interrupt enable signal  
Access violation at flash memory  
7
6
5
4
3
3
2
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
1
0
Address  
02h  
NMIIFG  
OFIFG  
WDTIFG  
rw-0  
rw-1  
rw-0  
WDTIFG:  
Set on overflow or security key violation or  
Reset on V power-on or reset condition at RST/NMI-pin  
Flag set on oscillator fault  
Set via RST/NMI-pin  
CC  
OFIFG:  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
Legend rw:  
Bit can be read and written.  
rw-0:  
Bit can be read and written. It is reset by PUC  
SFR bit is not present in device.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
memory organization  
MSP430C1111  
MSP430C1121  
Int. Vector  
MSP430F1101  
MSP430F1121  
Int. Vector  
FFFFh  
FFE0h  
FFDFh  
FFFFh  
FFE0h  
FFDFh  
FFFFh  
FFE0h  
FFDFh  
FFFFh  
FFE0h  
Int. Vector  
2 KB ROM  
Int. Vector  
1 KB Flash  
Segment0,1  
FFDFh  
4 KB  
Flash  
Segment0–7  
Main  
Memory  
FC00h  
F800h  
4 KB  
ROM  
F000h  
10FFh  
F000h  
10FFh  
1080h  
128B Flash  
SegmentA  
2 × 128B  
Flash  
Information  
Memory  
SegmentA,B  
1000h  
0FFFh  
0C00h  
1 KB  
Boot ROM  
1 KB  
Boot ROM  
0FFFh  
0C00h  
02FFh  
0200h  
02FFh  
256B RAM  
256B RAM  
027Fh  
027Fh  
128B RAM  
16b Per.  
8b Per.  
SFR  
128B RAM  
16b Per.  
8b Per.  
SFR  
0200h  
01FFh  
0200h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
0200h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
16b Per.  
8b Per.  
SFR  
16b Per.  
8b Per.  
SFR  
0100h  
00FFh  
0010h  
000Fh  
0000h  
boot ROM containing bootstrap loader  
The intention of the bootstrap loader is to download data into the flash memory module. Various write, read, and  
erase operations are needed for a proper download environment. The bootstrap loader is only available on F  
devices.  
functions of the bootstrap loader:  
Definition of read:  
write:  
apply and transmit data of peripheral registers or memory to pin P1.1 (BSLTX)  
read data from pin P2.2 (BSLRX) and write them into flash memory  
unprotected functions  
Mass erase, erase of the main memory (Segment0 to Segment7)  
Access to the MSP430 via the bootstrap loader is protected. It must be enabled before any protected function  
can be performed. The 256 bits in 0FFE0h to 0FFFFh provide the access key.  
protected functions  
All protected functions can be executed only if the access is enabled.  
Write/program byte into flash memory; Parameters passed are start address and number of bytes (the  
segment-write feature of the flash memory is not supported and not useful with the UART protocol).  
Segment erase of Segment0 to Segment7 in the main memory and segment erase of SegmentA and  
SegmentB in the information memory.  
Read all data in main memory and information memory.  
Read and write to all byte peripheral modules and RAM.  
Modify PC and start program execution immediately.  
NOTE:  
Unauthorized readout of code and data is prevented by the user’s definition of the data in the  
interrupt memory locations.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
boot ROM containing bootstrap loader (continued)  
features of the bootstrap loader are:  
UART communication protocol, fixed to 9600 baud  
Port pin P1.1 for transmit, P2.2 for receive  
TI standard serial protocol definition  
Implemented in flash memory version only  
Program execution starts with the user vector at 0FFFEh or with the bootstrap loader (start vector is at  
address 0C00h)  
hardware resources used for serial input/output:  
Pins P1.1 and P2.2 for serial data transmission  
Test and RST/NMI to start program execution at the reset or bootstrap loader vector  
Basic clock module: Rsel=5, DCO=4, MOD=0, DCOCLK for MCLK and SMCLK, clock divider for MCLK  
and SMCLK at default: dividing by 1  
Timer_A: Timer_A operates in continuous mode with MCLK source selected, input divider set to 1,  
using CCR0, and polling of CCIFG0.  
WDT:  
Watchdog timer is halted  
Interrupt: GIE=0, NMIIE=0, OFIFG=0, ACCVIFG=0  
Memory allocation and stack pointer:  
If the stack pointer points to RAM addresses above 0220h, 6 bytes of the stack are allocated  
plus RAM addresses 0200h to 0219h. Otherwise the stack pointer is set to 0220h and allocates  
RAM from 0200h to 021Fh.  
NOTE:  
When writing RAM data via bootstrap loader, take care that the stack is outside the range  
of the data being written.  
Program execution begins with the user’s reset vector at FFFEh (standard method) if TEST is held low while  
RST/NMI goes from low to high:  
V
CC  
RST/NMI PIN  
TEST PIN  
User Program Starts  
Reset Condition  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
boot ROM containing bootstrap loader (continued)  
Program execution begins with the bootstrap vector at 0C00h (boot ROM) if a minimum of two positive edges  
have been applied to TEST while RST/NMI is low, and TEST is high when RST/NMI goes from low to high. The  
TEST signal is normally used internally to switch pins P1.4, P1.5, P1.6, and P1.7 between their application  
function and the JTAG function. If the second rising edge at TEST is applied while RST/NMI is held low, the  
internal TEST signal is held low and the pins remain in the application mode:  
V
CC  
RST/NMI PIN  
TEST PIN  
Bootstrap loader Starts  
TEST  
(Internal)  
Test mode can be entered again after TEST is taken low and then back high.  
The bootstrap loader will not be started (via the vector in address 0C00h), if:  
There were less than two positive edges at TEST while RST/NMI is low  
TEST is low if RST/NMI goes from low to high  
JTAG has control over the MSP430 resources  
Supply voltage VCC drops and a POR is executed  
WARNING:  
The bootstrap loader starts correctly only if the RST/NMI pin is in reset mode. If it is switched  
to the NMI function, unpredictable program execution may result. However, a  
bootstrap-load may be started using software and the bootstrap vector, for example the  
instruction BR &0C00h.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
flash memory  
0FFFFh  
0FE00h  
Segment0 w/  
Interrupt Vectors  
The flash memory consists of 512-byte segments  
in the main memory and 128-byte segments in the  
information memory. See device memory maps  
for specific device information.  
0FDFFh  
0FC00h  
Segment1  
Segment2  
Segment3  
Segment4  
Segment5  
Segment6  
Segment7  
SegmentA  
SegmentB  
0FBFFh  
0FA00h  
Segment0 to Segment7 can be erased  
individually, or altogether as a group.  
0F9FFh  
0F800h  
SegmentA and SegmentB can be erased  
individually, or as a group with segments 0–7.  
0F7FFh  
0F600h  
The memory in SegmentA and SegmentB is also  
called Information Memory.  
0F5FFh  
0F400h  
VPP is generated internally. VCC current  
increases during programming.  
0F3FFh  
0F200h  
0F1FFh  
0F000h  
During program/erase cycles, VCC must not drop  
below the minimum specified for program/erase  
operation.  
010FFh  
01080h  
Program and erase timings are controlled by the  
flash timing generator—no software intervention  
is needed. The input frequency of the flash timing  
generator should be in the proper range and must  
be applied until the write/program or erase  
operation is completed.  
0107Fh  
01000h  
NOTE: All segments not implemented on all devices.  
During program or erase, no code can be executed from flash memory and all interrupts must be disabled by  
setting the GIE, NMIE, ACCVIE, and OFIE bits to zero. If a user program requires execution concurrent with  
a flash program or erase operation, the program must be executed from memory other than the flash memory  
(e.g., boot ROM, RAM). In the event a flash program or erase operation is initiated while the program counter  
is pointing to the flash memory, the CPU will execute JMP $ instructions until the flash program or erase  
operation is completed. Normal execution of the previously running software then resumes.  
Unprogrammed, new devices may have some bytes programmed in the information memory (needed for test  
during manufacturing). The user should perform an erase of the information memory prior to first use.  
flash memory control register FCTL1  
All control bits are reset during PUC. PUC is active after V  
is applied, a reset condition is applied to the  
CC  
RST/NMI pin, the watchdog timer expires, a watchdog access violation occurs, or an improper flash operation  
hasbeenperformed. Amoredetaileddescriptionofthecontrol-bitfunctionsisfoundintheflashmemorymodule  
description (refer to MSP430x1xx User’s Guide, literature number SLAU049). Any write to control register  
FCTL1 during erase, mass erase, or write (programming) will end in an access violation with ACCVIFG=1.  
Special conditions apply for segment-write mode. Refer to MSP430x1xx User’s Guide, literature number  
SLAU049 for details.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
flash memory control register FCTL1 (continued)  
Read access is possible at any time without restrictions.  
The control bits of control register FCTL1 are:  
15  
FCTL1  
0128h  
8
7
0
SEG  
WRT  
WRT  
res.  
res.  
res.  
MEras  
rw–0  
Erase  
res.  
rw–0  
rw–0  
r0  
r0  
r0  
rw-0  
r0  
FCTL1 read:  
FCTL1 write:  
096h  
0A5h  
Erase  
MEras  
WRT  
0128h, bit1, Erase a segment  
0: No segment erase will be started.  
1: Erase of one segment is enabled. The segment to be erased is defined by a  
dummy write into any address within the segment. The erase bit is  
automatically reset when the erase operation is completed.  
0128h, bit2, Mass Erase, main memory segments are erased together.  
0: No segment erase will be started.  
1: Erase of main memory segments is enabled. Erase starts when a dummy  
write to any address in main memory is executed. The MEras bit is  
automatically reset when the erase operation is completed.  
0128h, bit6, Bit WRT must be set for a successful write execution.  
If bit WRT is reset and write access to the flash memory is attempted, an  
access violation occurs and ACVIFG is set.  
SEGWRT 0128h, bit7, Bit SEGWRT may be used to reduce total programming time.  
Refer to MSP430x1xx User’s Guide, literature number SLAU049 for details.  
0: No segment-write acceleration is selected.  
1: Segment-write is used. This bit needs to be reset and set between segment  
borders.  
Table 3. Allowed Combinations of Control Bits Allowed for Flash Memory Access  
FUNCTION PERFORMED  
SEGWRT WRT MEras Erase BUSY  
WAIT  
Lock  
Write word or byte  
0
1
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0 1  
0
0
0 1  
0
0
0
0
0
Write word or byte in same segment, segment write mode  
Erase one segment by writing to any address in the target segment  
Erase all segments (0 to 7) but not the information memory  
(segments A and B)  
0
0
Erase all segments (0 to 7 and A and B) by writing to any address in  
the flash memory module  
0
0
1
1
0
0
0
NOTE: The table shows all valid combinations. Any other combination will result in an access violation.  
flash memory, timing generator, control register FCTL2  
The timing generator (Figure 1) generates all the timing signals necessary for write, erase, and mass erase from  
the selected clock source. One of three different clock sources may be selected by control bits SSEL0 and  
SSEL1 in control register FCTL2. The selected clock source should be divided to meet the frequency  
requirements specified in the recommended operating conditions.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
flash memory, timing generator, control register FCTL2 (continued)  
The flash timing generator is reset with PUC. It is also reset if the emergency exit bit EMEX is set.  
Control register FCTL2 may not be written to if the BUSY bit is set; otherwise, an access violation will occur  
(ACCVIFG=1).  
Read access is possible at any time without restrictions.  
SSEL1  
SSEL0  
Write ’1’ to  
EMEX  
PUC  
FN5.......... FN0  
0
1
2
3
ACLK  
MCLK  
SMCLK  
SMCLK  
Reset  
Flash Timing  
Generator  
f
X
Divider,  
1 .. 64  
BUSY  
WAIT  
Figure 1. Flash Memory Timing Generator Diagram  
15  
8
7
0
FCTL2  
012Ah  
SSEL1 SSEL0  
FN5  
FN4  
FN3  
FN2  
FN1  
FN0  
rw–0  
rw–1  
rw-0  
rw-0  
rw-0  
rw–0  
rw-1  
rw-0  
FCTL2 read:  
FCTL2 write:  
096h  
0A5h  
The control bits are:  
FN0–FN5  
012Ah, bit0–5 These six bits define the division rate of the clock signal. The division  
rate is 1 to 64, according to the digital value of FN5 to FN0 plus one.  
SSEL0, SSEL1  
012Ah, bit6,7 Clock source select  
0: ACLK  
1: MCLK  
2: SMCLK  
3: SMCLK  
The flash timing generator is reset with PUC. It is also reset if the EMEX bit is set.  
flash memory control register FCTL3  
There are no restrictions to modify this control register.  
15  
8
7
0
FCTL3  
012Ch  
ACCV  
IFG  
res.  
res.  
EMEX  
Lock  
WAIT  
KEYV  
BUSY  
r0  
r0  
rw-0  
rw-1  
rw-1  
rw–0  
rw-(0) r(w)-0  
FCTL3 read:  
FCTL3 write:  
096h  
0A5h  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
flash memory control register FCTL3 (continued)  
BUSY  
012Ch, bit0, The BUSY bit shows if an access to the flash memory is allowed (BUSY=0), or  
if an access violation occurs. The BUSY bit is read-only, but a write operation is  
allowed. The BUSY bit should be tested before each write and erase cycle. The  
flash timing-generator hardware immediately sets the BUSY bit after start of a  
write, segment-write, erase, or mass erase operation. If the timing generator has  
completed the operation, the BUSY bit is reset by the hardware.  
No program code can be executed from the busy flash memory during the entire  
program or erase cycle.  
0: Flash memory is not busy.  
1: Flash memory is busy, and remains in busy state if segment write function  
is in wait mode.  
KEYV,  
012Ch, bit1 Key violation  
0: Key 0A5h (high byte) was not violated.  
1: Key 0A5h (high byte) was violated. Violation occurs when a write access to  
registers FCTL1, FCTL2, or FCTL3 is executed and the high byte is not  
equal to 0A5h. If the security key is violated, bit KEYV is set and a PUC is  
performed.  
ACCVIFG, 012Ch, bit2 Access violation interrupt flag  
The access-violation flag is set when any combination of control bits other than  
those shown in Table 3 is attempted, or an instruction is fetched while a  
segment-write operation is active.  
Reading the control registers will not set the ACCVIFG bit.  
NOTE: The respective interrupt-enable bit ACCVIE is located in the interrupt  
enable register IE1 in the special function register. The software can set  
the ACCVIFG bit. If set by software, an NMI is also executed.  
WAIT,  
012CH, bit3 In the segment-write mode, the WAIT bit indicates that data has been written and  
the flash memory is prepared to receive the next data for programming. The  
WAIT bit is read only, but a write to the WAIT bit is allowed.  
0: The segment-write operation has began and programming is in progress.  
1: The segment-write operation is active and data programming is complete.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
flash memory control register FCTL3 (continued)  
LOCK  
012Ch, bit4, The lock bit may be set during any write, segment-erase, or mass-erase request.  
Any active sequence in progress is completed normally. In segment-write mode,  
the SEGWRT bit is reset and the WAIT bit is set after the mode ends. The lock  
bit is controlled by software or hardware. If an access violation occurs and the  
ACCVIFG is set, the LOCK bit is set automatically.  
0: Flash memory may be read, programmed, erased, or mass erased.  
1: Flash memory may be read but not programmed, erased, or mass erased.  
A current program, erase, or mass-erase operation will complete normally.  
The access-violation interrupt flag ACCVIFG is set when data are written to  
the flash memory module while the lock bit is set.  
EMEX,  
012Ch, bit5, Emergency exit. The emergency exit should only be used if the flash memory  
write or erase operation is out of control.  
0: No function.  
1: Stops the active operation immediately, and shuts down all internal parts in  
the flash memory controller. Current consumption immediately drops back  
to the active mode. All bits in control register FCTL1 are reset. Since the  
EMEX bit is automatically reset by hardware, the software always reads  
EMEX as 0.  
flash memory, interrupt and security key violation  
One NMI vector is used for three NMI events: RST/NMI (NMIIFG), oscillator fault (OFIFG), and flash-memory  
access violation (ACCVIFG). The software can determine the source of the interrupt request since all flags  
remain set until they are reset by software. The enable flag(s) should be set simultaneously with one instruction  
before the return-from-interrupt RETI instruction. This ensures that the stack remains under control. A pending  
NMI interrupt request will not increase stack demand unnecessarily.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
ACCV  
ACCVIFG  
ACCVIE  
S
FCTL1.1  
Flash Module  
Flash Module  
IE1.5  
Clear  
Flash Module  
PUC  
RST/NMI  
POR  
PUC  
VCC  
KEYV  
PUC  
POR  
System Reset  
Generator  
NMIFG  
S
NMIRS  
IFG1.4  
Clear  
NMIES TMSEL  
NMI  
WDTQn  
EQU  
PUC  
POR  
PUC  
IE1.4  
NMIIE  
WDTIFG  
S
IRQ  
Clear  
IFG1.0  
POR  
Clear  
PUC  
WDT  
Counter  
OSCFault  
OFIFG  
OFIF  
S
IFG1.1  
IRQA  
TIMSEL  
WDTIE  
IE1.1  
PUC  
Clear  
IE1.0  
Clear  
PUC  
NMI_IRQA  
Watchdog Timer Module  
IRQA: Interrupt Request Accepted  
Figure 2. Block Diagram of NMI Interrupt Sources  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled easily with  
memory manipulation instructions.  
oscillator and system clock  
Three clocks are used in the system—the system (master) clock MCLK, the subsystem (master) clock SMCLK,  
and the auxiliary clock ACLK:  
Main system clock MCLK, used by the CPU and the system  
Subsystem clock SMCLK, used by the peripheral modules  
Auxiliary clock ACLK, originated by LFXT1CLK (crystal frequency) and used by the peripheral modules  
After a POR, the DCOCLK is used by default, the DCOR bit is reset, and the DCO is set to the nominal initial  
frequency. Additionally, if LFXT1CLK fails as the source for MCLK, the DCOCLK is automatically selected to  
ensure fail-safe operation.  
SMCLK can be generated from LFXT1CLK or DCOCLK. ACLK is always generated from LFXT1CLK.  
The crystal oscillator can be defined to operate with watch crystals (32768 Hz) or with higher-frequency ceramic  
resonators or crystals. The crystal or ceramic resonator is connected across two terminals. No external  
components are required for watch-crystal operation. If the high frequency XT1 mode is selected, external  
capacitors from XIN to VSS and XOUT to VSS are required as specified by the crystal manufacturer.  
The LFXT1 oscillator starts after applying VCC. If the OscOff bit is set to 1, the oscillator stops when it is not  
used for MCLK. The clock signals ACLK and SMCLK may be used externally via port pins.  
Differentapplicationrequirementsandsystemconditionsdictatedifferentsystemclockrequirements, including:  
High frequency for quick reaction to system hardware requests or events  
Low frequency to minimize current consumption, EMI, etc.  
Stable peripheral clock for timer applications, such as real-time clock (RTC)  
Start-stop operation to be enabled with minimum delay  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
oscillator and system clock (continued)  
DIVA  
2
LFXT1CLK  
ACLK  
/1, /2, /4, /8  
ACLKGEN  
Auxiliary Clock  
O
Off  
XTS  
SC  
XIN  
SELM  
DIVM  
CPUOff  
LFXT1 OSCILLATOR  
2
2
3
2
0,1  
/1, /2, /4, /8, Off  
MCLKGEN  
MCLK  
XOUT  
Main System Clock  
DCOCLK  
V
V
CC  
CC  
R
SCG0  
DCO  
3
MOD  
sel  
SELS  
DIVS  
2
SCG1  
5
0
Digital Controlled Oscillator (DCO)  
0
DC  
Generator  
+
/1, /2, /4, /8, Off  
SMCLKGEN  
SMCLK  
Modulator (MOD)  
Subsystem Clock  
1
1
P2.5/Rosc  
DCGEN  
DCOR  
DCOMOD  
The DCO-Generator is connected to pin P2.5/Rosc if DCOR control bit is set.  
The port pin P2.5/Rosc is selected if DCOR control bit is reset (initial state).  
P2.5  
Figure 3. Clock Signals  
Two clock sources, LFXT1CLK and DCOCLK, can be used to drive the MSP430 system. The LFXT1CLK is  
generated from the LFXT1 crystal oscillator. The LFXT1 crystal oscillator can operate in three modes—low  
frequency (LF), moderate frequency (XT1), and external input mode. The LFXT1 crystal oscillator may be  
switched off when it is not in use.  
DCOCLK is generated from the DCO. The nominal DCO frequency is defined by the dc generator and can be  
set by one external resistor, or can be set to one of eight values with integrated resistors. Additional adjustments  
and modulations of DCOCLK are possible by software manipulation of registers in the DCO module. DCOCLK  
is stopped automatically when it is not used by the CPU or peripheral modules. The dc generator can be shut  
down with the SCG0 bit to realize additional power savings when DCOCLK is not in use.  
NOTE:  
The system clock generator always starts with the DCOCLK selected for MCLK (CPU clock) to  
ensure proper start of program execution. The software defines the final system clock generation  
through control bit manipulation.  
digital I/O  
There are two eight-bit I/O ports, port P1 and port P2 – implemented (11x1 parts only have six port P2 I/O signals  
available on external pins). Both ports, P1 and P2, have seven control registers to give maximum flexibility of  
digital input/output to the application:  
All individual I/O bits are programmable independently.  
Any combination of input, output, and interrupt conditions is possible.  
Interrupt processing of external events is fully implemented for all eight bits of port P1 and for six bits of  
port P2.  
Read/write access to all registers with all instructions  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
digital I/O (continued)  
The seven registers are:  
Input register  
8 bits at port P1/P2 contains information at the pins  
8 bits at port P1/P2 contains output information  
8 bits at port P1/P2 controls direction  
Output register  
Direction register  
Interrupt edge select  
Interrupt flags  
8 bits at port P1/P2 input signal change necessary for interrupt  
8 bits at port P1/P2 indicates if interrupt(s) are pending  
8 bits at port P1/P2 contains interrupt enable bits  
Interrupt enable  
Selection (Port or Mod.) 8 bits at port P1/P2 determines if pin(s) have port or module function  
All these registers contain eight bits. Two interrupt vectors are implemented: one commonly used for any  
interrupt event on ports P1.0 to P1.7, and one commonly used for any interrupt event on ports P2.0 to P2.7.  
NOTE:  
Six bits of port P2, P2.0 to P2.5, are available on external pins – but all control and data bits for port  
P2 are implemented.  
watchdog timer  
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a  
software problem has occurred. If the selected time interval expires, a system reset is generated. If this  
watchdog function is not needed in an application, the module can work as an interval timer, which generates  
an interrupt after the selected time interval.  
The watchdog timer counter (WDTCNT) is a 16-bit up-counter which is not directly accessible by software. The  
WDTCNT is controlled through the watchdog timer control register (WDTCTL), which is a 16-bit read/write  
register. Writing to WDTCTL is, in both operating modes (watchdog or timer), only possible by using the correct  
password in the high-byte. The low-byte stores data written to the WDTCTL. The high-byte must be the  
password 05Ah. If any value other than 05Ah is written to the high-byte of the WDTCTL, a system reset PUC  
is generated. When the password is read, its value is 069h. This minimizes accidental write operations to the  
WDTCTL register. In addition to the watchdog timer control bits, there are two bits included in the WDTCTL  
register that configure the NMI pin.  
Timer_A (Three capture/compare registers)  
The Timer_A module on 11x1 devices offers one sixteen bit counter and three capture/compare registers. The  
timer clock source can be selected to come from two external sources TACLK (SSEL=0) or INCLK (SSEL=3),  
or from two internal sources, the ACLK (SSEL=1) or SMCLK (SSEL=2). The clock source can be divided by  
one, two, four, or eight. The timer can be fully controlled (in word mode) since it can be halted, read, and written.  
It can be stopped, run continuously, counted up or up/down, using one compare block to determine the period.  
The three capture/compare blocks are configured by the application to run in capture or compare mode.  
The capture mode is primarily used to measure external or internal events using any combination of positive,  
negative, or both edges of the signal. Capture mode can be started and stopped by software. Three different  
external events TA0, TA1, and TA2 can be selected. At capture/compare register CCR2 the ACLK is the capture  
signal if CCI2B is selected. Software capture is chosen if CCISx=2 or CCISx=3 (see Figure 4).  
The compare mode is primarily used to generate timings for the software or application hardware, or to generate  
pulse-width modulated output signals for various purposes like D/A conversion functions or motor control. An  
individual output module is assigned to each of the three capture/compare registers. The output modules can  
run independently of the compare function, or can be triggered in several ways.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Timer_A (3 capture/compare registers) (continued)  
Data  
16-Bit Timer  
32 kHz to 8 MHz  
Timer Clock  
SSEL1 SSEL0  
P1.0  
0
1
2
3
0
15  
TACLK  
16-Bit Timer  
CLK  
Input  
Divider  
Mode  
Control  
ACLK  
Equ0  
SMCLK  
RC  
P2.1  
INCLK  
Set_TAIFG  
Carry/Zero  
ID1  
ID0  
MC1  
MC0  
POR/CLR  
Timer Bus  
Capture  
Capture/Compare Register CCR0  
0
0
15  
CCIS01 CCIS00  
0
OM02 OM01 OM00  
Out 0  
Capture/Compare  
Register CCR0  
P1.1  
P2.2  
CCI0A  
P1.1  
P1.5  
1
2
3
CCI0B  
GND  
Capture  
Mode  
15  
Output Unit 0  
Comparator 0  
V
CC  
EQU0  
CCI0 CCM01 CCM00  
Capture/Compare Register CCR1  
0
0
15  
15  
CCIS11 CCIS10  
0
OM12 OM11 OM10  
Out 1  
Capture  
Capture/Compare  
Register CCR1  
P1.2  
P1.2  
CCI1A  
CCI1B  
GND  
1
2
3
CAOUT  
Capture  
Mode  
P1.6  
P2.3  
Output Unit 1  
Comparator 1  
V
CC  
EQU1  
CCI1 CCM11 CCM10  
Capture/Compare Register CCR2  
0
0
15  
15  
CCIS21 CCIS20  
0
OM22 OM21 OM20  
Out 2  
Capture  
Capture/Compare  
Register CCR2  
P1.3  
P1.3  
CCI2A  
CCI2B  
GND  
1
2
3
ACLK  
Capture  
Mode  
P1.7  
P2.4  
Output Unit 2  
Comparator 2  
V
CC  
EQU2  
CCI2 CCM21 CCM20  
Figure 4. Timer_A, MSP430x11x1 Configuration  
Two interrupt vectors are used by the Timer_A module. One individual vector is assigned to capture/compare  
block CCR0, and one common interrupt vector is implemented for the timer and the other two capture/compare  
blocks. The three interrupt events using the same vector are identified by an individual interrupt vector word.  
The interrupt vector word is used to add an offset to the program counter to continue the interrupt handler  
software at the corresponding program location. This simplifies the interrupt handler and gives each interrupt  
event the same overhead of 5 cycles in the interrupt handler.  
UART  
Serial communication is implemented by using software and one capture/compare block. The hardware  
supports the output of the serial-data stream, bit by bit, with the timing determined by the comparator/timer. The  
data input uses the capture feature. The capture flag finds the start of a character, while the compare feature  
latches the input-data stream, bit by bit. The software/hardware interface connects the mixed-signal controller  
to external devices, systems, or networks.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Comparator_A  
The primary function of the comparator module is to support precision A/D slope conversion applications,  
battery voltage supervision, and observation of external analog signals. The comparator is connected to port  
pins P2.3/CA0 and to P2.4/CA1. It is controlled via twelve control bits in registers CACTL1 and CACTL2.  
0 V  
V
CC  
0
1
CAF  
P2CA0  
CAEX  
CAON  
0
CA0  
0
1
Low Pass Filter  
CCI1B  
P2.3/  
CA0/  
TA1  
1
0
1
0
1
+
_
0
1
CA1  
0
1
CAOUT  
P2.4/  
CA1/  
TA2  
0 V  
Set CAIFG  
Flag  
0 V  
V
0 V  
τ 2.0 µs  
CC  
P2CA1  
0
1
CAON  
0
P2.2/  
CAOUT/TA0  
3
2
1
CAREF  
0
2
1
3
CARSEL  
0.5 x V  
CC  
1
0
0.25 x V  
CC  
V
CAREF  
0 V  
0 V  
Figure 5. Block Diagram of Comparator_A  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Comparator_A (continued)  
The control bits are:  
CAOUT,  
CAF,  
05Ah, bit0,  
05Ah, bit1,  
05Ah, bit2,  
Comparator output  
The comparator output is transparent or fed through a small filter  
CA0,  
0: Pin P2.3/CA0/TA1 is not connected to Comparator_A.  
1: Pin P2.3/CA0/TA1 is connected to Comparator_A.  
CA1,  
05Ah, bit3,  
05Ah, bit4,  
0: Pin P2.4/CA1/TA2 is not connected to Comparator_A.  
1: Pin P2.4/CA1/TA2 is connected to Comparator_A.  
CACTL2.4  
to  
Bits are implemented but do not control any hardware in this device.  
CATCTL2.7 05Ah, bit7,  
CAIFG,  
CAIE,  
059h, bit0,  
059h, bit1,  
059h, bit2,  
Comparator_A interrupt flag  
Comparator_A interrupt enable  
CAIES,  
Comparator_A interrupt edge select bit  
0: The rising edge sets the Comparator_A interrupt flag CAIFG  
1: The falling edge set the Comparator_A interrupt flag CAIFG  
CAON,  
059h, bit3,  
The comparator is switched on.  
CAREF,  
059h, bit4,5, Comparator_A reference  
0: Internal reference is switched off, an external reference can be applied.  
1: 0.25 × VCC reference selected.  
2: 0.50 × VCC reference selected.  
3: A diode reference selected.  
CARSEL,  
CAEX,  
059h, bit6,  
059h, bit7,  
An internal reference V  
signal path CA0 or CA1. The signal V  
source if the value of CAREF control bits is 1, 2, or 3.  
, selected by CAREF bits, can be applied to  
CAREF  
is only driven by a voltage  
CAREF  
The comparator inputs are exchanged, used to measure and compensate  
the offset of the comparator.  
Eight additional bits are implemented into the Comparator_A module and enable the SW to switch off the input  
buffer of port P2. A CMOS input buffer would dissipate supply current when the input is not near VSS or VCC.  
Comparator_A port disable control bits CAPD0 to CAPD7 are initially reset, and the port input buffer is active.  
The port input buffer is disabled if the appropriate control bit is set.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Comparator_A (continued)  
7
0
CACTL1  
059h  
CA  
RSEL  
CA  
REF1  
CA  
REF0  
CAEX  
rw-(0)  
7
CAON  
rw-(0)  
CAIES  
rw-(0)  
CAIE  
CAIFG  
rw-(0)  
0
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
CACTL2  
05Ah  
CACTL CACTL CACTL CACTL  
CA1  
CA0  
CAF  
CAOUT  
r-(0)  
2.7  
2.6  
2.5  
2.4  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
7
0
CAPD  
05Bh  
CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPD0  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
rw-(0)  
NOTE:  
Ensure that the comparator input terminals are connected to signal, power, or ground level.  
Otherwise, floating levels may cause unexpected interrupts and current consumption may be  
increased.  
slope a/d conversion  
The Comparator_A is well suited for use in single or multiple-slope conversions. The internal-reference levels  
may be used to set a reference during timing measurement of charge or discharge operations. They can also  
be used externally to bias analog circuitry.  
Voltage, current, and resistive or capacitive sensor measurements are basic functions. The sensors sense  
physical conditions like temperature, pressure, acceleration, etc.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Timer_A  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
Timer_A interrupt vector  
017Eh  
017Ch  
017Ah  
0178h  
0176h  
0174h  
0172h  
0170h  
016Eh  
016Ch  
016Ah  
0168h  
0166h  
0164h  
0162h  
0160h  
012Eh  
CCR2  
CCR1  
CCR0  
TAR  
CCTL2  
CCTL1  
CCTL0  
TACTL  
TAIV  
Flash Memory  
Watchdog  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Comparator_A  
System Clock  
Port P2  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
CAPD  
CACTL2  
CACTL1  
05Bh  
05Ah  
059h  
Basic clock sys. control2  
Basic clock sys. control1  
DCO clock freq. control  
BCSCTL2 058h  
BCSCTL1 057h  
DCOCTL  
056h  
Port P2 selection  
P2SEL  
P2IE  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
Port P2 input  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P1  
Port P1 selection  
P1SEL  
P1IE  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
Port P1 output  
Port P1 input  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Special Function  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
absolute maximum ratings  
Voltage applied at V  
Voltage applied at V  
to V (MSP430C11x1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
SS  
CC  
CC  
to V (MSP430F11x1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.1 V  
SS  
Voltage applied to any pin (referenced to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V +0.3 V  
SS  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, T (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 150°C  
stg  
Storage temperature, T (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V  
.
SS  
recommended operating conditions  
MIN  
1.8  
1.8  
2.7  
NOM  
MAX UNITS  
MSP430C11x1  
MSP430F11x1  
MSP430F11x1  
3.6  
V
3.6  
Supply voltage during program execution, V  
(see Note 5)  
CC  
Supply voltage during program/erase flash memory, V  
CC  
3.6  
V
V
Supply voltage, V  
0
SS  
Operating free-air temperature range, T  
MSP430x11x1  
Watch crystal  
Ceramic resonator  
Crystal  
–40  
85  
°C  
Hz  
A
LF mode selected, XTS=0  
32768  
LFXT1 crystal frequency,  
(see Note 6)  
450  
8000  
8000  
f
XT1 mode selected, XTS=1  
kHz  
(LFXT1)  
1000  
V
= 1.8 V,  
CC  
MSP430x11x1  
dc  
dc  
2
5
V
= 2.2 V,  
CC  
MSP430x11x1  
Processor frequency f  
(MCLK signal)  
MHz  
(system)  
V
= 3.6 V,  
CC  
dc  
8
476  
3
MSP430x11x1  
Flash timing generator frequency, f  
(FTG)  
MSP430F11x1  
257  
kHz  
ms  
V
= 2.7 V/3.6 V  
CC  
MSP430F11x1  
Cumulative program time, segment write, t  
(CPT)  
(see Note 7)  
Low-level input voltage (TCK, TMS, TDI, RST/NMI), V  
(excluding XIN, XOUT)  
IL  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
V
V
SS  
+0.6  
V
V
CC  
CC  
SS  
High-level input voltage (TCK, TMS, TDI, RST/NMI), V  
(excluding XIN, XOUT)  
IH  
V
0.8V  
V
CC  
CC  
V
V
V
0.2×V  
IL(XIN, XOUT)  
SS  
CC  
Input levels at XIN, XOUT  
V
CC  
= 2.2 V/3 V  
V
0.8×V  
V
CC  
IH(XIN, XOUT)  
CC  
NOTES: 5. The LFXT1 oscillator in LF-mode requires a resistor of 5.1 Mfrom XOUT to VSS when VCC <2.5 V.  
The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 4 MHz at VCC 2.2 V.  
The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 8 MHz at VCC 2.8 V.  
6. The LFXT1 oscillator in LF-mode requires a watch crystal.  
The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal.  
7. The cumulative program time must not be exceeded during a segment-write operation.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
recommended operating conditions (continued)  
MSP430x11x1 Devices  
9
8
7
6
5
4
3
2
8 MHz at  
3.6 V  
5 MHz at  
2.2 V  
2 MHz at  
1.8 V  
1
0
0
1
2
3
4
V
CC  
– Supply Voltage – V  
NOTE: Minimum processor frequency is defined by system clock. Flash  
program or erase operations require a minimum V of 2.7 V.  
CC  
Figure 6. Frequency vs Supply Voltage  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
supply current (into V ) excluding external current (f  
= 1 MHz)  
CC  
(system)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
T
= –40°C +85°C,  
V
V
= 2.2 V  
= 3 V  
160  
240  
200  
300  
A
CC  
f
f
= f  
= 1 MHz,  
µA  
(MCLK) (SMCLK)  
= 32,768 Hz  
(ACLK)  
CC  
C11x1  
F11x1  
V
V
= 2.2 V  
= 3 V  
1.3  
2.5  
2
T
= –40°C +85°C,  
CC  
A
µA  
µA  
µA  
f
= f  
= f  
= 4096 Hz  
= 4096 Hz  
(MCLK) (SMCLK) (ACLK)  
3.2  
CC  
I
Active mode  
(AM)  
T
= –40°C +85°C,  
V
V
= 2.2 V  
= 3 V  
200  
300  
250  
350  
A
CC  
f
= f  
= 1 MHz,  
MCLK (SMCLK)  
= 32,768 Hz  
CC  
f(ACLK)  
V
V
= 2.2 V  
= 3 V  
1.6  
3
3
T
= –40°C +85°C,  
CC  
A
f
= f  
= f  
(MCLK) (SMCLK) (ACLK)  
4.3  
CC  
T
= –40°C +85°C,  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
30  
51  
32  
55  
11  
17  
1.2  
2
40  
60  
45  
70  
14  
22  
1.7  
2.7  
A
f
= 0, f  
= 1 MHz,  
C11x1  
F11x1  
(MCLK)  
(SMCLK)  
= 32,768 Hz  
f(ACLK)  
Low-power mode,  
(LPM0)  
I
µA  
(CPUOff)  
T
= –40°C +85°C,  
= 2.2 V  
= 3 V  
A
f
= 0, f  
= 32,768 Hz  
= 1 MHz,  
(MCLK)  
(SMCLK)  
f(ACLK)  
T
= –40°C +85°C,  
= 2.2 V  
= 3 V  
A
f
= f  
= 0 MHz,  
I
I
Low-power mode, (LPM2)  
µA  
(MCLK) (SMCLK)  
(LPM2)  
= 32,768 Hz, SCG0 = 0  
f(ACLK)  
T
= –40°C +85°C,  
= 2.2 V  
= 3 V  
A
Low-power mode, (LPM3)  
(C11x1)  
f
= f = 0 MHz,  
= 32,768 Hz, SCG0 = 1  
µA  
(MCLK) (SMCLK)  
(LPM3)  
f(ACLK)  
T
= –40°C  
0.8  
0.7  
1.6  
1.8  
1.6  
2.3  
0.1  
0.1  
0.4  
1.2  
1
A
T
A
= 25°C  
= 85°C  
= –40°C  
= 25°C  
= 85°C  
= –40°C  
= 25°C  
= 85°C  
V
= 2.2 V  
µA  
µA  
µA  
µA  
CC  
CC  
T
A
2.3  
2.2  
1.9  
3.4  
0.5  
0.5  
0.8  
Low-power mode, (LPM3)  
(F11x1)  
I
(LPM3)  
T
A
T
A
V
= 3 V  
T
A
T
A
f
f
= 0 MHz,  
= 0 MHz,  
= 0 Hz, SCG0 = 1  
(MCLK)  
(SMCLK)  
Low-power mode, (LPM4)  
(C11x1)  
I
I
T
A
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
(LPM4)  
CC  
CC  
f(ACLK)  
T
A
T
A
= –40°C  
= 25°C  
= 85°C  
0.1  
0.1  
0.8  
0.5  
0.5  
1.9  
Low-power mode, (LPM4)  
(F11x1)  
T
A
(LPM4)  
T
A
NOTE: All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
current consumption of active mode versus system frequency, C version, F version  
= I × f [MHz]  
I
AM  
AM[1 MHz]  
system  
current consumption of active mode versus supply voltage, C version  
= I + 105 µA/V × (V –3 V)  
I
AM  
AM[3 V]  
CC  
current consumption of active mode versus supply voltage, F version  
= I + 120 µA/V × (V –3 V)  
I
AM  
AM[3 V]  
CC  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Schmitt-trigger inputs Port P1 to Port P2; P1.0 to P1.7, P2.0 to P2.5  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
.90  
0.3  
0.5  
TYP  
MAX  
1.3  
1.8  
0.9  
1.2  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT–  
V
hys  
Positive-going input threshold voltage  
V
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
= 2.2 V  
= 3 V  
Input voltage hysteresis, (V  
– V  
)
IT–  
IT+  
1.4  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs Port 1 to P2; P1.0 to P1.7, P2.0 to P2.5  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
I
I
I
I
= –1.5 mA  
= –6 mA  
= –1.5 mA  
= –6 mA  
= –1 mA  
= –3.4 mA  
= –1 mA  
= –3.4 mA  
= 1.5 mA  
= 6 mA  
See Note 8  
See Note 9  
See Note 8  
See Note 9  
See Note 10  
See Note 10  
See Note 10  
See Note 10  
See Note 8  
See Note 9  
See Note 8  
See Note 9  
V
–0.25  
V
V
V
V
V
V
V
V
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
High-level output voltage  
Port 1 and Port 2 (C11x1)  
Port 1 (F11x1)  
V
–0.6  
CC  
–0.25  
V
OH  
V
OH  
V
OL  
V
V
CC  
V
–0.6  
CC  
–0.25  
V
CC  
= 2.2 V  
= 3 V  
V
–0.6  
CC  
–0.25  
High-level output voltage  
Port 2 (F11x1)  
V
V
V
CC  
V
–0.6  
CC  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
= 2.2 V  
= 3 V  
Low-level output voltage  
Port 1 and Port 2 (C11x1,  
F11x1)  
V
V
V
V
+0.6  
SS  
= 1.5 mA  
= 6 mA  
V
SS  
+0.25  
V
+0.6  
SS  
NOTES: 8. The maximum total current, I  
drop specified.  
and I  
, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage  
OHmax  
OLmax  
9. Themaximum total current, I  
drop specified.  
and I  
, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
OHmax  
OLmax  
10. One output loaded at a time.  
leakage current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Port P1: P1.x, 0 ×7  
(see Notes 11, 12)  
V
CC  
= 2.2 V/3 V,  
±50  
I
High-impedance leakage current  
nA  
lkg(Px.x)  
Port P2: P2.x, 0 ×5  
(see Notes 11, 12)  
V
CC  
= 2.2 V/3 V,  
±50  
NOTES: 11. The leakage current is measured with V  
SS  
or V  
applied to the corresponding pin(s), unless otherwise noted.  
CC  
12. The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional  
pullup or pulldown resistor.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
optional resistors, individually programmable with ROM code (see Note 13)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.5  
3.8  
7.6  
11.5  
23  
TYP  
5
MAX  
10  
UNIT  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
R
R
R
R
R
R
R
R
R
R
(opt1)  
(opt2)  
(opt3)  
(opt4)  
(opt5)  
(opt6)  
(opt7)  
(opt8)  
(opt9)  
(opt10)  
7.7  
15  
15  
31  
23  
46  
45  
90  
Resistors, individually programmable with ROM code, all port pins,  
values applicable for pulldown and pullup  
V
CC  
= 2.2 V/3 V  
46  
90  
180  
280  
460  
640  
830  
70  
140  
230  
320  
420  
115  
160  
205  
NOTE 13: Optional resistors R  
for pulldown or pullup are not available in standard flash memory device MSP430F11x1.  
optx  
inputs Px.x, TAx  
PARAMETER  
TEST CONDITIONS  
Port P1, P2: P1.x to P2.x,  
External trigger signal for the interrupt flag,  
(see Note 14)  
VCC  
2.2 V/3 V  
2.2 V  
MIN  
1.5  
62  
TYP  
MAX  
UNIT  
cycle  
t
External interrupt timing  
(int)  
ns  
cycle  
ns  
3 V  
50  
2.2 V/3 V  
2.2 V  
1.5  
62  
t
Timer_A, capture timing  
TA0, TA1, TA2. (see Note 15)  
(cap)  
3 V  
50  
NOTES: 14. The external signal sets the interrupt flag every time the minimum t cycle and time parameters are met. It may be set even with  
int  
triggersignalsshorterthant .Boththecycleandtimingspecificationsmustbemettoensuretheflagisset.t ismeasuredinMCLK  
int  
int  
cycles.  
15. The external capture signal triggers the capture event every time when the minimum t  
cycles and time parameters are met. A  
cap  
capturemay be triggered with capture signals even shorter than t  
. Both the cycle and timing specifications must be met to ensure  
a correct capture of the 16-bit timer value and to ensure the flag is set.  
cap  
internal signals TAx, SMCLK at Timer_A  
PARAMETER  
Input frequency  
Timer_A clock frequency  
TEST CONDITIONS  
Internal TA0, TA1, TA2, t = t  
L
VCC  
2.2 V  
MIN  
TYP  
MAX  
8
UNIT  
f
f
MHz  
(IN)  
H
3 V  
10  
Internally, SMCLK signal applied  
2.2 V/3 V  
dc  
f
System  
(TAint)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs P1.x, P2.x, TAx  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
f
f
P2.0/ACLK,  
C
= 20 pF  
2.2 V/3 V  
f
f
(P20)  
L
L
System  
Output frequency  
MHz  
TA0, TA1, TA2,  
Internal clock source, SMCLK signal applied (see Note 16)  
C
= 20 pF  
2.2 V/3 V  
2.2 V/3 V  
dc  
(TAx)  
System  
f
= f  
= f  
40%  
35%  
60%  
65%  
SMCLK LFXT1 XT1  
f
= f  
= f  
= f  
SMCLK  
SMCLK  
LFXT1 LF  
P1.4/SMCLK,  
= 20 pF  
50%–  
15 ns  
50%+  
15 ns  
C
f
f
50%  
50%  
L
LFXT1/n  
DCOCLK  
50%–  
15 ns  
50%+  
15 ns  
t
t
Duty cycle of O/P  
frequency  
(Xdc)  
= f  
2.2 V/3 V  
2.2 V/3 V  
SMCLK  
f
= f  
= f  
40%  
30%  
60%  
70%  
P20 LFXT1 XT1  
P2.0/ACLK,  
= 20 pF  
f
= f  
= f  
= f  
P20  
LFXT1 LF  
C
L
f
50%  
0
P20  
LFXT1/n  
TA0, TA1, TA2,  
C
= 20 pF, Duty cycle = 50% 2.2 V/3 V  
±50  
ns  
(TAdc)  
L
NOTE 16: The limits of the system clock MCLK has to be met. MCLK and SMCLK can have different frequencies.  
Comparator_A (see Note 17)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V
V
= 2.2 V  
= 3 V  
25  
45  
40  
µA  
60  
CC  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
CC  
CAON=1, CARSEL=0,  
CAREF=1/2/3, No load at  
P2.3/CA0/TA1 and P2.4/CA1/TA2  
V
= 2.2 V  
= 3 V  
30  
45  
50  
µA  
71  
CC  
CC  
(Refladder/  
RefDiode)  
V
Common-mode input  
voltage  
V
CAON =1  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
0
V –1  
CC  
V
(IC)  
CC  
CC  
PCA0=1, CARSEL=1, CAREF=1,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2, See Figure 5  
Voltage @ 0.25 V  
CC  
node  
V
(Ref025)  
V
0.23  
0.24  
0.48  
0.25  
0.5  
See Figure 5  
V
CC  
PCA0=1, CARSEL=1, CAREF=2,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2, See Figure 5  
Voltage @ 0.5 V  
node  
V
(Ref050)  
See Figure 5  
CC  
V
CC  
= 2.2 V/3 V  
0.47  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
V
V
= 2.2 V  
= 3 V  
430  
450  
550  
565  
645  
660  
CC  
V
mV  
(RefVT)  
CC  
V
V
Offset voltage  
See Note 18  
CAON=1  
V
V
V
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
–30  
0
30  
1.4  
300  
200  
3.4  
2.6  
mV  
mV  
(offset)  
CC  
CC  
CC  
CC  
CC  
CC  
Input hysteresis  
0.7  
210  
150  
1.9  
hys  
160  
90  
T
= 25°C, Overdrive 10 mV, With-  
A
ns  
out filter:  
CAF=0  
t
(response LH)  
(response HL)  
= 2.2 V  
= 3 V  
1.6  
1.1  
T
filter:  
= 25°C, Overdrive 10 mV, With  
A
µs  
CAF=1  
1.5  
T
A
= 25°C,  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
160  
90  
210  
150  
300  
200  
Overdrive 10 mV, without filter:  
CAF=0  
ns  
t
V
V
= 2.2 V  
= 3 V  
1.6  
1.1  
1.9  
1.5  
3.4  
2.6  
T
= 25°C,  
CC  
A
µs  
Overdrive 10 mV, with filter: CAF=1  
CC  
NOTES: 17. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
18. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
700  
Mean –6 Sigma  
650  
600  
550  
500  
450  
Mean –4 Sigma  
Mean  
Mean +4 Sigma  
Mean +6 Sigma  
–45  
–25  
–5  
15  
35  
55  
75  
95  
Temperature [°C]  
Figure 7. V  
vs Temperature, V  
= 3 V, C1121  
(RefVT)  
CC  
700  
650  
600  
550  
500  
450  
Mean –6 Sigma  
Mean –4 Sigma  
Mean  
Mean +4 Sigma  
Mean +6 Sigma  
–45  
–25  
–5  
15  
35  
55  
75  
95  
Temperature [°C]  
Figure 8. V  
vs Temperature, V  
= 2.2 V, C1121  
(RefVT)  
CC  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V–  
CAOUT  
Set CAIFG  
Flag  
τ 2.0 µs  
Figure 9. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V–  
400 mV  
V+  
t
(response)  
Figure 10. Overdrive Definition  
PUC/POR  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
1.8  
UNIT  
t
150  
µs  
(POR_delay)  
T
= –40°C  
= 25°C  
= 85°C  
1.4  
1.1  
0.8  
0
V
V
A
V
POR  
T
A
1.5  
(POR)  
V
CC  
= 2.2 V/3 V  
T
A
1.2  
V
V
(min)  
0.4  
V
t
PUC/POR  
Reset is accepted internally  
2
µs  
(reset)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
V
VCC  
V
(POR)  
No POR  
POR  
POR  
V
(min)  
t
Figure 11. Power-On Reset (POR) vs Supply Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.4  
1.5  
Max  
1.2  
0.8  
Min  
1.1  
25°C  
–40  
–20  
0
20  
40  
60  
80  
Temperature [°C]  
Figure 12. V  
vs Temperature  
(POR)  
crystal oscillator,LFXT1  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
XTS=0; LF mode selected.  
= 2.2 V / 3 V  
12  
V
CC  
XTS=1; XT1 mode selected.  
= 2.2 V / 3 V (Note 19)  
C
C
Input capacitance  
pF  
(XIN)  
2
12  
2
V
CC  
XTS=0; LF mode selected.  
= 2.2 V / 3 V  
V
CC  
XTS=1; XT1 mode selected.  
= 2.2 V / 3 V (Note 19)  
Output capacitance  
pF  
(XOUT)  
V
CC  
NOTE 19: Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
RAM  
PARAMETER  
MIN NOM  
MAX  
UNIT  
V
CPU halted (see Note 20)  
1.6  
V
(RAMh)  
NOTE 20: This parameter defines the minimum supply voltage V  
when the data in the program memory RAM remains unchanged. No program  
CC  
execution should happen during this supply voltage condition.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
MIN  
0.08  
0.08  
0.14  
0.14  
0.22  
0.22  
0.37  
0.37  
0.61  
0.61  
TYP  
0.12  
0.13  
0.19  
0.18  
0.30  
0.28  
0.49  
0.47  
0.77  
0.75  
MAX  
0.15  
0.16  
0.23  
0.22  
0.36  
0.34  
0.59  
0.56  
0.93  
0.9  
UNIT  
V
V
V
V
V
V
V
V
V
V
= 2.2 V  
= 3 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
f
f
f
f
f
f
f
f
f
f
R
R
R
R
R
R
R
R
R
R
= 0, DCO = 3, MOD = 0, DCOR = 0,  
= 1, DCO = 3, MOD = 0, DCOR = 0,  
= 2, DCO = 3, MOD = 0, DCOR = 0,  
= 3, DCO = 3, MOD = 0, DCOR = 0,  
= 4, DCO = 3, MOD = 0, DCOR = 0,  
= 5, DCO = 3, MOD = 0, DCOR = 0,  
= 6, DCO = 3, MOD = 0, DCOR = 0,  
= 7, DCO = 3, MOD = 0, DCOR = 0,  
= 7, DCO = 7, MOD = 0, DCOR = 0,  
= 4, DCO = 7, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
MHz  
(DCO03)  
(DCO13)  
(DCO23)  
(DCO33)  
(DCO43)  
(DCO53)  
(DCO63)  
(DCO73)  
(DCO77)  
(DCO47)  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
= 2.2 V  
= 3 V  
T
A
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ratio  
= 2.2 V  
= 3 V  
T
A
= 2.2 V  
= 3 V  
T
A
= 2.2 V  
= 3 V  
T
A
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
1
1
1.2  
1.3  
1.9  
2
1.5  
1.5  
T
A
= 2.2 V  
= 3 V  
1.6  
1.69  
2.4  
2.7  
4
2.2  
T
A
2.29  
3.4  
= 2.2 V  
= 3 V  
2.9  
3.2  
4.5  
4.9  
T
A
3.65  
4.9  
= 2.2 V  
= 3 V  
T
A
4.4  
5.4  
F
F
F
DCO40  
x1.7  
DCO40  
x2.1  
DCO40  
x2.5  
T
A
V
CC  
= 2.2 V/3 V  
S
S
S
S
= f  
/f  
Rsel+1 Rsel  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
1.35  
1.07  
1.65  
1.12  
2
1.16  
(Rsel)  
R
= f /f  
(DCO)  
DCO DCO+1 DCO  
–0.31  
–0.33  
–0.36  
–0.38  
–0.40  
–0.43  
Temperature drift, R  
(see Note 21)  
= 4, DCO = 3, MOD = 0  
sel  
D
D
%/°C  
t
= 3 V  
Drift with V  
CC  
(see Note 21)  
variation, R = 4, DCO = 3, MOD = 0  
sel  
V
CC  
= 2.2 V/3 V  
0
5
10  
%/V  
V
NOTE 21: These parameters are not production tested.  
Max  
f
f
(DCOx7)  
(DCOx0)  
Min  
Max  
Min  
0
1
2
3
4
5
6
7
2.2 V  
3 V  
V
CC  
DCO Steps  
Figure 13. DCO Characteristics  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
principle characteristics of the DCO  
Individual devices have a minimum and maximum operation frequency. The specified parameters for  
f
to f  
are valid for all devices.  
DCOx0  
DCOx7  
The DCO control bits DCO0, DCO1 and DCO2 have a step size as defined in parameter S  
.
DCO  
ThemodulationcontrolbitsMOD0toMOD4selecthowoftenf  
isusedwithintheperiodof32DCOCLK  
MOD/32  
DCO+1  
cycles. f  
is used for the remaining cycles. The frequency is an average = f  
× (2  
).  
DCO  
DCO  
The ranges selected by R  
to R  
, R  
to R  
, and R  
to R  
are overlapping.  
Sel7  
Sel4  
Sel5 Sel5  
Sel6  
Sel6  
wake-up from lower power modes (LPMx)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
TYP  
100  
100  
MAX  
UNIT  
t
t
V
V
(LPM0)  
CC  
ns  
= 2.2 V/3 V  
(LPM2)  
CC  
f
f
f
= 1 MHz,  
= 2 MHz,  
= 3 MHz,  
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V/3 V  
6
6
6
(MCLK)  
(MCLK)  
(MCLK)  
CC  
CC  
CC  
t
t
µs  
(LPM3)  
Delay time (see Note 22)  
f
f
f
= 1 MHz,  
= 2 MHz,  
= 3 MHz,  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V/3 V  
6
6
6
(MCLK)  
(MCLK)  
(MCLK)  
µs  
(LPM4)  
NOTE 22: Parameter applicable only if DCOCLK is used for MCLK.  
JTAG/programming  
PARAMETER  
TEST CONDITIONS  
TCK frequency, JTAG/test (see Note 25)  
Fuse blow voltage, C versions (see Notes 23 and 24)  
MIN  
dc  
TYP  
MAX  
5
UNIT  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
f
MHz  
(TCK)  
dc  
10  
V
= 2.2 V/3 V  
3.5  
3.9  
100  
1
V
(FB)  
(FB)  
(FB)  
I
t
Supply current on TDI during fuse blow (see Note 24) (C11x1)  
Time to blow the fuse (see Note 24) (C11x1)  
mA  
ms  
V
= 2.7 V/3.6 V,  
CC  
I
Current during program cycle (see Note 26)  
3
3
5
5
mA  
mA  
(DD-PGM)  
MSP430F11x1  
V
CC  
= 2.7 V/3.6 V,  
I
Current during erase cycle (see Note 26)  
Write/erase cycles  
(DD-ERASE)  
MSP430F11x1  
MSP430F11x1  
MSP430F11x1  
4
5
10  
10  
t
(retention)  
Data retention T = 25°C  
100  
Year  
J
NOTES: 23. The power source to blow the fuse is applied to TDI pin.  
24. Once the JTAG fuse is blown, no further access to the MSP430 JTAG/test feature is possible. The JTAG block is switched to bypass  
mode.  
25.  
f
may be restricted to meet the timing requirements of the module selected.  
(TCK)  
26. Duration of the program/erase cycle is determined by f  
applied to the flash timing controller. It can be calculated as follows:  
(FTG)  
t
t
t
t
t
= 35 x 1/f  
(FTG)  
(word write)  
(segment write, byte 0)  
(segment write, byte 1 – 63)  
(mass erase)  
(page erase)  
= 30 × 1/f  
(FTG)  
= 20 × 1/f  
(FTG)  
(FTG)  
= 5297 x 1/f  
= 4819 x 1/f  
(FTG)  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
APPLICATION INFORMATION  
input/output schematic  
Port P1, P1.0 to P1.3, input/output with Schmitt-trigger  
V
CC  
P1SEL.x  
0
(See Note 27)  
P1DIR.x  
1
0
Direction Control  
From Module  
(See Note 28)  
Pad Logic  
P1.0 – P1.3  
P1OUT.x  
1
Module X OUT  
(See Note 28)  
(See Note 27)  
P1IN.x  
GND  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
Interrupt  
Edge  
Select  
EN  
Q
P1IFG.x  
Set  
Interrupt  
Flag  
P1IES.x  
P1SEL.x  
NOTE: x = Bit/identifier, 0 to 3 for port P1  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
VSS  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P1Sel.0  
P1Sel.1  
P1Sel.2  
P1Sel.3  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1OUT.0  
P1OUT.1  
P1OUT.2  
P1OUT.3  
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
TACLK  
P1IE.0  
P1IE.1  
P1IE.2  
P1IE.3  
P1IFG.0  
P1IFG.1  
P1IFG.2  
P1IFG.3  
P1IES.0  
P1IES.1  
P1IES.2  
P1IES.3  
Out0 signal  
Out1 signal  
Out2 signal  
CCI0A  
CCI1A  
CCI2A  
Signal from or to Timer_A  
NOTES: 27. Optional selection of pullup or pulldown resistors with ROM (masked) versions.  
28. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
APPLICATION INFORMATION  
Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features  
V
CC  
See Note 27  
P1SEL.x  
P1DIR.x  
0
1
Direction Control  
From Module  
See Note 28  
0
1
Pad Logic  
P1OUT.x  
P1.4–P1.7  
Module X OUT  
See Note 28  
See Note 27  
GND  
TST  
Bus Keeper  
P1IN.x  
EN  
D
Module X IN  
TEST  
TST  
Fuse  
P1IRQ.x  
P1IE.x  
P1IFG.x  
Interrupt  
Edge  
Select  
60 k  
Typical  
EN  
Set  
Q
GND  
Fuse  
Blow  
Interrupt  
Flag  
Control By JTAG  
P1IES.x  
NOTE: Fuse not implemented  
in F11x1  
Control  
P1SEL.x  
P1.x  
TDO  
Controlled By JTAG  
P1.7/TDI/TDO  
P1.x  
Controlled by JTAG  
TDI  
TST  
TST  
P1.6/TDI  
P1.x  
NOTE: The test pin should be protected from potential EMI  
and ESD voltage spikes. This may require a smaller  
external pulldown resistor in some applications.  
TMS  
TCK  
P1.5/TMS  
P1.x  
x = Bit identifier, 4 to 7 for port P1  
TST  
During programming activity and during blowing  
the fuse, the pin TDO/TDI is used to apply the test  
input for JTAG circuitry.  
P1.4/TCK  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
SMCLK  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P1Sel.4  
P1Sel.5  
P1Sel.6  
P1Sel.7  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1OUT.4  
P1OUT.5  
P1OUT.6  
P1OUT.7  
P1IN.4  
P1IN.5  
P1IN.6  
P1IN.7  
unused  
unused  
unused  
unused  
P1IE.4  
P1IE.5  
P1IE.6  
P1IE.7  
P1IFG.4  
P1IFG.5  
P1IFG.6  
P1IFG.7  
P1IES.4  
P1IES.5  
P1IES.6  
P1IES.7  
Out0 signal  
Out1 signal  
Out2 signal  
Signal from or to Timer_A  
NOTES: 27. Optional selection of pullup or pulldown resistors with ROM (masked) versions.  
28. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
APPLICATION INFORMATION  
Port P2, P2.0 to P2.2, input/output with Schmitt-trigger  
P2SEL.x  
P2DIR.x  
V
CC  
0
1
0: Input  
See Note 27  
Direction Control  
From Module  
1: Output  
See Note 28  
Pad Logic  
0
1
P2.0 – P2.2  
P2OUT.x  
Module X OUT  
See Note 28  
See Note 27  
GND  
Bus Keeper  
P2IN.x  
EN  
D
Module X IN  
CAPD.X  
P2IRQ.x  
P2IE.x  
Interrupt  
Edge  
Select  
EN  
Q
P2IFG.x  
Set  
Interrupt  
Flag  
NOTE: x = Bit Identifier, 0 to 2 for port P2  
Direction  
P2IES.x  
P2SEL.x  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
unused  
PnIE.x  
PnIFG.x  
PnIES.x  
P2Sel.0  
P2Sel.1  
P2Sel.2  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2OUT.0  
P2OUT.1  
P2OUT.2  
ACLK  
VSS  
P2IN.0  
P2IN.1  
P2IN.2  
P2IE.0  
P2IE.1  
P2IE.2  
P2IFG.0  
P2IFG.1  
P2IFG.2  
P1IES.0  
P1IES.1  
P1IES.2  
INCLK  
CCI0B  
CAOUT  
Signal from or to Timer_A  
NOTES: 27. Optional selection of pullup or pulldown resistors with ROM (masked) versions.  
28. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
APPLICATION INFORMATION  
Port P2, P2.3 to P2.4, input/output with Schmitt-trigger  
P2SEL.3  
V
CC  
0
P2DIR.3  
0: Input  
1: Output  
Pad Logic  
See Note 27  
See Note 28  
1
Direction Control  
From Module  
0
1
P2.3  
P2OUT.3  
Module X  
OUT  
See Note 28  
See Note 27  
GND  
P2IN.3  
Bus Keeper  
EN  
D
Module X IN  
P2IRQ.3  
P2IE.3  
Interrupt  
Edge  
Select  
EN  
Set  
Q
CAPD.3  
P2IFG.3  
Comparator_A  
CAREF P2CA CAEX  
Interrupt  
Flag  
P2IES.3 P2SEL.3  
CAF  
+
_
CCI1B  
0 V  
P2SEL.4  
P2IES.4  
Interrupt  
Flag  
CAREF  
Reference Block  
CAPD.4  
Interrupt  
Edge  
Select  
Set  
Q
P2IFG.4  
EN  
P2IRQ.4  
Module X IN  
P2IE.4  
D
EN  
Bus Keeper  
V
P2IN.4  
CC  
See Note 27  
See Note 28  
Module X OUT  
P2OUT.4  
1
0
P2.4  
Pad Logic  
See Note 28  
See Note 27  
Direction Control  
From Module  
1: Output  
0: Input  
1
0
P2DIR.4  
P2SEL.4  
GND  
APPLICATION INFORMATION  
PnSel.x PnDIR.x  
Direction  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
control from module  
P2Sel.3 P2DIR.3  
P2Sel.4 P2DIR.4  
Signal from Timer_A  
P2DIR.3  
P2OUT.3  
P2OUT.4  
Out1 signal  
P2IN.3  
P2IN.4  
unused  
unused  
P2IE.3 P2IFG.3  
P2IE.4 P2IFG.4  
P1IES.3  
P1IES.4  
P2DIR.4  
Out2 signal  
NOTES: 27. Optional selection of pullup or pulldown resistors with ROM (masked) versions.  
28. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
Port P2, P2.5, input/output with Schmitt-trigger and R  
function for the Basic Clock module  
OSC  
V
CC  
P2SEL.5  
0: Input  
Pad Logic  
0
1: Output  
P2DIR.5  
See Note 27  
1
Direction Control  
From Module  
See Note 28  
0
1
P2.5  
P2OUT.5  
Module X OUT  
See Note 28  
See Note 27  
GND  
Bus Keeper  
P2IN.5  
EN  
D
Module X IN  
P2IRQ.5  
Internal to  
Basic Clock  
Module  
P2IE.5  
Interrupt  
Edge  
Select  
1
0
V
CC  
EN  
Q
P2IFG.5  
Set  
Interrupt  
Flag  
P2IES.5  
DC  
Generator  
DCOR  
P2SEL.5  
CAPD.5  
NOTE: DCOR: Control bit from Basic Clock Module if it is set, P2.5 Is disconnected from P2.5 pad  
Direction  
PnSel.x  
P2Sel.5  
PnDIR.x  
P2DIR.5  
control from  
module  
PnOUT.x  
P2OUT.5  
Module X OUT  
VSS  
PnIN.x  
P2IN.5  
Module X IN  
unused  
PnIE.x  
P2IE.5  
PnIFG.x  
P2IFG.5  
PnIES.x  
P2IES.5  
P2DIR.5  
NOTES: 27. Optional selection of pullup or pulldown resistors with ROM (masked) versions.  
28. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
APPLICATION INFORMATION  
Port P2, unbonded bits P2.6 and P2.7  
P2SEL.x  
P2DIR.x  
0: Input  
1: Output  
0
1
Direction Control  
From Module  
0
1
P2OUT.x  
Module X OUT  
P2IN.x  
Node Is Reset With PUC  
Bus Keeper  
EN  
Module X IN  
D
P2IRQ.x  
P2IE.x  
PUC  
Interrupt  
Edge  
Select  
EN  
Set  
Q
P2IFG.x  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins  
Direction  
P2Sel.x  
P2DIR.x  
control from  
module  
P2OUT.x  
Module X OUT  
P2IN.x  
Module X IN  
P2IE.x  
P2IFG.x  
P2IES.x  
P2Sel.6  
P2Sel.7  
P2DIR.6  
P2DIR.7  
P2DIR.6  
P2DIR.7  
P2OUT.6  
P2OUT.7  
VSS  
VSS  
P2IN.6  
P2IN.7  
unused  
unused  
P2IE.6  
P2IE.7  
P2IFG.6  
P2IFG.7  
P2IES.6  
P2IES.7  
NOTE: A good use of the unbonded bits 6 and 7 of port P2 is to use the interrupt flags. The interrupt flags can not be influenced from any signal  
other than from software. They work then as a soft interrupt.  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of  
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally  
activating the fuse check mode and increasing overall system power consumption.  
When the TEST pin is taken back low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
0.610  
DIM  
0.410  
0.510  
A MAX  
(10,41) (12,95) (15,49)  
0.400  
0.500  
0.600  
A MIN  
(10,16) (12,70) (15,24)  
4040000/D 02/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MSP430x11x1  
MIXED SIGNAL MICROCONTROLLER  
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Texas Instruments Calculator TI 10 User Manual
Texas Instruments Network Card DEM PCM2912A EVM User Manual
Thermador Ventilation Hood VCI230DS User Manual
Toshiba DVD Player SD 185 User Manual
Tyan Computer Computer Hardware Trinity 371 Motherboard User Manual
Tyco Electronics Network Card PL0349 User Manual
UNICOM Electric Switch GST 2402 User Manual
Uniden Video Game Headset XDECT R055 User Manual
Vanguard Heating Indoor Fireplace VMH26TPA User Manual
Vixen Telescope R130S User Manual