GE Power Screwdriver EPM 6000 User Manual

GE Consumer & Industrial  
Multilin  
EPM 6000  
Instruction Manual  
Software Revision: 4.5  
Manual P/N: 1601-0215-A4  
Manual Order Code: GEK-106558C  
Copyright © 2007 GE Multilin  
T
E
R
S
I
ED  
G
E
R
GE Multilin  
ISO9001:2000  
G
215 Anderson Avenue, Markham, Ontario  
Canada L6E 1B3  
N
E
I
M
L
I
U
T
L
GE Multilin's Quality  
Management System is  
registered to ISO9001:2000  
Tel: (905) 294-6222 Fax: (905) 201-2098  
Internet: http://www.GEmultilin.com  
QMI # 005094  
LISTED  
*1601-0215-A4*  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
1: OVERVIEW  
INTRODUCTION ................................................................................................................................ 1-1  
DESCRIPTION ........................................................................................................................ 1-1  
HIGHLIGHTS ......................................................................................................................... 1-1  
FEATURES ............................................................................................................................................ 1-3  
UNIVERSAL VOLTAGE INPUTS ............................................................................................ 1-3  
CURRENT INPUTS ................................................................................................................. 1-3  
UTILITY PEAK DEMAND ....................................................................................................... 1-3  
MEASURED VALUES ............................................................................................................ 1-4  
ORDERING ........................................................................................................................................... 1-5  
ORDER CODES ..................................................................................................................... 1-5  
SPECIFICATIONS ............................................................................................................................... 1-6  
INPUTS/OUTPUTS ................................................................................................................ 1-6  
METERING ............................................................................................................................. 1-6  
ENVIRONMENTAL ................................................................................................................. 1-7  
COMMUNICATIONS .............................................................................................................. 1-7  
MECHANICAL PARAMETERS ................................................................................................ 1-7  
APPROVALS ........................................................................................................................... 1-8  
2: ELECTRICAL  
BACKGROUND  
THREE-PHASE POWER MEASUREMENT ................................................................................. 2-1  
DESCRIPTION ........................................................................................................................ 2-1  
THREE-PHASE SYSTEM CONFIGURATIONS ........................................................................... 2-2  
DESCRIPTION ........................................................................................................................ 2-2  
WYE CONNECTION .............................................................................................................. 2-2  
DELTA CONNECTION ........................................................................................................... 2-4  
BLONDELL'S THEOREM AND THREE-PHASE MEASUREMENT ........................................ 2-5  
POWER, ENERGY, AND DEMAND .............................................................................................. 2-8  
DESCRIPTION ........................................................................................................................ 2-8  
POWER .................................................................................................................................. 2-8  
ENERGY ................................................................................................................................. 2-8  
DEMAND ............................................................................................................................... 2-10  
REACTIVE ENERGY AND POWER FACTOR ............................................................................. 2-12  
REAL, REACTIVE, AND APPARENT POWER ........................................................................ 2-12  
POWER FACTOR ................................................................................................................... 2-13  
HARMONIC DISTORTION .............................................................................................................. 2-14  
HARMONICS OF A NON-SINUSOIDAL WAVEFORM ......................................................... 2-14  
INDUCTIVE AND CAPACITIVE IMPEDANCE ......................................................................... 2-15  
VOLTAGE AND CURRENT MONITORING ............................................................................ 2-15  
WAVEFORM CAPTURE ......................................................................................................... 2-16  
POWER QUALITY .............................................................................................................................. 2-17  
DESCRIPTION ........................................................................................................................ 2-17  
3: INSTALLATION  
MECHANICAL INSTALLATION ..................................................................................................... 3-1  
DIMENSIONS ......................................................................................................................... 3-1  
ANSI INSTALLATION STEPS ............................................................................................... 3-2  
DIN INSTALLATION STEPS .................................................................................................. 3-3  
ELECTRICAL INSTALLATION ......................................................................................................... 3-5  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
TOC–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INSTALLATION CONSIDERATIONS ....................................................................................... 3-5  
CT LEADS TERMINATED TO METER ................................................................................... 3-6  
CT LEADS PASS-THROUGH (NO METER TERMINATION) ................................................ 3-6  
QUICK CONNECT CRIMP CT TERMINATIONS ................................................................... 3-7  
VOLTAGE AND POWER SUPPLY CONNECTIONS .............................................................. 3-7  
GROUND CONNECTIONS .................................................................................................... 3-8  
WIRING DIAGRAMS ......................................................................................................................... 3-9  
DESCRIPTION ........................................................................................................................ 3-9  
WYE, 4-WIRE WITH NO PTS AND 3 CTS, 3 ELEMENT .................................................. 3-10  
WYE, 4-WIRE WITH NO PTS AND 3 CTS, 2.5 ELEMENT .............................................. 3-11  
WYE, 4-WIRE WITH 3 PTS AND 3 CTS, 3 ELEMENT .................................................... 3-12  
WYE, 4-WIRE WITH 2 PTS AND 3 CTS, 2.5 ELEMENT ................................................. 3-13  
DELTA, 3-WIRE WITH NO PTS AND 2 CTS ..................................................................... 3-14  
DELTA, 3-WIRE WITH 2 PTS AND 2 CTS ........................................................................ 3-15  
CURRENT-ONLY MEASUREMENT (THREE-PHASE) ..........................................................3-16  
CURRENT-ONLY MEASUREMENT (DUAL-PHASE) ............................................................3-17  
CURRENT-ONLY MEASUREMENT (SINGLE-PHASE) ......................................................... 3-18  
COMMUNICATIONS SETUP .......................................................................................................... 3-19  
DESCRIPTION ........................................................................................................................ 3-19  
IRDA COM1 PORT ............................................................................................................. 3-19  
RS485 COM2 PORT ......................................................................................................... 3-19  
4: USING THE METER  
FRONT PANEL INTERFACE ............................................................................................................ 4-1  
DESCRIPTION ........................................................................................................................ 4-1  
FACEPLATE ELEMENTS ........................................................................................................ 4-1  
FACEPLATE BUTTONS .......................................................................................................... 4-2  
PERCENTAGE OF LOAD BAR ............................................................................................... 4-3  
WATT-HOUR ACCURACY TESTING (VERIFICATION) ........................................................ 4-4  
CONFIGURING THE METER VIA THE FRONT PANEL ..........................................................4-5  
OVERVIEW ............................................................................................................................ 4-5  
START UP .............................................................................................................................. 4-5  
MAIN MENU ......................................................................................................................... 4-6  
RESET MODE AND PASSWORD ENTRY ............................................................................. 4-6  
CHANGING SETTINGS IN CONFIGURATION MODE ...........................................................4-9  
DESCRIPTION ........................................................................................................................ 4-9  
CONFIGURING THE SCROLL FEATURE ............................................................................... 4-9  
PROGRAMMING THE CONFIGURATION MODE SCREENS ................................................ 4-10  
CONFIGURING THE CT SETTING ........................................................................................ 4-11  
CONFIGURING THE PT SETTING ........................................................................................ 4-12  
CONFIGURING THE CONNECTION SETTING ...................................................................... 4-13  
CONFIGURING THE COMMUNICATION PORT SETTING .................................................... 4-14  
OPERATING MODE ........................................................................................................................... 4-17  
DESCRIPTION ........................................................................................................................ 4-17  
5: COMMUNICATIONS  
MODBUS COMMUNICATIONS ..................................................................................................... 5-1  
MEMORY MAP DESCRIPTION ............................................................................................. 5-1  
MEMORY MAP ......................................................................................................................5-1  
MODBUS MEMORY MAP NOTES ....................................................................................... 5-7  
MODBUS MEMORY MAP DATA FORMATS ........................................................................ 5-9  
DNP POINT MAPPING ..................................................................................................................... 5-10  
DNP POINT MAPS .............................................................................................................. 5-10  
DNP POINT MAP NOTES ................................................................................................... 5-12  
TOC–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DNP IMPLEMENTATION ................................................................................................................. 5-13  
OVERVIEW ............................................................................................................................ 5-13  
DATA LINK LAYER ................................................................................................................ 5-13  
TRANSPORT LAYER .............................................................................................................. 5-13  
APPLICATION LAYER ............................................................................................................ 5-14  
DNP OBJECTS AND VARIATIONS ............................................................................................... 5-15  
DESCRIPTION ........................................................................................................................ 5-15  
BINARY OUTPUT STATUS (OBJECT 10, VARIATION 2) ................................................... 5-15  
CONTROL RELAY OUTPUT (OBJECT 12, VARIATION 1) .................................................. 5-15  
32-BIT BINARY COUNTER WITHOUT FLAG (OBJECT 20, VARIATION 4) .................... 5-16  
16-BIT ANALOG INPUT WITHOUT FLAG (OBJECT 30, VARIATION 5) ......................... 5-16  
CLASS 0 DATA (OBJECT 60, VARIATION 1) ..................................................................... 5-17  
INTERNAL INDICATIONS (OBJECT 80, VARIATION 1) ...................................................... 5-17  
6: MISCELLANEOUS  
NAVIGATION MAPS ......................................................................................................................... 6-1  
INTRODUCTION ..................................................................................................................... 6-1  
MAIN MENU SCREENS ........................................................................................................ 6-2  
OPERATING MODE SCREENS ............................................................................................. 6-3  
RESET MODE SCREENS ....................................................................................................... 6-4  
CONFIGURATION MODE SCREENS .................................................................................... 6-5  
REVISION HISTORY .......................................................................................................................... 6-6  
RELEASE DATES ................................................................................................................... 6-6  
CHANGES TO THE MANUAL ............................................................................................... 6-6  
WARRANTY ......................................................................................................................................... 6-8  
GE MULTILIN WARRANTY .................................................................................................. 6-8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
TOC–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TOC–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GE Consumer & Industrial  
Multilin  
EPM 6000 Multi-function Power  
Metering System  
Chapter 1: Overview  
Overview  
1.1 Introduction  
1.1.1 Description  
The EPM 6000 is a multifunction power meter designed to be used in electrical substations,  
panel boards and as a power meter for OEM equipment. The unit provides multifunction  
measurement of electrical parameters.  
The unit is designed with advanced measurement capabilities, allowing it to achieve high  
performance accuracy. The EPM 6000 is specified as a 0.2% class energy meter for billing  
applications as well as a highly accurate panel indication meter.  
The EPM 6000 provides a host of additional capabilities, including standard RS485 Modbus  
Protocol and an IrDA port remote interrogation.  
1.1.2 Highlights  
The following EPM 6000 features are detailed in this manual:  
0.2% class revenue certifiable energy and demand metering  
Meets ANSI C12.20 (0.2%) and IEC 687 (0.2%) classes  
Multifunction measurement including voltage, current, power, frequency, energy  
Percentage of load bar for analog meter perception  
Easy-to-use faceplate programming  
IrDA port for PDA remote read  
RS485 Modbus communications  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
1–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
FIGURE 1–1: EPM 6000 Highlights  
1–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
1.2 Features  
1.2.1 Universal Voltage Inputs  
Voltage Inputs allow measurement to 416 V line-to-neutral and 721 V line-to-line. This  
insures proper meter safety when wiring directly to high voltage systems. One unit will  
perform to specification on 69 V, 120 V, 230 V, 277 V, and 347 V systems.  
1.2.2 Current Inputs  
The EPM 6000 current inputs use a unique dual input method.  
Method 1 – CT Pass Through: The CT passes directly through the meter without  
any physical termination on the meter. This insures that the meter cannot be a  
point of failure on the CT circuit. This is preferable for utility users when sharing  
relay class CTs. No burden is added to the secondary CT circuit.  
Method 2 – Current “Gills”: This unit additionally provides ultra-rugged  
termination pass-through bars that allow CT leads to be terminated on the meter.  
This, too, eliminates any possible point of failure at the meter. This is a preferred  
technique for insuring that relay class CT integrity is not compromised (the CT will  
not open in a fault condition).  
FIGURE 1–2: Current Input Connections  
1.2.3 Utility Peak Demand  
The EPM 6000 provides user-configured Block (fixed) or Rolling window demand. This  
feature allows you to set up a customized demand profile. Block window demand is  
demand used over a user-defined demand period (usually 5, 15, or 30 minutes). Rolling  
window demand is a fixed window demand that moves for a user-specified subinterval  
period. For example, a 15-minute demand using 3 subintervals and providing a new  
demand reading every 5 minutes, based on the last 15 minutes.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
1–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
Utility demand features can be used to calculate kW, kvar, kVA and PF readings. All other  
parameters offer maximum and minimum capability over the user-selectable averaging  
period. Voltage provides an instantaneous maximum and minimum reading which  
displays the highest surge and lowest sag seen by the meter.  
1.2.4 Measured Values  
The EPM 6000 provides the following measured values all in real time and some  
additionally as average, maximum, and minimum values.  
Table 1–1: EPM 6000 Measured Values  
Measured Values  
Voltage L-N  
Real Time  
Average  
Maximum  
Minimum  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Voltage L-L  
Current per phase  
Watts  
X
X
X
X
X
vars  
VA  
Power Factor (PF)  
Positive watt-hours  
Negative watt-hours  
Net watt-hours  
Positive var-hours  
Negative var-hours  
Net var-hours  
VA-hours  
Frequency  
X
X
X
X
%THD  
Voltage angles  
Current angles  
% of load bar  
1–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
1.3 Ordering  
1.3.1 Order Codes  
The order codes for the EPM 6000 are indicated below.  
Table 1–2: EPM 6000 Order Codes  
PL6000  
*
|
*
|
*
Base Unit  
EPM 6000 Power Metering System  
50 Hz AC frequency system  
60 Hz AC frequency system  
1 A secondary CT  
PL6000  
|
5
6
|
|
|
|
|
|
System  
Frequency  
1A  
5A  
Current Input  
5 A secondary CT  
No THD or pulse output option  
THD, limit alarms, and 1 KYZ pulse output  
0
THD  
THD and Pulse Output  
For example, to order an EPM 6000 for 60 Hz system with a 1 A secondary CT input and no  
THD or pulse output option, select order code PL6000-6-1A-0. The standard unit includes  
display, all current/voltage/power/frequency/energy counters, percent load bar, RS485,  
and IrDA communication ports.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
1–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
1.4 Specifications  
1.4.1 Inputs/Outputs  
POWER SUPPLY  
Range:..................................................................D2 Option: Universal, 90 to 265 V AC at 50/60Hz, or 100 to  
370 V DC  
D Option: 18 to 60 V DC  
Power consumption:.....................................5 VA, 3.5 W  
VOLTAGE INPUTS (MEASUREMENT CATEGORY III)  
Range:..................................................................Universal, Auto-ranging up to 416 V AC L-N, 721 V AC L-L  
Supported hookups:......................................3-element Wye, 2.5-element Wye, 2-element Delta,  
4-wire Delta  
Input impedance: ...........................................1 MOhm/phase  
Burden:................................................................0.0144 VA/phase at 120 Volts  
Pickup voltage: ................................................10 V AC  
Connection:.......................................................Screw terminal (see Voltage Connection on page 3–8)  
2
Maximum input wire gauge: ....................AWG #12 / 2.5 mm  
Fault withstand: ..............................................Meets IEEE C37.90.1  
Reading:..............................................................Programmable full-scale to any PT ratio  
CURRENT INPUTS  
Class 10:..............................................................5 A nominal, 10 A maximum  
Class 2: ................................................................1 A nominal, 2 A maximum  
Burden:................................................................0.005 VA per phase maximum at 11 A  
Pickup current:.................................................0.1% of nominal  
Connections:.....................................................O or U lug (see CT Leads Terminated to Meter on page 3–  
6);  
Pass-through wire, 0.177" / 4.5 mm maximum diameter  
(see Pass-Through Wire Electrical Connection on page  
3–7);  
Quick connect, 0.25" male tab  
(see Quick Connect Electrical Connection on page 3–7)  
Fault Withstand:..............................................100 A / 10 seconds, 300 A / 3 seconds, 500 A / 1 second  
Reading:..............................................................Programmable full-scale to any CT ratio  
1.4.2 Metering  
MEASUREMENT METHODS  
Voltage and current:.....................................true RMS  
Power:..................................................................sampling at 400+ samples/cycle on all channels  
measured; readings simultaneously  
A/D conversion:...............................................6 simultaneous 24-bit analog-to-digital converters  
UPDATE RATE  
Watts, vars, and VA: ......................................100 ms (10 times per second)  
All other parameters:....................................1 second  
1–6  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
ACCURACY  
Measured Parameters  
Voltage L-N  
Voltage L-L  
Current  
Display Range  
0 to 9999 kV or scalable  
0 to 9999 V or kV scalable  
0 to 9999 A or kA  
Accuracy  
0.1% of reading  
0.1% of reading  
0.1% of reading  
0.2% of reading  
0.2% of reading  
0.2% of reading  
0.2% of reading  
0.2% of reading  
0.2% of reading  
0.2% of reading  
0.01 Hz  
+/– Watts  
+/– Wh  
0 to 9999 W, kW, or MW  
5 to 8 digits (programmable)  
0 to 9999 vars, kvars, Mvars  
5 to 8 digits (programmable)  
0 to 9999 VA, kVA, MVA  
5 to 8 digits (programmable)  
±0.5 to 1.0  
+/– vars  
+/– varh  
VA  
VAh  
Power Factor (PF)  
Frequency  
% THD  
45 to 65 Hz  
0 to 100%  
2.0% F.S.  
% Load Bar  
10 digit resolution scalable  
1 to 120% of reading  
NOTE: Typical results are more accurate.  
1.4.3 Environmental  
TEMPERATURE AND HUMIDITY  
Storage:...............................................................–40 to 85°C  
Operating:..........................................................–30 to 70°C  
Humidity:............................................................up to 95% RH, non-condensing  
Faceplate rating: ............................................NEMA 12 (water resistant), mounting gasket included  
1.4.4 Communications  
COMMUNICATIONS FORMAT  
Types:...................................................................RS485 port through back plate  
IrDA port through face plate  
COMMUNICATIONS PORTS  
Protocol:..............................................................Modbus RTU, Modbus ASCII, DNP 3.0  
Baud rate: ..........................................................9600 to 57600 bps  
Port address: ....................................................001 to 247  
Data format:.....................................................8 bits, no parity  
1.4.5 Mechanical Parameters  
DIMENSIONS  
Size:.......................................................................4.25" × 4.82" × 4.85" (L × W × H)  
105.4 mm × 123.2 mm × 123.2 mm (L × W × H)  
Mounting:...........................................................mounts in 92 mm square DIN or ANSI C39.1 4-inch round  
cut-out  
Weight:................................................................2 pounds / 0.907 kg  
Shipping..............................................................ships in 6-inch / 152.4 mm cube container  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
1–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 1: OVERVIEW  
1.4.6 Approvals  
TYPE TESTING  
IEC 687 (0.2% accuracy)  
ANSI C12.20 (0.2% accuracy)  
ANSI (IEEE) C37.90.1: ....................................Surge Withstand  
ANSI C62.41 (burst)  
IEC 1999-4-2: ...................................................ESD  
IEC 1000-4-3: ...................................................Radiated Immunity  
IEC 1000-4-4: ...................................................Fast Transient  
IEC 1000-4-5: ...................................................Surge Immunity  
COMPLIANCE  
ISO:........................................................................manufactured to an ISO9001 registered program  
UL:..........................................................................UL listed (file E250818)  
CSA:.......................................................................Certified per: C22.2 No.1010.1 Electrical and Electronic  
Measuring and Testing Equipment  
CE:..........................................................................conforms to EN 55011 / EN 50082  
1–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GE Consumer & Industrial  
Multilin  
EPM 6000 Multi-function Power  
Metering System  
Chapter 2: Electrical Background  
Electrical Background  
2.1 Three-Phase Power Measurement  
2.1.1 Description  
This introduction to three-phase power and power measurement is intended to provide  
only a brief overview of the subject. The professional meter engineer or meter technician  
should refer to more advanced documents such as the EEI Handbook for Electricity  
Metering and the application standards for more in-depth and technical coverage of the  
subject.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2.2 Three-Phase System Configurations  
2.2.1 Description  
Three-phase power is most commonly used in situations where large amounts of power  
will be used because it is a more effective way to transmit the power and because it  
provides a smoother delivery of power to the end load. There are two commonly used  
connections for three-phase power, a wye connection or a delta connection. Each  
connection has several different manifestations in actual use. When attempting to  
determine the type of connection in use, it is a good practice to follow the circuit back to  
the transformer that is serving the circuit. It is often not possible to conclusively determine  
the correct circuit connection simply by counting the wires in the service or checking  
voltages. Checking the transformer connection will provide conclusive evidence of the  
circuit connection and the relationships between the phase voltages and ground.  
2.2.2 Wye Connection  
The wye connection is so called because when you look at the phase relationships and the  
winding relationships between the phases it looks like a wye (Y). The following figure  
depicts the winding relationships for a wye-connected service. In a wye service the neutral  
(or center point of the wye) is typically grounded. This leads to common voltages of 208/  
120 and 480/277 (where the first number represents the phase-to-phase voltage and the  
second number represents the phase-to-ground voltage).  
Ia  
A
Van  
Vcn  
Vbn  
B
C
N
FIGURE 2–1: Three-Phase Wye Winding  
The three voltages are electrically separated by 120°. Under balanced load conditions with  
unity power factor, the currents are also separated by 120°. However, unbalanced loads  
and other conditions can cause the currents to depart from the ideal 120° separation.  
Three-phase voltages and currents are usually represented with a phasor diagram. A  
phasor diagram for the typical connected voltages and currents is shown below.  
2–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
Vcn  
Ic  
Van  
Ia  
Ib  
Vbn  
FIGURE 2–2: Three-Phase Voltage and Current Phasors for Wye Winding  
The phasor diagram shows the 120° angular separation between the phase voltages. The  
phase-to-phase voltage in a balanced three-phase wye system is 1.732 times the phase-  
to-neutral voltage. The center point of the wye is tied together and is typically grounded.  
The following table indicates the common voltages used in the United States for wye-  
connected systems.  
Table 2–1: Common Phase Voltages on Wye Services  
Phase-to-Ground Voltage  
120 volts  
Phase-to-Phase Voltage  
208 volts  
277 volts  
480 volts  
2400 volts  
7200 volts  
7620 volts  
4160 volts  
12470 volts  
13200 volts  
Usually, a wye-connected service will have four wires: three wires for the phases and one  
for the neutral. The three-phase wires connect to the three phases. The neutral wire is  
typically tied to the ground or center point of the wye (refer to the Three-Phase Wye  
Winding diagram above).  
In many industrial applications the facility will be fed with a four-wire wye service but only  
three wires will be run to individual loads. The load is then often referred to as a delta-  
connected load but the service to the facility is still a wye service; it contains four wires if  
you trace the circuit back to its source (usually a transformer). In this type of connection  
the phase to ground voltage will be the phase-to-ground voltage indicated in the table  
above, even though a neutral or ground wire is not physically present at the load. The  
transformer is the best place to determine the circuit connection type because this is a  
location where the voltage reference to ground can be conclusively identified.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2.2.3 Delta Connection  
Delta connected services may be fed with either three wires or four wires. In a three-phase  
delta service the load windings are connected from phase-to-phase rather than from  
phase-to-ground. The following figure shows the physical load connections for a delta  
service.  
Ia  
A
Iab  
Vab  
Ib  
Vca  
Ica  
B
Vbc  
Ibc  
Ic  
C
FIGURE 2–3: Three-Phase Delta Winding Relationship  
In this example of a delta service, three wires will transmit the power to the load. In a true  
delta service, the phase-to-ground voltage will usually not be balanced because the  
ground is not at the center of the delta.  
The following diagram shows the phasor relationships between voltage and current on a  
three-phase delta circuit.  
In many delta services, one corner of the delta is grounded. This means the phase to  
ground voltage will be zero for one phase and will be full phase-to-phase voltage for the  
other two phases. This is done for protective purposes.  
Vca  
Ic  
Vbc  
Ia  
Ib  
Vab  
FIGURE 2–4: Three-Phase Voltage and Current Phasors for Delta Winding  
2–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
Another common delta connection is the four-wire, grounded delta used for lighting loads.  
In this connection the center point of one winding is grounded. On a 120/240 volt, four-  
wire, grounded delta service the phase-to-ground voltage would be 120 volts on two  
phases and 208 volts on the third phase. The phasor diagram for the voltages in a three-  
phase, four-wire delta system is shown below.  
Vca  
120 V  
Vnc  
Vbn  
Vbc  
120 V  
Vab  
FIGURE 2–5: Three-Phase, Four-Wire Delta Phasors  
2.2.4 Blondell's Theorem and Three-Phase Measurement  
In 1893 an engineer and mathematician named Andre E. Blondell set forth the first  
scientific basis for poly phase metering. His theorem states:  
If energy is supplied to any system of conductors through N wires, the total power in the  
system is given by the algebraic sum of the readings of N watt-meters so arranged that  
each of the N wires contains one current coil, the corresponding potential coil being  
connected between that wire and some common point. If this common point is on one  
of the N wires, the measurement may be made by the use of N-1 wattmeters.  
The theorem may be stated more simply, in modern language:  
In a system of N conductors, N – 1 meter elements will measure the power or energy  
taken provided that all the potential coils have a common tie to the conductor in which  
there is no current coil.  
Three-phase power measurement is accomplished by measuring the three individual  
phases and adding them together to obtain the total three phase value. In older analog  
meters, this measurement was made using up to three separate elements. Each element  
combined the single-phase voltage and current to produce a torque on the meter disk. All  
three elements were arranged around the disk so that the disk was subjected to the  
combined torque of the three elements. As a result the disk would turn at a higher speed  
and register power supplied by each of the three wires.  
According to Blondell's Theorem, it was possible to reduce the number of elements under  
certain conditions. For example, a three-phase, three-wire delta system could be correctly  
measured with two elements (two potential coils and two current coils) if the potential coils  
were connected between the three phases with one phase in common.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
In a three-phase, four-wire wye system it is necessary to use three elements. Three voltage  
coils are connected between the three phases and the common neutral conductor. A  
current coil is required in each of the three phases.  
In modern digital meters, Blondell's Theorem is still applied to obtain proper metering. The  
difference in modern meters is that the digital meter measures each phase voltage and  
current and calculates the single-phase power for each phase. The meter then sums the  
three phase powers to a single three-phase reading.  
Some digital meters calculate the individual phase power values one phase at a time. This  
means the meter samples the voltage and current on one phase and calculates a power  
value. Then it samples the second phase and calculates the power for the second phase.  
Finally, it samples the third phase and calculates that phase power. After sampling all three  
phases, the meter combines the three readings to create the equivalent three-phase  
power value. Using mathematical averaging techniques, this method can derive a quite  
accurate measurement of three-phase power.  
More advanced meters actually sample all three phases of voltage and current  
simultaneously and calculate the individual phase and three-phase power values. The  
advantage of simultaneous sampling is the reduction of error introduced due to the  
difference in time when the samples were taken.  
Blondell's Theorem is a derivation that results from Kirchhoff's Law. Kirchhoff's Law states  
that the sum of the currents into a node is zero. Another way of stating the same thing is  
that the current into a node (connection point) must equal the current out of the node. The  
law can be applied to measuring three-phase loads. The figure below shows a typical  
connection of a three-phase load applied to a three-phase, four-wire service. Kirchhoff's  
Laws hold that the sum of currents A, B, C and N must equal zero or that the sum of  
currents into Node “n” must equal zero.  
C
B
Phase B  
Phase C  
Node "n"  
Phase A  
A
N
FIGURE 2–6: Three-Phase Load Illustrating Kirchhoff’s Law and Blondell’s Theorem  
2–6  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
If we measure the currents in wires A, B and C, we then know the current in wire N by  
Kirchhoff's Law and it is not necessary to measure it. This fact leads us to the conclusion of  
Blondell's Theorem that we only need to measure the power in three of the four wires if  
they are connected by a common node. In the circuit of Figure 1.6 we must measure the  
power flow in three wires. This will require three voltage coils and three current coils (a  
three element meter). Similar figures and conclusions could be reached for other circuit  
configurations involving delta-connected loads.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2.3 Power, Energy, and Demand  
2.3.1 Description  
It is quite common to exchange power, energy, and demand without differentiating  
between the three. Because this practice can lead to confusion, the differences between  
these three measurements will be discussed.  
2.3.2 Power  
Power is an instantaneous reading. The power reading provided by a meter is the present  
flow of watts. Power is measured immediately just like current. In many digital meters, the  
power value is actually measured and calculated over a one-second interval, since it takes  
some amount of time to calculate the RMS values of voltage and current. However, this  
time interval is kept small to preserve the instantaneous nature of power.  
2.3.3 Energy  
Energy is always based upon some time increment – it is the integration of power over a  
defined time increment. Energy is an important value because almost all electric bills are  
based, in part, on the amount of energy consumed.  
Typically, electrical energy is measured in units of kilowatt-hours (kWh). A kilowatt-hour  
represents a constant load of 1000 watts (1 kW) for 1 hour. Stated another way, if the  
power delivered (instantaneous watts) is measured as 1000 W, and the load was served for  
a one-hour time interval, then the load would have absorbed 1 kWh of energy. A different  
load may have a constant power requirement of 4000 W. If this load were served for one  
hour, it would absorb 4 kWh of energy. Likewise, if it were served for 15 minutes, it would  
absorb ¼ of that total, or 1 kWh.  
The following figure shows a graph of power and the resulting energy that would be  
transmitted as a result of the illustrated power values. For this illustration, it is assumed  
that the power level is held constant for each minute when a measurement is taken. Each  
bar in the graph represents the power load for the one-minute increment of time. In real  
life, the power values are continually moving.  
2–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Time (minutes)  
FIGURE 2–7: Power Use Over Time  
The data in the above figure is reproduced in the following table to illustrate the  
calculation of energy. Since the time increment of the measurement is one minute, and  
since we specified a constant load over that minute, the power reading can be converted  
to an equivalent consumed energy reading by multiplying the power reading by 1/60  
(converting the time base from minutes to hours).  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
Table 2–2: Power and Energy Relationship Over Time  
Time Interval  
Power  
Energy  
Accumulated  
Energy  
1 minute  
30 kW  
50 kW  
40 kW  
55 kW  
60 kW  
60 kW  
70 kW  
70 kW  
60 kW  
70 kW  
80 kW  
50 kW  
50 kW  
70 kW  
80 kW  
0.50 kWh  
0.83 kWh  
0.67 kWh  
0.92 kWh  
1.00 kWh  
1.00 kWh  
1.17 kWh  
1.17 kWh  
1.00 kWh  
1.17 kWh  
1.33 kWh  
0.83 kWh  
0.83 kWh  
1.17 kWh  
1.33 kWh  
0.50 kWh  
1.33 kWh  
2.00 kWh  
2.92 kWh  
3.92 kWh  
4.92 kWh  
6.09 kWh  
7.26 kWh  
8.26 kWh  
9.43 kWh  
10.76 kWh  
12.42 kWh  
12.42 kWh  
13.59 kWh  
14.92 kWh  
2 minutes  
3 minutes  
4 minutes  
5 minutes  
6 minutes  
7 minutes  
8 minutes  
9 minutes  
10 minutes  
11 minutes  
12 minutes  
13 minutes  
14 minutes  
15 minutes  
As shown in the above table, the accumulated energy for the power load profile of the  
data in Power Use Over Time on page 2–9 is 14.92 kWh.  
2.3.4 Demand  
Demand is also a time-based value. The demand is the average rate of energy use over  
time. The actual label for demand is kilowatt-hours/hour but this is normally reduced to  
kilowatts. This makes it easy to confuse demand with power. But demand is not an  
instantaneous value. To calculate demand it is necessary to accumulate the energy  
readings (as illustrated in Power Use Over Time on page 2–9) and adjust the energy reading  
to an hourly value that constitutes the demand.  
In the example, the accumulated energy is 14.92 kWh. But this measurement was made  
over a 15-minute interval. To convert the reading to a demand value, it must be  
normalized to a 60-minute interval. If the pattern were repeated for an additional three 15-  
minute intervals the total energy would be four times the measured value or 59.68 kWh.  
The same process is applied to calculate the 15-minute demand value. The demand value  
associated with the example load is 59.68 kWh/hour or 59.68 kWd. Note that the peak  
instantaneous value of power is 80 kW, significantly more than the demand value.  
2–10  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
The following figure illustrates another example of energy and demand. In this case, each  
bar represents the energy consumed in a 15-minute interval. The energy use in each  
interval typically falls between 50 and 70 kWh. However, during two intervals the energy  
rises sharply and peaks at 100 kWh in interval #7. This peak of usage will result in setting a  
high demand reading. For each interval shown the demand value would be four times the  
indicated energy reading. So interval 1 would have an associated demand of 240 kWh/hr.  
Interval #7 will have a demand value of 400 kWh/hr. In the data shown, this is the peak  
demand value and would be the number that would set the demand charge on the utility  
bill.  
100  
80  
60  
40  
20  
0
1
2
3
4
5
6
7
8
Intervals (15 mins.)  
FIGURE 2–8: Energy Use and Demand Intervals  
As seen in this example, it is important to recognize the relationships between power,  
energy and demand in order to effectively control loads or to correctly monitor use.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2.4 Reactive Energy and Power Factor  
2.4.1 Real, Reactive, and Apparent Power  
The real power and energy measurements discussed in the previous section relate to the  
quantities that are most used in electrical systems. But it is often not sufficient to only  
measure real power and energy. Reactive power is a critical component of the total power  
picture because almost all real-life applications have an impact on reactive power.  
Reactive power and power factor concepts relate to both load and generation  
applications. However, this discussion will be limited to analysis of reactive power and  
power factor as they relate to loads. To simplify the discussion, generation will not be  
considered.  
Real power (and energy) is the component of power that is the combination of the voltage  
and the value of corresponding current that is directly in phase with the voltage. However,  
in actual practice the total current is almost never in phase with the voltage. Since the  
current is not in phase with the voltage, it is necessary to consider both the in-phase  
component and the component that is at quadrature (angularly rotated 90° or  
perpendicular) to the voltage. The following figure shows a single-phase voltage and  
current and breaks the current into its in-phase and quadrature components.  
IR  
V
θ
IX  
I
FIGURE 2–9: Voltage and Complex Current  
The voltage (V) and the total current (I) can be combined to calculate the apparent power  
or VA. The voltage and the in-phase current (IR) are combined to produce the real power or  
watts. The voltage and the quadrature current (IX) are combined to calculate the reactive  
power.  
The quadrature current may be lagging the voltage (as shown above) or it may lead the  
voltage. When the quadrature current lags the voltage the load is requiring both real  
power (watts) and reactive power (vars). When the quadrature current leads the voltage  
the load is requiring real power (watts) but is delivering reactive power (vars) back into the  
system; that is VARs are flowing in the opposite direction of the real power flow.  
Reactive power (vars) is required in all power systems. Any equipment that uses  
magnetization to operate requires vars. Usually the magnitude of vars is relatively low  
compared to the real power quantities. Utilities have an interest in maintaining VAR  
requirements at the customer to a low value in order to maximize the return on plant  
invested to deliver energy. When lines are carrying vars, they cannot carry as many watts.  
2–12  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
So keeping the var content low allows a line to carry its full capacity of watts. In order to  
encourage customers to keep VAR requirements low, most utilities impose a penalty if the  
var content of the load rises above a specified value.  
2.4.2 Power Factor  
A common method of measuring reactive power requirements is power factor. Power  
factor can be defined in two different ways. The more common method of calculating  
power factor is the ratio of the real power to the apparent power. This relationship is  
expressed in the following formula:  
real power  
apparent power VA  
watts  
Total PF = ---------------------------------------- = -------------  
(EQ 2.1)  
This formula calculates a power factor quantity known as Total Power Factor. It is called  
Total PF because it is based on the ratios of the power delivered. The delivered power  
quantities will include the impacts of any existing harmonic content. If the voltage or  
current includes high levels of harmonic distortion the power values will be affected. By  
calculating power factor from the power values, the power factor will include the impact of  
harmonic distortion. In many cases this is the preferred method of calculation because the  
entire impact of the actual voltage and current are included.  
A second type of power factor is Displacement Power Factor. Displacement PF is based on  
the angular relationship between the voltage and current. Displacement power factor  
does not consider the magnitudes of voltage, current or power. It is solely based on the  
phase angle differences. As a result, it does not include the impact of harmonic distortion.  
Displacement power factor is calculated using the following equation:  
Displacement PF = cosθ  
(EQ 2.2)  
where θ is the angle between the voltage and the current (see FIGURE 2–9: Voltage and  
Complex Current on page 2–12).  
In applications where the voltage and current are not distorted, the Total Power Factor will  
equal the Displacement Power Factor. But if harmonic distortion is present, the two power  
factors will not be equal.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2.5 Harmonic Distortion  
2.5.1 Harmonics of a Non-Sinusoidal Waveform  
Harmonic distortion is primarily the result of high concentrations of non-linear loads.  
Devices such as computer power supplies, variable speed drives and fluorescent light  
ballasts make current demands that do not match the sinusoidal waveform of AC  
electricity. As a result, the current waveform feeding these loads is periodic but not  
sinusoidal. The following figure shows a normal, sinusoidal current waveform with a period  
of a. This example has no distortion.  
1000  
500  
t
0
–500  
a
2a  
–1000  
FIGURE 2–10: Non-Distorted Current Waveform  
The figure below shows a current waveform with a slight amount of harmonic distortion.  
The waveform is still periodic and is fluctuating at the normal 60 Hz frequency (a = 1/60  
second). However, the waveform is not the smooth sinusoidal form seen above.  
1500  
1000  
500  
t
0
–500  
a
2a  
–1000  
–1500  
FIGURE 2–11: Distorted Current Waveform  
The distortion above can be modeled as the sum of several sinusoidal waveforms of  
frequencies that are multiples of the fundamental 60 Hz frequency. This modeling is  
performed by mathematically reducing the distorted waveform into a collection of higher  
2–14  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
frequency waveforms. These higher frequency waveforms are referred to as harmonics.  
The following figure shows the content of the harmonic frequencies that comprise one  
cycle of the distorted portion of the above waveform.  
250  
200  
150  
100  
50  
t
0
a
-50  
-100  
-150  
-200  
-250  
FIGURE 2–12: Harmonics for Distorted Current Waveform  
The waveforms above provide an indication of the impact of combining multiple harmonic  
frequencies together. The broken lines represent the 3rd, 5th, and 7th current harmonics.  
The solid line represents the sum of the three harmonics.  
When harmonics are present, it is important to remember that they are operating at  
higher frequencies. As such, they do not always respond in the same manner as 60 Hz  
values.  
2.5.2 Inductive and Capacitive Impedance  
Inductive and capacitive impedance are present in all power systems. We are accustomed  
to thinking about these impedances as they perform at 60 Hz. However, these impedances  
are subject to frequency variation.  
XL = jωL and XC = 1 jωC  
(EQ 2.3)  
At 60 Hz, ω = 377; but at 300 Hz (5th harmonic) ω = 1885. As frequency changes, the  
impedance changes and system impedance characteristics that are normal at 60 Hz may  
be entirely different in the presence of higher order harmonic waves.  
Traditionally, the most common harmonics have been the low order odd frequencies, such  
as the 3rd, 5th, 7th, and 9th. However newer, new-linear loads are introducing significant  
quantities of higher order harmonics.  
2.5.3 Voltage and Current Monitoring  
Since much voltage monitoring and almost all current monitoring is performed using  
instrument transformers, the higher order harmonics are often not visible. Instrument  
transformers are designed to pass 60 Hz quantities with high accuracy. These devices,  
when designed for accuracy at low frequency, do not pass high frequencies with high  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
accuracy; at frequencies above about 1200 Hz they pass almost no information. So when  
instrument transformers are used, they effectively filter out higher frequency harmonic  
distortion making it impossible to see.  
However, when monitors can be connected directly to the measured circuit (such as direct  
connection to 480 V bus) the user may often see higher order harmonic distortion. An  
important rule in any harmonics study is to evaluate the type of equipment and  
connections before drawing a conclusion. Not being able to see harmonic distortion is not  
the same as not having harmonic distortion.  
2.5.4 Waveform Capture  
It is common in advanced meters to perform a function commonly referred to as  
waveform capture. Waveform capture is the ability of a meter to capture a present picture  
of the voltage or current waveform for viewing and harmonic analysis. Typically a  
waveform capture will be one or two cycles in duration and can be viewed as the actual  
waveform, as a spectral view of the harmonic content, or a tabular view showing the  
magnitude and phase shift of each harmonic value. Data collected with waveform capture  
is typically not saved to memory. Waveform capture is a real-time data collection event.  
Waveform capture should not be confused with waveform recording that is used to record  
multiple cycles of all voltage and current waveforms in response to a transient condition.  
2–16  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2.6 Power Quality  
2.6.1 Description  
Power quality can mean several different things. The terms power quality and power  
quality problem have been applied to all types of conditions. A simple definition of power  
quality problem is any voltage, current or frequency deviation that results in misoperation  
or failure of customer equipment or systems. The causes of power quality problems vary  
widely and may originate in the customer equipment, in an adjacent customer facility or  
with the utility.  
In his book Power Quality Primer, Barry Kennedy provided information on different types of  
power quality problems. Some of that information is summarized in the following table.  
Table 2–3: Typical Power Quality Problems  
Cause  
Disturbance Type  
Source(s)  
Lightning;  
Impulse  
transient  
Transient voltage disturbance,  
sub-cycle duration  
Electrostatic discharge;  
Load switching;  
Capacitor switching  
Oscillatory  
transient with  
decay  
Line/cable switching;  
Capacitor switching;  
Load switching  
Transient voltage, sub-cycle  
duration  
RMS voltage, multiple cycle  
duration  
Sag/swell  
Remote system faults  
System protection;  
Circuit breakers;  
Fuses;  
RMS voltage, multiple second or  
longer duration  
Interruptions  
Maintenance  
RMS voltage, steady state,  
multiple second or longer  
duration  
Motor starting;  
Load variations;  
Load dropping  
Undervoltage/  
Overvoltage  
Intermittent loads;  
Motor starting;  
Arc furnaces  
RMS voltage, steady state,  
repetitive condition  
Voltage flicker  
Harmonic  
distortion  
Steady-state current or voltage,  
long term duration  
Non-linear loads;  
System resonance  
It is often assumed that power quality problems originate with the utility. While it is true  
that may power quality problems can originate with the utility system, many problems  
originate with customer equipment. Customer-caused problems may manifest themselves  
inside the customer location or they may be transported by the utility system to another  
adjacent customer. Often, equipment that is sensitive to power quality problems may in  
fact also be the cause of the problem.  
If a power quality problem is suspected, it is generally wise to consult a power quality  
professional for assistance in defining the cause and possible solutions to the problem.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
2–17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 2: ELECTRICAL BACKGROUND  
2–18  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GE Consumer & Industrial  
Multilin  
EPM 6000 Multi-function Power  
Metering System  
Chapter 3: Installation  
Installation  
3.1 Mechanical Installation  
3.1.1 Dimensions  
The EPM 6000 meter can be installed using a standard ANSI C39.1 (4" round) or an IEC  
92 mm DIN (square) form. In new installations, simply use existing DIN or ANSI punches. For  
existing panels, pull out old analog meters and replace with the EPM 6000. The various  
models use the same installation. See Wiring Diagrams on page 3–9 for various Wye and  
Delta wiring diagrams.  
FIGURE 3–1: Bezel, Side, and Back Dimensions  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
FIGURE 3–2: ANSI and DIN Mounting Panel Cutouts  
3.1.2 ANSI Installation Steps  
Mount the meter in a dry location free from dirt and corrosive substances. The meter is  
designed to withstand harsh environmental conditions (see the Environmental  
specifications in Chapter 2 for additional details).  
Use the following steps to install the meter:  
Z Insert the four threaded rods by hand into the back of the meter.  
Twist until secure.  
Z Slide the ANSI 12 mounting gasket onto the back of the meter with  
the rods in place.  
Z Slide the meter with the mounting gasket into the panel.  
Z Secure from the back of the panel with a lock washer and nut on  
each threaded rod.  
Use a small wrench to tighten – do not overtighten.  
3–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
NEMA12 mounting  
gasket  
threaded rods  
lock washer  
and nut  
FIGURE 3–3: ANSI Mounting Procedure  
3.1.3 DIN Installation Steps  
Mount the meter in a dry location free from dirt and corrosive substances. The meter is  
designed to withstand harsh environmental conditions (see the Environmental  
specifications in Chapter 2 for additional details).  
Use the following steps to install the meter:  
Z Slide the meter with NEMA 12 mounting gasket into panel.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
Z From back of the panel, slide 2 DIN mounting brackets into the  
grooves on the top and bottom of the meter housing, then snap  
into place.  
Z Secure meter to panel with a lock washer and #8 screw through  
each of the two mounting brackets.  
Tighten with a #2 Phillips screwdriver – do not overtighten.  
DIN mounting  
bracket  
top-mounting  
bracket groove  
bottom mounting  
bracket groove  
#8 screw  
EPM 6000 meter  
with NEMA 12  
mounting gasket  
FIGURE 3–4: DIN Mounting Procedure  
3–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.2 Electrical Installation  
3.2.1 Installation Considerations  
Installation of the EPM 6000 Power Metering System must be performed by only qualified  
personnel who follow standard safety precautions during all procedures. Those personnel  
should have appropriate training and experience with high voltage devices. Appropriate  
safety gloves, safety glasses and protective clothing is recommended.  
During normal operation of the EPM 6000, dangerous voltages flow through many parts of  
the meter, including: Terminals and any connected CTs (current transformers) and PTs  
(potential transformers), all input/output modules and their circuits. All primary and  
secondary circuits can, at times, produce lethal voltages and currents. Avoid contact with  
any current-carrying surfaces.  
Do not use the meter or any I/O output device for primary protection or in an energy-  
limiting capacity. The meter can only be used as secondary protection. Do not use the  
meter for applications where failure of the meter may cause harm or death. Do not use the  
meter for any application where there may be a risk of fire.  
All meter terminals should be inaccessible after installation.  
Do not apply more than the maximum voltage the meter or any attached device can  
withstand. Refer to meter and/or device labels and to the Specifications for all devices  
before applying voltages. Do not hi-pot/dielectric test any outputs, inputs or  
communications terminals.  
GE recommends the use of shorting blocks and fuses for voltage leads and power supply  
to prevent hazardous voltage conditions or damage to CTs, if the meter needs to be  
removed from service. CT grounding is optional.  
If the equipment is used in a manner not specified by the manufacturer, the protection  
provided by the equipment may be impaired.  
Note  
There is no required preventive maintenance or inspection necessary for safety. however,  
any repair or maintenance should be performed by the factory.  
DISCONNECT DEVICE: The following part is considered the equipment disconnect  
device.  
A switch or circuit-breaker must be included in the end-use equipment or building  
installation. The switch shall be in close proximity to the equipment and within easy  
reach of the operator. The switch shall be marked as the disconnecting device for the  
equipment.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.2.2 CT Leads Terminated to Meter  
The EPM 6000 is designed to have current inputs wired in one of three ways. The figure  
below shows the most typical connection, where CT Leads are terminated to the meter at  
the current gills. This connection uses nickel-plated brass studs (current gills) with screws  
at each end. This connection allows the CT wires to be terminated using either an “O” or a  
“U” lug. Tighten the screws with a #2 Phillips screwdriver.  
Current gills  
(nickel-plated  
brass stud)  
FIGURE 3–5: CT Leads Terminated to Meter  
Wiring diagrams are detailed in Wiring Diagrams on page 3–9. Communications  
connections are detailed in Communications Setup on page 3–19.  
3.2.3 CT Leads Pass-Through (No Meter Termination)  
The second method allows the CT wires to pass through the CT Inputs without terminating  
at the meter. In this case, remove the current gills and place the CT wire directly through  
the CT opening. The opening will accommodate up to 0.177" / 4.5 mm maximum diameter  
CT wire.  
3–6  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
CT wire passing  
through the meter  
Current gills  
removed  
FIGURE 3–6: Pass-Through Wire Electrical Connection  
3.2.4 Quick Connect Crimp CT Terminations  
For quick termination or for portable applications, a quick connect crimp CT connection  
can also be used.  
Crimp CT  
terminations  
FIGURE 3–7: Quick Connect Electrical Connection  
3.2.5 Voltage and Power Supply Connections  
Voltage Inputs are connected to the back of the unit via a optional wire connectors. The  
connectors accommodate up to AWG#12 / 2.5 mm wire.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
Power supply  
inputs  
RS485 outputs  
(do not place voltage  
on these terminals!)  
Voltage  
inputs  
FIGURE 3–8: Voltage Connection  
3.2.6 Ground Connections  
The EPM 6000 ground terminals (  
) should be connected directly to the installation's  
protective earth ground. Use 2.5 mm wire for this connection.  
GE recommends the use of fuses on each of the sense voltages and on the control power,  
even though the wiring diagrams in this chapter do not show them.  
Use a 0.1 A fuse on each voltage input.  
Use a 3 A fuse on the power supply.  
3–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3 Wiring Diagrams  
3.3.1 Description  
Choose the diagram that best suits your application and maintains the CT polarity.  
1. Three-phase, four-wire system Wye with direct voltage, 3 element.  
2. Three-phase, four-wire system Wye with direct voltage, 2.5 element.  
3. Three-phase, four-wire Wye with PTs, 3 element.  
4. Three-phase, four-wire Wye with PTs, 2.5 element.  
5. Three-phase, three-wire Delta with direct voltage.  
6. Three-phase, three-wire Delta with PTs.  
7. Current-only measurement (three-phase).  
8. Current-only measurement (dual-phase).  
9. Current-only measurement (single-phase).  
These diagrams are indicated in the sections following.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.2 Wye, 4-Wire with no PTs and 3 CTs, 3 Element  
For this wiring type, select 3 EL WYE (3-element Wye) in the meter programming setup.  
FIGURE 3–9: 4-Wire Wye with no PTs and 3 CTs, 3 Element  
3–10  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.3 Wye, 4-Wire with no PTs and 3 CTs, 2.5 Element  
For this wiring type, select 2.5EL WYE (2.5-element Wye) in the meter programming setup.  
FIGURE 3–10: 4-Wire Wye with no PTs and 3 CTs, 2.5 Element  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.4 Wye, 4-Wire with 3 PTs and 3 CTs, 3 Element  
For this wiring type, select 3 EL WYE (3-element Wye) in the meter programming setup.  
FIGURE 3–11: 4-Wire Wye with 3 PTs and 3 CTs, 3 Element  
3–12  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.5 Wye, 4-Wire with 2 PTs and 3 CTs, 2.5 Element  
For this wiring type, select 2.5EL WYE (2.5-element Wye) in the meter programming setup.  
FIGURE 3–12: 4-Wire Wye with 2 PTs and 3 CTs, 2.5 Element  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.6 Delta, 3-Wire with no PTs and 2 CTs  
For this wiring type, select 2 Ct dEL (2 CT Delta) in the meter programming setup.  
FIGURE 3–13: 3-Wire Delta with no PTs and 2 CTs  
3–14  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.7 Delta, 3-Wire with 2 PTs and 2 CTs  
For this wiring type, select 2 Ct dEL (2 CT Delta) in the meter programming setup.  
FIGURE 3–14: 3-Wire Delta with 2 PTs and 2 CTs  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.8 Current-Only Measurement (Three-Phase)  
For this wiring type, select 3 EL WYE (3 Element Wye) in the meter programming setup.  
Note  
Even if the meter is used only for current measurement, the unit requires a AN volts  
reference. Please ensure that the voltage input is attached to the meter. AC control power  
can be used to provide the reference signal.  
3–16  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.9 Current-Only Measurement (Dual-Phase)  
For this wiring type, select 3 EL WYE (3 Element Wye) in the meter programming setup.  
Note  
Even if the meter is used only for current measurement, the unit requires a AN volts  
reference. Please ensure that the voltage input is attached to the meter. AC control power  
can be used to provide the reference signal.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.3.10 Current-Only Measurement (Single-Phase)  
For this wiring type, select 3 EL WYE (3 Element Wye) in the meter programming setup.  
Note  
Even if the meter is used only for current measurement, the unit requires a AN volts  
reference. Please ensure that the voltage input is attached to the meter. AC control power  
can be used to provide the reference signal.  
3–18  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
3.4 Communications Setup  
3.4.1 Description  
The EPM 6000 Power Metering System provides two independent communication ports.  
The first port, COM1, is an optical IrDA port. The second port, COM2, provides RS485  
communication via the Modbus protocol.  
3.4.2 IrDA COM1 Port  
The COM1 IrDA port is located on the meter faceplate. The IrDA port allows the unit to be  
set up and programmed using a remote laptop without the need for a communication  
cable. Just point at the meter with an IrDA-equipped computer to configure it.  
Use the GE Communicator software package that works with the EPM 6000 IrDA port to  
configure the port and poll readings. Refer to the GE Communicator User Manual for details  
on programming and accessing readings.  
Wireless Communication  
Direct PC Interface  
Modbus  
Serial RS485  
Master Host  
FIGURE 3–15: Simultaneous Dual Communications Paths  
Settings for the COM1 IrDA port are configured using GE Communicator software. This port  
communicates via the Modbus ASCII protocol only.  
3.4.3 RS485 COM2 Port  
The EPM 6000 COM2 port uses standard 2-wire, half-duplex RS485 communications. The  
RS485 connector is located on the back face of the meter. A connection can easily be  
established to a master device or to other slave devices, as indicated below.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
3–19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 3: INSTALLATION  
FIGURE 3–16: RS485 Communications Installation  
The EPM 6000 COM2 port can be programmed through the faceplate or with software.  
The standard RS485 port settings are:  
Address: 001 to 247  
Baud rate: 9.6, 19.2, 38.4, or 57.6 kbps  
Protocol: Modbus RTU, Modbus ASCII, or DNP 3.0  
3–20  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GE Consumer & Industrial  
Multilin  
EPM 6000 Multi-function Power  
Metering System  
Chapter 4: Using the Meter  
Using the Meter  
4.1 Front Panel Interface  
4.1.1 Description  
The EPM 6000 Power Metering System can be configured and a variety of functions can be  
accomplished simply by using the elements and the buttons on the meter faceplate. This  
chapter will review front panel navigation. Complete navigation maps can be found in  
Navigation Maps on page 6–1.  
4.1.2 Faceplate Elements  
The meter faceplate elements are described below.  
Reading Type Designator: indicates type of reading.  
IrDA Communication Port: COM1 port for wireless communications.  
% of Load Bar: graphic display of current as a percentage of the load.  
Parameter Designator: indicates the reading displayed.  
Watt-Hour Pulse: energy pulse output to test accuracy.  
Scale Selector: “kilo” or “mega” multiplier of displayed readings.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
Parameter  
designator  
Reading  
type indicator  
IRDA communications  
port  
Watt-hour  
pulse  
% of Load Bar  
FIGURE 4–1: EPM 6000 Faceplate Elements  
4.1.3 Faceplate Buttons  
The following functions can be performed using the MENU, ENTER, DOWN and RIGHT  
buttons:  
View meter information  
Enter display modes  
Configure parameters (password protected)  
Perform resets  
Perform LED checks  
Change settings  
View parameter values  
Scroll parameter values  
View limit states  
The faceplate buttons function as follows:  
Enter button: Press and release the ENTER button to select one of four display  
modes: operating mode (default), reset mode (press ENTER once, followed by  
DOWN), settings mode (press ENTER twice, followed by DOWN), and configuration  
mode (press ENTER three times, followed by DOWN).  
Menu button: Press and release to navigate the configuration menu and again to  
return to the main menu.  
Right button: Press the RIGHT button to enter the menus for the operate, reset,  
settings, and configuration mode.  
Down button: Press the DOWN button to scroll through the menus for each of the  
modes.  
In operating mode (default), the faceplate buttons are used to view parameter values. In  
reset mode, the buttons are used to restore maximum and minimum values. In settings  
mode, the buttons are used to view settings parameters and change the scroll setting. In  
configuration mode, the buttons are used to change meter configuration (in this case, they  
can be password protected).  
4–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
MENU  
button  
ENTER  
button  
RIGHT  
button  
DOWN  
button  
FIGURE 4–2: EPM 6000 Faceplate Buttons  
4.1.4 Percentage of Load Bar  
The 10-segment LED bar graph at the bottom of the EPM 6000 front panel provides a  
graphic representation of current. The segments illuminate according to the load shown in  
the table below. When the load is greater than 120% of full-load, all segments flash “ON”  
for 1.5 seconds and “OFF” for 0.5 seconds.  
Table 4–1: % of Load Bar Segments  
Segments  
Load % Full Load  
no load  
none  
1
1%  
1 to 2  
1 to 3  
1 to 4  
1 to 5  
1 to 6  
1 to 7  
1 to 8  
1 to 9  
1 to 10  
15%  
30%  
45%  
60%  
72%  
84%  
96%  
108%  
120%  
>120%  
all blinking  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
4.1.5 Watt-Hour Accuracy Testing (Verification)  
To be certified for revenue metering, power providers and utility companies have to verify  
that the billing energy meter will perform to the stated accuracy. To confirm the meter's  
performance and calibration, power providers use field test standards to ensure that the  
unit's energy measurements are correct. Since the EPM 6000 is a traceable revenue meter,  
it contains a utility grade test pulse that can be used to gate an accuracy standard. This is  
an essential feature required of all billing grade meters.  
FIGURE 4–3: Using the Watt-Hour Test Probe  
The following table lists the watt-hour pulse constants for accuracy testing.  
Table 4–2: EPM 6000 Accuracy Test Constants  
Voltage Level  
Below 150 V  
Above 150 V  
Class 10 Models  
0.2505759630  
1.0023038521  
Class 2 Models  
0.0501151926  
0.2004607704  
4–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
4.2 Configuring the Meter via the Front Panel  
4.2.1 Overview  
The EPM 6000 front panel can be used to configure the meter. The EPM 6000 has three  
modes: operating mode (default), IrDA reset mode, and configuration mode. The MENU,  
ENTER, DOWN and RIGHT buttons navigate through the modes and navigate through all  
the screens in each mode.  
A typical setup will be demonstrated in this section; other settings are possible. Complete  
navigation maps for the display modes are shown in Navigation Maps on page 6–1. The  
meter can also be configured through software.  
4.2.2 Start Up  
Upon power-up, the meter will display a sequence of screens. The sequence includes the  
following screens:  
Lamp test screen where all LEDs are lighted;  
Lamp test screen where all digits are lighted;  
Firmware screen showing build number;  
Error screen (if an error exists).  
The EPM 6000 will then auto-scroll the parameter designators on the right side of the front  
panel. Values are displayed for each parameter. The KILO or MEGA LED will illuminate,  
showing the scale for the Wh, varh and VAh readings.  
An example of a Wh reading is shown below.  
FIGURE 4–4: Typical Wh Reading  
The EPM 6000 will continue to scroll through the parameter designators, providing  
readings until one of the buttons on the front panel is pushed, causing the meter to enter  
one of the other modes.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
4.2.3 Main Menu  
The following procedure describes how the navigate the main menu.  
Z Push the MENU button from any of the auto-scrolling readings to  
display the main menu screens.  
The string for reset mode (rSt) will be blinking in the “A” Screen.  
Z Press the DOWN key to scroll the menu and display the  
configuration mode string (CFG) in the “A” screen.  
Z Press the DOWN key again to scroll the menu and display the  
operating mode string in the “A” screen.  
Z Press the DOWN key again to scroll back to reset mode (rSt).  
Z Press ENTER from the main menu to enter the mode displayed on  
the “A” screen. See Main Menu Screens on page 6–2 for navigation  
details.  
FIGURE 4–5: Main Menu Screens  
4.2.4 Reset Mode and Password Entry  
The following procedure describes how the navigate the reset mode menu.  
Z Press ENTER while the “A” screen is in reset mode (i.e., the “A”  
screen displays rSt).  
The rSt ALL? no message will appear. The rSt ALL? function  
resets all maximum and minimum values.  
Z Press ENTER to continue scrolling through the main menu.  
The DOWN button does not change the screen.  
4–6  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
Z Press the RIGHT button to display the rSt ALL? YES message.  
Resetting the maximum and minimum value requires entry of a four-digit password, if  
enabled in software.  
Z Press ENTER to display the password screen.  
If password is enabled in the software, the screen displays the PASS message in the “A”  
screen and 4 dashes in the “B” screen, with the left-most digit flashing.  
Z Using the DOWN button, select 0 to 9 for the flashing digit.  
Z When the desired number appears, use the RIGHT button to select  
it and move to the next digit.  
Z When all four password digits have been selected, press ENTER.  
If the correct password has been entered, the rSt ALL donE message appears and the  
screen returns to auto-scroll the parameters.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
If an incorrect password has been entered, the PASS ---- FAIL message appears and  
the screen returns to the rSt ALL? YES message.  
4–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
4.3 Changing Settings in Configuration Mode  
4.3.1 Description  
The following procedure describes how the navigate the configuration mode menu.  
Z Press the MENU Button from any of the auto-scrolling readings.  
Z Press DOWN to display the configuration mode (CFG) in the “A”  
screen.  
w
Press ENTER to scroll through the configuration parameters,  
starting at the SCrL Ct Pt screen.  
Z Push the DOWN Button to scroll all the parameters: scroll, CT, PT,  
connection (Cnct) and port.  
The active parameter is always flashing and displayed in the “A”  
screen.  
4.3.2 Configuring the Scroll Feature  
Use the following procedure to configure the scroll feature.  
Z Press the ENTER button to display the SCrL no message.  
Z Press the RIGHT button to change the display to SCrL YES as  
shown below.  
FIGURE 4–6: Scroll Mode Configuration  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
When in scroll mode, the unit scrolls each parameter for 7 seconds on and 1 second off.  
The meter can be configured through software to only display selected screens. In this  
case, it will only scroll the selected displays.  
Z Push ENTER to select YES or no.  
Z Scroll to the CT parameters screen.  
4.3.3 Programming the Configuration Mode Screens  
Use the following procedure to program the screen for configuration mode.  
Z Press the DOWN or RIGHT button (for example, from the Ct-n  
message below) to display the password screen, if enabled in the  
software.  
Z Use the DOWN and RIGHT buttons to enter the correct password  
(refer to Reset Mode and Password Entry on page 4–6 for steps on  
password entry).  
Z Once the correct password is entered, push ENTER.  
The Ct-n message will reappear, the PRG faceplate LED will flash,  
and the first digit of the “B” screen will also flash.  
Z Use the DOWN button to change the first digit.  
Z Use the RIGHT button to select and change the successive digits.  
Z When the new value is entered, push ENTER twice.  
This will display the Stor ALL? no screen.  
Z Use the RIGHT button to scroll to change the value from no to YES.  
Z When the Stor ALL? YES message is displayed, press ENTER to  
change the setting.  
4–10  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
The Stor ALL donE message will appear and the meter will reset.  
4.3.4 Configuring the CT Setting  
Use the following procedure to program the CT setting.  
Z Push the DOWN Button to scroll through the configuration mode  
parameters.  
Press ENTER when Ct is the active parameter (i.e. it is in the “A” screen and flashing).  
This will display the and the Ct-n (CT numerator) screen.  
Z Press ENTER again to change to display the Ct-d (CT denominator)  
screen.  
The Ct-d value is preset to a 1 or 5 A at the factory and cannot be changed.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
Z Press ENTER again to select the to Ct-S (CT scaling) value.  
The Ct-S value can be “1”, “10”, or “100”. Refer to Programming the Configuration Mode  
Screens on page 4–10 for instructions on changing values.  
Note  
The value for amps is a product of the Ct-n and the Ct-S values.  
Example settings for the Ct-S value are shown below:  
200/5 A: set the Ct-n value for “200” and the Ct-S value for “1”  
800/5 A: set the Ct-n value for “800” and the Ct-S value for “1”  
2000/5 A: set the Ct-n value for “2000” and the Ct-S value for “1”.  
10000/5 A: set the Ct-n value for “1000” and the Ct-S value for “10”.  
Z Press ENTER to scroll through the other CFG parameters.  
Pressing DOWN or RIGHT displays the password screen (see Reset  
Mode and Password Entry on page 4–6 for details).  
Z Press MENU to return to the main configuration menu.  
Note  
Ct-n and Ct-S are dictated by primary current. Ct-d is secondary current.  
4.3.5 Configuring the PT Setting  
Use the following procedure to program the PT setting.  
Z Push the DOWN Button to scroll through the configuration mode  
parameters.  
Z Press ENTER when Pt is the active parameter (i.e. it is in the “A”  
screen and flashing).  
4–12  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
This will display the and the Pt-n (PT numerator) screen.  
Z Press ENTER again to change to display the Pt-d (PT denominator)  
screen.  
Z Press ENTER again to select the to Pt-S (PT scaling) value.  
The Pt-S value can be “1”, “10”, or “100”. Refer to Programming the Configuration Mode  
Screens on page 4–10 for instructions on changing values.  
Example settings for the Pt-n, Pt-d, and Pt-S values are shown below:  
14400/120 V (reads 14400 V): set Pt-n to “1440”, Pt-d to “120”, and Pt-S  
to “10”  
138000/69 V (reads 138000 V): set Pt-n to “1380”, Pt-d to “69”, and Pt-S  
to “100”  
345000/115 V (reads 347000 V): set Pt-n to “3450”, Pt-d to “115”, and  
Pt-S to “100”  
Z Press ENTER to scroll through the other CFG parameters.  
Z Press DOWN or RIGHT to display the password screen (see Reset  
Mode and Password Entry on page 4–6 for details).  
Z Press MENU to return to the main configuration menu.  
Note  
Pt-n and Pt-S are dictated by primary voltage. Pt-d is secondary voltage.  
4.3.6 Configuring the Connection Setting  
Use the following procedure to program the connection (Cnct) setting.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
Z Push the DOWN Button to scroll through the configuration mode  
parameters.  
Z Press ENTER when Cnct is the active parameter (i.e. it is in the “A”  
screen and flashing).  
This will display the Cnct (connection) screen. The possible connection configurations are  
3-element Wye (3 EL WYE), 2.5-element Wye (2.5EL WYE), and 2 CT Delta (2 Ct deL), as  
shown below.  
3-Element Wye  
2.5-Element Wye  
2 CT Delta  
Z Press ENTER to scroll through the other CFG parameters.  
Z Press DOWN or RIGHT to display the password screen (see Reset  
Mode and Password Entry on page 4–6 for details).  
Z Press MENU to return to the main configuration menu.  
4.3.7 Configuring the Communication Port Setting  
Use the following procedure to program the communication port (POrt) settings.  
Z Push the DOWN Button to scroll through the configuration mode  
parameters.  
Z Press ENTER when POrt is the active parameter (i.e. it is in the “A”  
screen and flashing).  
The following parameters can be configured through the POrt menu  
The meter address (Adr, a 3-digit number).  
The baud rate (bAUd). Select from “9600”, “19.2”, “38.4”, and “57.6” for 9600, 19200,  
38400, and 57600 kbps, respectively.  
The communications protocol (Prot).  
4–14  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
Z Select “rtU” for Modbus RTU, “ASCI” for Modbus ASCII, and “dnP” for  
the DNP 3.0 protocol.  
The first POrt screen is meter address (Adr). The current address appears on the  
screen.  
Z Select three-digit number for the address.  
Refer to Programming the Configuration Mode Screens on page 4–  
10 for details on changing values.  
Address 005  
The next POrt screen is the baud rate (bAUd). The current baud rate is displayed  
on the “B” screen. Refer to Programming the Configuration Mode Screens on page  
4–10 for details on changing values. The possible baud rate screens are shown  
below.  
The final POrt screen is the communications protocol (Prot).  
The current protocol is displayed on the “B” screen.  
Refer to Programming the Configuration Mode Screens on page 4–10 for details on  
changing values. The three protocol selections are shown below.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
Z Press ENTER to scroll through the other CFG parameters.  
Z Press DOWN or RIGHT to display the password screen (see Reset  
Mode and Password Entry on page 4–6 for details).  
Z Press MENU to return to the main configuration menu.  
4–16  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
4.4 Operating Mode  
4.4.1 Description  
Operating mode is the EPM 6000 meter’s default mode. If scrolling is enabled, the meter  
automatically scrolls through these parameter screens after startup. The screen changes  
every 7 seconds. Scrolling is suspended for 3 minutes after any button is pressed.  
Push the DOWN button to scroll all the parameters in operating mode. The active  
parameter has the indicator light next to it on the right face of the meter. Push the RIGHT  
button to view additional displays for that parameter. A table of the possible displays in the  
operating mode is below. Refer to Operating Mode Screens on page 6–3 for a detailed  
navigation map of the operating mode.  
Table 4–3: Operating Mode Parameter Readings  
Parameter  
designator  
Possible display readings  
VOLTS_LN_  
MAX  
VOLTS_LN_  
MIN  
VOLTS_LN_  
THD  
VOLTS L-N  
VOLTS_LN  
VOLTS_LL_  
MAX  
VOLTS_LL_  
MIN  
VOLTS L-L  
AMPS  
VOLTS_LL  
AMPS_MAX  
W_VAR_PF  
AMPS_MIN  
AMPS_THD  
W_VAR_PF  
_MAX_POS  
W_VAR_PF  
_MIN_POS  
W_VAR_PF  
_MAX_NEG  
W/VAR/PF  
VA_FREQ_  
MAX  
VA/Hz  
VA_FREQ  
VA_FREQ_ MIN  
Wh  
KWH_REC  
KVARH_ POS  
KVAH  
KWH_DEL  
KWH_NET  
VARh  
VAh  
KVARH_ NEG  
KVARH_ NET  
Note  
Readings or groups of readings are skipped if not applicable to the meter type or hookup,  
or if explicitly disabled in the programmable settings.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
4–17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 4: USING THE METER  
4–18  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GE Consumer & Industrial  
Multilin  
EPM 6000 Multi-function Power  
Metering System  
Chapter 5: Communications  
Communications  
5.1 Modbus Communications  
5.1.1 Memory Map Description  
The Modbus memory map is divided into four primary sections:  
1. Fixed data registers: addresses 0001 to 0021.  
2. Meter data registers: addresses 1000 to 5003.  
The meter data registers read as “0” until the first readings are available or if  
the meter is not in operating mode. Writes to these registers will be accepted  
but will have no effect on the register.  
3. Command registers: addresses 20000 to 26011.  
The command registers always read as “0”. The may be written only when the  
meter is in a suitable mode. The registers return an illegal data address  
exception if a write is attempted in an incorrect mode.  
4. Programmable settings registers: addresses 30000 to 30026.  
All registers explicitly listed in the table read as “0”. Writes to these registers will be  
accepted but won’t actually the register, since it doesn’t exist.  
5.1.2 Memory Map  
The Modbus memory map is shown below. Additional notes indicated in the memory map  
(“See Note ...”) are located at the end of the table, as well as a description of the format  
codes.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
HEX  
ADDRESS  
UNITS OR  
RESOLUTION  
DESCRIPTION1 FORMAT  
RANGE6  
COMMENTS  
# REG  
FIXED DATA SECTION  
Identification Block  
read-only  
8
8
1
0000  
-
0007 Meter Name  
ASCII  
ASCII  
16 char  
16 char  
none  
0008  
-
000F Meter Serial Number  
none  
t = transducer model (1=yes, 0=no),  
vvv = V-switch(1 to 4)  
0010  
-
0010 Meter Type  
UINT16  
bit-mapped  
-------t -----vvv  
2
1
1
0011  
0013  
-
-
0012 Firmware Version  
0013 Map Version  
ASCII  
4 char  
none  
none  
UINT16  
0 to 65535  
0014  
-
0014 Meter Configuration  
UINT16  
UINT16  
bit-mapped  
0-65535  
-------- --ffffff  
none  
ffffff = calibration frequency (50 or 60)  
1
17  
8
0015  
0016  
0027  
-
-
-
0015 ASIC Version  
0026 Reserved  
002E GE Part Number  
ASCII  
16 char  
none  
47  
Block Size:  
read-only  
2
METER DATA SECTION  
Primary Readings Block, 6 cycles (IEEE Floating Point)  
2
2
2
6
0383  
0385  
0387  
-
-
-
0384 Watts, 3-Ph total  
0386 VARs, 3-Ph total  
0388 VAs, 3-Ph total  
FLOAT  
FLOAT  
FLOAT  
-9999 M to +9999 M  
-9999 M to +9999 M  
-9999 M to +9999 M  
watts  
VARs  
VAs  
Block Size:  
read-only  
Primary Readings Block, 60 cycles (IEEE Floating Point)  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
30  
03E7  
03E9  
03EB  
03ED  
03EF  
03F1  
03F3  
03F5  
03F7  
03F9  
03FB  
03FD  
03FF  
0401  
0403  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
03E8 Volts A-N  
03EA Volts B-N  
03EC Volts C-N  
03EE Volts A-B  
03F0 Volts B-C  
03F2 Volts C-A  
03F4 Amps A  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
0 to 9999 M  
volts  
volts  
volts  
volts  
volts  
volts  
amps  
amps  
amps  
watts  
VARs  
VAs  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
03F6 Amps B  
0 to 9999 M  
03F8 Amps C  
0 to 9999 M  
03FA Watts, 3-Ph total  
03FC VARs, 3-Ph total  
03FE VAs, 3-Ph total  
-9999 M to +9999 M  
-9999 M to +9999 M  
-9999 M to +9999 M  
-1.00 to +1.00  
0 to 65.00  
0400 Power Factor, 3-Ph total FLOAT  
none  
Hz  
0402 Frequency  
FLOAT  
FLOAT  
0404 Neutral Current  
0 to 9999 M  
amps  
Block Size:  
read-only  
Primary Energy Block  
2
2
0 to 99999999 or  
-99999999  
0 to  
0 to  
* Wh received & delivered always  
have opposite signs  
044B  
-
044C W-hours, Received  
SINT32  
SINT32  
Wh per energy format  
0 to 99999999 or  
-99999999  
* Wh received is positive for "view as  
load", delivered is positive for "view as  
generator"  
044D  
-
044E W-hours, Delivered  
Wh per energy format  
Wh per energy format  
2
2
2
044F  
0451  
-
-
0450 W-hours, Net  
0452 W-hours, Total  
SINT32  
SINT32  
-99999999 to 99999999  
0 to 99999999  
Wh per energy format * 5 to 8 digits  
* decimal point implied, per energy  
format  
0453  
-
0454 VAR-hours, Positive  
SINT32  
0 to 99999999  
VARh per energy format  
* resolution of digit before decimal  
point = units, kilo, or mega, per energy  
format  
2
2
0455  
0457  
-
-
0456 VAR-hours, Negative  
0458 VAR-hours, Net  
SINT32  
SINT32  
0 to -99999999  
VARh per energy format  
VARh per energy format  
-99999999 to 99999999  
5–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
HEX  
ADDRESS  
UNITS OR  
RESOLUTION  
DESCRIPTION1 FORMAT  
RANGE6  
COMMENTS  
# REG  
2
2
0459  
045B  
-
-
045A VAR-hours, Total  
045C VA-hours, Total  
SINT32  
SINT32  
0 to 99999999  
0 to 99999999  
VARh per energy format  
VAh per energy format * see note 10  
Block Size:  
18  
read-only  
Primary Demand Block (IEEE Floating Point)  
2
2
2
2
07CF  
07D1  
07D3  
-
07D0 Amps A, Average  
07D2 Amps B, Average  
07D4 Amps C, Average  
FLOAT  
FLOAT  
FLOAT  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
amps  
amps  
amps  
-
-
-
Positive Watts, 3-Ph,  
07D5  
07D7  
07D9  
07DB  
07D6  
FLOAT  
FLOAT  
FLOAT  
-9999 M to +9999 M  
-9999 M to +9999 M  
-9999 M to +9999 M  
-9999 M to +9999 M  
watts  
VARs  
watts  
VARs  
Average  
Positive VARs, 3-Ph,  
2
2
2
-
-
-
07D8  
Average  
Negative Watts, 3-Ph,  
07DA  
Average  
Negative VARs, 3-Ph,  
07DC  
FLOAT  
FLOAT  
Average  
2
2
2
07DD  
07DF  
-
-
07DE VAs, 3-Ph, Average  
-9999 M to +9999 M  
-1.00 to +1.00  
VAs  
07E0 Positive PF, 3-Ph, Average FLOAT  
Negative PF, 3-PF,  
none  
07E1  
-
07E2  
FLOAT  
-1.00 to +1.00  
none  
Average  
20  
Block Size:  
read-only  
Primary Minimum Block (IEEE Floating Point)  
2
2
2
2
2
2
2
0BB7  
0BB9  
0BBB  
0BBD  
0BBF  
0BC1  
-
0BB8 Volts A-N, Minimum  
0BBA Volts B-N, Minimum  
0BBC Volts C-N, Minimum  
0BBE Volts A-B, Minimum  
0BC0 Volts B-C, Minimum  
0BC2 Volts C-A, Minimum  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
volts  
volts  
volts  
volts  
volts  
volts  
-
-
-
-
-
Amps A, Minimum Avg  
0BC3  
0BC5  
0BC7  
0BC9  
0BCB  
0BCD  
0BCF  
0BD1  
-
-
-
-
-
-
-
-
0BC4  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
0 to 9999 M  
amps  
amps  
amps  
watts  
VARs  
watts  
VARs  
VAs  
Demand  
Amps B, Minimum Avg  
2
2
2
2
2
2
2
2
0BC6  
0 to 9999 M  
Demand  
Amps C, Minimum Avg  
0BC8  
0 to 9999 M  
Demand  
Positive Watts, 3-Ph,  
0BCA  
0 to +9999 M  
0 to +9999 M  
0 to +9999 M  
0 to +9999 M  
-9999 M to +9999 M  
Minimum Avg Demand  
Positive VARs, 3-Ph,  
0BCC  
Minimum Avg Demand  
Negative Watts, 3-Ph,  
0BCE  
Minimum Avg Demand  
Negative VARs, 3-Ph,  
0BD0  
Minimum Avg Demand  
VAs, 3-Ph, Minimum Avg  
0BD2  
Demand  
Positive Power Factor, 3-  
0BD4 Ph, Minimum Avg  
Demand  
Negative Power Factor, 3-  
0BD6 Ph, Minimum Avg  
Demand  
0BD3  
-
FLOAT  
-1.00 to +1.00  
none  
none  
2
0BD5  
0BD7  
-
-
FLOAT  
FLOAT  
-1.00 to +1.00  
0 to 65.00  
2
0BD8 Frequency, Minimum  
Hz  
34  
Block Size:  
read-only  
Primary Maximum Block (IEEE Floating Point)  
2
2
2
2
2
2
2
0C1B  
0C1D  
0C1F  
0C21  
0C23  
0C25  
-
0C1C Volts A-N, Maximum  
0C1E Volts B-N, Maximum  
0C20 Volts C-N, Maximum  
0C22 Volts A-B, Maximum  
0C24 Volts B-C, Maximum  
0C26 Volts C-A, Maximum  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
volts  
volts  
volts  
volts  
volts  
volts  
-
-
-
-
-
Amps A, Maximum Avg  
0C27  
0C29  
0C2B  
0C2D  
-
-
-
-
0C28  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
0 to 9999 M  
0 to 9999 M  
0 to 9999 M  
0 to +9999 M  
amps  
amps  
amps  
watts  
Demand  
Amps B, Maximum Avg  
2
2
2
0C2A  
Demand  
Amps C, Maximum Avg  
0C2C  
Demand  
Positive Watts, 3-Ph,  
0C2E  
Maximum Avg Demand  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
HEX  
ADDRESS  
UNITS OR  
RESOLUTION  
DESCRIPTION1 FORMAT  
RANGE6  
COMMENTS  
# REG  
Positive VARs, 3-Ph,  
FLOAT  
2
2
2
2
2
0C2F  
0C31  
0C33  
0C35  
-
-
-
-
0C30  
0C32  
0C34  
0C36  
0 to +9999 M  
VARs  
Maximum Avg Demand  
Negative Watts, 3-Ph,  
FLOAT  
0 to +9999 M  
watts  
VARs  
VAs  
Maximum Avg Demand  
Negative VARs, 3-Ph,  
FLOAT  
0 to +9999 M  
Maximum Avg Demand  
VAs, 3-Ph, Maximum Avg  
FLOAT  
-9999 M to +9999 M  
Demand  
Positive Power Factor, 3-  
0C37  
-
0C38 Ph, Maximum Avg  
FLOAT  
-1.00 to +1.00  
none  
Demand  
Negative Power Factor, 3-  
2
0C39  
0C3B  
-
-
0C3A Ph, Maximum Avg  
Demand  
FLOAT  
FLOAT  
-1.00 to +1.00  
0 to 65.00  
none  
Hz  
2
0C3C Frequency, Maximum  
34  
Block Size:  
read-only  
7, 13  
THD Block  
1
1
1
1
1
1
1
0F9F  
0FA0  
0FA1  
0FA2  
0FA3  
0FA4  
-
0F9F Volts A-N, %THD  
0FA0 Volts B-N, %THD  
0FA1 Volts C-N, %THD  
0FA2 Amps A, %THD  
0FA3 Amps B, %THD  
0FA4 Amps C, %THD  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
0 to 9999, or 65535  
0 to 9999, or 65535  
0 to 9999, or 65535  
0 to 9999, or 65535  
0 to 9999, or 65535  
0 to 9999, or 65535  
0.1%  
0.1%  
0.1%  
0.1%  
0.1%  
0.1%  
-
-
-
-
-
Phase A Current 0th  
0FA5  
0FA6  
0FA7  
0FA8  
0FA9  
0FAA  
0FAB  
0FAC  
0FAD  
0FAE  
0FAF  
0FB0  
-
-
-
-
-
-
-
-
-
-
-
-
0FA5  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
0 to 65535  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
harmonic magnitude  
Phase A Current 1st  
1
1
1
1
1
1
1
1
1
1
1
0FA6  
harmonic magnitude  
Phase A Current 2nd  
0FA7  
harmonic magnitude  
Phase A Current 3rd  
0FA8  
harmonic magnitude  
Phase A Current 4th  
0FA9  
harmonic magnitude  
Phase A Current 5th  
0FAA  
harmonic magnitude  
Phase A Current 6th  
0FAB  
harmonic magnitude  
Phase A Current 7th  
0FAC  
harmonic magnitude  
Phase A Voltage 0th  
0FAD  
harmonic magnitude  
Phase A Voltage 1st  
0FAE  
harmonic magnitude  
Phase A Voltage 2nd  
0FAF  
harmonic magnitude  
Phase A Voltage 3rd  
0FB0  
harmonic magnitude  
Phase B Current  
8
4
8
0FB1  
0FB9  
0FBD  
0FC5  
-
-
-
-
0FB8  
same as Phase A Current 0th to 7th harmonic magnitudes  
same as Phase A Voltage 0th to 3rd harmonic magnitudes  
same as Phase A Current 0th to 7th harmonic magnitudes  
same as Phase A Voltage 0th to 3rd harmonic magnitudes  
Phase B Voltage  
0FBC  
Phase C Current  
0FC4  
Phase C Voltage  
0FC8  
4
42  
Block Size:  
read-only  
14  
Phase Angle Block  
1
1
1
1
1
1
6
1003  
1004  
1005  
1006  
1007  
1008  
-
1003 Phase A Current  
1004 Phase B Current  
1005 Phase C Current  
1006 Angle, Volts A-B  
1007 Angle, Volts B-C  
1008 Angle, Volts C-A  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
-1800 to +1800  
-1800 to +1800  
-1800 to +1800  
-1800 to +1800  
-1800 to +1800  
-1800 to +1800  
0.1 degree  
0.1 degree  
0.1 degree  
0.1 degree  
0.1 degree  
0.1 degree  
-
-
-
-
-
Block Size:  
5–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
HEX  
ADDRESS  
UNITS OR  
RESOLUTION  
DESCRIPTION1 FORMAT  
RANGE6  
COMMENTS  
# REG  
read-only  
Status Block  
1
exnpch = EEPROM block OK flags  
(e=energy, x=max, n=min,  
p=programmable settings,  
c=calibration, h=header),  
1387  
-
1387 Meter Status  
UINT16  
bit-mapped  
--exnpch ssssssss  
ssssssss = state (1=Run, 2=Limp,  
10=Prog Set Update via buttons,  
11=Prog Set Update via IrDA, 12=Prog  
Set Update via COM2)  
1
high byte is setpt 1, 0=in, 1=out  
low byte is setpt 2, 0=in, 1=out  
7
1388  
1389  
-
1388  
UINT16  
UINT32  
bit-mapped  
87654321 87654321  
4 msec  
Limits Status  
2
4
-
138A Time Since Reset  
0 to 4294967294  
wraps around after max count  
Block Size:  
4
COMMANDS SECTION  
9
write-only  
Block Size:  
Resets Block  
5
1
1
4E1F  
-
4E1F Reset Max/Min Blocks  
UINT16  
UINT16  
password  
Reset Energy  
Accumulators  
5
4E20  
-
4E20  
password  
2
read/conditional write  
Meter Programming Block  
Initiate Programmable  
1
1
5
55EF  
-
55EF  
UINT16  
UINT16  
meter enters PS update mode  
password  
Settings Update  
Terminate Programmable  
Settings Update  
meter leaves PS update mode via  
reset  
55F0  
-
55F0  
any value  
3
1
1
1
Calculate Programmable  
Settings Checksum  
meter calculates checksum on RAM  
copy of PS block  
55F1  
55F2  
55F3  
-
-
-
55F1  
55F2  
55F3  
UINT16  
UINT16  
UINT16  
3
Programmable Settings  
read/write checksum register; PS  
3
8
Checksum  
block saved in EEPROM on write  
3
0000 to 9999  
write-only register; always reads zero  
Write New Password  
Initiate Meter Firmware  
Reprogramming  
1
6
5
59D7  
-
59D7  
UINT16  
password  
Block Size:  
read/write  
Other Commands Block  
1
1
causes a watchdog reset, always  
reads 0  
5
61A7  
-
61A7 Force Meter Restart  
UINT16  
password  
Block Size:  
read/write  
Encryption Block  
12  
12  
Perform a Secure  
Operation  
encrypted command to read  
658F  
-
659A  
UINT16  
password or change meter type  
Block Size:  
PROGRAMMABLE SETTINGS SECTION  
Basic Setups Block  
write only in PS update mode  
1
high byte is denominator (1 or 5, read-  
only),  
low byte is multiplier (1, 10, or 100)  
CT multiplier &  
dddddddd  
mmmmmmmm  
752F  
-
752F  
UINT16  
bit-mapped  
denominator  
1
1
7530  
7531  
-
7530 CT numerator  
7531 PT numerator  
UINT16  
UINT16  
1 to 9999  
1 to 9999  
none  
none  
-
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
HEX  
ADDRESS  
UNITS OR  
RESOLUTION  
DESCRIPTION1 FORMAT  
RANGE6  
COMMENTS  
# REG  
1
1
7532  
-
7532 PT denominator  
UINT16  
1 to 9999  
none  
MMMMmmmmmmmm is PT multiplier  
(1, 10, 100, 1000),  
mmmmmmmm  
MMMMhhhh  
7533  
7534  
-
7533 PT multiplier & hookup  
UINT16  
UINT16  
bit-mapped  
bit-mapped  
hhhh is hookup enumeration (0 = 3  
element wye[9S], 1 = delta 2 CTs[5S], 3  
= 2.5 element wye[6S])  
1
1
iiiiii = interval (5,15,30,60)  
b = 0-block or 1-rolling  
sss = # subintervals (1,2,3,4)  
-
-
7534 Averaging Method  
--iiiiii b----sss  
pppp = power scale (0-unit, 3-kilo, 6-  
mega, 8-auto)  
nn = number of energy digits (5-8 -->  
0-3)  
7535  
7535 Power & Energy Format UINT16  
bit-mapped  
bit-mapped  
pppp--nn -eee-ddd  
00000000 eeeeeeee  
eee = energy scale (0-unit, 3-kilo, 6-  
mega)  
ddd = energy digits after decimal  
point (0-6)  
See note 10.  
1
eeeeeeee = op mode screen rows  
on(1) or off(0), rows top to bottom are  
bits low order to high order  
Operating Mode Screen  
Enables  
7536  
7537  
-
-
7536  
UINT16  
7
1
753D Reserved  
g = enable alternate full scale  
bargraph current (1=on, 0=off)  
nn = number of phases for voltage &  
current screens (3=ABC, 2=AB, 1=A,  
0=ABC)  
s = scroll (1=on, 0=off)  
753E  
-
753E User Settings Flags  
UINT16  
bit-mapped  
---g--nn srp--wf-  
r = password for reset in use (1=on,  
0=off)  
p = password for configuration in use  
(1=on, 0=off)  
w = pwr dir (0-view as load, 1-view as  
generator)  
f = flip power factor sign (1=yes, 0=no)  
1
If non-zero and user settings bit g is  
set, this value replaces CT numerator  
in the full scale current calculation.  
Full Scale Current (for load  
% bargraph)  
753F  
-
753F  
UINT16  
0 to 9999  
none  
8
1
7540  
7548  
-
-
7547 Meter Designation  
7548 COM1 setup  
ASCII  
16 char  
none  
dddd = reply delay (* 50 msec)  
ppp = protocol (1-Modbus RTU, 2-  
Modbus ASCII, 3-DNP)  
UINT16  
bit-mapped  
----dddd -0100110  
1
bbb = baud rate (1-9600, 2-19200, 4-  
38400, 6-57600)  
7549  
-
7549 COM2 setup  
UINT16  
bit-mapped  
----dddd -ppp-bbb  
none  
1
1
754A  
754B  
-
-
754A COM2 address  
UINT16  
UINT16  
1 to 247  
use Modbus address as the identifier  
(see notes 7, 11, 12)  
754B Limit #1 Identifier  
0 to 65535  
1
1
Limit #1 Out High  
Setpoint for the "above" limit (LM1),  
see notes 11-12.  
754C  
754D  
754E  
754F  
-
-
-
-
754C  
SINT16  
-200.0 to +200.0  
-200.0 to +200.0  
-200.0 to +200.0  
-200.0 to +200.0  
0.1% of full scale  
0.1% of full scale  
0.1% of full scale  
0.1% of full scale  
Setpoint  
Threshold at which "above" limit  
clears; normally less than or equal to  
the "above" setpoint; see notes 11-12.  
754D Limit #1 In High ThresholdSINT16  
754E Limit #1 Out Low SetpointSINT16  
754F Limit #1 In Low Threshold SINT16  
1
1
Setpoint for the "below" limit (LM2),  
see notes 11-12.  
Threshold at which "below" limit  
clears; normally greater than or equal  
to the "below" setpoint; see notes 11-  
12.  
5–6  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
HEX  
ADDRESS  
UNITS OR  
RESOLUTION  
DESCRIPTION1 FORMAT  
RANGE6  
COMMENTS  
# REG  
5
5
7550  
-
-
-
-
-
-
-
7554 Limit #2  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
7555  
755A  
755F  
7564  
7569  
756E  
7559 Limit #3  
755E Limit #4  
7563 Limit #5  
7568 Limit #6  
756D Limit #7  
7572 Limit #8  
5
5
same as Limit #1  
same as Limit #1  
same as Limit #1  
5
5
5
68  
Block Size:  
SECONDARY READINGS SECTION  
Secondary Block  
read-only except as noted  
1
1
1
1
1
1
1
1
1
1
1
9C40  
9C41  
9C42  
9C43  
9C44  
9C45  
9C46  
9C47  
9C48  
9C49  
-
-
-
-
-
-
-
-
-
-
9C40 System Sanity Indicator UINT16  
0 or 1  
none  
volts  
volts  
volts  
amps  
amps  
amps  
watts  
VARs  
VAs  
0 indicates proper meter operation  
2047= 0, 4095= +150  
9C41 Volts A-N  
9C42 Volts B-N  
9C43 Volts C-N  
9C44 Amps A  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
2047 to 4095  
2047 to 4095  
2047 to 4095  
0 to 4095  
volts = 150 * (register - 2047) / 2047  
0= -10, 2047= 0, 4095= +10  
9C45 Amps B  
0 to 4095  
amps = 10 * (register - 2047) / 2047  
9C46 Amps C  
0 to 4095  
9C47 Watts, 3-Ph total  
9C48 VARs, 3-Ph total  
9C49 VAs, 3-Ph total  
0 to 4095  
0= -3000, 2047= 0, 4095= +3000  
watts, VARs, VAs =  
0 to 4095  
2047 to 4095  
3000 * (register - 2047) / 2047  
1047= -1, 2047= 0, 3047= +1  
pf = (register - 2047) / 1000  
9C4A  
-
9C4A Power Factor, 3-Ph total UINT16  
1047 to 3047  
0 to 2730  
none  
1
0= 45 or less, 2047= 60, 2730= 65 or  
more  
freq = 45 + ((register / 4095) * 30)  
9C4B  
-
9C4B Frequency  
UINT16  
Hz  
1
1
1
1
1
1
1
1
1
2
2
9C4C  
9C4D  
9C4E  
9C4F  
9C50  
9C51  
-
-
-
-
-
-
9C4C Volts A-B  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
UINT16  
2047 to 4095  
2047 to 4095  
2047 to 4095  
1 to 9999  
volts  
volts  
volts  
none  
none  
none  
2047= 0, 4095= +300  
9C4D Volts B-C  
volts = 300 * (register - 2047) / 2047  
9C4E Volts C-A  
9C4F CT numerator  
9C50 CT multiplier  
9C51 CT denominator  
CT = numerator * multiplier /  
denominator  
1, 10, 100  
1 or 5  
9C52  
9C53  
9C54  
9C55  
-
-
-
-
9C52 PT numerator  
9C53 PT multiplier  
UINT16  
UINT16  
UINT16  
UINT32  
1 to 9999  
none  
none  
none  
PT = numerator * multiplier /  
denominator  
1, 10, 100  
9C54 PT denominator  
9C56 W-hours, Positive  
1 to 9999  
0 to 99999999  
Wh per energy format * 5 to 8 digits  
* decimal point implied, per energy  
format  
9C57  
-
9C58 W-hours, Negative  
UINT32  
0 to 99999999  
Wh per energy format  
* resolution of digit before decimal  
point = units, kilo, or mega, per energy  
format  
2
2
9C59  
9C5B  
9C5D  
9C5F  
9C60  
-
-
-
-
-
9C5A VAR-hours, Positive  
9C5C VAR-hours, Negative  
9C5E VA-hours  
UINT32  
UINT32  
UINT32  
UINT16  
N/A  
0 to 99999999  
0 to 99999999  
0 to 99999999  
0 to 4095  
VARh per energy format  
VARh per energy format  
2
VAh per energy format * see note 10  
1
9C5F Neutral Current  
9CA2 Reserved  
amps  
none  
see Amps A/B/C above  
67  
1
N/A  
Reset Energy  
9CA3  
5
9CA3  
-
UINT16  
write-only register; always reads as 0  
Block Size:  
password  
Accumulators  
100  
5.1.3 Modbus Memory Map Notes  
The memory map notes are indicated by number below.  
1. All registers not explicitly listed in the table read as 0. Writes to these registers will be  
accepted but won't actually change the register (since it doesn't exist).  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
2. Meter Data Section items read as 0 until first readings are available or if the meter is  
not in operating mode. Writes to these registers will be accepted but won't actually  
change the register.  
3. Register valid only in programmable settings update mode. In other modes these  
registers read as 0 and return an illegal data address exception if a write is attempted.  
4. Meter command registers always read as 0. They may be written only when the meter  
is in a suitable mode. The registers return an illegal data address exception if a write is  
attempted in an incorrect mode.  
5. If the password is incorrect, a valid response is returned but the command is not  
executed. Use 5555 for the password if passwords are disabled in the programmable  
settings.  
6. M denotes a 1,000,000 multiplier.  
7. Not applicable to Shark 100, V-Switch 1, 2, or 3  
8. Writing this register causes data to be saved permanently in EEPROM. If there is an  
error while saving, a slave device failure exception is returned and programmable  
settings mode automatically terminates via reset.  
9. Reset commands make no sense if the meter state is LIMP. An illegal function  
exception will be returned.  
10. Energy registers should be reset after a format change.  
11. Entities to be monitored against limits are identified by Modbus address. Entities  
occupying multiple Modbus registers, such as floating point values, are identified by  
the lower register addrress. If any of the 8 limits is unused, set its identifier to zero. If  
the indicated Modbus register is not used or is a non-sensical entity for limits, it will  
behave as an unused limit.  
12. There are 2 setpoints per limit, one above and one below the expected range of  
values. LM1 is the "too high" limit, LM2 is "too low". The entity goes "out of limit" on  
LM1 when its value is greater than the setpoint. It remains "out of limit" until the value  
drops below the in threshold. LM2 works similarly, in the opposite direction. If limits in  
only one direction are of interest, set the in threshold on the "wrong" side of the  
setpoint. Limits are specified as % of full scale, where full scale is automatically set  
appropriately for the entity being monitored:  
current FS = CT numerator * CT multiplier  
voltage FS = PT numerator * PT multiplier  
power FS = CT numerator * CT multiplier * PT numerator * PT multiplier * 3 [ *  
SQRT(3) for delta hookup]  
frequency FS = 60 (or 50)  
power factor FS = 1.0  
percentage FS = 100.0  
angle FS = 180.0  
13. THD not available shows 65535 (=0xFFFF) in all THD and harmonic magnitude  
registers for the channel when V-switch=4. THD may be unavailable due to low V or I  
amplitude, or delta hookup (V only).  
5–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
14. All 3 voltage angles are measured for Wye and Delta hookups. For 2.5 Element, Vac is  
measured and Vab & Vbc are calculated. If a voltage phase is missing, the two  
voltage angles in which it participates are set to zero. A and C phase current angles  
are measured for all hookups. B phase current angle is measured for Wye and is zero  
for other hookups. If a voltage phase is missing, its current angle is zero.  
5.1.4 Modbus Memory Map Data Formats  
The date format codes indicated in the Format column of the Modbus memory map are  
described below:  
ASCII: ASCII characters packed 2 per register in high, low order and without any termination  
characters. For example, "Shark100" would be 4 registers containing 0x5378, 0x6172, 0x6B31,  
0x3030.  
SINT16 / UINT16: 16-bit signed / unsigned integer.  
SINT32 / UINT32: 32-bit signed / unsigned integer spanning 2 registers. The lower-addressed register  
is the high order half.  
FLOAT: 32-bit IEEE floating point number spanning 2 registers. The lower-addressed register is the  
high order half (i.e., contains the exponent).  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
5.2 DNP Point Mapping  
5.2.1 DNP Point Maps  
The DNP point mappings (DNP-11 to DNP-22) for the EPM 6000 Power Metering System  
shows the client-server relationship in GE Multilin’s use of the DNP protocol. The notes are  
listed after the table.  
Table 5–1: DNP Point Mapping (Sheet 1 of 2)  
Object  
Var  
Point  
Description  
Format  
Range/units  
Multiplier  
Comments  
Binary output states (Read via Class 0 only)  
0
1
Reset energy counters  
BYTE  
0
0
N/A  
10  
2
Change to Modbus RTU protocol  
BYTE  
N/A  
Control Relay Outputs  
0
1
Reset energy counters  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
See note 1  
12  
1
Change to Modbus RTU protocol  
See note 2  
Binary Counters (Primary; read via Class 0 only)  
0
1
2
3
4
Positive watt-hours  
Negative watt-hours  
Positive var-hours  
Negative var-hours  
Total VA-hours  
UINT32  
UINT32  
UINT32  
UINT32  
UINT32  
0 to 99999999 Wh  
0 to 99999999 Wh  
0 to 99999999 varh  
0 to 99999999 varh  
0 to 99999999 VAh  
See note 3  
See note 3  
See note 3  
See note 3  
See note 3  
See note 4  
See note 4  
See note 4  
See note 4  
See note 4  
20  
4
Analog Inputs (Secondary; read via Class 0 only)  
30  
5
0
Meter health  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
0 or 1  
N/A  
0 = OK  
1
Voltage A-N  
0 to 32767 V  
0 to 32767 V  
0 to 32767 V  
0 to 32767 V  
0 to 32767 V  
0 to 32767 V  
0 to 32767 A  
0 to 32767 A  
0 to 32767 A  
–32768 to +32767 W  
–32768 to +32767 var  
0 to 32767 VA  
–1000 to 1000  
0 to 9999 Hz  
(150/32768)  
(150/32768)  
(150/32768)  
(300/32768)  
(300/32768)  
(300/32768)  
(10/32768)  
(10/32768)  
(10/32768)  
(4500/32768)  
(4500/32768)  
(4500/32768)  
0.001  
See note 5  
See note 5  
See note 5  
See note 6  
See note 6  
See note 6  
See note 7  
See note 7  
See note 7  
2
Voltage B-N  
3
Voltage C-N  
4
Phase voltage A-B  
Phase voltage B-C  
Phase voltage C-A  
Phase A current  
5
6
7
8
Phase B current  
9
Phase C current  
10  
11  
12  
13  
14  
Total three-phase real power  
Total three-phase reactive power  
Total three-phase apparent power  
Total three-phase power factor  
Frequency  
0.01  
5–10  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
Table 5–1: DNP Point Mapping (Sheet 2 of 2)  
Object  
Var  
Point  
15  
Description  
Format  
Range/units  
Multiplier  
Comments  
Maximum average positive three-phase  
real power demand  
SINT16  
–32768 to +32767 W  
(4500/32768)  
Maximum average positive three-phase  
reactive power demand  
16  
17  
18  
19  
SINT16  
SINT16  
SINT16  
SINT16  
–32768 to +32767 var  
–32768 to +32767 W  
–32768 to +32767 var  
–32768 to +32767 VA  
(4500/32768)  
(4500/32768)  
(4500/32768)  
(4500/32768)  
Maximum average negative three-phase  
real power demand  
Maximum average negative three-phase  
reactive power demand  
Maximum average three-phase apparent  
power demand  
30  
5
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Phase A current angle  
Phase B current angle  
Phase C current angle  
Phase A-B voltage angle  
Phase B-C voltage angle  
Phase C-A voltage angle  
CT numerator  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
SINT16  
–1800 to 1800°  
–1800 to 1800°  
–1800 to 1800°  
–1800 to 1800°  
–1800 to 1800°  
–1800 to 1800°  
1 to 9999  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
See note 8  
CT multiplier  
1, 10, or 100  
1 or 5  
CT denominator  
PT numerator  
1 to 9999  
See note 9  
PT multiplier  
1, 10, or 100  
1 to 9999  
PT denominator  
Internal Indication  
80  
1
0
Device restart bit  
N/A  
N/A  
N/A  
See note 10  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
5.2.2 DNP Point Map Notes  
1. Responds to Function 5 (direct operate), Qualifier Code 7 or 8, Control Code 3, Count 0,  
On 1 ms, Off 0 ms ONLY.  
2. Responds to Function 6 (direct operate - no acknowledge), Qualifier Code 7, Control  
Code 3, Count 0, On 1 ms, Off 0 ms ONLY.  
3. The multiplier = 10(n–d), where n and d are derived from the energy format. n = 0, 3, or  
6 per energy format scale and d = number of decimal places.  
4. Example: If energy format = 7.2 K and watt-hours counter = 1234567, with n=3 (k-  
scale) and d = 2 (2 digits after decimal point), then multiplier = 10(3–2) = 10, so the  
energy is 1234567 × 10 Wh, or 12345.67 kWh.  
5. Values greater than 150 V secondary read 32767.  
6. Values greater than 300 V secondary read 32767.  
7. Values greater than 10 A secondary read 32767. For the 1 A model, the multiplier is (2/  
32768) and values above 2 A secondary read 32767.  
8. CT ratio = (numerator × multiplier) / denominator.  
9. PT ratio = (numerator × multiplier) / denominator.  
10. Clear via Function 2 (write), Qualifier Code 0.  
5–12  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
5.3 DNP Implementation  
5.3.1 Overview  
The EPM 6000 meter is capable of using RS485 as the physical layer. This is accomplished  
by connecting a PC to the meter with the RS485 connection on the back face.  
RS485 provides multi-drop network communication capabilities. Multiple meters may be  
placed on the same bus, allowing for a master device to communicate with any of the  
other devices. Appropriate network configuration and termination should be evaluated for  
each installation to insure optimal performance.  
The EPM 6000 communicates in DNP 3.0 using the following communications settings: 8  
data bits, no parity, and 1 stop bit. The EPM 6000 can be programmed to use several  
standard baud rates, including: 9600, 19200, 38400, and 57600 bps.  
5.3.2 Data Link Layer  
The Data Link Layer as implemented on the EPM 6000 is subject to the following  
considerations.  
The control byte contains several bits and a function code. Communications directed to  
the meter should be primary master messages (DIR = 1, PRM = 1). Responses will be  
primary non-master messages (DIR = 0, PRM = 1). Acknowledgment will be secondary non-  
master messages (DIR = 0, PRM = 0).  
The EPM 6000 supports all of function codes for DNP 3.0:  
Reset of Data Link (function 0): Before confirmed communication with a master  
device, the data link layer must be reset. This is necessary after a meter has been  
restarted, either by applying power or reprogramming the meter. The meter must  
receive a RESET command before confirmed communication may take place.  
Unconfirmed communication is always possible and does not require a RESET  
command.  
User Data (function 3): After receiving a request for USER DATA, the meter will  
generate a data link CONFIRMATION, signaling the reception of that request, before  
the actual request is processed. If a response is required, it will also be sent as  
UNCONFIRMED USER DATA.  
Unconfirmed User Data (function 4): After receiving a request for UNCONFIRMED  
USER DATA, a response will be sent as UNCONFIRMED USER DATA if required.  
DNP 3.0 allows for addresses from 0 to 65534 (0000h to FFFEh) for individual device  
identification, with the address 65535 (FFFFh) defined as an all stations address. Addresses  
are programmable from 0 to 247 (0000h to 00F7h), and recognize address 65535 (FFFFh)  
as the all stations address.  
5.3.3 Transport Layer  
Multiple-frame messages are not allowed for the EPM 6000. Each transport header should  
indicate it is both the first frame (FIR = 1) and the final frame (FIN = 1)  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
5.3.4 Application Layer  
The application layer contains a header (request or response header, depending on  
direction) and data.  
Application headers contain the application control field and the function code. For the  
application control field, multiple-fragment messages are not allowed for EPM 6000. Each  
application header should indicate it is both the first fragment (FIR = 1) as well as the final  
fragment (FIN = 1). Application-level confirmation is not used for the EPM 6000.  
The following function codes are implemented on the EPM 6000.  
Read (function 1): Objects supporting the READ function are Binary Outputs (object 10),  
Counters (object 20), Analog Inputs (object 30), and Class (object 60). These Objects  
may be read either by requesting a specific variation available as listed in DNP Point  
Mapping on page 5–10, or by requesting variation 0. A READ request for variation 0 of  
an object will be fulfilled with the variation listed in the DNP points table.  
Write (function 2): The Internal Indications object (object 80), supports the WRITE  
function.  
Direct Operate (function 5): The Control Relay Output object (object 12) supports the  
DIRECT OPERATE function.  
Direct Operate - No Acknowledgment (function 6): the Change to Modbus RTU  
protocol (object 12, point 1) supports the DIRECT OPERATE - NO ACKNOWLEDGMENT  
function.  
Response (function 129): Application responses from the EPM 6000 use the RESPONSE  
function.  
5–14  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
5.4 DNP Objects and Variations  
5.4.1 Description  
Application Data contains information about the object and variation, as well as the  
qualifier and range. The following objects and variations are supported:  
Binary Output Status (object 10, variation 2)  
Control Relay Output Block (object 12, variation 1)  
32-Bit Binary Counter Without Flag (object 20, variation 4)  
16-Bit Analog Input Without Flag (object 30, variation 5)  
Class 0 Data (object 60, variation 1)  
Internal Indications (object 80, variation 1)  
Read requests for variation 0 will be honored on the Binary Output Status, 32-Bit Binary  
Counter Without Flag, 16-Bit Analog Input Without Flag, and Class 0 Data variations.  
5.4.2 Binary Output Status (Object 10, Variation 2)  
The Binary Output Status supports the Read function (function 1). A READ request for  
Variation 0 will be responded to with Variation 2.  
The Binary Output Status is used to communicate the following metered data:  
Energy Reset State (point 0): EPM 6000 meters accumulate power generated or  
consumed over time as hour readings, which measure positive VAh and positive and  
negative Wh and varh. These readings may be reset using the Control Relay Output  
object (object 12). This Binary Output Status point reports whether the energy readings  
are in the process of being reset or if they are accumulating. Normally, readings are  
being accumulated and the state of this point is read as “0”. If the readings are in the  
process of being reset, the state of this point is read as “1”.  
Change to Modbus RTU Protocol State (point 1): EPM 6000 meters are capable of  
switching from the DNP protocol to the Modbus RTU protocol. This enables the user to  
update the device profile of the meter. This feature does not change the protocol  
setting, as reset returns the meter to DNP. A status reading of “1” equals open (or de-  
energized); a reading of “0” equals closed (or energized).  
5.4.3 Control Relay Output (Object 12, Variation 1)  
The Control Relay Output Block supports the following functions: Direct Operate (function 5)  
and Direct Operate - No Acknowledgment (function 6).  
The Control Relay Output Block is used for the following purposes:  
Energy Reset (point 0): EPM 6000 meters accumulate power generated or consumed  
over time as hour readings, which measure positive VAh and positive and negative Wh  
and varh. These readings may be reset using Point 0.  
The Direct Operate (function 5) function will operate only with the settings of Pulsed  
ON (Code = 1 of Control Code field) once (Count =01h) for ON 1 ms and OFF 0 ms.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
Change to Modbus RTU Protocol (point 1): EPM 6000 meters are capable of switching  
from the DNP Protocol to the Modbus RTU Protocol. This enables the user to update  
the device profile of the meter. This does not change the protocol setting, as a reset  
returns the meter back to DNP.  
The Direct Operate - No Acknowledge (function 6) function will operate only with the  
settings of Pulsed ON (Code = 1 of the Control Code field) once (Count = 01h) for ON  
1 ms and OFF 0 ms.  
5.4.4 32-Bit Binary Counter Without Flag (Object 20, Variation 4)  
The counters support the Read function (function 1). A read request for Variation 0 will be  
responded to with Variation 4.  
Counters are used to communicate the hour readings measured by the EPM 6000 meter.  
Refer to DNP Point Mapping on page 5–10 for details. These readings may be cleared by  
using the Control Relay Output Block.  
5.4.5 16-Bit Analog Input Without Flag (Object 30, Variation 5)  
The analog inputs support the Read function (function 1). A read request for Variation 0 will  
be responded to with Variation 5.  
Refer to DNP Point Mapping on page 5–10 for details on the data measured by the analog  
inputs.  
Health Check (point 0): The health check point indicates problems detected by the  
EPM 6000. A value of zero (0000h) indicates the meter does not detect a problem; non-  
zero values indicate a detected anomaly.  
Phase-to-Neutral Voltages (points 1 to 3): These points are formatted as two's  
complement fractions. They represent a fraction of a 150 V secondary input. Inputs  
greater than 150 V secondary will be pinned at 150 V secondary.  
Phase-to-Phase Voltages (points 4 to 6): These points are formatted as two's  
complement fractions. They represent a fraction of a 300 V secondary input. Inputs  
greater than 300 V secondary will be pinned at 300 V secondary.  
Phase Currents (points 7 to 9): These points are formatted as two's complement  
fractions. They represent a fraction of a 10 A secondary input. Inputs greater than  
10 A secondary will be pinned at 10 A secondary.  
Total Real and Reactive Power (points 10 and 11): These points are formatted as two's  
complement fractions. They represent a fraction of 4500 W secondary in normal  
operation or 3000 W secondary in open delta operation. Inputs above/below ±4500 or  
±3000 W secondary will be pinned at ±4500 or ±3000 W secondary, respectively.  
Total Apparent Power (point 12): This point is formatted as a two's complement  
fraction. It represents a fraction of 4500 W secondary in normal operation or 3000 W  
secondary in open delta operation. Inputs above/below ±4500 or ±3000 W secondary  
will be pinned at ±4500 or ±3000 W secondary, respectively.  
Power Factor (point 13): This point is formatted as a two's complement integer. It  
represents power factors from –1.000 (0FC18h) to +1.000 (003E8h). When in open  
delta operation, the total power factor (point 13) is always zero.  
5–16  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
Frequency (point 14): This point is formatted as a two's complement fraction. It  
represents the frequency as measured on phase A voltage in units of cHz (centiHertz,  
1/100 Hz). Inputs below 45.00 Hz are pinned at 0 (0000h), while inputs above 75.00 Hz  
are pinned at 9999 (270Fh).  
Maximum Demands of Total Power (points 15 to 19): These points are formatted as  
two's complement fractions. They represent a fraction of 4500 W secondary in normal  
operation or 3000 W secondary in open delta operation. Inputs above/below ±4500 or  
±3000 W secondary will be pinned at ±4500 or ±3000 W secondary, respectively.  
Phase Angles (points 20 to 25): These points are formatted as two's complement  
integers. They represent angles from –180.00 (0F8F8h) to +180.00 (00708h).  
CT and PT Ratios (points 26 to 31): These points are formatted as two's complement  
integers. They can be used to convert from units in terms of the secondary of a CT or  
PT into units in terms of the primary of a CT or PT. The ratio of numerator divided by  
denominator is the ratio of primary to secondary. The EPM 6000 typically uses full  
scales relating primary current to 5 A and primary voltage to 120 V. However, these full  
scales can range from mAs to thousands of kAs, or mVs to thousands of kVs. Example  
settings are as follows:  
CT example settings:  
200 A: Set the Ct-n value for “200” and the Ct-S value for “1”.  
800 A: Set the Ct-n value for “800” and the Ct-S value for “1”.  
2000 A: Set the Ct-n value for “2000” and the Ct-S value for “1”.  
10000 A: Set the Ct-n value for “1000” and the Ct-S value for “10”.  
PT example settings:  
120 V (reads 14400 V):  
Set the Pt-n value to “1440”, Pt-d to “120”, and Pt-S to “10”.  
69 V (reads 138000 V):  
Set the Pt-n value to “1380”, Pt-d to “69”, and Pt-S to “100”.  
115 V (reads 345000 V):  
Set the Pt-n value to “3450”, Pt-d to “115”, and Pt-S to “100”.  
5.4.6 Class 0 Data (Object 60, Variation 1)  
The Class 0 Data object supports the Read (function 1) function. A request for Class 0 Data  
from an EPM 6000 returns three object headers. Specifically, it returns 16-Bit Analog Input  
Without Flags (object 30, variation 5) points 0 to 31, followed by 32-Bit Counters Without  
Flags (object 20, variation 4) points 0 to 4, followed by Binary Output Status (object 10,  
variation 2), points 0 to 1. There is NO Object 1.  
A request for Object 60, Variation 0 will be treated as a request for Class 0 Data.  
5.4.7 Internal Indications (Object 80, Variation 1)  
The Internal Indications object support the Write function (function 2). Internal Indications  
may be indexed by Qualifier Code 0.  
The Device Restart (point 0) bit is set whenever the meter has reset. The polling device may  
clear this bit by writing (function 2) to Object 80, Point 0.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
5–17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 5: COMMUNICATIONS  
5–18  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GE Consumer & Industrial  
Multilin  
EPM 6000 Multi-function Power  
Metering System  
Chapter 6: Miscellaneous  
Miscellaneous  
6.1 Navigation Maps  
6.1.1 Introduction  
The EPM 6000 meter can be configured and a variety of functions performed using the  
buttons on the meter faceplate. An overview of the elements and buttons on the faceplate  
can be found in Chapter 4. The meter can also be programmed using software such as GE  
Communicator.  
The navigation maps show in detail how to move from one screen to another and from one  
display mode to another using the buttons on the meter faceplate. All display modes will  
automatically return to operating mode after 10 minutes of no user activity.  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
6–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
6.1.2 Main Menu Screens  
The main menu navigation map is shown below.  
FIGURE 6–1: Main Menu Navigation  
6–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
6.1.3 Operating Mode Screens  
The operating mode navigation map is shown below.  
FIGURE 6–2: Operating Mode Navigation  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
6–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
6.1.4 Reset Mode Screens  
The reset mode navigation map is shown below.  
FIGURE 6–3: Reset Mode Navigation  
6–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
6.1.5 Configuration Mode Screens  
The configuration mode navigation map is shown below.  
FIGURE 6–4: Reset Mode Navigation  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
6–5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
6.2 Revision History  
6.2.1 Release Dates  
Table 6–1: Release Dates  
MANUAL  
GE PART NO.  
EPM 6000  
REVISION  
RELEASE DATE  
GEK-106558  
GEK-106558A  
GEK-106558B  
GEK-106558C  
1601-0215-A1  
1601-0215-A2  
1601-0215-A3  
1601-0215-A4  
1.0x  
1.0x  
1.0x  
1.0x  
24 January 2004  
08 April 2005  
06 September 2005  
14 February 2007  
6.2.2 Changes to the Manual  
Table 6–2: Major Updates for 1601-0215-A4  
SECT  
(A3)  
SECT  
(A4)  
CHANGE  
Update  
DESCRIPTION  
Title  
Title  
Manual part number to 1601-0215-A4  
1.4.2  
4.1.5  
1.4.2  
4.1.5  
Update  
Update  
%THD Accuracy Changed  
Fig 4-3 updated  
PT Settings example values changed to be more  
reflective of actual customer values  
4.3.5  
4.3.5  
Update  
PT Settings example values changed to align with  
above values  
5.4.5  
6.1.1  
5.4.5  
6.1.1  
Update  
Update  
Added mention of GE Communicator software.  
Table 6–3: Major Updates for 1601-0215-A3  
PAGE  
(A2)  
PAGE  
(A3)  
CHANGE  
DESCRIPTION  
Title  
3-4  
Title  
3-4  
Update  
Update  
Update  
Manual part number to 1601-0215-A3  
Updated ELECTRICAL INSTALLATION section  
Updated RS485 COMMUNICATIONS INSTALLATION  
diagram  
3-16  
3-16  
6–6  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
Table 6–4: Major Updates for 1601-0215-A2  
PAGE  
(A1)  
PAGE  
(A2)  
CHANGE  
Update  
DESCRIPTION  
Title  
Title  
Manual part number to 1601-0215-A2  
2-3  
2-3  
2-4  
2-3  
---  
Update  
Delete  
Updated ORDER CODES section  
Removed ACCESSORIES section  
2-4  
Update  
Updated INPUTS/OUTPUTS specifications  
Added CURRENT ONLY MEASUREMENT (THREE-  
PHASE) section  
---  
---  
---  
3-13  
3-14  
3-15  
Add  
Add  
Add  
Added CURRENT ONLY MEASUREMENT (DUAL-PHASE)  
section  
Added CURRENT ONLY MEASUREMENT (SINGLE-  
PHASE) section  
4-9  
4-9  
Update  
Update  
Updated CONFIGURING THE CT SETTING section  
Updated CONFIGURING THE PT SETTING section  
4-10  
4-10  
---  
5-7  
Add  
Added DNP COMMUNICATIONS section  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
6–7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CHAPTER 6: MISCELLANEOUS  
6.3 Warranty  
6.3.1 GE Multilin Warranty  
General Electric Multilin (GE Multilin) warrants each device it manufactures to be free from  
defects in material and workmanship under normal use and service for a period of 24  
months from date of shipment from factory.  
In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace  
the device providing the warrantor determined that it is defective and it is returned with all  
transportation charges prepaid to an authorized service centre or the factory. Repairs or  
replacement under warranty will be made without charge.  
Warranty shall not apply to any device which has been subject to misuse, negligence,  
accident, incorrect installation or use not in accordance with instructions nor any unit that  
has been altered outside a GE Multilin authorized factory outlet.  
GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or  
for expenses sustained as a result of a device malfunction, incorrect application or  
adjustment.  
For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin  
Standard Conditions of Sale.  
6–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Index  
A
ACCURACY......................................................................................................................................................1–7, 4–4  
B
BAUD RATE................................................................................................................................................4–14, 4–15  
BLONDELL’S THEOREM .......................................................................................................................................2–5  
C
CATALOG NUMBERS.............................................................................................................................................1–5  
CHANGES TO MANUAL..............................................................................................................................6–6, 6–7  
CHANGING SETTINGS..........................................................................................................................................4–9  
COMMUNICATIONS  
description .................................................................................................................................................. 3–19  
IrDA................................................................................................................................................................. 3–19  
memory map ......................................................................................................................................5–1, 5–2  
Modbus............................................................................................................................................................5–1  
RS485............................................................................................................................................................. 3–19  
settings ......................................................................................................................................................... 4–14  
specifications................................................................................................................................................1–7  
COMPLIANCE...........................................................................................................................................................1–8  
CONFIGURATION MODE  
changing settings.......................................................................................................................................4–9  
description .....................................................................................................................................................4–5  
navigation.......................................................................................................................................................6–5  
programming............................................................................................................................................. 4–10  
CONNECTION SETTING..................................................................................................................................... 4–13  
CT SETTING............................................................................................................................................................ 4–11  
CURRENT INPUTS  
connections...................................................................................................................................................1–3  
settings ......................................................................................................................................................... 4–11  
specifications................................................................................................................................................1–6  
D
DELTA CONNECTION  
3-wire, 2 PTs, 3 CTs.................................................................................................................................. 3–15  
3-wire, no PTs, 3 CTs............................................................................................................................... 3–14  
background ...................................................................................................................................................2–4  
phasors..................................................................................................................................................2–4, 2–5  
setting............................................................................................................................................................ 4–13  
DEMAND................................................................................................................................................................. 2–10  
DIMENSIONS..................................................................................................................................................1–7, 3–1  
DOWN BUTTON......................................................................................................................................................4–2  
E
ENERGY......................................................................................................................................................... 2–8, 2–12  
ENTER BUTTON.......................................................................................................................................................4–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
INDEX–1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INDEX  
ENVIRONMENTAL SPECIFICATIONS...............................................................................................................1–7  
F
FACEPLATE BUTTONS ..........................................................................................................................................4–2  
FACEPLATE ELEMENTS ........................................................................................................................................4–2  
FEATURES..................................................................................................................................................................1–1  
FUSES..........................................................................................................................................................................3–8  
G
GROUND CONNECTION......................................................................................................................................3–8  
I
INSTALLATION  
CT leads pass-through .............................................................................................................................3–6  
CT leads terminated to meter ...............................................................................................................3–6  
electrical..........................................................................................................................................................3–5  
mechanical ....................................................................................................................................................3–1  
precautions....................................................................................................................................................3–5  
quick connect ...............................................................................................................................................3–7  
voltage connections ..................................................................................................................................3–7  
wiring................................................................................................................................................................3–9  
IRDA  
communications paths ......................................................................................................................... 3–19  
description................................................................................................................................................... 3–19  
L
LOAD BAR..................................................................................................................................................................4–3  
M
MAIN MENU  
description......................................................................................................................................................4–6  
navigation.......................................................................................................................................................6–2  
MEASURED VALUES..............................................................................................................................................1–4  
MEMORY MAP..........................................................................................................................................................5–1  
MENU BUTTON........................................................................................................................................................4–2  
METER ADDRESS................................................................................................................................................. 4–14  
METERING .......................................................................................................................................................1–4, 1–6  
MODBUS  
memory map ......................................................................................................................................5–1, 5–2  
settings ......................................................................................................................................................... 4–15  
MOUNTING  
ANSI panel......................................................................................................................................................3–2  
DIN panel ........................................................................................................................................................3–3  
panel cutouts................................................................................................................................................3–2  
N
NAVIGATION MAPS ...............................................................................................................................................6–1  
INDEX–2  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  
O
OPERATING MODE  
navigation.......................................................................................................................................................6–3  
programming............................................................................................................................................. 4–17  
ORDER CODES.........................................................................................................................................................1–5  
P
PANEL CUTOUTS....................................................................................................................................................3–2  
PASSWORD ENTRY......................................................................................................................................4–7, 4–8  
POWER .......................................................................................................................................................................2–8  
POWER FACTOR .................................................................................................................................................. 2–13  
POWER QUALITY ................................................................................................................................................. 2–17  
POWER SUPPLY  
connection .....................................................................................................................................................3–8  
specifications................................................................................................................................................1–6  
PROTOCOL............................................................................................................................................................. 4–16  
PT SETTING ............................................................................................................................................................ 4–12  
Q
QUICK CONNECT....................................................................................................................................................3–7  
R
REGISTER MAP ........................................................................................................................................................5–1  
RESET MODE  
description .....................................................................................................................................................4–6  
navigation.......................................................................................................................................................6–4  
REVENUE METERING ............................................................................................................................................4–4  
REVISION HISTORY................................................................................................................................................6–6  
RIGHT BUTTON .......................................................................................................................................................4–2  
RS485  
specifications................................................................................................................................................1–7  
wiring............................................................................................................................................................. 3–19  
S
SCROLL FEATURE...................................................................................................................................................4–9  
SPECIFICATIONS.....................................................................................................................................................1–6  
STARTUP ....................................................................................................................................................................4–5  
T
TYPE TESTING..........................................................................................................................................................1–8  
U
UTILITY PEAK DEMAND .......................................................................................................................................1–3  
V
VOLTAGE INPUTS  
connections...................................................................................................................................................3–8  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
INDEX–3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INDEX  
description......................................................................................................................................................1–3  
settings ......................................................................................................................................................... 4–12  
specifications................................................................................................................................................1–6  
W
WARRANTY...............................................................................................................................................................6–8  
WATT-HOUR ACCURACY TEST.........................................................................................................................4–4  
WAVEFORM CAPTURE ...................................................................................................................................... 2–16  
WIRING  
current-only, dual-phase...................................................................................................................... 3–17  
current-only, single-phase................................................................................................................... 3–18  
current-only, three-phase.................................................................................................................... 3–16  
delta ...................................................................................................................................................3–14, 3–15  
description......................................................................................................................................................3–9  
wye............................................................................................................................ 3–10, 3–11, 3–12, 3–13  
WYE CONNECTION  
4-wire, 2 PTs, 3 CTs, 2.5 element....................................................................................................... 3–13  
4-wire, 3 PTs, 3 CTs, 3 element .......................................................................................................... 3–12  
4-wire, no PTs, 3 CTs, 2.5 element.................................................................................................... 3–11  
4-wire, no PTs, 3 CTs, 3 element........................................................................................................ 3–10  
background....................................................................................................................................................2–2  
phasors............................................................................................................................................................2–3  
setting............................................................................................................................................................ 4–13  
INDEX–4  
EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE  
Download from Www.Somanuals.com. All Manuals Search And Download.  

ETA Systems Power Supply PD11LVSP User Manual
Field Controls Air Cleaner 46512300 User Manual
Fluke Stereo Amplifier 5205A User Manual
Fluke Telescope 196C User Manual
Gardena Lawn Aerator EVC1000 User Manual
Garmin GPS Receiver 190 01070 00 User Manual
Gefen TV Cables EXT HDMI13 142 User Manual
Gemini CD Player CDJ 15 User Manual
GE Water Dispenser PXCF22RBS User Manual
Gianni Industries Door PBT 020B 2 User Manual