Title Page
g
GE Industrial Systems
489
Generator Management Relay
COMMUNICATIONS GUIDE
Software Revision: 3.00
GE Publication Code: GEK-106495A
GE Multilin Part Number: 1601-0149-A2
Copyright © 2004 GE Multilin
E
R
S
I
ED
G
E
R
GE Multilin
ISO9001:2000
G
N
E
215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
I
M
L
I
U
T
L
GE Multilin's Quality Management
System is registered to
ISO9001:2000
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin
QMI # 005094
UL # A3775
Download from Www.Somanuals.com. All Manuals Search And Download.
Table of Contents
489
Communications Guide
Table of Contents
Modbus RTU Description...................................................................................................................... 1
Function Code 05: Execute Operation.................................................................................................. 5
Function Code 06: Store Single Setpoint............................................................................................. 5
Function Code 16: Store Multiple Setpoints........................................................................................ 7
Memory Map Information..................................................................................................................... 9
Memory Map Data Formats................................................................................................................ 40
Analog Input / Input Change (Objects 30/32)..................................................................................... 53
i
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Table of Contents
Communications Guide
ii
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Protocol
Communications Guide
489 Communications Guide
GE Publication Code: GEK-106495A
GE Multilin Part Number: 1601-0149-A2
Copyright © 2004 GE Multilin
Modbus Protocol
Electrical Interface
The hardware or electrical interface is one of the following: one of two 2-wire RS485
ports from the rear terminal connector or the RS232 from the front panel connector.
In a 2-wire RS485 link, data flow is bidirectional. Data flow is half-duplex for both
the RS485 and the RS232 ports. That is, data is never transmitted and received at
the same time. RS485 lines should be connected in a daisy chain configuration
(avoid star connections) with a terminating network installed at each end of the link,
i.e. at the master end and at the slave farthest from the master. The terminating
network should consist of a 120 Ω resistor in series with a 1 nF ceramic capacitor
when used with Belden 9841 RS485 wire. The value of the terminating resistors
should be equal to the characteristic impedance of the line. This is approximately
120 Ω for standard #22 AWG twisted pair wire. Shielded wire should always be used
to minimize noise. Polarity is important in RS485 communications. Each '+' terminal
of every 489 must be connected together for the system to operate. Refer to the
489 Instruction Manual for correct serial port wiring.
Modbus RTU
Description
The 489 implements a subset of the AEG Modicon Modbus RTU serial communication
standard. Many popular programmable controllers support this protocol directly with
a suitable interface card allowing direct connection of relays. Although the Modbus
protocol is hardware independent, the 489 interfaces include two 2-wire RS485
ports and one RS232 port. Modbus is a single master, multiple slave protocol
suitable for a multi-drop configuration as provided by RS485 hardware. In this
configuration up to 32 slaves can be daisy-chained together on a single
communication channel.
The 489 is always a slave; it cannot be programmed as a master. Computers or
PLCs are commonly programmed as masters. The Modbus protocol exists in two
versions: Remote Terminal Unit (RTU, binary) and ASCII. Only the RTU version is
supported by the 489. Monitoring, programming, and control functions are
performed with read/write register commands.
Data Frame Format and
Data Rate
One data frame of an asynchronous transmission to or from a 489 is default to 1
start bit, 8 data bits, and 1 stop bit. This produces a 10-bit data frame. This is
important for transmission through modems at high bit rates (11 bit data frames are
not supported by Hayes modems at bit rates of greater than 300 bps). The parity bit
is optional as odd or even. If it is programmed as odd or even, the data frame
consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit.
Modbus protocol can be implemented at any standard communication speed. The
489 RS485 ports support operation at 1200, 2400, 4800, 9600, and 19200 baud.
The front panel RS232 baud rate is fixed at 9600 baud.
1
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Protocol
Communications Guide
Data Packet Format
A complete request/response sequence consists of the following bytes (transmitted
as separate data frames):
1. A Master Query Message consisting of: a 1-byte Slave Address, a 1-byte Func-
tion Code, a variable number of Data Bytes depending on the Function Code,
and a 2-byte CRC code.
2. A Slave Response Message consisting of: a 1-byte Slave Address, a 1-byte
Function Code, a variable number of Data Bytes depending on the Function
Code, and a 2-byte CRC code.
The terms Slave Address, Function Code, Data Bytes, and CRC are explained below:
•
SLAVE ADDRESS: This is the first byte of every transmission. This byte
represents the user-assigned address of the slave device that is to receive the
message sent by the master. Each slave device must be assigned a unique
address and only the addressed slave will respond to a transmission that starts
with its address. In a master request transmission the Slave Address represents
the address of the slave to which the request is being sent. In a slave response
transmission the Slave Address represents the address of the slave that is
sending the response. The RS232 port ignores the slave address, so it will
respond regardless of the value in the message. Note: A master transmission
with a Slave Address of 0 indicates a broadcast command. Broadcast commands
can be used for specific functions.
•
FUNCTION CODE: This is the second byte of every transmission. Modbus
defines function codes of 1 to 127. The 489 implements some of these
functions. In a master request transmission the Function Code tells the slave
what action to perform. In a slave response transmission if the Function Code
sent from the slave is the same as the Function Code sent from the master
indicating the slave performed the function as requested. If the high order bit of
the Function Code sent from the slave is a 1 (i.e. if the Function Code is greater
than 127) then the slave did not perform the function as requested and is
sending an error or exception response.
•
•
DATA BYTES: This is a variable number of bytes depending on the Function
Code. These may be actual values, setpoints, or addresses sent by the master
to the slave or vice-versa. Data is sent MSByte first followed by the LSByte.
CRC: This is a two byte error checking code. CRC is sent LSByte first followed
by the MSByte. The RTU version of Modbus includes a two byte CRC-16 (16-bit
cyclic redundancy check) with every transmission. The CRC-16 algorithm
essentially treats the entire data stream (data bits only; start, stop and parity
ignored) as one continuous binary number. This number is first shifted left 16
bits and then divided by a characteristic polynomial (11000000000000101B).
The 16-bit remainder of the division is appended to the end of the transmission,
LSByte first. The resulting message including CRC, when divided by the same
polynomial at the receiver will give a zero remainder if no transmission errors
have occurred.
If a 489 Modbus slave device receives a transmission in which an error is indicated
by the CRC-16 calculation, the slave device will not respond to the transmission. A
CRC-16 error indicates than one or more bytes of the transmission were received
incorrectly and thus the entire transmission should be ignored in order to avoid the
489 performing any incorrect operation. The CRC-16 calculation is an industry
standard method used for error detection. An algorithm is included here to assist
programmers in situations where no standard CRC-16 calculation routines are
available.
2
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Functions
Communications Guide
CRC-16 Algorithm
Once the following algorithm is complete, the working register “A” will contain the
CRC value to be transmitted. Note that this algorithm requires the characteristic
polynomial to be reverse bit ordered. The MSbit of the characteristic polynomial is
dropped since it does not affect the value of the remainder.
The symbols used in the algorithm are shown below:
-->
data transfer
A; A
; A
16-bit working register; low and high order bytes of A (the 16-bit
working register)
low
high
CRC
i, j
16 bit CRC-16 result
loop counters
(+)
N
logical EXCLUSIVE-OR operator
total number of data bytes
i-th data byte (i = 0 to N – 1)
D
G
i
16 bit characteristic polynomial = 1010000000000001 (binary)
with MSbit dropped and bit order reversed
shr (x)
right shift operator (the LSbit of x is shifted into a carry flag, a '0' is
shifted into the MSbit of x, all other bits are shifted right one
location)
The CRC algorithm is shown below:
1. FFFF (hex) --> A
2. 0 --> i
3. 0 --> j
4. D (+) A
--> A
low
i
low
5. j + 1 --> j
6. shr (A)
7. Is there a carry? No: go to step 8.
Yes: G (+) A --> A and continue.
8. Is j = 8?
9. i + 1 --> i
10.Is i = N?
11.A --> CRC
No: go to 5.; Yes: continue.
No: go to 3.; Yes: continue.
Timing
Data packet synchronization is maintained by timing constraints. The receiving
device must measure the time between the reception of characters. If three and one
half character times elapse without a new character or completion of the packet,
then the communication link must be reset (i.e. all slaves start listening for a new
transmission from the master). Thus at 9600 baud a delay of greater than 3.5 × 1 /
9600 × 10 = 3.65 ms will cause the communication link to be reset.
Modbus Functions
Supported Functions
The following functions are supported by the 489:
•
•
•
•
•
•
Function Codes 03 and 04: Read Setpoints and Actual Values
Function Code 05: Execute Operation
Function Code 06: Store Single Setpoint
Function Code 07: Read Device Status
Function Code 08: Loopback Test
Function Code 16: Store Multiple Setpoints
A detailed explanation of how the 489 implements these function codes is shown in
the following sections.
3
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Functions
Communications Guide
Function Codes 03/04:
Read Setpoints / Actual
Values
Modbus implementation: Read Input and Holding Registers
489 Implementation: Read Setpoints and Actual Values
For the 489 Modbus implementation, these commands are used to read any setpoint
(‘holding registers’) or actual value (‘input registers’). Holding and input registers
are 16-bit (two byte) values transmitted high order byte first. Thus all 489 setpoints
and actual values are sent as two bytes. The maximum of 125 registers can be read
in one transmission. Function codes 03 and 04 are configured to read setpoints or
actual values interchangeably since some PLCs do not support both function codes.
The slave response to these function codes is the slave address, function code, a
count of the number of data bytes to follow, the data itself and the CRC. Each data
item is sent as a two byte number with the high order byte sent first. The CRC is
sent as a two byte number with the low order byte sent first.
Message Format and Example:
Request slave 11 to respond with 2 registers starting at address 0235. For this
example, the register data in these addresses is:
Address
0235
Data
0064
000A
0236
Master Transmission
Slave Address
Bytes
Example
0B
Description
1
1
2
2
2
message for slave 11
read register values
data starting at 0235h
2 registers = 4 bytes total
computed CRC error code
Function Code
03
Data Starting Address
Number of Setpoints
CRC (low, high)
02 32
00 02
D5 17
Slave Response
Slave Address
Bytes
Example
0B
Description
1
1
1
2
2
2
message from slave 11
read register values
Function Code
03
Byte Count
04
2 registers = 4 bytes total
value in address 0235h
value in address 0236h
computed CRC error code
Data #1 (high, low)
Data #2 (high, low)
CRC (low, high)
00 64
00 0A
EB 91
4
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Functions
Communications Guide
Function Code 05:
Execute Operation
Modbus Implementation: Force Single Coil
489 Implementation: Execute Operation
This function code allows the master to request specific 489 command operations.
The command numbers listed in the Commands area of the memory map
correspond to operation code for function code 05. The operation commands can
also be initiated by writing to the Commands area of the memory map using
page –7 for complete details.
Supported Operations:Reset 489 (operation code 1); Generator Start (operation
code 2);
Generator Stop (operation code 3); Waveform Trigger (operation code 4)
Message Format and Example:
Reset 489 (operation code 1).
Master Transmission
Slave Address
Bytes
Example
0B
Description
1
1
2
2
2
message for slave 11
execute operation
Function Code
05
Operation Code
Code Value
00 01
FF 00
DD 50
reset command (op code 1)
perform function
CRC (low, high)
computed CRC error code
Slave Response
Slave Address
Function Code
Operation Code
Code Value
Bytes
Example
0B
Description
1
1
2
2
2
message from slave 11
execute operation
05
00 01
FF 00
DD 50
reset command (op code 1)
perform function
CRC (low, high)
computed CRC error code
Function Code 06: Store
Single Setpoint
Modbus Implementation: Preset Single Register
489 Implementation: Store Single Setpoint
This command allows the master to store a single setpoint into the 489 memory.
The slave response to this function code is to echo the entire master transmission.
Message Format and Example:
Request slave 11 to store the value 01F4 in Setpoint address 1180. After the
transmission in this example is complete, Setpoints address 1180 will contain the
value 01F4.
Master Transmission
Slave Address
Bytes
Example
0B
Description
1
1
2
2
2
message for slave 11
store single setpoint
setpoint address 1180h
data for address 1180h
computed CRC error code
Function Code
06
Data Starting Address
Data
11 80
01 F4
8D A3
CRC (low, high)
Slave Response
Slave Address
Function Code
Data Starting Address
Data
Bytes
Example
0B
Description
1
1
2
2
2
message from slave 11
store single setpoint
setpoint address 1180h
data for address 1180h
computed CRC error code
06
11 80
01 F4
8D A3
CRC (low, high)
5
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Functions
Communications Guide
Function Code 07: Read
Device Status
Modbus Implementation: Read Exception Status
489 Implementation: Read Device Status
This function reads the selected device status. A short message length allows for
rapid reading of status. The returned status byte has individual bits set to 1 or 0
depending on the slave device status. The 489 general status byte is shown below:
BIT
B0
B1
B2
B3
DESCRIPTION
BIT
B4
B5
B6
B7
DESCRIPTION
1 TRIP relay operated = 1
2 AUXILIARY relay operated = 1
3 AUXILIARY relay operated = 1
4 AUXILIARY relay operated = 1
5 ALARM relay operated = 1
6 SERVICE relay operated = 1
Stopped = 1
Running = 1
Note that if status is neither stopped or running, the generator is starting.
Message Format and Example:
Request status from slave 11.
Master Transmission
Slave Address
Bytes
Example
0B
Description
1
1
2
message for slave 11
read device status
computed CRC error code
Function Code
07
CRC (low, high)
47 42
Slave Response
Slave Address
Function Code
Device Status
CRC (low, high)
Bytes
Example
0B
Description
1
1
1
2
message from slave 11
read device status
status = 01011001b
computed CRC error code
07
59
C2 08
Function Code 08:
Loopback Test
Modbus Implementation: Loopback Test
489 Implementation: Loopback Test
This function is used to test the integrity of the communication link. The 489 will
echo the request.
Message Format and Example:
Loopback test from slave 11.
Master Transmission
Slave Address
Function Code
Diagnostic Code
Data
Bytes
Example
0B
Description
1
1
2
2
2
message for slave 11
loopback test
08
00 00
00 00
E0 A1
must be 0000h
must be 0000h
CRC (low, high)
computed CRC error code
Slave Response
Slave Address
Function Code
Diagnostic Code
Data
Bytes
Example
0B
Description
1
1
2
2
2
message from slave 11
loopback test
08
00 00
00 00
E0 A1
must be 0000h
must be 0000h
CRC (low, high)
computed CRC error code
6
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Functions
Communications Guide
Function Code 16: Store
Multiple Setpoints
Modbus Implementation: Preset Multiple Registers
489 Implementation: Store Multiple Setpoints
This function code allows multiple Setpoints to be stored into the 489 memory.
Modbus “registers” are 16-bit (two byte) values transmitted high order byte first.
Thus all 489 setpoints are sent as two bytes. The maximum number of Setpoints
that can be stored in one transmission is dependent on the slave device. Modbus
allows up to a maximum of 60 holding registers to be stored. The 489 response to
this function code is to echo the slave address, function code, starting address, the
number of Setpoints stored, and the CRC.
Message Format and Example:
Request slave 11 to store the value 01F4 to Setpoint address 1180 and the value
0001 to setpoint address 1181. After the transmission in this example is complete,
489 slave 11 will have the following setpoints information stored:
Address
1180
Data
01F4
0001
1181
Master Transmission
Slave Address
Function Code
Data Starting Address
Number of Setpoints
Byte Count
Bytes
Example
0B
Description
1
1
2
2
1
2
2
2
message for slave 11
store setpoints
10
11 80
00 02
04
data starting at 1180h
2 setpoints = 4 bytes total
2 registers = 4 bytes
data for address 1180h
data for address 1181h
computed CRC error code
Data 1
01 F4
00 01
9B 89
Data 2
CRC (low, high)
Slave Response
Slave Address
Bytes
Example
0B
Description
1
1
2
2
2
message from slave 11
store multiple setpoints
data starting at 1180h
2 setpoints (4 bytes total)
computed CRC error code
Function Code
10
Data Starting Address
Number of Setpoints
CRC (low, high)
11 80
00 02
45 B6
7
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Functions
Communications Guide
Function Code 16:
Performing Commands
Some PLCs may not support execution of commands using function code 5 but do
support storing multiple setpoints using function code 16. To perform this operation
using function code 16 (10h), a certain sequence of commands must be written at
the same time to the 489. The sequence consists of: Command Function register,
Command operation register and Command Data (if required). The Command
Function register must be written with the value of 5 indicating an execute operation
is requested. The Command Operation register must then be written with a valid
command operation number from the list of commands shown in the memory map.
The Command Data registers must be written with valid data if the command
operation requires data. The selected command will execute immediately upon
receipt of a valid transmission.
Message Format and Example:
Perform a 489 RESET (operation code 1).
Master Transmission
Slave Address
Bytes
Example
0B
Description
1
1
2
2
1
2
2
2
message for slave 11
store setpoints
Function Code
10
Data Starting Address
Number of Setpoints
Byte Count
00 80
00 02
04
setpoint address 0080h
2 setpoints = 4 bytes total
2 registers = 4 bytes
data for address 0080h
data for address 0081h
computed CRC error code
Command Function
Command Function
CRC (low, high)
00 05
00 01
0B D6
Slave Response
Slave Address
Bytes
Example
0B
Description
1
1
2
2
2
message from slave 11
store multiple setpoints
setpoint address 0080h
2 setpoints (4 bytes total)
computed CRC error code
Function Code
10
Data Starting Address
Number of Setpoints
CRC (low, high)
00 80
00 02
40 8A
Error Responses
When a 489 detects an error other than a CRC error, a response will be sent to the
master. The MSbit of the Function Code byte will be set to 1 (i.e. the function code
sent from the slave will be equal to the function code sent from the master plus
128). The following byte will be an exception code indicating the type of error that
occurred.
Transmissions received from the master with CRC errors will be ignored by the 489.
The slave response to an error (other than CRC error) will be:
•
•
•
•
SLAVE ADDRESS: 1 byte
FUNCTION CODE: 1 byte (with MSbit set to 1)
EXCEPTION CODE: 1 byte
CRC: 2 bytes
The 489 implements the following exception response codes.
01: ILLEGAL FUNCTION
The function code transmitted is not one of the functions supported by the 489.
02: ILLEGAL DATA ADDRESS
The address referenced in the data field transmitted by the master is not an
allowable address for the 489.
03: ILLEGAL DATA VALUE
The value referenced in the data field transmitted by the master is not within range
for the selected data address.
8
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Modbus Memory Map
Memory Map
Information
The data stored in the 489 is grouped as Setpoints and Actual Values. Setpoints can
be read and written by a master computer. Actual Values are read only. All Setpoints
and Actual Values are stored as two byte values. That is, each register address is
the address of a two-byte value. Addresses are listed in hexadecimal. Data values
(Setpoint ranges, increments, and factory values) are in decimal.
Many Modbus communications drivers add 40001d to the actual address of the
register addresses. For example: if address 0h was to be read, 40001d would be the
address required by the Modbus communications driver; if address 320h (800d) was
to be read, 40801d would be the address required by the Modbus communications
driver.
NOTE
User-Definable
Memory Map Area
The 489 contains a User Definable area in the memory map. This area allows
remapping of the addresses of all Actual Values and Setpoints registers. The User
Definable area has two sections:
1. A Register Index area (memory map addresses 0180h to 01FCh) that contains
125 Actual Values or Setpoints register addresses.
2. A Register area (memory map addresses 0100h to 017Ch) that contains the
data at the addresses in the Register Index.
Register data that is separated in the rest of the memory map may be remapped to
adjacent register addresses in the User Definable Registers area. This is
accomplished by writing to register addresses in the User Definable Register Index
area. This allows for improved throughput of data and can eliminate the need for
multiple read command sequences.
For example, if the values of Average Phase Current (register addresses 0412h and
0413h) and Hottest Stator RTD Temperature (register address 04A0h) are required
to be read from an 489, their addresses may be remapped as follows:
1. Write 0412h to address 0180h (User Definable Register Index 0000) using func-
tion code 06 or 16.
2. Write 0413h to address 0181h (User Definable Register Index 0001) using func-
tion code 06 or 16.
(Average Phase Current is a double register number)
3. Write 04A0h to address 0182h (User Definable Register Index 0001) using func-
tion code 06 or 16.
A read (function code 03 or 04) of registers 0100h (User Definable Register 0000)
and 0101h (User Definable Register 0001) will return the Average Phase Current
and register 0102h (User Definable Register 0002) will return the Hottest Stator
RTD Temperature.
Event Recorder
The 489 event recorder data starts at address 3000h. Address 3003h is the ID
number of the event of interest (a high number representing the latest event and a
low number representing the oldest event). Event numbers start at zero each time
the event record is cleared, and count upwards. To retrieve event 1, write ‘1’ to the
Event Record Selector (3003h) and read the data from 3004h to 30E7h. To retrieve
event 2, write ‘2’ to the Event Record Selector (3003h) and read the data from
3004h to 30E7h. All 40 events may be retrieved in this manner. The time and date
stamp of each event may be used to ensure that all events have been retrieved in
order without new events corrupting the sequence of events (event 0 should be less
recent than event 1, event 1 should be less recent than event 2, etc.).
If more than 40 events have been recorded since the last time the event record was
cleared, the earliest events will not be accessible. For example, if 100 events have
been recorded (i.e., the total events since last clear in register 3002h is 100),
events 60 through 99 may be retrieved. Writing any other value to the event record
selector (register 3003h) will result in an “invalid data value” error.
9
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Each communications port can individually select the ID number of the event of
interest by writing address 3003h. This way the front port, rear port and auxiliary
port can read different events from the event recorder simultaneously.
Waveform Capture
The 489 stores up to 64 cycles of A/D samples in a waveform capture buffer each
time a trip occurs. The waveform capture buffer is time and date stamped and may
therefore be correlated to a trip in the event record. To access the waveform capture
memory, select the channel of interest by writing the number to the Waveform
Capture Channel Selector (30F5h). Then read the waveform capture data from
address 3100h-31BFh, and read the date, time and line frequency from addresses
30F0h-30F4h.
Each communications port can individually select a Waveform Channel Selector of
interest by writing address 30F5h. This way the front port, rear port and auxiliary
port can read different Waveform Channels simultaneously.
The channel selector must be one of the following values:
VALUE
SELECTED A/D SAMPLES
Phase A line current
Phase B line current
Phase C line current
SCALE FACTOR
0
1
2
3
4
5
6
500 counts equals 1 × CT primary
500 counts equals 1 × CT primary
500 counts equals 1 × CT primary
Neutral-End phase A current 500 counts equals 1 × CT primary
Neutral-End phase B current 500 counts equals 1 × CT primary
Neutral-End phase C current 500 counts equals 1 × CT primary
Ground current
500 counts equals 1 × CT primary
or 1A for 50:0.025
7
8
9
Phase A to neutral voltage
Phase B to neutral voltage
Phase C to neutral voltage
2500 counts equals 120 secondary volts
2500 counts equals 120 secondary volts
2500 counts equals 120 secondary volts
Dual Setpoints
Each communications port can individually select an Edit Setpoint Group of interest
by writing address 1342h. This way the front port, rear port and auxiliary port can
read and alter different setpoints simultaneously.
Passcode Operation
Each communications port can individually set the Passcode Access by writing
address 88h with the correct Passcode. This way the front port, rear port and
auxiliary port have individual access to the setpoints. Reading address 0203h,
COMMUNICATIONS SETPOINT ACCESS register, provides the user with the current state
of access for the given port. A value of 1 read from this register indicates that the
user has full access rights to changing setpoints from the given port.
10
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
489 Memory Map
The 489 memory map is shown in the following table.
Table 1: 489 Memory Map (Sheet 1 of 29)
ADDR NAME
PRODUCT ID
RANGE
STEP
UNITS
FORMAT
DEFAULT
0000
0001
0002
0003
0010
0011
GE Multilin Product Device Code
Product Hardware Revision
Product Software Revision
Product Modification Number
Boot Program Revision
N/A
1 to 26
N/A
N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
F1
F15
F16
F1
32
N/A
N/A
N/A
N/A
N/A
N/A
1
0 to 999
N/A
N/A
1
F16
F1
Boot Program Modification Number
0 to 999
MODEL ID
0040
0050
0060
Order Code
0 to 16
12
1
1
1
N/A
N/A
N/A
F22
F22
F22
N/A
N/A
N/A
489 Revision
489 Boot Revision
12
COMMANDS
0080
0081
0088
00F0
00F2
Command Function Code (always 5)
5
0 to 65535
0 to 99999999
N/A
N/A
1
N/A
N/A
N/A
N/A
N/A
F1
F1
N/A
N/A
0
Command Operation Code
Communications Port Passcode
Time (Broadcast)
1
F12
F24
F18
N/A
N/A
N/A
N/A
Date (Broadcast)
N/A
USER_MAP / USER MAP VALUES
0100
017C
User Map Value #1 of 125...
User Map Value #125 of 125
5
5
N/A
N/A
N/A
N/A
F1
F1
N/A
N/A
USER_MAP / USER MAP ADDRESSES
0180
01FC
User Map Address #1 of 125...
User Map Address #125 of 125
0 to 3FFF
0 to 3FFF
1
1
hex
hex
F1
F1
0
0
STATUS / GENERATOR STATUS
0200
0201
0202
0203
Generator Status
0 to 4
1
1
–
%
F133
F1
1
0
Generator Thermal Capacity Used
Estimated Trip Time On Overload
Communications Setpoint Access
0 to 100
1
0 to 65535
1
s
F12
F126
–1
N/A
0 to 1
N/A
N/A
STATUS / SYSTEM STATUS
0210
0211
0212
General Status
0 to 65535
0 to 63
1
1
1
N/A
N/A
N/A
F140
F141
F118
0
0
0
Output Relay Status
Active Setpoint Group
0 to 1
STATUS / LAST TRIP DATA
0220
0221
0223
0225
0226
0228
022A
022C
022E
0230
0232
0233
0235
0236
0237
0238
023B
Cause of Last Trip
0 to 139
N/A
1
N/A
N/A
1
–
F134
F19
F18
F1
0
N/A
N/A
0
Time of Last Trip
N/A
Date of Last Trip
N/A
N/A
Tachometer Pretrip
0 to 7200
RPM
Amps
Amps
Amps
Amps
Amps
Amps
% FLA
A
Phase A Pre-Trip Current
Phase B Pre-Trip Current
Phase C Pre-Trip Current
Phase A Pre-Trip Differential Current
Phase B Pre-Trip Differential Current
Phase C Pre-Trip Differential Current
Negative Sequence Current Pretrip
Ground Current Pretrip
Pre-Trip A-B Voltage
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 2000
1
F12
F12
F12
F12
F12
F12
F1
0
1
0
1
0
1
0
1
0
1
0
1
0
0 to 20000000
0 to 50000
0 to 50000
0 to 50000
0 to 12000
–2000000 to 2000000
1
F14
F1
0
1
Volts
Volts
Volts
Hz
0
Pre-Trip B-C Voltage
1
F1
0
Pre-Trip C-A Voltage
1
F1
0
Frequency Pretrip
1
F3
0
Real Power (MW) Pretrip
1
MW
F13
0
1, 2, 3 See Table footnotes on page 39
11
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 2 of 29)
ADDR NAME
RANGE
–2000000 to 2000000
0 to 2000000
1 to 12
STEP
1
UNITS
Mvar
MVA
–
FORMAT
F13
F13
F1
DEFAULT
023D Reactive Power Mvar Pretrip
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
023F
0241
0242
0243
0244
0245
0246
0247
0248
0249
024B
Apparent Power MVA Pretrip
Last Trip Data Stator RTD
1
1
Hottest Stator RTD Temperature
Last Trip Data Bearing RTD
Hottest Bearing RTD Temperature
Last Trip Data Other RTD
–50 to 250
1
°C
F4
1 to 12
1
–
F1
–50 to 250
1
°C
F4
1 to 12
1
–
F1
Hottest Other RTD Temperature
Last Trip Data Ambient RTD
Hottest Ambient RTD Temperature
Analog Input 1 Pretrip
–50 to 250
1
°C
F4
1 to 12
1
–
F1
–50 to 250
1
°C
F4
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50 to 250
1
Units
Units
Units
Units
°F
F12
F12
F12
F12
F4
Analog Input 2 Pretrip
1
024D Analog Input 3 Pretrip
1
024F
025C
Analog Input 4 Pretrip
1
Hottest Stator RTD Temperature
1
025D Hottest Bearing RTD Temperature
–50 to 250
1
°F
F4
025E
025F
0260
0262
0264
0265
Hottest Other RTD Temperature
Hottest Ambient RTD Temperature
Neutral Voltage Fundamental Pretrip
Neutral Voltage 3rd Harmonic Pretrip
Pre-Trip Vab/Iab
–50 to 250
1
°F
F4
–50 to 250
1
°F
F4
0 to 250000
0 to 250000
0 to 65535
1
Volts
Volts
ohms s
°
F10
F10
F2
1
1
Pre-Trip Vab/Iab Angle
0 to 359
1
F1
STATUS / TRIP PICKUPS
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
028A
028B
028C
Input A Pickup
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Input B Pickup
Input C Pickup
Input D Pickup
Input E Pickup
Input F Pickup
Input G Pickup
Sequential Trip Pickup
Field-Breaker Discrepancy Pickup
Tachometer Pickup
Offline Overcurrent Pickup
Inadvertent Energization Pickup
Phase Overcurrent Pickup
028D Negative Sequence Overcurrent Pickup
028E
028F
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
029A
029B
029C
Ground Overcurrent Pickup
Phase Differential Pickup
Undervoltage Pickup
Overvoltage Pickup
Volts/Hertz Pickup
Phase Reversal Pickup
Underfrequency Pickup
Overfrequency Pickup
Neutral Overvoltage (Fundamental) Pickup
Neutral Undervoltage (3rd Harmonic) Pickup
Reactive Power Pickup
Reverse Power Pickup
Low Forward Power Pickup
Thermal Model Pickup
RTD #1 Pickup
029D RTD #2 Pickup
1, 2, 3 See Table footnotes on page 39
12
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 3 of 29)
ADDR NAME
RANGE
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
STEP
1
UNITS
FORMAT
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
DEFAULT
029E
029F
02A0
02A1
02A2
02A3
02A4
02A5
02A6
02A7
02A8
02A9
RTD #3 Pickup
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RTD #4 Pickup
1
RTD #5 Pickup
1
RTD #6 Pickup
1
RTD #7 Pickup
1
RTD #8 Pickup
1
RTD #9 Pickup
1
RTD #10 Pickup
RTD #11 Pickup
RTD #12 Pickup
Analog Input 1 Pickup
Analog Input 2 Pickup
1
1
1
1
1
02AA Analog Input 3 Pickup
02AB Analog Input 4 Pickup
02AC Loss Of Excitation 1 Pickup
02AD Loss Of Excitation 2 Pickup
1
1
1
1
02AE
02AF
02B0
02B1
Ground Directional Pickup
High-Set Phase Overcurrent Pickup
Distance Zone 1 Pickup
1
1
1
Distance Zone 2 Pickup
1
STATUS / ALARM PICKUPS
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
030A
030B
030C
Input A Pickup
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Input B Pickup
Input C Pickup
Input D Pickup
Input E Pickup
Input F Pickup
Input G Pickup
Tachometer Pickup
Overcurrent Pickup
Negative Sequence Overcurrent Pickup
Ground Overcurrent Pickup
Undervoltage Pickup
Overvoltage Pickup
030D Volts/Hertz Pickup
030E
030F
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
031A
031B
031C
Underfrequency Pickup
Overfrequency Pickup
Neutral Overvoltage (Fundamental) Pickup
Neutral Undervoltage (3rd harmonic) Pickup
Reactive Power Pickup
Reverse Power Pickup
Low Forward Power Pickup
RTD #1 Pickup
RTD #2 Pickup
RTD #3 Pickup
RTD #4 Pickup
RTD #5 Pickup
RTD #6 Pickup
RTD #7 Pickup
RTD #8 Pickup
031D RTD #9 Pickup
031E
031F
RTD #10 Pickup
RTD #11 Pickup
1, 2, 3 See Table footnotes on page 39
13
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 4 of 29)
ADDR NAME
RANGE
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
0 to 4
STEP
1
UNITS
FORMAT
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
F123
DEFAULT
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
032A
032B
032C
RTD #12 Pickup
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Open Sensor Pickup
Short/Low Temperature Pickup
Thermal Model Pickup
Trip Counter Pickup
1
1
1
1
Breaker Failure Pickup
Trip Coil Monitor Pickup
VT Fuse Failure Pickup
Current Demand Pickup
MW Demand Pickup
Mvar Demand Pickup
MVA Demand Pickup
Analog Input 1 Pickup
1
1
1
1
1
1
1
1
032D Analog Input 2 Pickup
1
032E
032F
0330
0331
0332
0333
0334
0335
0336
0337
Analog Input 3 Pickup
1
Analog Input 4 Pickup
1
Not Programmed Pickup
Simulation Mode Pickup
Output Relays Forced Pickup
Analog Output Forced Pickup
Test Switch Shorted Pickup
Ground Directional Pickup
IRIG-B Alarm Pickup
1
1
1
1
1
1
1
Generator Running Hour Pickup
1
STATUS / DIGITAL INPUTS
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
Access Switch State
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
1
1
1
1
1
1
1
1
1
1
–
–
–
–
–
–
–
–
–
–
F207
F207
F207
F207
F207
F207
F207
F207
F207
F132
0
0
0
0
0
0
0
0
0
0
Breaker Status Switch State
Assignable Digital Input 1 State
Assignable Digital Input 2 State
Assignable Digital Input 3 State
Assignable Digital Input 4 State
Assignable Digital Input 5 State
Assignable Digital Input 6 State
Assignable Digital Input 7 State
Trip Coil Supervision
STATUS / REAL TIME CLOCK
03FC
03FE
Date (Read-only)
Time (Read-only)
N/A
N/A
N/A
N/A
N/A
N/A
F18
F19
N/A
N/A
METERING DATA / CURRENT METERING
0400
0402
0404
0406
0408
040A
040C
040E
0410
0412
0414
0415
0416
0420
Phase A Output Current
Phase B Output Current
Phase C Output Current
Phase A Neutral-Side Current
Phase B Neutral-Side Current
Phase C Neutral-Side Current
Phase A Differential Current
Phase B Differential Current
Phase C Differential Current
Average Phase Current
Generator Load
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 2000
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Amps
Amps
Amps
Amps
Amps
Amps
Amps
Amps
Amps
Amps
% FLA
% FLA
Amps
°
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Negative Sequence Current
Ground Current
0 to 2000
F1
0 to 10000
0 to 359
F14
F1
Phase A Current Angle
1, 2, 3 See Table footnotes on page 39
14
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 5 of 29)
ADDR NAME
RANGE
0 to 359
0 to 359
0 to 359
0 to 359
0 to 359
0 to 359
0 to 359
0 to 359
0 to 359
STEP
UNITS
FORMAT
DEFAULT
0421
0422
0423
0424
0425
0426
0427
0428
0429
Phase B Current Angle
1
1
1
1
1
1
1
1
1
°
°
°
°
°
°
°
°
°
F1
F1
F1
F1
F1
F1
F1
F1
F1
0
0
0
0
0
0
0
0
0
Phase C Current Angle
Phase A Neutral-Side Angle
Phase B Neutral-Side Angle
Phase C Neutral-Side Angle
Phase A Differential Angle
Phase B Differential Angle
Phase C Differential Angle
Ground Current Angle
METERING DATA / VOLTAGE METERING
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
044A
044C
044E
0450
0451
0460
0461
0462
0463
0464
0465
0466
Phase A-B Voltage
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 200
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Volts
Volts
Volts
Volts
Volts
Volts
Volts
Volts
–
F1
F1
F1
F1
F1
F1
F1
F1
F3
F3
F10
F10
F10
F2
F1
F1
F1
F1
F1
F1
F1
F1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Phase B-C Voltage
Phase C-A Voltage
Average Line Voltage
Phase A-N Voltage
Phase B-N Voltage
Phase C-N Voltage
Average Phase Voltage
Per Unit Measurement Of V/Hz
Frequency
2
500 to 9000
0 to 250000
0 to 250000
0 to 250000
0 to 65535
0 to 359
Hz
Neutral Voltage Fund
Neutral Voltage 3rd Harmonic
Volts
Volts
Volts
ohms
°
Neutral Voltage Vp3 3rd Harmonic
Vab/Iab
Vab/Iab Angle
Line A-B Voltage Angle
Line B-C Voltage Angle
Line C-A Voltage Angle
Phase A-N Voltage Angle
Phase B-N Voltage Angle
Phase C-N Voltage Angle
Neutral Voltage Angle
0 to 359
°
0 to 359
°
0 to 359
°
0 to 359
°
0 to 359
°
0 to 359
°
0 to 359
–
METERING DATA / POWER METERING
0480
0481
0483
0485
0487
0489
048B
Power Factor
–100 to 100
1
1
1
1
1
1
1
–
F6
0
0
0
0
0
0
0
Real Power
–2000000 to 2000000
–2000000 to 2000000
–2000000 to 200000
0 to 4000000000
MW
F13
F13
F13
F13
F13
F13
Reactive Power
Apparent Power
Positive Watthours
Positive Varhours
Negative Varhours
Mvar
MVA
MWh
Mvarh
Mvarh
0 to 4000000000
0 to 4000000000
METERING DATA / TEMPERATURE
04A0
04A1
04A2
04A3
04A4
04A5
04A6
04A7
04A8
04A9
Hottest Stator RTD
1 to 12
1
1
1
1
1
1
1
1
1
1
1
1
–
F1
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
0
Hottest Stator RTD Temperature
RTD #1 Temperature
RTD #2 Temperature
RTD #3 Temperature
RTD #4 Temperature
RTD #5 Temperature
RTD #6 Temperature
RTD #7 Temperature
RTD #8 Temperature
–52 to 250
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
°C
°C
°C
°C
°C
°C
°C
°C
°C
°C
°C
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
04AA RTD #9 Temperature
04AB RTD #10 Temperature
1, 2, 3 See Table footnotes on page 39
15
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 6 of 29)
ADDR NAME
RANGE
STEP
UNITS
°C
°C
°F
FORMAT
F4
DEFAULT
–52
04AC RTD #11 Temperature
04AD RTD #12 Temperature
–52 to 251
–52 to 251
–52 to 250
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
F4
–52
04C0
04C1
04C2
04C3
04C4
04C5
04C6
04C7
04C8
04C9
Hottest Stator RTD Temperature
RTD #1 Temperature
RTD #2 Temperature
RTD #3 Temperature
RTD #4 Temperature
RTD #5 Temperature
RTD #6 Temperature
RTD #7 Temperature
RTD #8 Temperature
RTD #9 Temperature
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
°F
F4
–52
04CA RTD #10 Temperature
°F
F4
–52
04CB RTD #11 Temperature
°F
F4
–52
04CC RTD #12 Temperature
°F
F4
–52
METERING DATA / DEMAND METERING
04E0
04E2
04E4
04E6
04E8
04EA
04EC
04EE
Current Demand
MW Demand
0 to 1000000
0 to 2000000
0 to 2000000
0 to 2000000
0 to 1000000
0 to 2000000
0 to 2000000
0 to 2000000
1
1
1
1
1
1
1
1
Amps
MW
F12
F13
F13
F13
F12
F13
F13
F13
0
0
0
0
0
0
0
0
Mvar Demand
Mvar
MVA
Amps
MW
MVA Demand
Peak Current Demand
Peak MW Demand
Peak Mvar Demand
Peak MVA Demand
Mvar
MVA
METERING DATA / ANALOG INPUTS
0500
0502
0504
0506
Analog Input 1
Analog Input 2
Analog Input 3
Analog Input 4
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
1
1
1
1
Units
Units
Units
Units
F12
F12
F12
F12
0
0
0
0
METERING DATA / SPEED
0520 Tachometer
LEARNED DATA / PARAMETER AVERAGES
0 to 7200
1
RPM
F1
0
0600
0601
0602
0603
0604
Average Generator Load
Average Negative Sequence Current
Average Phase-Phase Voltage
Reserved
0 to 2000
1
1
1
–
–
%FLA
F1
F1
F1
–
0
0
0
–
–
0 to 2000
%FLA
0 to 50000
V
–
–
–
–
Reserved
–
LEARNED DATA / RTD MAXIMUMS
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
062A
062B
0640
0641
0642
RTD #1 Maximum Temperature (Celsius)
RTD #2 Maximum Temperature (Celsius)
RTD #3 Maximum Temperature (Celsius)
RTD #4 Maximum Temperature (Celsius)
RTD #5 Maximum Temperature (Celsius)
RTD #6 Maximum Temperature (Celsius)
RTD #7 Maximum Temperature (Celsius)
RTD #8 Maximum Temperature (Celsius)
RTD #9 Maximum Temperature (Celsius)
RTD #10 Maximum Temperature (Celsius)
RTD #11 Maximum Temperature (Celsius)
RTD #12 Maximum Temperature (Celsius)
RTD #1 Maximum Temperature (Fahrenheit)
RTD #2 Maximum Temperature (Fahrenheit)
RTD #3 Maximum Temperature (Fahrenheit)
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
°C
°C
°C
°C
°C
°C
°C
°C
°C
°C
°C
°C
°F
°F
°F
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
–52
1, 2, 3 See Table footnotes on page 39
16
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 7 of 29)
ADDR NAME
RANGE
STEP
UNITS
°F
FORMAT
DEFAULT
–52
0643
0644
0645
0646
0647
0648
0649
064A
064B
RTD #4 Maximum Temperature (Fahrenheit)
RTD #5 Maximum Temperature (Fahrenheit)
RTD #6 Maximum Temperature (Fahrenheit)
RTD #7 Maximum Temperature (Fahrenheit)
RTD #8 Maximum Temperature (Fahrenheit)
RTD #9 Maximum Temperature (Fahrenheit)
RTD #10 Maximum Temperature (Fahrenheit)
RTD #11 Maximum Temperature (Fahrenheit)
RTD #12 Maximum Temperature (Fahrenheit)
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
–52 to 251
1
1
1
1
1
1
1
1
1
F4
F4
F4
F4
F4
F4
F4
F4
F4
°F
–52
°F
–52
°F
–52
°F
–52
°F
–52
°F
–52
°F
–52
°F
–52
LEARNED DATA / ANALOG IN MIN/MAX
0700
0702
0704
0706
0708
070A
070C
070E
Analog Input 1 Minimum
Analog Input 1 Maximum
Analog Input 2 Minimum
Analog Input 2 Maximum
Analog Input 3 Minimum
Analog Input 3 Maximum
Analog Input 4 Minimum
Analog Input 4 Maximum
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
1
1
1
1
1
1
1
1
Units
Units
Units
Units
Units
Units
Units
Units
F12
F12
F12
F12
F12
F12
F12
F12
0
0
0
0
0
0
0
0
MAINTENANCE / TRIP COUNTERS
077F
0781
0782
0783
0784
0785
0786
0787
0788
0789
078A
078B
078C
Trip Counters Last Cleared (Date)
Total Number of Trips
N/A
N/A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N/A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
F18
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
N/A
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
Digital Input Trips
Sequential Trips
Field-Breaker Discrepancy Trips
Tachometer Trips
Offline Overcurrent Trips
Phase Overcurrent Trips
Negative Sequence Overcurrent Trips
Ground Overcurrent Trips
Phase Differential Trips
Undervoltage Trips
Overvoltage Trips
078D Volts/Hertz Trips
078E
078F
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
079A
079B
079C
Phase Reversal Trips
Underfrequency Trips
Overfrequency Trips
Neutral Overvoltage (Fundamental) Trips
Neutral Undervoltage (3rd Harmonic) Trips
Reactive Power Trips
Reverse Power Trips
Low Forward Power Trips
Stator RTD Trips
Bearing RTD Trips
Other RTD Trips
Ambient RTD Trips
Thermal Model Trips
Inadvertent Energization Trips
Analog Input 1 Trips
079D Analog Input 2 Trips
079E
079F
Analog Input 3 Trips
Analog Input 4 Trips
MAINTENANCE / GENERAL COUNTERS
07A0 Number Of Breaker Operations
0 to 50000
1
–
F1
0
1, 2, 3 See Table footnotes on page 39
17
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 8 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
07A1
Number Of Thermal Resets
0 to 50000
1
–
F1
0
MAINTENANCE / TRIP COUNTERS
07A2
07A3
07A4
07A5
07A6
07A7
Loss Of Excitation 1 Trips
Loss Of Excitation 2 Trips
Ground Directional Trips
High-Set Phase Overcurrent Trips
Distance Zone 1 Trips
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
0 to 50000
1
1
1
1
1
1
–
–
–
–
–
–
F1
F1
F1
F1
F1
F1
0
0
0
0
0
0
Distance Zone 2 Trips
MAINTENANCE / TIMERS
07E0 Generator Hours Online
PRODUCT INFO. / 489 MODEL INFO.
0 to 1000000
1
h
F12
0
0800
0801
Order Code
0 to 65535
1
1
N/A
–
F136
F12
N/A
489 Serial Number
3000000 to 9999999
3000000
PRODUCT INFO. / CALIBRATION INFO.
0810
0812
Original Calibration Date
Last Calibration Date
N/A
N/A
N/A
N/A
N/A
N/A
F18
F18
N/A
N/A
489 SETUP / PREFERENCES
1000
1001
1003
1004
1005
1006
1008
100A
Default Message Cycle Time
Default Message Timeout
Parameter Averages Calculation Period
Temperature Display
5 to 100
10 to 900
1 to 90
5
1
s
s
F2
F1
20
300
15
0
1
min
–
F1
0 to 1
1
F100
F1
Waveform Trigger Position
Passcode (Write Only)
1 to 100
0 to 99999999
N/A
1
%
25
0
1
N/A
N/A
–
F12
F12
F1
Encrypted Passcode (Read Only)
Waveform Memory Buffer
N/A
1
N/A
8
1 to 16
489 SETUP / SERIAL PORTS
1010
1011
1012
1013
1014
1015
1016
1017
Slave Address
1 to 254
0 to 5
1
1
–
–
F1
254
4
Computer RS485 Baud Rate
Computer RS485 Parity
Auxiliary RS485 Baud Rate
Auxiliary RS485 Parity
Port Used For DNP
F101
F102
F101
F102
F216
F1
0 to 2
1
–
0
0 to 5
1
–
4
0 to 2
1
–
0
0 to 3
1
–
0
DNP Slave Address
0 to 255
0 to 100
1
–
255
10
DNP Turnaround Time
10
ms
F1
489 SETUP / REAL TIME CLOCK
1030
1032
1034
Date
N/A
N/A
N/A
N/A
1
N/A
N/A
–
F18
F19
N/A
N/A
0
Time
IRIG-B Type
0 to 2
F220
489 SETUP / MESSAGE SCRATCHPAD
1060
1080
10A0
10C0
10E0
Scratchpad
Scratchpad
Scratchpad
Scratchpad
Scratchpad
0 to 40
0 to 40
0 to 40
0 to 40
0 to 40
1
1
1
1
1
–
–
–
–
–
F22
F22
F22
F22
F22
_
_
_
_
_
489 SETUP / CLEAR DATA
1130
1131
1132
1133
1134
1135
1136
1137
Clear Last Trip Data
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
1
1
1
1
1
1
1
1
–
–
–
–
–
–
–
–
F103
F103
F103
F103
F103
F103
F103
F103
0
0
0
0
0
0
0
0
Clear Mwh And Mvarh Meters
Clear Peak Demand Data
Clear RTD Maximums
Clear Analog Inputs Minimums/Maximums
Clear Trip Counters
Clear Event Record
Clear Generator Information
1, 2, 3 See Table footnotes on page 39
18
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 9 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
1138
Clear Breaker Information
0 to 1
1
–
F103
0
SYSTEM SETUP / CURRENT SENSING
1180
1181
1182
Phase CT Primary
Ground CT
10 to 50001
0 to 3
1
1
1
Amps
–
F1
F104
F1
50001
0
Ground CT Ratio
10 to 10000
: 1 / :5
100
SYSTEM SETUP / VOLTAGE SENSING
11A0
11A1
11A2
11A3
VT Connection Type
0 to 2
100 to 30000
100 to 24000
0 to 1
1
1
1
1
–
: 1
: 1
–
F106
F3
0
Voltage Transformer Ratio
Neutral VT Ratio
500
500
0
F3
Neutral Voltage Transformer
F103
SYSTEM SETUP / GEN. PARAMETERS
11C0
11C2
11C3
11C4
11C5
Generator Rated MVA
50 to 2000001
5 to 100
1
1
1
1
1
MVA
–
F13
F3
2000001
Generator Rated Power Factor
Generator Voltage Phase-Phase
Generator Nominal Frequency
Generator Phase Sequence
100
100 to 30001
0 to 3
V
F1
30001
Hz
–
F107
F124
0
0
0 to 2
SYSTEM SETUP / SERIAL START/STOP
11E0
11E1
11E2
11E3
Serial Start/Stop Initiation
Startup Initiation Relays (2-5)
Shutdown Initiation Relays (1-4)
Serial Start/Stop Events
0 to 1
1 to 4
0 to 3
0 to 1
1
1
1
1
–
–
–
–
F105
F50
0
0
0
0
F50
F105
DIGITAL INPUTS / BREAKER STATUS
1200 Breaker Status
DIGITAL INPUTS / GENERAL INPUT A
0 to 1
1
–
F209
1
1210
1211
1212
1218
1219
121A
121B
121C
Assign Digital Input
0 to 7
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
s
F210
F131
F22
F1
0
0
Asserted Digital Input State
Input Name
0 to 12
0 to 5000
0 to 1
_
Block Input From Online
General Input A Control
Pulsed Control Relay Dwell Time
Assign Control Relays (1-5)
General Input A Control Events
0
–
s
F105
F2
0
0 to 250
0 to 4
0
–
–
–
–
s
F50
F105
F115
F50
F2
0
0 to 1
0
121D General Input A Alarm
0 to 2
0
121E
121F
1220
1221
1222
1223
Assign Alarm Relays (2-5)
General Input A Alarm Delay
General Input A Alarm Events
General Input A Trip
1 to 4
16
50
0
1 to 50000
0 to 1
–
–
–
s
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
General Input A Trip Delay
0 to 3
1
1 to 50000
50
DIGITAL INPUTS / GENERAL INPUT B
1230
1231
1232
1238
1239
123A
123B
123C
Assign Digital Input
0 to 7
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
s
F210
F131
F22
0
0
Asserted Digital Input State
Input Name
0 to 12
0 to 5000
0 to 1
_
Block Input From Online
General Input B Control
Pulsed Control Relay Dwell Time
Assign Control Relays (1-5)
General Input B Control Events
F1
0
–
s
F105
F2
0
0 to 250
0 to 4
0
–
–
–
–
s
F50
0
0 to 1
F105
F115
F50
0
123D General Input B Alarm
0 to 2
0
123E
123F
1240
1241
Assign Alarm Relays (2-5)
General Input B Alarm Delay
General Input B Alarm Events
General Input B Trip
1 to 4
16
50
0
1 to 50000
0 to 1
F2
–
–
F105
F115
0 to 2
0
1, 2, 3 See Table footnotes on page 39
19
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 10 of 29)
ADDR NAME
RANGE
0 to 3
STEP
UNITS
FORMAT
F50
DEFAULT
1242
1243
Assign Trip Relays (1-4)
1
1
–
s
1
General Input B Trip Delay
1 to 50000
F2
50
DIGITAL INPUTS / GENERAL INPUT C
1250
1251
1252
1258
1259
125A
125B
125C
Assign Digital Input
0 to 7
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
s
F210
F131
F22
F1
0
0
Asserted Digital Input State
Input Name
0 to 12
0 to 5000
0 to 1
_
Block Input From Online
General Input C Control
Pulsed Control Relay Dwell Time
Assign Control Relays (1-5)
General Input C Control Events
0
–
s
F105
F2
0
0 to 250
0 to 4
0
–
–
–
–
s
F50
F105
F115
F50
F2
0
0 to 1
0
125D General Input C Alarm
0 to 2
0
125E
125F
1260
1261
1262
1263
Assign Alarm Relays (2-5)
General Input C Alarm Delay
General Input C Alarm Events
General Input C Trip
1 to 4
16
50
0
1 to 50000
0 to 1
–
–
–
s
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
General Input C Trip Delay
0 to 3
1
1 to 50000
50
DIGITAL INPUTS / GENERAL INPUT D
1270
1271
1272
1278
1279
127A
127B
127C
Assign Digital Input
0 to 7
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
s
F210
F131
F22
F1
0
0
Asserted Digital Input State
Input Name
0 to 12
0 to 5000
0 to 1
_
Block Input From Online
General Input D Control
Pulsed Control Relay Dwell Time
Assign Control Relays (1-5)
General Input D Control Events
0
–
s
F105
F2
0
0 to 250
0 to 4
0
–
–
–
–
s
F50
F105
F115
F50
F2
0
0 to 1
0
127D General Input D Alarm
0 to 2
0
127E
127F
1280
1281
1282
1283
Assign Alarm Relays (2-5)
General Input D Alarm Delay
General Input D Alarm Events
General Input D Trip
1 to 4
16
50
0
1 to 50000
0 to 1
–
–
–
s
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
General Input D Trip Delay
0 to 3
1
1 to 50000
50
DIGITAL INPUTS / GENERAL INPUT E
1290
1291
1292
1298
1299
129A
129B
129C
Assign Digital Input
0 to 7
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
s
F210
F131
F22
F1
0
0
Asserted Digital Input State
Input Name
0 to 12
0 to 5000
0 to 1
_
Block Input From Online
General Input E Control
Pulsed Control Relay Dwell Time
Assign Control Relays (1-5)
General Input E Control Events
0
–
s
F105
F2
0
0 to 250
0 to 4
0
–
–
–
–
s
F50
F105
F115
F50
F2
0
0 to 1
0
129D General Input E Alarm
0 to 2
0
129E
129F
12A0
12A1
12A2
12A3
Assign Alarm Relays (2-5)
General Input E Alarm Delay
General Input E Alarm Events
General Input E Trip
1 to 4
16
50
0
1 to 50000
0 to 1
–
–
–
s
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
General Input E Trip Delay
0 to 3
1
1 to 50000
50
DIGITAL INPUTS / GENERAL INPUT F
12B0
12B1
Assign Digital Input
0 to 7
0 to 1
1
1
–
–
F210
F131
0
0
Asserted Digital Input State
1, 2, 3 See Table footnotes on page 39
20
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 11 of 29)
ADDR NAME
RANGE
0 to 12
0 to 5000
0 to 1
STEP
UNITS
FORMAT
F22
DEFAULT
12B2
12B8
12B9
Input Name
1
1
1
1
1
1
1
1
1
1
1
1
1
–
s
_
0
Block Input From Online
General Input F Control
F1
–
s
F105
F2
0
12BA Pulsed Control Relay Dwell Time
12BB Assign Control Relays (1-5)
12BC General Input F Control Events
12BD General Input F Alarm
0 to 250
0 to 4
0
–
–
–
–
s
F50
0
0 to 1
F105
F115
F50
0
0 to 2
0
12BE
12BF
12C0
12C1
12C2
12C3
Assign Alarm Relays (2-5)
General Input F Alarm Delay
General Input F Alarm Events
General Input F Trip
1 to 4
16
50
0
1 to 50000
0 to 1
F2
–
–
–
s
F105
F115
F50
0 to 2
0
Assign Trip Relays (1-4)
General Input F Trip Delay
0 to 3
1
1 to 50000
F2
50
DIGITAL INPUTS / GENERAL INPUT G
12D0 Assign Digital Input
0 to 7
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
–
s
F210
F131
F22
F1
0
0
12D1 Asserted Digital Input State
12D2 Input Name
0 to 12
0 to 5000
0 to 1
_
12D8 Block Input From Online
12D9 General Input G Control
12DA Pulsed Control Relay Dwell Time
12DB Assign Control Relays (1-5)
12DC General Input G Control Events
12DD General Input G Alarm
0
–
s
F105
F2
0
0 to 250
0 to 4
0
–
–
–
–
s
F50
F105
F115
F50
F2
0
0 to 1
0
0 to 2
0
12DE Assign Alarm Relays (2-5)
12DF General Input G Alarm Delay
1 to 4
16
50
0
1 to 50000
0 to 1
12E0
12E1
12E2
12E3
General Input G Alarm Events
General Input G Trip
–
–
–
s
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
General Input G Trip Delay
0 to 3
1
1 to 50000
50
DIGITAL INPUTS / REMOTE RESET
1300 Assign Digital Input
DIGITAL INPUTS / TEST INPUT
1310 Assign Digital Input
DIGITAL INPUTS / THERMAL RESET
1320 Assign Digital Input
DIGITAL INPUTS / DUAL SETPOINTS
0 to 7
0 to 7
0 to 7
1
1
1
–
–
–
F210
F210
F210
0
0
0
1340
1341
1342
Assign Digital Input
Active Setpoint Group
Edit Setpoint Group
0 to 7
0 to 1
0 to 1
1
1
1
–
–
–
F210
F118
F118
0
0
0
DIGITAL INPUTS / SEQUENTIAL TRIP
1360
1361
1362
1363
1365
Assign Digital Input
Sequential Trip Type
Assign Trip Relays (1-4)
Sequential Trip Level
Sequential Trip Delay
0 to 7
0 to 1
1
1
1
1
1
–
F210
F206
F50
F14
F2
0
0
–
0 to 3
–
1
2 to 99
2 to 1200
× Rated MW
5
s
10
DIGITAL INPUTS / FIELD-BREAKER DISCREPANCY
1380
1381
1382
1383
Assign Digital Input
0 to 7
0 to 1
1
1
1
1
–
–
–
s
F210
F109
F50
F2
0
0
Field Status Contact
Assign Trip Relays (1-4)
Field-Breaker Discrepancy Trip Delay
0 to 3
1
1 to 5000
10
DIGITAL INPUTS / TACHOMETER
13A0
13A1
Assign Digital Input
Rated Speed
0 to 7
1
1
–
F210
F1
0
100 to 3600
RPM
3600
1, 2, 3 See Table footnotes on page 39
21
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 12 of 29)
ADDR NAME
RANGE
0 to 2
STEP
UNITS
FORMAT
F115
F50
DEFAULT
13A2
13A3
13A4
13A5
13A6
13A7
13A8
13A9
Tachometer Alarm
1
1
1
1
1
1
1
1
1
–
0
16
110
1
Assign Alarm Relays (2-5)
Tachometer Alarm Speed
Tachometer Alarm Delay
Tachometer Alarm Events
Tachometer Trip
1 to 4
–
101 to 175
1 to 250
0 to 1
%Rated
F1
s
F1
–
F105
F115
F50
0
0 to 2
–
0
Assign Trip Relays (1-4)
Tachometer Trip Speed
0 to 3
–
%Rated
s
1
101 to 175
1 to 250
F1
110
1
13AA Tachometer Trip Delay
F1
DIGITAL INPUTS / WAVEFORM CAPTURE
13C0
Assign Digital Input
0 to 7
1
–
F210
0
DIGITAL INPUTS / GROUND SWITCH STATUS
13D0 Assign Digital Input
0 to 7
0 to 1
1
1
–
–
F210
F109
0
0
13D1 Ground Switch Contact
OUTPUT RELAYS / RELAY RESET MODE
1400
1401
1402
1403
1404
1405
1 Trip
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
0 to 1
1
1
1
1
1
1
–
–
–
–
–
–
F117
F117
F117
F117
F117
F117
0
0
0
0
0
0
2 Auxiliary
3 Auxiliary
4 Auxiliary
5 Alarm
6 Service
CURRENT ELEMENTS / OVERCURRENT ALARM
1500
1501
1502
1503
1504
Overcurrent Alarm
0 to 2
1 to 4
1
1
1
1
1
–
F115
F50
F3
0
16
101
1
Assign Alarm Relays (2-5)
Overcurrent Alarm Level
Overcurrent Alarm Delay
Overcurrent Alarm Events
–
× FLA
s
10 to 150
1 to 2500
0 to 1
F2
–
F105
0
CURRENT ELEMENTS / OFFLINE OVERCURRENT
1520
1521
1522
1523
Offline Overcurrent Trip
0 to 2
0 to 3
1
1
1
1
–
–
F115
F50
F3
0
1
5
5
Assign Trip Relays (1-4)
Offline Overcurrent Pickup
Offline Overcurrent Trip Delay
5 to 100
3 to 99
× CT
Cycles
F1
CURRENT ELEMENTS / INADVERTENT ENERGIZATION
1540
1541
1542
1543
1544
Inadvertent Energize Trip
Assign Trip Relays (1-4)
Arming Signal
0 to 2
0 to 3
1
1
1
1
1
–
F115
F50
F202
F3
0
1
–
–
0 to 1
0
Inadvertent Energize O/c Pickup
Inadvertent Energize Pickup
5 to 300
50 to 99
× CT
5
× Rated V
F3
50
CURRENT ELEMENTS / PHASE OVERCURRENT
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
160A
160B
160C
Phase Overcurrent Trip
0 to 2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
F115
F50
F103
F3
0
Assign Trip Relays (1-4)
0 to 3
1
Enable Voltage Restraint
0 to 1
–
0
Phase Overcurrent Pickup
15 to 2000
0 to 13
× CT
–
1000
0
Curve Shape
F128
F1
FlexCurve™ Trip Time at 1.03 × PU
FlexCurve™ Trip Time at 1.05 × PU
FlexCurve™ Trip Time at 1.10 × PU
FlexCurve™ Trip Time at 1.20 × PU
FlexCurve™ Trip Time at 1.30 × PU
FlexCurve™ Trip Time at 1.40 × PU
FlexCurve™ Trip Time at 1.50 × PU
FlexCurve™ Trip Time at 1.60 × PU
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
ms
ms
ms
ms
ms
ms
ms
ms
ms
65535
65535
65535
65535
65535
65535
65535
65535
65535
F1
F1
F1
F1
F1
F1
F1
160D FlexCurve™ Trip Time at 1.70 × PU
F1
1, 2, 3 See Table footnotes on page 39
22
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 13 of 29)
ADDR NAME
RANGE
STEP
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
UNITS
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
FORMAT
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
DEFAULT
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
160E
160F
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
161A
161B
161C
FlexCurve™ Trip Time at 1.80 × PU
FlexCurve™ Trip Time at 1.90 × PU
FlexCurve™ Trip Time at 2.00 × PU
FlexCurve™ Trip Time at 2.10 × PU
FlexCurve™ Trip Time at 2.20 × PU
FlexCurve™ Trip Time at 2.30 × PU
FlexCurve™ Trip Time at 2.40 × PU
FlexCurve™ Trip Time at 2.50 × PU
FlexCurve™ Trip Time at 2.60 × PU
FlexCurve™ Trip Time at 2.70 × PU
FlexCurve™ Trip Time at 2.80 × PU
FlexCurve™ Trip Time at 2.90 × PU
FlexCurve™ Trip Time at 3.00 × PU
FlexCurve™ Trip Time at 3.10 × PU
FlexCurve™ Trip Time at 3.20 × PU
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
161D FlexCurve™ Trip Time at 3.30 × PU
161E
161F
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
162A
162B
162C
FlexCurve™ Trip Time at 3.40 × PU
FlexCurve™ Trip Time at 3.50 × PU
FlexCurve™ Trip Time at 3.60 × PU
FlexCurve™ Trip Time at 3.70 × PU
FlexCurve™ Trip Time at 3.80 × PU
FlexCurve™ Trip Time at 3.90 × PU
FlexCurve™ Trip Time at 4.00 × PU
FlexCurve™ Trip Time at 4.10 × PU
FlexCurve™ Trip Time at 4.20 × PU
FlexCurve™ Trip Time at 4.30 × PU
FlexCurve™ Trip Time at 4.40 × PU
FlexCurve™ Trip Time at 4.50 × PU
FlexCurve™ Trip Time at 4.60 × PU
FlexCurve™ Trip Time at 4.70 × PU
FlexCurve™ Trip Time at 4.80 × PU
162D FlexCurve™ Trip Time at 4.90 × PU
162E
162F
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
163A
163B
163C
FlexCurve™ Trip Time at 5.00 × PU
FlexCurve™ Trip Time at 5.10 × PU
FlexCurve™ Trip Time at 5.20 × PU
FlexCurve™ Trip Time at 5.30 × PU
FlexCurve™ Trip Time at 5.40 × PU
FlexCurve™ Trip Time at 5.50 × PU
FlexCurve™ Trip Time at 5.60 × PU
FlexCurve™ Trip Time at 5.70 × PU
FlexCurve™ Trip Time at 5.80 × PU
FlexCurve™ Trip Time at 5.90 × PU
FlexCurve™ Trip Time at 6.00 × PU
FlexCurve™ Trip Time at 6.50 × PU
FlexCurve™ Trip Time at 7.00 × PU
FlexCurve™ Trip Time at 7.50 × PU
FlexCurve™ Trip Time at 8.00 × PU
163D FlexCurve™ Trip Time at 8.50 × PU
163E
163F
1640
1641
1642
FlexCurve™ Trip Time at 9.00 × PU
FlexCurve™ Trip Time at 9.50 × PU
FlexCurve™ Trip Time at 10.0 × PU
FlexCurve™ Trip Time at 10.5 × PU
FlexCurve™ Trip Time at 11.0 × PU
1, 2, 3 See Table footnotes on page 39
23
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 14 of 29)
ADDR NAME
RANGE
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 100000
0 to 1
STEP
1
UNITS
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
–
FORMAT
F1
DEFAULT
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
100
1643
1644
1645
1646
1647
1648
1649
164A
164B
164C
FlexCurve™ Trip Time at 11.5 × PU
FlexCurve™ Trip Time at 12.0 × PU
FlexCurve™ Trip Time at 12.5 × PU
FlexCurve™ Trip Time at 13.0 × PU
FlexCurve™ Trip Time at 13.5 × PU
FlexCurve™ Trip Time at 14.0 × PU
FlexCurve™ Trip Time at 14.5 × PU
FlexCurve™ Trip Time at 15.0 × PU
FlexCurve™ Trip Time at 15.5 × PU
FlexCurve™ Trip Time at 16.0 × PU
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
164D FlexCurve™ Trip Time at 16.5 × PU
1
F1
164E
164F
1650
1651
1652
1653
1654
1655
1657
1658
FlexCurve™ Trip Time at 17.0 × PU
FlexCurve™ Trip Time at 17.5 × PU
FlexCurve™ Trip Time at 18.0 × PU
FlexCurve™ Trip Time at 18.5 × PU
FlexCurve™ Trip Time at 19.0 × PU
FlexCurve™ Trip Time at 19.5 × PU
FlexCurve™ Trip Time at 20.0 × PU
Overcurrent Curve Multiplier
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F14
F201
F1
Overcurrent Curve Reset
1
–
0
Voltage Lower Limit
10 to 60
1
%
10
CURRENT ELEMENTS / NEGATIVE SEQUENCE
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
170A
Negative Sequence Alarm
0 to 2
1 to 4
1
1
1
1
1
1
1
1
1
1
1
–
F115
F50
F1
0
16
3
Assign Alarm Relays (2-5)
–
Negative Sequence Alarm Pickup
Negative Sequence Alarm Delay
Negative Sequence Alarm Events
Negative Sequence Overcurrent Trip
Assign Trip Relays (1-4)
3 to 100
1 to 1000
0 to 1
%FLA
s
F2
50
0
–
F105
F115
F50
F1
0 to 2
–
0
0 to 3
–
1
Negative Sequence Overcurrent Trip Pickup
Negative Sequence Overcurrent Constant K
Negative Sequence Overcurrent Maximum Time
Negative Sequence Overcurrent Reset Rate
3 to 100
1 to 100
10 to 1000
0 to 9999
%FLA
8
–
s
s
F1
1
F1
1000
2270
F2
CURRENT ELEMENTS / GROUND O/C
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
172A
172B
172C
Ground Overcurrent Alarm
0 to 2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
–
F115
F50
F3
0
Assign Alarm Relays (2-5)
1 to 4
16
Ground Overcurrent Alarm Pickup
Ground Overcurrent Alarm Delay
Ground Overcurrent Alarm Events
Ground Overcurrent Trip
5 to 2000
0 to 100
× CT
Cycles
–
20
F1
0
0 to 1
F105
F115
F50
F3
0
0 to 2
–
0
Assign Trip Relays (1-4)
0 to 3
–
1
Ground Overcurrent Trip Pickup
Curve Shape
5 to 2000
0 to 13
× CT
–
20
F128
F1
0
FlexCurve™ Trip Time at 1.03 × PU
FlexCurve™ Trip Time at 1.05 × PU
FlexCurve™ Trip Time at 1.10 × PU
FlexCurve™ Trip Time at 1.20 × PU
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
F1
F1
F1
172D FlexCurve™ Trip Time at 1.30 × PU
F1
172E
172F
1730
1731
1732
FlexCurve™ Trip Time at 1.40 × PU
FlexCurve™ Trip Time at 1.50 × PU
FlexCurve™ Trip Time at 1.60 × PU
FlexCurve™ Trip Time at 1.70 × PU
FlexCurve™ Trip Time at 1.80 × PU
F1
F1
F1
F1
F1
1, 2, 3 See Table footnotes on page 39
24
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 15 of 29)
ADDR NAME
RANGE
STEP
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
UNITS
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
FORMAT
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
DEFAULT
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
1733
1734
1735
1736
1737
1738
1739
173A
173B
173C
FlexCurve™ Trip Time at 1.90 × PU
FlexCurve™ Trip Time at 2.00 × PU
FlexCurve™ Trip Time at 2.10 × PU
FlexCurve™ Trip Time at 2.20 × PU
FlexCurve™ Trip Time at 2.30 × PU
FlexCurve™ Trip Time at 2.40 × PU
FlexCurve™ Trip Time at 2.50 × PU
FlexCurve™ Trip Time at 2.60 × PU
FlexCurve™ Trip Time at 2.70 × PU
FlexCurve™ Trip Time at 2.80 × PU
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
173D FlexCurve™ Trip Time at 2.90 × PU
173E
173F
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
174A
174B
174C
FlexCurve™ Trip Time at 3.00 × PU
FlexCurve™ Trip Time at 3.10 × PU
FlexCurve™ Trip Time at 3.20 × PU
FlexCurve™ Trip Time at 3.30 × PU
FlexCurve™ Trip Time at 3.40 × PU
FlexCurve™ Trip Time at 3.50 × PU
FlexCurve™ Trip Time at 3.60 × PU
FlexCurve™ Trip Time at 3.70 × PU
FlexCurve™ Trip Time at 3.80 × PU
FlexCurve™ Trip Time at 3.90 × PU
FlexCurve™ Trip Time at 4.00 × PU
FlexCurve™ Trip Time at 4.10 × PU
FlexCurve™ Trip Time at 4.20 × PU
FlexCurve™ Trip Time at 4.30 × PU
FlexCurve™ Trip Time at 4.40 × PU
174D FlexCurve™ Trip Time at 4.50 × PU
174E
174F
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
175A
175B
175C
FlexCurve™ Trip Time at 4.60 × PU
FlexCurve™ Trip Time at 4.70 × PU
FlexCurve™ Trip Time at 4.80 × PU
FlexCurve™ Trip Time at 4.90 × PU
FlexCurve™ Trip Time at 5.00 × PU
FlexCurve™ Trip Time at 5.10 × PU
FlexCurve™ Trip Time at 5.20 × PU
FlexCurve™ Trip Time at 5.30 × PU
FlexCurve™ Trip Time at 5.40 × PU
FlexCurve™ Trip Time at 5.50 × PU
FlexCurve™ Trip Time at 5.60 × PU
FlexCurve™ Trip Time at 5.70 × PU
FlexCurve™ Trip Time at 5.80 × PU
FlexCurve™ Trip Time at 5.90 × PU
FlexCurve™ Trip Time at 6.00 × PU
175D FlexCurve™ Trip Time at 6.50 × PU
175E
175F
1760
1761
1762
1763
1764
1765
1766
1767
FlexCurve™ Trip Time at 7.00 × PU
FlexCurve™ Trip Time at 7.50 × PU
FlexCurve™ Trip Time at 8.00 × PU
FlexCurve™ Trip Time at 8.50 × PU
FlexCurve™ Trip Time at 9.00 × PU
FlexCurve™ Trip Time at 9.50 × PU
FlexCurve™ Trip Time at 10.0 × PU
FlexCurve™ Trip Time at 10.5 × PU
FlexCurve™ Trip Time at 11.0 × PU
FlexCurve™ Trip Time at 11.5 × PU
1, 2, 3 See Table footnotes on page 39
25
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 16 of 29)
ADDR NAME
RANGE
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 65535
0 to 100000
0 to 1
STEP
1
UNITS
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
–
FORMAT
F1
DEFAULT
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
65535
100
1768
1769
176A
176B
176C
FlexCurve™ Trip Time at 12.0 × PU
FlexCurve™ Trip Time at 12.5 × PU
FlexCurve™ Trip Time at 13.0 × PU
FlexCurve™ Trip Time at 13.5 × PU
FlexCurve™ Trip Time at 14.0 × PU
1
F1
1
F1
1
F1
1
F1
176D FlexCurve™ Trip Time at 14.5 × PU
1
F1
176E
176F
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
177B
FlexCurve™ Trip Time at 15.0 × PU
FlexCurve™ Trip Time at 15.5 × PU
FlexCurve™ Trip Time at 16.0 × PU
FlexCurve™ Trip Time at 16.5 × PU
FlexCurve™ Trip Time at 17.0 × PU
FlexCurve™ Trip Time at 17.5 × PU
FlexCurve™ Trip Time at 18.0 × PU
FlexCurve™ Trip Time at 18.5 × PU
FlexCurve™ Trip Time at 19.0 × PU
FlexCurve™ Trip Time at 19.5 × PU
FlexCurve™ Trip Time at 20.0 × PU
Overcurrent Curve Multiplier
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F1
1
F14
F201
Overcurrent Curve Reset
1
–
0
CURRENT ELEMENTS / PHASE DIFFERENTIAL
17E0
17E1
17E2
17E3
17E4
17E5
Phase Differential Trip
0 to 2
0 to 3
1
1
1
1
1
1
–
–
F115
F50
F3
0
1
Assign Trip Relays (1-4)
Differential Trip Minimum Pickup
Differential Trip Slope 1
Differential Trip Slope 2
Differential Trip Delay
5 to 100
1 to 100
1 to 100
0 to 100
× CT
%
10
10
20
0
F1
%
F1
cycles
F1
CURRENT ELEMENTS / GROUND DIRECTIONAL
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
180A
Supervise With Digital Input
Ground Directional MTA
0 to 1
0 to 3
1
1
1
1
1
1
1
1
1
1
1
–
–
F103
F217
F115
F50
F3
1
0
Ground Directional Alarm
0 to 2
–
0
Assign Alarm Relays (2-5)
Ground Directional Alarm Pickup
Ground Directional Alarm Delay
Ground Directional Alarm Events
Ground Directional Trip
1 to 4
–
16
5
5 to 2000
1 to 1200
0 to 1
× CT
s
F2
30
0
–
F105
F115
F50
F3
0 to 2
–
0
Assign Trip Relays (1-4)
0 to 3
–
1
Ground Directional Trip Pickup
Ground Directional Trip Delay
5 to 2000
1 to 1200
× CT
s
5
F2
30
CURRENT ELEMENTS / HIGH-SET PHASE OVERCURRENT
1830
1831
1832
1833
High-Set Phase Overcurrent Trip
Assign Trip Relays (1-4)
0 to 2
0 to 3
1
1
1
1
–
–
F115
F50
F3
0
1
High-Set Phase Overcurrent Pickup
High-Set Phase Overcurrent Delay
15 to 2000
0 to 10000
× CT
s
500
100
F3
VOLTAGE ELEMENTS / UNDERVOLTAGE
2000
2001
2002
2003
2004
2005
2006
2007
2008
Undervoltage Alarm
0 to 2
1 to 4
1
1
1
1
1
1
1
1
1
–
F115
F50
F3
0
16
85
30
0
Assign Alarm Relays (2-5)
Undervoltage Alarm Pickup
Undervoltage Alarm Delay
Undervoltage Alarm Events
Undervoltage Trip
–
50 to 99
2 to 1200
0 to 1
× Rated
s
F2
–
F105
F115
F50
F3
0 to 2
–
0
Assign Trip Relays (1-4)
Undervoltage Trip Pickup
Undervoltage Trip Delay
0 to 3
–
× Rated
s
1
50 to 99
2 to 100
80
10
F2
1, 2, 3 See Table footnotes on page 39
26
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 17 of 29)
ADDR NAME
RANGE
0 to 9999
0 to 1
STEP
UNITS
FORMAT
F2
DEFAULT
2009
200A
Undervoltage Curve Reset Rate
Undervoltage Curve Element
1
1
s
14
0
–
F208
VOLTAGE ELEMENTS / OVERVOLTAGE
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
202A
Overvoltage Alarm
0 to 2
1 to 4
1
1
1
1
1
1
1
1
1
1
1
–
F115
F50
F3
0
16
115
30
0
Assign Alarm Relays (2-5)
Overvoltage Alarm Pickup
Overvoltage Alarm Delay
Overvoltage Alarm Events
Overvoltage Trip
–
101 to 150
1 to 1200
0 to 1
× Rated
s
F2
–
F105
F115
F50
F3
0 to 2
–
0
Assign Trip Relays (1-4)
Overvoltage Trip Pickup
Overvoltage Trip Delay
Overvoltage Curve Reset Rate
Overvoltage Curve Element
0 to 3
–
1
101 to 150
1 to 100
0 to 9999
0 to 1
× Rated
120
10
14
0
s
s
F2
F2
–
F208
VOLTAGE ELEMENTS / VOLTS/HERTZ
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
204A
Volts/Hertz Alarm
0 to 2
1 to 4
1
1
1
1
1
1
1
1
1
1
1
–
F115
F50
F3
0
16
100
30
0
Assign Alarm Relays (2-5)
Volts/Hertz Alarm Pickup
Volts/Hertz Alarm Delay
Volts/Hertz Alarm Events
Volts/Hertz Trip
–
50 to 199
1 to 1500
0 to 1
× Nominal
s
F2
–
F105
F115
F50
F3
0 to 2
–
0
Assign Trip Relays (1-4)
Volts/Hertz Trip Pickup
Volts/Hertz Trip Delay
Volts/Hertz Curve Reset Rate
Volts/Hertz Trip Element
0 to 3
–
1
50 to 199
1 to 1500
0 to 9999
0 to 3
× Nominal
100
10
14
0
s
s
F2
F2
–
F211
VOLTAGE ELEMENTS / PHASE REVERSAL
2060
2061
Phase Reversal Trip
0 to 2
0 to 3
1
1
–
–
F115
F50
0
1
Assign Trip Relays (1-4)
VOLTAGE ELEMENTS / UNDERFREQUENCY
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
208A
208B
208C
Block Underfrequency From Online
Voltage Level Cutoff
0 to 5
50 to 99
1
1
1
1
1
1
1
1
1
1
1
1
1
s
F1
F3
1
50
× Rated
Underfrequency Alarm
0 to 2
–
–
F115
F50
F3
0
Assign Alarm Relays (2-5)
Underfrequency Alarm Level
Underfrequency Alarm Delay
Underfrequency Alarm Events
Underfrequency Trip
1 to 4
16
2000 to 6000
1 to 50000
0 to 1
Hz
s
5950
50
F2
–
F105
F115
F50
F3
0
0 to 2
–
0
Assign Trip Relays (1-4)
0 to 3
–
1
Underfrequency Trip Level 1
Underfrequency Trip Delay 1
Underfrequency Trip Level 2
Underfrequency Trip Delay 2
2000 to 6000
1 to 50000
2000 to 6000
1 to 50000
Hz
s
5950
600
5800
300
F2
Hz
s
F3
F2
VOLTAGE ELEMENTS / OVERFREQUENCY
20A0
20A1
20A2
20A3
20A4
20A5
20A6
20A7
20A8
Block Overfrequency From Online
Voltage Level Cutoff
0 to 5
50 to 99
0 to 2
1
1
1
1
1
1
1
1
1
s
F1
F3
1
50
0
× Rated
Overfrequency Alarm
–
–
F115
F50
F3
Assign Alarm Relays (2-5)
Overfrequency Alarm Level
Overfrequency Alarm Delay
Overfrequency Alarm Events
Overfrequency Trip
1 to 4
16
6050
50
0
2501 to 7000
1 to 50000
0 to 1
Hz
s
F2
–
F105
F115
F50
0 to 2
–
0
Assign Trip Relays (1-4)
0 to 3
–
1
1, 2, 3 See Table footnotes on page 39
27
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 18 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
6050
600
20A9
Overfrequency Trip Level 1
2501 to 7000
1 to 50000
2501 to 7000
1 to 50000
1
1
1
1
Hz
s
F3
F2
F3
F2
20AA Overfrequency Trip Delay 1
20AB Overfrequency Trip Level 2
20AC Overfrequency Trip Delay 2
Hz
s
6200
300
VOLTAGE ELEMENTS / NEUTRAL OVERVOLTAGE (FUNDAMENTAL)
20C0
20C1
20C2
20C3
20C4
20C5
20C6
20C7
20C8
20C9
Neutral Overvoltage Alarm
Assign Alarm Relays (2-5)
0 to 2
1 to 4
1
1
1
1
1
1
1
1
1
1
1
1
–
F115
F50
F2
0
16
30
10
0
–
Neutral Overvoltage Alarm Level
Neutral Overvoltage Alarm Delay
Neutral Overvoltage Alarm Events
Neutral Overvoltage Trip
20 to 1000
1 to 1200
0 to 1
Vsec.
s
–
–
–
V
s
F2
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
0 to 3
1
Neutral Overvoltage Trip Level
Neutral Overvoltage Trip Delay
Supervise With Digital Input
20 to 1000
1 to 1200
0 to 1
50
10
0
F2
–
s
F103
F2
20CA Neutral Overvoltage Curve Reset Rate
20CB Neutral Overvoltage Trip Element
0 to 9999
0 to 1
0
–
F208
1
VOLTAGE ELEMENTS / NEUTRAL UNDERVOLTAGE (3rd HARMONIC)
20E0
20E2
20E3
20E4
20E5
20E6
20E7
20E8
20E9
20EA
20EB
Low Power Blocking Level
2 to 99
50 to 100
0 to 2
1
1
1
1
1
1
1
1
1
1
1
× Rated MW
F14
F3
5
75
0
Low Voltage Blocking Level
Neutral Undervoltage Alarm
Assign Alarm Relays (2-5)
× Rated
–
–
V
s
F115
F50
F2
1 to 4
16
5
Neutral Undervoltage Alarm Level
Neutral Undervoltage Alarm Delay
Neutral Undervoltage Alarm Events
Neutral Undervoltage Trip
5 to 200
5 to 120
0 to 1
F1
30
0
–
–
–
V
s
F105
F115
F50
F2
0 to 2
0
Assign Trip Relays (1-4)
0 to 3
1
Neutral Undervoltage Trip Level
Neutral Undervoltage Trip Delay
5 to 200
5 to 120
10
30
F1
VOLTAGE ELEMENTS / LOSS OF EXCITATION
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
210A
210B
Enable Voltage Supervision
Voltage Level
0 to 1
70 to 100
0 to 2
1
1
1
1
1
1
1
1
1
1
1
1
–
× rated
–
F103
F3
0
70
0
Circle 1 Trip
F115
F50
F2
Assign Circle 1 Trip Relays (1-4)
Circle 1 Diameter
Circle 1 Offset
0 to 3
–
1
25 to 3000
10 to 3000
1 to 100
0 to 2
Ω s
Ω s
s
250
25
50
0
F2
Circle 1 Trip Delay
Circle 2 Trip
F2
–
F115
F50
F2
Assign Circle 2 Trip Relays (1-4)
Circle 2 Diameter
Circle 2 Offset
0 to 3
–
1
25 to 3000
10 to 3000
1 to 100
Ω s
Ω s
s
350
25
50
F2
Circle 2 Trip Delay
F2
VOLTAGE ELEMENTS / DISTANCE ELEMENT
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
Step Up Transformer Setup
Fuse Failure Supervision
Zone 1 Trip
0 to 1
0 to 1
1
1
1
1
1
1
1
1
1
1
–
–
F219
F105
F115
F50
F2
0
0
0 to 2
–
0
Assign Zone 1 Trip Relays (1-4)
Zone 1 Reach
0 to 3
–
1
1 to 5000
50 to 85
0 to 1500
0 to 2
Ω s
°
100
75
4
Zone 1 Angle
F1
Zone 1 Trip Delay
s
F2
Zone 2 Trip
–
F115
F50
F2
0
Assign Zone 2 Trip Relays (1-4)
Zone 2 Reach
0 to 3
–
1
1 to 5000
Ω s
100
1, 2, 3 See Table footnotes on page 39
28
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 19 of 29)
ADDR NAME
RANGE
50 to 85
0 to 1500
STEP
UNITS
FORMAT
DEFAULT
213A
213B
Zone 2 Angle
1
1
°
s
F1
F2
75
20
Zone 2 Trip Delay
POWER ELEMENTS / REACTIVE POWER
2200
2201
2202
2203
2205
2207
2208
2209
220A
220B
Block Mvar Element From Online
Reactive Power Alarm
0 to 5000
0 to 2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
s
F1
F115
F50
F14
F14
F2
1
0
–
Assign Alarm Relays (2-5)
1 to 4
–
16
85
85
10
0
3
Positive Mvar Alarm Level
2 to 201
2 to 201
2 to 1200
0 to 1
x rated
3
Negative Mvar Alarm Level
x rated
Negative Mvar Alarm Delay
Reactive Power Alarm Events
Reactive Power Trip
s
–
F105
F115
F50
F14
F14
F2
0 to 2
–
0
Assign Trip Relays (1-4)
0 to 3
–
1
3
Positive Mvar Trip Level
2 to 201
2 to 201
2 to 1200
2 to 1200
2 to 1200
Mvar
80
80
10
200
100
3
220D Negative Mvar Trip Level
Mvar
220F
2210
2211
Negative Mvar Trip Delay
Positive Mvar Trip Delay
Positive Mvar Alarm Delay
s
s
s
F2
F2
POWER ELEMENTS / REVERSE POWER
2240
2241
2242
2243
2245
2246
2247
2248
2249
224B
Block Reverse Power From Online
Reverse Power Alarm
0 to 5000
0 to 2
1
1
1
1
1
1
1
1
1
1
s
F1
F115
F50
F14
F2
1
0
–
Assign Alarm Relays (2-5)
Reverse Power Alarm Level
Reverse Power Alarm Delay
Reverse Power Alarm Events
Reverse Power Trip
1 to 4
–
16
5
2 to 99
2 to 1200
0 to 1
× Rated
s
100
0
–
F105
F115
F50
F14
F2
0 to 2
–
0
Assign Trip Relays (1-4)
Reverse Power Trip Level
Reverse Power Trip Delay
0 to 3
–
× Rated
s
1
2 to 99
2 to 1200
5
200
POWER ELEMENTS / LOW FORWARD POWER
2280
2281
2282
2283
2285
2286
2287
2288
2289
228B
Block Low Forward Power From Online
Low Forward Power Alarm
0 to 15000
0 to 2
1
1
1
1
1
1
1
1
1
1
s
F1
F115
F50
F14
F2
0
0
–
Assign Alarm Relays (2-5)
1 to 4
–
16
5
Low Forward Power Alarm Level
Low Forward Power Alarm Delay
Low Forward Power Alarm Events
Low Forward Power Trip
2 to 99
2 to 1200
0 to 1
× Rated MW
s
100
0
–
F105
F115
F50
F14
F2
0 to 2
–
0
Assign Trip Relays (1-4)
0 to 3
–
1
Low Forward Power Trip Level
Low Forward Power Trip Delay
2 to 99
2 to 1200
× Rated MW
5
s
200
RTD TEMPERATURE / RTD TYPES
2400
2401
2402
2403
Stator RTD Type
Bearing RTD Type
Ambient RTD Type
Other RTD Type
0 to 3
0 to 3
0 to 3
0 to 3
1
1
1
1
–
–
–
–
F120
F120
F120
F120
0
0
0
0
RTD TEMPERATURE / RTD #1
2420
2421
2422
2423
2424
2425
2426
2427
RTD #1 Application
RTD #1 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
1
0
Assign Alarm Relays (2-5)
RTD #1 Alarm Temperature
RTD #1 Alarm Events
RTD #1 Trip
1 to 4
–
16
130
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #1 Trip Voting
Assign Trip Relays (1-4)
1 to 12
0 to 3
–
1
–
1
1, 2, 3 See Table footnotes on page 39
29
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 20 of 29)
ADDR NAME
RANGE
1 to 250
0 to 8
STEP
UNITS
FORMAT
F1
DEFAULT
2428
2429
RTD #1 Trip Temperature
RTD #1 Name
1
1
°C
–
155
_
F22
RTD TEMPERATURE / RTD #2
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
RTD #2 Application
RTD #2 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
1
0
Assign Alarm Relays (2-5)
RTD #2 Alarm Temperature
RTD #2 Alarm Events
RTD #2 Trip
1 to 4
–
16
130
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #2 Trip Voting
Assign Trip Relays (1-4)
RTD #2 Trip Temperature
RTD #2 Name
1 to 12
0 to 3
–
2
–
1
1 to 250
0 to 8
°C
–
F1
155
_
F22
RTD TEMPERATURE / RTD #3
24A0
24A1
24A2
24A3
24A4
24A5
24A6
24A7
24A8
24A9
RTD #3 Application
RTD #3 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
1
0
Assign Alarm Relays (2-5)
RTD #3 Alarm Temperature
RTD #3 Alarm Events
RTD #3 Trip
1 to 4
–
16
130
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #3 Trip Voting
Assign Trip Relays (1-4)
RTD #3 Trip Temperature
RTD #3 Name
1 to 12
0 to 3
–
3
–
1
1 to 250
0 to 8
°C
–
F1
155
_
F22
RTD TEMPERATURE / RTD #4
24E0
24E1
24E2
24E3
24E4
24E5
24E6
24E7
24E8
24E9
RTD #4 Application
RTD #4 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
1
0
Assign Alarm Relays (2-5)
RTD #4 Alarm Temperature
RTD #4 Alarm Events
RTD #4 Trip
1 to 4
–
16
130
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #4 Trip Voting
Assign Trip Relays (1-4)
RTD #4 Trip Temperature
RTD #4 Name
1 to 12
0 to 3
–
4
–
1
1 to 250
0 to 8
°C
–
F1
155
_
F22
RTD TEMPERATURE / RTD #5
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
RTD #5 Application
RTD #5 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
1
0
Assign Alarm Relays (2-5)
RTD #5 Alarm Temperature
RTD #5 Alarm Events
RTD #5 Trip
1 to 4
–
16
130
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #5 Trip Voting
Assign Trip Relays (1-4)
RTD #5 Trip Temperature
RTD #5 Name
1 to 12
0 to 3
–
5
–
1
1 to 250
0 to 8
°C
–
F1
155
_
F22
RTD TEMPERATURE / RTD #6
2560
2561
2562
2563
2564
2565
RTD #6 Application
RTD #6 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
–
–
F121
F115
F50
1
0
Assign Alarm Relays (2-5)
RTD #6 Alarm Temperature
RTD #6 Alarm Events
RTD #6 Trip
1 to 4
–
16
130
0
1 to 250
0 to 1
°C
–
F1
F105
F115
0 to 2
–
0
1, 2, 3 See Table footnotes on page 39
30
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 21 of 29)
ADDR NAME
RANGE
1 to 12
0 to 3
STEP
UNITS
FORMAT
F122
F50
DEFAULT
2566
2567
2568
2569
RTD #6 Trip Voting
Assign Trip Relays (1-4)
RTD #6 Trip Temperature
RTD #6 Name
1
1
1
1
–
–
6
1
1 to 250
0 to 8
°C
–
F1
155
_
F22
RTD TEMPERATURE / RTD #7
25A0
25A1
25A2
25A3
25A4
25A5
25A6
25A7
25A8
25A9
RTD #7 Application
RTD #7 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
2
0
Assign Alarm Relays (2-5)
RTD #7 Alarm Temperature
RTD #7 Alarm Events
RTD #7 Trip
1 to 4
–
16
80
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #7 Trip Voting
Assign Trip Relays (1-4)
RTD #7 Trip Temperature
RTD #7 Name
1 to 12
0 to 3
–
7
–
1
1 to 250
0 to 8
°C
–
F1
90
_
F22
RTD TEMPERATURE / RTD #8
25E0
25E1
25E2
25E3
25E4
25E5
25E6
25E7
25E8
25E9
RTD #8 Application
RTD #8 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
2
0
Assign Alarm Relays (2-5)
RTD #8 Alarm Temperature
RTD #8 Alarm Events
RTD #8 Trip
1 to 4
–
16
80
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #8 Trip Voting
Assign Trip Relays (1-4)
RTD #8 Trip Temperature
RTD #8 Name
1 to 12
0 to 3
–
8
–
1
1 to 250
0 to 8
°C
–
F1
90
_
F22
RTD TEMPERATURE / RTD #9
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
RTD #9 Application
RTD #9 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
2
0
Assign Alarm Relays (2-5)
RTD #9 Alarm Temperature
RTD #9 Alarm Events
RTD #9 Trip
1 to 4
–
16
80
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #9 Trip Voting
Assign Trip Relays (1-4)
RTD #9 Trip Temperature
RTD #9 Name
1 to 12
0 to 3
–
9
–
1
1 to 250
0 to 8
°C
–
F1
90
_
F22
RTD TEMPERATURE / RTD #10
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
RTD #10 Application
RTD #10 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
2
0
Assign Alarm Relays (2-5)
RTD #10 Alarm Temperature
RTD #10 Alarm Events
RTD #10 Trip
1 to 4
–
16
80
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #10 Trip Voting
Assign Trip Relays (1-4)
RTD #10 Trip Temperature
RTD #10 Name
1 to 12
0 to 3
–
10
1
–
1 to 250
0 to 8
°C
–
F1
90
_
F22
RTD TEMPERATURE / RTD #11
26A0
26A1
26A2
26A3
RTD #11 Application
0 to 4
0 to 2
1
1
1
1
–
–
F121
F115
F50
F1
4
0
RTD #11 Alarm
Assign Alarm Relays (2-5)
RTD #11 Alarm Temperature
1 to 4
–
16
80
1 to 250
°C
1, 2, 3 See Table footnotes on page 39
31
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 22 of 29)
ADDR NAME
RANGE
0 to 1
STEP
UNITS
FORMAT
F105
F115
F122
F50
DEFAULT
26A4
26A5
26A6
26A7
26A8
26A9
RTD #11 Alarm Events
RTD #11 Trip
1
1
1
1
1
1
–
–
0
0
0 to 2
RTD #11 Trip Voting
Assign Trip Relays (1-4)
RTD #11 Trip Temperature
RTD #11 Name
1 to 12
0 to 3
–
11
1
–
1 to 250
0 to 8
°C
–
F1
90
_
F22
RTD TEMPERATURE / RTD #12
26E0
26E1
26E2
26E3
26E4
26E5
26E6
26E7
26E8
26E9
RTD #12 Application
RTD #12 Alarm
0 to 4
0 to 2
1
1
1
1
1
1
1
1
1
1
–
–
F121
F115
F50
3
0
Assign Alarm Relays (2-5)
RTD #12 Alarm Temperature
RTD #12 Alarm Events
RTD #12 Trip
1 to 4
–
16
60
0
1 to 250
0 to 1
°C
–
F1
F105
F115
F122
F50
0 to 2
–
0
RTD #12 Trip Voting
Assign Trip Relays (1-4)
RTD #12 Trip Temperature
RTD #12 Name
1 to 12
0 to 3
–
12
1
–
1 to 250
0 to 8
°C
–
F1
80
_
F22
RTD TEMPERATURE / OPEN RTD SENSOR
2720
2721
2722
Open RTD Sensor Alarm
0 to 2
1 to 4
0 to 1
1
1
1
–
–
–
F115
F50
0
16
0
Assign Alarm Relays (2-5)
Open RTD Sensor Alarm Events
F105
RTD TEMPERATURE / RTD SHORT/LOW TEMPERATURE
2740
2741
2742
RTD Short/Low Temperature Alarm
Assign Alarm Relays (2-5)
0 to 2
1 to 4
0 to 1
1
1
1
–
–
–
F115
F50
0
16
0
RTD Short/Low Temperature Alarm Events
F105
THERMAL MODEL / MODEL SETUP
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
280A
280B
280C
280E
2810
2812
2814
2816
2818
281A
281C
281E
2820
2822
2824
2826
2828
Enable Thermal Model
0 to 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
F103
F3
0
101
0
Overload Pickup Level
101 to 125
0 to 12
× FLA
Unbalance Bias K Factor
Cool Time Constant Online
Cool Time Constant Offline
Hot/Cold Safe Stall Ratio
Enable RTD Biasing
–
min
min
–
F1
0 to 500
F1
15
30
100
0
0 to 500
F1
1 to 100
F3
0 to 1
–
F103
F1
RTD Bias Minimum
0 to 250
°C
°C
°C
–
40
130
155
0
RTD Bias Center Point
0 to 250
F1
RTD Bias Maximum
0 to 250
F1
Select Curve Style
0 to 2
F142
F1
Standard Overload Curve Number
Time to Trip at 1.01 × FLA
Time to Trip at 1.05 × FLA
Time to Trip at 1.10 × FLA
Time to Trip at 1.20 × FLA
Time to Trip at 1.30 × FLA
Time to Trip at 1.40 × FLA
Time to Trip at 1.50 × FLA
Time to Trip at 1.75 × FLA
Time to Trip at 2.00 × FLA
Time to Trip at 2.25 × FLA
Time to Trip at 2.50 × FLA
Time to Trip at 2.75 × FLA
Time to Trip at 3.00 × FLA
Time to Trip at 3.25 × FLA
Time to Trip at 3.50 × FLA
1 to 15
–
4
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
s
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
s
5
1, 2, 3 See Table footnotes on page 39
32
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 23 of 29)
ADDR NAME
RANGE
STEP
1
UNITS
FORMAT
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F1
DEFAULT
282A
282C
282E
2830
2832
2834
2836
2838
283A
283C
283E
2840
2842
2844
2846
2848
2849
284A
284B
284C
Time to Trip at 3.75 × FLA
Time to Trip at 4.00 × FLA
Time to Trip at 4.25 × FLA
Time to Trip at 4.50 × FLA
Time to Trip at 4.75 × FLA
Time to Trip at 5.00 × FLA
Time to Trip at 5.50 × FLA
Time to Trip at 6.00 × FLA
Time to Trip at 6.50 × FLA
Time to Trip at 7.00 × FLA
Time to Trip at 7.50 × FLA
Time to Trip at 8.00 × FLA
Time to Trip at 10.0 × FLA
Time to Trip at 15.0 × FLA
Time to Trip at 20.0 × FLA
Minimum Allowable Voltage
Stall Current at Minimum Voltage
Safe Stall Time at Minimum Voltage
Acceleration Intersect at Minimum Voltage
Stall Current at 100% Voltage
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
5 to 999999
70 to 95
s
5
5
1
s
1
s
5
1
s
5
1
s
5
1
s
5
1
s
5
1
s
5
1
s
5
1
s
5
1
s
5
1
s
5
1
s
s
5
1
5
1
s
5
1
%
80
480
200
380
600
100
500
200 to 1500
5 to 9999
1
× FLA
s
F3
1
F2
200 to 1500
200 to 1500
5 to 9999
1
× FLA
× FLA
s
F3
1
F3
284D Safe Stall Time at 100% Voltage
284E Acceleration Intersect at 100% Voltage
THERMAL MODEL / THERMAL ELEMENTS
1
F2
200 to 1500
1
× FLA
F3
2900
2901
2902
2903
2904
2905
Thermal Model Alarm
Assign Alarm Relays (2-5)
Thermal Alarm Level
0 to 2
1 to 4
1
1
1
1
1
1
–
F115
F50
0
16
75
0
–
10 to 100
0 to 1
%Used
F1
Thermal Model Alarm Events
Thermal Model Trip
–
–
–
F105
F115
F50
0 to 2
0
Assign Trip Relays (1-4)
0 to 3
1
MONITORING / TRIP COUNTER
2A00
2A01
2A02
2A03
Trip Counter Alarm
0 to 2
1 to 4
1
1
1
1
–
–
F115
F50
F1
0
16
25
0
Assign Alarm Relays (2-5)
Trip Counter Alarm Level
Trip Counter Alarm Events
1 to 50000
0 to 1
Trips
–
F105
MONITORING / BREAKER FAILURE
2A20
2A21
2A22
2A23
2A24
Breaker Failure Alarm
0 to 2
1 to 4
1
1
–
–
F115
F50
F3
0
16
Assign Alarm Relays (2-5)
Breaker Failure Level
5 to 2000
10 to 1000
0 to 1
1
× CT
ms
–
100
100
0
Breaker Failure Delay
10
1
F1
Breaker Failure Alarm Events
F105
MONITORING / TRIP COIL MONITOR
2A30
2A31
2A32
Trip Coil Monitor Alarm
0 to 2
1 to 4
0 to 1
1
1
1
–
–
–
F115
F50
0
16
0
Assign Alarm Relays (2-5)
Trip Coil Monitor Alarm Events
F105
MONITORING / VT FUSE FAILURE
2A50
2A51
2A52
VT Fuse Failure Alarm
0 to 2
1 to 4
0 to 1
1
1
1
–
–
–
F115
F50
0
16
0
Assign Alarm Relays (2-5)
VT Fuse Failure Alarm Events
F105
MONITORING / CURRENT DEMAND
2A60
2A61
2A62
2A63
Current Demand Period
Current Demand Alarm
Assign Alarm Relays (2-5)
Current Demand Limit
5 to 90
0 to 2
1
1
1
1
min
A
F1
F115
F50
F14
15
0
1 to 4
A
16
125
10 to 2000
× FLA
1, 2, 3 See Table footnotes on page 39
33
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 24 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
2A65
Current Demand Alarm Events
0 to 1
1
A
F105
0
MONITORING / MW DEMAND
2A70
2A71
2A72
2A73
2A75
MW Demand Period
5 to 90
0 to 2
1
1
1
1
1
min
F1
15
0
MW Demand Alarm
–
F115
F50
Assign Alarm Relays (2-5)
MW Demand Limit
1 to 4
–
× Rated
–
16
125
0
10 to 200
0 to 1
F14
MW Demand Alarm Events
F105
MONITORING / Mvar DEMAND
2A80
2A81
2A82
2A83
2A85
Mvar Demand Period
5 to 90
0 to 2
1
1
1
1
1
min
F1
15
0
Mvar Demand Alarm
–
F115
F50
Assign Alarm Relays (2-5)
Mvar Demand Limit
1 to 4
–
× Rated
–
16
125
0
10 to 200
0 to 1
F14
Mvar Demand Alarm Events
F105
MONITORING / MVA DEMAND
2A90
2A91
2A92
2A93
2A95
MVA Demand Period
5 to 90
0 to 2
1
1
1
1
1
min
F1
15
0
MVA Demand Alarm
–
F115
F50
Assign Alarm Relays (2-5)
MVA Demand Limit
1 to 4
–
× Rated
–
16
125
0
10 to 200
0 to 1
F14
MVA Demand Alarm Events
F105
MONITORING / PULSE OUTPUT
2AB0 Positive kWh Pulse Output Relays (2-5)
2AB1 Positive kWh Pulse Output Interval
2AB2 Positive kvarh Pulse Output Relays (2-5)
2AB3 Positive kvarh Pulse Output Interval
2AB4 Negative kvarh Pulse Output Relays (2-5)
2AB5 Negative kvarh Pulse Output Interval
2AB6 Pulse Width
1 to 4
1 to 50000
1 to 4
1
1
1
1
1
1
1
–
–
–
–
–
–
–
F50
F1
0
10
0
F50
F1
1 to 50000
1 to 4
10
0
F50
F1
1 to 50000
200 to 1000
10
200
F1
MONITORING / RUNNING HOUR SETUP
2AC0 Initial Generator Running Hours
2AC2 Generator Running Hour Alarm
2AC3 Assign Alarm Relays (2-5)
0 to 999999
0 to 2
1
1
1
1
h
–
–
h
F12
F115
F50
0
0
1 to 4
16
2AC4 Generator Running Hour Limit
2AC6 Reserved
1 to 1000000
F12
1000
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 1
2B00
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 2
2B01 Analog Output 2
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 3
2B02 Analog Output 3
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 4
2B03 Analog Output 4
ANALOG INPUT/OUTPUT / ANALOG OUTPUTS
Analog Output 1
0 to 42
0 to 42
0 to 42
0 to 42
1
1
1
1
–
–
–
–
F127
F127
F127
F127
0
0
0
0
2B04
2B05
2B06
2B07
2B08
2B09
Ia Output Current Minimum
Ia Output Current Maximum
Ib Output Current Minimum
Ib Output Current Maximum
Ic Output Current Minimum
Ic Output Current Maximum
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
0 to 2000
1
1
1
1
1
1
1
1
1
1
1
× FLA
× FLA
× FLA
× FLA
× FLA
× FLA
× FLA
× FLA
%FLA
%FLA
× FLA
F3
F3
F3
F3
F3
F3
F3
F3
F1
F1
F3
0
125
0
125
0
125
0
2B0A Average Output Current Minimum
2B0B Average Output Current Maximum
2B0C Negative Sequence Current Minimum
2B0D Negative Sequence Current Maximum
125
0
100
0
2B0E
Averaged Generator Load Minimum
1, 2, 3 See Table footnotes on page 39
34
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 25 of 29)
ADDR NAME
RANGE
0 to 2000
STEP
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
UNITS
× FLA
°C
FORMAT
F3
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F3
F3
F3
F3
F3
F3
F3
F3
F3
F3
F3
F3
F6
F6
F6
F6
F6
F6
F3
F3
F12
F12
DEFAULT
125
0
2B0F
2B10
2B11
2B12
2B13
2B14
2B15
2B16
2B17
2B18
2B19
Averaged Generator Load Maximum
Hottest Stator RTD Minimum
Hottest Stator RTD Maximum
Hottest Bearing RTD Minimum
Hottest Bearing RTD Maximum
Ambient RTD Minimum
Ambient RTD Maximum
RTD #1 Minimum
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
–50 to 250
0 to 150
°C
200
0
°C
°C
200
0
°C
°C
70
°C
0
RTD #1 Maximum
°C
200
0
RTD #2 Minimum
°C
RTD #2 Maximum
°C
200
0
2B1A RTD #3 Minimum
2B1B RTD #3 Maximum
2B1C RTD #4 Minimum
2B1D RTD #4 Maximum
°C
°C
200
0
°C
°C
200
0
2B1E
2B1F
2B20
2B21
2B22
2B23
2B24
2B25
2B26
2B27
2B28
2B29
RTD #5 Minimum
RTD #5 Maximum
RTD #6 Minimum
RTD #6 Maximum
RTD #7 Minimum
RTD #7 Maximum
RTD #8 Minimum
RTD #8 Maximum
RTD #9 Minimum
RTD #9 Maximum
RTD #10 Minimum
RTD #10 Maximum
°C
°C
200
0
°C
°C
200
0
°C
°C
200
0
°C
°C
200
0
°C
°C
200
0
°C
°C
200
0
2B2A RTD #11 Minimum
2B2B RTD #11 Maximum
2B2C RTD #12 Minimum
2B2D RTD #12 Maximum
°C
°C
200
0
°C
°C
200
0
2B2E
2B2F
2B30
2B31
2B32
2B33
2B34
2B35
2B36
2B37
2B38
2B39
AB Voltage Minimum
AB Voltage Maximum
BC Voltage Minimum
BC Voltage Maximum
CA Voltage Minimum
CA Voltage Maximum
Average Voltage Minimum
Average Voltage Maximum
Volts/Hertz Minimum
Volts/Hertz Maximum
Frequency Minimum
Frequency Maximum
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
Hz
0 to 150
125
0
0 to 150
0 to 150
125
0
0 to 150
0 to 150
125
0
0 to 150
0 to 150
125
0
0 to 200
0 to 200
150
5900
6100
80
0 to 9000
0 to 9000
Hz
2B3C Power Factor Minimum
2B3D Power Factor Maximum
–99 to 100
–99 to 100
–200 to 200
–200 to 200
–200 to 200
–200 to 200
0 to 200
–
–
–80
0
2B3E
2B3F
2B40
2B41
2B42
2B43
2B44
2B46
Reactive Power Minimum
Reactive Power Maximum
Real Power (MW) Minimum
Real Power (MW) Maximum
Apparent Power Minimum
Apparent Power Maximum
Analog Input 1 Minimum
Analog Input 1 Maximum
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
Units
Units
125
0
125
0
0 to 200
125
0
–50000 to 50000
–50000 to 50000
50000
1, 2, 3 See Table footnotes on page 39
35
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 26 of 29)
ADDR NAME
RANGE
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
0 to 7200
STEP
1
UNITS
Units
Units
Units
Units
Units
Units
RPM
FORMAT
F12
F12
F12
F12
F12
F12
F1
DEFAULT
2B48
Analog Input 2 Minimum
0
50000
0
2B4A Analog Input 2 Maximum
2B4C Analog Input 3 Minimum
1
1
2B4E
2B50
2B52
2B54
2B55
2B56
2B57
2B58
Analog Input 3 Maximum
1
50000
0
Analog Input 4 Minimum
1
Analog Input 4 Maximum
1
50000
3500
3700
0
Tachometer Minimum
1
Tachometer Maximum
0 to 7200
1
RPM
F1
Thermal Capacity Used Minimum
Thermal Capacity Used Maximum
Neutral Voltage Third Harmonic Minimum
0 to 100
1
%
F1
0 to 100
1
%
F1
100
0
0 to 250000
0 to 250000
0 to 2000
1
Volts
F10
F10
F3
2B5A Neutral Voltage Third Harmonic Maximum
2B5C Current Demand Minimum
1
Volts
450
0
1
× FLA
× FLA
× Rated
× Rated
× Rated
× Rated
× Rated
× Rated
2B5D Current Demand Maximum
0 to 2000
1
F3
125
0
2B5E
2B5F
2B60
2B61
2B62
2B63
Mvar Demand Minimum
Mvar Demand Maximum
MW Demand Minimum
MW Demand Maximum
MVA Demand Minimum
MVA Demand Maximum
0 to 200
1
F3
0 to 200
1
F3
125
0
0 to 200
1
F3
0 to 200
1
F3
125
0
0 to 200
1
F3
0 to 200
1
F3
125
ANALOG INPUT/OUTPUT / ANALOG INPUT 1
2C00
2C05
2C08
Analog Input 1
0 to 3
0 to 6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
F129
F22
F12
F12
F1
0
_
Analog Input 1 Units
Analog Input 1 Minimum
–
–50000 to 50000
–50000 to 50000
0 to 5000
0 to 2
Units
0
2C0A Analog Input 1 Maximum
2C0C Block Analog Input 1 From Online
2C0D Analog Input 1 Alarm
Units
100
0
s
–
F115
F50
F12
F130
F2
0
2C0E
2C0F
2C11
2C12
2C13
2C14
2C15
2C16
2C18
2C19
Assign Alarm Relays (2-5)
Analog Input 1 Alarm Level
Analog Input 1 Alarm Pickup
Analog Input 1 Alarm Delay
Analog Input 1 Alarm Events
Analog Input 1 Trip
1 to 4
–
16
10
0
–50000 to 50000
0 to 1
Units
–
1 to 3000
0 to 1
s
1
–
F105
F115
F50
F12
F130
F2
0
0 to 2
–
0
Assign Trip Relays (1-4)
Analog Input 1 Trip Level
Analog Input 1 Trip Pickup
Analog Input 1 Trip Delay
0 to 3
–
1
–50000 to 50000
0 to 1
Units
20
0
–
s
1 to 3000
0 to 12
1
2C1A Analog Input 1 Name
–
F22
_
ANALOG INPUT/OUTPUT / ANALOG INPUT 2
2C40
2C45
2C48
Analog Input 2
0 to 3
0 to 6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
F129
F22
F12
F12
F1
0
_
Analog Input 2 Units
Analog Input 2 Minimum
–
–50000 to 50000
–50000 to 50000
0 to 5000
0 to 2
Units
0
2C4A Analog Input 2 Maximum
2C4C Block Analog Input 2 From Online
2C4D Analog Input 2 Alarm
Units
100
0
s
–
F115
F50
F12
F130
F2
0
2C4E
2C4F
2C51
2C52
2C53
2C54
2C55
2C56
Assign Alarm Relays (2-5)
Analog Input 2 Alarm Level
Analog Input 2 Alarm Pickup
Analog Input 2 Alarm Delay
Analog Input 2 Alarm Events
Analog Input 2 Trip
1 to 4
–
16
10
0
–50000 to 50000
0 to 1
Units
–
1 to 3000
0 to 1
s
–
1
F105
F115
F50
F12
0
0 to 2
–
0
Assign Trip Relays (1-4)
Analog Input 2 Trip Level
0 to 3
–
1
–50000 to 50000
Units
20
1, 2, 3 See Table footnotes on page 39
36
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 27 of 29)
ADDR NAME
RANGE
0 to 1
STEP
UNITS
FORMAT
F130
F2
DEFAULT
2C58
2C59
Analog Input 2 Trip Pickup
Analog Input 2 Trip Delay
1
1
1
–
s
0
1
_
1 to 3000
0 to 12
2C5A Analog Input 2 Name
–
F22
ANALOG INPUT/OUTPUT / ANALOG INPUT 3
2C80
2C85
2C88
Analog Input 3
0 to 3
0 to 6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
F129
F22
F12
F12
F1
0
_
Analog Input 3 Units
Analog Input 3 Minimum
–
–50000 to 50000
–50000 to 50000
0 to 5000
0 to 2
Units
0
2C8A Analog Input 3 Maximum
2C8C Block Analog Input 3 From Online
2C8D Analog Input 3 Alarm
Units
100
0
s
–
F115
F50
F12
F130
F2
0
2C8E
2C8F
2C91
2C92
2C93
2C94
2C95
2C96
2C98
2C99
Assign Alarm Relays (2-5)
Analog Input 3 Alarm Level
Analog Input 3 Alarm Pickup
Analog Input 3 Alarm Delay
Analog Input 3 Alarm Events
Analog Input 3 Trip
1 to 4
–
16
10
0
–50000 to 50000
0 to 1
Units
–
1 to 3000
0 to 1
s
1
–
F105
F115
F50
F12
F130
F2
0
0 to 2
–
0
Assign Trip Relays (1-4)
Analog Input 3 Trip Level
Analog Input 3 Trip Pickup
Analog Input 3 Trip Delay
0 to 3
–
1
–50000 to 50000
0 to 1
Units
20
0
–
s
1 to 3000
0 to 12
1
2C9A Analog Input 3 Name
–
F22
_
ANALOG INPUT/OUTPUT / ANALOG INPUT 4
2CC0 Analog Input 4
0 to 3
0 to 6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
–
F129
F22
F12
F12
F1
0
_
2CC5 Analog Input 4 Units
–
2CC8 Analog Input 4 Minimum
2CCA Analog Input 4 Maximum
2CCC Block Analog Input 4 From Online
2CCD Analog Input 4 Alarm
–50000 to 50000
–50000 to 50000
0 to 5000
0 to 2
Units
0
Units
100
0
s
–
F115
F50
F12
F130
F2
0
2CCE Assign Alarm Relays (2-5)
1 to 4
–
16
10
0
2CCF
Analog Input 4 Alarm Level
–50000 to 50000
0 to 1
Units
2CD1 Analog Input 4 Alarm Pickup
2CD2 Analog Input 4 Alarm Delay
2CD3 Analog Input 4 Alarm Events
2CD4 Analog Input 4 Trip
–
1 to 3000
0 to 1
s
1
–
F105
F115
F50
F12
F130
F2
0
0 to 2
–
0
2CD5 Assign Trip Relays (1-4)
2CD6 Analog Input 4 Trip Level
2CD8 Analog Input 4 Trip Pickup
2CD9 Analog Input 4 Trip Delay
2CDA Analog Input 4 Name
0 to 3
–
1
–50000 to 50000
0 to 1
Units
20
0
–
s
1 to 3000
0 to 12
1
–
F22
_
489 TESTING / SIMULATION MODE
2D00 Simulation Mode
0 to 3
1
1
–
s
F138
F1
0
2D01 Pre-fault To Fault Time Delay
489 TESTING / PRE-FAULT SETUP
2D20 Pre-Fault Iphase Output
2D21 Pre-Fault Voltages Phase-N
2D22 Pre-Fault Current Lags Voltage
2D23 Pre-Fault Iphase Neutral
2D24 Pre-Fault Current Ground
2D25 Pre-Fault Voltage Neutral
2D26 Pre-Fault Stator RTD Temp
2D27 Pre-Fault Bearing RTD Temp
2D28 Pre-Fault Other RTD Temp
2D29 Pre-Fault Ambient RTD Temp
1, 2, 3 See Table footnotes on page 39
0 to 300
15
0 to 2000
0 to 150
1
1
1
1
1
1
1
1
1
1
× CT
× Rated
°
F3
F3
F1
F3
F3
F2
F4
F4
F4
F4
0
100
0
0 to 359
0 to 2000
0 to 2000
0 to 1000
–50 to 250
–50 to 250
–50 to 250
–50 to 250
× CT
× CT
Volts
°C
0
0
0
40
40
40
40
°C
°C
°C
37
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 28 of 29)
ADDR NAME
RANGE
50 to 900
0 to 100
STEP
UNITS
Hz
%
FORMAT
DEFAULT
2D2A Pre-Fault System Frequency
2D2B Pre-Fault Analog Input 1
2D2C Pre-Fault Analog Input 2
2D2D Pre-Fault Analog Input 3
2D2E Pre-Fault Analog Input 4
2D4C Pre-Fault Stator RTD Temp
2D4D Pre-Fault Bearing RTD Temp
2D4E Pre-Fault Other RTD Temp
2D4F Pre-Fault Ambient RTD Temp
489 TESTING / FAULT SETUP
2D80 Fault Iphase Output
1
1
1
1
1
1
1
1
1
F2
F1
F1
F1
F1
F4
F4
F4
F4
600
0
0 to 100
%
0
0 to 100
%
0
0 to 100
%
0
–50 to 250
–50 to 250
–50 to 250
–50 to 250
°F
40
40
40
40
°F
°F
°F
0 to 2000
0 to 150
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
× CT
× Rated
°
F3
F3
F1
F3
F3
F2
F4
F4
F4
F4
F2
F1
F1
F1
F1
F4
F4
F4
F4
0
100
0
2D81 Fault Voltages Phase-N
2D82 Fault Current Lags Voltage
2D83 Fault Iphase Neutral
0 to 359
0 to 2000
0 to 2000
0 to 1000
–50 to 250
–50 to 250
–50 to 250
–50 to 250
50 to 900
0 to 100
× CT
× CT
Volts
°C
0
2D84 Fault Current Ground
0
2D85 Fault Voltage Neutral
0
2D86 Fault Stator RTD Temp
2D87 Fault Bearing RTD Temp
2D88 Fault Other RTD Temp
2D89 Fault Ambient RTD Temp
2D8A Fault System Frequency
2D8B Fault Analog Input 1
40
40
40
40
600
0
°C
°C
°C
Hz
%
2D8C Fault Analog Input 2
0 to 100
%
0
2D8D Fault Analog Input 3
0 to 100
%
0
2D8E Fault Analog Input 4
0 to 100
%
0
2DBC Fault Stator RTD Temp
2DBD Fault Bearing RTD Temp
2DBE Fault Other RTD Temp
2DBF Fault Ambient RTD Temp
489 TESTING / TEST OUTPUT RELAYS
2DE0 Force Operation Of Relays
489 TESTING / TEST ANALOG OUTPUT
2DF0 Force Analog Outputs Function
2DF1 Analog Output 1 Forced Value
2DF2 Analog Output 2 Forced Value
2DF3 Analog Output 3 Forced Value
2DF4 Analog Output 4 Forced Value
EVENT RECORDER / GENERAL
–50 to 250
–50 to 250
–50 to 250
–50 to 250
°F
40
40
40
40
°F
°F
°F
0 to 8
1
–
F139
0
0 to 1
1
1
1
1
1
–
F126
F1
0
0
0
0
0
0 to 100
0 to 100
0 to 100
0 to 100
%
%
%
%
F1
F1
F1
3000
3002
3003
Event Recorder Last Reset Date (2 Words)
Total Number Of Events Since Last Clear
Event Record Selector
N/A
N/A
1
N/A
N/A
–
F18
F1
N/A
N/A
0
0 to 65535
0 to 65535
1
F1
EVENT RECORDER / SELECTED EVENT
3004
3005
3007
3009
300A
300C
300E
3010
3012
3014
3016
Cause Of Event
0 to 139
N/A
1
N/A
N/A
1
–
F134
F19
F18
F1
0
N/A
N/A
0
Time Of Event (2 Words)
Date Of Event (2 Words)
Tachometer
N/A
N/A
N/A
0 to 7200
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 999999
0 to 2000
RPM
Phase A Current
1
Amps
Amps
Amps
Amps
Amps
Amps
%FLA
F12
F12
F12
F12
F12
F12
F1
0
Phase B Current
1
0
Phase C Current
1
0
Phase A Differential Current
Phase B Differential Current
Phase C Differential Current
Neg. Seq. Current
1
0
1
0
1
0
1
0
1, 2, 3 See Table footnotes on page 39
38
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 29 of 29)
ADDR NAME
RANGE
0 to 20000000
0 to 50000
STEP
1
UNITS
A
FORMAT
F14
F1
DEFAULT
3017
3019
301A
301B
301C
Ground Current
A-B Voltage
B-C Voltage
C-A Voltage
Frequency
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Volts
Volts
Volts
Hz
0 to 50000
1
F1
0 to 50000
1
F1
0 to 12000
1
F3
301D Active Group
0 to 1
1
–
F1
301F
3021
3023
3025
3026
3027
3028
3029
302A
302B
302C
Real Power (MW)
–2000000 to 2000000
–2000000 to 2000000
0 to 2000000
1 to 12
1
MW
Mar
MVA
–
F13
F13
F13
F1
Reactive Power Mvar
1
Apparent Power MVA
1
Hottest Stator RTD Number
Hottest Stator RTD Temperature
Hottest Bearing RTD Number
Hottest Bearing RTD Temperature
Hottest Other RTD Number
Hottest Other RTD Temperature
Hottest Ambient RTD Number
Hottest Ambient RTD Temperature
1
–50 to 250
1
°C
F4
1 to 12
1
–
F1
–50 to 250
1
°C
F4
1 to 12
1
–
F1
–50 to 250
1
°C
F4
1 to 12
1
–
F1
–50 to 250
1
°C
F4
302D Analog Input 1
–50000 to 50000
–50000 to 50000
–50000 to 50000
–50000 to 50000
0 to 999999
0 to 999999
0 to 999999
–50 to 250
1
Units
Units
Units
Units
Amps
Amps
Amps
°F
F12
F12
F12
F12
F12
F12
F12
F4
302F
3031
3033
3035
3037
3039
30E0
30E1
30E2
30E3
30E5
30E7
30E9
30EA
Analog Input 2
1
Analog Input 3
1
Analog Input 4
1
Phase A Neutral Current
Phase B Neutral Current
Phase C Neutral Current
Hottest Stator RTD Temperature
Hottest Bearing RTD Temperature
Hottest Other RTD Temperature
Hottest Ambient RTD Temperature
Neutral Voltage (Fundamental)
Neutral Voltage (3rd Harmonic)
Vab/Iab
1
1
1
1
–50 to 250
1
°F
F4
–50 to 250
1
°F
F4
–50 to 250
1
°F
F4
0 to 250000
0 to 250000
0 to 65535
1
Volts
Volts
ohms s
°
F10
F10
F1
1
1
Vab/Iab Angle
0 to 359
1
F1
WAVEFORM MEMORY SETUP
30F0
30F2
30F4
30F5
30F6
30F7
30F8
30F9
Waveform Memory Trigger Date
N/A
N/A
N/A
1
N/A
N/A
Hz
F18
F19
F3
N/A
N/A
0
Waveform Memory Trigger Time
N/A
Frequency During Trace Acquisition
Waveform Memory Channel Selector (Holding Register)
Waveform Trigger Selector
0 to 12000
0 to 9
1
N/A
N/A
N/A
N/A
N/A
F214
F1
0
1 to 65535
0 to 139
1 to 768
0 to 65535
1
0
Waveform Trigger Cause (Read-only)
Number of Samples per Waveform Capture
Number of Waveform Captures Taken
1
F134
F1
0
1
168
0
1
F1
WAVEFORM MEMORY SAMPLES
3100
3400
First Waveform Memory Sample
Last Waveform Memory Sample
–32767 to 32767
–32767 to 32767
1
1
N/A
N/A
F4
F4
0
0
1, 2, 3 See Table footnotes on page 39
1.
2.
3.
A Value of 65535 indicates ‘Never’
A value of 0xFFFF indicates “no measurable value”.
Maximum value turns feature ‘Off’
39
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Memory Map Data
Formats
The data formats used in the Modbus memory map are shown below.
Table 2: Data Formats (Sheet 1 of 12) Table 2: Data Formats (Sheet 2 of 12)
CODE TYPE
DEFINITION
UNSIGNED VALUE
CODE TYPE
DEFINITION
F1
16 bits
F15
16 bits
HARDWARE REVISION
Example: 1234 stored as 1234
0000 0000 1 = A
0000 0001
F2
16 bits
UNSIGNED VALUE,
1 DECIMAL PLACE
0000 0000 2 = B
0000 0010
Example: 123.4 stored as 1234
...
...
F3
F4
16 bits
UNSIGNED VALUE,
2 DECIMAL PLACES
0000 0000 26 = Z
0001 1010
Example: 12.34 stored as 1234
F16
F18
16 bits
SOFTWARE REVISION
16 bits
2’s COMPLEMENT
SIGNED VALUE
1111 1111 Major Revision Number
xxxx xxxx
0 to 9 in steps of 1
Example: –1234 stored as –1234 (i.e.
64302)
xxxx xxxx
Minor Revision Number
1111 1111 (two BCD digits)
00 to 99 in steps of 1
F5
16 bits
2’s COMPLEMENT
SIGNED VALUE
1 DECIMAL PLACES
Example: Revision 2.30 stored as
0230 hex
Example: -123.4 stored as -1234 (i.e.
64302)
32 bits
1st byte
2nd byte
DATE (MM/DD/YYYY)
Month (1 to 12)
F6
16 bits
2’s COMPLEMENT
SIGNED VALUE
2 DECIMAL PLACES
Day (1 to 31)
3rd & 4th
byte
Year (1995 to 2094)
Example: –12.34 stored as –1234 (i.e.
64302)
Example: Feb. 20, 1996 stored as
34867148 (i.e. 1st word: 0214, 2nd
word 07CC)
F10
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE
1 DECIMAL PLACE
F19
32 bits
1st byte
2nd byte
3rd byte
4th byte
TIME (HH:MM:SS:hh)
Hours (0 to 23)
1st 16 bits High Order Word of Long
Value
2nd 16 bits Low Order Word of Long
Value
Minutes (0 to 59)
Seconds (0 to 59)
Example: –12345.6 stored as
–123456 (i.e. 1st word: FFFE hex, 2nd
word: 1DC0 hex)
Hundreds of seconds (0
to 99)
Example: 2:05pm stored as
235208704 (i.e. 1st word: 0E05, 2nd
word 0000)
F12
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE
1st 16 bits High Order Word of Long
Value
F20
F22
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE
2nd 16 bits Low Order Word of Long
Value
1st 16 bits High Order Word of Long
Value
Example: -123456 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word:
1DC0 hex)
2nd 16 bits Low Order Word of Long
Value
Note: -1 means “Never”
F13
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE,
3 DECIMAL PLACES
16 bits
TWO 8-BIT
CHARACTERS
PACKED INTO 16-BIT
UNSIGNED
1st 16 bits High Order Word of Long
Value
MSB
LSB
First Character
2nd 16 bits Low Order Word of Long
Value
Second Character
Example: -123.456 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word:
1DC0 hex)
Example: String ‘AB’ stored as 4142
hex.
F24
32 bits
TIME FORMAT FOR
BROADCAST
F14
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE,
2 DECIMAL PLACES
st
1
2
3
byte
byte
Hours (0 to 23)
nd
rd
1st 16 bits High Order Word of Long
Value
Minutes (0 to 59)
th
& 4
Milliseconds (0 to 59999)
Note: Clock resolution
limited to 0.01 sec
2nd 16 bits Low Order Word of Long
Value
bytes
Example: -1234.56 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word:
1DC0 hex)
Example: 1:15:48:572 stored as
st
nd
17808828 (i.e., 1 word 010F, 2
word BDBC)
40
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
Modbus Memory Map
489
Communications Guide
Table 2: Data Formats (Sheet 3 of 12)
CODE TYPE DEFINITION
Table 2: Data Formats (Sheet 4 of 12)
CODE TYPE
DEFINITION
F100 Unsigned TEMPEATUREDISPLAY
F117 Unsigned RESET MODE
16 bit
UNITS
16 bit
integer
integer
0
1
Celsius
0
1
2
All Resets
Fahrenheit
Remote Reset Only
Keypad Reset Only
FC101 Unsigned RS 485 BAUD RATE
16 bit
integer
F118 Unsigned SETPOINT GROUP
16 bit
integer
0
1
2
3
4
5
300 baud
1200 baud
2400 baud
4800 baud
9600 baud
19200 baud
0
1
Group 1
Group 2
F120 Unsigned RTD TYPE
16 bit
integer
0
1
2
3
100 Ohm Platinum
F102 Unsigned RS 485 PARITY
120 Ohm Nickel
100 Ohm Nickel
10 Ohm Copper
16 bit
integer
0
1
2
None
Odd
F121 Unsigned RTD APPLICATION
16 bit
integer
Even
F103 Unsigned NO/YES SELECTION
0
1
2
3
4
None
16 bit
integer
Stator
Bearing
Ambient
Other
0
1
No
Yes
F104 Unsigned GROUND CT TYPE
16 bit
integer
F122 Unsigned RTD VOTING
16 bit
integer
SELECTION
0
1
2
3
None
1 A Secondary
50/0.025 Ground CT
5 A Secondary
1
RTD #1
RTD #2
RTD #3
RTD #4
RTD #5
RTD #6
RTD #7
RTD #8
RTD #9
RTD #10
RTD #11
RTD #12
2
3
F105 Unsigned OFF/ON SELECTION
4
16 bit
integer
5
6
0
1
Off
On
7
8
F106 Unsigned VOLTAGE
16 bit
integer
TRANSFORMER
CONNECTION TYPE
9
10
11
12
0
1
2
None
Open Delta
Wye
F123 Unsigned ALARM/TRIP STATUS
F107 Unsigned NOMINAL FREQUENCY
16 bit
integer
16 bit
integer
0
1
2
3
4
Not Enabled
Inactive
0
1
2
3
----
60 Hz
50 Hz
25 Hz
Timing Out
Active Trip
Latched Trip
F109 Unsigned STARTER STATUS
F124 Unsigned PHASE ROTATION
16 bit
integer
SWITCH
16 bit
integer
SELECTION
0
1
Auxiliary A
Auxiliary B
0
1
2
----
ABC
ACB
F115 Unsigned ALARM / TRIP TYPE
16 bit
integer
SELECTION
F126 Unsigned DISABLED / ENABLED
16 bit
SELECTION
0
1
2
Off
0
1
Disabled
Latched
Unlatched
Enabled
41
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 2: Data Formats (Sheet 5 of 12)
CODE TYPE DEFINITION
Table 2: Data Formats (Sheet 6 of 12)
CODE TYPE
DEFINITION
F127 Unsigned ANALOG OUTPUT
F128
ctd.
5
IEC Curve B (BS142)
IEC Curve C (BS142)
IEC Short Inverse
IAC Extremely Inverse
IAC Very Inverse
IAC Inverse
16 bit
PARAMETER
SELECTION
6
integer
7
0
1
2
3
4
5
None
8
IA Output Current
IB Output Current
IC Output Current
Average Output Current
9
10
11
12
13
IAC Short Inverse
FlexCurve™
Negative Sequence
Current
Definite Time
6
Average Generator Load
Hottest Stator RTD
Hottest Bearing RTD
Ambient RTD
RTD #1
FC129 Unsigned ANALOG INPUT
16 bit
SELECTION
7
integer
8
0
1
2
3
Disabled
9
4 to 20 mA
0 to 20 mA
0 to 1 mA
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
RTD #2
RTD #3
F130 Unsigned PICKUP TYPE
RTD #4
16 bit
integer
RTD #5
0
1
Over
RTD #6
Under
RTD #7
FC131 Unsigned INPUT SWITCH
RTD #8
16 bit
integer
STATUS
RTD #9
0
1
Closed
Open
RTD #10
RTD #11
F132 Unsigned TRIP COIL
RTD #12
16 bit
integer
SUPERVISION STATUS
AB Voltage
BC Voltage
CA Voltage
Average Voltage
Volts/Hertz
Frequency
0
1
No Coil
Coil
F133 Unsigned GENERATOR STATUS
16 bit
integer
0
1
2
3
4
Offline
Offline
Online
Third Harmonic Neutral
Voltage
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Power Factor
Overload
Tripped
Reactive Power (Mvar)
Real Power (MW)
Apparent Power (MVA)
Analog Input 1
Analog Input 2
Analog Input 3
Analog Input 4
Tachometer
F134 Unsigned CAUSE OF EVENT /
16 bit
integer
CAUSE OF LAST TRIP
0
No Event
1
General Switch A Trip
General Switch B Trip
General Switch C Trip
General Switch D Trip
General Switch E Trip
General Switch F Trip
General Switch G Trip
Sequential Trip
2
3
4
Thermal Capacity Used
Current Demand
Mvar Demand
5
6
7
MW Demand
8
MVA Demand
9
Tachometer Trip
F128 Unsigned OVERCURRENT CURVE
16 bit
STYLE SELECTION
10
11
12
13
14
15
Unknown Trip
integer
Unknown Trip
0
1
2
3
4
ANSI Extremely Inverse
ANSI Very Inverse
Overload Trip
Unknown Trip
ANSI Normally Inverse
ANSI Moderately Inverse
IEC Curve A (BS142)
Neutral Overvoltage Trip
Neutral Undervoltage
(3rd Harmonic) Trip
42
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
Modbus Memory Map
489
Communications Guide
Table 2: Data Formats (Sheet 7 of 12)
Table 2: Data Formats (Sheet 8 of 12)
CODE TYPE
DEFINITION
Not Used
CODE TYPE
DEFINITION
F134 16
F134 69
RTD 5 Alarm
ctd.
ctd.
17
Not Used
70
RTD 6 Alarm
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Not Used
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
RTD 7 Alarm
Not Used
RTD 8 Alarm
Differential Trip
Acceleration Trip
RTD 1 Trip
RTD 9 Alarm
RTD 10 Alarm
RTD 11 Alarm
RTD 2 Trip
RTD 12 Alarm
RTD 3 Trip
Open RTD Alarm
RTD 4 Trip
Short/Low RTD Alarm
Undervoltage Alarm
Overvoltage Alarm
Overfrequency Alarm
Power Factor Alarm
Reactive Power Alarm
Low Forward Power Alarm
Trip Counter Alarm
Breaker Failure Alarm
Current Demand Alarm
kW Demand Alarm
kvar Demand Alarm
kVA Demand Alarm
Broken Rotor Bar
Analog Input 1 Alarm
Analog Input 2 Alarm
Analog Input 3 Alarm
Analog Input 4 Alarm
Reverse Power Alarm
RTD 5 Trip
RTD 6 Trip
RTD 7 Trip
RTD 8 Trip
RTD 9 Trip
RTD 10 Trip
RTD 11 Trip
RTD 12 Trip
Undervoltage Trip
Overvoltage Trip
Phase Reversal Trip
Overfrequency Trip
Power Factor Trip
Reactive Power Trip
Underfrequency Trip
Analog Input 1 Trip
Analog Input 2 Trip
Analog Input 3 Trip
Analog Input 4 Trip
Single Phasing Trip
Reverse Power Trip
Field-Breaker Discrepancy
Offline Overcurrent Trip
Phase Overcurrent Trip
Incomplete Sequence
Alarm
98
99
Negative Sequence Alarm
Ground Overcurrent
Alarm
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Not Used
Service Alarm
Negative Sequence
Overcurrent Trip
Control Power Lost
Control Power Applied
Thermal Reset Close
Emergency Reset Open
Start While Blocked
Relay Not Inserted
Trip Coil Supervision
Breaker Failure
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
General Switch A Alarm
General Switch B Alarm
General Switch C Alarm
General Switch D Alarm
General Switch E Alarm
General Switch F Alarm
General Switch G Alarm
Not Used
VT Fuse Failure
Simulation Started
Simulation Stopped
Ground Overcurrent Trip
Volts/Hertz Trip
Tachometer Alarm
Thermal Model Alarm
Overload Alarm
Underfrequency Alarm
Not Used
Volts/Hertz Alarm
Low Forward Power Trip
Inadvertent Energization
Serial Start Command
Serial Stop Command
Input A Control
Ground Fault Alarm
RTD 1 Alarm
RTD 2 Alarm
RTD 3 Alarm
RTD 4 Alarm
Input B Control
43
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Modbus Memory Map
Communications Guide
Table 2: Data Formats (Sheet 9 of 12)
Table 2: Data Formats (Sheet 10 of 12)
CODE TYPE
DEFINITION
Input C Control
Input D Control
Input E Control
Input F Control
Input G Control
CODE TYPE
DEFINITION
F134 122
F140 bit 4
Reserved
ctd.
ctd.
123
bit 5
Reserved
124
125
126
127
bit 6
bit 7
Reserved
Simulation Mode Enabled
Breaker Open LED
Breaker Closed LED
Hot Stator LED
Negative Sequence LED
Ground LED
bit 8
Neutral Overvoltage
Alarm
bit 9
bit 10
128
Neutral Undervoltage
(3rd Harmonic) Alarm
bit 11
bit 12
129
130
131
132
133
134
135
Setpoint Group 1 Active
Setpoint Group 2 Active
Loss of Excitation 1
bit 13
Loss of Field LED
VT Failure LED
Breaker Failure LED
bit 14
bit 15
Loss of Excitation 2
F141 16 bits
OUTPUT RELAY
STATUS
Ground Directional Trip
Ground Directional Alarm
bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
1 TRIP
High-Set Phase
Overcurrent Trip
2 AUXILIARY
3 AUXILIARY
4 AUXILIARY
5 ALARM
136
137
138
Distance Zone 1 Trip
Distance Zone 2 Trip
Digital Input Waveform
Trigger
6 SERVICE
Not Used
139
Serial Waveform Trigger
bit 6 to
bit 15
F136 Unsigned ORDER CODE
16 bit
integer
F142 Unsigned THERMAL MODEL
16 bit
integer
CURVE STYLE
SELECTION
Bit 0
Bit 1
0 = P5 (5 A CT
secondary), 1 = P1 (1 A
CT secondary)
0
1
2
Standard
Custom
0 = HI (High Voltage
Power Supply),
1 = LO (Low Voltage
Power Supply)
Voltage Dependent
F200 Unsigned COMMUNICATION
16 bit
integer
MONITOR BUFFER
STATUS
Bit 2
0 = A20 (4 to 20 mA
Analog Outputs),
1 = A1 (0 to 1 mA Analog
Outputs)
0
1
2
3
4
5
6
7
Buffer Cleared
Received OK
F138 Unsigned SIMULATION MODE
Wrong Slave Address
Illegal Function
Illegal Count
16 bit
integer
0
1
2
3
Off
Illegal Register Address
CRC Error
Simulate Pre-Fault
Simulate Fault
Pre-Fault to Fault
Illegal Data
F201 Unsigned CURVE RESET TYPE
F139 Unsigned FORCE OPERATION OF
16 bit
16 bit
RELAYS
integer
integer
0
1
Instantaneous
Linear
0
Disabled
1
1 TRIP
F202 Unsigned INADVERTENT
2
2 AUXILIARY
3 AUXILIARY
4 AUXILIARY
5 ALARM
16 bit
ENERGIZATION
ARMING TYPE
3
integer
4
0
1
Undervoltage and Offline
Undervoltage or Offline
5
6
6 SERVICE
F206 Unsigned SEQUENTIAL TRIP
16 bit
TYPE
7
All Relays
integer
8
F140 16 bits
bit 0
No Relays
0
1
Low Forward Power
Reverse Power
GENERAL STATUS
Relay in Service
Active Trip Condition
Active Alarm Condition
Reserved
F207 Unsigned SWITCH STATUS
16 bit
integer
bit 1
bit 2
0
1
Open
bit 3
Shorted
44
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
Modbus Memory Map
489
Communications Guide
Table 2: Data Formats (Sheet 11 of 12)
CODE TYPE DEFINITION
Table 2: Data Formats (Sheet 12 of 12)
CODE TYPE
DEFINITION
F208 Unsigned UNDERVOLTAGE TRIP
F214 Unsigned WAVEFORM MEMORY
16 bit
ELEMENT TYPE
16 bit
CHANNEL SELECTOR
integer
integer
0
1
Curve
0
1
2
3
4
Phase A Line Current
512 counts = 1 × CT
Definite Time
Phase B Line Current
512 counts = 1 × CT
F209 Unsigned BREAKER OPERATION
16 bit
integer
TYPE
Phase C Line Current
512 counts = 1 × CT
0
1
Breaker Auxiliary A
Breaker Auxiliary B
Phase A Line Current
512 counts = 1 × CT
F210 Unsigned ASSIGNABLE INPUT
Neutral-End Phase A Line
Current
512 counts = 1 × CT
16 bit
integer
SELECTION
0
1
2
3
4
5
6
7
None
5
6
7
8
9
Neutral-End Phase B Line
Current
Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
512 counts = 1 × CT
Neutral-End Phase C Line
Current
512 counts = 1 × CT
Phase A to Neutral
Voltage; 3500 counts =
120 secondary volts
Phase B to Neutral
Voltage; 3500 counts =
120 secondary volts
F211 Unsigned VOLTS/HERTZ
16 bit
integer
ELEMENT TYPE
Phase C to Neutral
Voltage; 3500 counts =
120 secondary volts
0
1
2
3
Curve #1
Curve #2
F215 Unsigned CURRENT SOURCE
16 bit
integer
Curve #3
Definite Time
0
1
Neutral-End CTs
Output-End CTs
F212 Unsigned RTD NUMBER
16 bit
integer
F216 Unsigned DNP PORT SELECTION
16 bit
integer
0
All
1
RTD #1
RTD #2
RTD #3
RTD #4
RTD #5
RTD #6
RTD #7
RTD #8
RTD #9
RTD #10
RTD #11
RTD #12
0
1
2
3
None
2
Computer RS485
Auxiliary RS485
Front Panel RS485
3
4
5
F217 Unsigned GROUND
16 bit
integer
DIRECTIONAL MTA
6
7
0
1
2
3
0 degrees
8
90 degrees
180 degrees
270 degrees
9
10
11
12
F218 Unsigned BREAKER STATE
16 bit
integer
F213 Unsigned COMMUNICATIONS
16 bit
integer
MONITOR PORT
SELECTION
0
1
52 Closed
52 Open/Closed
0
1
2
Computer RS485
Auxiliary RS485
Front Panel RS232
F219 Unsigned STEP-UP
16 bit
integer
TRANSFORMER TYPE
0
1
None
Delta/Wye
F220 Unsigned IRIG-B TYPE
16 bit
integer
0
1
2
None
DC Shift
Amplitude Modulated
45
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Protocol
Communications Guide
DNP Protocol
Device Profile
Document
The communications port configured as a DNP slave port must support the full set of
features listed in the Level 2 DNP V3.00 Implementation (DNP-L2) described in
Chapter 2 of the subset definitions. See the DNP protocol website at http://
www.dnp.org for details
DNP 3.0: DEVICE PROFILE DOCUMENT
Vendor Name: General Electric Multilin Inc.
Device Name: 489 Generator Management Relay
Highest DNP Level Supported:
For Requests: Level 2
Device Function:
Master Ëꢀ Slave
Ë
For Responses: Level 2
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP
Levels Supported (the complete list is described in the attached table):
Binary Input (Object 1, variations 1 and 2)
Binary Output (Object 10, variation 2)
Binary Counter (Object 20, variations 5 and 6)
Frozen Counter (Object 21, variations 9 and 10)
Analog Input (Object 30, variations 1, 2, 3, and 4)
Analog Input Change (Object 32, variations 1, 2, 3, and 4)
Warm Restart (Function Code 14)
Maximum Data Link Frame Size (octets):
Transmitted: 292
Maximum Application Fragment Size
(octets):
Transmitted: 2048
Received: 2048
Received: 292
Maximum Data Link Re-tries:
Maximum Application Layer Re-tries:
Ëꢀ None
Ëꢀ None
Fixed
Configurable
Ë
Ë
Configurable
Ë
Requires Data Link Layer Confirmation:
Never
Always
Sometimes
Configurable
Ëꢀ
Ë
Ë
Ë
Requires Application Layer Confirmation:
Never
Ë
Always
Ë
Ëꢀ When reporting Event Data
When sending multi-fragment responses
Sometimes
Configurable
Ë
Ë
Ë
Timeouts while waiting for:
Data Link Confirm
None
Fixed
Fixed
Fixed
Variable
Variable
Variable
Configurable
Configurable
Configurable
Ëꢀ
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Complete Appl. Fragment Ëꢀ None
Application Confirm
Ëꢀ None
(fixed value is 5000 milliseconds)
Complete Appl. Response Ëꢀ None
Fixed
Variable
Configurable
Ë
Ë
Ë
Others: (None)
46
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Protocol
Communications Guide
DNP 3.0: DEVICE PROFILE DOCUMENT (Continued)
Executes Control Operations:
Write Binary Outputs
Select/Operate
Direct Operate
Direct Operate: No Ack
Count > 1
Pulse On
Pulse Off
Latch On
Latch Off
Ëꢀ Never
Ëꢀ Never
Always
Always
Always
Sometimes
Sometimes
Sometimes
Sometimes
Sometimes
Sometimes
Sometimes
Sometimes
Sometimes
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Ë
Ë
Ëꢀ
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Never
Ë
Never Ëꢀ Always
Ë
Ëꢀ Never
Never
Ë
Ëꢀ
Ë
Ë
Always
Always
Always
Always
Always
Ë
Ëꢀ Never
Ëꢀ Never
Never
Ëꢀ
explanation of the above.
Queue
Clear Queue
Ëꢀ Never
Never
Always
Always
Sometimes
Sometimes
Configurable
Configurable
Ë
Ë
Ë
Ë
Ë
Ë
Ëꢀ
Reports Binary Input Change Events when Reports time-tagged Binary Input Change
no specific variations requested:
Never
Events when no specific variation
requested:
Ë
Never
Ë
Ëꢀ Only time-tagged
Ëꢀ Binary Input Change With Time
Only non-time-tagged
Ë
Binary Input Change With Relative
Time
Ë
Configurable to send both, one or
the other
Ë
Configurable
Ë
Sends Unsolicited Responses:
Sends Static Data in Unsolicited
Responses:
Never
Ëꢀ
Never
Ëꢀ
Ë
Ë
Configurable
Ë
When Device Restarts
When Status Flags Change
Ë Only certain objects
Sometimes
Ë
ENABLE/DISABLE UNSOLICITED
Function codes supported
Ë
Default Counter Object/Variation:
Counters Roll Over at:
No Counters Reported
Configurable
No Counters Reported
Configurable
Ë
Ë
Ë
Ë
Ëꢀ Default Object / Default Variation
Point-by-point list attached
Ë 16 Bits
32 Bits
Ë
Ë
Other Value
Ë
Ëꢀ Point-by-point list attached
Sends Multi-Fragment Responses:
Yes Ëꢀ No
Ë
Implementation Table
The table below gives a list of all objects recognized and returned by the relay.
Additional information is provided on the following pages including a list of the
default variations returned for each object and lists of defined point numbers for
each object.
Implementation Table Notes:
1. For this object, the quantity specified in the request must be exactly 1 as there
is only one instance of this object defined in the relay.
2. All static data known to the relay is returned in response to a request for Class
0. This includes all objects of type 1 (Binary Input), type 10 (Binary Output),
type 20 (Binary Counter), type 21 (Frozen Counter) and type 30 (Analog Input).
3. The point tables for Binary Input and Analog Input objects contain a field that
defines to which event class the corresponding static data point has been
assigned.
4. For this object, the qualifier code must specify an index of 7 only.
5. Delay Measurement (function code 23) is supported since the relay allows for
writing the time via object 50 and it also periodically sets the “Time Synchroni-
zation Required” Internal Indication (IIN). The IIN is set at power-up and will be
set again 24 hours after it was last cleared. The IIN is cleared when time is writ-
ten as object 50 data or if IRIG-B is enabled and relay time is updated as a
result of a successful decoding of this signal.
47
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Protocol
Communications Guide
Table 3: DNP Implementation Table
Object
Obj
Request
Response
Var
Description
Func Codes
Qual Codes
Func Codes Qual Codes
(Hex)
(Hex)
1
0
1
2
0
1
2
0
2
1
0
5
6
0
9
10
0
1
2
3
4
0
1
2
3
4
1
1
2
3
4
1
Binary Input - All Variations
Binary Input
1
06
1
1
00, 01, 06
00, 01, 06
06, 07, 08
06, 07, 08
06, 07, 08
06
129
129
00, 01
00, 01
1
Binary Input With Status (Note 6)
Binary Input Change - All Variations
Binary Input Change Without Time
Binary Input Change With Time
Binary Output - All Variations
Binary Output Status
1
2
1
2
1
129
129
17, 28
17, 28
2
1
10
10
12
20
20
20
21
21
21
30
30
30
30
30
32
32
32
32
32
50
60
60
60
60
80
1
1
00, 01, 06
17, 28
129
129
129
129
129
129
129
129
00, 01
17, 28
00, 01
00, 01
00, 01
00, 01
00, 01
00, 01
Control Relay Output Block
3, 4, 5, 6
Binary Counter - All Variations
32-Bit Binary Counter without Flag
16-Bit Binary Counter without Flag
Frozen Counter - All Variations
32-Bit Frozen Counter without Flag
16-Bit Frozen Counter without Flag
Analog Input - All Variations
32-Bit Analog Input With Flag
16-Bit Analog Input With Flag
32-Bit Analog Input Without Flag
16-Bit Analog Input Without Flag
Analog Input Change - All Variations
32-Bit Analog Input Change without Time
16-Bit Analog Input Change without Time
32-Bit Analog Input Change with Time
16-Bit Analog Input Change with Time
Time and Date
1, 7, 8, 9, 10
06
1, 7, 8, 9, 10
06
1, 7, 8, 9, 10
06
1
1
06
06
1
06
1
06
1
00, 01, 06
00, 01, 06
00, 01, 06
00, 01, 06
06, 07, 08
06, 07, 08
06, 07, 08
06, 07, 08
06, 07, 08
07 (Note 1)
06
129
129
129
129
00, 01
00, 01
00, 01
00, 01
1
1
1
1
1
129
129
129
129
129
129
129
129
129
129
17, 28
17, 28
17, 28
17, 28
07
1
1
1
1, 2
1
Class 0 Data (Note 2)
Class 1 Data (Note 3)
1
06, 07, 08
06, 07, 08
06, 07, 08
00 (Note 4)
Class 2 Data (Note 3)
1
Class 3 Data (Note 3)
1
Internal Indications
2
No object - Cold Start
13
14
23
No object - Warm Start
No object - Delay Measurement (Note 5)
Default Variations
The following table specifies the default variation for all objects returned by the
relay. These are the variations that will be returned for the object in a response
when no specific variation is specified in a request.
Table 4: Default Variations
OBJECT
DESCRIPTION
DEFAULT
VARIATION
1
Binary Input - Single Bit
1
2
2
Binary Input Change With Time
Binary Output Status
10
20
21
30
32
2
16-Bit Binary Counter without Flag
16-Bit Frozen Counter without Flag
32-Bit Analog Input Without Flag
32-Bit Analog Input Change Without Time
6
10
3
1
48
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
DNP Point Lists
489
Communications Guide
DNP Point Lists
Binary Input / Binary
Input Change (Objects
01/02)
The point list for Binary Inputs (Object 01) and Binary Input Change (Object 02) is
shown below:
Table 5: Binary Inputs (Sheet 1 of 4)
Table 5: Binary Inputs (Sheet 2 of 4)
Idx
0
Description
Class
Idx
Description
Class
Relay In Service
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
50
Offline Overcurrent Trip Active Class 1
or Latched
1
Trip Condition Active
Alarm Condition Active
Simulation Mode Enabled
Breaker Is Open
51
52
53
Inadvertent Energization Trip
Active or Latched
Class 1
Class 1
Class 1
2
3
Phase Overcurrent Trip Active
or Latched
4
Negative Sequence
Overcurrent Trip Active or
Latched
5
Breaker Is Closed
Hot Stator Fault Active
6
54
55
56
57
58
59
60
61
62
63
Ground Overcurrent Trip Active Class 1
or Latched
7
Negative Sequence Fault Active Class 1
8
Ground Fault Active
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Phase Differential Trip Active or Class 1
Latched
9
Loss Of Field Fault Active
VT Failure Detected
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Undervoltage Trip Active or
Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Breaker Failure Detected
Relay 1 Trip Operated
Overvoltage Trip Active or
Latched
Relay 2 Auxiliary Operated
Relay 3 Auxiliary Operated
Relay 4 Auxiliary Operated
Relay 5 Alarm Operated
Relay 6 Service Operated
Setpoint Access Input Closed
Breaker Status Input Closed
Assignable Input 1 Closed
Assignable Input 2 Closed
Assignable Input 3 Closed
Assignable Input 4 Closed
Assignable Input 5 Closed
Assignable Input 6 Closed
Assignable Input 7 Closed
Volts/Hertz Trip Active or
Latched
Phase Reversal Trip Active or
Latched
Underfrequency Trip Active or
Latched
Overfrequency Trip Active or
Latched
Neutral Overvoltage Trip Active Class 1
or Latched
Neutral Undervoltage (Third
Harmonic) Trip Active or
Latched
Class 1
64
65
66
67
Reactive Power Trip Active or
Latched
Class 1
Class 1
Class 1
Class 1
Reverse Power Trip Active or
Latched
Low Fwd Power Trip Active or
Latched
Trip Coil Supervision - Coil
Detected
Thermal Model Trip Active or
Latched
40
41
42
43
44
45
46
47
48
49
Assignable Input 1 Trip Active
or Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
68
69
70
71
72
73
74
75
76
77
78
79
80
RTD 1 Trip Active or Latched
RTD 2 Trip Active or Latched
RTD 3 Trip Active or Latched
RTD 4 Trip Active or Latched
RTD 5 Trip Active or Latched
RTD 6 Trip Active or Latched
RTD 7 Trip Active or Latched
RTD 8 Trip Active or Latched
RTD 9 Trip Active or Latched
RTD 10 Trip Active or Latched
RTD 11 Trip Active or Latched
RTD 12 Trip Active or Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Assignable Input 2 Trip Active
or Latched
Assignable Input 3 Trip Active
or Latched
Assignable Input 4 Trip Active
or Latched
Assignable Input 5 Trip Active
or Latched
Assignable Input 6 Trip Active
or Latched
Assignable Input 7 Trip Active
or Latched
Sequential Trip Active or
Latched
Field-Breaker Discrepancy Trip Class 1
Active or Latched
Analog Input 1 Trip Active or
Latched
Tachometer Trip Active or
Latched
Class 1
81
Analog Input 2 Trip Active or
Latched
Class 1
49
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Table 5: Binary Inputs (Sheet 3 of 4)
Table 5: Binary Inputs (Sheet 4 of 4)
Idx
Description
Class
Idx
124
125
126
127
128
129
130
131
132
133
Description
Class
82
Analog Input 3 Trip Active or
Latched
Class 1
RTD 4 Alarm Active or Latched Class 1
RTD 5 Alarm Active or Latched Class 1
RTD 6 Alarm Active or Latched Class 1
RTD 7 Alarm Active or Latched Class 1
RTD 8 Alarm Active or Latched Class 1
RTD 9 Alarm Active or Latched Class 1
RTD 10 Alarm Active or Latched Class 1
RTD 11 Alarm Active or Latched Class 1
RTD 12 Alarm Active or Latched Class 1
83
Analog Input 4 Trip Active or
Latched
Class 1
84
Loss of Excitation Circle 1 Trip Class 1
Active or Latched
85
Loss of Excitation Circle 2 Trip Class 1
Active or Latched
86
Ground Directional Trip Active Class 1
or Latched
87
High Set Phase Overcurrent
Trip Active or Latched
Class 1
Open Sensor Alarm Active or
Latched
Class 1
88
Distance Zone 1 Trip Active or Class 1
Latched
134
135
136
137
138
Short/Low Temp Alarm Active
or Latched
Class 1
89
Distance Zone 2 Trip Active or Class 1
Latched
Thermal Model Alarm Active or Class 1
Latched
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
Assignable Input 1 Alarm
Active / Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Trip Counter Alarm Active or
Latched
Class 1
Assignable Input 2 Alarm
Active or Latched
Breaker Failure Alarm Active or Class 1
Latched
Assignable Input 3 Alarm
Active or Latched
Trip Coil Monitor Alarm Active
or Latched
Class 1
Assignable Input 4 Alarm
Active or Latched
139
140
VTFF Alarm Active or Latched
Class 1
Class 1
Assignable Input 5 Alarm
Active or Latched
Current Dmd Alarm Active or
Latched
Assignable Input 6 Alarm
Active or Latched
141
142
MW Demand Alarm Active or
Latched
Class 1
Assignable Input 7 Alarm
Active / Latched
Mvar Demand Alarm Active or Class 1
Latched
Tachometer Alarm Active or
Latched
143
144
MVA Alarm Active or Latched
Class 1
Analog Input 1 Alarm Active or Class 1
Latched
Overcurrent Alarm Active or
Latched
145
146
147
148
149
150
151
152
153
154
155
Analog Input 2 Alarm Active or Class 1
Latched
Negative Sequence Alarm
Active or Latched
Analog Input 3 Alarm Active or Class 1
Latched
Ground Overcurrent Alarm
Active or Latched
Analog Input 4 Alarm Active or Class 1
Latched
Undervoltage Alarm Active or
Latched
Not Programmed Alarm Active Class 1
or Latched
Overvoltage Alarm Active or
Latched
Simulation Mode Alarm Active Class 1
or Latched
Volts/Hertz Alarm Active or
Latched
Output Relays Forced Alarm
Active or Latched
Class 1
Class 1
Class 1
Class 1
Underfreq Alarm Active or
Latched
Analog Output Forced Alarm
Active or Latched
Overfrequency Alarm Active or Class 1
Latched
Test Switch Shorted Alarm
Active or Latched
Neutral Overvoltage Alarm
Active or Latched
Class 1
Ground Directional Alarm
Active or Latched
Neutral Undervoltage (Third
Harmonic) Alarm Active or
Latched
Class 1
IRIG-B Failure Alarm Active or Class 1
Latched
118
119
120
Reactive Power Alarm Active or Class 1
Latched
Generator Running Hour Alarm Class 1
Active or Latched
Reverse Power Alarm Active or Class 1
Latched
Any detected change in the
state of any point assigned to
Class 1 will cause the generation
of an event object.
Low Forward Power Alarm
Active / Latched
Class 1
NOTE
121
122
123
RTD 1 Alarm Active or Latched Class 1
RTD 2 Alarm Active or Latched Class 1
RTD 3 Alarm Active or Latched Class 1
50
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Binary / Control Relay
Output Block (Objects
10/12)
Table 6: Binary Output Point List
INDEX
DESCRIPTION
0
1
2
3
4
5
6
7
8
Reset
Generator Start
Generator Stop
Clear Trip Counters
Clear Last Trip Data
Clear MWh and Mvarh
Clear Peak Demand Data
Clear Generator Information
Clear Breaker Information
The following restrictions should be noted when using object 12 to control the points
listed above:
1. The Count field is checked first. If it is zero, the command will be accepted but
no action will be taken. If this field is non-zero, the command will be executed
exactly once regardless of its value.
2. The Control Code field of object 12 is then inspected:
–
–
The Queue and Clear sub-fields are ignored.
If the Control Code field is zero (i.e., NUL operation) the command is
accepted but no action is taken.
–
–
–
–
–
–
For all points, the only valid control is “Close - Pulse On” (41 hex). This is
used to initiate the function (e.g., Reset) associated with the point.
Any value in the Control Code field not specified above is invalid and will
be rejected.
The On Time and Off Time fields are ignored. A ”Pulse On” control takes
effect immediately when received. Thus, the timing is irrelevant.
The Status field in the response will reflect the success or failure of the
control attempt thus:
A Status of “Request Accepted” (0) will be returned if the command was
accepted.
A Status of “Request not Accepted due to Formatting Errors” (3) will be
returned if the Control Code field was incorrectly formatted or an invalid
Code was present in the command.
–
A Status of “Control Operation not Supported for this Point” (4) will be
returned if an attempt was made to operate the point and the relay, owing
to its configuration, does not allow the point to perform its function.
An operate of the Reset point may fail (even if the command is accepted) due to
other inputs or conditions (e.g., blocks) existing at the time. To verify the success or
failure of an operate of this point it is necessary that the associated Binary Input(s)
be examined after the control attempt is performed.
When using object 10 to read the status of any Binary Output, a value of zero will
always be returned. This is due to the fact that all points are “Pulse On” and are
deemed to be normally off.
51
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Binary / Frozen Counter
(Objects 20/21)
Table 7: Counters Point List
INDEX
ROLLOVER
POINT
DESCRIPTION
0
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
Number of Breaker Operations
Number of Thermal Resets
1
2
Number of Trips (total)
3
Number of Digital Input Trips
Number of Sequential Trips
4
5
Number of Field-Breaker Discrepancy Trips
Number of Tachometer Trips
Number of Offline Overcurrent Trips
Number of Phase Overcurrent Trips
6
7
8
9
Number of Negative Sequence Overcurrent Trips
Number of Ground Overcurrent Trips
Number of Phase Differential Trips
Number of Undervoltage Trips
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Number of Overvoltage Trips
Number of Volts/Hertz Trips
Number of Phase Reversal Trips
Number of Underfrequency Trips
Number of Overfrequency Trips
Number of Neutral Overvoltage (Fundamental) Trips
Number of Neutral Undervoltage (Third Harmonic) Trips
Number of Reactive Power Trips
Number of Reverse Power Trips
Number of Underpower Trips
Number of Stator RTD Trips
Number of Bearing RTD Trips
Number of Other RTD Trips
Number of Ambient RTD Trips
Number of Thermal Model Trips
Number of Inadvertent Energization Trips
Number of Analog Input 1 Trips
Number of Analog Input 2 Trips
Number of Analog Input 3 Trips
Number of Analog Input 4 Trips
Number of Loss of Excitation Circle 1 Trips
Number of Loss of Excitation Circle 2 Trips
Number of Ground Directional Trips
Number of High Set Phase Overcurrent Trips
Number of Distance Zone 1 Trips
Number of Distance Zone 2 Trips
The counters cannot be cleared with the Freeze/Clear function codes (9/10).
Instead, the control relay output block points can be used to clear groups of
counters. There is only one copy of each counter, so clearing a counter via Modbus
or the front panel display causes the corresponding DNP counter point to be cleared
and vice-versa.
NOTE
52
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Analog Input / Input
Change (Objects 30/32)
In the following table, the Format column indicates that the associated data point
“F1” format is described in that table as a (16-bit) unsigned value without any
decimal places. Therefore, the value read should be interpreted in this manner.
Many of the values reported by the 489 have a size of 32-bits and have had their
upper and lower 16-bit components assigned to separate points. Where indicated,
refer to the appropriate note following the table for more detail.
Table 8: Analog Inputs Point List (Sheet 1 of 4)
INDEX
FOR-
MAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
0
1
2
F133
F1
Generator Status
Class 1
Class 1
Class 1
Note 3
Generator Thermal Capacity Used
F1
Estimated Trip Time On Overload
(seconds, 65535 means never)
3
4
5
6
7
8
9
F134
F19
F19
F18
F18
F1
Cause Of Last Trip
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Note 3
Notes 3,4
Notes 3,4
Notes 3,4
Notes 3,4
Note 3
Time Of Last Trip (Upper 16 Bits)
Time Of Last Trip (Lower 16 Bits)
Date Of Last Trip (Upper 16 Bits)
Date Of Last Trip (Lower 16 Bits)
Tachometer Pre-Trip
F1
Scale factor for pre-trip current readings
(pre-trip points marked with “Note 6”).
Will always be a power of 10 (1, 10, 100,
etc.). Changes only when the configuration
setpoints are changed.
Note 3
10
11
12
13
14
15
16
17
F1
F1
F1
F1
F1
F1
F1
F1
Phase A Pre-Trip Current
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Notes 3, 6
Notes 3, 6
Notes 3, 6
Notes 3, 6
Notes 3, 6
Notes 3, 6
Note 3
Phase B Pre-Trip Current
Phase C Pre-Trip Current
Phase A Pre-Trip Differential Current
Phase B Pre-Trip Differential Current
Phase C Pre-Trip Differential Current
Pre-Trip Negative Sequence Current
Ground Current Scale Factor. Will always
be a power of 10 (1, 10, 100, etc.).
Changes only when the configuration
setpoints are changed.
Note 3
18
F6
Pre-Trip Ground Current (scaled according
to previous setpoint)
Class 1
Note 3
19
20
21
22
23
24
25
26
27
28
29
30
F1
F1
F1
F3
F1
F1
F1
F1
F1
F1
F1
F4
Phase A-B Pre-Trip Voltage
Phase B-C Pre-Trip Voltage
Phase C-A Pre-Trip Voltage
Pre-Trip Frequency
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Note 3
Note 3
Note 3
Note 3
Pre-Trip Real Power (MW)
Pre-Trip Real Power (kW)
Pre-Trip Reactive Power (Mar
Pre-Trip Reactive Power (kvar)
Pre-Trip Apparent Power (MVA)
Pre-Trip Apparent Power (kVA)
Last Trip Stator RTD
Notes 3,8
Notes 3,8
Notes 3,8
Notes 3,8
Notes 3,8
Notes 3,8
Note 3
Last Trip Hottest Stator RTD Temperature
(°C)
Note 3
31
32
F1
F4
Last Trip Bearing RTD
Class 1
Class 1
Note 3
Note 3
Last Trip Hottest Bearing RTD Temperature
(°C)
33
34
F1
F4
Last Trip Other RTD
Class 1
Class 1
Note 3
Note 3
Last Trip Hottest Other RTD Temperature
(°C)
53
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 2 of 4)
INDEX
FOR-
MAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
35
36
F1
F4
Last Trip Ambient RTD
Class 1
Note 3
Note 3
Last Trip Hottest Ambient RTD
Temperature (°C)
Class 1
37
38
39
40
41
F12
F12
F12
F12
F1
Pre-Trip Analog Input 1
Pre-Trip Analog Input 2
Pre-Trip Analog Input 3
Pre-Trip Analog Input 4
Class 1
Class 1
Class 1
Class 1
Class 1
Notes 3,9
Notes 3,9
Notes 3,9
Notes 3,9
Notes 3,10
Pre-Trip Fundamental Frequency Neutral
Voltage (volts)
42
43
44
45
46
47
F10
F1
Pre-Trip Fundamental Frequency Neutral
Voltage (tenths of a volt)
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Notes 3,10
Notes 3,10
Notes 3,10
Note 3
Pre-Trip Third Harmonic Neutral Voltage
(volts)
F10
F2
Pre-Trip Third Harmonic Neutral Voltage
(tenths of a volt)
Pre-Trip Vab/Iab (loss of excitation
impedance)
F1
Pre-Trip Vab/Iab Angle (loss of excitation
impedance angle)
Note 3
F1
Scale factor for current readings (points
marked with “Note 7”). Will always be a
power of 10 (1, 10, 100, etc.). Changes
only when the configuration setpoints are
changed.
Note 3
48
49
50
51
52
53
54
55
56
57
58
59
60
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
Phase A Output Current
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 1
Note 7
Note 7
Note 7
Note 7
Note 7
Note 7
Note 7
Note 7
Note 7
Note 7
Phase B Output Current
Phase C Output Current
Phase A Neutral-Side Current
Phase B Neutral-Side Current
Phase C Neutral-Side Current
Phase A Differential Current
Phase B Differential Current
Phase C Differential Current
Average Phase Current
Generator Load (percent)
Negative Sequence Current
Ground Current Scale Factor. Will always
be a power of 10 (1, 10, 100, etc.).
Changes only when the configuration
setpoints are changed.
Note 3
61
F3
Ground Current (scaled according to the
previous point)
Class 2
62
63
64
65
66
67
68
69
70
71
72
F1
F1
F1
F1
F1
F1
F1
F1
F3
F3
F1
Phase A-B Voltage
Phase B-C Voltage
Phase C-A Voltage
Average Line Voltage
Phase A-N Voltage
Phase B-N Voltage
Phase C-N Voltage
Average Phase Voltage
Per Unit Measurement Of V/Hz
Frequency
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Note 2
Fundamental Frequency Neutral Voltage
(volts)
Note 10
73
F10
Fundamental Frequency Neutral Voltage
(tenths of a volt)
Class 2
Note 10
54
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 3 of 4)
INDEX
FOR-
MAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
74
75
F1
Third Harmonic Neutral Voltage (volts)
Class 2
Class 2
Note 10
Note 10
F10
Third Harmonic Neutral Voltage (tenths of
a volt)
76
77
F1
Third Harmonic Terminal Voltage (volts)
Class 2
Class 2
Note 10
Note 10
F10
Third Harmonic Terminal Voltage (tenths of
a volt)
78
79
F2
F1
Vab/Iab (loss of excitation impedance)
Class 2
Class 2
Vab/Iab Angle (loss of excitation
impedance angle)
80
81
F6
F1
F1
F1
F1
F1
F1
F1
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F12
F12
F12
F12
F1
F1
Power Factor
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Class 2
Real Power (MW)
Note 8
Note 8
Note 8
Note 8
Note 8
Note 8
Note 3
82
Real Power (kW)
83
Reactive Power (Mar)
Reactive Power (kvar)
Apparent Power (MVA)
Apparent Power (kVA)
Hottest Stator RTD
Hottest Stator RTD Temperature (°C)
RTD #1 Temperature (°C)
RTD #2 Temperature (°C)
RTD #3 Temperature (°C)
RTD #4 Temperature (°C)
RTD #5 Temperature (°C)
RTD #6 Temperature (°C)
RTD #7 Temperature (°C)
RTD #8 Temperature (°C)
RTD #9 Temperature (°C)
RTD #10 Temperature (°C)
RTD #11 Temperature (°C)
RTD #12 Temperature (°C)
Current Demand
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Note 7
Note 8
Note 8
Note 8
Note 8
Note 8
Note 8
Note 7
Note 8
Note 8
Note 8
Note 8
Note 8
Note 8
Note 9
Note 9
Note 9
Note 9
MW Demand
kW Demand
Mvar Demand
kvar Demand
MVA Demand
kVA Demand
Peak Current Demand
Peak MW Demand
Peak kW Demand
Peak Mvar Demand
Peak kvar Demand
Peak MVA Demand
Peak kVA Demand
Analog Input 1
Analog Input 2
Analog Input 3
Analog Input 4
Tachometer RPM
Average Generator Load
55
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 4 of 4)
INDEX
FOR-
MAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
121
122
123
124
↓
F1
F1
-
Average Negative Sequence Current
Average Phase-Phase Voltage
User Map Value 1
Class 2
Class 2
Note 5
Note 5
↓
-
User Map Value 2
↓
…↓...
↓
246
247
248
249
250
251
252
-
User Map Value 124
User Map Value 125
Active Setpoint Group
Positive kWh
Note 5
Note 5
Note 3
-
F118
F13
F13
F13
F12
Class 1
Class 2
Class 2
Class 2
Class 2
Positive kvarh
Negative kvarh
Generator Hours Online
TABLE NOTES:
1. Unless otherwise specified, an event object will be generated for a point if the
current value of the point changes by an amount greater than or equal to two
percent of its previous value.
2. An event object is created for the Frequency point if the frequency changes by
0.04 Hz or more from its previous value.
3. An event object is created for these points if the current value of a point is in
any way changed from its previous value.
4. To support existing SCADA hardware that is not capable of 32-bit data reads,
the upper and lower 16-bit portions of these 32-bit values have been assigned
to separate points. To read this data, it is necessary to read both the upper and
lower 16-bit portions, concatenate these two values to form a 32-bit value and
interpret the result in the format associated with the point as specified in Data
5. The data returned by a read of the User Map Value points is determined by the
values programmed into the corresponding User Map Address registers (which
page 9 for more information. Changes in User Map Value points never generate
event objects. Note that it is possible to refer to a 32-bit quantity in a user map
register, which may require the use of a 32-bit variation to read the associated
analog input point.
6. The scale for pre-trip currents is determined by the value in point 9, which
should not normally change
7. The scale for currents is determined by the value in point 47, which should not
normally change
8. Each power quantity is available at two different points, with two different scale
factors (kW and MW, for example). The user should select the unit which is clos-
est to providing the resolution and range desired. If 32-bit analog input capabil-
ity is present, the higher-resolution (kW, kvar, kVA) points should generally be
used, since they provide the greatest resolution.
9. Analog input values may be –50000 to +50000 if so configured. Therefore, 32-
bit analog input capability is required to read the full possible range. If the
SCADA equipment can only read 16-bit registers, the analog inputs should be
configured to operate within the range –32768 to +32767.
10. Each neutral voltage quantity is available at two different points, with two dif-
ferent scale factors (volts and tenths of a volt). The user should select the unit
which is closest to providing the resolution and range desired. If 32-bit analog
input capability is present, the higher-resolution (tenths of a volt) points should
generally be used, since they provide the greatest resolution.
56
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
Index
489
Communications Guide
Index
A
E
ANALOG INPUTS
B
L
M
MEMORY MAP
C
MODBUS
COMMUNICATIONS
CYCLIC REDUNDANCY CHECK
D
DNP
DNP COMMUNICATIONS
R
i
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
489
Communications Guide
T
U
W
ii
GE Multilin
Download from Www.Somanuals.com. All Manuals Search And Download.
|