Cypress CY7C1470V25 User Manual

CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
72-Mbit(2M x 36/4M x 18/1M x 72)  
Pipelined SRAM with NoBL™ Architecture  
Functional Description  
Features  
• Pin-compatible and functionally equivalent to ZBT™  
• Supports 250-MHz bus operations with zero wait states  
— Available speed grades are 250, 200 and 167 MHz  
The CY7C1470V25/CY7C1472V25/CY7C1474V25 are 2.5V,  
2M x 36/4M x 18/1M x 72 Synchronous pipelined burst SRAMs  
with No Bus Latency™ (NoBL™) logic, respectively. They are  
designed to support unlimited true back-to-back Read/Write  
operations  
with  
no  
wait  
states.  
The  
• Internally self-timed output buffer control to eliminate  
the need to use asynchronous OE  
CY7C1470V25/CY7C1472V25/CY7C1474V25 are equipped  
with the advanced (NoBL) logic required to enable consec-  
utive Read/Write operations with data being transferred on  
every clock cycle. This feature dramatically improves the  
throughput of data in systems that require frequent Write/Read  
transitions. The CY7C1470V25/CY7C1472V25/CY7C1474V25  
are pin-compatible and functionally equivalent to ZBT devices.  
• Fully registered (inputs and outputs) for pipelined  
operation  
• Byte Write capability  
• Single 2.5V power supply  
• 2.5V/1.8V I/O supply (V  
)
DDQ  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle. Write operations are controlled by the  
• Fast clock-to-output times  
— 3.0 ns (for 250-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
Byte Write Selects (BW –BW for CY7C1474V25, BW –BW  
a
h
a
d
• CY7C1470V25, CY7C1472V25 available in  
JEDEC-standard lead-free 100-pin TQFP, lead-free and  
non-lead-free 165-ball FBGA package. CY7C1474V25  
available in lead-free and non-lead-free 209 ball FBGA  
package  
for CY7C1470V25 and BW –BW for CY7C1472V25) and a  
a
b
Write Enable (WE) input. All writes are conducted with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Enables (CE , CE , CE ) and an  
1
2
3
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• IEEE 1149.1 JTAG Boundary Scan compatible  
• Burst capability—linear or interleaved burst order  
• “ZZ” Sleep Mode option and Stop Clock option  
Logic Block Diagram-CY7C1470V25 (2M x 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
D1  
D0  
Q1  
Q0  
A0'  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
BWa  
BWb  
BWc  
BWd  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
WRITE  
DRIVERS  
DQPa  
DQPb  
DQPc  
DQPd  
A
M
P
S
T
E
R
S
F
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
Document #: 38-05290 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 21, 2006  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Pin Configurations  
100-pin TQFP Pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
SS  
V
V
DD  
NC  
DD  
CY7C1470V25  
(2M × 36)  
CY7C1472V25  
(4M × 18)  
NC  
NC  
V
V
ZZ  
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQa  
DQa  
DQd  
DQb  
DDQ  
V
V
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQa DQPb  
DQa  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05290 Rev. *I  
Page 3 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Pin Configurations (continued)  
165-ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1470V25 (2M x 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPc  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE  
CEN  
WE  
3
A
CE2  
VDDQ  
VDDQ  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQc  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
DQb  
DQPb  
DQb  
DQc  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQPd  
DQd  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
A
CY7C1472V25 (4M x 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
5
NC  
6
CE  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
3
A
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
A
A
NC  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQb  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
K
L
NC  
NC  
DQb  
DQPb  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
M
N
P
NC/144M  
TDI  
TDO  
NC/288M  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05290 Rev. *I  
Page 4 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Pin Configurations (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1474V25 (1M x 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQg  
DQg  
DQg  
DQg  
DQg  
A
CE  
A
ADV/LD  
WE  
A
A
CE  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
B
C
2
3
BWS  
BWS  
BWS  
NC  
BWS  
BWS  
NC  
BWS  
BWS  
c
g
b
f
DQg  
DQg  
DQPc  
DQc  
BWS NC/576M CE  
NC  
NC  
h
d
1
e
a
DQg  
DQPg  
DQc  
V
NC  
NC/1G  
OE  
V
SS  
D
E
SS  
V
V
V
V
V
V
V
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
DD  
DQPf  
DQf  
DQPb  
DQf  
F
V
V
V
V
V
NC  
NC  
NC  
NC  
CEN  
NC  
NC  
V
SS  
SS  
SS  
SS  
SS  
SS  
G
H
J
DQc  
DQc  
V
DQc  
V
V
V
V
V
DD  
DDQ  
DDQ  
DQf  
DQf  
DD  
DDQ  
DQf  
DDQ  
V
V
V
V
V
V
V
DQc  
DQc  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
DQf  
DQf  
NC  
V
DQc  
NC  
V
V
V
V
DDQ  
DD  
DDQ  
DD  
DDQ  
DDQ  
DQf  
NC  
K
L
CLK  
V
V
NC  
SS  
SS  
DD  
NC  
NC  
DQh  
DQh  
DQh  
V
V
V
V
V
V
DDQ  
DD  
DDQ  
DDQ  
DQa  
DQa  
DQa  
DDQ  
M
N
P
R
T
V
V
V
V
V
SS  
DQh  
DQh  
DQh  
V
V
SS  
SS  
SS  
SS  
SS  
DQa  
DQa  
DQa  
V
V
DQh  
DQh  
DQPd  
DQd  
DQd  
V
V
V
NC  
ZZ  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DQa  
DQa  
DQPa  
DQe  
DQe  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
DD  
SS  
SS  
V
V
V
V
V
DQPh  
DQd  
DQd  
DQd  
DQd  
V
V
DDQ  
DD  
DDQ  
DDQ  
DDQ  
DD  
DQPe  
DQe  
DQe  
DQe  
DQe  
V
NC  
A
V
NC  
A
NC  
A
NC  
A
MODE  
A
SS  
SS  
U
V
W
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK.  
BW  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
a
BW  
BW  
BW  
BW  
BW  
BW  
BW  
Sampled on the rising edge of CLK. BW controls DQ and DQP , BW controls DQ and DQP ,  
b
c
d
e
f
a
a
a
b
b
b
BW controls DQ and DQP , BW controls DQ and DQP , BW controls DQ and DQP BW  
c
c
c
d
d
d
e
e
e,  
f
controls DQ and DQP BW controls DQ and DQP BW controls DQ and DQP .  
f
f,  
g
g
g,  
h
h
h
g
h
WE  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
Document #: 38-05290 Rev. *I  
Page 5 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
CE  
CE  
CE  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
1
2
3
CE and CE to select/deselect the device.  
2
3
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
1
3
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
1
2
OE  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during  
the data portion of a write sequence, during the first clock when emerging from a deselected state  
and when the device has been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
DQ  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
s
specified by A  
during the previous clock rise of the read cycle. The direction of the pins is  
[18:0]  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQ –DQ are placed in a tri-state condition. The outputs are automat-  
a
h
ically tri-stated during the data portion of a write sequence, during the first clock when emerging  
from a deselected state, and when the device is deselected, regardless of the state of OE.  
DQP  
I/O-  
Synchronous  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ  
. During  
[71:0]  
X
write sequences, DQP is controlled by BW , DQP is controlled by BW , DQP is controlled by  
a
a
b
b
c
BW , and DQP is controlled by BW , DQP is controlled by BW DQP is controlled by BW  
c
d
d
e
e,  
f
f,  
DQP is controlled by BW DQP is controlled by BW .  
g
g,  
h
h
MODE  
TDO  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
JTAG Serial  
Output  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
TDI  
JTAG Serial Input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
TCK  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
JTAG Clock  
Clock input to the JTAG circuitry.  
V
V
V
Power Supply Power supply inputs to the core of the device.  
DD  
I/O Power Supply Power supply for the I/O circuitry.  
DDQ  
SS  
Ground  
Ground for the device. Should be connected to ground of the system.  
NC  
No connects. This pin is not connected to the die.  
NC(144M,  
288M,  
These pins are not connected. They will be used for expansion to the 144M, 288M, 576M and  
1G densities.  
576M, 1G)  
ZZ  
Input-  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. For normal operation, this pin has to be LOW or left floating.  
ZZ pin has an internal pull-down.  
Document #: 38-05290 Rev. *I  
Page 6 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Functional Overview  
The CY7C1470V25/CY7C1472V25/CY7C1474V25  
the internal burst counter regardless of the state of chip  
enables inputs or WE. WE is latched at the beginning of a burst  
cycle. Therefore, the type of access (Read or Write) is  
maintained throughout the burst sequence.  
are  
synchronous-pipelined Burst NoBL SRAMs designed specifi-  
cally to eliminate wait states during Write/Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,  
1
2
and CE are ALL asserted active, and (3) the Write signal WE  
3
is asserted LOW. The address presented to the address inputs  
is loaded into the Address Register. The Write signals are  
latched into the Control Logic block.  
(t ) is 3.0 ns (250-MHz device).  
CO  
On the subsequent clock rise the data lines are automatically  
tri-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
Accesses can be initiated by asserting all three Chip Enables  
(CE , CE , CE ) active at the rising edge of the clock. If Clock  
1
2
3
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a Read or Write operation, depending on  
(DQ  
DQ  
/DQP  
for  
CY7C1474V25,  
a,b,c,d,e,f,g,h  
a,b,c,d,e,f,g,h  
/DQP  
for CY7C1470V25 and DQ /DQP for  
a,b,c,d  
a,b,c,d  
a,b  
a,b  
CY7C1472V25). In addition, the address for the subsequent  
access (Read/Write/Deselect) is latched into the Address  
Register (provided the appropriate control signals are  
asserted).  
the status of the Write Enable (WE). BW can be used to  
[x]  
conduct Byte Write operations.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
On the next clock rise the data presented to DQ and DQP  
(DQ  
/DQP  
for  
for CY7C1470V25 & DQ /DQP  
a,b  
CY7C1474V25,  
a,b,c,d,e,f,g,h  
a,b,c,d,e,f,g,h  
Three synchronous Chip Enables (CE , CE , CE ) and an  
1
2
3
DQ  
/DQP  
for  
a,b,c,d  
a,b,c,d  
a,b  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
CY7C1472V25) (or a subset for Byte Write operations, see  
Write Cycle Description table for details) inputs is latched into  
the device and the Write is complete.  
The data written during the Write operation is controlled by BW  
(BW  
for  
CY7C1474V25,  
BW  
for  
a,b,c,d,e,f,g,h  
a,b,c,d  
Single Read Accesses  
CY7C1470V25 and BW  
for CY7C1472V25) signals. The  
a,b  
CY7C1470V25/CY7C1472V25/CY7C1474V25 provides Byte  
Write capability that is described in the Write Cycle Description  
table. Asserting the Write Enable input (WE) with the selected  
Byte Write Select (BW) input will selectively write to only the  
desired bytes. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed  
write mechanism has been provided to simplify the Write  
operations. Byte Write capability has been included in order to  
greatly simplify Read/Modify/Write sequences, which can be  
reduced to simple Byte Write operations.  
A Read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,  
1
2
and CE are ALL asserted active, (3) the Write Enable input  
3
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory core  
and control logic. The control logic determines that a Read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 2.6 ns  
(250-MHz device) provided OE is active LOW. After the first  
clock of the Read access the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
Therefore, when the SRAM is deselected at clock rise by one  
of the chip enable signals, its output will tri-state following the  
next clock rise.  
Because the CY7C1470V25/CY7C1472V25/CY7C1474V25  
are common I/O devices, data should not be driven into the  
device while the outputs are active. The Output Enable (OE)  
can be deasserted HIGH before presenting data to the DQ and  
/DQP  
for CY7C1474V25,  
a,b,c,d,e,f,g,h  
a,b,c,d,e,f,g,h  
for CY7C1470V25 and DQ /DQP for  
a,b,c,d  
a,b  
a,b  
CY7C1472V25) inputs. Doing so will tri-state the output  
drivers. As  
(DQ  
a
safety precaution, DQ and DQP  
for CY7C1474V25,  
for CY7C1470V25 and DQ /DQP for  
/DQP  
a,b,c,d,e,f,g,h  
a,b,c,d,e,f,g,h  
DQ  
/DQP  
a,b,c,d  
a,b,c,d  
a,b  
a,b  
CY7C1472V25) are automatically tri-stated during the data  
portion of a Write cycle, regardless of the state of OE.  
Burst Read Accesses  
The CY7C1470V25/CY7C1472V25/CY7C1474V25 have an  
on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wrap-around when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
Burst Write Accesses  
The CY7C1470V25/CY7C1472V25/CY7C1474V25 has an  
on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four Write operations  
without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the Chip Enables  
(CE , CE , and CE ) and WE inputs are ignored and the burst  
1
2
3
counter is incremented. The correct BW (BW  
for  
a,b,c,d,e,f,g,h  
Document #: 38-05290 Rev. *I  
Page 7 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
CY7C1474V25, BW  
CY7C1472V25) inputs must be driven in each cycle of the  
burst write in order to write the correct bytes of data.  
for CY7C1470V25 and BW  
for  
a,b,c,d  
a,b  
Linear Burst Address Table (MODE = GND)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Sleep Mode  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
the “sleep” mode. CE , CE , and CE , must remain inactive  
1
2
3
)
for the duration of t  
after the ZZ input returns LOW.  
ZZREC  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A1,A0  
00  
A1,A0  
01  
A1,A0  
10  
A1,A0  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min.  
Max.  
Unit  
mA  
ns  
I
t
t
t
t
ZZ > V 0.2V  
120  
DDZZ  
DD  
ZZ > V 0.2V  
2t  
ZZS  
DD  
CYC  
CYC  
ZZ < 0.2V  
2t  
ns  
ZZREC  
ZZI  
CYC  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2t  
ns  
0
ns  
RZZI  
Truth Table [1, 2, 3, 4, 5, 6, 7]  
Address  
Used  
Operation  
CE ZZ ADV/LD WE BW  
OE CEN CLK  
DQ  
x
Deselect Cycle  
None  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
X
Tri-State  
Tri-State  
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
NOP/Write Abort (Begin Burst)  
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
External  
Next  
Data Out (Q)  
Data Out (Q)  
Tri-State  
Tri-State  
Data In (D)  
Data In (D)  
Tri-State  
Tri-State  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
X
L
H
L
External  
Next  
X
L
H
L
X
L
L
None  
H
H
X
X
Next  
X
X
X
H
X
X
X
X
X
Current  
None  
Sleep Mode  
Tri-State  
Notes:  
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BW = L signifies at least one Byte Write Select is active, BW = Valid  
x
x
signifies that the desired Byte Write Selects are asserted, see Write Cycle Description table for details.  
2. Write is defined by WE and BW  
. See Write Cycle Description table for details.  
[a:d]  
3. When a Write cycle is detected, all I/Os are tri-stated, even during Byte Writes.  
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
5. CEN = H inserts wait states.  
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles.During a Read cycle DQ and DQP  
= Tri-state when  
s
[a:d]  
OE is inactive or when the device is deselected, and DQ = data when OE is active.  
s
Document #: 38-05290 Rev. *I  
Page 8 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Partial Write Cycle Description[1, 2, 3, 8]  
Function (CY7C1470V25)  
Read  
WE  
H
L
BW  
X
H
H
H
H
H
H
H
H
L
BW  
X
H
H
H
H
L
BW  
X
H
H
L
BW  
a
d
c
b
X
H
L
Write – No bytes written  
Write Byte a – (DQ and DQP )  
L
a
a
Write Byte b – (DQ and DQP )  
L
H
L
b
b
Write Bytes b, a  
Write Byte c – (DQ and DQP )  
L
L
L
H
H
L
H
L
c
c
Write Bytes c, a  
Write Bytes c, b  
Write Bytes c, b, a  
L
L
L
LL  
L
H
L
L
L
Write Byte d – (DQ and DQP )  
L
H
H
H
H
L
H
H
L
H
L
d
d
Write Bytes d, a  
Write Bytes d, b  
Write Bytes d, b, a  
Write Bytes d, c  
Write Bytes d, c, a  
Write Bytes d, c, b  
Write All Bytes  
L
L
L
L
H
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
Function (CY7C1472V25)  
WE  
BW  
x
BW  
x
b
a
Read  
H
L
L
L
L
Write – No Bytes Written  
Write Byte a – (DQ and DQP )  
H
H
L
H
L
a
a
Write Byte b – (DQ and DQP )  
H
L
b
b
Write Both Bytes  
L
Function (CY7C1474V25)  
WE  
BW  
x
x
Read  
H
L
L
L
Write – No Bytes Written  
H
Write Byte X (DQ and DQP  
L
x
x)  
Write All Bytes  
All BW = L  
Note:  
8. Table only lists a partial listing of the Byte Write combinations. Any combination of BW  
active.  
is valid. Appropriate Write will be done based on which Byte Write is  
[a:d]  
Document #: 38-05290 Rev. *I  
Page 9 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1470V25/CY7C1472V25/CY7C1474V25 incorpo-  
rates a serial boundary scan test access port (TAP). This port  
operates in accordance with IEEE Standard 1149.1-1990 but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V or 1.8V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
(See Tap Controller Block Diagram.)  
The CY7C1470V25/CY7C1472V25/CY7C1474V25 contains  
a TAP controller, instruction register, boundary scan register,  
bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
(V ) to prevent clocking of the device. TDI and TMS are inter-  
SS  
nally pulled up and may be unconnected. They may alternately  
be connected to V through a pull-up resistor. TDO should be  
DD  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
1
1
1
Selection  
Circuitry  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
Instruction Register  
31 30 29  
Identification Register  
0
Selection  
Circuitry  
TDI  
TDO  
0
0
.
.
.
2
1
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
.
2
1
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (V ) for five  
UPDATE-DR  
UPDATE-IR  
DD  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05290 Rev. *I  
Page 10 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Instruction Register  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(V ) when the BYPASS instruction is executed.  
SS  
IDCODE  
Boundary Scan Register  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
TAP Instruction Set  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold time (t plus t ).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
CS  
CH  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
Document #: 38-05290 Rev. *I  
Page 11 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
TH  
CYC  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
[9, 10]  
TAP AC Switching Characteristics Over the Operating Range  
Parameter  
Clock  
Description  
Min.  
Max.  
Unit  
t
t
t
t
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
TCYC  
TF  
20  
20  
20  
TH  
ns  
TL  
Output Times  
t
t
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
TDOV  
TDOX  
0
Set-up Times  
t
t
t
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
5
5
5
ns  
ns  
ns  
TMSS  
TDIS  
CS  
Hold Times  
t
t
t
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
TMSH  
TDIH  
CH  
Capture Hold after Clock Rise  
Notes:  
9. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05290 Rev. *I  
Page 12 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
2.5V TAP AC Test Conditions  
1.8V TAP AC Test Conditions  
Input pulse levels ................................................ V to 2.5V  
Input pulse levels..................................... 0.2V to V  
– 0.2  
SS  
DDQ  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels........................................... 0.9V  
Output reference levels .................................................. 0.9V  
Test load termination supply voltage .............................. 0.9V  
2.5V TAP AC Output Load Equivalent  
1.8V TAP AC Output Load Equivalent  
1.25V  
0.9V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
[11]  
(0°C < T < +70°C; V = 2.5V ±0.125V unless otherwise noted)  
A
DD  
Parameter  
Description  
Test Conditions  
Min.  
1.7  
Max.  
Unit  
V
V
V
Output HIGH Voltage  
Output HIGH Voltage  
I
I
= –1.0 mA  
V
V
V
V
V
V
V
V
V
V
= 2.5V  
= 2.5V  
= 1.8V  
= 2.5V  
= 2.5V  
= 1.8V  
= 2.5V  
= 1.8V  
= 2.5V  
= 1.8V  
OH1  
OH  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
= –100 µA  
2.1  
V
OH2  
OH  
1.6  
V
V
V
Output LOW Voltage  
Output LOW Voltage  
I
I
= 1.0 mA  
0.4  
0.2  
0.2  
V
OL1  
OL  
OL  
= 100 µA  
V
OL2  
V
V
V
I
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
1.7  
1.26  
–0.3  
–0.3  
–5  
V
V
+ 0.3  
V
IH  
IL  
DD  
DD  
+ 0.3  
V
0.7  
V
0.36  
5
V
GND V V  
DDQ  
µA  
X
I
Identification Register Definitions  
CY7C1470V25  
CY7C1472V25  
(4M x 18)  
CY7C1474V25  
(1M x 72)  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(2M x 36)  
Description  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
001000  
01011  
001000  
Architecture/Memory Type(23:18)  
001000  
Defines memory type and archi-  
tecture  
Bus Width/Density(17:12)  
100100  
010100  
110100  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
00000110100 Allows unique identification of  
SRAM vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Note:  
11. All voltages referenced to V (GND).  
SS  
Document #: 38-05290 Rev. *I  
Page 13 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
71  
32  
52  
32  
Boundary Scan Order–165FBGA  
Boundary Scan Order–209BGA  
110  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
010 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011 Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
100 Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload function  
and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do Not Use: This instruction is reserved for future use.  
110 Do Not Use: This instruction is reserved for future use.  
111 Places the bypass register between TDI and TDO. This operation does not affect SRAM opera-  
tions.  
Document #: 38-05290 Rev. *I  
Page 14 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
165-Ball ID  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
K10  
J10  
3
E1  
R4  
4
D2  
P6  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A9  
5
E2  
R6  
6
F1  
R8  
7
G1  
F2  
P3  
8
P4  
9
G2  
J1  
P8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P9  
K1  
P10  
R9  
L1  
J2  
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
M1  
N1  
B9  
K2  
A10  
B10  
A8  
L2  
M2  
R1  
B8  
R2  
A7  
Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
Bit #  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
165-Ball ID  
R4  
Bit #  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
165-Ball ID  
L10  
Bit #  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
165-Ball ID  
B10  
A8  
D2  
E2  
F2  
G2  
J1  
2
P6  
K10  
J10  
3
R6  
B8  
4
R8  
H11  
G11  
F11  
A7  
5
P3  
B7  
6
K1  
L1  
P4  
B6  
7
P8  
E11  
A6  
8
M1  
N1  
R1  
R2  
R3  
P2  
P9  
D11  
C11  
A11  
B5  
9
P10  
R9  
A4  
10  
11  
12  
13  
B3  
R10  
R11  
M10  
A9  
A3  
B9  
A2  
A10  
B2  
Document #: 38-05290 Rev. *I  
Page 15 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
U10  
T11  
Bit #  
85  
209-Ball ID  
B11  
B10  
A11  
A10  
A7  
2
A2  
T2  
86  
3
B1  
U1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
89  
6
V2  
90  
A5  
7
W1  
W2  
T6  
91  
A9  
8
92  
U8  
9
93  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
D6  
F1  
V4  
95  
K6  
F2  
U4  
96  
B6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
L10  
97  
K3  
P6  
98  
A8  
W6  
V5  
J11  
99  
B4  
J10  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
B3  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
J2  
U6  
C4  
L1  
W7  
V7  
C8  
L2  
C9  
M1  
M2  
N1  
N2  
P1  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B8  
V9  
A4  
W11  
W10  
V11  
V10  
U11  
C6  
B7  
P2  
A3  
R2  
R1  
Document #: 38-05290 Rev. *I  
Page 16 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on V Relative to GND........ –0.5V to +3.6V  
Range  
Temperature  
V
V
DDQ  
DD  
DD  
Supply Voltage on V  
Relative to GND ......0.5V to +V  
Commercial 0°C to +70°C 2.5V –5%/+5% 1.7V to V  
DD  
DDQ  
DD  
DC to Outputs in Tri-State................... –0.5V to V  
+ 0.5V  
Industrial  
–40°C to +85°C  
DDQ  
DC Input Voltage....................................–0.5V to V + 0.5V  
DD  
[12, 13]  
Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
2.375  
2.375  
1.7  
Max.  
Unit  
V
V
2.625  
DD  
V
V
V
V
V
I
for 2.5V I/O  
for 1.8V I/O  
V
V
DDQ  
DD  
1.9  
V
Output HIGH Voltage  
Output LOW Voltage  
for 2.5V I/O, I = 1.0 mA  
2.0  
V
OH  
OL  
IH  
OH  
for 1.8V I/O, I = –100 µA  
1.6  
V
OH  
for 2.5V I/O, I = 1.0 mA  
0.4  
V
OL  
for 1.8V I/O, I = 100 µA  
0.2  
V
OL  
[12]  
Input HIGH Voltage  
for 2.5V I/O  
for 1.8V I/O  
for 2.5V I/O  
for 1.8V I/O  
1.7  
1.26  
–0.3  
–0.3  
–5  
V
+ 0.3V  
V
DD  
V
+ 0.3V  
V
DD  
[12]  
Input LOW Voltage  
0.7  
V
IL  
0.36  
5
V
Input Leakage Current GND V V  
except ZZ and MODE  
µA  
X
I
DDQ  
Input Current of MODE Input = V  
–30  
–5  
µA  
µA  
SS  
Input = V  
5
DD  
Input Current of ZZ  
Input = V  
Input = V  
µA  
SS  
DD  
30  
5
µA  
I
I
Output Leakage Current GND V V  
Output Disabled  
–5  
µA  
OZ  
I
DDQ,  
V
Operating Supply  
V
f = f  
= Max., I  
= 0 mA,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
450  
450  
400  
200  
200  
200  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
DD  
DD  
OUT  
= 1/t  
CYC  
MAX  
I
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. V , DeviceDeselected, 4.0-ns cycle, 250MHz  
DD  
SB1  
V
V or V V ,  
IN  
IH  
IN  
IL  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
f = f  
= 1/t  
MAX CYC  
I
I
Automatic CE  
Power-down  
Current—CMOS Inputs V > V  
Max. V , DeviceDeselected, All speed grades  
DD  
SB2  
V
0.3V or  
IN  
0.3V, f = 0  
IN  
DDQ  
Automatic CE  
Power-down  
Current—CMOS Inputs V > V  
Max. V , DeviceDeselected, 4.0-ns cycle, 250 MHz  
200  
200  
200  
mA  
mA  
mA  
SB3  
DD  
0.3V or  
V
IN  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
0.3V,  
IN  
f = f  
DDQ  
= 1/t  
CYC  
MAX  
I
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. V , DeviceDeselected, All speed grades  
135  
mA  
SB4  
DD  
V
V or V V , f = 0  
IN  
IH  
IN  
IL  
Notes:  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
.
13. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD  
Document #: 38-05290 Rev. *I  
Page 17 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Capacitance[14]  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Max.  
Max.  
Max.  
Unit  
pF  
C
C
C
C
C
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
T = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
ADDRESS  
DATA  
CTRL  
CLK  
A
V
= 2.5V  
= 2.5V  
DD  
pF  
V
DDQ  
pF  
pF  
pF  
I/O  
Thermal Resistance[14]  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Unit  
Θ
Thermal Resistance Test conditions follow standard  
(Junction to Ambient) test methods and procedures for  
24.63  
16.3  
15.2  
°C/W  
JA  
measuring thermal impedance,  
per EIA/JESD51.  
(Junction to Case)  
Θ
Thermal Resistance  
2.28  
2.1  
1.7  
°C/W  
JC  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
1.8V I/O Test Load  
R = 14 KΩ  
1.8V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ - 0.2  
0.2  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 14 KΩ  
1 ns  
1 ns  
V =0.9V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
14. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-05290 Rev. *I  
Page 18 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
[15, 16]  
Switching Characteristics Over the Operating Range  
–250  
–200  
–167  
Parameter  
Description  
(typical) to the First Access Read or Write  
CC  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
[17]  
t
V
1
1
1
ms  
Power  
Clock  
t
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.0  
5.0  
6.0  
ns  
MHz  
ns  
CYC  
F
250  
200  
167  
MAX  
t
t
2.0  
2.0  
2.0  
2.0  
2.2  
2.2  
CH  
CL  
Clock LOW  
ns  
Output Times  
t
t
t
t
t
t
t
Data Output Valid After CLK Rise  
OE LOW to Output Valid  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO  
OEV  
DOH  
CHZ  
CLZ  
Data Output Hold After CLK Rise  
1.3  
1.3  
0
1.3  
1.3  
0
1.5  
1.5  
0
[18, 19, 20]  
Clock to High-Z  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
[18, 19, 20]  
Clock to Low-Z  
[18, 19, 20]  
OE HIGH to Output High-Z  
EOHZ  
EOLZ  
[18, 19, 20]  
OE LOW to Output Low-Z  
Set-up Times  
t
t
t
t
t
t
Address Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
AS  
DS  
CENS  
WES  
ALS  
CES  
WE, BW Set-up Before CLK Rise  
x
ADV/LD Set-up Before CLK Rise  
Chip Select Set-up  
Hold Times  
t
t
t
t
t
t
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
CEN Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
AH  
DH  
CENH  
WEH  
ALH  
CEH  
WE, BW Hold After CLK Rise  
x
ADV/LD Hold after CLK Rise  
Chip Select Hold After CLK Rise  
Notes:  
15. Timing reference is 1.25V when V  
= 2.5V and 0.9V when V  
= 1.8V.  
DDQ  
DDQ  
16. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
17. This part has a voltage regulator internally; t  
is the time power needs to be supplied above V minimum initially, before a Read or Write operation can be  
power  
DD  
initiated.  
18. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
EOHZ  
CHZ CLZ EOLZ  
19. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
EOHZ  
EOLZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
20. This parameter is sampled and not 100% tested.  
Document #: 38-05290 Rev. *I  
Page 19 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Switching Waveforms  
[21, 22, 23]  
Read/Write/Timing  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
21. For this waveform ZZ is tied LOW.  
22. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH,CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
23. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved).Burst operations are optional.  
Document #: 38-05290 Rev. *I  
Page 20 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Switching Waveforms (continued)  
[21, 22, 24]  
NOP, STALL and DESELECT Cycles  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
[25, 26]  
ZZ Mode Timing  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
24. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A Write is not performed during this cycle.  
25. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
26. I/Os are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05290 Rev. *I  
Page 21 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
167 CY7C1470V25-167AXC  
CY7C1472V25-167AXC  
CY7C1470V25-167BZC  
CY7C1472V25-167BZC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm)  
CY7C1470V25-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm) Lead-Free  
CY7C1472V25-167BZXC  
CY7C1474V25-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1474V25-167BGXC  
CY7C1470V25-167AXI  
CY7C1472V25-167AXI  
CY7C1470V25-167BZI  
CY7C1472V25-167BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm)  
CY7C1470V25-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm) Lead-Free  
CY7C1472V25-167BZXI  
CY7C1474V25-167BGI  
CY7C1474V25-167BGXI  
200 CY7C1470V25-200AXC  
CY7C1472V25-200AXC  
CY7C1470V25-200BZC  
CY7C1472V25-200BZC  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm)  
CY7C1470V25-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm) Lead-Free  
CY7C1472V25-200BZXC  
CY7C1474V25-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1474V25-200BGXC  
CY7C1470V25-200AXI  
CY7C1472V25-200AXI  
CY7C1470V25-200BZI  
CY7C1472V25-200BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm)  
CY7C1470V25-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4mm) Lead-Free  
CY7C1472V25-200BZXI  
CY7C1474V25-200BGI  
CY7C1474V25-200BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
Document #: 38-05290 Rev. *I  
Page 22 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
250 CY7C1470V25-250AXC  
CY7C1472V25-250AXC  
CY7C1470V25-250BZC  
CY7C1472V25-250BZC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1470V25-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1472V25-250BZXC  
CY7C1474V25-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1474V25-250BGXC  
CY7C1470V25-250AXI  
CY7C1472V25-250AXI  
CY7C1470V25-250BZI  
CY7C1472V25-250BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1470V25-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1472V25-250BZXI  
CY7C1474V25-250BGI  
CY7C1474V25-250BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
Document #: 38-05290 Rev. *I  
Page 23 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05290 Rev. *I  
Page 24 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Package Diagrams (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) (51-85165)  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 38-05290 Rev. *I  
Page 25 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Package Diagrams (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) (51-85167)  
51-85167-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology, Inc. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05290 Rev. *I  
Page 26 of 28  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Document History Page  
Document Title: CY7C1470V25/CY7C1472V25/CY7C1474V25 72-Mbit(2M x 36/4M x 18/1M x 72)  
Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05290  
Orig. of  
REV.  
**  
ECN No. Issue Date Change  
Description of Change  
114677  
121519  
08/06/02  
01/27/03  
PKS  
CJM  
New data sheet  
*A  
Updated features for package offering  
Removed 300-MHz offering  
Changed tCO, tEOV, tCHZ, tEOHZ from 2.4 ns to 2.6 ns (250 MHz), tDOH, tCLZ  
from 0.8 ns to 1.0 ns (250 MHz), tDOH, tCLZ from 1.0 ns to 1.3 ns (200 MHz)  
Updated ordering information  
Changed Advanced Information to Preliminary  
*B  
223721  
See ECN  
NJY  
Changed timing diagrams  
Changed logic block diagrams  
Modified Functional Description  
Modified “Functional Overview” section  
Added boundary scan order for all packages  
Included thermal numbers and capacitance values for all packages  
Included IDD and ISB values  
Removed 250-MHz offering and included 225-MHz speed bin  
Changed package outline for 165FBGA package and 209-ball BGA package  
Removed 119-BGA package offering  
*C  
*D  
235012  
243572  
See ECN  
See ECN  
RYQ  
NJY  
Minor Change: The data sheets do not match on the spec system and  
external web  
Changed ball C11,D11,E11,F11,G11 from DQPb,DQb,DQb,DQb,DQb to  
DQPa,DQa,DQa,DQa,DQa in page 4  
Modified capacitance values in page 19  
*E  
299511  
See ECN  
SYT  
Removed 225-MHz offering and included 250-MHz speed bin  
Changed t  
from 4.4 ns to 4.0 ns for 250-MHz Speed Bin  
CYC  
Changed Θ from 16.8 to 24.63 °C/W and Θ from 3.3 to 2.28 °C/W for 100  
JA  
JC  
TQFP Package on Page # 19  
Added lead-free information for 100-Pin TQFP and 165 FBGA Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
*F  
320197  
331513  
See ECN  
See ECN  
PCI  
PCI  
Corrected typo in part numbers on page# 9 and 10  
*G  
Address expansion pins/balls in the pinouts for all packages are modified as per  
JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Added Industrial Operating Range  
Modified V , V Test Conditions  
OL  
OH  
Updated Ordering Information Table  
*H  
416221  
See ECN  
RXU  
Converted from Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed Three-state to Tri-state  
Changed the description of I from Input Load Current to Input Leakage Current  
X
on page# 17  
Changed the I current values of MODE on page # 17 from –5 µA and 30 µA  
X
to –30 µA and 5 µA  
Changed the I current values of ZZ on page # 17 from –30 µA and 5 µA  
X
to –5 µA and 30 µA  
Changed V  
< V to V  
< V on page #17  
DDQ  
DD  
DDQ DD  
Replaced Package Name column with Package Diagram in the Ordering Infor-  
mation table  
Updated Ordering Information table  
Document #: 38-05290 Rev. *I  
Page 27 of 28  
CY7C1470V25  
CY7C1472V25  
CY7C1474V25  
Document Title: CY7C1470V25/CY7C1472V25/CY7C1474V25 72-Mbit(2M x 36/4M x 18/1M x 72)  
Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05290  
*I  
472335  
See ECN  
VKN  
Corrected the typo in the pin configuration for 209-Ball FBGA pinout  
(Corrected the ball name for H9 to V from V ).  
SS  
SSQ  
Added the Maximum Rating for Supply Voltage on V  
Relative to GND.  
DDQ  
Changed t , t from 25 ns to 20 ns and t  
from 5 ns to 10 ns in TAP AC  
TH TL  
TDOV  
Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05290 Rev. *I  
Page 28 of 28  

HP Hewlett Packard Hewlett Packard Computer Monitor 5500 User Manual
Hobart HGC20, HGC20, ML 114573, ML 114575 User Manual
GE 21028 User Manual
Frigidaire FGGC3065KW User Manual
Dell Computer Monitor P170S User Manual
Defy Appliances DHG 116 User Manual
Cypress Perform CY14B102L User Manual
BenQ FP537s User Manual
BenQ FP71V User Manual
Asus P5B VM User Manual