Product Manual
®
Savvio 10K.3 SAS
Standard Models
Self-Encrypting Drive Models
ST9300603SS
ST9146803SS
ST9300503SS
ST9146703SS
SED FIPS 140-2 Models
ST9300403SS
ST9146603SS
100516229
Rev. G
March 2011
Contents
Seagate Technology support services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Applicable standards and reference documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Electromagnetic compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Electromagnetic compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Standard features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Media description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Formatted capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Programmable drive capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Factory-installed options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Internal drive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Seek performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
General performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Start/stop time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Prefetch/multi-segmented cache control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cache operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Caching write data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Prefetch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Reliability specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Error rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Recoverable Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Unrecoverable Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Seek errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Interface errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Reliability and service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Preventive maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Hot plugging the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
S.M.A.R.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Thermal monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Drive Self Test (DST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Product warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Physical/electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
AC power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Conducted noise immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Environmental limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.1
Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Savvio 10K.3 SAS Product Manual, Rev. G
i
Relative humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Air cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Electromagnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Mechanical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Drive internal defects/errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Drive error recovery procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Drive orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Drive mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
task management responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.5
Miscellaneous operating features and conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Physical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Connector requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
ii
Savvio 10K.3 SAS Product Manual, Rev. G
Ready LED Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
12.7
SAS-2 Specification compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Savvio 10K.3 SAS Product Manual, Rev. G
iii
iv
Savvio 10K.3 SAS Product Manual, Rev. G
List of Figures
Current profiles for 300GB models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Current profiles for 146GB models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Location of the HDA temperature check point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Recommended mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Mounting configuration dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 10. Example of FIPS tamper evidence labels. Does not represent actual drive. . . . . . . . . . . . . . 36
Figure 11. Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 12. Air flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 13. Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 14. SAS device plug dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 15. SAS device plug dimensions (detail) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 16. SAS transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Savvio 10K.3 SAS Product Manual, Rev. G
v
1.0
Seagate Technology support services
SEAGATE ONLINE SUPPORT and SERVICES
For information regarding products and services, visit http://www.seagate.com/www/en-us/about/contact_us/
Available services include:
Presales & Technical support
Global Support Services telephone numbers & business hours
Authorized Service Centers
For information regarding Warranty Support, visit
http://www.seagate.com/www/en-us/support/warranty_&_returns_assistance
Savvio 10K.3 SAS Product Manual, Rev. G
1
2.0
Scope
This manual describes Seagate Technology® LLC, Savvio® 10K.3 SAS (Serial Attached SCSI) disc drives.
Savvio drives support the SAS Protocol specifications to the extent described in this manual. The SAS Inter-
face Manual (part number 100293071) describes the general SAS characteristics of this and other Seagate
SAS drives. The Self-Encrypting Drive Reference Manual, part number 100515636, describes the interface,
general operation, and security features available on Self-Encrypting Drive models.
Note. Previous generations of Seagate Self-Encrypting Drive models were called Full Disk Encryption
(FDE) models before a differentiation between drive-based encryption and other forms of encryp-
tion was necessary.
Product data communicated in this manual is specific only to the model numbers listed in this manual. The data
listed in this manual may not be predictive of future generation specifications or requirements. If you are
designing a system which will use one of the models listed or future generation products and need further
assistance, please contact your Field Applications Engineer (FAE) or our global support services group as
shown in Section 1.0.
Unless otherwise stated, the information in this manual applies to standard and Self-Encrypting Drive models.
Model Number
ST9300603SS
ST9300503SS
ST9300403SS
ST9146803SS
ST9146703SS
ST9146603SS
Self-Encrypting Drive (SED)
FIPS 140-2 Level 2 certified
No
No
No
Yes
No
No
Yes
Yes
Yes
No
Yes
Yes
2
Savvio 10K.3 SAS Product Manual, Rev. G
3.0
Applicable standards and reference documentation
The drives documented in this manual have been developed as system peripherals to the highest standards of
design and construction. The drives depend on host equipment to provide adequate power and environment
for optimum performance and compliance with applicable industry and governmental regulations. Special
attention must be given in the areas of safety, power distribution, shielding, audible noise control, and temper-
ature regulation. In particular, the drives must be securely mounted to guarantee the specified performance
3.1
Standards
The Savvio family complies with Seagate standards as noted in the appropriate sections of this manual and the
Seagate SAS Interface Manual, part number 100293071.
The drives are recognized in accordance with UL 60950-1 and CSA 60950-1 as tested by UL and EN60950-1
as tested by TUV.
The security features of Self-Encrypting Drive models are based on the “TCG Storage Architecture Core Spec-
ification” and the “TCG Storage Workgroup Security Subsystem Class: Enterprise_A” specification with addi-
tional vendor-unique features as noted in this product manual.
3.1.1
Electromagnetic compatibility
The drive, as delivered, is designed for system integration and installation into a suitable enclosure prior to
use. The drive is supplied as a subassembly and is not subject to Subpart B of Part 15 of the FCC Rules and
Regulations nor the Radio Interference Regulations of the Canadian Department of Communications.
The design characteristics of the drive serve to minimize radiation when installed in an enclosure that provides
reasonable shielding. The drive is capable of meeting the Class B limits of the FCC Rules and Regulations of
the Canadian Department of Communications when properly packaged; however, it is the user’s responsibility
to assure that the drive meets the appropriate EMI requirements in their system. Shielded I/O cables may be
required if the enclosure does not provide adequate shielding. If the I/O cables are external to the enclosure,
shielded cables should be used, with the shields grounded to the enclosure and to the host controller.
3.1.1.1
Electromagnetic susceptibility
As a component assembly, the drive is not required to meet any susceptibility performance requirements. It is
the responsibility of those integrating the drive within their systems to perform those tests required and design
their system to ensure that equipment operating in the same system as the drive or external to the system
Savvio 10K.3 SAS Product Manual, Rev. G
3
3.1.2
Electromagnetic compliance
Seagate uses an independent laboratory to confirm compliance with the directives/standards for CE Marking
and C-Tick Marking. The drive was tested in a representative system for typical applications. The selected sys-
tem represents the most popular characteristics for test platforms. The system configurations include:
• Typical current use microprocessor
• Keyboard
• Monitor/display
• Printer
• Mouse
Although the test system with this Seagate model complies with the directives/standards, we cannot guarantee
that all systems will comply. The computer manufacturer or system integrator shall confirm EMC compliance
and provide the appropriate marking for their product.
Electromagnetic compliance for the European Union
If this model has the CE Marking it complies with the European Union requirements of the Electromagnetic
Compatibility Directive 2004/108/EC as put into place on 20 July 2007.
Australian C-Tick
If this model has the C-Tick Marking it complies with the Australia/New Zealand Standard AS/NZ CISPR22 and
meets the Electromagnetic Compatibility (EMC) Framework requirements of Australia’s Spectrum Manage-
ment Agency (SMA).
Korean MIC
If these drives have the Korean Communications Commission (KCC) logo, they comply with paragraph 1 of
Article 11 of the Electromagnetic Compatibility control Regulation and meet the Electromagnetic Compatibility
(EMC) Framework requirements of the Radio Research Laboratory (RRL) Communications Commission,
Republic of Korea.
These drives have been tested and comply with the Electromagnetic Interference/Electromagnetic
Susceptibility (EMI/EMS) for Class B products. Drives are tested in a representative, end-user system by a
Korean-recognized lab.
• Family name:
Savvio SAS
• Certificate number:
STX-ST9300603SS (B)
Taiwanese BSMI
If this model has two Chinese words meaning “EMC certification” followed by an eight digit identification num-
ber, as a Marking, it complies with Chinese National Standard (CNS) 13438 and meets the Electromagnetic
Compatibility (EMC) Framework requirements of the Taiwanese Bureau of Standards, Metrology, and Inspec-
tion (BSMI).
4
Savvio 10K.3 SAS Product Manual, Rev. G
3.1.3
European Union Restriction of Hazardous Substances (RoHS)
The European Union Restriction of Hazardous Substances (RoHS) Directive restricts the presence of chemical
substances, including Lead (Pb), in electronic products effective July 2006.
A number of parts and materials in Seagate products are procured from external suppliers. We rely on the rep-
resentations of our suppliers regarding the presence of RoHS substances in these parts and materials. Our
supplier contracts require compliance with our chemical substance restrictions, and our suppliers document
their compliance with our requirements by providing material content declarations for all parts and materials for
the disc drives documented in this publication. Current supplier declarations include disclosure of the inclusion
of any RoHS-regulated substance in such parts or materials.
Seagate also has internal systems in place to ensure ongoing compliance with the RoHS Directive and all laws
and regulations which restrict chemical content in electronic products. These systems include standard operat-
ing procedures that ensure that restricted substances are not utilized in our manufacturing operations, labora-
tory analytical validation testing, and an internal auditing process to ensure that all standard operating
procedures are complied with.
3.2
Reference documents
SCSI Commands Reference Manual
SAS Interface Manual
Seagate part number: 100293068
Seagate part number: 100293071
ANSI SAS Documents
SFF-8223
2.5” Drive Form Factor with Serial Connector
HSS Backplane Design Guidelines
Multi Lane Copper Connector
SAS Plug Connector
SFF-8460
SFF-8470
SFF-8482
ANSI INCITS.xxx Serial Attached SCSI (SAS) Standard (T10/1562-D)
ISO/IEC 14776-xxx SCSI Architecture Model-3 (SAM-3) Standard (T10/1561-D)
ISO/IEC 14776-xxx SCSI Primary Commands-3 (SPC-3) Standard (T10/1416-D)
ISO/IEC 14776-xxx SCSI Block Commands-2 (SBC-2) Standard (T10/1417-D)
ANSI Small Computer System Interface (SCSI) Documents
X3.270-1996 (SCSI-3) Architecture Model
Trusted Computing Group (TCG) Documents (apply to Self-Encrypting Drive models only)
TCG Storage Architecture Core Specification, Rev. 1.0
TCG Storage Security Subsystem Class Enterprise Specification, Rev. 1.0
Self-Encrypting Drives Reference Manual
Seagate part number: 100515636
Seagate part number: 30553-001
Specification for Acoustic Test Requirement and Procedures
Package Test Specification
Package Test Specification
Seagate P/N 30190-001 (under 100 lb.)
Seagate P/N 30191-001 (over 100 lb.)
In case of conflict between this document and any referenced document, this document takes precedence.
Savvio 10K.3 SAS Product Manual, Rev. G
5
4.0
General description
Savvio drives provide high performance, high capacity data storage for a variety of systems including engi-
neering workstations, network servers, mainframes, and supercomputers. The Serial Attached SCSI interface
is designed to meet next-generation computing demands for performance, scalability, flexibility and high-den-
sity storage requirements.
Savvio drives are random access storage devices designed to support the Serial Attached SCSI Protocol as
described in the ANSI specifications, this document, and the SAS Interface Manual (part number 100293071)
which describes the general interface characteristics of this drive. Savvio drives are classified as intelligent
peripherals and provide level 2 conformance (highest level) with the ANSI SCSI-1 standard. The SAS connec-
tors, cables and electrical interface are compatible with Serial ATA (SATA), giving future users the choice of
populating their systems with either SAS or SATA hard disc drives. This allows you to continue to leverage your
existing investment in SCSI while gaining a 6Gb/s serial data transfer rate.
The Self-Encrypting Drive models indicated on the cover of this product manual have provisions for “Security
group.org).
Note. Never disassemble the HDA and do not attempt to service items in the sealed enclosure (heads,
media, actuator, etc.) as this requires special facilities. The drive does not contain user-replaceable
parts. Opening the HDA for any reason voids your warranty.
Savvio drives use a dedicated landing zone at the innermost radius of the media to eliminate the possibility of
destroying or degrading data by landing in the data zone. The heads automatically go to the landing zone when
power is removed from the drive.
An automatic shipping lock prevents potential damage to the heads and discs that results from movement dur-
ing shipping and handling. The shipping lock disengages and the head load process begins when power is
applied to the drive.
The drives also use a high-performance actuator assembly with a low-inertia, balanced, patented, straight arm
design that provides excellent performance with minimal power dissipation.
6
Savvio 10K.3 SAS Product Manual, Rev. G
4.1
Standard features
Savvio® 10K.3 SAS drives have the following standard features:
• 1.5 / 3 / 6 Gbit Serial Attached SCSI (SAS) interface
• Integrated dual port SAS controller supporting the SCSI protocol
• Support for SAS expanders and fanout adapters
• Firmware downloadable using the SAS interface
• 128 - deep task set (queue)
• Supports up to 32 initiators
• Jumperless configuration
• User-selectable logical block size (512, 520, or 528 bytes per logical block)
• Industry standard SFF 2.5-inch dimensions
• Programmable logical block reallocation scheme
• Flawed logical block reallocation at format time
• Programmable auto write and read reallocation
• Reallocation of defects on command (Post Format)
• ECC maximum burst correction length of 520 bits
• No preventive maintenance or adjustments required
• Dedicated head landing zone and automatic shipping lock
• Embedded servo design
• Self diagnostics performed when power is applied to the drive
• Zone bit recording (ZBR)
• Vertical, horizontal, or top down mounting
• Dynamic spindle brake
• Drive Self Test (DST)
• Background Media Scan (BMS)
• Idle Read After Write (IRAW)
• Power Save
Savvio® 10K.3 SAS Self-Encrypting Drive models have the following additional features:
• Automatic data encryption/decryption
• Controlled access
• Random number generator
• Drive locking
• 16 independent data bands
• Cryptographic erase of user data for a drive that will be repurposed or scrapped
• Authenticated firmware download
4.2
Media description
The media used on the drive has an aluminum substrate coated with a thin film magnetic material, overcoated
with a proprietary protective layer for improved durability and environmental protection.
Savvio 10K.3 SAS Product Manual, Rev. G
7
4.3
Performance
• Programmable multi-segmentable cache buffer
• 600 Mbytes/sec maximum instantaneous data transfers.
• 10k RPM spindle. Average latency = 3.0 msec
• Background processing of queue
• Supports start and stop commands (spindle stops spinning)
• Adaptive seek velocity; improved seek performance
Note. There is no significant performance difference between Self-Encrypting Drive and standard (non-
Self-Encrypting Drive) models.
4.4
Reliability
• Annualized Failure Rate (AFR) of 0.55%
• Mean time between failures (MTBF) of 1,600,000 hours
• Balanced low mass rotary voice coil actuator
• Incorporates industry-standard Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
• 5-year warranty
4.5
Formatted capacities
Standard OEM models are formatted to 512 bytes per block. The block size is selectable at format time and
must be a multiple of 4 bytes. Users having the necessary equipment may modify the data block size before
issuing a format command and obtain different formatted capacities than those listed.
To provide a stable target capacity environment and at the same time provide users with flexibility if they
choose, Seagate recommends product planning in one of two modes:
Seagate designs specify capacity points at certain block sizes that Seagate guarantees current and future
products will meet. We recommend customers use this capacity in their project planning, as it ensures a stable
operating point with backward and forward compatibility from generation to generation. The current guaranteed
operating points for this product are shown below.
Capacity (Blocks)
ST9300603SS
ST9300503SS
ST9300403SS
ST9146803SS
ST9146703SS
ST9146603SS
Sector Size
512
Decimal
Hex
Decimal
Hex
585937500
573653848
557874778
22ECB25C
22314358
21407E5A
286749488
280790192
272662936
11177330h
10BC84B0h
10408198h
520
528
4.6
Programmable drive capacity
Using the Mode Select command, the drive can change its capacity to something less than maximum. See the
Mode Select (6) parameter list table in the SAS Interface Manual, part number 100293071. A value of zero in
the Number of Blocks field indicates that the drive will not change the capacity it is currently formatted to have.
A number other than zero and less than the maximum number of LBAs in the Number of Blocks field changes
the total drive capacity to the value in the Number of Blocks field. A value greater than the maximum number of
LBAs is rounded down to the maximum capacity.
8
Savvio 10K.3 SAS Product Manual, Rev. G
4.7
Factory-installed options
You may order the following items which are incorporated at the manufacturing facility during production or
packaged before shipping. Some of the options available are (not an exhaustive list of possible options):
• Other capacities can be ordered depending on sparing scheme and sector size requested.
• Single-unit shipping pack. The drive is normally shipped in bulk packaging to provide maximum protection
against transit damage. Units shipped individually require additional protection as provided by the single unit
shipping pack. Users planning single unit distribution should specify this option.
• The Safety and Regulatory Agency Specifications, part number 75789512, is usually included with each
standard OEM drive shipped, but extra copies may be ordered.
Savvio 10K.3 SAS Product Manual, Rev. G
9
5.0
Performance characteristics
This section provides detailed information concerning performance-related characteristics and features of Sav-
vio drives.
5.1
Internal drive characteristics
ST9300603SS
ST9300503SS
ST9300403SS
300
ST9146803SS
ST9146703SS
ST9146603SS
146.8
Drive capacity
Gbytes (formatted, rounded off value)
Read/write data heads
Bytes per track
Bytes per surface
Tracks per surface (total)
Tracks per inch
4
2
656,985
74,915
113,829
190,000
1,458,000
252
656,985
74,915
113,829
190,000
1,458,000
252
Bytes (average, rounded off values)
Mbytes (unformatted, rounded off value)
Tracks (user accessible)
TPI (average)
Peak bits per inch
Areal density
BPI
2
Gbit/in
Internal data rate
Disc rotation speed
Avg rotational latency
1578 - 850
10k
3.0
1578 - 850
10k
3.0
Mbits/sec (variable with zone)
rpm
msec
5.2
Seek performance characteristics
100293071) for additional timing details.
5.2.1
Access time
1 2
,
Including controller overhead
(msec)
Not including controller overhead1,2
(msec)
Read
4.2
Write
4.6
Read
4.0
Write
4.4
3 4
,
Average
Typical
Single track
Full stroke
Typical3,4
Typical3,4
0.4
0.7
0.4
0.7
7.68
8.15
7.48
7.95
1.
2.
3.
Execution time measured from receipt of the Command to the Response.
Assumes no errors and no sector has been relocated.
Typical access times are measured under nominal conditions of temperature, voltage, and horizontal orientation as
measured on a representative sample of drives.
4.
Access time = controller overhead + average seek time and applies to all data transfer commands.
Access to data = access time + latency time.
10
Savvio 10K.3 SAS Product Manual, Rev. G
5.2.2
Format command execution time for 512-byte sectors (minutes)
ST9300603SS
ST9300503SS
ST9300403SS
ST9146803SS
ST9146703SS
ST9146603SS
Maximum (with verify)
208
140
104
70
Maximum (without verify)
Note. There is no significant difference in the format time between SED and non-SED models of the
same capacity.
5.2.3
General performance characteristics
Minimum sector interleave
1 to 1
Data buffer to/from disc media (one 512-byte logical block)*
Sustained transfer rate
70 to 133 MBytes/sec
67 to 124 Mbytes/sec
SAS Interface maximum instantaneous transfer rate
600 Mbytes/sec* per port
(dual port = 1200 Mbytes/sec*)
Logical block sizes
512 (default), 520 or 528.
Read/write consecutive sectors on a track
Yes
Flaw reallocation performance impact (for flaws reallocated at format time using the
spare sectors per sparing zone reallocation scheme.)
Negligible
Average rotational latency
3.0 msec
*Assumes no errors and no relocated logical blocks. Rate measured from the start of the first logical block transfer to or
from the host.
5.3
Start/stop time
The drive accepts the commands listed in the SAS Interface Manual less than 3 seconds after DC power has
been applied.
If the drive receives a NOTIFY (ENABLE SPINUP) primitive through either port and has not received a START
STOP UNIT command with the START bit equal to 0, the drive becomes ready for normal operations within 30
seconds (excluding the error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit equal to 0 before receiving a NOTIFY
(ENABLE SPINUP) primitive, the drive waits for a START STOP UNIT command with the START bit equal to 1.
After receiving a START STOP UNIT command with the START bit equal to 1, the drive waits for a NOTIFY
(ENABLE SPINUP) primitive. After receiving a NOTIFY (ENABLE SPINUP) primitive through either port, the
drive becomes ready for normal operations within 30 seconds (excluding the error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit and IMMED bit equal to 1 and does
not receive a NOTIFY (ENABLE SPINUP) primitive within 5 seconds, the drive fails the START STOP UNIT
command.
The START STOP UNIT command may be used to command the drive to stop the spindle. Stop time is 20 sec-
onds (maximum) from removal of DC power. SCSI stop time is 20 seconds. There is no power control switch
on the drive.
Savvio 10K.3 SAS Product Manual, Rev. G
11
5.4
Prefetch/multi-segmented cache control
The drive provides a prefetch (read look-ahead) and multi-segmented cache control algorithms that in many
cases can enhance system performance. Cache refers to the drive buffer storage space when it is used in
cache operations. To select this feature, the host sends the Mode Select command with the proper values in
the applicable bytes in page 08h. Prefetch and cache operations are independent features from the standpoint
that each is enabled and disabled independently using the Mode Select command; however, in actual opera-
tion, the prefetch feature overlaps cache operation somewhat as described in sections 5.5.1 and 5.5.2.
All default cache and prefetch mode parameter values (Mode Page 08h) for standard OEM versions of this
5.5
Cache operation
Note. Refer to the SAS Interface Manual for more detail concerning the cache bits.
Of the 16 Mbytes physical buffer space in the drive, approximately 13,000 kbytes can be used as a cache. The
buffer is divided into logical segments from which data is read and to which data is written.
The drive keeps track of the logical block addresses of the data stored in each segment of the buffer. If the
cache is enabled (see RCD bit in the SAS Interface Manual), data requested by the host with a read command
is retrieved from the buffer, if possible, before any disc access is initiated. If cache operation is not enabled, the
buffer is still used, but only as circular buffer segments during disc medium read operations (disregarding
Prefetch operation for the moment). That is, the drive does not check in the buffer segments for the requested
read data, but goes directly to the medium to retrieve it. The retrieved data merely passes through some buffer
segment on the way to the host. All data transfers to the host are in accordance with buffer-full ratio rules. See
the explanation provided with the information about Mode Page 02h (disconnect/reconnect control) in the SAS
Interface Manual.
The following is a simplified description of the prefetch/cache operation:
Case A—read command is received and all of the requested logical blocks are already in the cache:
1. Drive transfers the requested logical blocks to the initiator.
Case B—A Read command requests data, and at least one requested logical block is not in any segment of
the cache:
1. The drive fetches the requested logical blocks from the disc and transfers them into a segment, and then
from there to the host in accordance with the Mode Select Disconnect/Reconnect parameters, page 02h.
Each cache segment is actually a self-contained circular buffer whose length is an integer number of logical
blocks. The drive dynamically creates and removes segments based on the workload. The wrap-around capa-
bility of the individual segments greatly enhances the cache’s overall performance.
Note. The size of each segment is not reported by Mode Sense command page 08h, bytes 14 and 15.
The value 0XFFFF is always reported regardless of the actual size of the segment. Sending a size
specification using the Mode Select command (bytes 14 and 15) does not set up a new segment
size. If the STRICT bit in Mode page 00h (byte 2, bit 1) is set to one, the drive responds as it does
for any attempt to change an unchangeable parameter.
5.5.1
Caching write data
Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to
be written to the medium is stored while the drive performs the Write command.
12
Savvio 10K.3 SAS Product Manual, Rev. G
If read caching is enabled (RCD=0), then data written to the medium is retained in the cache to be made avail-
able for future read cache hits. The same buffer space and segmentation is used as set up for read functions.
The buffer segmentation scheme is set up or changed independently, having nothing to do with the state of
RCD. When a write command is issued, if RCD=0, the cache is first checked to see if any logical blocks that
are to be written are already stored in the cache from a previous read or write command. If there are, the
respective cache segments are cleared. The new data is cached for subsequent Read commands.
If the number of write data logical blocks exceed the size of the segment being written into, when the end of the
segment is reached, the data is written into the beginning of the same cache segment, overwriting the data that
was written there at the beginning of the operation; however, the drive does not overwrite data that has not yet
been written to the medium.
If write caching is enabled (WCE=1), then the drive may return Good status on a write command after the data
has been transferred into the cache, but before the data has been written to the medium. If an error occurs
while writing the data to the medium, and Good status has already been returned, a deferred error will be gen-
erated.
The Synchronize Cache command may be used to force the drive to write all cached write data to the medium.
Upon completion of a Synchronize Cache command, all data received from previous write commands will have
5.5.2
Prefetch operation
If the Prefetch feature is enabled, data in contiguous logical blocks on the disc immediately beyond that which
was requested by a Read command are retrieved and stored in the buffer for immediate transfer from the buf-
fer to the host on subsequent Read commands that request those logical blocks (this is true even if cache
operation is disabled). Though the prefetch operation uses the buffer as a cache, finding the requested data in
the buffer is a prefetch hit, not a cache operation hit.
To enable Prefetch, use Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0
enables prefetch.
The drive does not use the Max Prefetch field (bytes 8 and 9) or the Prefetch Ceiling field (bytes 10 and 11).
When prefetch (read look-ahead) is enabled (enabled by DRA = 0), the drive enables prefetch of contiguous
blocks from the disc when it senses that a prefetch hit will likely occur. The drive disables prefetch when it
decides that a prefetch hit is not likely to occur.
Savvio 10K.3 SAS Product Manual, Rev. G
13
6.0
Reliability specifications
The following reliability specifications assume correct host and drive operational interface, including all inter-
face timings, power supply voltages, environmental requirements and drive mounting constraints.
Seek error rate:
Less than 10 errors in 108 seeks
1
Read Error Rates
Recovered Data
Unrecovered Data
Miscorrected Data
Less than 1 error in 1012 bits transferred (OEM default settings)
Less than 1 sector in 1016 bits transferred
Less than 1 sector in 1021 bits transferred
Less than 1 error in 1012 bits transferred
1,600,000 hours
Interface error rate:
Mean Time Between Failure (MTBF):
Annualized Failure Rate (AFR):
Preventive maintenance:
0.55%
None required
1.
Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated.
6.1
Error rates
The error rates stated in this manual assume the following:
• The drive is operated in accordance with this manual using DC power as defined in paragraph 7.2, "DC
• Errors caused by host system failures are excluded from error rate computations.
• Assume random data.
• Default OEM error recovery settings are applied. This includes AWRE, ARRE, full read retries, full write
retries and full retry time.
6.1.1
Recoverable Errors
Recoverable errors are those detected and corrected by the drive, and do not require user intervention.
Recoverable Data errors will use correction, although ECC on-the-fly is not considered for purposes of recov-
ered error specifications.
Recovered Data error rate is determined using read bits transferred for recoverable errors occurring during a
read, and using write bits transferred for recoverable errors occurring during a write.
6.1.2
Unrecoverable Errors
An unrecoverable data error is defined as a failure of the drive to recover data from the media. These errors
occur due to head/media or write problems. Unrecoverable data errors are only detected during read opera-
tions, but not caused by the read. If an unrecoverable data error is detected, a MEDIUM ERROR (03h) in the
Sense Key will be reported. Multiple unrecoverable data errors resulting from the same cause are treated as 1
error.
14
Savvio 10K.3 SAS Product Manual, Rev. G
6.1.3
Seek errors
A seek error is defined as a failure of the drive to position the heads to the addressed track. After detecting an
initial seek error, the drive automatically performs an error recovery process. If the error recovery process fails,
a seek positioning error (Error code = 15h or 02h) will be reported with a Hardware error (04h) in the Sense
8
Key. Recoverable seek errors are specified at Less than 10 errors in 10 seeks. Unrecoverable seek errors
(Sense Key = 04h) are classified as drive failures.
6.1.4
Interface errors
An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the
device port connected to the receiver. The error may be detected as a running disparity error, illegal code, loss
of word sync, or CRC error.
6.2
Reliability and service
You can enhance the reliability of Savvio disc drives by ensuring that the drive receives adequate cooling. Sec-
tion 7.0 provides temperature measurements and other information that may be used to enhance the service
6.2.1
Annualized Failure Rate (AFR) and Mean Time Between Failure (MTBF)
The production disc drive shall achieve an AFR of 0.55% (MTBF of 1,600,000 hours) when operated in an
environment that ensures the HDA case temperatures do not exceed the values specified in Section 7.4. Oper-
ation at case temperatures outside the specifications in Section 7.4 may increase the product AFR (decrease
the MTBF). The AFR (MTBF) is a population statistic not relevant to individual units.
The AFR (MTBF) specification is based on the following assumptions for Enterprise Storage System environ-
ments:
• 8,760 power-on hours per year.
• 250 average on/off cycles per year.
• Operations at nominal voltages.
• Systems will provide adequate cooling to ensure the case temperatures specified in Section 7.4 are not
decrease the MTBF.
6.2.2
Preventive maintenance
No routine scheduled preventive maintenance is required.
6.2.3
Hot plugging the drive
When a disc is powered on by switching the power or hot plugged, the drive runs a self test before attempting
to communicate on its’ interfaces. When the self test completes successfully, the drive initiates a Link Reset
starting with OOB. An attached device should respond to the link reset. If the link reset attempt fails, or any
time the drive looses sync, the drive initiated link reset. The drive will initiate link reset once per second but
alternates between port A and B. Therefore each port will attempt a link reset once per 2 seconds assuming
both ports are out of sync.
If the self-test fails, the drive does not respond to link reset on the failing port.
Note. It is the responsibility of the systems integrator to assure that no temperature, energy, voltage haz-
ard, or ESD potential hazard is presented during the hot connect/disconnect operation. Discharge
the static electricity from the drive carrier prior to inserting it into the system.
Savvio 10K.3 SAS Product Manual, Rev. G
15
Caution. The drive motor must come to a complete stop prior to changing the plane of operation. This time is
required to insure data integrity.
6.2.4
S.M.A.R.T.
S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended
to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a
failure to allow you to back up the data before an actual failure occurs.
Note. The drive’s firmware monitors specific attributes for degradation over time but can’t predict instanta-
neous drive failures.
Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating per-
formance of the drive and the thresholds are optimized to minimize “false” and “failed” predictions.
Controlling S.M.A.R.T.
The operating mode of S.M.A.R.T. is controlled by the DEXCPT and PERF bits on the Informational Exceptions
Control mode page (1Ch). Use the DEXCPT bit to enable or disable the S.M.A.R.T. feature. Setting the DEX-
CPT bit disables all S.M.A.R.T. functions. When enabled, S.M.A.R.T. collects on-line data as the drive performs
normal read and write operations. When the PERF bit is set, the drive is considered to be in “On-line Mode
Only” and will not perform off-line functions.
You can measure off-line attributes and force the drive to save the data by using the Rezero Unit command.
Forcing S.M.A.R.T. resets the timer so that the next scheduled interrupt is in two hours.
You can interrogate the drive through the host to determine the time remaining before the next scheduled mea-
surement and data logging process occurs. To accomplish this, issue a Log Sense command to log page 0x3E.
This allows you to control when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the RTZ command
resets the timer.
Performance impact
S.M.A.R.T. attribute data is saved to the disc so that the events that caused a predictive failure can be recre-
ated. The drive measures and saves parameters once every two hours subject to an idle period on the drive
interfaces. The process of measuring off-line attribute data and saving data to the disc is uninterruptable. The
maximum on-line only processing delay is summarized below:
Maximum processing delay
On-line only delay
Fully-enabled delay
DEXCPT = 0, PERF = 1
DEXCPT = 0, PERF = 0
S.M.A.R.T. delay times
319 milliseconds
364 milliseconds
Reporting control
Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page (1Ch). Subject to
the reporting method, the firmware will issue to the host an 01-5Dxx sense code. The error code is preserved
through bus resets and power cycles.
Determining rate
S.M.A.R.T. monitors the rate at which errors occur and signals a predictive failure if the rate of degraded errors
increases to an unacceptable level. To determine rate, error events are logged and compared to the number of
total operations for a given attribute. The interval defines the number of operations over which to measure the
rate. The counter that keeps track of the current number of operations is referred to as the Interval Counter.
16
Savvio 10K.3 SAS Product Manual, Rev. G
S.M.A.R.T. measures error rates. All errors for each monitored attribute are recorded. A counter keeps track of
the number of errors for the current interval. This counter is referred to as the Failure Counter.
Error rate is the number of errors per operation. The algorithm that S.M.A.R.T. uses to record rates of error is to
set thresholds for the number of errors and their interval. If the number of errors exceeds the threshold before
the interval expires, the error rate is considered to be unacceptable. If the number of errors does not exceed
the threshold before the interval expires, the error rate is considered to be acceptable. In either case, the inter-
val and failure counters are reset and the process starts over.
Predictive failures
S.M.A.R.T. signals predictive failures when the drive is performing unacceptably for a period of time. The firm-
ware keeps a running count of the number of times the error rate for each attribute is unacceptable. To accom-
plish this, a counter is incremented each time the error rate is unacceptable and decremented (not to exceed
zero) whenever the error rate is acceptable. If the counter continually increments such that it reaches the pre-
dictive threshold, a predictive failure is signaled. This counter is referred to as the Failure History Counter.
There is a separate Failure History Counter for each attribute.
6.2.5
Thermal monitor
Savvio drives implement a temperature warning system which:
1. Signals the host if the temperature exceeds a value which would threaten the drive.
2. Signals the host if the temperature exceeds a user-specified value.
3. Saves a S.M.A.R.T. data frame on the drive which exceeds the threatening temperature value.
A temperature sensor monitors the drive temperature and issues a warning over the interface when the tem-
perature exceeds a set threshold. The temperature is measured at power-up and then at ten-minute intervals
after power-up.
The thermal monitor system generates a warning code of 01-0B01 when the temperature exceeds the speci-
fied limit in compliance with the SCSI standard. The drive temperature is reported in the FRU code field of
mode sense data. You can use this information to determine if the warning is due to the temperature exceeding
the drive threatening temperature or the user-specified temperature.
This feature is controlled by the Enable Warning (EWasc) bit, and the reporting mechanism is controlled by the
Method of Reporting Informational Exceptions field (MRIE) on the Informational Exceptions Control (IEC)
mode page (1Ch).
The current algorithm implements two temperature trip points. The first trip point is set at 65°C which is the
maximum temperature limit according to the drive specification. The second trip point is user-selectable using
the Log Select command. The reference temperature parameter in the temperature log page (see Table 1) can
be used to set this trip point. The default value for this drive is 65°C, however, you can set it to any value in the
range of 0 to 65°C. If you specify a temperature greater than 65°C in this field, the temperature is rounded
down to 65°C. A sense code is sent to the host to indicate the rounding of the parameter field.
Table 1:
Temperature Log Page (0Dh)
Parameter Code
Description
Primary Temperature
Reference Temperature
0000h
0001h
Savvio 10K.3 SAS Product Manual, Rev. G
17
6.2.6
Drive Self Test (DST)
Drive Self Test (DST) is a technology designed to recognize drive fault conditions that qualify the drive as a
failed unit. DST validates the functionality of the drive at a system level.
There are two test coverage options implemented in DST:
1. Extended test
2. Short test
The most thorough option is the extended test that performs various tests on the drive and scans every logical
block address (LBA) of the drive. The short test is time-restricted and limited in length—it does not scan the
entire media surface, but does some fundamental tests and scans portions of the media.
If DST encounters an error during either of these tests, it reports a fault condition. If the drive fails the test,
remove it from service and return it to Seagate for service.
6.2.6.1
DST failure definition
The drive will present a “diagnostic failed” condition through the self-tests results value of the diagnostic log
page if a functional failure is encountered during DST. The channel and servo parameters are not modified to
test the drive more stringently, and the number of retries are not reduced. All retries and recovery processes
are enabled during the test. If data is recoverable, no failure condition will be reported regardless of the number
of retries required to recover the data.
The following conditions are considered DST failure conditions:
• Seek error after retries are exhausted
• Track-follow error after retries are exhausted
• Read error after retries are exhausted
• Write error after retries are exhausted
Recovered errors will not be reported as diagnostic failures.
6.2.6.2
Implementation
This section provides all of the information necessary to implement the DST function on this drive.
6.2.6.2.1
State of the drive prior to testing
The drive must be in a ready state before issuing the Send Diagnostic command. There are multiple reasons
why a drive may not be ready, some of which are valid conditions, and not errors. For example, a drive may be
in process of doing a format, or another DST. It is the responsibility of the host application to determine the “not
ready” cause.
While not technically part of DST, a Not Ready condition also qualifies the drive to be returned to Seagate as a
failed drive.
A Drive Not Ready condition is reported by the drive under the following conditions:
• Motor will not spin
• Motor will not lock to speed
• Servo will not lock on track
• Drive cannot read configuration tables from the disc
In these conditions, the drive responds to a Test Unit Ready command with an 02/04/00 or 02/04/03 code.
6.2.6.2.2
Invoking DST
To invoke DST, submit the Send Diagnostic command with the appropriate Function Code (001b for the short
test or 010b for the extended test) in bytes 1, bits 5, 6, and 7.
18
Savvio 10K.3 SAS Product Manual, Rev. G
6.2.6.2.3
Short and extended tests
DST has two testing options:
1. short
2. extended
These testing options are described in the following two subsections.
Each test consists of three segments: an electrical test segment, a servo test segment, and a read/verify scan
segment.
Short test (Function Code: 001b)
The purpose of the short test is to provide a time-limited test that tests as much of the drive as possible within
120 seconds. The short test does not scan the entire media surface, but does some fundamental tests and
scans portions of the media. A complete read/verify scan is not performed and only factual failures will report a
fault condition. This option provides a quick confidence test of the drive.
Extended test (Function Code: 010b)
The objective of the extended test option is to empirically test critical drive components. For example, the seek
tests and on-track operations test the positioning mechanism. The read operation tests the read head element
and the media surface. The write element is tested through read/write/read operations. The integrity of the
media is checked through a read/verify scan of the media. Motor functionality is tested by default as a part of
these tests.
The anticipated length of the Extended test is reported through the Control Mode page.
6.2.6.2.4
Log page entries
When the drive begins DST, it creates a new entry in the Self-test Results Log page. The new entry is created
by inserting a new self-test parameter block at the beginning of the self-test results log parameter section of the
log page. Existing data will be moved to make room for the new parameter block. The drive reports 20 param-
eter blocks in the log page. If there are more than 20 parameter blocks, the least recent parameter block will be
deleted. The new parameter block will be initialized as follows:
1. The Function Code field is set to the same value as sent in the DST command
2. The Self-Test Results Value field is set to Fh
3. The drive will store the log page to non-volatile memory
After a self-test is complete or has been aborted, the drive updates the Self-Test Results Value field in its Self-
Test Results Log page in non-volatile memory. The host may use Log Sense to read the results from up to the
last 20 self-tests performed by the drive. The self-test results value is a 4-bit field that reports the results of the
test. If the field is set to zero, the drive passed with no errors detected by the DST. If the field is not set to zero,
the test failed for the reason reported in the field.
The drive will report the failure condition and LBA (if applicable) in the Self-test Results Log parameter. The
Sense key, ASC, ASCQ, and FRU are used to report the failure condition.
6.2.6.2.5
Abort
There are several ways to abort a diagnostic. You can use a SCSI Bus Reset or a Bus Device Reset message
to abort the diagnostic.
You can abort a DST executing in background mode by using the abort code in the DST Function Code field.
This will cause a 01 (self-test aborted by the application client) code to appear in the self-test results values
log. All other abort mechanisms will be reported as a 02 (self-test routine was interrupted by a reset condition).
Savvio 10K.3 SAS Product Manual, Rev. G
19
6.2.7
Product warranty
Beginning on the date of shipment to the customer and continuing for the period specified in your purchase
contract, Seagate warrants that each product (including components and subassemblies) that fails to function
properly under normal use due to defect in materials or workmanship or due to nonconformance to the applica-
ble specifications will be repaired or replaced, at Seagate’s option and at no charge to the customer, if returned
by customer at customer’s expense to Seagate’s designated facility in accordance with Seagate’s warranty
procedure. Seagate will pay for transporting the repair or replacement item to the customer. For more detailed
warranty information, refer to the standard terms and conditions of purchase for Seagate products on your pur-
chase documentation.
The remaining warranty for a particular drive can be determined by calling Seagate Customer Service at
1-800-468-3472. You can also determine remaining warranty using the Seagate web site (www.seagate.com).
The drive serial number is required to determine remaining warranty information.
Shipping
When transporting or shipping a drive, use only a Seagate-approved container. Keep your original box. Sea-
gate approved containers are easily identified by the Seagate Approved Package label. Shipping a drive in a
non-approved container voids the drive warranty.
Seagate repair centers may refuse receipt of components improperly packaged or obviously damaged in tran-
sit. Contact your authorized Seagate distributor to purchase additional boxes. Seagate recommends shipping
by an air-ride carrier experienced in handling computer equipment.
Product repair and return information
Seagate customer service centers are the only facilities authorized to service Seagate drives. Seagate does
not sanction any third-party repair facilities. Any unauthorized repair or tampering with the factory seal voids
the warranty.
20
Savvio 10K.3 SAS Product Manual, Rev. G
7.0
Physical/electrical specifications
This section provides information relating to the physical and electrical characteristics of the drive.
7.1
AC power requirements
None.
7.2
DC power requirements
The voltage and current requirements for a single drive are shown below. Values indicated apply at the drive
connector.
The standard drive models and the SED drive models have identical hardware, however the security and
encryption portion of the drive controller ASIC is enabled and functional in the SED models. This represents a
small additional drain on the 5V supply of about 30mA and a commensurate increase of about 150mW in
power consumption. There is no additional drain on the 12V supply.
Savvio 10K.3 SAS Product Manual, Rev. G
21
Table 2:
300GB standard drive DC power requirements
300GB standard model
300GB standard model
6.0 Gbit mode
3.0 Gbit mode
(Amps)
+5V
Notes
(Amps)
+12V [2]
±5% [2]
0.17
(Amps)
+5V
(Amps)
+12V [2]
±5% [2]
0.16
Voltage
Regulation
[5]
±5%
±5%
Avg idle current DC
Maximum starting current
(peak DC) DC
[1] [7]
0.35
0.38
3σ [3]
0.60
0.80
0.56
1.49
2.02
0.04
0.61
0.83
0.60
1.50
2.02
0.05
(peak AC) AC
3σ [3]
Delayed motor start (max) DC
Peak operating current (random read):
Typical DC
3σ [1] [4]
[1] [6]
3σ [1]
3σ
0.48
0.50
1.12
0.35
0.36
1.18
0.49
0.51
1.18
0.35
0.36
1.18
Maximum DC
Maximum (peak) DC
Peak operating current (random write)
Typical DC
0.53
0.55
1.06
0.28
0.29
1.18
0.55
0.57
1.10
0.27
0.28
1.14
Maximum DC
3σ
Maximum (peak) DC
Peak operating current (sequential read)
Typical DC
3σ
0.87
0.90
1.16
0.16
0.16
0.30
0.90
0.94
1.20
0.15
0.15
0.30
Maximum DC
3σ
Maximum (peak) DC
Peak operating current (sequential write)
Typical DC
3σ
0.83
0.85
1.08
0.16
0.16
0.28
0.84
0.87
1.08
0.15
0.15
0.32
Maximum DC
3σ
Maximum (peak) DC
3σ
22
Savvio 10K.3 SAS Product Manual, Rev. G
Table 3:
146GB standard model DC power requirements
146GB standard model
146GB standard model
6.0 Gbit mode
3.0 Gbit mode
(Amps)
+5V
Notes
(Amps)
+12V [2]
±5% [2]
0.14
(Amps)
+5V
(Amps)
+12V [2]
±5% [2]
0.14
Voltage
Regulation
[5]
±5%
±5%
Avg idle current DC
Maximum starting current
(peak DC) DC
[1] [7]
0.35
0.36
3σ [3]
0.52
0.77
0.56
1.18
2.30
0.04
0.53
0.82
0.57
1.19
1.93
0.06
(peak AC) AC
3σ [3]
Delayed motor start (max) DC
Peak operating current (random read):
Typical DC
3σ [1] [4]
[1] [6]
3σ [1]
3σ
0.45
0.48
1.08
0.36
0.36
1.18
0.48
0.52
1.14
0.33
0.33
1.16
Maximum DC
Maximum (peak) DC
Peak operating current (random write)
Typical DC
0.50
0.52
0.98
0.26
0.27
1.18
0.53
0.56
1.06
0.24
0.25
1.18
Maximum DC
3σ
Maximum (peak) DC
Peak operating current (sequential read)
Typical DC
3σ
0.85
0.88
1.12
0.16
0.16
0.28
0.87
0.92
1.16
0.13
0.14
0.26
Maximum DC
3σ
Maximum (peak) DC
Peak operating current (sequential write)
Typical DC
3σ
0.80
0.83
1.00
0.16
0.16
0.30
0.83
0.87
1.06
0.13
0.14
0.28
Maximum DC
3σ
Maximum (peak) DC
3σ
[1] Measured with average reading DC ammeter. Instantaneous +12V current peaks will exceed these val-
ues. Power supply at nominal voltage. N (number of drives tested) = 6, 35 Degrees C ambient.
[2] For +12 V, a –10% tolerance is allowed during initial spindle start but must return to ±5% before reaching
9,936 RPM. The ±5% must be maintained after the drive signifies that its power-up sequence has been
completed and that the drive is able to accept selection by the host initiator.
[4] This condition occurs after OOB and Speed Negotiation completes but before the drive has received the
Notify Spinup primitive.
[5] See paragraph 7.2.1, "Conducted noise immunity." Specified voltage tolerance includes ripple, noise, and
transient response.
[6] Operating condition is defined as random 8 block reads.
[7] During idle, the drive heads are relocated every 60 seconds to a random location within the band from
three-quarters to maximum track.
Savvio 10K.3 SAS Product Manual, Rev. G
23
General DC power requirement notes.
1. Minimum current loading for each supply voltage is not less than 1.7% of the maximum operating current
shown.
2. The +5V and +12V supplies should employ separate ground returns.
3. Where power is provided to multiple drives from a common supply, careful consideration for individual
drive power requirements should be noted. Where multiple units are powered on simultaneously, the peak
starting current must be available to each device.
4. Parameters, other than spindle start, are measured after a 10-minute warm up.
5. No terminator power.
7.2.1
Conducted noise immunity
Noise is specified as a periodic and random distribution of frequencies covering a band from DC to 10 MHz.
Maximum allowed noise values given below are peak-to-peak measurements and apply at the drive power
connector.
+5v
=
=
250 mV pp from 100 Hz to 20 MHz.
+12v
800 mV pp from 100 Hz to 8 KHz.
450 mV pp from 8 KHz to 20 KHz.
250 mV pp from 20 KHz to 5 MHz.
7.2.2
Power sequencing
The drive does not require power sequencing. The drive protects against inadvertent writing during power-up
and down.
24
Savvio 10K.3 SAS Product Manual, Rev. G
7.3
Power dissipation
300 GB models in 3 Gbit operation
Typical power dissipation under idle conditions in 3Gb operation is 3.79 watts (12.93 BTUs per hour).
To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure
19). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 19. 300GB (at 3 Gbit) DC current and power vs. input/output operations per second
Savvio 10K.3 SAS Product Manual, Rev. G
27
300GB models in 6 Gbit operation
Typical power dissipation under idle conditions in 6Gb operation is 3.82 watts (13.03 BTUs per hour).
To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure
19). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 20. 300GB (at 6 Gbit) DC current and power vs. input/output operations per second
28
Savvio 10K.3 SAS Product Manual, Rev. G
146GB models in 3 Gbit operation
Typical power dissipation under idle conditions in 3Gb operation is 3.43 watts (11.70 BTUs per hour).
To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure
19). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 21. 146GB (at 3 Gbit) DC current and power vs. input/output operations per second
Savvio 10K.3 SAS Product Manual, Rev. G
29
146GB models in 6 Gbit operation
Typical power dissipation under idle conditions in 6Gb operation is 3.48 watts (11.87 BTUs per hour).
To obtain operating power for typical random read operations, refer to the following I/O rate curve (see Figure
19). Locate the typical I/O rate for a drive in your system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 22. 146GB (at 6 Gbit) DC current and power vs. input/output operations per second
7.4
Environmental limits
Temperature and humidity values experienced by the drive must be such that condensation does not occur on
any drive part. Altitude and atmospheric pressure specifications are referenced to a standard day at 58.7°F
(14.8°C). Maximum wet bulb temperature is 82°F (28°C).
7.4.1
Temperature
a. Operating
With cooling designed to maintain the case temperatures, the drive meets all specifications over a 41°F to
131°F (5°C to 55°C) drive ambient temperature range with a maximum temperature gradient of 20°C per
hour. The enclosure for the drive should be designed such that these temperatures not exceeded. Air flow
may be needed to achieve these temperature values (see Section 11.2). Operation at case temperatures
above these values may adversely affect the drives ability to meet specifications.
The MTBF specification for the drive is based on operating in an environment that ensures that the case
temperatures are not exceeded. Occasional excursions to drive ambient temperatures of 131°F (55°C) or
41°F (5°C) may occur without impact to specified MTBF. Air flow may be needed to achieve these tempera-
tures. Continual or sustained operation at case temperatures above these values may degrade MTBF. The
maximum allowable continuous or sustained HDA case temperature for the rated MTBF is 122°F (50°C).
To confirm that the required cooling for the electronics and HDA is provided, place the drive in its final
mechanical configuration, perform random write/read operations. After the temperatures stabilize, measure
the case temperature of the drive.
30
Savvio 10K.3 SAS Product Manual, Rev. G
The maximum allowable HDA case temperature is 60°C. Operation of the drive at the maximum case tem-
perature is intended for short time periods only. Continuous operation at the elevated temperatures will
reduce product reliability.
b. Non-operating
–40° to 158°F (–40° to 70°C) package ambient with a maximum gradient of 86°F (30°C) per hour. This
specification assumes that the drive is packaged in the shipping container designed by Seagate for use with
drive.
HDA Temp.
Check Point
Figure 23. Location of the HDA temperature check point
7.4.2
Relative humidity
The values below assume that no condensation on the drive occurs.
a. Operating
5% to 95% non-condensing relative humidity with a maximum gradient of 20% per hour.
b. Non-operating
5% to 95% non-condensing relative humidity.
7.4.3
Effective altitude (sea level)
a. Operating
–1,000 to +10,000 feet (–304.8 to +3,048 meters)
b. Non-operating
–1,000 to +40,000 feet (–304.8 to +12,210 meters)
7.4.4
Shock and vibration
Shock and vibration limits specified in this document are measured directly on the drive chassis. If the drive is
installed in an enclosure to which the stated shock and/or vibration criteria is applied, resonances may occur
internally to the enclosure resulting in drive movement in excess of the stated limits. If this situation is apparent,
it may be necessary to modify the enclosure to minimize drive movement.
The limits of shock and vibration defined within this document are specified with the drive mounted by any of
Savvio 10K.3 SAS Product Manual, Rev. G
31
7.4.4.1
Shock
a. Operating—normal
The drive, as installed for normal operation, shall operate error free while subjected to intermittent shock not
exceeding:
• 15 Gs at a maximum duration of 11 msec (half sinewave)
• 25 Gs at a maximum duration of 2 msec (half sinewave)
Shock may be applied in the X, Y, or Z axis. Shock is not to be repeated more than once every 2 seconds.
b. Operating—abnormal
Equipment, as installed for normal operation, does not incur physical damage while subjected to intermit-
tent shock not exceeding 40 Gs at a maximum duration of 11 msec (half sinewave). Shock occurring at
abnormal levels may promote degraded operational performance during the abnormal shock period. Speci-
fied operational performance will continue when normal operating shock levels resume. Shock may be
applied in the X, Y, or Z axis. Shock is not to be repeated more than once every 2 seconds.
c. Non-operating
The limits of non-operating shock shall apply to all conditions of handling and transportation. This includes
both isolated drives and integrated drives.
The drive subjected to nonrepetitive shock not exceeding the three values below, shall not exhibit device
damage or performance degradation.
• 80 Gs at a maximum duration of 11 msec (half sinewave)
• 300 Gs at a maximum duration of 2 msec (half sinewave)
• 200 Gs at a maximum duration of 0.5 msec (half sinewave)
Shock may be applied in the X, Y, or Z axis.
d. Packaged
Disc drives shipped as loose load (not palletized) general freight will be packaged to withstand drops from
heights as defined in the table below. For additional details refer to Seagate specifications 30190-001
(under 100 lbs/45 kg) or 30191-001 (over 100 lbs/45 Kg).
Package size
Packaged/product weight
Any
Drop height
<600 cu in (<9,800 cu cm)
600-1800 cu in (9,800-19,700 cu cm)
>1800 cu in (>19,700 cu cm)
>600 cu in (>9,800 cu cm)
60 in (1524 mm)
48 in (1219 mm)
42 in (1067 mm)
36 in (914 mm)
0-20 lb (0 to 9.1 kg)
0-20 lb (0 to 9.1 kg)
20-40 lb (9.1 to 18.1 kg)
Drives packaged in single or multipacks with a gross weight of 20 pounds (8.95 kg) or less by Seagate for
general freight shipment shall withstand a drop test from 48 inches (1,070 mm) against a concrete floor or
equivalent.
32
Savvio 10K.3 SAS Product Manual, Rev. G
Z
X
Y
X
Z
Y
Figure 24. Recommended mounting
7.4.4.2
Vibration
a. Operating—normal
The drive as installed for normal operation, shall comply with the complete specified performance while
subjected to continuous vibration not exceeding
5-500 Hz @ 0.5 G (zero to peak)
Vibration may be applied in the X, Y, or Z axis.
Operating normal translational random flat profile
10 - 500 Hz
0.5 GRMS
b. Operating—abnormal
Equipment as installed for normal operation shall not incur physical damage while subjected to periodic
vibration not exceeding:
15 minutes of duration at major resonant frequency
5-500 Hz @ 0.75 G (X, Y, or Z axis)
Vibration occurring at these levels may degrade operational performance during the abnormal vibration
period. Specified operational performance will continue when normal operating vibration levels are
resumed. This assumes system recovery routines are available.
Operating abnormal translational random flat profile
10 - 500 Hz
1.2 GRMS
Savvio 10K.3 SAS Product Manual, Rev. G
33
c. Non-operating
The limits of non-operating vibration shall apply to all conditions of handling and transportation. This
includes both isolated drives and integrated drives.
The drive shall not incur physical damage or degraded performance as a result of continuous vibration not
exceeding
5-22 Hz @ 1.0 G (zero to peak)
22-500 Hz @ 3 G (zero to peak)
Vibration may be applied in the X, Y, or Z axis.
Non-operating translational random flat profile
10 - 500 Hz
2.4 GRMS
7.4.5
Air cleanliness
The drive is designed to operate in a typical office environment with minimal environmental control.
7.4.6
Corrosive environment
Seagate electronic drive components pass accelerated corrosion testing equivalent to 10 years exposure to
light industrial environments containing sulfurous gases, chlorine and nitric oxide, classes G and H per ASTM
B845. However, this accelerated testing cannot duplicate every potential application environment.
Users should use caution exposing any electronic components to uncontrolled chemical pollutants and corro-
sive chemicals as electronic drive component reliability can be affected by the installation environment. The sil-
ver, copper, nickel and gold films used in Seagate products are especially sensitive to the presence of sulfide,
chloride, and nitrate contaminants. Sulfur is found to be the most damaging. In addition, electronic components
should never be exposed to condensing water on the surface of the printed circuit board assembly (PCBA) or
exposed to an ambient relative humidity greater than 95%. Materials used in cabinet fabrication, such as vulca-
nized rubber, that can outgas corrosive compounds should be minimized or eliminated. The useful life of any
electronic equipment may be extended by replacing materials near circuitry with sulfide-free alternatives.
7.4.7
Acoustics
Sound power during idle mode shall be 3.0 bels typical when measured to ISO 7779 specification.
There will not be any discrete tones more than 10 dB above the masking noise on typical drives when mea-
sured according to Seagate specification 30553-001. There will not be any tones more than 24 dB above the
masking noise on any drive.
7.4.8
Electromagnetic susceptibility
See Section 3.1.1.1.
34
Savvio 10K.3 SAS Product Manual, Rev. G
8.0
About FIPS
The Federal Information Processing Standard (FIPS) Publication 140-2, FIPS PUB 140-2, is a U.S. govern-
ment computer security standard used to accredit cryptographic modules. It is titled “Security Requirements for
Cryptographic Modules”. The initial publication was on May 25, 2001 and was last updated December 3, 2002.
Purpose
The National Institute of Standards and Technology (NIST) issued the FIPS 140 Publication Series to coordi-
nate the requirements and standards for cryptography modules that include both hardware and software com-
ponents.
Federal Information Processing Standard (FIPS) 140-2 Level 2 Certification requires drives to go through gov-
ernment agencies certifications to add requirements for physical tamper-evidence and role-based authentica-
tion.
Level 2 security
Level 2 improves upon the physical security mechanisms of a Level 1 (lowest level of security) cryptographic
module by requiring features that show evidence of tampering, including tamper-evident coatings or seals that
must be broken to attain physical access to the plaintext cryptographic keys and critical security parameters
(CSPs) within the module, or pick-resistant locks on covers or doors to protect against unauthorized physical
access.
Figure 26. Example of FIPS tamper evidence labels. Does not represent actual drive.
36
Savvio 10K.3 SAS Product Manual, Rev. G
9.0
About self-encrypting drives
Self-encrypting drives (SEDs) offer encryption and security services for the protection of stored data, com-
monly known as “protection of data at rest.” These drives are compliant with the Trusted Computing Group
(TCG) Enterprise Storage Specifications as detailed in Section 3.2.
The Trusted Computing Group (TCG) is an organization sponsored and operated by companies in the com-
puter, storage and digital communications industry. Seagate’s SED models comply with the standards pub-
lished by the TCG.
To use the security features in the drive, the host must be capable of constructing and issuing the following two
SCSI commands:
• Security Protocol Out
• Security Protocol In
These commands are used to convey the TCG protocol to and from the drive in their command payloads.
9.1
Data encryption
Encrypting drives use one inline encryption engine for each port, employing AES-128 data encryption in Cipher
Block Chaining (CBC) mode to encrypt all data prior to being written on the media and to decrypt all data as it
is read from the media. The encryption engines are always in operation, cannot be disabled, and do not detract
in any way from the performance of the drive.
The 32-byte Data Encryption Key (DEK) is a random number which is generated by the drive, never leaves the
drive, and is inaccessible to the host system. The DEK is itself encrypted when it is stored on the media and
when it is in volatile temporary storage (DRAM) external to the encryption engine. A unique data encryption
9.2
Controlled access
The drive has two security partitions (SPs) called the "Admin SP" and the "Locking SP." These act as gate-
keepers to the drive security services. Security-related commands will not be accepted unless they also supply
the correct credentials to prove the requester is authorized to perform the command.
9.2.1
Admin SP
The Admin SP allows the drive's owner to enable or disable firmware download operations (see Section 9.4).
Access to the Admin SP is available using the SID (Secure ID) password or the MSID (Makers Secure ID)
password.
Savvio 10K.3 SAS Product Manual, Rev. G
37
9.2.2
Locking SP
The Locking SP controls read/write access to the media and the cryptographic erase feature. Access to the
Locking SP is available using the BandMasterX or EraseMaster passwords. Since the drive owner can define
up to 16 data bands on the drive, each data band has its own password called BandMasterX where X is the
number of the data band (0 through 15).
9.2.3
Default password
When the drive is shipped from the factory, all passwords are set to the value of MSID. This 32-byte random
value is printed on the drive label and it can be read by the host electronically over the I/O. After receipt of the
drive, it is the responsibility of the owner to use the default MSID password as the authority to change all other
passwords to unique owner-specified values.
9.3
Random number generator (RNG)
The drive has a 32-byte hardware RNG that it is uses to derive encryption keys or, if requested to do so, to pro-
vide random numbers to the host for system use, including using these numbers as Authentication Keys (pass-
words) for the drive’s Admin and Locking SPs.
9.4
Drive locking
In addition to changing the passwords, as described in Section 9.2.3, the owner should also set the data
access controls for the individual bands.
The variable "LockOnReset" should be set to "PowerCycle" to ensure that the data bands will be locked if
power is lost. This scenario occurs if the drive is removed from its cabinet. The drive will not honor any data
read or write requests until the bands have been unlocked. This prevents the user data from being accessed
without the appropriate credentials when the drive has been removed from its cabinet and installed in another
system.
When the drive is shipped from the factory, the firmware download port is locked and the drive will reject any
attempt to download new firmware. The drive owner must use the SID credential to unlock the firmware down-
load port before firmware updates will be accepted.
9.5
Data bands
When shipped from the factory, the drive is configured with a single data band called Band 0 (also known as
the Global Data Band) which comprises LBA 0 through LBA max. The host may allocate Band1 by specifying a
start LBA and an LBA range. The real estate for this band is taken from the Global Band. An additional 14 Data
Bands may be defined in a similar way (Band2 through Band15) but before these bands can be allocated LBA
space, they must first be individually enabled using the EraseMaster password.
Data bands cannot overlap but they can be sequential with one band ending at LBA (x) and the next beginning
at LBA (x+1).
Each data band has its own drive-generated encryption key and its own user-supplied password. The host may
change the Encryption Key (see Section 9.6) or the password when required. The bands should be aligned to
4K LBA boundaries.
38
Savvio 10K.3 SAS Product Manual, Rev. G
9.6
Cryptographic erase
A significant feature of SEDs is the ability to perform a cryptographic erase. This involves the host telling the
drive to change the data encryption key for a particular band. Once changed, the data is no longer recoverable
since it was written with one key and will be read using a different key. Since the drive overwrites the old key
with the new one, and keeps no history of key changes, the user data can never be recovered. This is tanta-
mount to an instantaneous data erase and is very useful if the drive is to be scrapped or redispositioned.
9.7
Authenticated firmware download
In addition to providing a locking mechanism to prevent unwanted firmware download attempts, the drive also
only accepts download files which have been cryptographically signed by the appropriate Seagate Design
Center.
Three conditions must be met before the drive will allow the download operation:
1. The download must be an SED file. A standard (base) drive (non-SED) file will be rejected.
2. The download file must be signed and authenticated.
3. As with a non-SED drive, the download file must pass the acceptance criteria for the drive. For example it
must be applicable to the correct drive model, and have compatible revision and customer status.
9.8
Power requirements
The standard drive models and the SED drive models have identical hardware, however the security and
encryption portion of the drive controller ASIC is enabled and functional in the SED models. This represents a
small additional drain on the 5V supply of about 30mA and a commensurate increase of about 150mW in
power consumption. There is no additional drain on the 12V supply. See the tables in Section 7.2 for power
requirements on the standard (non-SED) drive models.
9.9
Supported commands
The SED models support the following two commands in addition to the commands supported by the standard
(non-SED) models as listed in Table 7:
• Security Protocol Out (B5h)
• Security Protocol In (A2h)
Savvio 10K.3 SAS Product Manual, Rev. G
39
10.0
Defect and error management
Seagate continues to use innovative technologies to manage defects and errors. These technologies are
designed to increase data integrity, perform drive self-maintenance, and validate proper drive operation.
SCSI defect and error management involves drive internal defect/error management and SAS system error
considerations (errors in communications between the initiator and the drive). In addition, Seagate provides
the following technologies used to increase data integrity and drive reliability:
The read error rates and specified storage capacities are not dependent on host (initiator) defect management
routines.
10.1
Drive internal defects/errors
During the initial drive format operation at the factory, media defects are identified, tagged as being unusable,
and their locations recorded on the drive primary defects list (referred to as the “P’ list and also as the ETF
defect list). At factory format time, these known defects are also reallocated, that is, reassigned to a new place
on the medium and the location listed in the defects reallocation table. The “P” list is not altered after factory
formatting. Locations of defects found and reallocated during error recovery procedures after drive shipment
are listed in the “G” list (defects growth list). The “P” and “G” lists may be referenced by the initiator using the
Read Defect Data command.
Details of the SCSI commands supported by the drive are described in the SAS Interface Manual. Also, more
information on the drive Error Recovery philosophy is presented in the SAS Interface Manual.
10.2
Drive error recovery procedures
When an error occurs during drive operation, the drive, if programmed to do so, performs error recovery proce-
dures to attempt to recover the data. The error recovery procedures used depend on the options previously set
in the Error Recovery Parameters mode page. Error recovery and defect management may involve using sev-
eral SCSI commands described in the SAS Interface Manual. The drive implements selectable error recovery
time limits required in video applications.
The error recovery scheme supported by the drive provides a way to control the total error recovery time for the
entire command in addition to controlling the recovery level for a single LBA. The total amount of time spent in
error recovery for a command can be limited using the Recovery Time Limit bytes in the Error Recovery mode
page. The total amount of time spent in error recovery for a single LBA can be limited using the Read Retry
Count or Write Retry Count bytes in the Error Recovery mode page.
40
Savvio 10K.3 SAS Product Manual, Rev. G
The drive firmware error recovery algorithms consists of 11 levels for read recoveries and five levels for write.
Each level may consist of multiple steps, where a step is defined as a recovery function involving a single re-
read or re-write attempt. The maximum level used by the drive in LBA recovery is determined by the read and
write retry counts.
Table 4 equates the read and write retry count with the maximum possible recovery time for read and write
recovery of individual LBAs. The times given do not include time taken to perform reallocations. Reallocations
are performed when the ARRE bit (for reads) or AWRE bit (for writes) is one, the RC bit is zero, and the recov-
ery time limit for the command has not yet been met. Time needed to perform reallocation is not counted
against the recovery time limit.
When the RC bit is one, reallocations are disabled even if the ARRE or AWRE bits are one. The drive will still
perform data recovery actions within the limits defined by the Read Retry Count, Write Retry Count, and
Recovery Time Limit parameters. However, the drive does not report any unrecovered errors.
Table 4:
Read and write retry count maximum recovery times
Maximum recovery time per
Maximum recovery time per
LBA (cumulative, msec)
Read retry count LBA (cumulative, msec)
Write retry count
0
51.87
0
23.94
35.91
55.86
67.83
119.79
147.72
1
59.85
1
2
203.49
231.42
297.38
323.62
355.54
439.39
507.39
539.31
567.24
1468.74
2
3
3
4
4
5
5 (default)
6
7
8
9
10
11 (default)
Setting these retry counts to a value below the default setting could result in degradation of the unrecovered
error rate. For example, suppose the read/write recovery page has the RC bit = 0, the read retry count set to 4,
and the recovery time limit set to 450. A 4-block read command can take up to 371 msec recovery time for
each block and a maximum of 450 msec recovery for all four blocks. If either of these limits is reached and a
block has not yet been recovered, the command will end with Check Condition status and an unrecoverable
read error will be reported.
10.3
SAS system errors
Information on the reporting of operational errors or faults across the interface is given in the SAS Interface
Manual. The SSP Response returns information to the host about numerous kinds of errors or faults. The
Receive Diagnostic Results reports the results of diagnostic operations performed by the drive.
Status returned by the drive to the initiator is described in the SAS Interface Manual. Status reporting plays a
role in systems error management and its use in that respect is described in sections where the various com-
mands are discussed.
Savvio 10K.3 SAS Product Manual, Rev. G
41
10.4
Background Media Scan
Background Media Scan (BMS) is a self-initiated media scan. BMS is defined in the T10 document SPC-4
available from the T10 committee. BMS performs sequential reads across the entire pack of the media while
the drive is idle. In RAID arrays, BMS allows hot spare drives to be scanned for defects prior to being put into
service by the host system. On regular duty drives, if the host system makes use of the BMS Log Page, it can
avoid placing data in suspect locations on the media. Unreadable and recovered error sites will be logged or
reallocated per ARRE/AWRE settings.
With BMS, the host system can consume less power and system overhead by only checking BMS status and
results rather than tying up the bus and consuming power in the process of host-initiated media scanning activ-
ity.
Since the background scan functions are only done during idle periods, BMS causes a negligible impact to sys-
tem performance. The first BMS scan for a newly manufactured drive is performed as quickly as possible to
verify the media and protect data by setting the “Start time after idle” to 5ms, all subsequent scans begin after
500ms of idle time. Other features that normally use idle time to function will function normally because BMS
functions for bursts of 800ms and then suspends activity for 100ms to allow other background functions to
operate.
BMS interrupts immediately to service host commands from the interface bus while performing reads. BMS will
complete any BMS-initiated error recovery prior to returning to service host-initiated commands. Overhead
associated with a return to host-servicing activity from BMS only impacts the first command that interrupted
BMS, this results in a typical delay of about 1 ms.
10.5
Media Pre-Scan
Media Pre-Scan is a feature that allows the drive to repair media errors that would otherwise have been found
by the host system during critical data accesses early in the drive’s life. The default setting for Media Pre-Scan
is enabled on standard products. Media Pre-Scan checks each write command to determine if the destination
LBAs have been scanned by BMS. If the LBAs have been verified, the drive proceeds with the normal write
command. If the LBAs have not been verified by BMS, Pre-Scan will convert the write to a write verify to certify
that the data was properly written to the disc.
Note. During Pre-Scan write verify commands, write performance may decrease by 50% until Pre-Scan
completes. Write performance testing should be performed after Pre-Scan is complete. This may
be checked by reading the BMS status.
To expedite the scan of the full pack and subsequently exit from the Pre-Scan period, BMS will begin scanning
immediately when the drive goes to idle during the Pre-Scan period. In the event that the drive is in a high
transaction traffic environment and is unable to complete a BMS scan within 24 power on hours BMS will dis-
able Pre-Scan to restore full performance to the system.
10.6
Deferred Auto-Reallocation
Deferred Auto-Reallocation (DAR) simplifies reallocation algorithms at the system level by allowing the drive to
reallocate unreadable locations on a subsequent write command. Sites are marked for DAR during read oper-
ations performed by the drive. When a write command is received for an LBA marked for DAR, the auto-reallo-
cation process is invoked and attempts to rewrite the data to the original location. If a verification of this rewrite
fails, the sector is re-mapped to a spare location.
This is in contrast to the system having to use the Reassign Command to reassign a location that was unread-
able and then generate a write command to rewrite the data. DAR is most effective when AWRE and ARRE
are enabled—this is the default setting from the Seagate factory. With AWRE and ARRE disabled DAR is
unable to reallocate the failing location and will report an error sense code indicating that a write command is
being attempted to a previously failing location.
42
Savvio 10K.3 SAS Product Manual, Rev. G
10.7
Idle Read After Write
Idle Read After Write (IRAW) utilizes idle time to verify the integrity of recently written data. During idle periods,
no active system requests, the drive reads recently written data from the media and compares it to valid write
command data resident in the drives data buffer. Any sectors that fail the comparison result in the invocation of
a rewrite and auto-reallocation process. The process attempts to rewrite the data to the original location. If a
verification of this rewrite fails, the sector is re-mapped to a spare location.
Savvio 10K.3 SAS Product Manual, Rev. G
43
11.0
Installation
Savvio disc drive installation is a plug-and-play process. There are no jumpers, switches, or terminators on the
drive.
SAS drives are designed to be used in a host system that provides a SAS-compatible backplane with bays
designed to accommodate the drive. In such systems, the host system typically provides a carrier or tray into
which you need to mount the drive. Mount the drive to the carrier or tray provided by the host system using four
M3 x 0.5 metric screws. When tightening the screws, use a maximum torque of 4.5 in-lb +/- 0.45 in-lb. Do not
over-tighten or force the screws. You can mount the drive in any orientation.
Note. SAS drives are designed to be attached to the host system without I/O or power cables. If you
intend the use the drive in a non-backplane host system, connecting the drive using high-quality
cables is acceptable as long as the I/O cable length does not exceed 4 meters (13.1 feet).
Slide the carrier or tray into the appropriate bay in your host system using the instructions provided by the host
system. This connects the drive directly to your system’s SAS connector. The SAS connector is normally
Power is supplied through the SAS connector.
The drive is shipped from the factory low-level formatted in 512-byte logical blocks. You need to reformat the
drive only if you want to select a different logical block size.
Figure 27. Physical interface
11.1
Drive orientation
The drive may be mounted in any orientation. All drive performance characterizations, however, have been
done with the drive in horizontal (discs level) and vertical (drive on its side) orientations, which are the two pre-
ferred mounting orientations.
44
Savvio 10K.3 SAS Product Manual, Rev. G
11.2
Cooling
Cabinet cooling must be designed by the customer so that the ambient temperature immediately surrounding
The rack, cabinet, or drawer environment for the drive must provide heat removal from the electronics and
head and disc assembly (HDA). You should confirm that adequate heat removal is provided using the temper-
ature measurement guidelines described in Section 7.4.1.
Forced air flow may be required to keep temperatures at or below the temperatures specified in Section 7.4.1
in which case the drive should be oriented, or air flow directed, so that the least amount of air flow resistance is
created while providing air flow to the electronics and HDA. Also, the shortest possible path between the air
inlet and exit should be chosen to minimize the travel length of air heated by the drive and other heat sources
within the rack, cabinet, or drawer environment.
If forced air is determined to be necessary, possible air-flow patterns are shown in Figure 28. The air-flow pat-
terns are created by one or more fans, either forcing or drawing air as shown in the illustrations. Conduction,
convection, or other forced air-flow patterns are acceptable as long as the temperature measurement guide-
Above unit
Under unit
Note. Air flows in the direction shown (back to front)
or in reverse direction (front to back)
Above unit
Under unit
Note. Air flows in the direction shown or
in reverse direction (side to side)
Figure 28. Air flow
Savvio 10K.3 SAS Product Manual, Rev. G
45
11.3
Drive mounting
Mount the drive using the bottom or side mounting holes. If you mount the drive using the bottom holes, ensure
that you do not physically distort the drive by attempting to mount it on a stiff, non-flat surface.
The allowable mounting surface stiffness is 80 lb/in (14.0 N/mm). The following equation and paragraph define
the allowable mounting surface stiffness:
K x X = F < 15lb = 67N
where K is the mounting surface stiffness (units in lb/in or N/mm) and X is the out-of-plane surface distortion
(units in inches or millimeters). The out-of-plane distortion (X) is determined by defining a plane with three of
the four mounting points fixed and evaluating the out-of-plane deflection of the fourth mounting point when a
known force (F) is applied to the fourth point.
11.4
Grounding
Signal ground (PCBA) and HDA ground are connected together in the drive and cannot be separated by the
user. The equipment in which the drive is mounted is connected directly to the HDA and PCBA with no electri-
cally isolating shock mounts. If it is desired for the system chassis to not be connected to the HDA/PCBA
ground, the systems integrator or user must provide a nonconductive (electrically isolating) method of mount-
ing the drive in the host equipment.
Increased radiated emissions may result if you do not provide the maximum surface area ground connection
between system ground and drive ground. This is the system designer’s and integrator’s responsibility.
46
Savvio 10K.3 SAS Product Manual, Rev. G
12.0
Interface requirements
This section partially describes the interface requirements as implemented on Savvio drives. Additional infor-
mation is provided in the SAS Interface Manual (part number 100293071).
12.1
SAS features
This section lists the SAS-specific features supported by Savvio drives.
12.1.1
task management functions
Table 5:
SAS task management functions supported
Task name
Abort Task
Supported
Yes
Clear ACA
Yes
Clear task set
Abort task set
Yes
Yes
Logical Unit Reset
Query Task
Yes
Yes
12.1.2
task management responses
Table 6:
Task management response codes
Function name
Function complete
Invalid frame
Response code
00
02
04
05
08
09
Function not supported
Function failed
Function succeeded
Invalid logical unit
Savvio 10K.3 SAS Product Manual, Rev. G
47
12.2
Dual port support
Savvio SAS drives have two independent ports. These ports may be connected in the same or different SCSI
domains. Each drive port has a unique SAS address.
The two ports have the capability of independent port clocking (e.g. both ports can run at 6Gbit/sec or the first
port can run at 6Gbit/sec while the second port runs at 3Gbit/sec.) The supported link rates are 1.5, 3.0, or 6.0
Gbits/sec.
Subject to buffer availability, the Savvio drives support:
• Concurrent port transfers—The drive supports receiving COMMAND, TASK management transfers on both
ports at the same time.
• Full duplex—The drive supports sending XFER_RDY, DATA and RESPONSE transfers while receiving
frames on both ports.
48
Savvio 10K.3 SAS Product Manual, Rev. G
12.3
SCSI commands supported
Table 7 lists the SCSI commands supported by Savvio drives.
Table 7: Supported commands
Command name
Command code
Supported
Change Definition
40h
39h
18h
3Ah
04h
N
Compare
N
N
N
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
N
Y
Y
N
N
N
Y
Y
Y
N
Y
Y
N
Copy
Copy and Verify
Format Unit [1]
DPRY bit supported
DCRT bit supported
STPF bit supported
IP bit supported
DSP bit supported
IMMED bit supported
VS (vendor specific)
Inquiry
12h
Date Code page (C1h)
Device Behavior page (C3h)
Firmware Numbers page (C0h)
Implemented Operating Def page (81h)
Jumper Settings page (C2h)
Supported Vital Product Data page (00h)
Unit Serial Number page (80h)
Lock-unlock cache
Log Select
36h
4Ch
PCR bit
DU bit
DS bit
TSD bit
ETC bit
TMC bit
LP bit
Protocol-specific Log Page for SAS (18h)
Log Sense
4Dh
Application Client Log page (0Fh)
Buffer Over-run/Under-run page (01h)
Cache Statistics page (37h)
Factory Log page (3Eh)
Information Exceptions Log page (2Fh)
Savvio 10K.3 SAS Product Manual, Rev. G
49
Table 7:
Supported commands
Command name
Command code
Supported
Last n Deferred Errors or Asynchronous Events page (0Bh)
Last n Error Events page (07h)
Non-medium Error page (06h)
Pages Supported list (00h)
Read Error Counter page (03h)
Read Reverse Error Counter page (04h)
Self-test Results page (10h)
Start-stop Cycle Counter page (0Eh)
Temperature page (0Dh)
N
N
Y
Y
Y
N
Y
N
Y
Verify Error Counter page (05h)
Write error counter page (02h)
Mode Select (same pages as Mode Sense 1Ah)
Mode Select (10) (same pages as Mode Sense 1Ah)
Mode Sense
Y
Y
15h
55h
1Ah
Y [2]
Y
Y [2]
Y
Caching Parameters page (08h)
Control Mode page (0Ah)
Y
Disconnect/Reconnect (02h)
Error Recovery page (01h)
Format page (03h)
Y
Y
Y
Information Exceptions Control page (1Ch)
Background Scan mode subpage (01h)
Notch and Partition Page (0Ch)
Protocol-Specific Port page (19h)
Power Condition page (1Ah)
Rigid Disc Drive Geometry page (04h)
Unit Attention page (00h)
Y
Y
N
Y
Y
Y
Y
Verify Error Recovery page (07h)
Xor Control page (10h)
Y
N
Y
Mode Sense (10) (same pages as Mode Sense 1Ah)
Persistent Reserve In
5Ah
5Eh
5Fh
34h
08h
28h
Y
Persistent Reserve Out
Y
Prefetch
N
Y
Read (6)
Read (10)
Y
DPO bit supported
Y
FUA bit supported
Y
Read (12)
A8h
N
N
N
Read (16)
88h
Read (32)
7Fh/0009h
50
Savvio 10K.3 SAS Product Manual, Rev. G
Table 7:
Supported commands
Command name
Command code
3Ch
Supported
Read Buffer (modes 0, 2, 3, Ah and Bh supported)
Read Capacity (10)
Read Capacity (16)
Read Defect Data (10)
Read Defect Data (12)
Read Long
Y (non-SED drives only)
25h
Y
9Eh/10h
37h
N
Y
B7h
Y
3Eh
Y (non-SED drives only)
Read Long (16)
9Eh/11h
07h
N
Reassign Blocks
Y
Receive Diagnostic Results
Supported Diagnostics pages (00h)
Translate page (40h)
Release
1Ch
Y
Y
Y
17h
57h
A0h
03h
Y
Release (10)
Y
Report LUNs
Y
Request Sense
Y
Actual Retry Count bytes
Extended Sense
Y
Y
Field Pointer bytes
Reserve
Y
16h
56h
Y
3rd Party Reserve
Extent Reservation
Reserve (10)
Y
N
Y
3rd Party Reserve
Extent Reservation
Rezero Unit
Y
N
01h
31h
30h
32h
A2h
B5h
0Bh
2Bh
1Dh
Y
Search Data Equal
Search Data High
Search Data Low
N
N
N
Security Protocol In
Security Protocol Out
Seek (6)
Y (SED models only)
Y (SED models only)
Y
Y
Y
Y
Y
N
Y
Y
N
Seek (10)
Send Diagnostics
Supported Diagnostics pages (00h)
Translate page (40h)
Set Limits
33h
1Bh
35h
91h
Start Unit/Stop Unit (spindle ceases rotating)
Synchronize Cache
Synchronize Cache (16)
Savvio 10K.3 SAS Product Manual, Rev. G
51
Table 7:
Supported commands
Command name
Command code
Supported
Test Unit Ready
00h
2Fh
Y
Verify (10)
Y
BYTCHK bit
Y
Verify (12)
AFh
N
Verify (16)
AFh
N
Verify (32)
7Fh/000Ah
0Ah
N
Write (6)
Y
Write (10)
2Ah
Y
DPO bit
Y
FUA bit
Y
Write (12)
AAh
N
Write (16)
8Ah
N
Write (32)
7Fh/000Bh
2Eh
N
Write and Verify (10)
Y
DPO bit
Y
Write and Verify (12)
AEh
N
Write and Verify (16)
8Eh
N
Write and Verify (32)
7Fh/000Ch
3Bh
N
Write Buffer (modes 0, 2, supported)
Y (non-SED drives only)
Write Buffer
3Bh
Firmware Download option (modes 5, 7, Ah and Bh) [3]
Y (non-SED drives only)
Firmware Download option (modes 4, 5, 7)
Y (SED drives only)
Write Long (10)
Write Long (16)
Write Same (10)
PBdata
3Fh
Y
N
Y
N
N
N
N
N
N
N
9Fh/11h
41h
LBdata
Write Same (16)
Write Same (32)
XDRead
93h
7Fh/000Dh
52h
XDWrite
50h
XPWrite
51h
[1] Savvio drives can format to 512, 520, or 528 bytes per logical block.
[2] Warning. Power loss during flash programming can result in firmware corruption. This usually makes the
drive inoperable.
[3] Reference Mode Sense command 1Ah for mode pages supported.
[4] Y = Yes. Command is supported.
N = No. Command is not supported.
A = Support is available on special request.
52
Savvio 10K.3 SAS Product Manual, Rev. G
12.3.1
Inquiry data
Table 8 lists the Inquiry command data that the drive should return to the initiator per the format given in the
SAS Interface Manual.
Table 8:
Savvio inquiry data
Data (hex)
Bytes
0-15
00
[53
R#
00
00
00
00
00
54
R#
00
00
00
43
xx** 12
8B
30
S#
00
00
00
79
53
74
00
30
S#
00
00
00
72
65
73
PP
36
S#
00
00
00
69
61
20
0A
30
S#
00
00
00
67
67
72
53
33
S#
00
00
00
68
61
65
45
53
S#
00
00
00
74
74
73
41
53]
S#
00
00
00
20
65
65
47
20
S#
00
00
00
28
20
72
41
20
00
00
00
00
63
41
76
54
20
00
00
00
00
29
6C
65
45
20
00
00
00
00
20
6C
64
20
20
00
00
00
00
Vendor ID
Product ID
16-31
32-47
48-63
64-79
80-95
96-111
112-127
128-143
39
R#
00
00
00
6F
33
R#
00
00
00
70
20
68
32* *Copyright
30* 30* 36*
72 69 67
20
20
notice
*
Copyright year (changes with actual year).
SCSI Revision support. See the appropriate SPC release documentation for definitions.
**
PP 10 = Inquiry data for an Inquiry command received on Port A.
30 = Inquiry data for an Inquiry command received on Port B.
R# Four ASCII digits representing the last four digits of the product firmware release number.
S# Eight ASCII digits representing the eight digits of the product serial number.
[ ]
Bytes 16 through 26 reflect model of drive. The table above shows the hex values for Model ST9300603SS.
Refer to the values below for the values of bytes 16 through 26 of you particular model:
ST9300603SS
ST9300503SS
ST9300403SS
ST9146803SS
ST9146703SS
ST9146603SS
53 54 39 33 30 30 36 30 33 53 53
53 54 39 33 30 30 35 30 33 53 53
53 54 39 33 30 30 34 30 33 53 53
53 54 39 31 34 36 38 30 33 53 53
53 54 39 31 34 36 37 30 33 53 53
53 54 39 31 34 36 36 30 33 53 53
12.3.2
Mode Sense data
The Mode Sense command provides a way for the drive to report its operating parameters to the initiator. The
drive maintains four sets of mode parameters:
1. Default values
Default values are hard-coded in the drive firmware stored in flash E-PROM (nonvolatile memory) on the
drive’s PCB. These default values can be changed only by downloading a complete set of new firmware
into the flash E-PROM. An initiator can request and receive from the drive a list of default values and use
those in a Mode Select command to set up new current and saved values, where the values are change-
able.
2. Saved values
Saved values are stored on the drive’s media using a Mode Select command. Only parameter values that
are allowed to be changed can be changed by this method. Parameters in the saved values list that are not
changeable by the Mode Select command get their values from default values storage.
When power is applied to the drive, it takes saved values from the media and stores them as current val-
ues in volatile memory. It is not possible to change the current values (or the saved values) with a Mode
Savvio 10K.3 SAS Product Manual, Rev. G
53
Select command before the drive achieves operating speed and is “ready.” An attempt to do so results in a
“Check Condition” status.
On drives requiring unique saved values, the required unique saved values are stored into the saved val-
ues storage location on the media prior to shipping the drive. Some drives may have unique firmware with
unique default values also.
On standard OEM drives, the saved values are taken from the default values list and stored into the saved
values storage location on the media prior to shipping.
3. Current values
Current values are volatile values being used by the drive to control its operation. A Mode Select command
can be used to change the values identified as changeable values. Originally, current values are installed
from saved or default values after a power on reset, hard reset, or Bus Device Reset message.
4. Changeable values
Changeable values form a bit mask, stored in nonvolatile memory, that dictates which of the current values
and saved values can be changed by a Mode Select command. A one (1) indicates the value can be
changed. A zero (0) indicates the value is not changeable. For example, in Table 9, refer to Mode page 81,
in the row entitled “CHG.” These are hex numbers representing the changeable values for Mode page 81.
Note in columns 5 and 6 (bytes 04 and 05), there is 00h which indicates that in bytes 04 and 05 none of the
bits are changeable. Note also that bytes 06, 07, 09, 10, and 11 are not changeable, because those fields
are all zeros. In byte 02, hex value FF equates to the binary pattern 11111111. If there is a zero in any bit
position in the field, it means that bit is not changeable. Since all of the bits in byte 02 are ones, all of these
bits are changeable.
The changeable values list can only be changed by downloading new firmware into the flash E-PROM.
Note. Because there are often several different versions of drive control firmware in the total population of
drives in the field, the Mode Sense values given in the following tables may not exactly match those
of some drives.
The following tables list the values of the data bytes returned by the drive in response to the Mode Sense com-
mand pages for SCSI implementation (see the SAS Interface Manual).
DEF = Default value. Standard OEM drives are shipped configured this way.
CHG = Changeable bits; indicates if default value is changeable.
54
Savvio 10K.3 SAS Product Manual, Rev. G
Table 9:
Mode Sense data for 300GB drives
MODE DATA HEADER:
01 6e 00 10 00 00 00 08
BLOCK DESCRIPTOR:
22 ec b2 5c 00 00 02 00
MODE PAGES:
DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff
CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff
DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00
CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00
DEF 83 16 bb d0 00 00 00 00 03 80 04 c4 02 00 00 01 00 90 00 26 40 00 00 00
CHG 83 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 84 16 01 bd 6d 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 31 00 00
CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff
CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff
DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00
CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00
DEF 8a 0a 02 00 00 00 00 00 00 00 1c 20
CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00
DEF 18 06 06 00 00 00 00 00
CHG 18 06 00 00 00 00 00 00
DEF 99 06 06 00 07 d0 00 00
CHG 99 06 10 00 ff ff ff ff
DEF 9a 0a 00 02 00 00 00 05 00 00 00 04
CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00
DEF 9c 0a 10 00 00 00 00 00 00 00 00 01
CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff
DEF 80 06 00 80 0f 00 00 00
CHG 80 06 b7 c0 8f 00 00 00
Savvio 10K.3 SAS Product Manual, Rev. G
55
Table 10:
Mode Sense values for 146GB drives
MODE DATA HEADER:
01 6e 00 10 00 00 00 08
BLOCK DESCRIPTOR:
11 17 73 30 00 00 02 00
MODE PAGES:
DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff
CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff
DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00
CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00
DEF 83 16 bb d0 00 00 00 00 03 80 04 c4 02 00 00 01 00 90 00 26 40 00 00 00
CHG 83 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 84 16 01 bd 6d 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 31 00 00
CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff
CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff
DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00
CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00
DEF 8a 0a 02 00 00 00 00 00 00 00 0e 10
CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00
DEF 18 06 06 00 00 00 00 00
CHG 18 06 00 00 00 00 00 00
DEF 99 06 06 00 07 d0 00 00
CHG 99 06 10 00 ff ff ff ff
DEF 9a 0a 00 02 00 00 00 05 00 00 00 04
CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00
DEF 9c 0a 10 00 00 00 00 00 00 00 00 01
CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff
DEF 80 06 00 80 0f 00 00 00
CHG 80 06 b7 c0 8f 00 00 00
56
Savvio 10K.3 SAS Product Manual, Rev. G
12.4
Miscellaneous operating features and conditions
Table 11 lists various features and conditions. A “Y” in the support column indicates the feature or condition is
supported. An “N” in the support column indicates the feature or condition is not supported.
Table 11:
Miscellaneous features
Supported
Feature or condition
Automatic contingent allegiance
Asynchronous event notification
N
N
N
Y
N
Y
Y
Y
Y
N
Y
Synchronized (locked) spindle operation
Segmented caching
Zero latency read
Queue tagging (up to 64 queue tags supported)
Deferred error handling
Parameter rounding (controlled by Round bit in Mode Select page 0)
Reporting actual retry count in Extended Sense bytes 15, 16, and 17
Adaptive caching
SMP = 1 in Mode Select command needed to save RPL and rotational offset bytes
Table 12:
Miscellaneous status
Supported
Status
Good
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Check condition
Condition met/good
Busy
Intermediate/good
Intermediate/condition met/good
Reservation conflict
Task set full
ACA active
ACA active, faulted initiator
Savvio 10K.3 SAS Product Manual, Rev. G
57
12.4.1
SAS physical interface
Figure 29 shows the location of the SAS device connector J1. Figures 30 and 31 provide the dimensions of the
SAS connector.
Details of the physical, electrical, and logical characteristics are provided within this section. The operational
aspects of Seagate’s SAS drives are provided in the SAS Interface Manual.
Figure 29. Physical interface
58
Savvio 10K.3 SAS Product Manual, Rev. G
0.80 (6X)
5.92
7.62
4.65
0.52 0.08 x 45
2.00 (3X)
0.45 0.03 (7X)
0.10 M E
5.08
42.73 REF.
41.13 0.15
0.20B
0.30 0.05 (2X)
C
A
B
1.10
4.00 0.08
0.15D
C OF DATUM D
L
R0.30 0.08 (4X)
A
0.30 0.05 (4X)
B
C
SEE Detail1
B
33.43 0.05
15.875
15.875
1.27 (14X)
1.27 (6X)
0.84 0.05 (22X)
5.08
0.15B
4.90 0.08
0.35MIN
P15
S1
P1
S7
C OF DATUM B
L
Figure 30. SAS device plug dimensions
Savvio 10K.3 SAS Product Manual, Rev. G
59
Detail A
6.10
S14
S8
0.30 0.05 x 45 (5X)
2.25 0.05
0.40 0.05 X 45 (3X)
4.85 0.05
0.10B
CORING ALLOWED
IN THIS AREA.
E
4.40 0.15
R0.30 0.08
45
C
SEE Detail 2
1.95 0.08
A
0.35 0.05
SECTION C - C
3.90 0.15
SECTION A - A
CONTACT SURFACE FLUSH
TO DATUM A 0.03
0.08 0.05
65
1.90 0.08
1.23 0.05
0.08 0.05
30
Detail 2
2.40 0.08
0.10 A
SECTION B - B
D
Figure 31. SAS device plug dimensions (detail)
60
Savvio 10K.3 SAS Product Manual, Rev. G
12.4.2
Physical characteristics
This section defines physical interface connector.
12.4.3
Connector requirements
Contact your preferred connector manufacturer for mating part information. Part numbers for SAS connectors
will be provided in a future revision of this publication when production parts are available from major connec-
tor manufacturers.
The SAS device connector is illustrated in Figures 30 and 31.
12.4.4
Electrical description
SAS drives use the device connector for:
• DC power
• SAS interface
• Activity LED
This connector is designed to either plug directly into a backpanel or accept cables.
12.4.5
Pin descriptions
This section provides a pin-out of the SAS device and a description of the functions provided by the pins.
Table 13:
SAS pin descriptions
Pin
S1
Signal name Signal type
Pin
P1*
P2*
P3
Signal name
NC (reserved 3.3Volts)
NC (reserved 3.3Volts)
NC (reserved 3.3Volts)
Ground
Signal type
Port A Ground
+Port A_in
S2*
S3*
S4
Diff. input pair
Diff output pair
-Port A_in
Port A Ground
-Port A_out
+Port A_out
Port A Ground
Port B Ground
+Port B_in
P4
S5*
S6*
S7
P5
Ground
P6
Ground
P7
5 Volts charge
5 Volts
S8
P8*
P9*
P10
P11*
P12
P13
P14*
P15*
S9*
S10*
S11
S12*
S13*
S14
Diff. input pair
Diff output pair
5 Volts
-Port B_in
Ground
Port A Ground
-Port B_out
+Port B_out
Port B Ground
Ready LED
Ground
Open collector out
12 Volts charge
12 Volts
12 Volts
* - Short pin to support hot plugging
NC - No connection in the drive.
Savvio 10K.3 SAS Product Manual, Rev. G
61
12.4.6
SAS transmitters and receivers
A typical SAS differential copper transmitter and receiver pair is shown in Figure 32. The receiver is AC cou-
pling to eliminate ground shift noise.
.01
TX
TY
RX
Differential
Transfer Medium
Transmitter
100
Receiver
100
RY
.01
Figure 32. SAS transmitters and receivers
12.4.7 Power
The drive receives power (+5 volts and +12 volts) through the SAS device connector.
Three +12 volt pins provide power to the drive, 2 short and 1 long. The current return for the +12 volt power
supply is through the common ground pins. The supply current and return current must be distributed as
evenly as possible among the pins.
Three +5 volt pins provide power to the drive, 2 short and 1 long. The current return for the +5 volt power sup-
ply is through the common ground pins. The supply current and return current must be distributed as evenly as
possible among the pins.
Current to the drive through the long power pins may be limited by the system to reduce inrush current to the
drive during hot plugging.
12.5
Signal characteristics
This section describes the electrical signal characteristics of the drive’s input and output signals. See Table 13
for signal type and signal name information.
12.5.1
Ready LED Out
Table 14:
Ready LED Out conditions
Normal command activity
LED status
Ready LED Meaning bit mode page 19h
Spun down and no activity
0
1
Off
On
On
Off
Off
On
Off
On
Spun down and activity (command executing)
Spun up and no activity
Spun up and activity (command executing)
Spinning up or down
Blinks steadily
(50% on and 50% off, 0.5 seconds on and off for 0.5 seconds)
Format in progress, each cylinder change
Toggles on/off
62
Savvio 10K.3 SAS Product Manual, Rev. G
The Ready LED Out signal is designed to pull down the cathode of an LED. The anode is attached to the
proper +3.3 volt supply through an appropriate current limiting resistor. The LED and the current limiting resis-
tor are external to the drive. See Table 15 for the output characteristics of the LED drive signals.
Table 15:
LED drive signal
State
Test condition
0 V ≤VOH ≤3.6 V
= 15 mA
Output voltage
LED off, high
LED on, low
-100 µA < I < 100 µA
OH
I
0 ≤VOL ≤0.225 V
OL
12.5.2
Differential signals
The drive SAS differential signals comply with the intra-enclosure (internal connector) requirements of the SAS
standard.
Table 16 defines the general interface characteristics
Table 16:
General interface characteristics
Characteristic
Units
Mbaud
ps
1.5 Gbps
1,500
666.6
100
3.0 Gbps
3,000
333.3
100
6.0 Gbps
6,000
166.6
100
Bit rate (nominal)
Unit interval (UI)(nominal)
Impedance (nominal, differential )
Transmitter transients, maximum
Receiver transients, maximum
ohm
V
1.2
1.2
1.2
V
1.2
1.2
1.2
12.6
SAS-2 Specification compliance
Seagate SAS-2 drives are entirely compatible with the latest SAS-2 Specification (T10/1760-D) Revision 16.
The most important characteristic of the SAS-2 drive at 6 Gbps is that the receiver is capable of adapting the
equalizer to optimize the receive margins. The SAS-2 drive has two types of equalizers:
1. A Decision Feedback Equalizer (DFE) which utilizes the standard SAS-2 training pattern transmitted dur-
ing the SNW-3 training gap. The DFE circuit can derive an optimal equalization characteristic to compen-
sate for many of the receive losses in the system.
2. A Feed Forward Equalizer (FFE) optimized to provide balanced receive margins over a range of channels
bounded by the best and worst case channels as defined by the relevant ANSI standard.
12.7
Additional information
Please contact your Seagate representative for SAS electrical details, if required.
For more information about the Phy, Link, Transport, and Applications layers of the SAS interface, refer to the
Seagate SAS Interface Manual, part number 100293071.
For more information about the SCSI commands used by Seagate SAS drives, refer to the Seagate SCSI
Commands Reference Manual, part number 100293068.
Savvio 10K.3 SAS Product Manual, Rev. G
63
64
Savvio 10K.3 SAS Product Manual, Rev. G
C
Index
capacity
Numerics
12 volt
pins 62
unformatted 10
CBC 37
A
condensation 31
connector
illustrated 61
requirements 61
cooling 45
CRC
acoustics 34
actuator 8
error 15
illustrated 45
altitude 31
ambient 31
ANSI documents
D
SCSI 5
DAR 42
data block size
auto write and read reallocation
programmable 7
data heads
read/write 10
data rate
B
internal 10
requirements 21
decrypt 37
defects 40
backpanel 61
BandMasterX 38
BMS 42
buffer
data 7
space 12
DEK 37
description 6
DFE 63
Savvio 10K.3 SAS Product Manual, Rev. G
65
dimensions 35
drive 34
gradient 31
grounding 46
H
heads
E
electrical
specifications 21
humidity 31
I
installation 44
guide 5
interface
environment 45
environmental
errors 15
illustrated 58
physical 58
limits 30
requirements 14
EraseMaster 38
error
management 40
rates 14
errors 40
requirements 47
interleave
minimum 11
IRAW 43
European Union Restriction of Hazardous Substanc-
es 5
F
features 7
interface 47
FFE 63
J
jumpers 44
FIPS 36
firmware 7
K
corruption 52
KCC 4
function
L
latency
LockOnReset 38
G
66
Savvio 10K.3 SAS Product Manual, Rev. G
O
options 9
M
maintenance 14
P
packaged 32
passwords 38
miscellaneous feature support
PCBA 46
performance characteristics
detailed 10
general 11
power 62
miscellaneous status support
Busy 57
Good 57
Intermediate/good 57
dissipation 27
sequencing 24
PowerCycle 38
Mode sense
mounting 46
Q
holes 46
orientations 44
R
receivers 62
N
noise
audible 3
temperature 31
reference
documents 5
Savvio 10K.3 SAS Product Manual, Rev. G
67
reliability 8
specifications 14
standards 3
surface stiffness
switches 44
synchronized spindle
operation 57
resonance 31
RNG 38
RoHS 5
T
S
safety 3
SAS
TCG 37
interface 61
SCSI interface
seek error
ambient 30
case 30
gradient 30
limits 30
defined 15
rate 14
non-operating 31
regulation 3
seek time
See also cooling
terminators 44
transmitters 62
shielding 3
U
unformatted 8
shipping 20
shock 32
V
SID 37
signal
characteristics 62
W
warranty 20
Specification 63
Z
68
Savvio 10K.3 SAS Product Manual, Rev. G
Seagate Technology LLC
920 Disc Drive, Scotts Valley, California 95066-4544, USA
Publication Number: 100516229, Rev. G
|