FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-27801-1E
ASSP For Power Management Applications (Mobile Phones)
Power Management IC
for GSM Mobile Phone
MB3891
■ DESCRIPTION
MB3891 is intended to be used in future GSM-phones, Dual Band phones and Dual Mode phones. It contains all
the necessary functions to support all Digital, Analog and RF blocks in these phones. A Charge-pump including
a Logic Level Translation circuit is built in to support SIM-card (SmartCard) of both 3 and 5 Volt technology. The
circuit contains a charger for a rechargeable Lithium coin cell of a Real Time Clock.
A complex control circuit is built in to generate main reset and to turn on and off the different LDO’s.
■ FEATURES
• Supply voltage range
: 3 V to 5.5 V
• Low power consumption current during standby
• 6-channel low-saturation voltage type series regulator
: 400 µA (MAX)
: 2.1 V/2 channels, 2.8 V/3 channels, 2.5 V/2.8 V switch
• Error prevention function during Low voltage
• Power on reset function
• 3 V/5 V SW for SIM-Card
• SIM interface function
• Backflow prevention function for Battery-Backup
• Temperature prevention function
■ PACKAGE
64-pin plastic LQFP
(FPT-64P-M03)
MB3891
■ PIN DESCRIPTION
Pin No.
Symbol
N.C.
I/O
O
Descriptions
1, 2
Non connection.
LDO3 output pin.
LDO3 ground pin.
LDO2 output pin.
3, 4
OUT3
5
6, 7
GND3
OUT2
O
8, 9, 10, 11
12, 13
14
VBAT1
Battery voltage input pin for LDO1 and LDO2.
LDO1 output pin.
OUT1
O
I
CONT1
CONT6
CONT2
XPOWERGOOD
DELAYCAP
GND1
Power on input from keypad (Active low, Pulled up to VBAT2).
“CONT6” input from digital system µP (Active high).
15
I
16
I
External accessory supply voltage Enable (Active high).
Generates the main reset. (Active low, when OUT1 is out of regulation).
Timing capacitor for XPOWERGOOD delay.
17
O
18
19
LDO1, LDO2, V-BACKUP, Reference and System ground pin.
Battery voltage input pin for both UVLO’s, Reference and V-BACKUP
LDO.
20
VBAT2
21
22
V-BACKUP
VREF
O
O
O
O
Supply voltage for Charger for rechargeable Lithium coin cell.
Supply voltage for Reference.
23
VFIL
Reference voltage Filter.
24
REF-OUT
VCC-VSIM
VSIM-ON
SIMPROG
OSC
Reference output voltage (Present when BACKUP UVLO is high).
Input voltage for charge pump. (Supplied by VBAT1).
VSIM supply Enable (Active high).
25
26
I
I
27
VSIM programming: Low = 3 V SIM, High = 5 V SIM.
Oscillator output pin.
28
29
VSIMOUT
VCAP+
VCAP−
GND-VSIM
RESET-IN
CLK-IN
µP-IO
O
Supply voltage for 3 or 5 V SIM-Card (SmartCard).
Positive side of boost capacitor.
30
31
Negative side of boost capacitor.
32
3 or 5 V SIM-Card (SmartCard) ground pin.
Non level shifted SIM reset (µP side).
Non level shifted clock (µP side).
33
I
I
34
35
I/O
O
Non level shifted bi-directional data input/output (µP side).
Level shifted SIM reset (SmartCard side).
Level shifted SIM clock (SmartCard side).
Level shifted bi-directional SIM data input/output (SmartCard side).
LDO4 ground pin.
36
RST
37
CLK
O
38
SIM-IO
I/O
39
GND4
40, 41
OUT4
O
LDO4 output pin.
(Continued)
3
MB3891
(Continued)
Pin No.
Symbol
VBAT4
CONT4
I/O
Descriptions
42, 43
44
Supply voltage for LDO4.
I
O
I
OUT4 output voltage selection (“L”=2.8 V,“H”=2.5 V).
Output of general purpose switch number 1 (Drain).
Input of general purpose switch number 1 (Source).
Output of general purpose switch number 3 (Drain).
Input of general purpose switch number 3 (Source).
Non connection.
45
46
SW1-OUTPUT
SW1-INPUT
SW3-OUTPUT
SW3-INPUT
N.C.
47
O
I
48
49, 50
51
SW2-OUTPUT
SW2-INPUT
SW1-ON
SW2-ON
SW3-ON
CONT3
O
I
Output of general purpose switch number 2 (Drain).
Input of general purpose switch number 2 (Source).
General purpose switch number 1 Enable (Active high).
General purpose switch number 2 Enable (Active high).
General purpose switch number 3 Enable (Active high).
OUT3 and OUT4 supply voltage Enable (Active high).
OUT5 supply voltage Enable (Active high).
Output terminal of LDO5.
52
53
I
54
I
55
I
56
I
57
CONT5
I
58
OUT5
O
59
GND5
LDO5 ground pin.
60, 61, 62
63, 64
VBAT3
Supply voltage for LDO and LDO5.
N.C.
Non connection.
4
MB3891
■ BLOCK DIAGRAM
VBAT2
20
VBAT1
8
9 10 11
LDO1
ON
Over
Temp
Protection
12
13
OUT1
OUT
14
CONT1
17 XPOWERGOOD
18 DELAYCAP
POR
Main
UVLO
GND1
19
15
CONT6
LDO2
ON
6
7
OUT2
OUT
CONT2 16
46 SW1-INPUT
SW1
SW2
SW3
53
54
55
SW1-ON
SW2-ON
45 SW1-OUTPUT
52
SW2-INPUT
SW3-ON
51
SW2-OUTPUT
48 SW3-INPUT
47 SW3-OUTPUT
60
CONT3 56
61
62
VBAT3
CONT5
CONT4
57
44
LDO3
ON
3
4
OUT
OUT3
22
23
VREF
VFIL
5
GND3
VREF-AMP
42
43
VBAT4
+
−
VREF
LDO4
ON
40
41
OUT
OUT
OUT4
REF-OUT
24
CONT4
33
34
35
RESET-IN
CLK-IN
µP-IO
39 GND4
LDO5
ON
GSM/SIM
Logic
Level
58
59
OUT5
GND5
36
37
38
RST
CLK
Translation
LDO6
ON
SIM-IO
BACKUP
UVLO
OUT
21 V-BACKUP
25
26
VCC-VSIM
VSIM-ON
VSIMOUT
Charge-pump
SIMPROG 27
28
30
VCAP+
31 VCAP−
OSC
32
29
VSIMOUT
N.C.
Pin : 1, 2, 49, 50, 63, 64
GND-VSIM
5
MB3891
■ ABSOLUTE MAXIMUM RATINGS
Rating
Parameter
Symbol
Conditions
Unit
Min.
−0.3
−0.3
Max.
7
VBAT
V
Power supply voltage
VCC-VSIM
7
V
IO
IO
OUT1 pin
120
50
mA
mA
mA
mA
mA
mA
mW
°C
OUT2 pin
LDO regulator
IO
OUT3 pin
100
100
50
IO
OUT4 pin
IO
OUT5 pin
VSIMOUT chargepump
Power dissipation
IO
VSIMOUT pin
Ta ≤ +25 °C
10
PD
Tstg
800*
+125
Storage temperature
−55
* : The packages are mounted on the dual-sided epoxy board(10 cm × 10 cm)
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Value
Parameter
Symbol
Conditions
Unit
Min.
3.0
Typ.
3.6
Max.
5.5
VBAT
VCC-VSIM
CO
V
V
Power supply voltage
3.0
3.6
5.5
LDO capacitor guarantee value
OUT1 to OUT5, V-BACKUP pin
REF-OUT pin
0.8
1.0
µF
REF-OUT capacitor guarantee
value
CO
0.027
µF
VSIMOUT capacitor guarantee
value
CO
VSIMOUT pin
10
µF
Operating ambient temperature
Ta
−20
+25
+85
°C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
6
MB3891
■ ELECTRICAL CHARACTERISTICS
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)
Value
Parameter
Symbol
Pin No.
Conditions
Unit
Min.
Typ.
Max.
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
UVLO = “L”,
IBAT1
80
µA
BACKUP UVLO = “L”
Shutdown supply
current
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
UVLO = “L”,
BACKUP UVLO = “H”
IBAT2
IBAT3
IGND
160
400
µA
µA
mA
V
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
Standby supply
current
All circuit’s = On
(No load)
All circuit’s -VSIM =
On Max. load on all
regulators
Operating ground
current
4, 5, 19,
32, 59
10
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
VTHH
VTHL
VTHH
VTHL
OUT1 = ON
2.980
2.780
2.980
2.580
3.080
2.880
3.080
2.680
3.180
2.980
3.180
UVLO threshold
voltage
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
OUT1 = OFF
V
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
V-BACKUP = ON
V-BACKUP = OFF
V
General
BACKUP UVLO
threshold voltage
8, 9, 10, 11,
20, 42, 43,
60, 61, 62
2.780
OUT1
V
0.7 ×
OUT1
VIH
VIL
VIH
VIL
VIH
VIL
16, 56, 57
16, 56, 57
14, 15, 44
14, 15, 44
26, 27
V
V
V
V
V
V
0.3 ×
OUT1
0
0.7 ×
VBAT
VBAT
Input voltage
0.3 ×
VBAT
0
0.7 ×
VCC-VSIM
VCC-VSIM
0.3 ×
VCC-VSIM
26, 27
0
RPU
RPU
RPD
17
15*
kΩ
kΩ
kΩ
Pull-up resistor
14, 57
200*
200*
Pull-down resistor
15, 53, 54, 55
* : Standard design value
(Continued)
7
MB3891
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)
Value
Pin
No.
Parameter
Symbol
Conditions
Unit
Min. Typ. Max.
Output voltage
Line regulation
Load reguration
VO
12, 13 −50 µA > OUT1 > −120 mA 2.000 2.100 2.200
V
Line
12, 13 3.1 V < VBAT1 < 5.5 V
10
30
mV
mV
Load 12, 13 −50 µA > OUT1 > −120 mA
Ripple rejection
∆VBAT1/∆OUT1
R.R
12, 13 f = 217 Hz
45
dB
LDO1
(OUT1)
Dropout voltage
VDO
IGND
IGND
12, 13 OUT1 = −120 mA
500 mV
GND current at low load
GND current at max. load
19
19
OUT1 > −1 mA
30
2
µA
OUT1 = −120 mA
mA
f = 10 Hz to 1 MHz,
Output noise volt. (RMS)
VNOVL
VOH
12, 13
17
500
µV
V
OUT1 = 1 µF
0.8 ×
OUT1
OUT1
XPOWER-
GOOD
(RESET)
Output voltage
0.1 ×
OUT1
VOL
17
17
0
V
Hold time
TXPG
VO
DELAYCAP = 0.033 µF
10
25
40
ms
V
Output voltage
Line regulation
Load regulation
6, 7 −50 µA > OUT2 > −50 mA 2.700 2.800 2.900
Line
Load
6, 7 3.1 V < VBAT1 < 5.5 V
10
30
mV
mV
6, 7 −50 µA > OUT2 > −50 mA
Ripple rejection
∆VBAT1/∆OUT2
R.R
6, 7 f = 217 Hz
45
dB
LDO2
(OUT2)
Dropout voltage
VDO
IGND
IGND
6, 7 OUT2 = −50 mA
250 mV
GND current at low load
GND current at max. load
19
19
OUT2 > −1 mA
30
1
µA
OUT2 = −50 mA
mA
f = 10 Hz to 1 MHz,
Output noise volt. (RMS)
VNOVL
RSW1
RSW2
RSW3
6, 7
350
4.0
7.0
7.0
µV
Ω
OUT2 = 1 µF
SW1-INPUT = 2.8 V
(Gate/Source = 2.8 V)
45, 46
51, 52
47, 48
General
SW2-INPUT = 2.8 V
(Gate/Source = 2.8 V)
purpose Input/Output resistance
switches
Ω
SW3-INPUT = 2.8 V
(Gate/Source = 2.8 V)
Ω
(Continued)
8
MB3891
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)
Value
Parameter
Symbol Pin No.
Conditions
Unit
Min. Typ. Max.
Output voltage
Line regulation
Load regulation
VO
3, 4 −50 µA > OUT3 > −100 mA 2.700 2.800 2.900
V
Line
Load
3, 4 3.1 V < VBAT3 < 5.5 V
10
30
mV
mV
3, 4 −50 µA > OUT3 > −100 mA
Ripple rejection
∆VBAT3/∆OUT3
R.R
3, 4 f = 217 Hz
45
dB
LDO3
(OUT3)
Dropout voltage
VDO
3, 4 OUT3 = −100 mA
250 mV
GND current at low load
IGND
5
OUT3 > −1 mA
30
2
µA
GND current at max.
load
IGND
5
OUT3 = −100 mA
mA
f = 10 Hz to 1 MHz,
OUT3 = 1 µF
Output noise volt. (RMS)
VNOVL
3, 4
350 µV
−50 µA > OUT4 > −100 mA,
VO
VO
40, 41
40, 41
2.700 2.800 2.900
2.400 2.500 2.600
V
V
CONT4 = “L”
Output voltage
−50 µA > OUT4 > −100 mA,
CONT4 = “H”
Line regulation
Load regulation
Ripple rejection
Line
40, 41 3.1 V < VBAT4 < 5.5 V
10
30
mV
mV
Load
40, 41 −50 µA > OUT4 > −100 mA
LDO4
R.R
40, 41 f = 217 Hz
45
dB
(OUT4) ∆VBAT4 - OUT4/∆OUT4
Dropout voltage
VDO
IGND
40, 41 OUT4 = −100 mA
250 mV
GND current at low load
39
OUT4 > −1 mA
30
µA
GND current at max.
load
IGND
39
OUT4 = −100 mA
2
mA
f = 10 Hz to 1 MHz,
OUT4 = 1 µF
Output noise volt. (RMS)
VNOVL
40, 41
500 µV
Output voltage
Line regulation
Load regulation
Ripple rejection
VO
58
58
58
−50 µA > OUT5 > −50 mA 2.700 2.800 2.900
V
Line
Load
3.1 V < VBAT3 < 5.5 V
10
30
mV
mV
−50 µA > OUT5 > −50 mA
R.R
58
f = 217 Hz
45
dB
∆VBAT3/∆OUT5
LDO5
Dropout voltage
(OUT5)
VDO
IGND
58
59
OUT5 = −50 mA
250 mV
GND current at low load
OUT5 > −500 µA
20
µA
GND current at max.
load
IGND
59
58
OUT5 = −50 mA
1
mA
f = 10 Hz to 1 MHz,
OUT5 = 1 µF
Output noise volt. (RMS)
VNOVL
350 µV
(Continued)
9
MB3891
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)
Value
Parameter
Symbol Pin No.
Conditions
Unit
Min. Typ. Max.
−10 µA > V-BACKUP
Output voltage
VO
21
21
21
2.000 2.100 2.200
V
> −250 µA
Line regulation
Load regulation
Line
Load
3.1 V < VBAT2 < 5.5 V
10
30
mV
mV
−10 µA > V-BACKUP
> −250 µA
Ripple rejection
∆VBAT2/
∆V-BACKUP
R.R
21
f = 217 Hz
25
dB
LDO6
(V-BACKUP)
GND current at
low load
IGND
IGND
VNOVL
IRC
19
19
21
21
V-BACKUP > −10 µA
10
50
µA
µA
µV
nA
GND current at
max. load
V-BACKUP = −250 µA
Output noise volt.
(RMS)
f = 10 Hz to 1 MHz,
V-BACKUP = 1 µF
500
100
VBAT2 = 0 V,
V-BACKUP = 3.0 V
Reverse current
Output voltage
Line regulation
Load regulation
VO
24
24
24
0 µA > REF-OUT > −50 µA
3.1 V < VBAT2 < 5.5 V
1.200 1.225 1.250
V
Line
Load
10
6
mV
mV
0 µA > REF-OUT > −50 µA
Ripple rejection
∆VBAT2/
∆REF-OUT
REF-OUT
R.R
24
f = 217 Hz
50
dB
Output noise volt.
(RMS)
f = 10 Hz to 1 MHz,
VNOVL
VO
24
29
29
250
µV
REF-OUT = 27 nF
−50 µA > VSIMOUT > −10 mA,
SIMPROG = “H”
4.600 5.000 5.400
V
Output voltage
−50 µA > VSIMOUT > −10 mA,
SIMPROG = “L”
VSIMOUT
chargepump
VO
2.760 3.000 3.240
50
V
Line regulation
Load regulation
Line
29
29
3.1 V < VCC-VSIM < 5.5 V
mV
Load
−50 µA > VSIMOUT > −10 mA
100 mV
(Continued)
10
MB3891
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)
Value
Parameter
Ripple rejection
Symbol Pin No.
Conditions
Unit
Min.
Typ.
Max.
∆VCC-VSIM/
∆VSIMOUT
R.R
29
f = 217 Hz
30
dB
3.1 V < VCC-VSIM < 5.5 V,
VSIMOUT = 5 V
IO
IO
29
29
10
6
mA
mA
µA
%
Output current
3.1 V < VCC-VSIM < 5.5 V,
VSIMOUT = 3 V
VSIMOUT
chargepump
GND current at
no load
IGND
η
32
VSIMOUT > −50 µA
100
Efficiency at
max. load
VSIMOUT = −10 mA,
VSIMOUT = 5 V
25, 29
29
85
Output ripple
voltage
f = 10 Hz to 1 MHz,
VSIMOUT = 10 µF
VRP
ILDO
VIH
VIL
VOH
VOL
100
100
mVPP
nA
V
Shutdown sup-
ply current
25
VSIM-ON = “L”
33, 34,
35
0.7 ×
OUT1
OUT1
Input voltage
33, 34,
35
0.3 ×
OUT1
GSM/SIM
logic level
translation
µp interface
0
V
0.8 ×
OUT1
35
35
µP-IO (max.) = −20 µA
OUT1
V
Output voltage
0.2 ×
OUT1
µP-IO (max.) = 1 mA
0
V
(Continued)
11
MB3891
(Continued)
(Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V)
Value
Parameter
Symbol Pin No.
Conditions
Unit
Min.
Typ.
Max.
VSIMOUT
VSIMOUT
VOH
36
RST (max.) = −20 µA
V
− 0.7
Output voltage
VOL
TR
36
36
36
RST (max.) = 200 µA
0
0.6
400
400
V
Rise time
Fall time
RESET-IN = RST = 30 pF
RESET-IN = RST = 30 pF
µs
µs
TF
0.7 ×
VSIMOUT
VOH
37
CLK (max.) = −20 µA
VSIMOUT
V
Output voltage
SIM
interface
5 V
(SIMPROG
= H)
VOL
TR
37
37
37
38
38
CLK (max.) = 200 µA
CLK-IN = CLK = 30 pF
CLK-IN = CLK = 30 pF
SIM-IO (max.) = −20 µA
SIM-IO (max.) = 1 mA
0
0.5
27
V
ns
ns
V
Rise time
Fall time
TF
27
VOH
VOL
3.8
0
VSIMOUT
0.4
Output voltage
V
0.7 ×
VSIMOUT
VIH
38
VSIMOUT
V
Input voltage
VIL
TR
TF
38
38
38
0
0.8
1
V
Rise time
Fall time
SIM-IO = 30 pF
µs
µs
SIM-IO = 30 pF
1
0.8 ×
VOH
VOL
36
36
RST (max.) = −20 µA
VSIMOUT
V
V
VSIMOUT
Output voltage
0.2 ×
VSIMOUT
RST (max.) = 200 µA
0
Rise time
Fall time
TR
36
36
RESET-IN = RST = 30 pF
400
400
µs
TF
RESET-IN = RST = 30 pF
µs
0.7 ×
VOH
37
37
CLK (max.) = −20 µA
VSIMOUT
V
V
VSIMOUT
Output voltage
0.2 ×
VSIMOUT
VOL
CLK (max.) = 200 µA
0
SIM
interface
3 V
(SIMPROG
= L)
Rise time
Fall time
TR
37
37
CLK-IN = CLK = 30 pF
50
50
ns
ns
TF
CLK-IN = CLK = 30 pF
0.7 ×
VOH
VOL
VIH
38
38
38
SIM-IO (max.) = −20 µA
VSIMOUT
0.4
V
V
V
VSIMOUT
Output voltage
SIM-IO (max.) = 1 mA
0
0.7 ×
VSIMOUT
VSIMOUT
Input voltage
0.2 ×
VSIMOUT
VIL
38
0
V
Rise time
Fall time
TR
TF
38
38
SIM-IO = 30 pF
1
1
µs
SIM-IO = 30 pF
µs
12
MB3891
■ TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage
Power supply current vs. power supply voltage
400
350
300
250
200
150
100
50
Ta = +25 °C
Ta = +25 °C
CONT1 = OPEN
CONT2 = “H”
CONT3 = “H”
CONT1 = “L”
350
300
250
200
150
100
50
CONT2 = “H”
CONT3 = “H”
CONT4 = OPEN
CONT5 = OPEN
CONT6 = “H”
CONT4 = OPEN
CONT5 = OPEN
CONT6 = OPEN
VSIM-ON = “H”
SIMPROG = “H”
VSIM-ON = “H”
SIMPROG = “H”
OUT1 = No load
OUT2 = No load
OUT3 = No load
OUT4 = No load
OUT5 = No load
OUT1 = No load
OUT2 = No load
OUT3 = No load
OUT4 = No load
OUT5 = No load
V-BACKUP = No load
VSIMOUT = No load
V-BACKUP = No load
VSIMOUT = No load
0
0
0
1
2
3
4
5
0
1
2
3
4
5
Power supply voltage VBAT (V)
Power supply voltage VBAT (V)
Power supply current , GND current vs.
power supply voltage
Output voltage vs. power supply
voltage (LDO1)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
450
450
400
350
300
250
200
150
100
50
Ta = +25 °C
IBAT
CONT1 = OPEN
CONT2 = “H”
400
350 CONT3 = “H”
CONT4 = OPEN
300
250
200
150
100
50
CONT5 = OPEN
CONT6 = “H”
IGND
VSIM-ON = “H”
SIMPROG = “H”
OUT1 = 18 Ω
OUT2 = 56 Ω
OUT3 = 28 Ω
OUT4 = 28 Ω
OUT5 = 56 Ω
Ta = +25 °C
OUT1 = 1 µF
CONT1 = OPEN
CONT6 = “H”
V-BACKUP = 8.4 kΩ
VSIMOUT = 510 Ω
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
Power supply voltage VBAT (V)
Power supply voltage VBAT (V)
Output voltage vs. power supply voltage (LDO1)
Output voltage vs. load current (LDO1)
3.0
2.2
2.1
2.0
1.9
1.8
1.7
Ta = +25 °C
OUT1 = 1 µF
2.5
CONT1 = “L”
CONT6 = OPEN
2.0
1.5
1.0
0.5
0.0
Ta = +25 °C
VBAT = 3.6 V
CONT1 = “L”
CONT6 = OPEN
0
1
2
3
4
5
0
−100 −200 −300 −400 −500 −600 −700 −800
Power supply voltage VBAT (V)
Load current ILOAD (mA)
(Continued)
13
MB3891
Ripple rejection vs. frequency (LDO1)
Ripple rejection vs. frequency (LDO1)
0
−20
0
−20
Ta = +25 °C
VBAT = 3.6 V
OUT1 = 1 µF
CONT1 = “L”
CONT6 = OPEN
−40
−40
Ta = +25 °C
−60
−60
VBAT = 3.6 V
OUT1 = 1 µF
OUT1 = 18 Ω
CONT1 = “L”
CONT6 = OPEN
−80
−80
−100
−100
10
100
1 k
10 k
100 k
1 M
10
100
1 k
10 k
100 k
1 M
Frequency f (Hz)
Frequency f (Hz)
Dropout voltage vs. load current (LDO1)
Output voltage vs. ambient temperature (LDO1)
2.13
0.6
0.5
0.4
0.3
0.2
0.1
0.0
VBAT = 2.1 V
CONT1 = OPEN
CONT6 = “H”
VBAT = 3.6 V
CONT1 = OPEN
CONT6 = “H”
Ta = +85 °C
2.12
2.11
2.10
2.09
2.08
Ta = −20 °C
Ta = +25 °C
−40 −20
0
20
40
60
80
100
0
−50
−100
−150
−200
Load current ILOAD (mA)
Ambient temperature Ta ( °C)
Output voltage rising waveforms (LDO1)
10
5
VBAT
0
OUT1
2.0
1.5
1.0
0.5
0.0
Ta = +25°C
OUT1 = 18 Ω
CONT1 = “L”
CONT6 = OPEN
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t (ms)
14
MB3891
Output voltage falling waveforms (LDO1)
Output voltage falling waveforms (LDO1)
4
3
2
1
0
Ta = +25°C
Ta = +25°C
VBAT = 1 µF
OUT1 = No load
CONT1 = “L”
OUT1 = No load
CONT1 = “L”
4
2
0
CONT6 = OPEN
CONT6 = OPEN
VBAT
OUT1
VBAT
OUT1
2
1
0
2
1
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0
50 100 150 200 250 300 350 400 450 500
t (s)
t (ms)
Output voltage falling waveforms (LDO1)
Output voltage rising waveforms (LDO1)
10
CONT1
4
5
0
2
0
Ta = +25°C
CONT1
OUT1
VBAT = 3.6 V
OUT1 = No load
CONT6 = OPEN
2.0
1.5
1.0
0.5
0.0
2
1
0
Ta = +25°C
VBAT = 3.6 V
OUT1 = 18 Ω
CONT6 = OPEN
OUT1
0
20 40 60 80 100 120 140 160 180 200
0
20 40 60 80 100 120 140 160 180 200
t (µs)
t (ms)
Waveform at rapid change of output load
(LDO1)
[Measurement diagram]
OUT1
VBAT = 3.6 V
2.0
1.5
1.0
0.5
0.0
Ta = +25°C
VBAT = 3.6 V
CONT1 = “L”
CONT6 = OPEN
VREF = 1.225 V
(IC internal)
LDO1
OUT1 120 mA
2
1
0
1 µF
VC
VC
4 V
0 V
OUT1 = 0 A −120 mA
0
10 20 30 40 50 60 70 80 90 100
t (µs)
(Continued)
15
MB3891
Waveform at rapid change of output load (LDO1)
[Measurement diagram]
OUT1
VBAT = 3.6 V
2.0
1.5
1.0
0.5
0.0
VREF = 1.225 V
(IC internal)
LDO1
OUT1 120 mA
VC
2
1
0
Ta = +25°C
VBAT = 3.6 V
CONT1 = “L”
CONT6 = OPEN
1 µF
VC
4 V
0 V
OUT1 = −120 mA 0 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t (ms)
[Measurement diagram]
Waveform at rapid change of output load (LDO2)
3.0
VBAT = 3.6 V
OUT2
2.5
Ta = +25°C
VBAT = 3.6 V
CONT1 = “L”
2.0
1.5
1.0
0.5
0.0
VREF = 1.225 V
(IC internal)
CONT2 = “H”
CONT6 = OPEN
LDO2
3
2
1
0
OUT2 50 mA
1 µF
VC
VC
4 V
0 V
OUT2 = 0 A −50 mA
0
10 20 30 40 50 60 70 80 90 100
t (µs)
[Measurement diagram]
Waveform at rapid change of output load (LDO2)
3.0
VBAT = 3.6 V
OUT2
2.5
2.0
VREF = 1.225 V
VC
(IC internal)
1.5
1.0
0.5
0.0
3
2
1
0
LDO2
OUT2 50 mA
Ta = +25°C
VBAT = 3.6 V
CONT1 = “L”
CONT2 = “H”
CONT6 = OPEN
1 µF
VC
4 V
0 V
OUT2 = −50 mA 0 A
0
10 20 30 40 50 60 70 80 90 100
t (ms)
(Continued)
16
MB3891
Reference voltage vs. power supply voltage
Reference voltage vs. ambient temperature
1.24
1.23
1.22
1.21
1.20
1.19
1.4
1.2
1.0
0.8
0.6
0.4
VBAT = 3.6 V
0.2
0.0
Ta = +25 °C
VFIL = 0.1 µF
−40 −20
0
20
40
60
80
100
0
1
2
3
4
5
6
7
Power supply voltage VBAT (V)
Ambient temperature Ta ( °C)
Power supply current vs. power supply voltage
(VSIMOUT Chargepump)
Power supply current vs. power supply voltage
(VSIMOUT Chargepump)
100000
100000
VSIMOUT = 510 Ω
VSIMOUT = 510 Ω
10000
10000
1000
1000
VSIMOUT = No load
VSIMOUT = No load
100
100
Ta = +25 °C
Ta = +25 °C
VBAT = 3.6 V
10
10
VBAT = 3.6 V
VSIM-ON = “H”
SIMPROG = “H”
VSIM-ON = “H”
SIMPROG = “L”
1
1
0
1
2
3
4
5
0
1
2
3
4
5
Power supply voltage VCC-VSIM (V)
Power supply voltage VCC-VSIM (V)
Output voltage vs. power supply voltage
(VSIMOUT Chargepump)
5
4
3
2
1
0
SIMPROG = “H”
VSIMOUT = No load
SIMPROG = “L”
VSIMOUT = No load
Ta = +25 °C
VBAT = 3.6 V
VSIM-ON = “H”
0
1
2
3
4
5
6
7
Power supply voltage VCC-VSIM (V)
(Continued)
17
MB3891
Output voltage vs. load current
(VSIMOUT Chargepump)
Output voltage vs. load current
(VSIMOUT Chargepump)
3.00
2.99
2.98
2.97
2.96
2.95
2.94
2.93
2.92
2.91
2.90
5.00
4.95
4.90
4.85
4.80
4.75
4.70
4.65
4.60
Ta = +25 °C
Ta = +25 °C
VSIM-ON = “H”
VSIM-ON = “H”
VCC-VISM = 5.5 V
SIMPROG = “L”
SIMPROG = “H”
VCC-VISM = 5.5 V
VCC-VISM = 3.1 V
VCC-VISM = 3.6 V
VCC-VISM
= 3.6 V
VCC-VISM = 3.1 V
0
−5
−10
−15
−20
0
−5
−10
−15
−20
Load current ILOAD (mA)
Load current ILOAD (mA)
Ripple rejection vs. frequency
(VSIMOUT Chargepump)
Ripple rejection vs. frequency
(VSIMOUT Chargepump)
0
0
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
−20
−40
−20
−40
SIMPROG = “H”
VCAP+ VCAP− = 0.1 µF
VSIMOUT = 10 µF
Ta = +25 °C
−60
−60
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “H”
−80
−80
VCAP+ VCAP− = 0.1 µF
VSIMOUT = 10 µF
VSIMOUT = 510 Ω
−100
−100
10
100
1 k
10 k
100 k
1 M
10
100
1 k
10 k
100 k
1 M
Frequency f (Hz)
Frequency f (Hz)
Ripple rejection vs. frequency
(VSIMOUT Chargepump)
Ripple rejection vs. frequency
(VSIMOUT Chargepump)
0
−20
0
−20
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “L”
VCAP+ VCAP− = 0.1 µF
VSIMOUT = 10 µF
−30
−40
Ta = +25 °C
−40
−60
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “L”
−80
−80
VCAP+ VCAP− = 0.1 µF
VSIMOUT = 10 µF
VSIMOUT = 510 Ω
−100
−100
10
100
1 k
10 k
100 k
1 M
10
100
1 k
10 k
100 k
1 M
Frequency f (Hz)
Frequency f (Hz)
(Continued)
18
MB3891
Efficiency vs. power supply voltage
(VSIMOUT Chargepump)
Efficiency vs. power supply voltage
(VSIMOUT Chargepump)
100
90
80
70
60
50
40
30
20
10
0
100
90
80
70
60
50
40
30
20
10
0
Ta = +25 °C
Ta = +25 °C
VSIM-ON = “H”
VSIM-ON = “H”
SIMPROG = “L”
SIMPROG = “H”
ILOAD = −10 mA
ILOAD = −10 mA
ILOAD = −1 mA
ILOAD = −1 mA
3.0
3.5
4.0
4.5
5.0
5.5
3.0
3.5
4.0
4.5
5.0
5.5
Power supply voltage VCC-VSIM (V)
Power supply voltage VCC-VSIM (V)
Efficiency vs. load current
(VSIMOUT Chargepump)
Efficiency vs. load current
(VSIMOUT Chargepump)
100
90
80
70
60
50
40
30
20
10
0
100
90
80
70
60
50
40
30
20
10
0
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
VCC-VSIM = 3.1 V
SIMPROG = “L”
VCC-VSIM = 3.6 V
VCC-VSIM = 5.5 V
VCC-VSIM = 5.5 V
VCC-VSIM = 3.6 V
Ta = +25 °C
VCC-VSIM = 3.1 V
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “H”
0
−5
−10
−15
−20
0
−5
−10
−15
−20
Load current ILOAD (mA)
Load current ILOAD (mA)
Output voltage rising waveforms
(VSIMOUT Chargepump)
Output voltage rising waveforms
(VSIMOUT Chargepump)
10
5
10
5
VSIM-ON
VSIM-ON
VSIMOUT
0
0
5
4
3
2
1
0
VSIMOUT
3
2
1
0
Ta = +25 °C
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
SIMPROG = “L”
VBAT = VCC-VSIM = 3.6 V
SIMPROG = “H”
VSIMOUT = 510 Ω
VSIMOUT = 510 Ω
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t (ms)
t (ms)
(Continued)
19
MB3891
Output voltage rising waveforms
Output voltage falling waveforms
(VSIMOUT Chargepump)
(VSIMOUT Chargepump)
10
5
10
5
SIMPROG
VSIMOUT
SIMPROG
VSIMOUT
5
4
3
2
1
0
5
4
3
2
1
0
0
0
Ta = +25 °C
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VSIMOUT = 510 Ω
VSIM-ON = “H”
VBAT = VCC-SIM = 3.6 V
VSIMOUT = 510 Ω
VSIM-ON = “H”
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t (ms)
t (ms)
Output voltage falling waveforms
(VSIMOUT Chargepump)
Output voltage falling waveforms
(VSIMOUT Chargepump)
10
5
10
5
Ta = +25 °C
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
SIMPROG = “H”
VBAT = VCC-VSIM = 3.6 V
SIMPROG = “L”
VSIMOUT = 510 Ω
VSIM-ON
VSIMOUT = 510 Ω
5
4
3
2
1
0
0
0
VSIM-ON
3
2
1
0
VSIMOUT
VSIMOUT
0
5
10 15 20 25 30 35 40 45 50
0
5
10 15 20 25 30 35 40 45 50
t (ms)
t (ms)
Output voltage waveforms
(VSIMOUT Chargepump)
Output voltage waveforms
(VSIMOUT Chargepump)
Ta = +25 °C
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
VBAT = VCC-SIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “H”
SIMPROG = “L”
40
20
0
VSIMOUT = No load
AC COUPLED
VSIMOUT = No load
AC COUPLED
20
0
−20
−20
−40
0
2
4
6
8
10 12 14 16 18 20
0
2
4
6
8
10 12 14 16 18 20
t (µs)
t (µs)
(Continued)
20
MB3891
Output voltage waveforms
(VSIMOUT Chargepump)
Output voltage waveforms
(VSIMOUT Chargepump)
40
20
20
0
0
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “L”
VSIMOUT = 5.1 kΩ
AC COUPLED
−20
−40
Ta = +25 °C
−20
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
SIMPROG = “L”
VSIMOUT = 510 Ω
AC COUPLED
0
2
4
6
8
10 12 14 16 18 20
0
2
4
6
8
10 12 14 16 18 20
t (µs)
t (µs)
Output voltage waveforms
(VSIMOUT Chargepump)
Output voltage waveforms
(VSIMOUT Chargepump)
60
40
40
20
20
0
0
−20
−40
Ta = +25 °C
−20
−40
−60
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
VSIM-ON = “H”
SIMPROG = “H”
VSIMOUT = 510 Ω
AC COUPLED
SIMPROG = “H”
VSIMOUT = 5.1 kΩ
AC COUPLED
0
2
4
6
8
10 12 14 16 18 20
0
2
4
6
8
10 12 14 16 18 20
t (µs)
t (µs)
Output voltage vs. input voltage (SIM Inter-
Output voltage vs. input voltage (SIM Interface)
5
2.5
2.0
SIMPROG = "H"
4
SIMPROG = "L"
3
1.5
Ta = +25 °C
2
1.0
0.5
0.0
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
Ta = +25 °C
VBAT = VCC-VSIM = 3.6 V
SIMPROG = “L” or “H”
CONT1 = “L”
CONT6 = OPEN
VSIM-ON = "H"
CONT1 = "L"
CONT6 = OPEN
1
0
0.0
0.5
1.0
1.5
2.0
2.5
0
1
2
3
4
5
Input voltage VUPIO (V)
Input voltage VSIMIO (V)
(Continued)
21
MB3891
(Continued)
Output voltage vs. ambient temperature
(SIM Interface)
Output voltage vs. ambient temperature
(SIM Interface)
3.10
3.05
3.00
2.95
2.90
2.85
2.80
5.00
4.95
4.90
4.85
4.80
4.75
4.70
VBAT = VCC-VSIM = 3.6 V
VBAT = VCC-VSIM = 3.6 V
VSIM-ON = “H”
VSIM-ON = “H”
SIMPROG = “L”
SIMPROG = “H”
−40 −20
0
20
40
60
80
100
−40 −20
0
20
40
60
80
100
Ambient temperature Ta ( °C)
Power dissipation vs. ambient temperature
Ambient temperature Ta ( °C)
1000
800
600
400
200
0
−40 −20
0
20
40
60
80
100
Ambient temperature Ta ( °C)
22
MB3891
■ FUNCTIONAL DESCRIPTION
(1) MAIN UVLO/BACKUP UVLO
Transient power-on surge states or sudden drops in supply voltage (VBAT2) can cause an IC to operate abnor-
mally, leading to destruction or damage to system elements. To prevent this type of fault, the undervoltage lockout
circuits (UVLO/ Backup UVLO) will shut off the output from OUT1 to V-BACKUP if the supply voltage falls below
the UVLO circuit threshold voltage (3.0 V/2.8 V typ.). System operation is restored as soon as the supply voltage
rises above the UVLO circuits threshold voltage (3.2 V typ.).
(2) LDO1
The LDO1 circuits uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the OUT1
terminal (pin 12,13). Power can be drawn from the OUT1 terminal for external use, up to a maximum load current
of 120 mA.
(3) XPOWERGOOD (RESET)
When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), after a delay interval set by a capacitor
(CDELAYCAP) connected to the DELAYCAP terminal (pin 18), the XPOWERGOOD terminal (pin 17) goes to “H”
level and resets the microcomputer. At the same time, the LDO2, LDO3, and LDO4 output is controlled ON/OFF.
(4) LDO2
The LDO2 circuit uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT2
terminal (pin 6,7) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is
input at the CONT2 terminal (pin 16). Power can be drawn from the OUT2 terminal for external use, up to a
maximum load current of 50 mA.
(5) General Purpose switches
Any of the OUT terminals can be connected to any SW-INPUT terminal so that when the corresponding SW-
ON terminal is at “H” level, the OUT terminal voltage can be drawn from the associated SW-OUTPUT terminal.
(6) LDO3
The LDO3 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT3
terminal (pin 3,4) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is
input at the CONT3 terminal (pin 56). Power can be drawn from the OUT3 terminal for external use, up to a
maximum load current of 100 mA.
(7) LDO4
The LDO4 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT4
terminal (pin 40,41) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is
input at the CONT3 terminal (pin 56) , and an “L” level signal is input at the CONT4 terminal (pin 44). When an
“H” level signal is input at the CONT4 terminal, the output voltage at the OUT4 terminal is 2.5 V (typ.). Power
can be drawn from the OUT4 terminal for external use, up to a maximum load current of 100 mA.
23
MB3891
(8) LDO5
The LDO5 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT5
terminal (pin 57) when the OUT1 terminal (pin 12,13) is in output state and an “H” level signal is input at the
CONT5 terminal (pin 57). Power can be drawn from the OUT5 terminal for external use, up to a maximum load
current of 50 mA.
(9) LDO6
The LDO6 circuit uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the V-BACKUP
terminal (pin 21). Power can be drawn for external use, from the V-BACKUP terminal, up to a maximum load
current of 250 µA.
(10) REF-OUT
This circuit uses the reference voltage generated by the reference voltage block (1.225 V typ.) to produce a
temperature compensated reference voltage (1.225 V typ.) at the REF-OUT terminal(pin 24) by means of a
voltage follower. The reference voltage can also be drawn from the REF-OUT terminal for external use, up to a
load current of 50 µA.
(11) VSIMOUT Chargepump
The VSIMOUT charge pump uses the voltage from the battery and generates 5.0 V (typ.) voltage at the VSIMOUT
terminal (pin 29) when an “H” level signal is input at the SIMPROG terminal (pin 27) , or 3.0 V (typ.) voltage
when an “L” level signal input at the SIMPROG terminal. This voltage can also be drawn from the VSIMOUT
terminal for external use, up to a load current of 10 mA.
(12) GSM/SIM Logic Translation µP Interface
When a signal is input from the microprocessor to the RESET-IN terminal(pin 33) and CLK-IN terminal (pin 34),
a level-shifted voltage is output from the RST terminal (pin 36) and CLK terminal (pin 37) to the SIM card. The
µP-IO terminal (pin 35) and SIM-IO terminal (pin 38) are input/output pins and carry signals between the
microprocessor and SIM card.
(13) SIM Interface 5 V (SIMPROG = “H”)
When an “H” level signal is input to the SIMPROG terminal (pin 27), 5.0 V (typ.) voltage is generated from the
VSIMOUT terminal (pin 29) as a power supply for the SIM card.
(14) SIM Interface 3 V (SIMPROG = “L”)
When an “L” level signal is input to the SIMPROG terminal (pin 27), 3.0 V (typ.) voltage is generated from the
VSIMOUT terminal (pin 29) as a power supply for the SIM card.
■ SETTING THE XPOWERGOOD TIME
When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), the capacitor (CDELAYCAP) connected to the
DELAYCAP terminal (pin 18) starts charging, the XPOWERGOOD terminal (pin 17) voltage rises. The XPOW-
ERGOOD terminal voltage rising time (XPOWERGOOD time) can be set by a capacitor connected to the
DELAYCAP terminal.
XPOWERGOOD time : TXPG (s) =: 0.8 × CDELAYCAP (µF)
24
MB3891
■ OPERATION TIMING CHART
Input
VBAT1 to VBAT4,
VCC-VSIM
CONT1
CONT6
CONT5
CONT2
CONT3
SW1-ON
SW2-ON (SW3-ON)
VSIM-ON
SIMPROG
Output
REF-OUT
OUT6
2.0 V
OUT1
XPOWERGOOD
OUT5
delay
OUT2
OUT3 (OUT4)
SW1-OUTPUT
SW2-OUTPUT
(SW3-OUTPUT)
VSIMOUT = 5 V
VSIMOUT
VSIMOUT = 3 V
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(1) : Battery controlled
(5) : OUT1 hold
(2) : BACKUP UVLO ON
(3) : phone turned on
(6) to (12) : µP controlled
(14) : Main UVLO off
(4) : XPOWERGOOD on
(16) : BACKUP UVLO off
25
MB3891
■ APPLICATION EXAMPLE
C12
C11
1 µF
1 µF
20
8
9 10 11
VBAT1
VBAT2
KEYPAD
14
CONT1
µP
12
13
15 CONT6
OUT1
C1
1 µF
16 CONT2
R1
XPOWERGOOD
DELAYCAP
GND1
17
18
19
200 kΩ
SW1-ON
SW2-ON
53
54
C2
0.033 µF
55 SW3-ON
6
7
OUT2
C3
1 µF
56
CONT3
R2
200 kΩ
CONT5
CONT4
57
44
SW2-INPUT
52
51
R3
SW2-OUTPUT
200 kΩ
22 VREF
23 VFIL
48
SW3-INPUT
SW3-OUTPUT 47
C8
0.1 µF
REF-OUT
24
26
60
VBAT3 61
62
C13
1 µF
VSIM-ON
R4
200 kΩ
27 SIMPROG
3
OUT3
4
R5
C4
1 µF
200 kΩ
33 RESET-IN
34 CLK-IN
35 µP-IO
GND3
5
46
SW1-INPUT
SW1-OUTPUT 45
58
25 VCC-VSIM
28 OSC
OUT5
C5
1 µF
GND5 59
42
29 VSIMOUT
C9
10 µF
30
VCAP+
VBAT4
C10
0.1 µF
C14
1 µF
43
31 VCAP−
40
OUT4
41
C6
1 µF
36 RST
CLK
37
38
SIM
39
21
GND4
SIM-IO
V-BACKUP
C7
1 µF
32
GND-VSIM
N.C.
Pin : 1, 2, 49, 50, 63, 64
26
MB3891
■ USAGE PRECAUTIONS
• Printed circuit board ground lines should be set up with consideration for common impedance.
•Take appropriate static electricity measures.
• Containers for semiconductor materials should have anti-static protection or be made of conductive material.
• After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers.
• Work platforms, tools, and instruments should be properly grounded.
• Working personal should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.
• Do not apply negative voltages
Theuseofnegativevoltagesbelow-0.3VmaycreateparasitictransistorsonLSIlines, Whichcancauseabnormal
operation.
■ ORDERING INFORMATION
Part number
MB3891PFV
Package
Remarks
64-pin Plastic LQFP
(FPT-64P-M03)
27
MB3891
■ PACKAGE DIMENSION
64-pin plastic LQFP
(FPT-64P-M03)
Note : Pins width and pins thickness include plating thickness.
12.00±0.20(.472±.008)SQ
10.00±0.10(.394±.004)SQ
48
33
49
32
0.08(.003)
Details of "A" part
INDEX
1.50 +0.20
–0.10
–.004
(Mounting height)
.059 +.008
64
17
"A"
0~8°
1
16
LEAD No.
0.50±0.08
(.020±.003)
0.18 +0.08
.007 +.003
–0.03
0.145±0.055
(.006±.002)
M
0.08(.003)
0.10±0.10
(.004±.004)
(Stand off)
–.001
0.50±0.20
(.020±.008)
0.45/0.75
(.018/.030)
0.25(.010)
C
1998 FUJITSU LIMITED F64009S-3C-6
Dimensions in mm (inches) .
MB3891
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F0007
FUJITSU LIMITED Printed in Japan
|