Baldor MICROFLEX E100 User Manual

Contents  
1
2
General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1 MicroFlex e100 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.2 Receiving and inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2.1 Identifying the catalog number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-2  
2.3 Units and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
3
Basic Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1.1 Power sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1.2 Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1.3 Tools and miscellaneous hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1.4 Other information needed for installation . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-1  
3-1  
3-2  
3-2  
3.2 Mechanical installation and cooling requirements . . . . . . . . . . . . 3-3  
3.2.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.2 Mounting and cooling the MicroFlex e100 . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.3 Derating characteristic - 3A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.4 Derating characteristic - 6A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.5 Derating characteristic - 9A model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.6 Overtemperature trips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-4  
3-5  
3-6  
3-7  
3-8  
3-8  
3.3 Connector locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
3.3.1 Front panel connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-9  
3.3.2 Top panel connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
3.4 Power connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3.4.1 Earthing / grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3.4.2 Single-phase or three-phase power connections . . . . . . . . . . . . . . . . . . . . . 3-12  
3.4.3 Input power conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
3.4.4 Power disconnect and protection devices . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
3.4.5 Recommended fuses, circuit breakers and wire sizes . . . . . . . . . . . . . . . . 3-15  
3.4.6 Drive overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
3.4.7 Power supply filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
3.4.8 24V control circuit supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  
3.5 Motor connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
3.5.1 Motor circuit contactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19  
3.5.2 Motor power cable pin configuration - Baldor BSM rotary motors . . . . . . . 3-19  
3.5.3 Motor cable pin configuration - Baldor linear motors . . . . . . . . . . . . . . . . . . 3-20  
3.5.4 Sinusoidal filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
3.5.5 Thermal switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
3.5.6 Motor brake connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22  
3.6 Regeneration resistor (Dynamic Brake resistor) . . . . . . . . . . . . . 3-23  
MN1942  
Contents  
i
4
5
Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4.1.1 Incremental encoder feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1.2 SSI feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1.3 SinCos feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-2  
4-6  
4-8  
4.1.4 EnDat (absolute encoder) feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
Input / Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5.2 Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5.2.1 Drive enable input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.2 General purpose digital input DIN0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.3 General purpose digital inputs DIN1 & DIN2 . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.4 Special functions on inputs DIN1 and DIN2 . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.5 General purpose / status output DOUT0 . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-3  
5-5  
5-7  
5-8  
5-9  
5.2.6 General purpose output DOUT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
5.3 USB communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
5.3.1 USB port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
5.4 Ethernet interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14  
5.4.1 TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14  
5.4.2 ETHERNET Powerlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15  
5.4.3 Ethernet connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16  
5.5 CAN interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17  
5.5.1 CAN connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17  
5.5.2 CAN wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17  
5.5.3 CANopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18  
5.6 Other I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20  
5.6.1 Node ID selector switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20  
5.7 Connection summary - recommended system wiring . . . . . . . . . 5-23  
6
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
6.1.1 Connecting the MicroFlex e100 to the PC . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.1.2 Installing Mint Machine Center and Mint WorkBench . . . . . . . . . . . . . . . . .  
6-1  
6-1  
6.2 Starting the MicroFlex e100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  
6.2.1 Preliminary checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.2.2 Power on checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.2.3 Installing the USB driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.2.4 Configuring the TCP/IP connection (optional) . . . . . . . . . . . . . . . . . . . . . . .  
6-2  
6-2  
6-2  
6-3  
6.3 Mint Machine Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  
6.3.1 Starting MMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6-7  
MN1942  
ii Contents  
6.4 Mint WorkBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8  
6.4.1 Help file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6-9  
6.4.2 Starting Mint WorkBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10  
6.4.3 Commissioning Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11  
6.4.4 Performing a test move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13  
6.5 Further configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
6.5.1 Fine-tuning tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
6.5.2 Parameters tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16  
6.5.3 Other tools and windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17  
7
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1  
7.1.1 Problem diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.1.2 SupportMe feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.1.3 Power-cycling the MicroFlex e100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7-1  
7-1  
7-1  
7.2 MicroFlex e100 indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2  
7.2.1 STATUS LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.2 CAN LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.3 ETHERNET LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.5 Power on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.6 Mint WorkBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.7 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.8 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.9 CANopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7-2  
7-3  
7-4  
7-5  
7-5  
7-5  
7-6  
7-6  
7-6  
8
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1  
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1  
8.1.1 AC input power and DC bus voltage (X1) . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.2 24VDC control circuit supply input (X2) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.3 Motor output power (X1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.4 Regeneration (X1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.5 Digital inputs - drive enable and DIN0 general purpose (X3) . . . . . . . . . . .  
8.1.6 Digital inputs DIN1, DIN2 - high speed general purpose (X3) . . . . . . . . . .  
8.1.7 Digital outputs DOUT0, DOUT1 - status and general purpose (X3) . . . . .  
8.1.8 Incremental encoder feedback option (X8) . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.9 SSI encoder feedback option (X8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.10 SinCos / EnDat encoder feedback option (X8) . . . . . . . . . . . . . . . . . . . . . .  
8.1.11 Ethernet interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.12 CAN interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.13 Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.14 Weights and dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8-1  
8-3  
8-3  
8-3  
8-4  
8-4  
8-4  
8-5  
8-5  
8-5  
8-5  
8-6  
8-6  
8-7  
MN1942  
Contents iii  
Appendices  
A Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1  
A.1.1 Fan tray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.2 Footprint filter (single-phase only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.3 EMC filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.4 Regeneration resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.5 Motor power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.6 Motor power cable part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.7 SSI feedback cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.1.8 Encoder / Hall feedback cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A-2  
A-3  
A-4  
A-7  
A-8  
A-8  
A-9  
A-9  
A.1.9 EnDat (absolute encoder) and SinCos feedback cables . . . . . . . . . . . . . . A-10  
A.1.10 Feedback cable part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10  
A.1.11 Ethernet cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11  
B Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1  
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1  
B.1.1 Servo configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
B.1.2 Torque servo configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
B-2  
B-4  
C CE Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1  
C.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1  
C.1.1 EMC Conformity and CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C.1.2 MicroFlex e100 compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C.1.3 Use of CE compliant components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C.1.4 EMC wiring technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C.1.5 EMC installation suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C.1.6 Wiring of shielded (screened) cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C-1  
C-1  
C-2  
C-2  
C-3  
C-4  
MN1942  
iv Contents  
1 General Information  
1
Copyright Baldor (c) 2006. All rights reserved.  
This manual is copyrighted and all rights are reserved. This document or attached software may not, in  
whole or in part, be copied or reproduced in any form without the prior written consent of Baldor.  
Baldor makes no representations or warranties with respect to the contents hereof and specifically  
disclaims any implied warranties of fitness for any particular purpose. The information in this document  
is subject to change without notice. Baldor assumes no responsibility for any errors that may appear in  
this document.  
Mintt is a registered trademark of Baldor.  
Windows 95, Windows 98, Windows ME, Windows NT, Windows XP and Windows 2000 are registered  
trademarks of the Microsoft Corporation. UL and cUL are registered trademarks of Underwriters  
Laboratories.  
MicroFlex e100 is UL listed; file NMMS.E128059.  
Limited Warranty  
For a period of two (2) years from the date of original purchase, Baldor will repair or replace without  
charge controls and accessories that our examination proves to be defective in material or workmanship.  
This warranty is valid if the unit has not been tampered with by unauthorized persons, misused, abused,  
or improperly installed and has been used in accordance with the instructions and/or ratings supplied.  
This warranty is in lieu of any other warranty or guarantee expressed or implied. Baldor shall not be held  
responsible for any expense (including installation and removal), inconvenience, or consequential  
damage, including injury to any person or property caused by items of our manufacture or sale. (Some  
countries and U.S. states do not allow exclusion or limitation of incidental or consequential damages, so  
the above exclusion may not apply.) In any event, Baldor’s total liability, under all circumstances, shall not  
exceed the full purchase price of the control. Claims for purchase price refunds, repairs, or replacements  
must be referred to Baldor with all pertinent data as to the defect, the date purchased, the task performed  
by the control, and the problem encountered. No liability is assumed for expendable items such as fuses.  
Goods may be returned only with written notification including a Baldor Return Authorization Number and  
any return shipments must be prepaid.  
Baldor UK Ltd  
Mint Motion Centre  
6 Bristol Distribution Park  
Hawkley Drive  
Bristol, BS32 0BF  
Telephone:  
Fax:  
E-mail:  
+44 (0) 1454 850000  
+44 (0) 1454 850001  
technical.support@baldor.co.uk  
www.baldor.co.uk  
Web site:  
See rear cover for other international offices.  
MN1942  
General Information 1-1  
www.supportme.net  
Product notice  
Only qualified personnel should attempt the start-up procedure or troubleshoot this equipment.  
This equipment may be connected to other machines that have rotating parts or parts that are controlled  
by this equipment. Improper use can cause serious or fatal injury.  
Safety Notice  
Intended use: These drives are intended for use in stationary ground based applications in industrial  
power installations according to the standards EN60204 and VDE0160. They are designed for machine  
applications that require variable speed controlled three-phase brushless AC motors. These drives are  
not intended for use in applications such as:  
H
H
H
H
H
Home appliances  
Medical instrumentation  
Mobile vehicles  
Ships  
Airplanes.  
Unless otherwise specified, this drive is intended for installation in a suitable enclosure. The enclosure  
must protect the drive from exposure to excessive or corrosive moisture, dust and dirt or abnormal  
ambient temperatures. The exact operating specifications are found in section 8 of this manual. The  
installation, connection and control of drives is a skilled operation, disassembly or repair must not be  
attempted. In the event that a drive fails to operate correctly, contact the place of purchase for return  
instructions.  
Precautions  
DANGER: Do not touch any circuit board, power device or electrical connection before you first  
ensure that no high voltage is present at this equipment or other equipment to which  
it is connected. Electrical shock can cause serious or fatal injury. Only qualified  
personnel should attempt to start-up, program or troubleshoot this equipment.  
DANGER: The motor circuit might have high voltages present whenever AC power is applied,  
even when the motor is not moving. Electrical shock can cause serious or fatal  
injury.  
DANGER: If a motor is driven mechanically, it might generate hazardous voltages that are  
conducted to its power terminals. The enclosure must be earthed/grounded to  
prevent possible shock hazard.  
DANGER: Be sure the system is properly earthed/grounded before applying power. Do not  
apply AC power before you ensure that earths/grounds are connected. Electrical  
shock can cause serious or fatal injury.  
1-2 General Information  
MN1942  
www.supportme.net  
WARNING: Be sure all wiring complies with the National Electrical Code and all regional and  
local codes. Improper wiring may result in unsafe conditions.  
WARNING: Be sure that you are completely familiar with the safe operation and programming of  
this equipment. This equipment may be connected to other machines that have  
rotating parts or parts that are controlled by this equipment. Improper use can cause  
serious or fatal injury.  
WARNING: The stop input to this equipment should not be used as the single means of  
achieving a safety critical stop. Drive disable, motor disconnect, motor brake and  
other means should be used as appropriate.  
WARNING: Improper operation or programming of the drive may cause violent motion of the  
motor and driven equipment. Be certain that unexpected motor movement will not  
cause injury to personnel or damage to equipment. Peak torque of several times the  
rated motor torque can occur during control failure.  
WARNING: When operating a rotary motor with no load coupled to its shaft, remove the shaft key  
to prevent it flying out when the shaft rotates.  
WARNING: A regeneration resistor may generate enough heat to ignite combustible materials.  
To avoid fire hazard, keep all combustible materials and flammable vapors away  
from the brake resistors.  
CAUTION: To prevent equipment damage, be certain that the input power has correctly sized  
protective devices installed.  
CAUTION: To prevent equipment damage, be certain that input and output signals are powered  
and referenced correctly.  
CAUTION: To ensure reliable performance of this equipment be certain that all signals to/from  
the drive are shielded correctly.  
CAUTION: Suitable for use on a circuit capable of delivering not more than the RMS  
symmetrical short circuit amperes listed here at rated voltage.  
Horsepower  
1-50  
RMS Symmetrical Amperes  
5,000  
CAUTION: Avoid locating the drive immediately above or beside heat generating equipment, or  
directly below water or steam pipes.  
CAUTION: Avoid locating the drive in the vicinity of corrosive substances or vapors, metal  
particles and dust.  
CAUTION: Do not connect AC power to the drive terminals U, V and W. Connecting AC power  
to these terminals may result in damage to the drive.  
MN1942  
General Information 1-3  
www.supportme.net  
CAUTION: Baldor does not recommend using “Grounded Leg Delta” transformer power leads  
that may create earth/ground loops and degrade system performance. Instead, we  
recommend using a four wire Wye.  
CAUTION: Drives are intended to be connected to a permanent main power source, not a  
portable power source. Suitable fusing and circuit protection devices are required.  
CAUTION: The safe integration of the drive into a machine system is the responsibility of the  
machine designer. Be sure to comply with the local safety requirements at the place  
where the machine is to be used. In Europe these are the Machinery Directive, the  
ElectroMagnetic Compatibility Directive and the Low Voltage Directive. In the United  
States this is the National Electrical code and local codes.  
CAUTION: Drives must be installed inside an electrical cabinet that provides environmental  
control and protection. Installation information for the drive is provided in this  
manual. Motors and controlling devices that connect to the drive should have  
specifications compatible to the drive.  
CAUTION: Failure to meet cooling air flow requirements will result in reduced product lifetime  
and/or drive overtemperature trips.  
CAUTION: Violent jamming (stopping) of the motor during operation may damage the motor and  
drive.  
CAUTION: Operating the MicroFlex e100 in Torque mode with no load attached to the motor can  
cause the motor to accelerate rapidly to excessive speed.  
CAUTION: If the drive enable signal is already present when power is applied to the  
MicroFlex e100, the motor could begin to move immediately.  
CAUTION: Do not tin (solder) exposed wires. Solder contracts over time and may cause loose  
connections. Use crimp connections where possible.  
CAUTION: Electrical components can be damaged by static electricity. Use ESD (electrostatic  
discharge) procedures when handling this drive.  
CAUTION: Ensure that encoder wires are properly connected. Incorrect installation may result  
in improper movement.  
CAUTION: The threaded holes in the top and bottom of the case are for cable clamps. The holes  
are 11.5 mm deep and accept M4 screws, which must be screwed in to a depth of  
at least 8mm.  
CAUTION: Removing the cover will invalidate UL certification.  
CAUTION: The metal heatsink on the left side of the MicroFlex e100 can become very hot  
during normal operation.  
1-4 General Information  
MN1942  
2 Introduction
2
2.1 MicroFlex e100 features  
The MicroFlex e100 is a versatile brushless servo drive, providing a flexible and powerful motion  
control solution for rotary and linear motors. Standard features include:  
H
H
Single axis AC brushless drive.  
Range of models with continuous current ratings of 3A, 6A  
or 9A.  
H
H
Direct connection to 115VAC or 230VAC single-phase or  
230VAC three-phase supplies.  
Universal feedback interface supporting incremental  
encoder, SSI, EnDat or SinCos feedback.  
H
H
Position, velocity and current control.  
Auto-tuning wizard (including position loop) and software  
oscilloscope facilities provided by Mint WorkBench v5.5  
configuration software (supplied).  
H
3 optically isolated general purpose digital inputs. Two  
inputs have ‘fast input’ capability, providing real-time  
position capture.  
H
H
H
1 optically isolated drive enable input.  
1 optically isolated general purpose digital output.  
1
optically isolated digital output to indicate error  
conditions.  
H
H
USB 1.1 serial port (compatible with USB2.0).  
CANopen protocol for communication with Mint controllers  
and other third party CANopen devices.  
H
ETHERNET Powerlink & TCP/IP support: Twin Ethernet  
ports with integrated hub for communication with host PC  
or other ETHERNET Powerlink devices.  
MicroFlex e100 will operate with a large range of brushless rotary and linear servo motors - for  
information on selecting Baldor servo motors, please see the sales brochure BR1202 available  
from your local Baldor representative.  
This manual is intended to guide you through the installation of MicroFlex e100. The sections  
should be read in sequence.  
The Basic Installation section describes the mechanical installation of the MicroFlex e100, the  
power supply connections and motor connections. The other sections require knowledge of the  
low level input/output requirements of the installation and an understanding of computer software  
installation. If you are not qualified in these areas you should seek assistance before proceeding.  
MN1942  
Introduction 2-1  
www.supportme.net  
2.2 Receiving and inspection  
When you receive your MicroFlex e100, there are several things you should do immediately:  
1. Check the condition of the shipping container and report any damage immediately to the  
carrier that delivered your MicroFlex e100.  
2. Remove the MicroFlex e100 from the shipping container and remove all packing material.  
The container and packing materials may be retained for future shipment.  
3. Verify that the catalog number of the MicroFlex e100 you received is the same as the catalog  
number listed on your purchase order. The catalog number is described in the next section.  
4. Inspect the MicroFlex e100 for external damage during shipment and report any damage to  
the carrier that delivered your MicroFlex e100.  
5. If MicroFlex e100 is to be stored for several weeks before use, be sure that it is stored in a  
location that conforms to the storage humidity and temperature specifications shown in  
section 8.1.13.  
2.2.1 Identifying the catalog number  
The MicroFlex e100 is available with different current ratings. The catalog number is marked on  
the side of the unit. It is a good idea to look for the catalog number (sometimes shown as ID/No:)  
and write it in the space provided here:  
Catalog number: MFE_____________________  
Installed at: ________________________  
Date: ______  
A description of a catalog number is shown here, using the example MFE230A003:  
Meaning  
Alternatives  
MFE MicroFlex e100 family  
-
230 Requires an AC supply voltage of 115-230 Volts, 1Φ or 3Φ  
A003 Continuous current rating of 3A  
-
A006=6A; A009=9A  
2-2 Introduction  
MN1942  
www.supportme.net  
2.3 Units and abbreviations  
The following units and abbreviations are used in this manual:  
V . . . . . . . . . . . . . . . Volt (also VAC and VDC)  
W . . . . . . . . . . . . . . Watt  
A . . . . . . . . . . . . . . . Ampere  
. . . . . . . . . . . . . . . Ohm  
µF . . . . . . . . . . . . . . microfarad  
pF . . . . . . . . . . . . . . picofarad  
mH . . . . . . . . . . . . . millihenry  
Φ . . . . . . . . . . . . . . . phase  
ms . . . . . . . . . . . . . . millisecond  
µs . . . . . . . . . . . . . . microsecond  
ns . . . . . . . . . . . . . . nanosecond  
mm . . . . . . . . . . . . . millimeter  
m . . . . . . . . . . . . . . . meter  
in . . . . . . . . . . . . . . . inch  
ft . . . . . . . . . . . . . . . feet  
lbf-in . . . . . . . . . . . . pound force inch (torque)  
N·m . . . . . . . . . . . . . Newton meter (torque)  
ADC . . . . . . . . . . . . Analog to Digital Converter  
ASCII . . . . . . . . . . . American Standard Code for Information Interchange  
AWG . . . . . . . . . . . . American Wire Gauge  
CAL . . . . . . . . . . . . CAN Application Layer  
CAN . . . . . . . . . . . . Controller Area Network  
CDROM . . . . . . . . . Compact Disc Read Only Memory  
CiA . . . . . . . . . . . . . CAN in Automation International Users and Manufacturers Group e.V.  
CTRL+E . . . . . . . . . on the PC keyboard, press Ctrl then E at the same time.  
DAC . . . . . . . . . . . . Digital to Analog Converter  
DS301 . . . . . . . . . . CiA CANopen Application Layer and Communication Profile  
DS401 . . . . . . . . . . CiA Device Profile for Generic I/O Devices  
DS402 . . . . . . . . . . CiA Device Profile for Drives and Motion Control  
DS403 . . . . . . . . . . CiA Device Profile for HMIs  
EDS . . . . . . . . . . . . Electronic Data Sheet  
EMC . . . . . . . . . . . . Electromagnetic Compatibility  
EPL . . . . . . . . . . . . ETHERNET Powerlink  
HMI . . . . . . . . . . . . . Human Machine Interface  
ISO . . . . . . . . . . . . . International Standards Organization  
Kbaud . . . . . . . . . . . kilobaud (the same as Kbit/s in most applications)  
LCD . . . . . . . . . . . . Liquid Crystal Display  
Mbps . . . . . . . . . . . megabits/s  
MB . . . . . . . . . . . . . megabytes  
MMC . . . . . . . . . . . . Mint Machine Center  
(NC) . . . . . . . . . . . . Not Connected  
RF . . . . . . . . . . . . . . Radio Frequency  
SSI . . . . . . . . . . . . . Synchronous Serial Interface  
TCP/IP . . . . . . . . . . Transmission Control Protocol / Internet Protocol  
UDP . . . . . . . . . . . . User Datagram Protocol  
MN1942  
Introduction 2-3  
www.supportme.net  
2-4 Introduction  
MN1942  
3 Basic Installation  
3
3.1 Introduction  
You should read all the sections in Basic Installation to ensure safe installation.  
This section describes the mechanical and electrical installation of the MicroFlex e100 in the  
following stages:  
H
H
H
H
H
H
H
Location considerations  
Mounting the MicroFlex e100  
Connecting the AC power supply  
Connecting the 24VDC control circuit supply  
Connecting the motor  
Installing a regeneration resistor (Dynamic Brake)  
Connecting the feedback device  
These stages should be read and followed in sequence.  
3.1.1 Power sources  
A 115 - 230VAC power source (IEC1010 over-voltage category III or less) in the installation area  
is required. This may be single-phase or three-phase. An AC power filter is required to comply  
with the CE directive for which the MicroFlex e100 was tested (see section 3.4.7).  
The 24VDC control circuit supply must be a regulated power supply with a continuous current  
supply capability of 1A (4A power on surge).  
3.1.2 Hardware requirements  
The components you will need to complete the basic installation are:  
H
H
H
H
H
24VDC power supply.  
AC power supply filter (for CE compliance).  
The motor that will be connected to the MicroFlex e100.  
A motor power cable.  
An encoder feedback cable, SSI cable, or EnDat / SinCos cable. A separate Hall cable might  
also be required for linear motors.  
H
H
A USB cable.  
(Optional) A regeneration resistor (Dynamic Brake) might be required, depending on the  
application. Without the regeneration resistor, the drive may produce an overvoltage fault. All  
MicroFlex e100 models have overvoltage sensing circuitry. Regeneration resistors may be  
purchased separately - see Appendix A.  
H
A cooling fan may be required to allow operation of the MicroFlex e100 at full rated current  
(see section 3.2.2).  
MN1942  
Basic Installation 3-1  
www.supportme.net  
H
A PC with the following specification:  
Minimum specification  
Recommended specification  
Processor  
RAM  
Intel Pentium 500MHz  
Intel PentiumIII 1GHz or faster  
64MB  
40MB  
128MB  
40MB  
Hard disk space  
CD-ROM  
A CD-ROM drive  
USB port or Ethernet* port  
1024 x 768, 16-bit color 1152 x 864, 16-bit color  
Communication  
Screen  
Mouse  
A mouse or similar pointing device  
Windows 2000 or Windows XP  
Operating  
system  
* The Ethernet configuration used by a normal office PC is not suitable for direct  
communication with the MicroFlex e100. It is recommended to install a separate dedicated  
Ethernet adapter in the PC, which can be configured for use with the MicroFlex e100. See  
section 6.2.4.  
3.1.3 Tools and miscellaneous hardware  
H
Your PC operating system user manual might be useful if you are not familiar with Windows.  
H
Small screwdriver(s) with a blade width of 3mm or less for connector X1, and 2.5mm (1/10  
in) or less for connector X3.  
H
M5 screws or bolts for mounting the MicroFlex e100.  
3.1.4 Other information needed for installation  
This information is useful (but not essential) to complete the installation:  
H
H
The data sheet or manual provided with your motor, describing the wiring information of the  
motor cables/connectors.  
Knowledge of whether the digital input signals will be ‘Active Low’ or ‘Active High’.  
3-2 Basic Installation  
MN1942  
www.supportme.net  
3.2 Mechanical installation and cooling requirements  
It is essential that you read and understand this section before beginning the  
installation.  
CAUTION: To prevent equipment damage, be certain that the input power has correctly  
rated protective devices installed.  
CAUTION: To prevent equipment damage, be certain that input and output signals are  
powered and referenced correctly.  
CAUTION: To ensure reliable performance of this equipment be certain that all signals  
to/from the MicroFlex e100 are shielded correctly.  
CAUTION: Avoid locating the MicroFlex e100 immediately above or beside heat  
generating equipment, or directly below water steam pipes.  
CAUTION: Avoid locating the MicroFlex e100 in the vicinity of corrosive substances or  
vapors, metal particles and dust.  
CAUTION: Failure to meet cooling air flow requirements will result in reduced product  
lifetime and/or drive overtemperature trips.  
The safe operation of this equipment depends upon its use in the appropriate environment.  
The following points must be considered:  
H
The MicroFlex e100 must be installed indoors, permanently fixed and located so that it can  
only be accessed by service personnel using tools.  
H
H
The maximum suggested operating altitude is 1000m (3300ft).  
The MicroFlex e100 must be installed where the pollution degree according to IEC664 shall  
not exceed 2.  
H
The 24VDC control circuit supply must be installed so that the 24VDC supplied to the unit is  
isolated from the AC supply using double or reinforced insulation.  
H
H
H
H
H
H
The input of the control circuit must be limited to Safety Extra Low Voltage circuits.  
Both the AC supply and the 24VDC supply must be fused.  
The atmosphere must not contain flammable gases or vapors.  
There must not be abnormal levels of nuclear radiation or X-rays.  
To comply with CE directive 89/336/EEC an appropriate AC filter must be installed.  
The MicroFlex e100 must be secured by the slots in the flange. The protective earth/ground  
(the threaded hole on the top of the MicroFlex e100) must be bonded to a safety earth/ground  
using either a 25A conductor or a conductor of three times the peak current rating -  
whichever is the greater.  
H
H
The threaded holes in the top and bottom of the case are for cable clamps. The holes are  
threaded for M4 bolts no longer than 11mm (0.43 in) in length.  
The D-type connectors on the front panel of the MicroFlex e100 are secured using two  
hexagonal jack screws (sometimes known as “screwlocks”). If a jack screw is removed  
accidentally or lost it must be replaced with a #4-40 UNC jack screw with an external male  
threaded section no longer than 10mm (0.4 in).  
MN1942  
Basic Installation 3-3  
www.supportme.net  
3.2.1 Dimensions  
80  
(3.2)  
11  
63.5  
5
(0.4)  
(2.5)  
(0.2)  
Mounting hole and slot detail  
5.5 mm  
Dimensions shown as: mm (inches).  
Depth: 157 mm (6.2 in)  
Weight: 3A: 1.45kg (3.2lb)  
6A: 1.50kg (3.3lb)  
9A: 1.55kg (3.4lb)  
Figure 1 - Mounting and overall dimensions  
3-4 Basic Installation  
MN1942  
www.supportme.net  
3.2.2 Mounting and cooling the MicroFlex e100  
Ensure you have read and understood the Mechanical installation and location requirements in  
section 3.2. Mount the MicroFlex e100 vertically on its rear side, the side opposite the front panel.  
M5 bolts or screws should be used to mount the MicroFlex e100. Detailed dimensions are shown  
in section 3.2.1.  
For effective cooling, the MicroFlex e100 must be mounted upright on a smooth vertical metal  
surface. The MicroFlex e100 is designed to operate in an ambient temperature of 0°C to 45°C  
(32°F to 113°F). Output current must be derated between 45°C (113°F) and the absolute  
maximum ambient temperature of 55°C (131°F). Within the ambient temperature range:  
The 3A model is designed to operate without any additional cooling methods.  
The 6A and 9A models require a forced air flow, passing vertically from the bottom to the top of  
the MicroFlex e100 case, to allow full rated current at 45°C (113°F).  
Temperature derating characteristics are shown in sections 3.2.3 to 3.2.5.  
Note: Failure to meet cooling air flow requirements will result in reduced product lifetime  
and/or drive overtemperature trips. It is recommended to check periodically the  
operation of the cooling equipment. Optional fan tray FAN001-024, mounted exactly  
as shown in section A.1.1., ensures that correct cooling is provided and allows the  
MicroFlex e100 to be UL listed.  
3.2.2.1 Effects of mounting surface and proximity  
The proximity of the MicroFlex e100 to other  
Metal backplane  
components could affect cooling efficiency. If  
the MicroFlex e100 is mounted beside another  
MicroFlex e100 (or other obstruction), there  
should be a minimum space of 15mm to  
maintain effective cooling.  
15mm  
If the MicroFlex e100 is mounted above or  
below another MicroFlex e100 (or other  
obstruction), there should be a minimumspace  
of 90mm to maintain effective cooling.  
Remember that when a MicroFlex e100 is  
mounted above another MicroFlex e100 or  
heat source, it will be receiving air that has  
90mm  
been already heated by the device(s) below it.  
Multiple MicroFlex e100 units mounted above  
each other should be aligned, not offset, to  
promote air flow across the heatsinks.  
15mm  
The derating characteristics assume the  
MicroFlex e100 is mounted on 3mm thick (or  
less) metal plate. If the MicroFlex e100 is  
mounted on 10mm plate then the current  
characteristics shown in sections 3.2.3 to 3.2.5  
may be increased by up to 7% if there is no  
forced air cooling, or 15% if forced air cooling  
is present.  
It is recommended to allow approximately  
60mm at the front to accommodate wiring and  
connectors.  
Fan  
Fan  
Figure 2 - Cooling and proximity  
Basic Installation 3-5  
MN1942  
www.supportme.net  
3.2.3 Derating characteristic - 3A model  
The following derating characteristics are for model MFE230A003.  
Single-phase AC supply  
3
1m/s forced air  
2
1
0
Natural cooling  
30  
35  
40  
45  
50  
55  
Ambient temperature (°C)  
Three-phase AC supply  
3
2
1
0
1m/s forced air  
Natural cooling  
30  
35  
40  
45  
50  
55  
Ambient temperature (°C)  
Notes:  
Load power factor = 0.75.  
Overload limit for model MFE230A003 is 6A.  
3-6 Basic Installation  
MN1942  
www.supportme.net  
3.2.4 Derating characteristic - 6A model  
The following derating characteristics are for model MFE230A006.  
Single-phase AC supply  
6
1.5m/s forced air  
5
4
3
2
1
0
1m/s forced air  
Natural cooling  
30  
35  
40  
45  
50  
55  
Ambient temperature (°C)  
Three-phase AC supply  
6
5
4
3
2
1
0
1.5m/s forced air  
1m/s forced air  
Natural cooling  
30  
35  
40  
45  
50  
55  
Ambient temperature (°C)  
Notes:  
Load power factor = 0.75.  
Overload limit for model MFE230A006 is 12A.  
MN1942  
Basic Installation 3-7  
www.supportme.net  
3.2.5 Derating characteristic - 9A model  
The following derating characteristics are for model MFE230A009.  
Single-phase AC supply  
9
8
7
6
5
4
3
2
1
0
3.5m/s forced air  
2.5m/s forced air  
1.5m/s forced air  
1m/s forced air  
Natural cooling  
30  
35  
40  
45  
50  
55  
Ambient temperature (°C)  
Three-phase AC supply  
9
8
7
6
5
4
3
2
1
0
3.5m/s forced air  
2.5m/s forced air  
1.5m/s forced air  
1m/s forced air  
Natural cooling  
30  
35  
40  
45  
50  
55  
Ambient temperature (°C)  
Notes:  
Load power factor = 0.78.  
Overload limit for model MFE230A009 is 18A.  
3.2.6 Overtemperature trips  
The MicroFlex e100 contains internal temperature sensors that will cause it to trip and disable if  
the temperature exceeds 80°C on the 3A model, or 75°C on the 6A and 9A models. This limit can  
be read using the TEMPERATURELI MI TFATAL keyword - see the Mint help file for details.  
3-8 Basic Installation  
MN1942  
www.supportme.net  
3.3 Connector locations  
3.3.1 Front panel connectors  
X1 Power  
LEDs  
The STATUS, CAN and ETHERNET  
LEDs are described in section 7.2.1.  
Earth/Ground  
Earth/Ground  
(NC)  
Node ID  
L1  
L2  
L3  
U
AC Phase 1 / L  
AC Phase 2 / N  
AC Phase 3  
Motor U  
These switches set the MicroFlex e100’s  
node ID for ETHERNET Powerlink, and the  
final value of the IP address when using  
TCP/IP. See sections 5.6.1 and 6.2.4.  
V
Motor V  
W
R1  
R2  
Motor W  
Regen  
USB  
Regen  
1
2
3
4
(NC)  
Data-  
Data+  
GND  
X6 Auxiliary port  
(Currently unused)  
X3 Input / Output  
1
2
3
4
5
6
7
8
9
Status-  
11 Status+  
12 DGND  
13 DOUT1+  
14 DIN2+  
15 DGND  
16 DIN1+  
17 DIN0+  
18 DGND  
DGND  
DOUT1-  
DIN2-  
DGND  
DIN1-  
DIN0-  
DGND  
Drive enable- 19 Drive enable+  
20 Shield  
10 Shield  
X8 Feedback In  
Pin  
1
2
Incremental SinCos  
SSI  
EnDat  
Data+  
Clock+  
(NC)  
CHA+  
CHB+  
CHZ+  
(NC)  
(NC)  
(NC)  
Data+  
Clock+  
(NC)  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Sense  
Hall U-  
Hall U+  
Hall V-  
Hall V+  
CHA-  
CHB-  
CHZ-  
+5V out  
DGND  
Hall W-  
Hall W+  
Sense  
Sin-  
Sin+  
Cos-  
Cos+  
(NC)  
(NC)  
(NC)  
+5V out  
DGND  
(NC)  
Sense  
(NC)  
(NC)  
(NC)  
(NC)  
Data-  
Clock-  
(NC)  
+5V out  
DGND  
(NC)  
Sense  
Sin-*  
Sin+*  
Cos-*  
Cos+*  
Data-  
Clock-  
(NC)  
+5V out  
DGND  
(NC)  
X2 Control circuit power  
(NC)  
(NC)  
(NC)  
0V  
+24V  
Shell Shield  
Shield  
Shield  
Shield  
* EnDat v2.1 only. EnDat v2.2 does not use the Sin and  
Cos signals.  
(NC) = Not Connected. Do not  
make a connection to this pin.  
Tightening torque for terminal block connections (X1 & X3) is 0.5-0.6Nm  
(4.4-5.3 lb-in). Maximum wire sizes: X1: 2.5mm ; X3: 0.5mm .  
2
2
MN1942  
Basic Installation 3-9  
www.supportme.net  
3.3.2 Top panel connectors  
CAN  
1
2
3
4
5
6
7
8
9
(NC)  
CAN-  
CAN GND  
(NC)  
Shield  
CAN GND  
CAN+  
(NC)  
CAN V+  
Ethernet  
1
2
3
4
5
6
7
8
TX+  
TX-  
RX+  
(NC)  
(NC)  
RX-  
Both connectors  
have identical  
pinouts.  
(NC)  
(NC)  
3-10 Basic Installation  
MN1942  
www.supportme.net  
3.4 Power connections  
This section provides instructions for connecting the AC power supply.  
The installer of this equipment is responsible for complying with NEC (National Electric Code)  
guidelines or CE (Conformite Europeene) directives and application codes that govern wiring  
protection, earthing/grounding, disconnects and other current protection.  
DANGER: Electrical shock can cause serious or fatal injury. Do not touch any  
power device or electrical connection before you first ensure that  
power has been disconnected and there is no high voltage present  
from this equipment or other equipment to which it is connected.  
MicroFlex e100 drives are designed to be powered from standard single and three-phase lines  
that are electrically symmetrical with respect to earth/ground. The power supply module within  
all MicroFlex e100 models provides rectification, smoothing and current surge protection. Fuses  
or circuit breakers are required in the input lines for cable protection.  
Note: A Residual Current Device (RCD) must not be used for fusing the drive.  
An appropriate type of circuit breaker or fuse must be used.  
All interconnection wires should be in metal conduits between the MicroFlex e100, AC power  
source, motor, host controller and any operator interface stations. Use UL listed closed loop  
connectors that are of appropriate size for the wire gauge being used. Connectors are to be  
installed using only the crimp tool specified by the manufacturer of the connector. Only class 1  
wiring should be used.  
3.4.1 Earthing / grounding  
A permanent earth/ground bonding point is provided on the heatsink, which must be used as the  
protective earth. It is labeled with the protective earth symbol in the casting and does not form any  
other mechanical function.  
Connector X1 contains earth terminals, but these must not be used as protective earth since the  
connector does not guarantee earth connection first, disconnection last. Earthing methods are  
shown in section 3.4.2.  
Note: When using unearthed/ungrounded distribution systems, an isolation transformer  
with an earthed/grounded secondary is recommended. This provides three-phase  
AC power that is symmetrical with respect to earth/ground and can prevent  
equipment damage.  
3.4.1.1 Protection class  
User protection has been achieved using Protective Class I (EN61800-5-1, 3.2.20), which  
requires an earth connection to the unit whenever hazardous voltages are applied. The  
equipment provides protection against electric shock by:  
H
H
Means of connection of protective earth to accessible live conductive parts.  
Basic insulation.  
3.4.1.2 Earth leakage  
Maximum earth leakage from the MicroFlex e100 is 3.4mA per phase (230V 50Hz supply). This  
value does not include the earth leakage from the AC power filter, which could be much larger  
(see section A.1.3). If the MicroFlex e100 and filter are mounted in an enclosure, it is  
2
recommended the enclosure is earthed using a 10mm conductor.  
MN1942  
Basic Installation 3-11  
www.supportme.net  
3.4.2 Single-phase or three-phase power connections  
Location Connector X1 (Mating connector: Phoenix COMBICON  
MSTB 2,5HC/11-ST-5,08)  
Nominal input voltage 115VAC or 230VAC, 1Φ or 3Φ line to line  
Minimum input voltage 105VAC, 1Φ or 3Φ line to line (see Note*)  
Maximum input voltage 250VAC, 1Φ or 3Φ line to line  
Note: * The MicroFlex e100 will operate at lower input voltages, although performance  
could be impaired. The drive will trip if the DC-bus voltage falls below 50V or 60% of  
the no-load voltage, whichever occurs first.  
For three phase supplies, connect supply to L1, L2 and L3 as shown in Figure 3. For single phase  
supplies, connect the supply and neutral to any two line inputs, for example L1 and L2.  
For CE compliance, an AC filter must be connected between the AC power supply and the  
MicroFlex e100. If local codes do not specify different regulations, use at least the same gauge  
wire for earth/ground as is used for L1, L2 and L3.  
Tightening torque for terminal block connections is 0.5-0.6Nm (4.4-5.3 lb-in). The threaded hole  
in the top and bottom of the case may be used as an additional functional earth/ground  
connection for signals on connector X3. They may also be used to attach shield or strain relief  
clamps. The holes are threaded for M4 bolts no longer than 11mm (0.43 in) in length.  
Connect  
earth/ground  
to protective  
earth on top of  
drive  
AC  
Supply  
Route L1, L2, L3 and Circuit breaker or fuses.  
AC filter.  
See section  
3.4.7  
earth/ground together  
See section 3.4.4  
in conduit or cable  
Line (L1)  
Line (L2)  
Line (L3)  
Isolating switch  
Incoming safety  
earth/ground (PE)  
To earth/ground outer shield,  
use 360° clamps connected  
to enclosure backplane  
STAR POINT  
Figure 3 - Single or three-phase power connections  
3-12 Basic Installation  
MN1942  
www.supportme.net  
3.4.3 Input power conditioning  
Certain power line conditions must be avoided; an AC line reactor, an isolation transformer or a  
step up/step down transformer may be required for some power conditions:  
H
H
If the feeder or branch circuit that provides power to the MicroFlex e100 has permanently  
connected power factor correction capacitors, an input AC line reactor or an isolation  
transformer must be connected between the power factor correction capacitors and the  
MicroFlex e100 to limit the maximum symmetrical short circuit current to 5000A.  
If the feeder or branch circuit that provides power to the MicroFlex e100 has power factor  
correction capacitors that are switched on line and off line, the capacitors must not be  
switched while the drive is connected to the AC power line. If the capacitors are switched on  
line while the drive is still connected to the AC power line, additional protection is required.  
A Transient Voltage Surge Suppressor (TVSS) of the proper rating must be installed  
between the AC line reactor (or isolation transformer) and the AC input to the  
MicroFlex e100.  
3.4.3.1 Input power-cycling and inrush  
If AC power has been removed from the MicroFlex e100, it should remain disconnected for the  
period specified in Table 1, before it is reapplied.  
MicroFlex e100  
current rating  
Minimum power cycle delay period  
(seconds)  
3A  
6A  
9A  
25  
45  
65  
Table 1 - Power cycle intervals  
This delay allows the input surge protection circuit to perform correctly, ensuring that the inrush  
current (typically 1.7A) is below the drive rated current. Power-cycling the drive more frequently  
could cause high inrush current and corresponding nuisance operation of circuit breakers or  
fuses. Repeated failure to observe the delay period could reduce the lifetime of the  
MicroFlex e100.  
3.4.3.2 Discharge period  
DANGER: After AC power has been removed from the MicroFlex e100, high voltages  
(greater than 50VDC) can remain on the regeneration resistor connections  
until the DC-bus circuitry has discharged. The high voltage can remain for  
the period specified in Table 2.  
MicroFlex e100  
current rating  
Time for DC-bus to discharge to 50V or less  
(maximum, seconds)  
3A  
6A  
9A  
83  
166  
248  
Table 2 - DC-bus discharge periods  
MN1942  
Basic Installation 3-13  
www.supportme.net  
3.4.3.3 Supplying input power from a variac (variable transformer)  
When AC power is supplied from a variac, the MicroFlex e100’s pre-charge circuit may not  
operate correctly. To ensure that the pre-charge circuitry operates correctly, increase the variac  
voltage to the desired level and then power cycle the 24VDC control circuit supply. This will restart  
the pre-charge circuit and allow it to operate correctly.  
3.4.4 Power disconnect and protection devices  
A power disconnect should be installed between the input power supply and the MicroFlex e100  
for a fail-safe method to disconnect power. The MicroFlex e100 will remain in a powered  
condition until all input power is removed from the drive and the internal bus voltage has depleted.  
The MicroFlex e100 must have a suitable input power protection device installed, preferably a  
fuse. Recommended circuit breakers are thermal magnetic devices (1 or 3 phase as required)  
with characteristics suitable for heavy inductive loads (C-type trip characteristic). Circuit breaker  
or fuses are not supplied - see section 3.4.5. For CE compliance, see Appendix C.  
Circuit Breaker  
From  
supply  
Fuse  
From  
supply  
L
L
L
L
N
N
N
N
Figure 4 - Circuit breaker and fuse, single-phase  
From  
supply  
Circuit Breaker  
From  
supply  
Fuses  
L1  
L1  
L2  
L3  
L1  
L2  
L3  
L2  
L3  
Circuit breaker or fuse are not supplied.  
For CE Compliance, see Appendix C.  
Figure 5 - Circuit breaker and fuse, three-phase  
Note: Metal conduit or shielded cable should be used. Connect conduits so the use of a  
line reactor or RC device does not interrupt EMI/RFI shielding.  
3.4.4.1 Using 2 phases of a 3-phase supply  
Power may be derived by connecting two phases of an appropriate three-phase supply (L1 and  
L2 for example). When supplying AC power in this way, the voltage between the two phases must  
not exceed the rated input voltage of the MicroFlex e100. A two pole breaker must be used to  
isolate both lines. Fuses must be fitted in both lines.  
3-14 Basic Installation  
MN1942  
www.supportme.net  
3.4.5 Recommended fuses, circuit breakers and wire sizes  
Table 3 describes the recommended fuses, circuit breakers and suitable wires sizes to be used  
for power connections.  
Catalog  
Number  
Cont.  
AC  
Input Fuse  
Circuit  
breaker Wire Gauge  
(C-type)  
Minimum  
Output Supply  
Amps  
(RMS)  
Type  
2
AWG mm  
Ferraz Shawmut:  
6x32 FA series, 10A (W084314P)  
or  
1Φ  
10A  
8A  
14  
14  
14  
2.0  
2.0  
2.0  
BS88 2.5 URGS 10A (N076648)  
MFE..A003  
3A  
Ferraz Shawmut:  
6x32 FA series, 8A (V084313P)  
or  
3Φ  
BS88 2.5 URGS, 7A (M076647)  
Ferraz Shawmut:  
6x32 FA series, 20A (A084318P)  
or  
1Φ  
20A  
BS88 2.5 URGS, 20A (L097507)  
MFE..A006  
MFE..A009  
6A  
9A  
Ferraz Shawmut:  
6x32 FA series, 12.5A  
(X084315P)  
3Φ  
12.5A  
14  
2.0  
or  
BS88 2.5 URGS, 12A (P076649)  
Ferraz Shawmut:  
BS88 2.5 URGS, 25A (R076651)  
1Φ  
25A  
20A  
14  
14  
2.5  
2.0  
Ferraz Shawmut:  
6x32 FA series, 20A (A084318P)  
or  
3Φ  
BS88 2.5 URGS, 20A (L097507)  
Table 3 - Protection device and wire ratings  
Note: All wire sizes are based on 75°C (167°F) copper wire. Higher temperature smaller  
gauge wire may be used per National Electric Code (NEC) and local codes.  
Recommended fuses are based on 25°C (77°F) ambient, maximum continuous  
control output current and no harmonic current. Earth/ground wires must be the  
same gauge, or larger, than the Line wires.  
3.4.6 Drive overload protection  
The MicroFlex e100 will immediately trip and disable if there is an overload condition. The  
parameters for managing drive overloads are configured automatically by the Commissioning  
Wizard (see section 6.4.3). If they need to be changed, use the Parameters tool in Mint  
WorkBench (see section 6.5.2).  
MN1942  
Basic Installation 3-15  
www.supportme.net  
3.4.7 Power supply filters  
To comply with EEC directive 89/336/EEC, an AC power filter of the appropriate type must be  
connected. This can be supplied by Baldor and will ensure that the MicroFlex e100 complies with  
the CE specifications for which it has been tested. Ideally, one filter should be provided for each  
MicroFlex e100; filters should not be shared between drives or other equipment. Table 4 lists the  
appropriate filters:  
MicroFlex e100  
current  
Input voltages  
230VAC, 3Φ  
230VAC, 1Φ  
rating  
3A FI0015A00 + line reactor  
(see sections 3.4.7.1 and 3.4.7.2)  
or  
FI0018A00  
FI0029A00 (see section A.1.2)  
6A FI0015A02 (see section 3.4.7.2)  
or  
FI0018A00  
FI0018A03  
FI0029A00 (see section A.1.2)  
9A FI0029A00 (see section A.1.2)  
Table 4 - Baldor filter part numbers  
Maximum earth leakage from the MicroFlex e100 is 3.4mA per phase (230V 50Hz supply). This  
value does not include the earth leakage from the AC power filter, which could be much larger  
(see section A.1.3).  
3.4.7.1 Harmonic suppression  
When operating the 3A MicroFlex e100 (part MFE230A003) on a single-phase AC supply, a  
13mH 4A  
(10A peak) line reactor is required to ensure compliance with EN61000-3-2:2000  
rms  
class A limits, when the total equipment supply load is less than 1kW.  
3.4.7.2 Reversing the filter  
When using filters FI0015A00 or FI0015A02 as specified in Table 4, they must be reversed to  
ensure that the MicroFlex e100 complies with the CE specifications for which it has been tested.  
The AC power supply should be connected to the filter terminals marked as the outputs, with the  
MicroFlex e100 connected to the filter terminals marked as the inputs.  
WARNING: This recommendation applies only to filters FI0015A00 and FI0015A02.  
Alternative filters or protection devices must be connected as specified by  
the manufacturer.  
3-16 Basic Installation  
MN1942  
www.supportme.net  
3.4.8 24V control circuit supply  
A 24VDC supply must be provided to power the controlling electronics. This is useful for safety  
reasons where AC power needs to be removed from the power stage but the controlling  
electronics must remain powered to retain position and I/O information.  
A separate fused 24V supply should be provided for the MicroFlex e100. If other devices are  
likely to be powered from the same 24V supply, a filter (Baldor catalog number FI0014A00)  
should be installed to isolate the MicroFlex e100 from the rest of the system. Alternatively, a  
ferrite sleeve may be attached to the supply cable near connector X2.  
Location Connector X2  
Nominal input 24V  
voltage  
Range 20-30VDC  
Input current  
Maximum 1A continuous (4A typical power on surge, limited by NTC)  
Typical 0.5A - 0.6A (not powering feedback device)  
0.6A - 0.8A (powering feedback device)  
Tightening torque for terminal block connections is 0.5-0.6Nm (4.4-5.3 lb-in).  
Customer supplied  
24VDC  
24V filter  
(optional)  
Ferrite  
sleeve**  
Fuse *  
+24V  
GND  
Use a twisted pair cable, with  
ferrite sleeve attached close  
to connector X2.  
Incoming safety  
earth/ground (PE)  
STAR  
POINT  
* Recommended fuse: Bussman S504 20x5mm anti-surge 2A.  
** Recommended ferrite sleeve: Fair-Rite part 0431164281 or similar.  
Figure 6 - 24V control circuit supply connections  
MN1942  
Basic Installation 3-17  
www.supportme.net  
3.5 Motor connections  
MicroFlex e100 will operate with a large number of brushless servo motors. For information on  
selecting Baldor servo motors please see the sales brochure BR1202, available from your local  
Baldor representative. The motor must be capable of being powered by an inverter PWM output  
- see section 8.1.3 for details. The motor can be connected directly to the MicroFlex e100 or  
through a motor contactor (M-Contactor). The motor outputs are conditionally short-circuit proof.  
Motors should ideally have a minimum inductance of 1mH per winding; for motors with lower  
inductance an output reactor may be fitted in series with the motor.  
When using a Baldor motor, the parameters for managing motor overloads are configured  
automatically by the Commissioning Wizard (see section 6.4.3). If they need to be changed, or  
you are using an alternative motor, use the Parameters tool in Mint WorkBench (see section  
6.5.2).  
Location Connector X1  
AC supply voltage 115VAC, 1Φ  
230VAC, 1Φ  
230VAC, 3Φ  
Output voltage range 0-115VAC, 3Φ  
0-230VAC, 3Φ  
0-230VAC, 3Φ  
Motor  
Connect motor  
To earth/ground outer  
shield, use 360°  
clamp connected to  
backplane.  
earth/ground  
to protective  
earth on top of  
drive.  
Earth  
U
V
Unshielded  
lengths should  
be as short as  
possible.  
W
Optional motor  
circuit contactors.  
To earth/ground  
outer shield,  
use 360° clamp  
connected to  
backplane.  
Figure 7 - Motor connections  
CAUTION: Do not connect supply power to the MicroFlex e100 UVW outputs. The  
MicroFlex e100 might be damaged.  
CAUTION: The motor leads U, V and W must be connected to their corresponding U,  
V or W terminal on the motor. Misconnection will result in uncontrolled motor  
movement.  
The motor power cable must be shielded for CE compliance. The connector or gland used at the  
motor must provide 360 degree shielding. The maximum recommended cable length is 30.5m  
(100ft).  
Note: For CE compliance the motor earth/ground should be connected to the drive  
earth/ground.  
3-18 Basic Installation  
MN1942  
www.supportme.net  
3.5.1 Motor circuit contactors  
If required by local codes or for safety reasons, an M-Contactor (motor circuit contactor) may be  
installed to provide a physical disconnection of the motor windings from the MicroFlex e100 (see  
section 3.5). Opening the M-Contactor ensures that the MicroFlex e100 cannot drive the motor,  
which may be necessary during equipment maintenance or similar operations. Under certain  
circumstances, it may also be necessary to fit a brake to a rotary motor. This is important with  
hanging loads where disconnecting the motor windings could result in the load falling. Contact  
your local supplier for details of appropriate brakes.  
CAUTION: If an M-Contactor is installed, the MicroFlex e100 must be disabled at least  
20ms before the M-Contactor is opened. If the M-Contactor is opened while  
the MicroFlex e100 is supplying voltage and current to the motor, the  
MicroFlex e100 may be damaged. Incorrect installation or failure of the  
M-Contactor or its wiring may result in damage to the MicroFlex e100.  
Ensure that shielding of the motor cable is continued on both sides of the contactor.  
3.5.2 Motor power cable pin configuration - Baldor BSM rotary motors  
Figure 8 shows the pin configuration for a typical Baldor motor cable, part number CBL025SP-12:  
Signal name  
Motor U  
Motor / cable pin  
Motor cable wire color  
Black, labeled ‘1’  
Black, labeled ‘2’  
Black, labeled ‘3’  
Green/Yellow  
Green  
1
4
Motor V  
Motor W  
3
Earth/ground  
Thermal switch  
Thermal switch  
Brake  
2
A
B
C
D
White  
Blue  
Brake  
Red  
B
C
D
C
B
Note:  
A
Not all motors  
are fitted with  
a brake so  
pins C and D  
might not be  
connected.  
A
1
D
4
4
2
1
3
3
2
Motor power connector  
(male)  
Cable connector end view  
(female)  
Figure 8 - Baldor motor power cable pin configuration  
MN1942  
Basic Installation 3-19  
www.supportme.net  
3.5.3 Motor cable pin configuration - Baldor linear motors  
The following table shows the pin colors used in a typical Baldor linear motor cable set, part  
number AY1763A00:  
Signal name  
Motor U  
Motor cable wire color  
Black  
Red  
Motor V  
Motor W  
White  
Green  
Blue  
Motor ground  
Thermal switch  
Thermal switch  
Orange  
Signal name  
Hall 1 (U)  
Hall cable wire color  
White  
Red  
Hall 2 (V)  
Hall 3 (W)  
Hall ground  
Hall +5VDC  
Black  
Green  
Brown  
3.5.4 Sinusoidal filter  
A sinusoidal filter is used to provide a better quality waveform to the motor, reducing motor noise,  
temperature and mechanical stress. It will reduce or eliminate harmful dV/dt values (voltage rise  
over time) and voltage doubling effects which can damage motor insulation. This effect occurs  
most noticeably when using very long motor cables, for example 30m (100 ft) or more. Baldor  
motors intended to be used with drives are designed to withstand the effects of large dV/dt and  
overvoltage effects. However, if very long motor cables are unavoidable and are causing  
problems, then a sinusoidal filter may be beneficial.  
3-20 Basic Installation  
MN1942  
www.supportme.net  
3.5.5 Thermal switch connection  
You might wish to wire the motor’s thermal switch contacts (normally closed), using a relay, to a  
digital input on connector X3 (see section 3.3.1). Using the Mint WorkBench Digital I/O tool, the  
input can be configured to be the motor trip input. This allows the MicroFlex e100 to respond to  
motor over-temperature conditions. The Mint keyword MOTORTEMPERATUREI NPUT can also be  
used to configure a digital input for this purpose. A typical circuit, using DIN1 as the input, is shown  
in Figure 9.  
‘X3’  
DIN1+  
16  
A
motor  
thermal  
Relay  
switch  
B
DIN1-  
6
+24VDC  
0V  
+24VDC  
0V  
Separate  
customer  
supplied  
Customer  
supplied  
24VDC  
supply  
24VDC supply  
Figure 9 - Motor thermal switch circuit  
CAUTION: The 24VDC power supply connected to the thermal switch must be a  
separate supply as shown in Figure 9. Do not use the 24V supply used for  
the drive enable signal, or the internally generated supply (if present). The  
thermal switch wires often carry noise that could cause erratic drive  
operation or damage. The thermal switch contacts must never be wired  
directly to a digital input.  
The separate 24VDC supply used for the thermal switch may also be used  
for the motor brake circuit (section 3.5.6).  
MN1942  
Basic Installation 3-21  
www.supportme.net  
3.5.6 Motor brake connection  
You might wish to wire a motor’s brake, via relays, to digital outputs on connector X3 (see section  
3.3.1). This provides a way for the MicroFlex e100 to control the motor’s brake. A typical circuit  
is shown in Figure 10.  
‘X3’  
User supply V+  
DOUT0+  
11  
13  
The relays have normally open  
contacts and are shown deactivated  
(contacts open, brake engaged).  
DOUT1+  
C
D
from motor brake  
connections  
DOUT0-  
DOUT1-  
1
3
Relay 1  
The inner shield  
surrounding the  
brake wires should  
be earthed/grounded  
at one point only.  
Relay 2  
User supply GND  
+24VDC  
0V  
Separate  
customer  
supplied  
24VDC supply  
Figure 10 - Motor brake control circuit  
This circuit uses the drive enable signal (configured using DRI VEENABLEOUTPUT to appear on  
DOUT0) in conjunction with DOUT1 (configured as the MOTORBRAKEOUTPUT). See the Mint help  
file for details. With this configuration, the following sequences can be used to control the brake.  
To engage the brake:  
H
H
H
The motor is brought to rest under normal control;  
Relay 2 is deactivated, causing the brake to engage;  
The drive is disabled. This removes power from the motor and causes Relay 1 to be  
deactivated.  
To disengage the brake:  
H
H
H
The drive is enabled, activating Relay 1;  
Power is applied to the motor to hold position under normal control;  
Relay 2 is activated, causing the brake to be disengaged.  
It may be necessary to include a small delay, after Relay 2 has been activated, before starting  
motion. This delay will allow time for the relay contacts to engage and the brake to release.  
CAUTION: The 24VDC power supply used to power the brake must be a separate  
supply as shown in Figure 10. Do not use the supply that is powering the  
MicroFlex e100 digital outputs. The brake wires often carry noise that could  
cause erratic drive operation or damage. The brake contacts must never be  
wired directly to the digital outputs. The relay(s) should be fitted with a  
protective flyback diode, as shown. The separate 24VDC supply used for the  
motor brake may also be used to power the relay in the thermal switch circuit  
(section 3.5.5).  
3-22 Basic Installation  
MN1942  
www.supportme.net  
3.6 Regeneration resistor (Dynamic Brake resistor)  
An optional external regeneration resistor may be required to dissipate excess power from the  
internal DC bus during motor deceleration. The regeneration resistor must have a resistance of  
at least 39, an inductance of less than 100µH, and a minimum power rating of 44W. Suitable  
regeneration resistors are listed in section A.1.4. The regeneration resistor output is conditionally  
short-circuit proof.  
Regeneration  
resistor  
Connect outer shield  
to resistor body  
Earth/ground outer  
shield, using 360°  
conductive clamp  
connected to  
enclosure backplane  
STAR  
POINT  
Figure 11 - Regeneration resistor connections  
DANGER: Electrical shock hazard. DC bus voltages may be present at these  
terminals. A regeneration resistor may generate enough heat to ignite  
combustible materials. To avoid fire hazard, keep all combustible materials  
and flammable vapors away from the resistor.  
MN1942  
Basic Installation 3-23  
www.supportme.net  
3-24 Basic Installation  
MN1942  
4 Feedback
4
4.1 Introduction  
MicroFlex e100 supports many feedback options for use with linear and rotary motors, including  
incremental encoder, encoder with SSI (Synchronous Serial Interface), SinCos encoder, or  
EnDat absolute encoder. All suitable types of feedback device can be connected to the universal  
feedback interface available on connector X8.  
There are some important considerations when wiring the feedback device:  
H
H
The feedback device wiring must be separated from power wiring.  
Where feedback device wiring runs parallel to power cables, they must be separated by at  
least 76mm (3 in)  
H
H
Feedback device wiring must cross power wires at right angles only.  
To prevent contact with other conductors or earths/grounds, unearthed/ungrounded ends of  
shields must often be insulated.  
H
H
Linear motors use two separate cables (encoder and Hall). The cores of these two cables will  
need to be wired to the appropriate pins of the 15-pin D-type mating connector.  
The inputs are not isolated.  
MN1942  
Feedback 4-1  
www.supportme.net  
4.1.1 Incremental encoder feedback  
The incremental encoder connections (ABZ channels and Hall signals) are made using the  
15-pin D-type female connector X8. The encoder inputs (CHA, CHB and CHZ) accept differential  
signals only. Twisted pairs must be used for each complementary signal pair e.g. CHA+ and  
CHA-. The Hall inputs may be used as differential inputs (recommended for improved noise  
immunity) or single ended inputs. When used as single ended inputs, leave the Hall U-, Hall V-  
and Hall W- pins unconnected. The overall cable shield (screen) must be connected to the  
metallic shell of the D-type connector. Connector X8 includes a ‘Sense’ pin, which is used to  
detect the voltage drop on long cable runs. This allows the MicroFlex e100 to increase the  
encoder supply voltage on pin 12 to maintain a 5V supply at the encoder (200mA max).  
Pin Incremental encoder function  
1
2
3
4
5
6
7
8
9
CHA+  
CHB+  
CHZ+  
Sense  
Hall U-  
Hall U+  
Hall V-  
Hall V+  
CHA-  
1
8
9
10 CHB-  
15  
11 CHZ-  
12 +5V out  
13 DGND  
14 Hall W-  
15 Hall W+  
MicroFlex e100  
to encoder signal loss detection  
CHA+  
CHA-  
1
9
MAX3096  
Differential  
line receiver  
1nF  
to CPU  
120R  
1nF  
DGND  
Figure 12 - Encoder channel input circuit - Channel A shown  
4-2 Feedback  
MN1942  
www.supportme.net  
MicroFlex e100  
+5V  
2k2  
10k  
Hall U+  
Hall U-  
6
5
MAX3096  
Differential  
line receiver  
1nF  
to CPU  
1nF  
4k7  
DGND  
Figure 13 - Hall channel input circuit - U phase shown  
4.1.1.1 Encoder cable configuration - Baldor rotary motors  
Motor  
X8  
Twisted pairs  
1
CHA+  
9
2
CHA-  
CHB+  
10 CHB-  
CHZ+ (INDEX)  
11 CHZ- (INDEX)  
Encoder  
Feedback  
3
12 +5V out  
13 DGND  
4
Sense  
6
5
Hall U+  
Hall U-  
Hall  
Feedback  
15 Hall W+  
14 Hall W-  
8
7
Hall V+  
Hall V-  
Connect overall shield  
to connector backshells.  
Figure 14 - Encoder cable connections - rotary motors  
Note: If the Hall inputs are used as single ended inputs, leave the Hall U-, Hall V- and  
Hall W- pins unconnected; do not connect them to ground.  
MN1942  
Feedback 4-3  
www.supportme.net  
4.1.1.2 Encoders without Halls  
Incremental encoders without Hall feedback connections may be connected to the  
MicroFlex e100. However, if Hall connections are not present, it will be necessary for the  
MicroFlex e100 to perform an automatic phase search sequence each time it is powered. This  
will cause motor movement of up to 1 turn on rotary motors, or one pole-pitch on linear motors.  
Motor  
X8  
Twisted pairs  
1
CHA+  
9
2
CHA-  
CHB+  
Encoder  
Feedback  
10 CHB-  
3
CHZ+ (INDEX)  
11 CHZ- (INDEX)  
12 +5V out  
13 DGND  
4
Sense  
Connect overall shield  
to connector backshells.  
Figure 15 - Encoder cable connections without halls - rotary motors  
4.1.1.3 Halls-only feedback devices  
Feedback devices using only Hall sensors may be connected to the MicroFlex e100. However,  
since there are no encoder connections, the MicroFlex e100 will not be able to perform smooth  
speed control or accurate positioning control.  
Motor  
X8  
4
Sense  
12 +5V out  
13 DGND  
6
Hall U+  
5
Hall U-  
15 Hall W+  
14 Hall W-  
Hall  
Feedback  
8
7
Hall V+  
Hall V-  
Connect overall shield  
to connector backshells.  
Figure 16 - Halls-only feedback cable connections - rotary motors  
Note: If the Hall inputs are used as single ended inputs, leave the Hall U-, Hall V- and  
Hall W- pins unconnected; do not connect them to ground.  
4-4 Feedback  
MN1942  
www.supportme.net  
4.1.1.4 Encoder cable pin configuration - Baldor linear motors  
Baldor linear motors use two separate cables (encoder and Hall). The cores of these two cables  
must be wired to the appropriate pins of the 15-pin D-type mating connector (supplied):  
Signal name  
MicroFlex e100  
X8 pin  
Encoder cable internal wire colors  
CHA+  
CHA-  
CHB+  
CHB-  
CHZ+  
CHZ-  
1
9
2
Please refer to MN1800 Linear Motors  
Installation & Operating Manual for details.  
10  
3
11  
Baldor Hall cable internal wire colors  
Hall U+  
Hall V+  
6
White  
Red  
8
Hall W+  
+5V out  
Hall GND  
15  
12  
13  
Black  
Brown  
Green  
X8  
Motor  
Twisted pairs  
1
CHA+  
9
2
CHA-  
CHB+  
10 CHB-  
Encoder  
Feedback  
CHZ+ (INDEX)  
3
11 CHZ- (INDEX)  
12 +5V  
13 DGND  
4
Sense  
6
5
Hall U+  
Hall U-  
Hall  
Feedback  
15 Hall W+  
14 Hall W-  
Leave pins 5, 7 & 14  
unconnected  
8
7
Hall V+  
Hall V-  
Connect overall shield to  
connector backshells.  
Figure 17 - Encoder cable connections - linear motors  
MN1942  
Feedback 4-5  
www.supportme.net  
4.1.2 SSI feedback  
The SSI (Synchronous Serial Interface) encoder interface is specifically designed for use with  
Baldor SSI motors, which incorporate a custom Baumer SSI encoder. Correct operation with  
other SSI interfaces cannot be guaranteed. The SSI encoder connections are made using the  
15-pin D-type female connector X8. Twisted pair cables must be used for the complementary  
signal pairs e.g. Data+ and Data-. The overall cable shield (screen) must be connected to the  
metallic shell of the D-type connector. Connector X8 includes a ‘Sense’ pin, which is used to  
detect the voltage drop on long cable runs. This allows the MicroFlex e100 to increase the  
encoder supply voltage on pin 12 to maintain a 5V supply at the encoder (200mA max).  
Pin SSI function  
1
2
3
4
5
6
7
8
9
Data+  
Clock+  
(NC)  
Sense  
(NC)  
(NC)  
(NC)  
1
8
9
(NC)  
Data-  
10 Clock-  
11 (NC)  
15  
12 +5V out  
13 DGND  
14 (NC)  
15 (NC)  
Motor  
X8  
Twisted pairs  
1
9
2
Data+  
Data-  
Clock+  
Absolute  
Encoder  
10 Clock-  
12 +5V out  
13 DGND  
Connect internal  
shields to pin 13.  
Sense  
4
Chassis  
Connect overall shield  
to connector backshells.  
Figure 18 - SSI encoder cable connections  
4-6 Feedback  
MN1942  
www.supportme.net  
4.1.2.1 SSI cable pin configuration  
Figure 19 shows the pin configuration for a typical Baldor SSI feedback cable, part number  
CBL025SF-S2  
Signal name  
MicroFlex e100  
X8 pin  
Motor / cable  
pin  
Baldor SSI cable  
internal wire colors  
+5V out  
Sense  
DGND  
Clock+  
Clock-  
Data+  
12  
4
1
9
2
3
4
5
6
Red  
Orange  
Blue  
13  
2
Green  
Yellow  
Pink  
10  
1
Data-  
9
Grey  
8
9
12 10  
11  
1
1
9
10 12  
11  
8
7
2
2
7
Pins 7-12  
6
3
are not used  
and may not  
be present  
3
6
5
4
4
5
Motor SSI connector  
(male)  
Cable connector end view  
(female)  
Figure 19 - Baldor motor SSI feedback cable pin configuration  
The maximum recommended cable length is 30.5m (100ft).  
MN1942  
Feedback 4-7  
www.supportme.net  
4.1.3 SinCos feedback  
The SinCos connections (Sin and Cos incremental channels only) are made using the 15-pin  
D-type female connector X8. Twisted pair cables must be used for the complementary signal  
pairs e.g. Sin+ and Sin-. The overall cable shield (screen) must be connected to the metallic shell  
of the D-type connector. Connector X8 includes a ‘Sense’ pin, which is used to detect the voltage  
drop on long cable runs. This allows the MicroFlex e100 to increase the encoder supply voltage  
on pin 12 to maintain a 5V supply at the encoder (200mA max).  
Pin SinCos function  
1
2
3
4
5
6
7
8
9
(NC)  
(NC)  
(NC)  
Sense  
Sin-  
Sin+  
Cos-  
Cos+  
(NC)  
1
8
9
10 (NC)  
11 (NC)  
12 +5V out  
13 DGND  
14 (NC)  
15 (NC)  
15  
X8  
Motor  
Twisted pairs  
5
Sin-  
6
7
8
Sin+  
Cos-  
Cos+  
SinCos  
12 +5V out  
Feedback  
Connect internal  
shields to DGND.  
13 DGND  
4
Sense  
Connect overall shield to  
connector backshells.  
Figure 20 - SinCos cable connections  
4-8 Feedback  
MN1942  
www.supportme.net  
4.1.3.1 SinCos cable pin configuration  
Figure 21 shows the pin configuration for a typical Baldor SinCos feedback cable, part number  
CBL025SF-D2.  
Signal name  
MicroFlex e100  
X8 pin  
Motor / cable  
pin  
Baldor EnDat / SinCos  
cable internal wire  
colors  
(Not used)  
Sin+  
9
6
1
2
Brown / White  
Green  
Cos+  
8
4
Purple  
(Not used)  
(Not used)  
Cos-  
10  
2
5
Pink / Black  
Pink  
7
7
8
Purple / White  
Orange  
Sense  
4
9
+5V out  
DGND  
12  
13  
5
9
Red  
10  
11  
12  
Blue  
Sin-  
Green / White  
Brown  
(Not used)  
1
8
9
12 10  
11  
1
1
9
10 12  
11  
8
7
2
2
7
6
3
3
6
5
4
4
5
Motor SinCos connector  
(male)  
Cable connector end view  
(female)  
Figure 21 - Baldor motor SinCos feedback cable pin configuration  
The maximum recommended cable length is 30.5m (100ft).  
MN1942  
Feedback 4-9  
www.supportme.net  
4.1.4 EnDat (absolute encoder) feedback  
The absolute encoder interface supports both incremental and absolute (multi and single turn)  
feedback using EnDat technology. It is possible to read and write information to the encoder.  
The absolute encoder connections are made using the 15-pin D-type female connector X8.  
Twisted pair cables must be used for the complementary signal pairs e.g. Sin+ and Sin-. The  
overall cable shield (screen) must be connected to the metallic shell of the D-type connector.  
Connector X8 includes a ‘Sense’ pin, which is used to detect the voltage drop on long cable runs.  
This allows the MicroFlex e100 to increase the encoder supply voltage on pin 12 to maintain a 5V  
supply at the encoder (200mA max). Version 2.2 EnDat encoders do not use the Sin and Cos  
channels.  
Pin Absolute encoder function  
1
2
3
4
5
6
7
8
9
Data+  
Clock+  
(NC)  
Sense  
Sin-  
Sin+  
Cos-  
1
8
9
Cos+  
Data-  
10 Clock-  
11 (NC)  
15  
12 +5V out  
13 DGND  
14 (NC)  
15 (NC)  
Motor  
X8  
Twisted pairs  
1
9
5
Data+  
Data-  
Sin-  
6
7
8
2
Sin+  
Cos-  
Absolute  
Encoder  
Cos+  
Clock+  
10 Clock-  
12 +5V out  
13 DGND  
Connect internal  
shields to DGND.  
4
Sense  
Connect overall shield  
to connector backshells.  
Figure 22 - Absolute encoder cable connections  
4-10 Feedback  
MN1942  
www.supportme.net  
4.1.4.1 Absolute encoder cable pin configuration  
Figure 23 shows the pin configuration for a typical Baldor absolute encoder feedback cable, part  
number CBL025SF-D2.  
Signal name  
MicroFlex e100  
X8 pin  
Motor / cable  
pin  
Baldor EnDat / SinCos  
cable internal wire  
colors  
Data -  
Sin+  
9
6
1
2
Brown / White  
Green  
Cos+  
8
4
Purple  
Clock-  
Clock+  
Cos-  
10  
2
5
Pink / Black  
Pink  
7
7
8
Purple / White  
Orange  
Sense  
+5V out  
DGND  
Sin-  
4
9
12  
13  
5
9
Red  
10  
11  
12  
Blue  
Green / White  
Brown  
Data +  
1
8
9
12 10  
11  
1
1
9
10 12  
11  
8
7
2
2
7
6
3
3
6
5
4
4
5
Motor absolute encoder connector  
(male)  
Cable connector end view  
(female)  
Figure 23 - Baldor rotary motor absolute encoder cable pin configuration  
The maximum recommended cable length is 30.5m (100ft).  
MN1942  
Feedback 4-11  
www.supportme.net  
4-12 Feedback  
MN1942  
5 Input / Output  
5
5.1 Introduction  
This section describes the various digital input and output capabilities of the MicroFlex e100, with  
descriptions of each of the connectors on the front panel.  
The following conventions are used to refer to the inputs and outputs:  
I/O . . . . . . . . . . . . . . Input / Output  
DIN . . . . . . . . . . . . . Digital Input  
DOUT . . . . . . . . . . . Digital Output  
MN1942  
Input / Output 5-1  
www.supportme.net  
5.2 Digital I/O  
The MicroFlex e100 provides as standard:  
H
H
H
H
3 general purpose digital inputs.  
1 dedicated drive enable input.  
1 general purpose digital output.  
1 general purpose / drive status output.  
The general purpose digital inputs can be configured for typical input functions:  
H
H
H
H
H
Error input  
Reset input  
Stop input  
Forward / reverse limit input  
Home input.  
5-2 Input / Output  
MN1942  
www.supportme.net  
5.2.1 Drive enable input  
Location Connector X3, pins 9 & 19  
(Mating connector: Weidmüller Minimate B2L 3.5/20)  
Name Drive enable  
Description Dedicated drive enable input.  
9
19  
Nominal input voltage: +24VDC  
(input current not to exceed 50mA)  
1ms  
Sampling interval:  
The drive enable input is buffered by a TLP280 opto-isolator, allowing the input signal to be  
connected with either polarity.  
MicroFlex e100  
Vcc  
10k  
3k3  
Mint  
Drive  
Enable+  
DRI VEENABLESWI TCH  
19  
9
74LVC14  
100R  
Drive  
Enable-  
TLP280  
4n7  
4n7  
DGND  
Figure 24 - Drive enable input circuit  
In normal use, the drive enable input controls the enabled status of the drive. However, when the  
MicroFlex e100 is connected to Mint WorkBench, additional methods are available for controlling  
the drive enable status. In all cases, the drive enable input must be active and there must be no  
errors present before the MicroFlex e100 can be enabled.  
H
The drive enable button  
on the motion toolbar toggles the enable/disable status.  
Alternatively, the Mint command DRI VEENABLE. 0=1 can be used in the command window  
to enable the MicroFlex e100; DRI VEENABLE. 0=0 will disable the MicroFlex e100.  
H
The Tools, Reset Controller menu item will clear errors and enable the MicroFlex e100.  
Alternatively, the Mint command RESET. 0 can be used in the command window to perform  
the same action.  
The state of the drive enable input is displayed in the Mint WorkBench Spy window.  
Alternatively, the state of the drive enable input can be read (but not set) using the Mint command  
Pr i nt DRI VEENABLESWI TCH in the command window. See the Mint help file for details.  
MN1942  
Input / Output 5-3  
www.supportme.net  
User  
supply  
24V  
NextMove e100 / controller  
MicroFlex e100  
‘X11’  
UDN2982  
‘X3’  
USR V+  
9
1
Mint  
Drive  
Enable+  
DRI VEENABLEOUTPUT  
3k3  
DOUT0  
19  
9
Drive  
Enable-  
100R  
10k  
TLP280  
USR GND  
10  
User  
supply  
GND  
Figure 25 - Drive enable input - typical connection from a Baldor NextMove e100  
5-4 Input / Output  
MN1942  
www.supportme.net  
5.2.2 General purpose digital input DIN0  
Location Connector X3, pins 7 & 17  
(Mating connector: Weidmüller Minimate B2L 3.5/20)  
Name DIN0  
7
17  
Description General purpose opto-isolated digital input.  
Nominal input voltage: +24VDC  
(input current not to exceed 50mA)  
1ms  
Sampling interval:  
This general purpose digital input is buffered by a TLP280 opto-isolator, allowing the input signal  
to be connected with either polarity. The state of the digital input is displayed in the Mint  
WorkBench Spy window. The input can be can be configured for different user definable  
functions.  
MicroFlex e100  
Vcc  
10k  
3k3  
DIN0+ 17  
Mint  
74LVC14  
100R  
DIN0-  
7
TLP280  
4n7  
4n7  
DGND  
Figure 26 - General purpose digital input circuit  
When the MicroFlex e100 is connected to Mint WorkBench, the digital input can be configured  
using the Digital I/O tool. Alternatively, Mint keywords including RESETI NPUT, ERRORI NPUT  
and STOPI NPUT can be used in the command window. The state of the digital input can be  
viewed using the Mint WorkBench Spy window’s Axis tab. See the Mint help file for details.  
MN1942  
Input / Output 5-5  
www.supportme.net  
User  
supply  
24V  
NextMove e100 / controller  
MicroFlex e100  
‘X11’  
UDN2982  
‘X3’  
USR V+  
9
1
Mint  
OUTX. 0  
3k3  
DOUT0  
DIN0+  
DIN0-  
17  
7
100R  
10k  
TLP280  
USR GND  
10  
User  
supply  
GND  
Figure 27 - Digital input - typical connection from a Baldor NextMove e100  
5-6 Input / Output  
MN1942  
www.supportme.net  
5.2.3 General purpose digital inputs DIN1 & DIN2  
Location Connector X3, pins 6 & 16 (DIN1), 4 & 14 (DIN2)  
(Mating connector: Weidmüller Minimate B2L 3.5/20)  
4
6
14  
16  
Name DIN1, DIN2  
Description General purpose fast opto-isolated digital inputs.  
Nominal input voltage: +24VDC  
(input current not to exceed 20mA)  
Maximum input frequency: 1 MHz maximum  
These general purpose fast digital inputs are buffered by a TLP115 opto-isolator, allowing the  
input signal to be connected with either polarity. The state of the digital input is displayed in the  
Mint WorkBench Spy window. The inputs can be can be configured for different user definable  
functions.  
MicroFlex e100  
Vcc  
‘X3’  
10k  
3k3  
Mint  
DIN1+ 16  
TLP115A  
100R  
DIN1-  
6
DGND  
4n7  
4n7  
Figure 28 - General purpose fast digital input circuit  
When the MicroFlex e100 is connected to Mint WorkBench, the digital input can be configured  
using the Digital I/O tool. Alternatively, the Mint keywords RESETI NPUT, ERRORI NPUT and  
STOPI NPUT can be used in the command window. The state of the digital input can be viewed  
using the Spy window’s Axis tab. See the Mint help file for details.  
MN1942  
Input / Output 5-7  
www.supportme.net  
User  
supply  
24V  
NextMove e100 / controller  
MicroFlex e100  
‘X11’  
UDN2982  
‘X3’  
USR V+  
9
1
Mint  
OUTX. 0  
DOUT0  
DIN1+  
DIN1-  
16  
6
10k  
USR  
GND  
TLP115A  
10  
Shield  
10  
User  
supply  
Connect overall  
GND  
shield at one end only  
Figure 29 - Digital input - typical connection from a Baldor NextMove e100  
5.2.4 Special functions on inputs DIN1 and DIN2  
DIN1 and DIN2 can be configured to perform special functions.  
5.2.4.1 Fast position capture  
DIN1 or DIN2 can be configured using the FASTSELECT keyword to become a fast latch input.  
This allows the position of the axis to be captured in real-time and read using the Mint keyword  
FASTPOS. or FASTENCODER. The input can configured using the FASTLATCHEDGE keyword to  
be triggered either on a rising or falling edge. Further control of position capture is provided by the  
FASTLATCH and FASTLATCHMODE keywords.  
The maximum latency to read the fast position depends on the feedback device. For an  
incremental encoder, the latency is approximately 150 - 300ns. For other feedback devices  
latency may be up to 62.5µs, resulting from the 16kHz sampling frequency used for these types  
of feedback device. The fast interrupt will be latched on a pulse width of about 30µs, although a  
width of 100µs is recommended to ensure capture. To prevent subsequent inputs causing the  
captured value to be overwritten, the interrupt is latched in software.  
Note: The fast inputs are particularly sensitive to noise, so inputs must use shielded  
twisted pair cable. Do not connect mechanical switches, relay contacts or other  
sources liable to signal ‘bounce’ directly to the fast inputs. This could cause  
unwanted multiple triggering.  
5-8 Input / Output  
MN1942  
www.supportme.net  
5.2.5 General purpose / status output DOUT0  
Location Connector X3, pins 1 & 11  
(Mating connector: Weidmüller Minimate B2L 3.5/20)  
1
11  
Name Status / DOUT0  
Description General purpose opto-isolated digital output  
Output current:  
User supply  
Update interval:  
100mA maximum  
+28VDC maximum  
1ms  
The optically isolated general purpose / status output is designed to source current from the user  
supply as shown in Figure 30. The PS2562L has a maximum power dissipation of 200mW at  
25°C. The maximum saturated voltage across the outputs when active is 1.0VDC, so it can be  
used as a TTL compatible output.  
The output includes a self-resetting fuse that operates at approximately 200mA. The fuse may  
take up to 20 seconds to reset after the load has been removed. If the output is used to directly  
drive a relay, a suitably rated diode must be fitted across the relay coil, observing the correct  
polarity. This is to protect the output from the back-EMF generated by the relay coil when it is  
de-energized. The sense of the output can be configured in Mint WorkBench, and its state is  
displayed in the Spy window.  
User supply  
V+  
MicroFlex e100  
+3.3V  
‘X3’  
220R  
Fuse  
DOUT0+  
11  
1
200mA  
[Error]  
4n7  
Load  
(Relay with  
TLP 127  
diode shown)  
4n7  
DOUT0-  
User supply  
GND  
Figure 30 - DOUT0 output circuit  
By default, DOUT0 is configured as an error status output, which becomes inactive in the event  
of an error. When the MicroFlex e100 is connected to Mint WorkBench, the active level of the  
output can be configured using the Digital I/O tool. Alternatively, the Mint keyword  
OUTPUTACTI VELEVEL can be used in the command window. See the Mint help file for details.  
MN1942  
Input / Output 5-9  
www.supportme.net  
User  
supply  
24V  
MicroFlex e100  
NextMove e100 / controller  
‘X9’  
‘X3’  
DOUT0+  
DOUT0-  
11  
1
100R  
6k2  
DIN4  
8
9
TLP127  
4n7  
CREF1  
TLP280  
User  
supply  
GND  
Figure 31 - DOUT0 - typical connections to a Baldor NextMove e100  
5-10 Input / Output  
MN1942  
www.supportme.net  
5.2.6 General purpose output DOUT1  
Location Connector X3, pins 3 & 13  
(Mating connector: Weidmüller Minimate B2L 3.5/20)  
3
13  
Name DOUT1  
Description General purpose opto-isolated digital output  
Output current:  
User supply:  
Update interval:  
100mA maximum  
+28VDC maximum  
1ms  
The optically isolated general purpose output is designed to source current from the user supply  
as shown in Figure 30. The PS2562L has a maximum power dissipation of 200mW at 25°C. The  
maximum saturated voltage across the outputs when active is 1.0VDC, so it can be used as a  
TTL compatible output.  
The output includes a self-resetting fuse that operates at approximately 200mA. The fuse may  
take up to 20 seconds to reset after the load has been removed. If the output is used to directly  
drive a relay, a suitably rated diode must be fitted across the relay coil, observing the correct  
polarity. This is to protect the output from the back-EMF generated by the relay coil when it is  
de-energized. The sense of the output can be configured in Mint WorkBench, and its state is  
displayed in the Spy window.  
User supply  
V+  
MicroFlex e100  
+3.3V  
‘X3’  
220R  
Fuse  
DOUT1+  
13  
200mA  
[Error]  
4n7  
4n7  
Load  
(Relay with  
diode shown)  
TLP 127  
DOUT1-  
3
User supply  
GND  
Figure 32 - DOUT1 output circuit  
When the MicroFlex e100 is connected to Mint WorkBench, the active level of the output can be  
configured using the Digital I/O tool. Alternatively, the Mint keyword OUTPUTACTI VELEVEL can  
be used in the command window. See the Mint help file for details.  
MN1942  
Input / Output 5-11  
www.supportme.net  
User  
supply  
24V  
MicroFlex e100  
NextMove e100 / controller  
‘X9’  
‘X3’  
DOUT1+  
DOUT1-  
13  
3
100R  
6k2  
DIN4  
8
9
TLP127  
4n7  
CREF1  
TLP280  
User  
supply  
GND  
Figure 33 - DOUT1 - typical connections to a Baldor NextMove e100  
5-12 Input / Output  
MN1942  
www.supportme.net  
5.3 USB communication  
5.3.1 USB port  
Location USB  
Mating connector: USB Type B (downstream) plug  
Pin Name  
Description  
USB +5V  
Data-  
1
2
3
4
VBUS  
D-  
1
2
4
3
D+  
Data+  
GND  
Ground  
The USB connector is used to connect the MicroFlex e100 to a PC running Mint WorkBench. The  
MicroFlex e100 is a self-powered, USB 1.1 (12Mbps) compatible device. If it is connected to a  
slower USB1.0 host PC or hub, communication speed will be limited to the USB1.0 specification  
(1.5Mbps). If it is connected to a faster USB2.0 (480Mbps) host PC or hub, communication  
speed will remain at the USB1.1 specification of the MicroFlex e100.  
Ideally, the MicroFlex e100 should be connected directly to a USB port on the host PC. If it is  
connected to a hub shared by other USB devices, communication could be affected by the  
activity of the other devices. A 2m (6.5 ft) standard USB cable is supplied. The maximum  
recommended cable length is 5m (16.4 ft).  
MN1942  
Input / Output 5-13  
www.supportme.net  
5.4 Ethernet interface  
The Ethernet interface provides TCP/IP and ETHERNET Powerlink (EPL) networking capabilities.  
5.4.1 TCP/IP  
Transmission Control Protocol / Internet Protocol (TCP/IP) is a common set of protocols used to  
transfer information between devices over a network, including the internet. TCP enables two  
devices to establish a connection, and guarantees the delivery of packets (datagrams) of  
information in the correct order. IP specifies the format of the individual packets (which includes  
the destination address of the receiving device) but has no influence on whether the packet is  
delivered correctly.  
TCP/IP allows the MicroFlex e100 to support standard Ethernet communication with a host PC  
running Mint WorkBench. The connection uses Baldor’s high level ICM (Immediate Command  
Mode) protocol to allow Mint commands, Mint programs and even firmware to be sent to the  
controller over the Ethernet network.  
When operating in standard Ethernet mode, TCP/IP cannot be used to communicate with a  
controller on a daisy-chained network. This is due to cumulative timing errors caused by each  
controller’s internal hub. It is necessary to connect the host PC to the controller either directly or  
via a single hub, as shown in Figure 34:  
Host PC  
MicroFlex e100 drives  
External hub  
Figure 34 - Connecting to drives using TCP/IP in standard Ethernet mode  
When operating in EPL mode, in conjunction with an EPL compatible router, the host PC can use  
TCP/IP to communicate with controllers on a daisy-chained network. In this situation, the router  
will use TCP/IP only within EPL’s asynchronous time slots. See the Mint help file for further  
details.  
Host PC  
NextMove e100  
Master Node  
MicroFlex e100 drives  
ETHERNET Powerlink  
compatible router  
Figure 35 - Connecting to daisy-chained drives using TCP/IP and EPL mode  
5-14 Input / Output  
MN1942  
www.supportme.net  
5.4.2 ETHERNET Powerlink  
MicroFlex e100 supports the deterministic ETHERNET Powerlink (EPL) protocol. This protocol  
provides very precise and predictable ‘real-time’ communication over a 100Mbit/s (100Base-T)  
Fast Ethernet (IEEE 802.3u) connection. This makes it suitable for the transmission of control  
and feedback signals between the MicroFlex e100 and other EPL enabled controllers such as  
NextMove e100. The EPL protocol implemented in Mint is based on the CANopen DS402 Device  
Profile for Drives and Motion Control.  
MicroFlex e100 incorporates a built-in repeating hub, providing two ports for connection to other  
equipment. This allows nodes to be connected as a ‘daisy-chain’ network of up to 10 nodes,  
avoiding the need for additional hubs. If the network comprises more than 10 nodes, an external  
hub must be used. The structure of the physical network is informal so does not need to reflect  
the logical relationship between nodes. Ethernet switches must not be used in EPL networks as  
their timing cannot be guaranteed.  
NextMove e100  
Manager Node  
MicroFlex e100 MicroFlex e100 MicroFlex e100 MicroFlex e100  
Drive  
Drive  
Drive  
Drive  
‘Daisy chained’ network  
Figure 36 - Simple daisy-chained EPL network  
NextMove e100  
Manager Node  
Machine 1  
MicroFlex e100 Drives 1-9  
1
2
3
4
5
6
7
8
9
Machine 1  
MicroFlex e100 Drives 10-16  
External hub  
10  
11  
12  
13  
14  
15  
16  
NextMove e100  
Controlled Node  
Machine 2  
MicroFlex e100 Drives 17-20  
17  
18  
19  
20  
Figure 37 - Example multi-branch EPL network  
MN1942  
Input / Output 5-15  
www.supportme.net  
5.4.3 Ethernet connectors  
Ethernet connections are made using the identical RJ45 Ethernet receptacles.  
Location E1 & E2  
Pin Name  
Description  
Transmit+  
Transmit-  
Receive+  
(NC)  
1
2
3
4
5
6
7
8
TX+  
TX-  
RX+  
-
1
8
-
(NC)  
RX-  
-
Receive-  
(NC)  
Shield  
Shield connection  
To connect the MicroFlex e100 to other EPL devices, ordinary shielded CAT5 Ethernet cables  
are used. Cables may be up to 100m (328 ft) long. Two varieties of CAT5 cable are available;  
‘straight’ or ‘crossed’. Straight cables have the TX pins of the connector at one end of the cable  
wired to the TX pins of the RJ45 connector at the other end of the cable. Crossover cables have  
the TX pins of the connector at one end of the cable wired to the RX pins of the RJ45 connector  
at the other end of the cable.  
Provided the network consists of only Baldor EPL controllers and drives (and any hub), straight  
or crossed cables may be used. This is because many Ethernet devices, including hubs and all  
Baldor EPL products, incorporate Auto-MDIX switching technology which automatically  
compensates for the wiring of the straight cable. However, if other manufacturer’s EPL nodes are  
included in the network, crossover cables should be used as recommended by the ETHERNET  
Powerlink Standardization Group (EPSG).  
The MicroFlex e100 Ethernet interface is galvanically isolated from the rest of the MicroFlex e100  
circuitry by magnetic isolation modules incorporated in each of the Ethernet connectors. This  
provides protection up to 1.5kV. The connector/cable screen is connected directly to the chassis  
earth of the MicroFlex e100. Termination components are incorporated in each of the Ethernet  
connectors, so no further termination is required.  
The EPL network supports the 100Base-TX (100Mbit/s) system only, so attempting to connect  
slower 10Base-T (10Mbit/s) nodes will cause a network error.  
5-16 Input / Output  
MN1942  
www.supportme.net  
5.5 CAN interface  
The CAN bus is a serial based network originally developed for automotive applications, but now  
used for a wide range of industrial applications. It offers low-cost serial communications with  
very high reliability in an industrial environment; the probability of an undetected error is  
-11  
4.7x10  
.
It is optimized for the transmission of small data packets and therefore offers fast  
update of I/O devices (peripheral devices) connected to the bus.  
The CAN protocol only defines the physical attributes of the network, i.e. the electrical,  
mechanical, functional and procedural parameters of the physical connection between devices.  
The higher level network functionality on MicroFlex e100 is defined by the CANopen protocol,  
one of the most used standards for machine control.  
5.5.1 CAN connector  
Location CAN  
Mating connector: 9-pin female D-type  
Pin Name  
Description  
(NC)  
1
2
3
4
5
6
7
8
9
-
CAN-  
CAN channel negative  
CAN GND Ground/earth reference for CAN signals  
-
(NC)  
Shield  
Shield connection  
1
5
6
9
CAN GND Ground/earth reference for CAN signals  
CAN+  
-
CAN channel positive  
(NC)  
CAN V+  
CAN power V+ (12-24V)  
5.5.2 CAN wiring  
A very low error bit rate over CAN can only be achieved with a suitable wiring scheme, so the  
following points should be observed:  
H
The two-wire data bus line may be routed parallel, twisted and/or shielded, depending on  
EMC requirements. Baldor recommend a twisted pair cable with the shield/screen  
connected to the connector backshell, in order to reduce RF emissions and provide immunity  
to conducted interference.  
H
The bus must be terminated at both ends only (not at intermediate points) with resistors of a  
nominal value of 120. This is to reduce reflections of the electrical signals on the bus, which  
helps a node to interpret the bus voltage levels correctly. If the MicroFlex e100 is at the end  
of the network then ensure that a 120resistor is fitted (normally inside the D-type  
connector).  
H
All cables and connectors should have a nominal impedance of 120. Cables should have  
a length related resistance of 70m/m and a nominal line delay of 5ns/m.  
MN1942  
Input / Output 5-17  
www.supportme.net  
H
The maximum bus length depends on the bit-timing  
configuration (baud rate). The table opposite shows  
the approximate maximum bus length (worst-case),  
CAN  
Baud Rate  
Maximum  
Bus Length  
assuming 5ns/m propagation delay and  
a
total  
1Mbit/s  
25m  
effective device internal in-out delay of 210ns at  
1Mbit/s, 300ns at 500 - 250Kbit/s, 450ns at 125Kbit/s  
and 1.5ms at 50 - 10Kbit/s.  
500Kbit/s  
250Kbit/s  
125Kbit/s  
100Kbit/s  
50Kbit/s  
20Kbit/s  
10Kbit/s  
100m  
250m  
500m  
600m  
1000m  
(1)  
For bus lengths greater than about 1000m,  
bridge or repeater devices may be needed.  
(1)  
2500m  
5000m  
(1)  
H
The compromise between bus length and CAN baud  
rate must be determined for each application. The  
CAN baud rate can be set using the BUSBAUD keyword. It is essential that all nodes on the  
network are configured to run at the same baud rate.  
H
H
The wiring topology of a CAN network should be as close as possible to a single line/bus  
structure. However, stub lines are allowed provided they are kept to a minimum (<0.3m at  
1Mbit/s).  
The 0V connection of all of the nodes on the network must be tied together through the CAN  
cabling. This ensures that the CAN signal levels transmitted by MicroFlex e100 or CAN  
peripheral devices are within the common mode range of the receiver circuitry of other nodes  
on the network.  
5.5.2.1 Opto-isolation  
On the MicroFlex e100, the CAN channel is opto-isolated. A voltage in the range 12-24V must  
be applied between pin 9 (+24V) and pin 3 or 6 (0V) of the CAN connector. From this supply, an  
internal voltage regulator provides the 5V at 100mA required for the isolated CAN circuit. CAN  
cables supplied by Baldor are ‘category 5’ and have a maximum current rating of 1A, so the  
maximum number of MicroFlex e100 units that may be used on one network is limited to ten.  
5.5.3 CANopen  
Baldor have implemented a CANopen protocol in Mint (based on the ‘Communication Profile’ CiA  
DS-301) which supports both direct access to device parameters and time-critical process data  
communication. The MicroFlex e100 complies with CANopen slave device profile DS402, and  
can be a DS401 or DS403 master device (with limited functionality). It is able to support and  
communicate with a variety of devices including:  
H
H
H
Any third party digital and analog I/O device that is compliant with the ‘Device Profile for  
Generic I/O Modules’ (CiA DS-401).  
Baldor HMI (Human Machine Interface) operator panels, which are based on the ‘Device  
Profile for Human Machine Interfaces’ (DS403).  
Other Baldor controllers with CANopen support for peer-to-peer access using extensions to  
the CiA specifications (DS301 and DS302).  
The functionality and characteristics of all Baldor CANopen devices are defined in individual  
standardized (ASCII format) Electronic Data Sheets (EDS) which can be found on the Baldor  
Motion Toolkit CD supplied with your product, or downloaded from www.supportme.net.  
Figure 38 shows a typical CANopen network with a NextMove e100 manager node, one  
MicroFlex e100 slave node and a Baldor HMI operator panel:  
5-18 Input / Output  
MN1942  
www.supportme.net  
Baldor HMI  
Operator Panel  
NextMove e100  
D-type  
MicroFlex e100  
End  
D-type  
node  
CANopen  
D-type  
Twisted pairs  
Twisted pairs  
CAN+  
7
2
7
2
7
2
7
2
CAN-  
Power  
supply  
terminal  
block  
T
R
T
R
0V  
6
6
6
6
9
24V  
24V  
1
9
5
9
5
0V  
2
5
Figure 38 - Typical CANopen network connections  
Note: The MicroFlex e100 CAN channel is opto-isolated, so a voltage in the range 12-24V  
must be applied between pin 9 and pin 6 of the CAN connector.  
The configuration and management of a CANopen network must be carried out by a single node  
acting as the network manager (for example NextMove e100), or by a third party CANopen  
manager device.  
Up to 126 CANopen nodes (node IDs 2 to 127) can be added to the network by the manager node  
using the Mint NODESCAN keyword. If successful, the nodes can then be connected to using the  
Mint CONNECT keyword. Any network and node related events can then be monitored using the  
Mint BUS1 event.  
Note: All CAN related Mint keywords are referenced to CANopen using the ‘bus’ dot  
parameter. For CANopen the ‘bus’ dot parameter must be set to 1.  
Please refer to the Mint help file for further details on CANopen, Mint keywords and dot  
parameters.  
MN1942  
Input / Output 5-19  
www.supportme.net  
5.6 Other I/O  
5.6.1 Node ID selector switches  
The MicroFlex e100 has two selector switches which determine the unit’s  
node ID on EPL networks. Each switch has 16 positions, allowing selection  
of the hexadecimal values 0 - F. In combination, the two switches allow  
node IDs of 0 - 255 (hexadecimal FF) to be selected. The switch labelled ‘HI’  
sets the high nibble (half byte), and the switch labelled ‘LO’ sets the low  
nibble. The following table lists all node IDs from 0 to 255 with the equivalent  
HI and LO switch settings:  
Node ID  
HI  
LO  
Node ID  
HI  
LO  
Node ID  
HI  
LO  
Node ID  
HI  
LO  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
5-20 Input / Output  
MN1942  
www.supportme.net  
Node ID  
HI  
LO  
Node ID  
HI  
LO  
Node ID  
HI  
LO  
Node ID  
HI  
LO  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
95  
96  
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
9
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
D
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
Figure 39 - Decimal node IDs and equivalent HI / LO hexadecimal switch settings  
Note: If the node ID selector switches are set to FF, the node’s firmware will not run on  
power up. However, Mint WorkBench will still be able to detect the MicroFlex e100  
and download new firmware.  
MN1942  
Input / Output 5-21  
www.supportme.net  
In many networking environments, the node ID may also be referred to as the address. On EPL  
networks, limitations apply to the node IDs that may be selected:  
H
H
Node ID 0 is reserved for special purposes and cannot be used.  
Setting the switches to select a node ID between 1 and 239 causes the node to become a  
‘controlled node’, a node that will accept commands from the manager node.  
H
H
Node ID 240 is reserved for the EPL manager node (for example NextMove e100) so cannot  
be used by MicroFlex e100.  
Node IDs between 241 and 255 are reserved for special purposes and cannot be used.  
For all other communication channels such as CANopen and USB, the node ID is set in software.  
Each channel can have a different node ID, selected using the Mint WorkBench Connectivity  
Wizard or the Mint BUSNODE keyword. See the Mint help file for details.  
5-22 Input / Output  
MN1942  
www.supportme.net  
5.7 Connection summary - recommended system wiring  
As an example, Figure 40 shows the recommended wiring necessary for the MicroFlex e100 to  
control a motor, while conforming to the EMC requirements for ‘industrial’ environments.  
AC power  
Motion controller  
Connect motor power cable  
shield to metal backplane using  
conductive shield clamp  
From  
fuses  
L1  
L2  
L1  
L1  
AC power in  
L2  
L3  
L2  
L3  
L3  
Ethernet  
Connect AC power cable shield to  
metal backplane using conductive  
shield clamp (see section C.1.6).  
PE  
PC  
Star  
point  
Shielded twisted pair, clamped to  
metal backplane near drive using  
conductive shield earth/ground  
clamp (see sections 3.6 and C.1.6).  
USB  
Optional  
regen  
resistor  
(Dynamic  
brake)  
Regen  
Motor power U V W  
Motor feedback  
Ferrite  
+24VDC 0V  
Drive enable  
input  
2A  
Motor  
+24VDC 0V  
Control circuit supply (fused).  
Use twisted pair cable with a  
ferrite sleeve (see section 3.4.8).  
H
H
H
H
H
The MicroFlex e100 should be mounted on an earthed metal backplane.  
Ensure cables do not obstruct airflow to the heatsink.  
Motor represents a typical Baldor BSM motor. Linear motors may also be controlled by MicroFlex e100.  
Conductive shield earth/ground clamps are not supplied.  
When using single phase supplies it may be necessary to reverse the AC power filter - see section 3.4.7.2.  
Figure 40 - Recommended system wiring  
MN1942  
Input / Output 5-23  
www.supportme.net  
5-24 Input / Output  
MN1942  
6 Configuration  
6
6.1 Introduction  
Before powering the MicroFlex e100 you will need to connect it to the PC using a USB or Ethernet  
cable and install the supplied Mint Machine Center software. This software includes a number of  
tools to allow you to configure and tune the MicroFlex e100. If you do not have experience of  
software installation or Windows applications you may need further assistance for this stage of  
the installation.  
6.1.1 Connecting the MicroFlex e100 to the PC  
The MicroFlex e100 can be connected to the PC using either USB or TCP/IP.  
To use USB, connect a USB cable between a PC USB port and the MicroFlex e100 USB port.  
Your PC must be using Windows 2000 or Windows XP.  
To use TCP/IP, connect a CAT5 Ethernet cable between the PC and one of the MicroFlex e100  
Ethernet ports.  
CAUTION: You cannot connect an ordinary office PC to the MicroFlex e100 without first  
altering the PC’s Ethernet adapter configuration. However, if you have  
installed  
a
second Ethernet adapter dedicated for use with the  
MicroFlex e100, then this adapter’s configuration can be altered without  
affecting the PC’s office Ethernet connection. If you are unsure about  
making changes to your PC’s Ethernet adapter configuration, or are  
prevented by user permission levels, ask your I.T. administrator to assist  
you.  
CAUTION: If there is a EPL manager node (node ID 240) on the Ethernet network, then  
the network will be operating in EPL mode. This means any TCP/IP  
connection from the PC must pass through an EPL compatible router.  
6.1.2 Installing Mint Machine Center and Mint WorkBench  
You will need to install Mint Machine Center (MMC) and Mint WorkBench to configure and tune  
the MicroFlex e100. Any previous version of Mint WorkBench must be uninstalled before  
proceeding with this installation:  
1. Insert the CD into the drive.  
2. After a few seconds the setup wizard should start automatically. If the setup wizard does not  
appear, select Run... from the Windows Start menu and type  
d:\start  
where d represents the drive letter of the CD device.  
Follow the on-screen instructions to install MMC (including Mint WorkBench). The setup  
wizard will copy the files to appropriate folders within the C:\Program Files folder, and place  
shortcuts on the Windows Start menu.  
MN1942  
Configuration 6-1  
www.supportme.net  
6.2 Starting the MicroFlex e100  
If you have followed the instructions in the previous sections, you should now have connected all  
the power sources, inputs and outputs, and the Ethernet cable or USB cable linking the PC to the  
MicroFlex e100.  
6.2.1 Preliminary checks  
Before you apply power for the first time, it is very important to verify the following:  
H
Disconnect the load from the motor until instructed to apply a load. If this cannot be done,  
disconnect the motor wires at connector X1.  
H
H
H
H
H
Verify that the AC line voltage matches the specification of the MicroFlex e100.  
Inspect all power connections for accuracy, workmanship and tightness.  
Verify that all wiring conforms to applicable codes.  
Verify that the MicroFlex e100 and motor are properly earthed/grounded.  
Check all signal wiring for accuracy.  
6.2.2 Power on checks  
If at any time the Status LED flashes red, the drive has detected a fault - see section 7.  
1. Turn on the 24VDC supply.  
2. Turn on the AC supply.  
3. Within approximately 20-30 seconds, the test sequence should complete and the Status  
LED should illuminate red. If the Status LED is not lit then re-check the power supply  
connections. If the Status LED flashes red, this indicates that the MicroFlex e100 has  
detected a fault - see section 7. Note that after downloading firmware, startup may take more  
than 1 minute.  
4. If the motor wires were disconnected in section 6.2.1, turn off the AC supply and reconnect  
the motor wires. Turn on the AC supply.  
5. To allow the Commissioning Wizard to function, the drive enable signal will need to be  
present on connector X3 to allow the MicroFlex e100 to be enabled (see section 5.2.1.). If  
you do not wish to enable the MicroFlex e100 yet, the Commissioning Wizard will inform you  
when this step is necessary.  
6.2.3 Installing the USB driver  
It is now necessary to install the USB driver. When the MicroFlex e100 is powered, Windows  
(2000 or XP only) will automatically detect the controller and request the driver. The driver  
consists of two files, USBmotion.inf and USBmotion.sys. Both files must be present for  
installation.  
1. Follow the on-screen instructions to select and install the driver. The driver files are available  
on the supplied Baldor Motion Toolkit CD. If you are using a copy of the driver located on the  
hard disk, a floppy disk or another CD, the two driver files must be in the same folder.  
2. During installation, Windows XP may report that the driver is ‘unsigned’. This is normal for the  
MicroFlex e100 driver, so click the Continue Anyway button to continue with the installation.  
When installation is complete, a new USB Motion Controller device will be listed in the  
Universal Serial Bus controllers section of Windows Device Manager.  
6-2 Configuration  
MN1942  
www.supportme.net  
The MicroFlex e100 is now ready to be configured using Mint WorkBench.  
Note: If the MicroFlex e100 is later connected to a different USB port on the host computer,  
Windows may report that it has found new hardware. Either install the driver files  
again for the new USB port, or connect the MicroFlex e100 to the original USB port  
where it will be recognized in the usual way.  
6.2.4 Configuring the TCP/IP connection (optional)  
If you have connected the MicroFlex e100 to the PC using the Ethernet connection, it will be  
necessary to alter the PC’s Ethernet adapter configuration to operate correctly with the  
MicroFlex e100.  
CAUTION: You cannot connect an ordinary office PC to the MicroFlex e100 without first  
altering the PC’s Ethernet adapter configuration. However, if you have  
installed  
a
second Ethernet adapter dedicated for use with the  
MicroFlex e100, then this adapter’s configuration can be altered without  
affecting the PC’s office Ethernet connection. If you are unsure about  
making changes to your PC’s Ethernet adapter configuration, or are  
prevented by user permission levels, ask your I.T. administrator to assist  
you.  
The following explanation assumes the PC is connected directly to the MicroFlex e100, and not  
across an intermediate Ethernet network. If you wish to attempt the connection through an  
intermediate Ethernet network, then the network administrator must be consulted to ensure that  
the necessary IP addresses will be allowed and are not already allocated on the network. The  
MicroFlex e100 has a fixed IP address of the format 192.168.100.xxx. The last number, xxx, is  
the decimal value defined by the MicroFlex e100’s node ID selector switches (see section 5.6.1).  
1. On the Windows Start menu, select Settings, Network Connections.  
2. In the Network Connections Window, right-click the ’Local Area Connection’ entry for the  
required Ethernet adapter and choose Properties.  
3. In the Local Area Connection Properties dialog, in the ’This connection uses the following  
items’ list, select the ‘Internet Protocol (TCP/IP)‘ entry and click Properties.  
4. In the Internet Protocol (TCP/IP) Properties dialog, on the General tab, make a note of the  
existing settings. Click Advanced... and make a note of any existing settings. Click the  
Alternate Configuration tab and make a note of any existing settings.  
5. On the General tab, choose the ’Use the following IP address’ option.  
6. In the IP address box, enter the IP address 192.168.100.241. This is the IP address that will  
be assigned to the Ethernet adapter. The value 241 is deliberately chosen as it is outside the  
range that can be used by MicroFlex e100, so avoiding possible conflicts.  
MN1942  
Configuration 6-3  
www.supportme.net  
7. In the Subnet mask box, enter 255.255.255.0 and click OK.  
Click OK to close the Local Area Connection Properties dialog.  
8. On the Windows Start menu, select Command Prompt (often found under Accessories).  
9. In the Command Prompt window, type PING 192.168.100.16, where the final value (16 in this  
example) is the value selected by the MicroFlex e100’s node ID selector switches. In this  
example, the MicroFlex e100’s switches would be set to HI=1 LO=0, which represents  
hexadecimal 10, equivalent to decimal 16 (see section 5.6.1 for a list of hexadecimal /  
decimal equivalents). A reply message should be returned.  
10. It should now be possible to run Mint WorkBench and connect to the MicroFlex e100 using  
the Ethernet / TCP/IP connection.  
6-4 Configuration  
MN1942  
www.supportme.net  
6.3 Mint Machine Center  
The Mint Machine Center (MMC) is used to view the network of connected controllers in a  
system. Individual controllers and drives are configured using Mint WorkBench.  
Note: If you have only a single MicroFlex e100 connected to your PC, then MMC is  
probably not required. Use Mint WorkBench (see section 6.4) to configure the  
MicroFlex e100.  
Toolbars  
Menu system  
Controller pane  
Information pane  
Figure 41 - The Mint Machine Center software  
The Mint Machine Center (MMC) provides an overview of the controller network currently  
accessible by the PC. The MMC contains a controller pane on the left, and an information pane  
on the right. In the controller pane select the Host item, then in the information pane click Scan.  
This causes MMC to scan for all connected controllers. Clicking once on a controller’s name  
causes various options to be displayed in the information pane. Double-clicking on a controller’s  
name launches an instance of Mint WorkBench that is automatically connected to the controller.  
Application View allows the layout and organization of controllers in your machine to be modelled  
and described on screen. Controllers can be dragged onto the Application View icon, and  
renamed to give a more meaningful description, for example “Conveyor 1, Packaging Controller”.  
Drives that are controlled by another product, such as a NextMove e100, can be dragged onto  
the NextMove e100 icon itself, creating a visible representation of the machine. A text description  
for the system and associated files can be added, and the resulting layout saved as an “MMC  
Workspace”. When you next need to administer the system, simply loading the workspace  
automatically connects to all the required controllers. See the Mint help file for full details of  
MMC.  
MN1942  
Configuration 6-5  
www.supportme.net  
II  
MintDrive  
Mint WorkBench  
RS232  
II  
MintDrive  
Mint WorkBench  
RS485/422  
Host PC  
Mint Machine Center  
NextMove e100  
Mint WorkBench  
USB  
MicroFlex e100  
Ethernet  
Mint WorkBench  
MicroFlex e100  
Mint WorkBench  
USB  
Figure 42 - Typical network visibility provided by Mint Machine Center  
6-6 Configuration  
MN1942  
www.supportme.net  
6.3.1 Starting MMC  
1. On the Windows Start menu, select Programs, Mint Machine Center, Mint Machine Center.  
2. In the controller pane, ensure that Host is  
selected. In the information pane, click  
Scan.  
3. When the search is complete, click once  
on ‘MicroFlex e100’ in the controller pane  
to select it, then double click to open an  
instance of Mint WorkBench. The  
MicroFlex e100 will be already connected  
to the instance of Mint WorkBench, ready  
to configure.  
MN1942  
Configuration 6-7  
www.supportme.net  
6.4 Mint WorkBench  
Mint WorkBench is a fully featured application for commissioning the MicroFlex e100. The main  
Mint WorkBench window contains a menu system, the Toolbox and other toolbars. Many  
functions can be accessed from the menu or by clicking a button - use whichever you prefer.  
Most buttons include a ‘tool-tip’; hold the mouse pointer over the button (don’t click) and its  
description will appear.  
Menu system  
Toolbars  
Control and  
test area  
Toolbox  
Figure 43 - The Mint WorkBench software  
6-8 Configuration  
MN1942  
www.supportme.net  
6.4.1 Help file  
Mint WorkBench includes a comprehensive help file that contains information about every Mint  
keyword, how to use Mint WorkBench and background information on motion control topics. The  
help file can be displayed at any time by pressing F1. On the left of the help window, the Contents  
tab shows the tree structure of the help file. Each book  
contains a number of topics . The  
Index tab provides an alphabetic list of all topics in the file, and allows you to search for them by  
name. The Search tab allows you to search for words or phrases appearing anywhere in the help  
file. Many words and phrases are underlined and highlighted with a color (normally blue) to show  
that they are links. Just click on the link to go to an associated keyword. Most keyword topics  
begin with a list of relevant See Also links.  
Figure 44 - The Mint WorkBench help file  
For help on using Mint WorkBench, click the Contents tab, then click the small plus sign  
beside the Mint WorkBench book icon. Double click a  
topic name to display it.  
MN1942  
Configuration 6-9  
www.supportme.net  
6.4.2 Starting Mint WorkBench  
Note: If you have already used MMC to start an instance of Mint WorkBench then the  
following steps are unnecessary. Go to section 6.4.3 to continue configuration.  
1. On the Windows Start menu, select Programs, Mint Machine Center, WorkBench v5.5.  
2. In the opening dialog box, click Start New Project... .  
6-10 Configuration  
MN1942  
www.supportme.net  
3. In the Select Controller dialog, click Scan to search for the MicroFlex e100. Mint WorkBench  
will scan the PC’s ports for the MicroFlex e100.  
When the search is complete, click ‘MicroFlex e100’ in the list to select it, then click Select.  
This check box is already selected for you. When you  
click Select, it means that the Commissioning Wizard  
will start automatically.  
Note: If the MicroFlex e100 is not listed, check the USB or Ethernet cable between the  
MicroFlex e100 and the PC. Check that the MicroFlex e100 is powered correctly.  
Click Scan to re-scan the ports.  
6.4.3 Commissioning Wizard  
Each type of motor and drive combination has different performance characteristics. Before the  
MicroFlex e100 can be used to control the motor accurately, the MicroFlex e100 must be ‘tuned’.  
This is the process where the MicroFlex e100 powers the motor in a series of tests. By monitoring  
the feedback from the motor’s encoder and performing a number of calculations, the  
MicroFlex e100 can make small adjustments to the way it controls the motor. This information is  
stored in the MicroFlex e100 and can be uploaded to a file if necessary.  
The Commissioning Wizard provides a simple way to tune the MicroFlex e100 and create the  
necessary configuration information for your drive/motor combination, so this is the first tool that  
should be used. If necessary, any of the parameters set by the Commissioning Wizard can be  
adjusted manually after commissioning is complete.  
MN1942  
Configuration 6-11  
www.supportme.net  
6.4.3.1 Using the Commissioning Wizard  
CAUTION: The motor will move during commissioning. For safety it is advisable to  
disconnect any load from the motor during initial commissioning. The motor  
can be tuned with the load connected after the Commissioning Wizard has  
finished.  
Each screen of the Commissioning Wizard requires you to enter information about the motor or  
drive. Read each screen carefully and enter the required information.  
On the Operating Mode screen, it is important to select ‘Host/Mint’ as the Reference Source.  
This will allow the Autotune Wizard to operate correctly, and allow further initial testing to be  
performed using Mint WorkBench. Although the MicroFlex e100 may eventually be controlled  
over ETHERNET Powerlink (EPL), this reference source should only be selected after the  
MicroFlex e100 has been commissioned and is ready to add to the EPL network. This can be  
selected by choosing the Operating Mode tool in the Toolbox.  
If you need extra help, click Help or press F1 to display the help file.  
When you have completed a screen, click Next > to display the next screen. If you need to  
change something on a previous screen, click the < Back button. The Commissioning Wizard  
remembers information that you have entered so you will not need to re-enter everything if you  
go back to previous screens.  
During commissioning, changed parameters are stored in the MicroFlex e100’s temporary  
(volatile) memory. For this reason, the Commissioning Wizard will occasionally prompt you to  
save the parameters. Selecting Yes will cause the parameters to be saved in the  
MicroFlex e100’s non-volatile flash memory, to be retained when power is removed. If you select  
No, you must remember to use the Save Drive Parameters function before removing power from  
the MicroFlex e100; this function is available on the Tools menu, or by clicking the  
button on  
the Mode toolbar. Saving parameters into flash memory will cause the MicroFlex e100 to be  
reset.  
6-12 Configuration  
MN1942  
www.supportme.net  
6.4.4 Performing a test move  
This section tests the basic operation of the drive and motor.  
1. Check that the Drive enable button is  
pressed (down).  
2. In the Toolbox, click the Edit & Debug icon.  
3. Click in the Command window.  
4. Type:  
J OG. 0 = 10  
This will cause the motor to move  
continuously at 10 units per second. In Mint  
WorkBench, look at the Spy window located  
on the right of the screen. The Spy window’s  
Velocity  
display  
should  
show  
10  
(approximately). If there seems to be very little motor movement, it is probably due to the scale  
factor. In the Commissioning Wizard, on the Select Scale Factor page, if you did not adjust  
the scale factor then the current unit of movement is feedback counts per second. Depending  
on the motor’s feedback device, 10 feedback counts per second could equate to a very small  
velocity. Issue another J OG command using a larger value, or use the Operating Mode Wizard  
to select a suitable scale factor (e.g. 4000 if the motor has a 1000 line encoder, or 10,000 for  
a 2500 line encoder).  
5. To stop the test, type:  
STOP. 0  
MN1942  
Configuration 6-13  
www.supportme.net  
6.5 Further configuration  
Mint WorkBench provides a number of tools, each of which has an icon on the left of the screen.  
Click once on an icon to select the tool. Two of the main tools used for tuning and configuring the  
MicroFlex e100 are described in the following sections. Every tool is explained fully in the help  
file. Press F1 to display the help file, then navigate to the Mint WorkBench book. Inside this is the  
Toolbox book.  
6.5.1 Fine-tuning tool  
The Commissioning Wizard calculates many parameters that allow the MicroFlex e100 to  
provide basic control of the motor. These parameters may need to be fine-tuned to provide the  
exact response that you require. The Fine-tuning screen allows you to do this.  
1. Click the Fine-tuning icon in the Toolbox on the left of the screen.  
The Fine-tuning window is displayed at the right of the screen.  
This already shows some of the parameters that have been  
calculated by the Commissioning Wizard.  
The main area of the Mint WorkBench window displays the  
capture window. When further tuning tests are performed, this will  
display a graph representing the response.  
2. The Fine-tuning window has four tabs  
at the bottom - Position, Velocity,  
Current and Filter. Click on a tab to  
select it.  
Click the tab for the type of tests you wish to perform.  
Note: Some tabs may not be available depending on the configuration mode you selected  
in the Commissioning Wizard.  
6.5.1.1 Fine-tuning - Position tab  
The Position tab allows you to adjust position loop settings and perform test moves. The  
Commissioning Wizard may have already set some of these values, depending on the type of  
system selected on the mode screen.  
Enter new values in the required boxes and then click Apply to download the values to the  
MicroFlex e100. To perform tests, go to the Test Parameters area at the bottom of the tab. Enter  
test values and then click Go to perform the test move. If you need help, just press F1 to display  
the help file.  
6.5.1.2 Fine-tuning - Velocity tab  
The Velocity tab allows you to set velocity loop gains and perform test moves. The  
Commissioning Wizard may have already set some of these values, depending on the type of  
system selected on the mode screen.  
Enter new values in the required boxes and then click Apply to download the values to the  
MicroFlex e100. To perform tests, go to the Test Parameters area at the bottom of the tab. Enter  
test values and then click Go to perform the test move. If you need help, just press F1 to display  
the help file.  
6-14 Configuration  
MN1942  
www.supportme.net  
6.5.1.3 Fine-tuning - Current tab  
The Current tab allows you to set current loop gains and perform test moves. The  
Commissioning Wizard may have already set some of these values, depending on the type of  
system selected on the mode screen. Normally, it should not be necessary to alter these values.  
Enter new values in the required boxes and then click Apply to download the values to the  
MicroFlex e100. To perform tests, go to the Test Parameters area at the bottom of the tab. Enter  
test values and then click Go to perform the test move. If you need help, just press F1 to display  
the help file.  
The additional Measure and Feedback alignment buttons can be used to repeat the same  
measurement and alignment tests that are used by the Commissioning Wizard.  
6.5.1.4 Fine-tuning - Filter tab  
The Filter tab allows you to set the properties of the MicroFlex e100’s two torque filters. It should  
only be necessary to use the torque filters if there is a particular problem with resonant  
frequencies in the load.  
Enter new values in the required boxes and then click Apply to download the values to the  
MicroFlex e100. To perform tests, go to the Frequency Response Params area at the bottom of  
the tab. Enter test values and then click Go to perform the test move. If you need help, just press  
F1 to display the help file.  
MN1942  
Configuration 6-15  
www.supportme.net  
6.5.2 Parameters tool  
The Parameters tool can be used to view or change most of the drive’s parameters.  
1. Click the Parameters icon in the Toolbox  
on the left of the screen.  
The main area of the Mint WorkBench  
window displays the Parameters editor  
screen.  
2. In the parameters tree, scroll to the  
required item. Click on the small + sign  
beside the item’s name.  
3. The adjacent table will list the parameters  
for the chosen item.  
Scroll to the required entry.  
Click in the Active Table cell and enter a  
value. This immediately sets the  
parameter, which will remain in the  
MicroFlex e100 until another value is defined. The icon to the left of the item will change from  
green to yellow to indicate that the value has been changed.  
Many of the MicroFlex e100’s parameters are set automatically by the Commissioning  
Wizard, or when tests are performed in the fine-tuning window.  
6-16 Configuration  
MN1942  
www.supportme.net  
6.5.3 Other tools and windows  
Each tool and window is explained fully in the help file, so is not described here in detail.  
H
Edit & Debug Tool  
This tool provides a work area including  
the Command window and Output  
window. The Command window can be  
used to send immediate Mint  
commands to the MicroFlex e100. If  
you tried the test move in section 6.4.4,  
then you have already used Edit &  
Debug mode.  
H
Scope Tool  
Displays the capture screen. This screen is also shown when the Fine-tuning tool is  
selected.  
H
Spy window  
Allows you to monitor all the important  
parameters for the axis.  
Remember, for help on each tool just  
press F1 to display the help file, then  
navigate to the Mint WorkBench book.  
Inside this is the Toolbox book.  
MN1942  
Configuration 6-17  
www.supportme.net  
6-18 Configuration  
MN1942  
7 Troubleshooting
7
7.1 Introduction  
This section explains common problems that may be encountered, together with possible  
solutions. If you want to know the meaning of the LED indicators, see section 7.2.  
7.1.1 Problem diagnosis  
If you have followed all the instructions in this manual in sequence, you should have few  
problems installing the MicroFlex e100. If you do have a problem, read this section first.  
In Mint WorkBench, use the Error Log tool to view recent errors and then check the help file.  
If you cannot solve the problem or the problem persists, the SupportMe feature can be used.  
7.1.2 SupportMe feature  
The SupportMe feature is available from the Help menu or by clicking the  
button on the motion  
toolbar. SupportMe can be used to gather information which can then be e-mailed, saved as a  
text file, or copied to another application. The PC must have e-mail facilities to use the e-mail  
feature. If you prefer to contact Baldor technical support by telephone or fax, contact details are  
provided at the front of this manual. Please have the following information ready:  
H
H
H
H
The serial number of your MicroFlex e100 (if known).  
Use the Help, SupportMe menu item in Mint WorkBench to view details about your system.  
The catalog and specification numbers of the motor that you are using.  
A clear description of what you are trying to do, for example trying to establish  
communications with Mint WorkBench or trying to perform fine-tuning.  
H
A clear description of the symptoms that you can observe, for example the Status LED, error  
messages displayed in Mint WorkBench, or errors reported by the Mint error keywords  
ERRORREADCODE or ERRORREADNEXT.  
H
H
The type of motion generated in the motor shaft.  
Give a list of any parameters that you have setup, for example the motor data you  
entered/selected in the Commissioning Wizard, the gain settings generated during the tuning  
process and any gain settings you have entered yourself.  
7.1.3 Power-cycling the MicroFlex e100  
The term “Power-cycle the MicroFlex e100” is used in the Troubleshooting sections. Remove the  
24V supply, wait for the MicroFlex e100 to power down completely (the Status LED will turn off),  
then re-apply the 24V supply.  
MN1942  
Troubleshooting 7-1  
www.supportme.net  
7.2 MicroFlex e100 indicators  
7.2.1 STATUS LED  
The Status LED indicates general MicroFlex e100 status information.  
Solid green:  
Drive enabled (normal operation).  
Flickering / blinking green:  
Firmware download / update in progress.  
Solid red:  
Drive disabled, but no errors are latched.  
Flashing red:  
Powerbase fault or error(s) present. The number of flashes indicates which  
error has occurred. For example, to display error 3 (overcurrent trip), the LED  
flashes 3 times at 0.1 second intervals, followed by a 0.5 second pause. The  
sequence is repeated continuously.  
Error code  
Meaning  
(no. of flashes)  
1 . . . . . . . . . . . . . . . DC bus overvoltage trip.  
2 . . . . . . . . . . . . . . . IPM (integrated power module) trip.  
3 . . . . . . . . . . . . . . . Overcurrent trip.  
4 . . . . . . . . . . . . . . . Overspeed trip.  
5 . . . . . . . . . . . . . . . Feedback trip.  
6 . . . . . . . . . . . . . . . Motor overload (I t) trip.  
2
7 . . . . . . . . . . . . . . . Overtemperature trip.  
8 . . . . . . . . . . . . . . . Drive overload (It) trip.  
9 . . . . . . . . . . . . . . . Following error trip.  
10 . . . . . . . . . . . . . . Error input triggered.  
11 . . . . . . . . . . . . . . Phase search error.  
12 . . . . . . . . . . . . . . All other errors, including: Internal supply error, encoder  
supply error, parameter restore failure, power base not  
recognized.  
If multiple errors occur at the same time, the lowest numbered error code will be  
flashed. For example, a MicroFlex e100 which has tripped on both feedback  
error (code 5) and over-current error (code 3) will flash error code 3. If the drive  
is already displaying an error code when a new error with a lower code occurs,  
the drive will start flashing the new code. Note that undervoltage trip does not  
appear in the table because it is already indicated by the green/red flashing  
state. If an undervoltage trip occurs in conjunction with another error, the drive  
will flash the code of the additional error.  
Further details about error codes can be found in the Mint WorkBench help file.  
Press F1 and locate the Error Handling book.  
Alternate red/green flashing:  
Undervoltage warning (no AC power), but no errors are latched.  
The DC-bus voltage has dropped below the powerbase undervoltage level (see  
DRI VEBUSUNDERVOLTS). This error will only be generated if the drive is in the  
enabled state. Check the AC power is connected.  
7-2 Troubleshooting  
MN1942  
www.supportme.net  
7.2.2 CAN LEDs  
The CAN LEDs display the overall condition of the CANopen interface,  
once the startup sequence has completed. The LED codes conform to  
the CAN in Automation (CiA) DR303_3 indicator standard. The green  
LED indicates the state of the node’s internal CANopen ‘state machine’.  
The red LED indicates the state of the physical CANopen bus.  
Green (run)  
Off: Node initializing or not powered.  
X
1 flash: Node in STOPPED state.  
3 flashes: Software is being downloaded to the node.  
Continuous flashing: Node in PRE-OPERATIONAL state.  
Flickering (very fast flashing): Auto-baudrate detection or LSS services in  
progress; flickers alternately with red LED.  
Continuously illuminated, not flashing: Node in OPERATIONAL state.  
Red (error)  
Off: No errors or not powered.  
X
1 flash: Warning - too many error frames.  
2 flashes: Guard event or heartbeat event has occurred.  
3 flashes: The SYNC message has not been received within the timeout period.  
Flickering (very fast flashing): Auto-baudrate detection or LSS services in  
progress; flickers alternately with green LED.  
Continuously illuminated, not flashing: The node’s CAN controller is in the BUS  
OFF state, preventing it from taking part in any CANopen communication.  
MN1942  
Troubleshooting 7-3  
www.supportme.net  
7.2.3 ETHERNET LEDs  
The ETHERNET LEDs display the overall condition of the Ethernet  
interface once the startup sequence has completed. The LED codes  
conform to the ETHERNET Powerlink Standardization Group (EPSG)  
standard at the time of production.  
Green (status)  
Off: Node in NOT ACTIVE state. The controlled node is waiting to be triggered by  
the manager node.  
X
1 flash: Node in PRE-OPERATIONAL1 state. EPL mode is starting.  
2 flashes: Node in PRE-OPERATIONAL2 state. EPL mode is starting.  
3 flashes: Node in READY TO OPERATE state. The node is signalling its  
readiness to operate.  
Blinking (continuous flashing): Node in STOPPED state. The controlled node has  
been deactivated.  
Flickering (very fast flashing): Node in BASIC ETHERNET state (EPL is not  
operating, but other Ethernet protocols may be used).  
Continuously illuminated, not flashing: Node in OPERATIONAL state. EPL is  
operating normally.  
Red (error)  
Off: EPL is working correctly.  
X
Continuously illuminated: An error has occurred.  
7-4 Troubleshooting  
MN1942  
www.supportme.net  
7.2.4 Communication  
Status LED is off:  
H
Check that the 24VDC control circuit supply is connected correctly to connector X2 and is  
switched on.  
ETHERNET LEDs blinking green and red simultaneously:  
H
Does the MicroFlex e100 have firmware in it? If you tried to download new firmware and the  
download failed, the controller may not have firmware. Download new firmware.  
Mint WorkBench fails to detect the MicroFlex e100:  
H
Ensure that the MicroFlex e100 is powered and the Status LED is illuminated (see section  
7.2.1).  
H
H
H
Check that the Ethernet or USB cable is connected between the PC and MicroFlex e100.  
Try an alternative cable or different port on the PC.  
In the “Search up to Nodexx“ option in Mint WorkBench’s Select Controller dialog, check that  
the MicroFlex e100’s node ID is not higher than the selected value, or search up to a greater  
node ID.  
H
H
For USB connections, check that the cable is properly connected. Check the USB connector  
socket pins for damage or sticking. Check that the USB device driver has been installed; a  
‘USB Motion Controller’ device should be listed in Windows Device Manager.  
Check that the PC’s Ethernet port has been correctly configured for TCP/IP operation (see  
section 6.2.4).  
7.2.5 Power on  
The Status LED is flashing red:  
H
The MicroFlex e100 has detected a motion error. Click the Error button on the motion toolbar  
to view a description of the error. Alternatively, select the Error Log tool to view a list of errors.  
Click the Clear Errors button on the motion toolbar.  
7.2.6 Mint WorkBench  
The Spy window does not update:  
H
The system refresh has been disabled. Go to the Tools, Options menu item, select the  
System tab and then choose a System Refresh Rate (500ms is recommended).  
Cannot communicate with the controller after downloading firmware:  
H
After firmware download, always power cycle the MicroFlex e100 (remove 24V power and  
then reconnect).  
Mint WorkBench loses contact with MicroFlex e100 while connected using USB:  
H
H
Check that the MicroFlex e100 is powered.  
Check that a ‘USB Motion Controller’ device is listed in Windows Device Manager. If not,  
there could be a problem with the PC’s USB interface.  
MN1942  
Troubleshooting 7-5  
www.supportme.net  
7.2.7 Tuning  
Cannot enable the MicroFlex e100 because there is an error 10010:  
H
Check the drive enable input on connector X3 pins 9 and 19 is connected and powered  
correctly.  
When the MicroFlex is enabled the motor is unstable:  
H
H
Check that the load is firmly coupled to the motor.  
Use the Mint WorkBench Drive Setup Wizard to confirm that the correct motor data has been  
entered.  
H
H
Use the Mint WorkBench Autotune Wizard to retune the motor.  
If the motor is still unstable, select the Mint WorkBench Autotune Wizard once more. Click  
Options.... On the Bandwidth tab, move the Current and/or Position and Speed Control  
sliders to a slower position to select to a lower bandwidth. Click OK to exit and then start the  
Autotune Wizard again.  
7.2.8 Ethernet  
Cannot connect to the drive over TCP/IP:  
H
H
Check that there is not an EPL manager node (for example NextMove e100 with node ID  
240) on the network. If there is a manager node on the network, then an EPL compatible  
router must be used to allow TCP/IP communication on the EPL network.  
Check that the PC’s Ethernet adapter has been correctly configured, as described in section  
6.2.4.  
The ETHERNET Powerlink network does not seem to be operating correctly:  
H
Confirm that only one device on the newtork is set to be the ETHERNET Powerlink manager  
node (node ID 240, selector switches LO = F, HI = 0).  
H
Confirm that the reference source on all controlled nodes has been set to EPL in the Mint  
WorkBench Operating Mode Wizard, and that the manager node has been configured  
correctly. For a NextMove e100 manager node, this requires the System Config Wizard to be  
used in Mint WorkBench.  
H
H
Confirm that each device on the network has a different node ID.  
Confirm that there are no more than 10 ‘daisy-chained’ devices on each branch of the  
network.  
7.2.9 CANopen  
The CANopen bus is ‘passive’:  
This means that the internal CAN controller in the MicroFlex e100 is experiencing a number of Tx  
and/or Rx errors, greater than the passive threshold of 127. Check:  
H
12-24V is being applied between pin 9 (+24V) and pin 6 or 3 (0V) of the CAN connector, to  
power the opto-isolators.  
H
H
H
H
There is at least one other CANopen node in the network.  
The network is terminated only at the ends, not at intermediate nodes.  
All nodes on the network are running at the same baud rate.  
All nodes have been assigned a unique node ID.  
7-6 Troubleshooting  
MN1942  
www.supportme.net  
H
The integrity of the CAN cables.  
The MicroFlex e100 should recover from the ‘passive’ state once the problem has been rectified  
(this may take several seconds).  
The CANopen bus is ‘off’:  
This means that the internal CAN controller in the MicroFlex e100 has experienced a fatal  
number of Tx and/or Rx errors, greater than the off threshold of 255. At this point the node will  
have switched itself to a state whereby it cannot influence the bus. Check:  
H
12-24V is being applied between pin 9 (+24V) and pin 6 or 3 (0V) of the CAN connector, to  
power the opto-isolators.  
H
H
H
H
H
There is at least one other CANopen node in the network.  
The network is terminated only at the ends, not at intermediate nodes.  
All nodes on the network are running at the same baud rate.  
All nodes have been assigned a unique node ID.  
The integrity of the CAN cables.  
To recover from the ‘off’ state, the source of the errors must be removed and bus then reset. This  
can be done using the Mint BUSRESET keyword, or by resetting the MicroFlex e100.  
The Manager node cannot scan/recognize a node on the network using the Mint  
NODESCAN keyword:  
Assuming that the network is working correctly (see previous symptoms) and the bus is in an  
‘Operational’ state, check:  
H
Only nodes that conform to DS401, DS403 and other Baldor CANopen nodes are  
recognized by the Mint NODESCAN keyword. Other types of node will be identified with a type  
“unknown” (255) when using the Mint NODETYPE keyword.  
H
H
Check that the node in question has been assigned a unique node ID.  
The node must support the node guarding process. MicroFlex e100 does not support the  
Heartbeat process.  
H
Try power-cycling the node in question.  
If the node in question does not conform to DS401 or DS403 and is not a Baldor CANopen node,  
communication is still possible using a set of general purpose Mint keywords. See the Mint help  
file for further details.  
The node has been successfully scanned / recognized by the Manager node, but  
communication is still not possible:  
For communication to be allowed, a connection must be made to a node after it has been  
scanned:  
H
H
Baldor controller nodes are automatically connected to after being scanned.  
Nodes that conform to DS401, DS403 must have the connections made manually using the  
Mint CONNECT keyword.  
If a connection attempt using CONNECT fails then it may be because the node being connected  
to does not support an object which needs to be accessed in order to setup the connection.  
MN1942  
Troubleshooting 7-7  
www.supportme.net  
7-8 Troubleshooting  
MN1942  
8 Specifications  
8
8.1 Introduction  
This section provides technical specifications for the MicroFlex e100.  
8.1.1 AC input power and DC bus voltage (X1)  
AC input  
All models  
Unit  
1Φ  
3Φ  
Nominal input voltage  
115 or 230  
105*  
VAC  
Minimum input voltage  
Maximum input voltage  
Nominal DC-bus voltage  
250  
VDC  
A
305  
321  
@230VAC input  
3A  
6A  
9A  
3A  
6A  
9A  
Nominal input current  
7.5  
15  
22  
4
8
12  
@ maximum rated output current  
* The MicroFlex e100 will operate at lower input voltages, although the drive will trip if the DC-bus  
voltage falls below 50V or 60% of the no-load voltage, whichever occurs first.  
8.1.1.1 Effect of AC power supply voltage on DC-bus voltage  
350  
300  
Three-phase AC supply  
250  
Single-phase AC supply  
200  
150  
100  
100  
125  
150  
175  
200  
225  
250  
AC supply voltage (rms)  
MN1942  
Specifications 8-1  
www.supportme.net  
8.1.1.2 Effect of AC power supply voltage on DC-bus ripple  
50  
40  
30  
Single-phase AC supply  
Three-phase AC supply  
20  
10  
0
100  
125  
150  
175  
200  
225  
250  
AC supply voltage (rms)  
8.1.1.3 Effect of output current on DC-bus ripple voltage  
60  
55  
50  
45  
40  
Single-phase AC supply  
35  
30  
25  
20  
15  
Three-phase AC supply  
10  
5
0
20 30 40 50 60 70 80 90 100 110 120 130 140 150  
% of Drive Rated Current  
8-2 Specifications  
MN1942  
www.supportme.net  
8.1.2 24VDC control circuit supply input (X2)  
Unit  
VDC  
3A  
6A  
24  
20  
30  
±10  
0.6  
4
9A  
Nominal input voltage  
Minimum input voltage  
Maximum input voltage  
Maximum ripple  
%
A
A
Maximum continuous current @24VDC  
Power on surge current (typical)  
@24VDC, 100ms  
8.1.3 Motor output power (X1)  
Unit  
3A  
3
6A  
6
9A  
9
Nominal phase current  
A
RMS  
RMS  
Peak phase current  
for 3s  
A
6
12  
18  
Nominal output  
@ 230V, 3Φ  
VA  
1195  
2390  
0 - 230  
0 - 2000  
3585  
Output voltage range (line-line)  
@VDC-bus=320V  
V
RMS  
Hz  
Output frequency  
Output dV/dt  
kV/µs  
at drive, phase-phase  
2
at drive, phase-ground  
at motor (using 20m cable), phase-phase  
at motor (using 20m cable), phase-ground  
1.1  
1.9  
1.8  
Nominal switching frequency  
Minimum motor inductance (per winding)  
Efficiency  
kHz  
mH  
%
8.0  
1
>95  
8.1.4 Regeneration (X1)  
Unit  
VDC  
kW  
3A  
6A  
9A  
Nominal switching threshold (typical)  
on: 388, off: 376  
0.25  
Nominal power  
(10% power cycle, R=57)  
Peak power  
kW  
2.7  
(10% power cycle, R=57)  
Maximum regeneration switching current  
Minimum load resistance  
A
10  
39  
PK  
Maximum load inductance  
µH  
100  
MN1942  
Specifications 8-3  
www.supportme.net  
8.1.5 Digital inputs - drive enable and DIN0 general purpose (X3)  
Unit  
All models  
Type  
Opto-isolated inputs  
Input voltage  
VDC  
Nominal  
Minimum  
Maximum  
24  
12  
30  
Input current (maximum, per input)  
Sampling interval  
mA  
ms  
µs  
50  
1
Minimum pulse width  
5
8.1.6 Digital inputs DIN1, DIN2 - high speed general purpose (X3)  
Unit  
All models  
Type  
Opto-isolated inputs  
Input voltage  
VDC  
Nominal  
Minimum  
Maximum  
24  
12  
30  
Input current (maximum, per input)  
Maximum input frequency  
Minimum pulse width  
mA  
MHz  
ns  
20  
1
250  
8.1.7 Digital outputs DOUT0, DOUT1 - status and general purpose (X3)  
Unit  
V
All models  
User supply (maximum)  
Output current (max. continuous)  
Fuse  
28  
mA  
100  
Approximate trip current  
Reset time  
mA  
s
200  
<20  
Update interval  
ms  
1
8-4 Specifications  
MN1942  
www.supportme.net  
8.1.8 Incremental encoder feedback option (X8)  
Unit  
All models  
Encoder input  
RS422 A/B Differential, Z index  
8
Maximum input frequency  
MHz  
(quadrature)  
Hall inputs  
RS422 A/B Differential  
5V, 200mA max.  
30.5m (100ft)  
Output power supply to encoder  
Maximum recommended cable length  
8.1.9 SSI encoder feedback option (X8)  
Unit  
All models  
SSI encoder inputs  
Differential Data and Clock  
Operating mode  
Single turn.  
(Baldor motors)  
Positioning resolution up to  
262144 counts/rev (18-bit)  
Output power supply to encoder  
5V, 200mA max.  
30.5m (100ft)  
Maximum recommended cable length  
8.1.10 SinCos / EnDat encoder feedback option (X8)  
Unit  
All models  
Absolute encoder input  
EnDat / SinCos differential  
inputs and data input  
Operating modes  
Single or multi-turn.  
(Baldor motors)  
512 or 2048 Sin/Cos cycles per  
turn, with absolute positioning  
resolution of  
2048 or 8192 steps.  
(Many other encoder  
specifications are supported -  
contact Baldor.)  
Output power supply to encoder  
5V, 200mA max.  
30.5m (100ft)  
Maximum recommended cable length  
8.1.11 Ethernet interface  
Description  
Unit  
Value  
Signal  
2 twisted pairs,  
magnetically isolated  
Protocols  
Bit rates  
ETHERNET Powerlink  
& TCP/IP  
Mbit/s  
100  
MN1942  
Specifications 8-5  
www.supportme.net  
8.1.12 CAN interface  
Description  
Signal  
Unit  
Value  
2-wire, isolated  
Channels  
Protocol  
Bit rates  
1
CANopen  
Kbit/s  
10, 20, 50, 100, 125, 250, 500, 1000  
8.1.13 Environmental  
All models  
Unit  
All models  
Operating temperature range*  
°C  
°F  
Minimum  
Maximum  
Derate  
+0  
+45  
See sections  
3.2.2 to 3.2.5  
+32  
+113  
See sections  
3.2.2 to 3.2.5  
Storage temperature range*  
-40 to +85  
-40 to +185  
Humidity (maximum)*  
%
93  
6A  
1
3A  
9A  
Forced air cooling flow  
m/s None required  
2.5  
(vertical, from bottom to top)  
Maximum installation altitude  
m
1000  
(above m.s.l.)  
Derate 1.1% / 100m over 1000m  
ft  
3300  
Derate 1.1% / 330ft over 3300ft  
Shock*  
10G  
1G, 10-150Hz  
IP20**  
Vibration*  
IP rating  
* MicroFlex e100 complies with the following environmental test standards:  
BS EN60068-2-1:1993 low temperature operational 0°C.  
BS EN60068-2-2:1993 high temperature operational 45°C.  
BS EN60068-2-1:1993 low temperature storage/transportation -40°C.  
BS EN60068-2-2:1993 high temperature storage/transportation +85°C.  
BS 2011:part2.1 Cb: 1990: 45°C 93%RH humidity/high temperature operational.  
DIN IEC 68-2-6/29  
** MicroFlex e100 complies with EN61800-5-1:2003 part 5.2.2.5.3 (Impact test), provided all front  
panel connectors are inserted.  
8-6 Specifications  
MN1942  
www.supportme.net  
8.1.14 Weights and dimensions  
Description  
3A  
6A  
9A  
Weight  
1.45kg (3.2 lb) 1.5kg (3.3 lb) 1.55kg (3.4 lb)  
Nominal overall dimensions  
180mm x 80mm x 157mm  
(7.1in x 3.2in x 6.2in)  
MN1942  
Specifications 8-7  
www.supportme.net  
8-8 Specifications  
MN1942  
A Accessories
A
A.1 Introduction  
This section describes accessories and options that you may need to use with your  
MicroFlex e100. Shielded (screened) cables provide EMI / RFI shielding and are required for  
compliance with CE regulations. All connectors and other components must be compatible with  
the shielded cable.  
MN1942  
Accessories A-1  
www.supportme.net  
A.1.1 Fan tray  
The fan tray (Baldor part FAN001-024) provides sufficient cooling for the 3A, 6A or 9A  
MicroFlex e100. It requires 23 - 27.5VDC at 325mA, which may be sourced from the same  
filtered control circuit supply used for the MicroFlex e100. The MicroFlex e100 is UL listed (file  
NMMS.E128059) when used in conjunction with the fan tray, mounted exactly as shown in  
Figure 45.  
94 (3.7)  
Fan tray  
FAN001-024  
Fan tray  
dimensions  
84 (3.3)  
66 (2.6)  
Assembled MicroFlex e100  
and fan tray  
Position of fan tray mounting  
holes relative to MicroFlex e100  
Bottom of  
MicroFlex e100  
Fan tray  
16  
4.5  
(0.63)  
(0.18)  
It is important that the fan tray is mounted in  
close proximity to the MicroFlex e100 as shown  
above. Failure to do so will result in decreased  
cooling efficiency.  
Figure 45 - Fan tray  
A-2 Accessories  
MN1942  
www.supportme.net  
A.1.2 Footprint filter (single-phase only)  
The single-phase footprint AC power filter (Baldor part FI0029A00) provides mounting holes for  
the MicroFlex e100 and fan tray. This allows the filter, fan tray and MicroFlex e100 to use minimal  
panel mounting space. See section A.1.3 for details of filter FI0029A00.  
Footprint filter  
FI0029A00  
MicroFlex e100  
MFE230A00x  
Fan tray  
FAN001-024  
Figure 46 - Assembled footprint filter, fan tray and MicroFlex e100  
MN1942  
Accessories A-3  
www.supportme.net  
A.1.3 EMC filters  
AC filters remove high frequency noise from the AC power supply, protecting the MicroFlex e100.  
These filters also prevent high frequency signals from being transmitted back onto the power  
lines and help meet EMC requirements. To select the correct filter, see sections 3.4.7 and 3.4.8.  
A.1.3.1 Catalog numbers  
Baldor  
Rated amps Leakage current  
Weight  
kg (lbs)  
Rated volts  
catalog number  
FI0014A00  
FI0015A00  
FI0015A01  
FI0015A02  
FI0018A00  
FI0018A03  
FI0029A00  
@ 40°C  
(mA)  
0.4  
0.4  
0.4  
0.4  
33  
250  
250  
250  
250  
480  
480  
250  
3
6
0.27 (0.6)  
0.45 (0.99)  
0.73 (1.61)  
0.73 (1.61)  
0.5 (1.1)  
10  
12  
7
16  
22  
33  
0.8 (1.76)  
3.0 (6.6)  
33  
B
F
M5  
A
G
D
E
C
Dimensions mm (inches)  
FI0018A03  
Dimension  
FI0018A00  
190 (7.48)  
160 (6.30)  
180 (7.09)  
20 (0.79)  
4.5 (0.18)  
71 (2.80)  
40 (1.57)  
A
B
C
D
E
F
250 (9.84)  
220 (8.66)  
235 (9.25)  
25 (0.98)  
5.4 (0.21)  
70 (2.76)  
45 (1.77)  
G
Figure 47 - Filter dimensions, types FI0018A00 and FI0018A03  
A-4 Accessories  
MN1942  
www.supportme.net  
L
C
H
D
E
A
G
F
K
J
B
Dimensions mm (inches)  
Dimension  
FI0014A00  
FI0015A00  
FI0015A01  
FI0015A02  
A
B
C
D
E
F
85 (3.35)  
54 (2.13)  
40 (1.57)  
65 (2.56)  
75 (2.95)  
27 (1.06)  
12 (0.47)  
29.5 (1.16)  
5.3 (0.21)  
6.3 (0.25)  
13.5 (0.53)  
113.5 (4.47)  
156 (6.14)  
57.5 (2.26)  
46.6 (1.83)  
94 (3.70)  
130.5 (5.14)  
143 (5.63)  
103 (4.06)  
25 (0.98)  
12.4 (0.49)  
32.4 (1.28)  
G
H
J
4.4 (0.17)  
5.3 (0.21)  
K
L
6 (0.24)  
15.5 (0.61)  
Figure 48 - Filter dimensions, types FI0014A00, FI0015A00, FI0015A01, FI0015A02  
MN1942  
Accessories A-5  
www.supportme.net  
B
D
E
F
Mounting keyhole and slot detail  
G
H
J
C
A
C
A
G
K
G
H
J
5.5mm  
11mm  
10mm  
5mm  
K
Dimensions shown as: mm (inches).  
Dimensions mm (inches)  
FI0029A00  
255 (10.04)  
100 (3.94)  
Dimension  
A
B
C
D
E
F
244.5 (9.63)  
70 (2.76)  
40 (1.57)  
20 (0.79)  
Figure 49 - Filter dimensions, type FI0029A00  
A-6 Accessories  
MN1942  
www.supportme.net  
A.1.4 Regeneration resistors  
Depending on the application, MicroFlex e100 might require an external regeneration resistor to  
be connected to pins R1 and R2 of connector X1. The regeneration resistor dissipates energy  
during braking to prevent an over-voltage error occurring.  
Baldor part number RG56 is recommended (56, 44W). However, if the required dissipation is  
greater than this, Baldor part number RG39 may be used, rated at 100W.  
45 (1.7)  
100  
(3.9)  
90  
(3.54)  
RG56: 140 (5.5)  
RG39: 226 (8.9)  
M4  
65 (2.6)  
Dimensions: mm (inches)  
Figure 50 - Regeneration resistor dimensions  
WARNING: A regeneration resistor may generate enough heat to ignite combustible  
materials. To avoid fire hazard, keep all combustible materials and  
flammable vapors away from the brake resistors. Ensure that the resistor  
has clearance of at least 50mm (2 in) above and below and 26mm (1 in) left  
and right.  
MN1942  
Accessories A-7  
www.supportme.net  
A.1.5 Motor power cables  
Length  
ft  
Cable  
rated current  
Cable assembly  
description  
Catalog number  
m
Power Cable:  
no connectors  
CBL050-501  
Available by the meter or on  
100m drum.  
CBL015SP-12*  
CBL025SP-12  
CBL030SP-12*  
CBL050SP-12  
CBL061SP-12*  
CBL075SP-12  
CBL091SP-12*  
CBL100SP-12  
CBL150SP-12  
CBL152SP-12*  
CBL200SP-12  
CBL229SP-12*  
1.5  
2.5  
3.0  
5.0  
6.1  
7.5  
9.1  
10  
5
8.2  
10  
16.4  
20  
24.6  
30  
32.8  
49.2  
50  
65.6  
75  
Power Cable  
Assembly:  
CE style threaded  
motor connector  
(motor end only)  
12 Amps  
15  
15.2  
20  
22.9  
Power Cable:  
no connector  
CBL051-501  
Available by the meter or on  
100m drum.  
CBL015SP-20*  
CBL025SP-20  
CBL030SP-20*  
CBL050SP-20  
CBL061SP-20*  
CBL075SP-20  
CBL091SP-20*  
CBL100SP-20  
CBL150SP-20  
CBL152SP-20*  
CBL200SP-20  
CBL229SP-20*  
1.5  
2.5  
3.0  
5.0  
6.1  
7.5  
9.1  
10  
5
8.2  
10  
16.4  
20  
24.6  
30  
32.8  
49.2  
50  
65.6  
75  
Power Cable  
Assembly:  
CE style threaded  
motor connector  
(motor end only)  
20 Amps  
15  
15.2  
20  
22.9  
Power Cable:  
no connector  
CBL052-501  
Available by the meter or on  
100m drum.  
35 Amps  
* Available in North and South America only.  
A.1.6 Motor power cable part numbers  
For easier installation, it is recommended that a color-coded motor power cable is used. A  
description of a BSM rotary motor power cable catalog number is shown here, using the example  
number CBL025SP-12:  
Meaning  
Alternatives  
CBL The item is a cable  
-
025 Indicates the length, in this example 2.5 meters Various: see section A.1.5.  
SP  
12  
The cable is a Servo motor Power cable  
-
Current rating of 12A  
20=20A  
Motor power cables include the motor power connector. Larger motors requiring 35A cable  
normally use terminal box connections, so a motor power connector is not required.  
A-8 Accessories  
MN1942  
www.supportme.net  
A.1.7 SSI feedback cables  
This table lists part numbers of feedback cables for use with the MicroFlex e100:  
Length  
Cable assembly description  
Catalog number  
m
ft  
SSI Feedback Cable:  
no connectors  
CBL044-501  
Available by the meter  
or on 100m drum.  
CBL015SF-S2*  
CBL025SF-S2  
CBL030SF-S2*  
CBL050SF-S2  
CBL061SF-S2*  
CBL075SF-S2  
CBL091SF-S2*  
CBL100SF-S2  
CBL150SF-S2  
CBL152SF-S2*  
CBL200SF-S2  
CBL229SF-S2*  
1.5  
2.5  
3.0  
5.0  
6.1  
7.5  
9.1  
10  
15  
15.2  
20  
22.9  
5
8.2  
10  
16.4  
20  
Feedback Cable Assembly:  
CE style threaded motor connector  
and low density 15-pin D-type drive  
connector  
24.6  
30  
32.8  
49.2  
50  
65.6  
75  
* Available in North and South America only.  
A.1.8 Encoder / Hall feedback cables  
This table lists part numbers of encoder feedback cables for use with the MicroFlex e100:  
Length  
Cable assembly description  
Catalog number  
m
ft  
Encoder Feedback Cable:  
no connectors  
CBL043-501  
Available by the meter  
or on 100m drum.  
Feedback Cable Assembly:  
CE style threaded motor connector  
(motor end only)  
CBL025SF-E  
2.5  
8.2  
CBL015SF-E2*  
CBL025SF-E2  
CBL030SF-E2*  
CBL050SF-E2  
CBL061SF-E2*  
CBL075SF-E2  
CBL091SF-E2*  
CBL100SF-E2  
CBL150SF-E2  
CBL152SF-E2*  
CBL200SF-E2  
CBL229SF-E2*  
1.5  
2.5  
3.0  
5.0  
6.1  
7.5  
9.1  
10  
15  
15.2  
20  
22.9  
5
8.2  
10  
16.4  
20  
Feedback Cable Assembly:  
CE style threaded motor connector  
and low density 15-pin D-type drive  
connector  
24.6  
30  
32.8  
49.2  
50  
65.6  
75  
* Available in North and South America only.  
MN1942  
Accessories A-9  
www.supportme.net  
A.1.9 EnDat (absolute encoder) and SinCos feedback cables  
Length  
ft  
Cable assembly description  
Baldor catalog number  
m
Absolute encoder feedback cable:  
no connectors  
CBL045-501  
Available by the meter  
or on 100m drum.  
CBL015SF-D2*  
CBL025SF-D2  
CBL030SF-D2*  
CBL050SF-D2  
CBL061SF-D2*  
CBL075SF-D2  
CBL091SF-D2*  
CBL100SF-D2  
CBL150SF-D2  
CBL152SF-D2*  
CBL200SF-D2  
CBL229SF-D2*  
1.5  
2.5  
3.0  
5.0  
6.1  
7.5  
9.1  
10  
15  
15.2  
20  
22.9  
5
8.2  
10  
16.4  
20  
Absolute encoder  
feedback cable assembly:  
CE style threaded motor connector  
and low density 15-pin D-type drive  
connector  
24.6  
30  
32.8  
49.2  
50  
65.6  
75  
* Available in North and South America only.  
A.1.10 Feedback cable part numbers  
A description of a feedback cable catalog number is shown here, using the example number  
CBL025SF-E2:  
Meaning  
Alternatives  
CBL The item is a cable  
-
Various: see sections A.1.7 to  
A.1.9.  
025 Indicates the length, in this example 2.5 meters  
SF  
E
The cable is a Servo motor Feedback cable  
-
S=SSI feedback cable  
D=EnDat/SinCos feedback cable  
Encoder feedback cable with motor connector  
Drive connector included:  
15-pin D-type connector for all feedback types  
2
-
Note: Feedback cables have the outer shield tied to the connector housing(s).  
If you are not using a Baldor cable with your chosen feedback device, be sure to obtain a cable  
2
that is a shielded twisted pair 0.34mm (22 AWG) wire minimum, with an overall shield. Ideally,  
the cable should not exceed 30.5m (100ft) in length. Maximum wire-to-wire or wire-to-shield  
capacitance is 50pF per 300mm (1ft) length, to a maximum of 5000pF for 30.5m (100ft).  
A-10 Accessories  
MN1942  
www.supportme.net  
A.1.11 Ethernet cables  
The cables listed in this table connect MicroFlex e100 to other EPL nodes such as  
NextMove e100, additional MicroFlex e100s, or other EPL compatible hardware. The cables are  
standard CAT5 ‘crossover’ Ethernet cables:  
Length  
Cable assembly description  
Baldor catalog number  
m
ft  
CAT5 Ethernet cable  
CBL002CM-EXS  
CBL005CM-EXS  
CBL010CM-EXS  
CBL020CM-EXS  
CBL050CM-EXS  
CBL100CM-EXS  
0.2  
0.5  
1.0  
2.0  
5.0  
10.0  
0.65  
1.6  
3.3  
6.6  
16.4  
32.8  
MN1942  
Accessories A-11  
www.supportme.net  
A-12 Accessories  
MN1942  
B Control System
B
B.1 Introduction  
The MicroFlex e100 can use two main control configurations:  
H
Servo (Position).  
Torque Servo (Current).  
H
Each configuration supports different control modes, selected by using the Tools, Control Mode  
menu item or by using the CONTROLMODE keyword in the Command window (see the Mint help  
file). The control configurations are described in the following sections.  
MN1942  
Control System B-1  
www.supportme.net  
B.1.1 Servo configuration  
The servo configuration is the default configuration for the drive, allowing the motor control  
system to operate as a torque controller, a velocity controller or a position controller. This  
configuration comprises 3 nested control loops; a current control loop, a velocity control loop and  
a position control loop, as shown in Figure 51.  
The universal encoder interface reads rotor position from the encoder and estimates velocity.  
The commutation block uses the position to calculate the electrical angle of the rotor. The current  
sensor system measures U and V phase currents. These are fed into a current conversion block  
that converts them into quantities representing torque producing and magnetizing currents (the  
’vector’ currents which are locked to the rotor).  
In the current control loop, a current demand and the final measured current values form the  
inputs to a PI (Proportional, Integral) control system. This control system generates a set of  
voltage demands that are fed into a PWM (pulse-width modulation) block. The PWM block uses  
the space-vector modulation method to convert these voltage demands into a sequence of U, V  
and W phase switching signals, which are applied to the output bridge of the drive. The PWM  
block uses the measured DC bus voltage to compensate for variations in supply voltage.  
The torque controller converts a torque demand into a current demand and compensates for  
various load non-linearities. A 2-stage notch or low-pass filter allows the effects of load  
compliance to be reduced. To avoid motor damage, a user-defined application current limit is also  
applied, as well as individual positive and negative torque limits.  
In the velocity control loop, a velocity demand and measured velocity form the inputs to a PI  
control system. The output of the control system is a torque demand which, when the drive is  
operating as a velocity controller, forms the input to the current control loop.  
Finally, in the position control loop, a position demand and measured position form the inputs to  
a PID (Proportional, Integral, Differential) control system incorporating velocity feedback,  
velocity feed-forward and acceleration feed-forward. The output of the position control system  
is a velocity demand which, when the drive is operating as a position controller, forms the input  
to the velocity control loop.  
B-2 Control System  
MN1942  
www.supportme.net  
MN1942  
Control System B-3  
www.supportme.net  
B.1.2 Torque servo configuration  
Figure 52 shows the torque-servo control configuration. Here, the velocity loop has been  
removed and the output of the position controller is fed into the current loop via the torque filters.  
The torque servo configuration is useful when the drive is operating as a closed-loop position  
controller and settling time must be minimized. Although the servo configuration tends to give  
better velocity tracking when operating in position mode, settling times can be longer.  
The control mode switch allows the drive to operate in either torque or position modes, but not  
velocity mode.  
B-4 Control System  
MN1942  
www.supportme.net  
MN1942  
Control System B-5  
www.supportme.net  
B-6 Control System  
MN1942  
C CE Guidelines  
C
C.1 Outline  
This section provides general information  
regarding recommended methods of installation  
for CE compliance. It is not intended as an  
exhaustive guide to good practice and wiring  
techniques. It is assumed that the installer of the  
MicroFlex e100 is sufficiently qualified to perform  
the task, and is aware of local regulations and  
requirements. Baldor products that meet the EMC  
directive requirements are indicated with a “CE”  
mark. A duly signed CE declaration of conformity  
is available from Baldor.  
C.1.1 EMC Conformity and CE marking  
The information contained herein is for your guidance only and does not guarantee that the  
installation will meet the requirements of the council directive 89/336/EEC.  
The purpose of the EEC directives is to state a minimum technical requirement common to all the  
member states within the European Union. In turn, these minimum technical requirements are  
intended to enhance the levels of safety both directly and indirectly.  
Council directive 89/336/EEC relating to Electro Magnetic Compliance (EMC) indicates that it is  
the responsibility of the system integrator to ensure that the entire system complies with all  
relative directives at the time of installing into service.  
Motors and controls are used as components of a system, per the EMC directive. Hence all  
components, installation of the components, interconnection between components, and  
shielding and grounding of the system as a whole determines EMC compliance.  
The CE mark informs the purchaser that the equipment has been tested and complies with the  
appropriate standards. It rests upon the manufacturer or his authorized representative to ensure  
the item in question complies fully with all the relative directives in force at the time of installing  
into service, in the same way as the system integrator previously mentioned. Remember that it  
is the instructions of installation and the product that should comply with the directive.  
C.1.2 MicroFlex e100 compliance  
When installed as directed in this manual, MicroFlex e100 units meet the emission limits for an  
“industrial” environment, as defined by the EMC directives (EN61000-6-4: 2001). To meet the  
more stringent emission limits of the “residential, commercial and light industrial” environment  
(EN61000-6-3: 2001), the MicroFlex e100 must be mounted in a suitable metal cabinet  
incorporating 360° screened cable glands.  
MN1942  
CE Guidelines C-1  
www.supportme.net  
C.1.3 Use of CE compliant components  
The following points should be considered:  
H
H
Using CE approved components will not guarantee a CE compliant system!  
The components used in the drive, installation methods used, materials selected for  
interconnection of components are important.  
H
H
The installation methods, interconnection materials, shielding, filtering and earthing /  
grounding of the system as a whole will determine CE compliance.  
The responsibility of CE mark compliance rests entirely with the party who offers the end  
system for sale (such as an OEM or system integrator).  
C.1.4 EMC wiring technique  
Cabinet  
Using a typical electroplated zinc coated enclosure, connected to earth/ground, means that all  
parts mounted on the back plane are connected to earth/ground and all outer shield (screen)  
connections can be connected to earth/ground. Within the cabinet there should be a spatial  
separation between power wiring (motor and AC power cables) and control wiring.  
Shield (screen) connections  
All connections between components must use shielded cables. The cable shields must be  
connected to the enclosure. Use conductive clamps to ensure good earth/ground connection.  
With this technique, a good earth/ground shield can be achieved.  
EMC filters  
The filter should be mounted next to the MicroFlex e100. The connections between the MicroFlex  
e100 and the filter should use shielded (screened) cables. The cable shields should be  
connected to shield clamps at both ends.  
Earthing/grounding  
For safety reasons (VDE0160), all Baldor components must be connected to earth/ground with  
a separate wire. Earth/ground connections must be made from the central earth/ground (star  
point) to the regeneration resistor enclosure and from the central earth/ground (star point) to the  
power supply.  
C-2 CE Guidelines  
MN1942  
www.supportme.net  
C.1.5 EMC installation suggestions  
To ensure electromagnetic compatibility (EMC), the following installation points should be  
considered to help reduce interference:  
H
H
H
Earthing/grounding of all system elements to a central earth/ground point (star point)  
Shielding of all cables and signal wires  
Filtering of power lines.  
A proper enclosure should have the following characteristics:  
H
All metal conducting parts of the enclosure must be electrically connected to the back plane.  
These connections should be made with an earthing/grounding strap from each element to  
a central earthing/grounding point (star point). *  
H
H
Keep the power wiring (motor and power cable) and control wiring separated. If these wires  
must cross, be sure they cross at 90 degrees to minimize noise due to induction.  
The shield connections of the signal and power cables should be connected to the shield  
rails or clamps. The shield rails or clamps should be conductive clamps fastened to the  
cabinet. **  
H
H
H
The cable to the regeneration resistor must be shielded. The shield must be connected to  
earth/ground at both ends.  
The location of the AC filter has to be situated close to the drive so the AC power wires are  
as short as possible.  
Wires inside the enclosure should be placed as close as possible to conducting metal,  
cabinet walls and plates. It is advised to terminate unused wires to chassis ground.*  
H
To reduce earth/ground current, use the largest suitable wire available for earth/ground  
connections.  
*
Earthing/grounding in general describes all metal parts which can be connected to a  
protective conductor, e.g. housing of cabinet, motor housing, etc. to a central earth/ground  
point (star point). This central earth/ground point (star point) is then connected to the main  
plant (or building) earth/ground.  
** Or run as twisted pair at minimum.  
MN1942  
CE Guidelines C-3  
www.supportme.net  
C.1.6 Wiring of shielded (screened) cables  
Remove the outer insulation  
to expose the overall shield.  
Clamp should provide 360°  
contact with the cable.  
Flat or p-type  
conductive clamp  
Figure 53 - Earthing/grounding cable shields  
MicroFlex e100  
X8  
Encoder Connector  
Housing  
Cable  
Twisted pairs  
1
9
2
10  
3
11  
12  
13  
CHA+  
CHA-  
CHB+  
CHB-  
CHZ+  
CHZ-  
+5V  
DGND  
Connect overall shield  
to connector backshell.  
Connect overall shield  
to connector backshell.  
Figure 54 - Encoder signal cable grounding  
C-4 CE Guidelines  
MN1942  
Index  
locations, 3-9, 3-10  
USB, 5-13  
A
Abbreviations. See Units and Abbreviations  
Control system, B-1  
servo configuration, B-2  
torque servo configuration, B-4  
Cooling, 3-5, 3-6, 3-7, 3-8, A-2  
overtemperature trips, 3-8  
Accessories, A-1  
EMC filters, A-4  
fan tray, A-2  
feedback cables, A-9, A-10  
footprint filter, A-3  
motor power cables, A-8  
regeneration resistors, A-7  
D
Demand outputs, 6-13  
Derating, 3-6, 3-7, 3-8  
B
Digital I/O, 5-2  
Basic Installation, 3-1  
digital input DIN0, 5-5, 8-4  
digital inputs DIN1 & DIN2, 5-7, 8-4  
digital output DOUT0, 5-9, 8-4  
digital output DOUT1, 5-11, 8-4  
drive enable input, 5-3, 8-4  
special functions on DIN1 & DIN2, 5-8  
Dimensions, 3-4  
C
CAN interface  
CANopen, 5-18  
connector, 5-17  
introduction, 5-17  
LEDs, 7-3  
Dynamic brake. See Regeneration resistor  
opto-isolation, 5-18  
specifications, 8-6  
termination, 5-17  
wiring, 5-17  
E
Earthing (grounding)  
Catalog number, identifying, 2-2  
leakage, 3-11  
protection class, 3-11  
protective earth (PE), 3-11  
Encoder, incremental  
cable, 4-3, A-9  
CE Guidelines, C-1  
Circuit breakers, 3-15  
Command window, 6-17  
Commissioning Wizard, 6-11  
using, 6-12  
feedback, 4-2  
specification, 8-5  
without Halls, 4-4  
EnDat (absolute) encoder  
cable, 4-11  
feedback, 4-10  
specification, 8-5  
Environmental  
cooling, 3-3  
location, 3-3–3-4  
specification, 8-6  
Configuration, 6-14  
Connections  
See also Input / Output  
feedback, 4-1  
motor, 3-18  
power, 3-11, 3-12  
Connectors  
CAN, 5-17  
Ethernet, 5-14, 5-16  
I/O, 5-3–5-12  
MN1942  
Index  
Ethernet connector, 5-16  
Ethernet interface  
cables, A-11  
STATUS LED, 7-2  
Input / Output, 5-1  
CAN interface, 5-17  
connector, 5-16  
connection summary, 5-23  
digital input DIN0, 5-5, 8-4  
digital inputs DIN1 & DIN2, 5-7, 8-4  
digital output DOUT0, 5-9, 8-4  
digital output DOUT1, 5-11, 8-4  
drive enable input, 5-3, 8-4  
encoder interface, 4-1  
Ethernet interface, 5-14  
node ID selector switches, 5-20  
serial port, 5-13  
ETHERNET Powerlink, 5-15  
introduction, 5-14  
LEDs, 7-4  
specifications, 8-5  
TCP/IP, 5-14  
F
Features, 2-1  
Feedback  
cable, A-9–A-11  
connections, 4-1  
encoder without Halls, 4-4  
EnDat (absolute), 4-10  
Halls-only feedback, 4-4  
incremental encoder, 4-2  
SinCos, 4-8  
USB port, 5-13  
Installation  
See also Basic Installation  
cooling, 3-5–3-8  
dimensions, 3-4  
mechanical, 3-3  
Mint Machine Center, 6-1  
Mint WorkBench, 6-1  
mounting, 3-5  
TCP/IP configuration, 6-3  
USB driver, 6-2  
SSI, 4-6  
Filters  
24V control circuit supply, 3-17  
AC power (EMC), 3-16, A-4  
catalog numbers, A-4  
Footprint filter, A-3  
Fuses, 3-15  
L
LED indicators  
CAN LEDs, 7-3  
ETHERNET LEDs, 7-4  
STATUS LED, 7-2  
G
General Information, 1-1  
LED status indicator, 7-2  
Linear motor, cable configuration, 4-5  
Grounding. See Earthing (grounding)  
H
M
Hardware requirements, 3-1  
Mint Machine Center (MMC), 6-5  
starting, 6-7  
Help file, 6-9  
Mint WorkBench, 6-8  
Commissioning Wizard, 6-11  
fine-tuning tool, 6-14  
help file, 6-9  
other tools and windows, 6-17  
parameters tool, 6-16  
starting, 6-10  
I
Incremental encoder  
cable, 4-3, A-9  
feedback, 4-2  
specification, 8-5  
without Halls, 4-4  
Indicators  
Motor  
CAN LEDs, 7-3  
ETHERNET LEDs, 7-4  
circuit contactors, 3-19  
MN1942  
Index  
connections, 3-18  
brake connection, 3-22  
power cable, 3-19–3-20, A-8  
sinusoidal filter, 3-20  
thermal switch, 3-21  
Mounting, 3-5  
S
Safety Notice, 1-2  
Servo axis, testing the demand output, 6-13  
SinCos  
cable, 4-9  
feedback, 4-8  
specification, 8-5  
N
Specifications, 8-1  
Node ID selector switches, 5-20  
24VDC control supply, 8-3  
AC input power and bus voltage, 8-1  
CAN interface, 8-6  
O
Operation, 6-1  
digital input DIN0, 8-4  
digital input DIN1, 8-4  
digital input DIN2, 8-4  
digital output DOUT0, 8-4  
digital output DOUT1, 8-4  
drive enable input, 8-4  
EnDat feedback, 8-5  
environmental, 8-6  
configuring the TCP/IP connection, 6-3  
connecting to the PC, 6-1  
installing Mint Machine Center, 6-1  
installing Mint WorkBench, 6-1  
installing the USB driver, 6-2  
power on checks, 6-2  
preliminary checks, 6-2  
starting, 6-2  
Ethernet interface, 8-5  
incremental encoder feedback, 8-5  
motor output, 8-3  
Overloads  
drive, 3-15  
regeneration, 8-3  
motor, 3-18  
SinCos feedback, 8-5  
SSI encoder feedback, 8-5  
weights and dimensions, 8-7  
SSI  
cable, 4-7, A-9  
feedback, 4-6  
overtemperature trips, 3-8  
P
Parameters tool, 6-16  
Power  
24V control circuit supply, 3-17  
connections, 3-11  
specification, 8-5  
Status LED, 7-2  
discharge period, 3-13  
disconnect and protection devices, 3-14  
input conditioning, 3-13  
input cycling, 3-13, 7-1  
inrush, 3-13  
Step & direction, specification, 8-4  
T
Testing, demand output, 6-13  
sources, 3-1  
Thermal switch connection, 3-21  
Tools, 3-2  
supply filters, 3-16, A-4  
using a variac, 3-14  
Precautions, 1-2  
Troubleshooting, 7-1  
CAN LEDs, 7-3  
CANopen, 7-6  
Product Notice, 1-2  
communication, 7-5  
Ethernet, 7-6  
R
Receiving and Inspection, 2-2  
ETHERNET LEDs, 7-4  
Mint WorkBench, 7-5  
power cycling, 7-1  
power on, 7-5  
Regeneration  
resistor, 3-23  
specification, 8-3  
MN1942  
Index  
problem diagnosis, 7-1  
STATUS LED, 7-2  
SupportMe, 7-1  
tuning, 7-6  
USB  
installing the driver, 6-2  
port, 5-13  
W
U
Weights and dimensions, 8-7  
Units and abbreviations, 2-3  
Wires sizes, 3-15  
TCP/IP, configuring, 6-3  
WorkBench. See Mint WorkBench  
MN1942  
Index  
Comments  
If you have any suggestions for improvements to this manual, please let us know. Write your  
comments in the space provided below, remove this page from the manual and mail it to:  
Manuals  
Baldor UK Ltd  
Mint Motion Centre  
6 Bristol Distribution Park  
Hawkley Drive  
Bristol  
BS32 0BF  
United Kingdom.  
Alternatively, you can e-mail your comments to:  
manuals@baldor.co.uk  
Comment:  
continued...  
MN1942  
Comments  
Thank you for taking the time to help us.  
Comments  
MN1942  

LG Electronics VERIZON VX8300 User Manual
Jwin JL 355 User Manual
JVC KD SX858R User Manual
Hitachi Deskstar HDS721064CLA332 User Manual
Grindmaster P300 User Manual
Fujitsu MHA2032AT User Manual
Fujitsu CONNECT2AIR AP 600RP USB User Manual
Black Box USB 20 to SATA Enclosure User Manual
Apple Power Mac G5 User Manual
Airaid 300 765 User Manual