Philips TDA1563Q User Manual

INTEGRATED CIRCUITS  
DATA SHEET  
TDA1563Q  
2 × 25 W high efficiency car radio  
power amplifier  
Product specification  
2000 Feb 09  
Supersedes data of 1998 Jul 14  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
BLOCK DIAGRAM  
V
V
P2  
P1  
5
13  
+
SLAVE  
CONTROL  
10  
11  
OUT2−  
MUTE  
+
16  
17  
IV  
OUT2+  
IN2−  
VI  
+
+
IN2+  
VI  
60  
kΩ  
60  
kΩ  
V
P
4
V
ref  
CSE  
25 kΩ  
3
CIN  
+
60  
kΩ  
60  
kΩ  
+
VI  
2
1
IN1−  
+
+
VI  
7
8
IN1+  
OUT1−  
IV  
MUTE  
+
OUT1+  
SLAVE  
CONTROL  
TDA1563Q  
STANDBY  
LOGIC  
CLIP AND  
DIAGNOSTIC  
6
12  
14  
15  
9
MGR173  
MODE  
SC  
DIAG  
CLIP  
GND  
Fig.1 Block diagram.  
3
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
non-inverting input 1  
handbook, halfpage  
1
2
IN1+  
IN1−  
CIN  
IN1+  
1
2
IN1−  
CIN  
inverting input 1  
3
3
common input  
CSE  
4
electrolytic capacitor for SE mode  
supply voltage 1  
4
CSE  
VP1  
5
V
5
P1  
MODE  
OUT1−  
OUT1+  
GND  
OUT2−  
OUT2+  
SC  
6
mute/standby/operating  
inverting output 1  
6
MODE  
OUT1−  
OUT1+  
GND  
7
7
8
non-inverting output 1  
ground  
8
9
9
TDA1563Q  
10  
11  
12  
13  
14  
15  
16  
17  
inverting output 2  
10  
11  
12  
13  
14  
15  
16  
17  
non-inverting output 2  
selectable clip  
OUT2−  
OUT2+  
SC  
VP2  
supply voltage 2  
DIAG  
CLIP  
IN2−  
IN2+  
diagnostic: protection/temperature  
diagnostic: clip detection  
inverting input 2  
V
P2  
DIAG  
CLIP  
IN2−  
IN2+  
non-inverting input 2  
MGR174  
Fig.2 Pin configuration.  
2000 Feb 09  
4
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
FUNCTIONAL DESCRIPTION  
To avoid plops during switching from ‘mute’ to ‘on’ or from  
‘on’ to ‘mute/standby’ while an input signal is present, a  
built-in zero-crossing detector only allows switching at  
zero input voltage. However, when the supply voltage  
drops below 6 V (e.g. engine start), the circuit mutes  
immediately, avoiding clicks from the electronic circuit  
preceding the power amplifier.  
The TDA1563Q contains two identical amplifiers with  
differential inputs. At low output power (up to output  
amplitudes of 3 V (RMS) at VP = 14.4 V), the device  
operates as a normal SE amplifier. When a larger output  
voltage swing is needed, the circuit switches to BTL  
operation.  
The voltage of the SE electrolytic capacitor (pin 4) is kept  
at 0.5VP by a voltage buffer (see Fig.1). The value of this  
capacitor has an important influence on the output power  
in SE mode. Especially at low signal frequencies, a high  
value is recommended to minimize dissipation.  
With a sine wave input signal, the dissipation of a  
conventional BTL amplifier up to 2 W output power is more  
than twice the dissipation of the TDA1563Q (see Fig.10).  
In normal use, when the amplifier is driven with music-like  
signals, the high (BTL) output power is only needed for a  
small percentage of the time. Assuming that a music signal  
has a normal (Gaussian) amplitude distribution, the  
dissipation of a conventional BTL amplifier with the same  
output power is approximately 70% higher (see Fig.11).  
The two diagnostic outputs (clip and diag) are  
open-collector outputs and require a pull-up resistor.  
The clip output will be LOW when the THD of the output  
signal is higher than the selected clip level (10% or 2.5%).  
The heatsink has to be designed for use with music  
signals. With such a heatsink, the thermal protection will  
disable the BTL mode when the junction temperature  
exceeds 150 °C. In this case, the output power is limited to  
5 W per amplifier.  
The diagnostic output gives information:  
about short circuit protection:  
– When a short circuit (to ground or the supply voltage)  
occurs at the outputs (for at least 10 µs), the output  
stages are switched off to prevent excessive  
dissipation. The outputs are switched on again  
approximately 50 ms after the short circuit is  
removed. During this short circuit condition, the  
protection pin is LOW.  
The gain of each amplifier is internally fixed at 26 dB. With  
the MODE pin, the device can be switched to the following  
modes:  
Standby with low standby current (<50 µA)  
Mute condition, DC adjusted  
On, operation.  
– When a short circuit occurs across the load (for at  
least 10 µs), the output stages are switched off for  
approximately 50 ms. After this time, a check is made  
to see whether the short circuit is still present.  
The power dissipation in any short circuit condition is  
very low.  
The information on pin 12 (selectable clip) determines at  
which distortion figures a clip detection signal will be  
generated at the clip output. A logic 0 applied to pin 12 will  
select clip detection at THD = 10%, a logic 1 selects  
THD = 2.5%. A logic 0 can be realised by connecting this  
pin to ground. A logic 1 can be realised by connecting it to  
during startup/shutdown, when the device is internally  
muted.  
temperature detection: This signal (junction temperature  
> 145°C) indicates that the temperature protection will  
become active. The temperature detection signal can be  
used to reduce the input signal and thus reduce the  
power dissipation.  
V
logic (see Fig.7) or the pin can also be left open. Pin 12  
may not be connected to VP because its maximum input  
voltage is 18 V (VP > 18 V under load dump conditions).  
The device is fully protected against a short circuit of the  
output pins to ground and to the supply voltage. It is also  
protected against a short circuit of the loudspeaker and  
against high junction temperatures. In the event of a  
permanent short circuit to ground or the supply voltage, the  
output stage will be switched off, causing low dissipation.  
With a permanent short circuit of the loudspeaker, the  
output stage will be repeatedly switched on and off. In the  
‘on’ condition, the duty cycle is low enough to prevent  
excessive dissipation.  
2000 Feb 09  
5
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VP  
PARAMETER  
CONDITIONS  
operating  
MIN.  
MAX.  
18  
UNIT  
supply voltage  
V
V
V
V
V
A
non-operating  
30  
45  
18  
6
load dump; tr > 2.5 ms  
VP(sc)  
Vrp  
short-circuit safe voltage  
reverse polarity voltage  
repetitive peak output current  
total power dissipation  
storage temperature  
IORM  
Ptot  
4
60  
+150  
150  
W
Tstg  
Tvj  
55  
40  
°C  
°C  
°C  
virtual junction temperature  
ambient temperature  
Tamb  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-c)  
Rth(j-a)  
thermal resistance from junction to case  
thermal resistance from junction to ambient  
see note 1  
1.3  
40  
K/W  
K/W  
Note  
1. The value of Rth(c-h) depends on the application (see Fig.3).  
Heatsink design  
There are two parameters that determine the size of the  
heatsink. The first is the rating for the virtual junction  
temperature and the second is the ambient temperature at  
which the amplifier must still deliver its full power in the  
BTL mode.  
virtual junction  
OUT 1  
handbook, halfpage  
OUT 1  
OUT 2  
OUT 2  
With a conventional BTL amplifier, the maximum power  
dissipation with a music-like signal (at each amplifier) will  
be approximately two times 6.5 W.  
3.6 K/W  
3.6 K/W  
3.6 K/W  
3.6 K/W  
At a virtual junction temperature of 150 °C and a maximum  
ambient temperature of 65 °C, Rth(vj-c) = 1.3 K/W and  
0.6 K/W  
0.6 K/W  
Rth(c-h) = 0.2 K/W, the thermal resistance of the heatsink  
150 65  
2 × 6.5  
should be:  
1.3 0.2 = 5 K/W  
----------------------  
MGC424  
0.1 K/W  
Compared to a conventional BTL amplifier, the TDA1563Q  
has a higher efficiency. The thermal resistance of the  
145 65  
2 × 6.5  
case  
heatsink should be:1.7  
1.3 0.2 = 9 K/W  
----------------------  
Fig.3 Thermal equivalent resistance network.  
2000 Feb 09  
6
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
DC CHARACTERISTICS  
VP = 14.4 V; Tamb = 25 °C; measured in Fig.7; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
VP  
supply voltage  
note 1  
6
14.4 18  
V
Iq(tot)  
Istb  
total quiescent current  
RL = ∞  
95  
1
150  
mA  
µA  
V
standby current  
50  
VC  
average electrolytic capacitor voltage at pin 4  
DC output offset voltage  
7.1  
100  
100  
VO  
on state  
mV  
mV  
mute state  
Mode select switch (see Fig.4)  
Vms  
voltage at mode select pin (pin 6)  
standby condition  
mute condition  
operating condition  
Vms = 5 V  
0
2
4
1
V
3
V
5
VP  
40  
V
Ims  
switch current through pin 6  
25  
µA  
Diagnostic  
Vdiag  
output voltage at diagnostic outputs (pins 14 and during any fault condition  
15): protection/temperature and detection  
0.5  
V
Idiag  
VSC  
current through pin 14 or 15  
during any fault condition  
clip detect at THD = 10%  
2
0.5  
18  
mA  
V
input voltage at selectable clip pin (pin 12)  
clip detect at THD = 2.5% 1.5  
V
Protection  
Tpre  
prewarning temperature  
BTL disable temperature  
145  
150  
°C  
°C  
Tdis(BTL)  
note 2  
Notes  
1. The circuit is DC biased at VP = 6 to 18 V and AC operating at VP = 8 to 18 V.  
2. If the junction temperature exceeds 150 °C, the output power is limited to 5 W per channel.  
2000 Feb 09  
7
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
V
18  
mode  
handbook, halfpage  
Operating  
4
3
2
1
0
Mute  
Standby  
MGR176  
Fig.4 Switching levels of the mode select switch.  
2000 Feb 09  
8
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
AC CHARACTERISTICS  
VP = 14.4 V; RL = 4 ; CSE = 1000 µF; f = 1 kHz; Tamb = 25 °C; measured in Fig.7; unless otherwise specified.  
SYMBOL  
PARAMETER  
output power  
CONDITIONS  
THD = 0.5%  
MIN.  
TYP.  
MAX. UNIT  
Po  
15  
23  
19  
25  
38  
16  
20  
0.1  
W
W
W
W
W
%
W
Hz  
THD = 10%  
EIAJ  
VP = 13.2 V; THD = 0.5%  
VP = 13.2 V; THD = 10%  
Po = 1 W; note 1  
THD  
Pd  
total harmonic distortion  
dissipated power  
see Figs 10 and 11  
Bp  
power bandwidth  
THD = 1%; Po = 1 dB  
with respect to 15 W  
20 to 15000 −  
fro(l)  
low frequency roll-off  
1 dB; note 2  
1 dB  
130  
25  
25  
Hz  
fro(h)  
Gv  
high frequency roll-off  
kHz  
dB  
closed loop voltage gain  
supply voltage ripple rejection  
Po = 1 W  
26  
27  
SVRR  
Rs = 0 ; Vripple = 2 V (p-p)  
on/mute  
45  
65  
80  
120  
1
150  
dB  
dB  
dB  
kΩ  
%
standby; f = 100 Hz to 10 kHz 80  
CMRR  
Zi  
common mode rejection ratio  
input impedance  
Rs = 0 Ω  
90  
Zi  
VSE-BTL  
mismatch in input impedance  
SE to BTL switch voltage level  
note 3  
3
V
Vo(mute) output voltage mute (RMS value)  
Vi = 1 V (RMS)  
on; Rs = 0 ; note 4  
on; Rs = 10 k; note 4  
mute; note 5  
40  
100  
100  
105  
100  
70  
150  
150  
150  
µV  
µV  
µV  
µV  
dB  
dB  
Vn(o)  
noise output voltage  
αcs  
Gv  
channel separation  
channel unbalance  
Rs = 0 ; Po = 15 W  
1
Notes  
1. The distortion is measured with a bandwidth of 10 Hz to 30 kHz.  
2. Frequency response externally fixed (input capacitors determine low frequency roll-off).  
3. The SE to BTL switch voltage level depends on VP.  
4. Noise output voltage measured with a bandwidth of 20 Hz to 20 kHz.  
5. Noise output voltage is independent of Rs.  
2000 Feb 09  
9
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
handbook, halfpage  
I
o
10 µs  
max  
MGR177  
handbook, halfpage  
V
o
t
0
short circuit  
removed  
max  
short circuit  
to ground  
DIAG  
CLIP  
0
t
50  
ms  
50  
ms  
50  
ms  
0
t
maximum current  
short circuit to supply pins  
MGR178  
Fig.5 Clip detection waveforms.  
Fig.6 Protection waveforms.  
2000 Feb 09  
10  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
TEST AND APPLICATION INFORMATION  
V
220 nF  
2200 µF  
P
V
5
V
P1  
P2  
13  
TDA1563Q  
+
100 nF  
3.9 Ω  
OUT2−  
10  
0.5R  
0.5R  
s
IN216  
100 nF  
220 nF  
4 Ω  
11 OUT2+  
3.9 Ω  
+
s
IN2+ 17  
220 nF  
60  
60  
kΩ  
kΩ  
V
ref  
25 kΩ  
4
CIN  
3
2
CSE  
1000 µF  
1 µF  
60  
kΩ  
60  
kΩ  
0.5R  
0.5R  
s
IN1−  
+
7
8
OUT1−  
220 nF  
3.9 Ω  
4 Ω  
s
IN1+  
1
100 nF  
100 nF  
3.9 Ω  
+
OUT1+  
220 nF  
CLIP AND  
DIAGNOSTIC  
STANDBY  
LOGIC  
signal ground  
power ground  
6
12 14  
15  
9
MODE  
SC DIAG CLIP  
GND  
V
ms  
R
pu  
V
logic  
R
pu  
2.5%  
10%  
MGR180  
Connect Boucherot filter to pin 8 or pin 10 with the shortest possible connection.  
Fig.7 Application diagram.  
11  
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
76.20  
35.56  
+
Out2  
Out2  
+
RL-98  
Mode  
2.5%  
In2  
+
In1  
+
10%  
Mute  
Prot  
Clip  
gnd  
On  
Off  
gnd  
Vp  
TDA1563Q  
GND  
MGR189  
Dimensions in mm.  
Fig.8 PCB layout (component side) for the application of Fig.7.  
12  
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
76.20  
35.56  
2× 25 W high efficiency  
Out2  
Out1  
1
1 µF  
17  
220 nF  
220 nF  
220 nF  
In2  
In1  
GND  
Vp  
MGR190  
Dimensions in mm.  
Fig.9 PCB layout (soldering side) for the application of Fig.7.  
13  
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
MBH692  
MBH693  
25  
25  
handbook, halfpage  
handbook, halfpage  
P
P
d
d
(W)  
20  
(W)  
20  
(1)  
(2)  
(1)  
(2)  
15  
10  
15  
10  
5
5
0
0
0
0
2
4
6
8
10  
2
4
6
8
10  
P
(W)  
P
(W)  
o
o
(1) For a conventional BTL amplifier.  
(2) For TDA1563Q.  
Input signal 1 kHz, sinusoidal; VP = 14.4 V.  
(1) For a conventional BTL amplifier.  
(2) For TDA1563Q.  
Fig.11 Dissipation; pink noise through IEC-268  
filter.  
Fig.10 Dissipation; sine wave driven.  
2.2 µF  
2.2 µF  
470 nF  
430 Ω  
330 Ω  
91  
nF  
68  
nF  
3.3  
kΩ  
3.3  
kΩ  
10  
kΩ  
input  
output  
MGC428  
Fig.12 IEC-268 filter.  
2000 Feb 09  
14  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
V
220 nF  
2200 µF  
P
V
V
P1  
P2  
13  
5
TDA1563Q  
100 nF  
3.9  
OUT2−  
10  
IN216  
+
100 nF  
3.9  
220 nF  
4
11 OUT2+  
IN2+ 17  
+
220 nF  
60  
60  
kΩ  
kΩ  
V
ref  
25 kΩ  
4
CIN  
3
2
CSE  
1000 µF  
1 µF  
IEC-268  
FILTER  
60  
kΩ  
60  
kΩ  
IN1−  
+
7
8
OUT1−  
220 nF  
pink  
noise  
3.9  
4
IN1+  
220 nF  
1
100 nF  
100 nF  
3.9  
+
OUT1+  
CLIP AND  
DIAGNOSTIC  
STANDBY  
LOGIC  
signal ground  
power ground  
6
12 14  
15  
9
MODE  
SC DIAG  
CLIP  
GND  
V
ms  
R
pu  
V
logic  
R
pu  
MGR181  
Fig.13 Test and application diagram for dissipation measurements with a music-like signal (pink noise).  
2000 Feb 09  
15  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
MDA845  
MDA844  
150  
250  
handbook, halfpage  
handbook, halfpage  
I
p
I
(mA)  
q
(mA)  
200  
100  
150  
100  
50  
50  
0
0
0
0
8
16  
24  
2
4
6
V
(V)  
V
(V)  
ms  
p
Vms = 5 V; RI = .  
VP = 14.4 V; Vi = 25 mV  
Fig.14 Quiescent current as a function of VP.  
Fig.15 IP as a function of Vms (pin 3).  
MDA843  
MDA842  
60  
10  
handbook, halfpage  
handbook, halfpage  
P
o
THD + N  
(%)  
(W)  
(1)  
40  
1
(1)  
(2)  
(3)  
(2)  
(3)  
1  
20  
10  
2  
10  
0
2
1  
2  
8
10  
12  
14  
16  
18  
1
10  
10  
10  
10  
P
(W)  
V
(V)  
o
p
(1) EIAJ, 100 Hz.  
(2) THD = 10 %.  
(3) THD = 0.5 %.  
(1) f = 10 kHz.  
(2) f = 1 kHz.  
(3) f = 100 Hz.  
Fig.16 Output power as a function of VP.  
Fig.17 THD + noise as a function of Po.  
2000 Feb 09  
16  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
MDA841  
MDA840  
10  
28  
handbook, halfpage  
handbook, halfpage  
G
v
(dB)  
THD + N  
(%)  
26  
(1)  
(2)  
1
24  
22  
1  
10  
2  
10  
20  
10  
2
3
5
4
2
3
4
5
6
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
(1) Po = 10 W.  
(2) Po = 1 W.  
Vi = 100 mV.  
Fig.18 THD + noise as a function of frequency.  
Fig.19 Gain as a function of frequency.  
MDA838  
MDA839  
10  
0
handbook, halfpage  
handbook, halfpage  
α
(dB)  
cs  
SVRR  
(dB)  
30  
20  
40  
60  
50  
70  
(1)  
(2)  
2
90  
80  
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
(1) Po = 10 W.  
(2) Po = 1 W.  
Vripple(p-p) = 2 V.  
Fig.20 Channel separation as a function of  
frequency.  
Fig.21 SVRR as a function of frequency.  
2000 Feb 09  
17  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
MDA846  
0.8  
handbook, halfpage  
P
o
(W)  
0.6  
0.4  
0.2  
0
0
8
16  
24  
V
(V)  
p
Vi = 70 mV.  
Fig.22 AC operating as a function of VP.  
2000 Feb 09  
18  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
MGL914  
V
P
V
load  
0
V  
P
V
P
V
master  
1/2 V  
P
0
V
P
V
slave  
1/2 V  
P
0
0
1
2
t (ms)  
3
See Fig.7:  
Vload = V7 V8 or V11 V10  
Vmaster = V7 or V11  
Vslave = V8 or V10  
Fig.23 Output waveforms.  
19  
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
APPLICATION NOTES  
5. Connect the supply decoupling capacitors of 220 nF  
as closely as possible to the TDA1563Qs.  
Example of the TDA1563Q in a car radio system  
solution  
6. Place the tracks of the differential inputs as close  
together as possible. If disturbances are injected at the  
inputs, they will be amplified 20 times. Oscillation may  
occur if this is not done properly.  
The PCB shown here is used to demonstrate an audio  
system solution with Philips Semiconductors devices for  
car audio applications. The board includes the SAA7705H:  
a high-end CarDSP (Digital Signal Processor), the  
TDA3617J: a voltage regulator providing 9 V, 5 V and  
3.3 V outputs, and two TDA1563Qs to provide four 25 W  
power outputs. A complete kit (application report, software  
and demo board) of this “car-audio chip-set demonstrator”  
is available.  
7. The SE line output signal of the CarDSP here is  
offered as a quasi differential input signal to the  
amplifiers by splitting the 100 unbalance series  
resistance into two 47 balanced series resistances.  
The return track from the minus inputs of the amplifiers  
are not connected to ground (plane) but to the line out  
reference voltage of the CarDSP, VrefDA.  
The TDA1563Q is a state of the art device, which is  
different to conventional amplifiers in power dissipation  
because it switches between SE mode and conventional  
BTL mode, depending on the required output voltage  
swing. As a result, the PCB layout is more critical than with  
conventional amplifiers.  
8. The output signal of the CarDSP needs an additional  
1st order filter. This is done by the two balanced series  
resistances of 47 (see note 7) and a ceramic  
capacitor of 10 nF. The best position to place these  
10 nF capacitors is directly on the input pins of the  
amplifiers. Now, any high frequency disturbance at the  
inputs of the amplifiers will be rejected.  
NOTES AND LAYOUT DESIGN RECOMMENDATIONS  
9. Only the area underneath the CarDSP is a ground  
plane. A ground plane is necessary in PCB areas  
where high frequency digital noise occurs. The audio  
outputs are low frequency signals. For these outputs,  
it is better to use two tracks (feed and return) as closely  
as possible to each other to make the disturbances  
common mode. The amplifiers have differential inputs  
with a very high common mode rejection.  
1. The TDA1563Q mutes automatically during switch-on  
and switch-off and suppresses biasing clicks coming  
from the CarDSP circuit preceding the power amplifier.  
Therefore, it is not necessary to use a plop reduction  
circuit for the CarDSP. To mute or to enlarge the mute  
time of the system, the voltage at the mode pin of the  
amplifiers should be kept between 2 V and 3 V.  
2. The input reference capacitor at pin 3 is specified as  
1 µF but has been increased to 10 µF to improve the  
switch-on plop performance of the amplifiers. By doing  
this, the minimum switch-on time increases from  
standby, via internal mute, to operating from 150 ms to  
600 ms.  
10. The ground pin of the voltage regulator is the  
reference for the regulator outputs. This ground  
reference should be connected to the ground plane of  
the CarDSP by one single track. The ground plane of  
the CarDSP may not be connected to “another” ground  
by a second connection.  
3. It is important that the copper tracks to and from the  
electrolytic capacitors (SE capacitors and supply  
capacitors) are close together. Because of the  
switching principle, switching currents flow here.  
Combining electrolytic capacitors in a 4-channel  
application is not recommended.  
11. Prevent power currents from flowing through the  
ground connection between CarDSP and voltage  
regulator. The currents in the ground from the  
amplifiers are directly returned to the ground pin of the  
demo board. By doing this so, no ground interference  
between the components will occur.  
4. Filters at the outputs are necessary for stability  
reasons. The filters at output pins 8 and 10 to ground  
should be connected as close as possible to the  
device (see layout of PCB).  
2000 Feb 09  
20  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
(3)  
(3)  
Car-audio chip-set demonstrator  
TDA3617J  
TDA1563Q  
TDA1563Q  
+
+
Rear  
V
Front  
FL  
+
+
2.5%  
10%  
FR  
BATT  
Line-in  
RL  
+
+
IO-98  
RR  
Error On Diag Clip  
Car DSP  
10 V to 16 V  
SAA7704/05/08  
on bottom side  
Left  
V
battery  
GND  
Right  
Power ON  
Mute  
2
I C  
PHILIPS Semiconductors  
Top copper layer  
(4)  
(5)  
(6)  
(8)  
Car-audio chip-set demonstrator  
Version 0.1  
DSP  
MGS827  
Bottom copper layer  
Fig.24 PCB layout.  
2000 Feb 09  
21  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
VOLTAGE REGULATOR  
V
V
V
V
en1  
P
MICROCONTROLLER  
3
V
BATT  
2
1
BATT  
TDA3617J  
220 nF  
GND  
power  
en3  
GND  
8
6
7
9
5
PLANE GND  
47 nF  
REG2 HOLD  
V
REG3  
4.7 kΩ  
en2  
power  
on  
5 V  
47 µF  
47 µF  
47 nF  
10 kΩ  
GND  
GND  
GND  
5 V  
3.3 V DIG 3.3 V ANA  
BAS16/A6  
A
4.7 kΩ  
error  
10 kΩ  
1 MΩ  
BC848B/1k  
mute  
GND  
4.7 kΩ  
B
C
diagnostic  
clip  
4.7 kΩ  
5 V  
3.3 V DIG  
3.3 V ANA  
100 nF  
PLANE  
100 Ω  
3.3 V ANA  
BLM21A10  
100 nF  
22 nF  
22 nF  
22 nF  
PLANE PLANE  
PLANE  
PLANE  
100 nF  
100 Ω  
PLANE  
FLV  
VDACP  
74  
75 76  
21 22  
23  
36  
37  
46  
47  
48 51 52 55 49 50 53 54 11  
1
2
47 Ω  
16  
15  
D
E
100 µF  
2.2  
nF  
VDACN1  
47 Ω  
FLI  
PLANE  
330 pF  
47 Ω  
FRV  
FRI  
13  
14  
F
CDLB  
CDLI  
73  
72  
2.2  
nF  
8.2 kΩ  
1 µF  
47 Ω  
15 kΩ  
G
LEFT  
330 pF  
47 Ω  
RRV  
RRI  
CDRB  
CDRI  
6
7
H
I
71  
70  
Car DSP  
SAA7704/05/08H  
8.2 kΩ  
LINE  
IN  
2.2  
nF  
1 µF  
15 kΩ  
47 Ω  
RIGHT  
1 µF  
CDGND  
47 Ω  
CD-GND  
77  
RLV  
RLI  
9
8
J
2.2  
nF  
1 MΩ  
82 kΩ  
VREFAD  
47 Ω  
78  
K
AMAFR  
AMAFL  
TAPER  
TAPEL  
66  
67  
68  
69  
VREFDA  
12  
10  
22 µF  
V
SSA2  
4
3
61  
65  
62  
63  
64  
42  
57 58 56 24 25 26 27 28 29 43 44 45  
PLANE  
22 µF  
47 nF  
PLANE  
MGS825  
220 nF  
220  
X1  
100 nF  
220  
PLANE  
PLANE  
BLM21A10  
PLANE  
PLANE  
18  
pF  
18 100  
1 to 5  
100 pF  
PLANE  
pF  
pF  
PLANE  
5 V  
6
8
7
3.3 V DIG  
PLANE PLANE  
PLANE  
2
I
C
SCL  
SDA  
Fig.25 Car-audio chip-set demonstrator (continued in Fig.26).  
22  
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
100 µH/6A  
V battery  
GND  
V
BATT  
A
GND PGND  
5 V  
clip select  
2.5%  
10%  
GND  
V
B
C
2200 µF  
PGND  
BATT  
(16 V)  
220 nF  
V
V
GND  
P1 P2  
1000 µF  
(16 V)  
5
6
13  
9
4
MODE  
CSE  
CLIP  
DIAG  
SC  
OUT2+  
15  
14  
12  
OUT+  
11  
10  
3.9 Ω  
FRONT  
LEFT  
IN2+  
100 nF  
OUT2−  
17  
OUT−  
D
E
220 nF  
220 nF  
10 nF  
PGND  
3.9 Ω  
TDA1563Q  
IN2−  
100 nF  
100 nF  
16  
1
3.9 Ω  
IN1+  
PGND  
OUT+  
F
OUT1+  
220 nF  
220 nF  
8
7
10 nF  
100 nF  
IN1−  
FRONT  
RIGHT  
2
3
G
3.9 Ω  
CIN  
OUT1−  
OUT−  
H
I
10 µF  
PGND  
2× HIGH EFFICIENCY POWER AMPLIFIER  
10 µF  
OUT1−  
CIN  
3
1
7
OUT−  
J
3.9 Ω  
IN1+  
REAR  
RIGHT  
220 nF  
220 nF  
100 nF  
K
OUT1+  
10 nF  
8
OUT+  
IN1−  
PGND  
2
3.9 Ω  
100 nF  
100 nF  
IN2+  
17  
3.9 Ω  
TDA1563Q  
220 nF  
220 nF  
PGND  
OUT−  
10 nF  
OUT2−  
10  
11  
IN2−  
16  
12  
14  
15  
100 nF  
SC  
REAR  
LEFT  
3.9 Ω  
DIAG  
CLIP  
OUT2+  
OUT+  
1000 µF  
(16 V)  
CSE  
MODE  
6
5
4
9
13  
V
V
GND  
P1 P2  
220 nF  
2200 µF  
MGS826  
V
PGND  
BATT  
(16 V)  
Fig.26 Car-audio chip-set demonstrator (continued from Fig.25).  
23  
2000 Feb 09  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
Advantages of high efficiency  
Power conversion improvement (power supply)  
V
= 14.4 V  
handbook, halfpage  
P
Usually, the fact that the reduction of dissipation is  
directly related to supply current reduction is neglected.  
One advantage is less voltage drop in the whole supply  
chain. Another advantage is less stress for the coil in the  
supply line. Even the adapter or supply circuit remains  
cooler than before as a result of the reduced heat  
dissipation in the whole chain because more supply  
current will be converted to output power.  
Power  
dissipation  
reduction of 40%  
Supply  
current  
at P = 1.6 W  
o
reduction of  
32%  
Same junction  
temperature  
Same heatsink  
size  
choice  
Power dissipation reduction  
This is the best known advantage of high efficiency  
amplifiers.  
Heatsink size reduction  
Heatsink  
size  
reduction of  
50%  
Heatsink  
temperature  
reduction of  
40%  
The heatsink size of a conventional amplifier may be  
reduced by approximately 50% at VP = 14.4 V when the  
TDA1563Q is used. In this case, the maximum heatsink  
temperature will remain the same.  
MGS824  
Heatsink temperature reduction  
The power dissipation and the thermal resistance of the  
heatsink determine the heatsink temperature rise. When  
the same heatsink size is used as in a conventional  
amplifier, the maximum heatsink temperature  
decreases and also the maximum junction temperature,  
which extends the life of this semiconductor device.  
The maximum dissipation with music-like input signals  
decreases by 40%.  
Fig.27 Heatsink design  
Advantage of the concept used by the TDA1563Q  
The TDA1563Q is highly efficient under all conditions,  
because it uses a SE capacitor to create a non-dissipating  
half supply voltage. Other concepts rely on both input  
signals being the same in amplitude and phase. With the  
concept of an SE capacitor, it does not matter what kind of  
signal processing is done on the input signals.  
For example, amplitude difference, phase shift or delays  
between both input signals, or other DSP processing, have  
no impact on the efficiency.  
It is clear that the use of the TDA1563Q saves a significant  
amount of energy. The maximum supply current  
decreases by approximately 32%, which reduces the  
dissipation in the amplifier as well in the whole supply  
chain. The TDA1563Q allows a heatsink size reduction of  
approximately 50% or a heatsink temperature decrease of  
40% when the heatsink size is not changed.  
2000 Feb 09  
24  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
INTERNAL PIN CONFIGURATIONS  
PIN  
NAME  
EQUIVALENT CIRCUIT  
1, 2, 16,  
17 and 3 IN2+ and CIN  
IN1+, IN1, IN2,  
V
V
P1, P2  
V
V
P1, P2  
1, 2, 16, 17  
3
MGR182  
4
CSE  
V
V
P2  
P1  
4
MGR183  
6
MODE  
6
MGR184  
7, 11  
OUT1, OUT2+  
V
V
P1, P2  
7, 11  
4
MGR185  
2000 Feb 09  
25  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
PIN  
8, 10  
NAME  
EQUIVALENT CIRCUIT  
OUT1+, OUT2−  
V
V
P1, P2  
8, 10  
4
MGR186  
12  
SC  
V
P2  
12  
MGR187  
14, 15  
PROT, CLIP  
V
P2  
14, 15  
MGR188  
2000 Feb 09  
26  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
PACKAGE OUTLINE  
DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)  
SOT243-1  
non-concave  
D
h
x
D
E
h
view B: mounting base side  
d
A
2
B
j
E
A
L
3
L
Q
c
2
v
M
1
17  
e
e
m
w
M
1
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
b
c
D
d
D
E
e
e
e
E
j
L
L
3
m
Q
v
w
x
Z
2
p
h
1
2
h
17.0 4.6 0.75 0.48 24.0 20.0  
15.5 4.4 0.60 0.38 23.6 19.6  
12.2  
11.8  
3.4 12.4 2.4  
3.1 11.0 1.6  
2.00  
1.45  
2.1  
1.8  
6
mm  
10  
2.54 1.27 5.08  
0.8  
4.3  
0.4 0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-12-16  
99-12-17  
SOT243-1  
2000 Feb 09  
27  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
SOLDERING  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
Introduction to soldering through-hole mount  
packages  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds.  
300 and 400 °C, contact may be up to 5 seconds.  
Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable(1)  
Note  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Feb 09  
28  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
NOTES  
2000 Feb 09  
29  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
NOTES  
2000 Feb 09  
30  
Philips Semiconductors  
Product specification  
2 × 25 W high efficiency car radio power  
amplifier  
TDA1563Q  
NOTES  
2000 Feb 09  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Brazil: see South America  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Tel. +65 350 2538, Fax. +65 251 6500  
Czech Republic: see Austria  
Slovakia: see Austria  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Slovenia: see Italy  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Vietnam: see Singapore  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/25/02/pp32  
Date of release: 2000 Feb 09  
Document order number: 9397 750 06309  

PB Heat MI User Manual
Panasonic AJ HPM100MC User Manual
Orion Car Audio C53 User Manual
Kramer Electronics Car Amplifier VM 22H User Manual
KitchenAid KUWS246EWH01 User Manual
Kenwood KDC MP6036 User Manual
Kenwood KAC 7251 User Manual
Kambrook Cable Box keb512 User Manual
JVC KS FX7 User Manual
JVC GZ MG505AS User Manual