Tri M Systems GPS Receiver FV 25 User Manual

Tri-M Systems, Inc.  
Unit 100, 1407 Kebet way  
Port Coquitlam, BC V3C 6L3  
Canada  
Phone: 604.945.9565  
Fax: 604.945.9566  
info@tri-m.com  
FV – 25  
USER’S GUIDE  
This document features the specification of FV-25 and describes the details on using the evaluation kit  
to evaluate the performance of FV-25 and select the desired functions. It intends to help users to obtain  
the maximum performance from FV-25 in users’ integrating GPS systems.  
Version: 1.0  
Date: January 2005  
1
Download from Www.Somanuals.com. All Manuals Search And Download.  
4.5 Navigation Data…………………………………………………….  
4.5.1 Position Format………………………………………………  
4.5.2 Datums……………………………………………………….  
4.5.3 Update Rate…………………………………………………..  
4.5.4 Kinematic Mode………………………………………………  
4.6 Navigation for Less Than 4 Observable Satellites……………………  
4.6.1 2D Navigation…………………………………………………  
4.6.2 Dead Reckoning……………………………………………….  
4.7 Almanac Navigation…………………………………………………..  
4.8 DGPS – WAAS, EGNOS, & RTCM………………………………….  
4.9 Receiver Autonomous Integrity Monitoring (RAIM)…………………  
4.10 Time Pulse (1 PPS)…………………………………………………..  
Chapter 5 Evaluation Kit…………………………………………  
Chapter 6 Antennas………………………………………………..  
6.1 Passive Antennas………………………………………………………  
6.2 Active Antennas……………………………………………………….  
6.3 Active Antenna Supervisor - Short Circuit Protection…………………  
Chapter 7 Available NMEA and UBX Messages………………….  
7.1 NMEA Protocol………………………………………………………….  
7.1.1 Standard NMEA Messages……………………………………….  
7.1.2 Proprietary NMEA Messages…………………………………….  
7.2 UBX Binary Protocol……………………………………………………  
7.2.1 Data Format………………………………………………………  
7.2.2 Classification of UBX Messages…………………………………  
7.2.3 Responses to the Users’ Inputs……………………………………  
7.2.4 UBX Messages……………………………………………………  
Chapter 8 Troubleshooting………………………………………….  
Appendix A Geodetic ID: Coordinate Datum……………………  
Appendix B Acronyms…………………………………………….  
References…………………………………………………………….  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Figures  
Figure 2.1 FV-25 Pin definitions (Top View)…………………………………..  
Figure 2.2 A reference layout for FV-25………………………………………..  
Figure 2.3 Setting of comm. port number and the value of baud rate…………..  
Figure 2.4 Setting of comm. port number……………………………………….  
Figure 2.5 Setting of the value of baud rate……………………………………..  
Figure 2.6 Window after correct setting…………………………………………  
Figure 2.7 Constellation Map of GPS satellites…………………………………  
Figure 2.8 Window for showing NMEA messages………………………………  
Figure 2.9 “Show all MS” window………………………………………………  
Figure 2.10 Available NMEA messages………………………………………………….  
Figure 2.11 GPS satellite information……………………………………………  
Figure 2.12 Receiver Information………………………………………………..  
Figure 2.13 Tracking View……………………………………………………….  
Figure 2.14 Initial position……………………………………………………….  
Figure 2.15 Initial UTC time and day……………………………………………  
Figure 2.16 Local time zone……………………………………………………...  
Figure 2.17 Restart……………………………………………………………….  
Figure 2.18 DGPS………………………………………………………………..  
Figure 2.19 Setting of coordinate datum…………………………………………  
Figure 3.1 HyperTerminal application……………………………………………  
Figure 3.2 Connection settings……………………………………………………  
Figure 3.3. Correct connection settings……………………………………………  
Figure 5.1 Main box of the evaluation kit…………………………………………  
Figure 5.2 Front panel of the evaluation kit……………………………………….  
Figure 5.3 Back panel of the evaluation kit……………………………………….  
Figure 7.1 UBX protocol structure………………………………………………...  
4
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Tables  
Table 1.1 Specification of FV-25……………………………………………..  
Table 2.1 Description of pin definition for FV-25……………………………  
Table 4.1 Conditions for Start-Up modes…………………………………….  
Table 4.2 Available sensitivity modes………………………………………..  
Table 7.1 The types of data…………………………………………………..  
Table 7.2 UBX message classes……………………………………………...  
Table 8.1 Troubleshooting……………………………………………………  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
Preface  
The objective of The FV-25 User’s Guide is to help users to understand the properties  
of FV-25 thoroughly and, therefore, obtain the maximum performance from the  
module easily. This document describes and provides the useful information the  
FV-25 module, which includes the functions of pins on the module, configuration  
setting, utility, and evaluation kit. It will help users understand the capability of the  
module and, therefore, successfully integrate the FV-25 into users’ GPS systems. Each  
chapter is one of the pieces for the module and carries its own purpose. The following  
summary for each chapter and appendix shall help a user to navigate the user’s guide  
as easily and quickly as possible.  
Chapter 1 Introduction  
This chapter describes the main goal, features, and available supports for the FV-25  
module.  
Chapter 2 Start  
This chapter depicts the definitions of pins on the module and gives an example  
reference layout of peripheral connections around the module. The utility,  
“Sanav_Demo.exe”, is used to display satellite and receiver information and set  
configuration for FV-25. All the information about “Sanav_Demo.exe” is introduced  
step-by-step.  
Chapter 3 Alternative Start  
This chapter suggests an alternative utility, HyperTerminal, for users to show satellite  
and receiver information in terms of NMEA sentences. Also, HyperTerminal can be  
used to save data in the host platform and set configuration to the module. Only the  
basic operations for desired actions (display, save, and configuration setting) are  
introduced.  
Chapter 4 Navigation  
This chapter describes all the information of GPS navigation data available from the  
module and related issues, such as cold start, warm start, hot start, DGPS, and so on.  
It also shows corresponding configuration settings for the issues in this chapter.  
Chapter 5 Evaluation Kit  
This chapter depicts the physical mechanism and functions of evaluation kit for  
FV-25.  
Chapter 6 Antennas  
This chapter describes the pro and con for using passive and active antennas with the  
module.  
6
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 7 Available NMEA and UBX1 Messages  
This chapter lists the available NMEA and u-blox proprietary (UBX) messages for the  
module.  
Chapter 8 Troubleshooting  
This chapter provides good helps when the module isn’t running properly.  
Appendix A Geodetic ID: Coordinate Datum  
Appendix B Acronyms  
In addition to the above brief description for each chapter, you also can find useful  
definitions for GPS terminologies in the Appendix B as well as the lists of figures  
(page ?) and tables (page ?). Please read this user’s guide carefully and thoroughly  
before proceeding the operations of the module. If you experience questions and  
problems about FV-25 and the evaluation kit, please refer to the Troubleshooting  
section first. If further helps are needed, please feel free and go to our information  
service on the homepage, www.sanav.com. We are glad to answer and resolve your  
questions and problems.  
Technical Support  
Address:  
9F, No. 105, Shi-Cheng Road, Pan-Chiao City,  
Taipei Hsien, Taiwan, R.O.C.  
Phone:  
+886-2-2687-9500  
Fax:  
+886-2-2687-8893  
E-mail Address:  
When you send a request to us, please prepare the following information that may  
help us to resolve your problem as soon as possible:  
1. Serial No. of Product;  
2. Type of antenna that is connected to the module;  
3. Operating System (OS) of your host PC;  
4. Simple description of your integrated system (may also included peripheral  
connections and devices);  
5. Describing the way you operate your system;  
6. Description of failure by text, figure, or both;  
7. Contact information, such as name, address, phone number, and e-mail address.  
1
UBX: u-blox proprietary protocol.  
7
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 1 Introduction  
In this chapter, the main goal of FV-25 will be described and then the features of the  
FV-25 module will be specified in order that a user can make correct decision about  
module selection before proceeding further development. Understanding thoroughly  
the pro and con of FV-25 will clear the compatibility of the module with a user’s  
system. At the same time, let the users make the best performance out the module.  
The main goal of FV-25 is to be used as a part of integrated system, which can be a  
simple PVT (Position-Velocity-Time) system, for instance, G-mouse, or complex  
wireless systems, such as a system with GSM function, a system with Blue Tooth  
function, and a system with GPRS function. The module (FV-25) can be the best  
candidate for users’ systems as the users’ systems need the careful consideration on  
the performance, power consumption, and/or size of the module. Table 1.1  
summarizes the specification of FV-25. It is noticeable that in addition to excellent  
start-up times and position accuracy, the updated rate can be up to 4 Hz and the raw  
measurements, i.e., pseudoranges and carrier phases, can be output in the format of  
UBX binary message.  
FV-25 mainly consists of ATR0600 (RF front-end IC), ATR0610 (LNA IC), and  
ATR0620 (Baseband IC)2 as well as 8 Mbit flash memory. Since the low noise  
amplifier (LNA: ATR0610) is built in the RF section, the passive and active antennas  
are the available options for the module. The Baseband IC (ATR0620) mainly  
includes a CPU (ARM7), SRAM, ROM, Battery Backed-up RAM (BBR), and  
Real-Time Clock (RTC). To keep running of BBR and RTC after power off, a  
backed-up battery, which has voltage in the range of 1.95 V to 3.6 V, is needed. Since  
BBR is used to store the updated position, ephemeris, and almanac data, the module  
can implement all the start-up modes with the back-up battery. Besides the above  
updated data can be saved to BBR, configuration data, which are available at startup,  
can be also saved to BBR. In addition, the 8 Mbit flash memory is the other location  
to save configuration setting permanently without the support of the backed-up  
battery.  
Using high performance of software and firmware from u-blox, the module provides  
spectacular performance on navigation under static and dynamic conditions in  
multipath-trended areas, such as urban skyscrapers and canyons, remarkable  
2
ATR 0600, ATR 0610, ATR 0620 are manufactured by Atmel corporation.  
8
Download from Www.Somanuals.com. All Manuals Search And Download.  
sensitivity for weak signals without sacrificing accuracy, AGPS function, DGPS  
function which is supported by RTCM, WAAS, and EGNOS, and flexibility for  
system integrations. Because of 8192 frequency search bins at the same time, it  
accelerates the start-up times of the module.  
In addition to the above excellent advantages, FV-25 has the capabilities to perform  
low power consumption due to the advanced hardware components and implement  
power saving function owing to versatile firmware. The properties are very suitable  
for battery-operated products. In addition, our module has the size of only 25.4 mm x  
25.4 mm. This feature allows the module more executable and achievable in the  
system integration, especially for the size-mattered products like handheld devices.  
Because of using advance technology in package, the module is highly integratable  
with other components and can be automatically assembled and proceeded in a  
standard pick-and-place equipment and reflow soldering in high volume. Therefore,  
the cost of module can be reduced.  
1.1 Supports  
For FV-25, we will provide a evaluation kit as an optional. The evaluation kit helps  
the users to perform the estimation of the module, which includes the start-up times,  
reacquisition time, setting of NMEA sentences, baud rate setting, etc.. All those  
functions and evaluations are supported by Sanav_Demo, which accompanies with the  
kit and is developed by San Jose Navigation, Inc.. Of course, for the customers  
without purchasing the kit, a reference layout for peripheral connections and  
Sanav_Demo are available. The details of the reference layout and Sanav_Demo will  
be described in Chapter 2. For the evaluation kit, its introduction is depicted in  
Chapter 5.  
The other available tool for evaluate the module is Window’s “HyperTerminal”. For  
utilizing this tool and, at the same time, understanding the capability of the module,  
the commands and messages for polling data or setting configuration are described in  
Chapters 4 and 7.  
9
Download from Www.Somanuals.com. All Manuals Search And Download.  
Specification  
Performance Characteristics  
Receiver Type  
Position Accuracy  
w/o aid  
L1 frequency, C/A code, 16 Channels  
3.3 m CEP  
2.6 m  
DGPS(WAAS, EGNOS,RTCM)  
AGPS Support  
Start-up Time  
Hot start  
Yes  
< 3 s  
Warm start  
35 s  
Cold start  
41 s  
Reacquisition Time  
Acceleration  
< 1 s  
< 4 g  
Update Rate  
up to 4 Hz  
50 ns RMS  
Timing Accuracy  
Sensitivity  
Acquisition  
-140 dBm  
-149 dBm  
Tracking  
Power  
Input Voltage  
Backup Voltage  
Power Consumption  
Acquisition  
Tracking  
5.0 ~ 12.0 V DC  
1.95 ~ 3.3V DC  
101 mA @ 3 V  
84 mA @ 3 V  
20 mA @ 3 V  
Sleep mode  
I/O  
Protocols  
Serial Ports  
1 PPS  
NMEA, UBX binary, RTCM  
Two RS232s @ 3.3 V  
@ 1.8 V  
Raw Measurements  
Pseudorange and Carrier Phase  
Environment  
Operating Temperature  
Storage Temperature  
- 40 0C ~ 85 0C  
- 40 0C ~ 125 0C  
Mechanical Information  
10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Dimension  
Thickness  
Weight  
37.1mm x 25.6 mm  
3.9 mm  
9.5 g (include an SMA jack and 5 cm RG-316)  
Antenna  
Type  
External Active or Passive Antenna  
1.8 V ~ 8 V DC  
Input Voltage (VANT  
)
Input Power limit (Active)  
Gain (Active)  
< -17 dBm  
up to 25 dB  
Supervision  
Build-in short circuit detection, External open  
circuit detection  
Note: For using the passive antenna, Pin VANT has to be connected to GND.  
Table 1.1 Specification of FV-25.  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 2 Start  
2.1 Pin Definitions and Reference Layout  
Figure 2.1 shows the pin definitions of FV-25. Table 2.1 describes the corresponding  
definitions for pins. Note that only either use VIN-1 (DC 5 ~ 12V) or VIN-2 (DC 3.3V)  
for voltage input. Also, if the Pins 1 ~ 10 are used, please leave Pins a ~ n being  
opened. There are two comm. ports to input/output the useful information (i.e.  
receiver’s and satellites’ data) for the users. The default setting for comm. 1 (either  
Pins 5 and 10 or Pins l and m) is to input/output the information in the ASCII format,  
which is NMEA with the default baud rate 4800 bps, and the default setting for comm.  
2 ( either Pins 4 and 9 or Pins j and k) is to input/output the information in the binary  
format, which is UBX (proprietary messages) with the default baud rate 4800 bps.  
The protocols for NMEA and UBX sentences will be introduced in Chapter 7. All the  
serial ports are operated at the level of 1.8 V.  
Figure 2.1 FV-25 Pin definitions (Top View)  
12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Pin Definitions  
Pin No.  
Title  
I/O  
Note  
Antenna bias voltage input DC 1.8~ 8.0V (connect to ground  
if not used)  
1
I
VANT  
2
3
4
5
6
I
I
VIN-2  
Ground  
RX2  
Voltage input 3.3V DC (MUST leave open if VIN-1 is used)  
Ground  
I
Serial port 2 (leave open if not used)  
Serial port 1 (leave open if not used)  
Voltage input 5~12V DC (MUST leave open if VIN-2 is used)  
Backup input voltage 1.95 ~ 3.3V DC (connect to ground if  
not used)  
O
I
TX1  
VIN-1  
7
I
VBAK  
8
O
O
I
Time pulse (leave open if not used)  
Serial port 2 (leave open if not used)  
Serial port 1 (leave open if not used)  
1PPS  
TX2  
RX1  
Title  
VIN-1  
VANT  
9
10  
Pin No.  
I/O  
Note  
a
I
I
Voltage input 5~12V DC (MUST leave open if VIN-2 is used)  
Antenna bias voltage input DC 1.8~ 8.0V (connect to ground  
if not used)  
b
c
VIN-2  
VBAK  
I
I
Voltage input 3.3V DC (MUST leave open if VIN-1 is used)  
Backup voltage input 1.95 ~ 3.3V DC (connect to ground if  
not used)  
d
GPS status (leave open if not used)  
Ground  
e
f
Status  
Ground  
Reset  
O
I
Reset (active low, leave open if not used)  
Time pulse (leave open if not used)  
External interrupt pin (default: internal pull up, leave open if  
not used)  
g
h
i
I/O  
O
I
1 PPS  
Reserve  
Serial port 2 (leave open if not used)  
Serial port 2 (leave open if not used)  
Serial port 1 (leave open if not used)  
Serial port 1 (leave open if not used)  
Boot mode (in normal operation, leave open if not used)  
j
k
l
TX2  
RX2  
O
I
RX1  
I
m
n
TX1  
O
I
Reserve  
Table 2.1 Description of pin definition for FV-25  
Note: Only either VIN-1 or VIN-2 can be used for voltage input, while VIN-2 is the pin for DC  
3.3V and VIN-1 is for DC 5~12V.  
13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2.2 Sanav_Demo  
Sanav_Demo is required to run on a PC with at least 4 MB RAM and Windows 98  
that has at least one available serial comm. port (from 1 to 24).  
2.2.1 Port Number & Baud Rate  
When users implement Sanav_Demo, the first window appeared on the screen is the  
setting of comm. port number and the corresponding value of baud rate, as shown in  
Figure 2.3. To open or close the “Setting” window, click the selection “File/Port” or  
the short cut button  
.
Figure 2.3 Setting of comm. port number and the value of baud rate.  
For selecting the comm. port number, pull the scroll-down window for the “Comm  
port” item and there are twenty-four comm. port number available (i.e. com1 ~  
com24), as shown in Figure 2.4. Users can scroll down the desired window to choose  
the corresponding comm. port number that connects between the module and the host  
PC.  
14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.4 Setting of comm. port number.  
For setting the value of baud rate, pull the scroll-down window for the “Baud rate”  
item and the desired window shows that the available range of baud rate is from 2400  
bps to 115200 bps, as shown in Figure 2.5. The users select the right one that will  
communicate the module with the host PC.  
Figure 2.5 Setting of the value of baud rate.  
2.2.2 Comm Port Connection and Disconnection  
After the setting is completed, click the “Connect” button to make the connection  
between the GPS receiver (module) and host PC. If the setting is correct, the  
15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
subsequent window will be the one shown in Figure 2.6, i.e., the navigation data from  
the module are displayed in the corresponding sub-windows. If the setting values are  
not correct or the connection hasn’t established yet, Sanav_Demo will prompt a  
warning sentence “Comm port couldn’t be open, please check the device”.  
When a new port setting is required, make sure Sanav_Demo is disconnected from the  
module before sending the request, i.e., click the “Disconnect” button in the “Setting”  
window as Sanav_Demo is in the connected mode. Otherwise, if users send a new  
setting to the module during the connected mode, there will be no response for the  
request.  
Figure 2.6 Window after correct setting.  
2.2.3 Constellation Map  
There are two ways to show the constellation of GPS satellites, as shown in Figure 2.7.  
Click the selection “Windows/Map View” or the short cut button ?. If the module is  
acquiring a GPS satellite, the corresponding “satellite mark” in the “Map View” is  
represented by gray color and, on the other hand, if the module is continuously  
tracking a GPS satellite, the representing color is red, as shown in Figure 2.6.  
16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.7 Constellation Map of GPS satellites.  
2.2.4 Message View for NMEA Messages  
Figure 2.8 is the window for showing the desired (user-selected) output NMEA  
messages. There are two ways to show the “Message View” window. Click the item  
“Windows/Terminal View” or the shortcut button ?. The default window for “Message  
View” is only showing the output NMEA messages at current epoch (one epoch), like  
the one shown in Figure 2.6.  
Figure 2.8 Window for showing NMEA messages.  
Clicking the “Show all MS” button, the NMEA messages will be displayed  
17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
accumulatively within the sub-window until the sub-window is filled up, i.e., the  
“Message View” window contains NMEA messages from several epochs, as shown in  
Figure 2.9, and the oldest data will be “squeezed” out in the top of the sub-window  
while the new data will be displayed in the bottom of the sub-window.  
After clicking the “Show all MS” button, the “Message View” window shows two  
available buttons: “Current MS” and “Save”. The “Current MS” button functions as  
showing the available NMEA messages of the current epoch, i.e., back to the original  
setting, as shown in Figure 2.6. The “Save” button saves the output NMEA messages  
in a user-defined file.  
Figure 2.9 “Show all MS” window.  
2.2.5 Available NMEA Messages  
The output of NMEA messages can be selected through “Interval” under the “User  
Setting” window, as shown in Figure 2.10. There are two ways to show this  
sub-window: “Windows/User Setting” or the shortcut button ?.  
The available NMEA messages for FV-25 are GGA, GLL, GRS, GSA, GSV, GST,  
RMC, TXT, VTG, and ZDA. The default output NMEA messages include the above  
all except TXT message. As shown in Figure 2.10, the number behind each message is  
the update rate of the sentence. Since the default values of the update rates for all  
messages are zeros, clicking the “OK” button without changing the default values, the  
module will stop outputting NMEA messages. If a user wants the module to output,  
for example, RMC message at the rate of 1 Hz, change the current number to 01 or 1.  
18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.10 Available NMEA messages.  
NOTE: The output NMEA messages will be discarded or not transmitted if the  
values of the baud rate is not sufficient to transmit the desired messages. Also, the  
discarded part wont be output in the next epoch.  
NOTE: The maximum update rate is 4 Hz.  
2.2.6 GPS Satellite Information  
Figure 2.11 shows the observable GPS satellite information, which includes SV PRN  
numbers, the corresponding values for elevation, azimuth, and SNR, and indication  
for utilization of satellite information in the calculation of the receiver’s position. For  
a satellite not used in the calculation of the receiver’s position, the satellite will be  
marked by “x” in the corresponding row of “Used in Position” and gray color in the  
SNR diagram. This sub-window can be activated by two ways: “Windows/Channel  
Signal Level View” or the shortcut button ?.  
19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.11 GPS satellite information.  
2.2.7 Receiver Information  
Figure 2.12 describes the receiver information. They are:  
UTC Date: day/month/year;  
UTC Time: hour:minute:second;  
Lat: latitude xxyy.yyyy  
Lon: longitude xxxyy.yyyy  
Alt: altitude (meter);  
xx: degree, yy.yyyy: minute, -: southern hemisphere;  
xxx: degree, yy.yyyy: minute, -: western hemisphere;  
SVs(Used/All): (number of satellites used for position calculation) / (number of the  
observable satellites);  
Mode: 2D or 3D position;  
PDOP: Position Dilution Of Precision: geometry among the receiver and GPS  
satellites;  
Speed: module’s speed (knot);  
True Course: module’s moving direction with respect to North (clockwise, degree);  
Datum: type of coordinate frame (default: WGS 84);  
GPS Quality: SPS or PPS mode, position fixed or not.  
The sub-window is activated by two ways: clicking “Windows/Measured Navigation  
Message View” or the shortcut button ?.  
20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.12 Receiver Information.  
NOTE: Data displayed in the sub-windows (Figures 2.7, 2.9, 2.11, and 2.12) depend  
on the user-selected output NMEA messages, i.e., if, for example, the module doesnt  
output GSV message, the associated information, such as elevation, azimuth, SNR,  
etc., will not be displayed in the corresponding sub-windows.  
2.2.8 Tracking View  
Clicking “Windows/Tracking View”, the global position differences relative to the  
first position fix will be depicted, as shown in Figure 2.13. The corresponding unit is  
meter or kilometer, which is indicated in the upper right corner of the sub-window. In  
Figure 2.13, there are two available functions that change the scale of the concentric  
circles: “zoom in” and “zoom out”. “ The scale ranges from 10 m to 500 km.  
21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.13 Tracking View.  
2.2.9 User Setting  
Clicking “Windows/User Setting” or the shortcut button ?, the “User Setting” window  
is activated, as shown in Figure 2.14. Click “ꢀꢁ” to move among the tags.  
2.2.9.1 Position  
This function sets the initial latitude and longitude, as shown in Figure 2.14. For the  
initial values of latitude and longitude, users can select the degree (first column from  
left) and the integral part of minute (second column) from the “scroll-down” windows,  
and input the fractional part of minute (0 ~ 9999) in the last (third) column.  
Figure 2.14 Initial position.  
22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The output position will be updated as the position is fixed.  
2.2.9.2 Time and day  
This function sets the initial UTC date and time, as shown in Figure 2.15. The format  
for UTC date is “YYYY (year), MM (month), DD (day)” and the format for UTC  
time is “hh (hour), mm (minute), ss (second)”. If a setting value is less than 10, the  
empty part (the left digit) of the setting value is filled by 0, for instance, 01.  
Figure 2.15 Initial UTC time and day.  
The initial UTC time and date will be updated as GPS satellites are acquired.  
2.2.9.3 Local time zone  
This function sets the time difference between the local and Greenwich (UTC  
reference), as shown in Figure 2.16. The first column (from left) is “local zone hour”  
ranged from –13 to 13 (i.e. - / +: East / West of Greenwich) and its corresponding  
format is “hh”, i.e., the left digit might be filled by 0 if the value is less than 10. The  
second column is “local zone minute” ranged from 00 to 59 and its corresponding  
format is “mm”, which has the same format as the one for “local zone hour”.  
23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.16 Local time zone.  
2.2.9.4 Restart  
This function sets the initial start-up mode, such as cold-start, warm-start, and  
hot-start, for the module, as shown in Figure 2.17.  
Figure 2.17 Restart.  
NOTE: For implementing the hot and warm starts, the module need a backed-up  
battery to run RTC and support BBR, which is used to save updated position,  
ephemeris, and almanac data.  
24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2.2.9.5 DGPS  
This function activates the differential GPS functions of the module, such as RTCM  
and WAAS/EGNOS, or only GPS function without aids, as shown in Figure 2.18.  
Figure 2.18 DGPS.  
2.2.9.6 Interval  
Referred to Section 2.2.5.  
2.2.9.7 Geodetic ID  
This function sets coordinate datum that users prefer, as shown in Figure 2.19. A list  
of datum ID is summarized in the Appendix A.  
Figure 2.19 Setting of coordinate datum.  
25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 3 Alternative Start  
This chapter introduces an alternative utility, HyperTerminal (from Windows), to  
display the NMEA information. And, Using the utility, users can send a request to poll  
the desired NMEA information or implement other configurations from the module  
without the aid of Sanav_Demo. The following information only describes the needed  
operations for our purposes.  
3.1 Connection Settings  
To  
activate  
the  
application,  
HyperTerminal,  
click  
“Start/Programs/Accessories/Communications/HyperTerminal” under Windows.  
Figure 3.1 depicts the default window of HyperTerminal. As usual, before  
implementing the communication, users have to set the comm. port number, port  
setting (i.e. baud rate, data bits, parity, stop bits, and flow control), and so on. The  
connection/communication setting can be done by clicking “File/Properties” or the  
first shortcut button from right. The resulting window is shown in Figure 3.2. But,  
before a user sets any connection settings, HyperTerminal has to be in the mode of  
disconnection, which can be activated by clicking the fourth shortcut button from  
right. The status (connected/disconnected) can be seen at the lower right corner of the  
window. The “Configure…” button in Figure 3.2 functions as port settings, such as  
baud rate, data bits, parity, stop bits, and flow control.  
Figure 3.1 HyperTerminal application.  
NOTE: The connection settings can not be implemented while HyperTerminal is in  
26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
the mode of connection.  
Figure 3.2 Connection settings.  
After setting all the necessary data, click the connection button, which is the fifth  
shortcut button from right. If the setting is correct, the HyperTerminal window will  
show desired output (NMEA messages), as shown in Figure 3.3, and if not, the  
window will show random characters or nothing at all.  
Figure 3.3. Correct connection settings.  
3.2 Saving the Data  
For saving the output data, click “Transfer/Capture Text…”. The subsequent window  
27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
will ask users to input the file name and folder.  
3.3 Setting Configuration or Polling Information from Module  
For setting or polling the desired information, click “Transfer/Send Text File…”  
button to send a “.txt” file, which contains command sentences, to activate the module.  
The file is created by users before click the button, and the formats for the command  
sentences are referred to Chapter 7.  
28  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 4 Navigation  
4.1 Operating Modes  
4.1.1 Continuous Tracking Mode (CTM)  
CTM is the default setting of the module. While the CTM is on, the module tracks  
GPS signals and estimates position continuously, i.e., satellite acquisition,  
reacquisition, and tracking are the states in the CTM. This is the standard operating  
mode for the general GPS receivers. Therefore, this mode is not designed for saving  
power but for obtaining maximum accuracy in position. In other words, the module  
with the CTM on usually operates in the Full Power State and the corresponding  
operating current, which depends on the activities of CPU load, I/Os, and peripheral  
hardware, may fluctuate significantly.  
4.1.2 FixNOW Mode (FXN)  
This is a power saving mode, which will shut down the module automatically if no  
GPS signals are detectable. For further saving power consumption, the FXN allows  
users to set the module into Sleep State. This mode is especially important for  
power-concerned products, such as handheld devices.  
During this mode, the navigation data is computed as required or at the predefined  
intervals. This (navigation data) can be done by using the UBX-RXM-POSREQ or  
Pin 6 “Extint 0” to wake up the module and then calculate a Position-Velocity-Time  
(PVT) solution during the off-time of FixNOW Mode. The other way to wake up the  
module without using serial port communication or external interrupt is to utilize the  
internal RTC, which is used for a timeout setting. For enabling or disabling the FXN,  
send the request by using the UBX-CFG-RXM message. For the detail configuration  
of this mode, refer to the UBX-CFG-FXN message.  
NOTE: The descriptions of the UBX proprietary messages are referred to Chapter 7.  
NOTE: To implement the current configuration in the next time, the current one has  
be saved in the Battery Backed RAM (BBR), which is powered by a backed-up battery  
(1.95V ~ 3.6V), or the Flash memory.  
4.2 Start-Up Modes  
Table 4.1 shows the differences among cold-start, warm-start, and hot-start modes.  
29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Conditions  
Modes  
Time  
Position  
Almanac  
Ephemeris  
Cold Start  
Warm Start  
Hot Start  
None  
Yes  
None  
Yes  
None  
Yes  
None  
None  
Yes  
Yes  
Yes  
Yes  
Table 4.1 Conditions for Start-Up modes.  
For the cold-start mode, the module assigns all the available SVs to 16 channels in a  
defaulted order. As a satellite is acquired, GPS time, associated ephemeris and  
almanac data, which will take 12.5 minutes to download the data for all the available  
satellites, are being downloaded and decoded, and the module’s status is then  
transferred to tracking start. Once number of tracking satellites with valid  
ephemeredes are greater than and equal to 3, the module’s position is calculated and  
output, i.e., the module starts to navigate.  
For the warm-start mode, based on the available time (from RTC), position, and  
almanac data, the channels (up to 12) are assigned with observable satellites and the  
rest of them are assigned to unobservable satellites. As the observable satellites are  
acquired, time and almanac data are updated (if needed) and the corresponding  
ephemeredes are downloaded and decoded. As soon as the module are tracking at  
least three GPS satellites, the position is calculated and updated, and the module is in  
the navigation mode.  
For the hot-start mode, based on the available time, position, almanac, and ephemeris  
data, the channels (up to 12) are assigned with observable satellites and the rest of  
them are assigned to unobservable satellites. The module enters the navigation mode  
almost instantly after power on. The time and position will be updated if needed as the  
satellites are acquired. But the almanac and ephemeris data will not be updated since  
they are already the “newest” information.  
NOTE: To implement the warm and hot starts, a backed-up battery is needed to run  
the RTC. The updated position, ephemeris, and almanac can be retrieved from BBR or  
Flash memory.  
4.3 Aiding - AGPS  
The module can implement Assisted GPS (AGPS) function, which will accept  
external input information, such as time, position, almanac, and ephemeris. This will  
improve the performance of the module on Time To First Fix (TTFF). How much this  
30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
will improve on TTFF depends on the accuracy of position and time from a near base  
station (service center) as well as hardware synchronization.  
The AGPS function of the module is activated by sending u-blox binary protocol  
UBX-AID-REQ. If there is no data available from a near base station, the module is  
back to its normal start-up modes.  
4.4 Sensitivity  
There are three modes available for the module, which are “Normal”, “Fast  
Acquisition” and “High Sensitivity”. Table 4.2 lists their associated definitions.  
Sensitivity Modes  
Normal  
Properties  
Notes  
Default setting  
Fast Acquisition  
“Normal” sensitivity – 3 dB When the C/N0 ratio of the  
strongest GPS signal is  
greater than 48 dB, this  
mode can be used.  
High Sensitivity  
“Normal” sensitivity + 3 dB When the C/N0 ratio of the  
strongest GPS signal is less  
than 45 dB, this mode can  
be used.  
Table 4.2 Available sensitivity modes.  
When the module tracks the weak GPS signals, the “High Sensitivity” mode is  
preferable as compared with the case for tracking strong GPS signals in which the  
“Fast Acquisition” is preferable. Different modes correspond to different TTFF times  
under different start-up modes, i.e., it’s a trade-off between sensitivity and TTFF time.  
Usually, the TTFF relationships among three modes are  
TTFFfast < TTFFnormal < TTFFhigh  
where  
TTFF() : TTFF for “Fast Acquisition”, “Normal”, or “High Sensitivity” mode.  
Users are recommended to use the default setting, “Normal” mode, due to the  
unknown and variable operating condition that the module is surrounded. The  
sensitivity setting is activated by sending the request the UBX-CFG-RXM message.  
NOTE: This module has a built-in LNA. If an active antenna with gain exceeded 25  
31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
dB is used, the “High Sensitivity” mode is not recommended.  
4.5 Navigation Data  
4.5.1 Position Format  
The navigation data can be output in the format of local geodetic frame (latitude,  
longitude, and altitude), ECEF (Earth-Centered Earth-Fixed) frame, or Universal  
Transverse Mercator (UTM) frame. To poll the navigation information from the  
module, send the request UBX-CFG-NAV. For FV-25, the default position settings are  
expressed in the format of local geodetic frame, which can be retrieved from message  
UBX-NAV-POSLLH, and ECEF frame, which can be retrieved from message  
UBX-NAV-POSECEF. The position expressed in UTM frame can be obtained from  
“$PUBX,01,…” under proprietary NMEA protocol. The “$PUBX,01,…” is not a  
standard output for FV-25 and can be polled by sending “$PUBX,sid*cs<CR><LF>”.  
NOTE: The descriptions of the standard and proprietary NMEA messages are  
described in Chapter 7.  
4.5.2 Datums  
The position expressed in WGS 84 format (default) can be transferred to the user’s  
preferable format based on more than 200 standard datums (referred to Appendix A),  
or a user-defined datum, which is activated by sending the UBX-CFG-DAT message.  
4.5.3 Update Rate  
The module supports the update rates up to 4 Hz. This function is activated by  
sending the UBX-CFG-RATE message. The default update rate is 1 Hz.  
NOTE: The update rate has effects on power consumption and position accuracy.  
4.5.4 Kinematic Mode  
The module enables users to select the corresponding kinematic mode, such as static  
case and different dynamic scenarios, for a vehicular carrier. This function is  
implemented by sending the UBX-CFG-NAV message.  
4.6 Navigation for Less Than 4 Observable Satellites  
4.6.1 2D Navigation  
When number of observable satellites is 3, the navigation algorithm of the module  
allows position estimate but with the assumption of constant altitude, i.e., the module  
enters 2D navigation. If the 2D position fix is the first position fix since power on, the  
32  
Download from Www.Somanuals.com. All Manuals Search And Download.  
initial/assumed value of the altitude is 500 m. If the 2D position fix occurs after the  
3D position fix (number of observable satellites drops from at least 4 to 3), the value  
of the altitude will keep the last known value of the altitude from the previous 3D  
position fix.  
4.6.2 Dead Reckoning  
As the module loses the tracks for all observable GPS signals because of, for example,  
an external blockage, the navigation algorithm implements the Dead Reckoning  
strategy. The strategy assumes the same velocity and direction as the last known  
values of velocity and direction, i.e., the constant velocity and direction, during the  
event. Under the assumption, the positions are predicted (extrapolated) but with  
indication “NoFix” until the Dead Reckoning timeout is reached. The value of the  
timeout is set by the UBX-CFG-NAV message.  
4.7 Almanac Navigation  
With Almanac Navigation enabled, based on valid almanac, the position can be  
estimated without valid ephemeris data. This is a possible scenario that the position is  
fixed while ephemeris data have not been downloaded completely. Therefore, the  
TTFF times are much faster for Almanac Navigation than “normal navigation” (using  
ephemeredes to estimate position). However, the deviation of position can be up to a  
few kilometers. However, this event might be particularly useful when users or  
carriers need position desperately, such as emergency and security systems, but  
“ephemeris” position is not available.  
The activation of Almanac Navigation is implemented by the UBX-CFG-NAV  
message. By controlling the position accuracy, use parameters in the UBX-CFG-NAV  
message, such as “PDOP Mask” and “Position Accuracy Mask”, to filter out the  
“outsiders”.  
4.8 DGPS – WAAS, EGNOS, & RTCM  
The module utilizes the correction data from WAAS, EGNOS, or RTCM to obtain  
better position accuracy. Use the UBX-CFG-SBAS message, the functions for  
enabling WAAS or EGNOS tracking can be activated. For activation of RTCM, the  
users need an extra antenna-micro controller set, which has ability to receive and  
retrieve correction data from the signal transmitted from the near service station,  
connected to one of the comm. ports of the module. The corresponding comm. port  
needs correct setting, which is set by the “$PUBX,41,…” message. The module  
supports RTCM Correction Type Messages 1, 2, 3, and 9. For more information about  
33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RTCM protocol, please refer to the web site http://www.rtcm.org/.  
The DGPS parameters can be changed in the UBX-CFG-NAV message, like DGPS  
Timetag Rounding. Do not change them under no specific reasons because the default  
values are based on real tests with DGPS function.  
NOTE: The correction data from the RTCM messages can be monitored by the  
UBX-NAV-DGPS message, which doesnt provide the supervision on WAAS and  
EGNOS.  
4.9 Receiver Autonomous Integrity Monitoring (RAIM)  
The purpose of RAIM is to monitor the received GPS signals and ensure the message  
data from satellites which are valid for estimating navigation solution. With five  
observable GPS satellites, a bad satellite could be detected if existed. For the case  
with at least six observable satellites, an existed bad satellite could be detected and  
neglected in the estimation of navigation solution. The default setting for RAIM is on  
and can be controlled by three parameters- Range Check, Doppler Check, and Delta  
Check (all enabled)- in the UBX-CFG-NAV message. It is recommended that RAIM  
function is always on.  
4.10 Time Pulse (1 PPS)  
Pin 14 “Time Pulse” will output the default setting 1 PPS if it is connected. For the  
Time Pulse settings and information, refer to the UBX-CFG-TP and UBX-TIM-TP  
messages.  
34  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 5 Evaluation Kit  
The evaluation kit is an optional accessory while purchasing the module. It will  
provide an easy way to estimate the performance of our module. The users can also  
follow the reference circuit design in Chapter 2 to test the performance of the module.  
In this chapter, all the information about the evaluation kit, which includes the output  
ports, buttons, and LED lights, is described. As long as the procedure is correct and  
complete, the module will output the desired messages at the desired port and activate  
the desired functions through the desired port. All of those functions can be achieved  
by using software commands. The settings and commands are described in Chapters 2  
and 7.  
As shown in Figure 5.1, the appearance of the evaluation kit is depicted. The whole  
kit should include, in addition to the main box itself,  
a 12 V adapter;  
an active antenna with SMA (male) connector;  
two RS232 cables;  
Figure 5.1 Main box of the evaluation kit.  
Figure 5.2 shows the front panel of the evaluation kit. It includes (from left to right)  
Power Switch, Comm. Port 2, Boot button, LED function lights, and Reset button.  
The default output protocol for Comm. Port 2 is UBX binary messages with baud rate  
57600 bps. The Boot button is for read/write purpose to the flash memory. The  
definitions for LED lights are indicated in the figure. The Reset button can be used to  
35  
Download from Www.Somanuals.com. All Manuals Search And Download.  
re-start up the GPS module in the either Continuous Tracking Mode or FixNow mode.  
Figure 5.2 Front panel of the evaluation kit.  
Figure 5.3 shows the back panel of the evaluation kit. It includes (from left to right)  
the Antenna Input, Comm. Port 1, 1PPS Output, and Power Input. The Antenna Input  
is a SMA female connecter which is for 3.0 V or 5.0 V active antenna depending on  
the jump position (J16). The Comm. Port 1 outputs NMEA messages at the baud rate  
of 19200 bps as the default setting. The 1PPS Output, which is a BNC (female) output  
port, is used to output a time pulse per second. For the Power Input of the kit, it  
accepts the input voltage in the range of 8 ~ 40 V.  
Figure 5.3 Back panel of the evaluation kit.  
36  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Both Comm. ports are the bi-directional ports, i.e., the ports also accepts user software  
commands. For receiving RTCM message, either port can be used to accept the data  
through software command.  
37  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 6 Antennas  
To get the maximum performance from the module, in addition to the own properties  
of the module, one of the important factors is how to select fitted antennas for the  
module because the quality of the received signals is determined as soon as the signals  
enter the RF section and can not be improved much by the subsequent filters and  
amplifiers.  
The character of the GPS signal is right hand circular polarized (RHCP). So, for  
obtaining good GPS signals without losing too much, it’s better to use the RHCP  
antennas. Otherwise, for example, using a simple linear polarized antenna to receive  
GPS signals, the received GPS signals will lose at least 3 dB in SNR. In addition, the  
size of an antenna also affects the received signal energy or SNR. Usually, the smaller  
the size of the antenna, the lower overall gain pattern of the antenna. In other words,  
the smaller size of the antenna will result in the lower SNR of the received GPS  
signals. As more and more new antenna products emphasize on the size issue because  
of more and more GPS related portable devices appeared, there is no way to avoid this  
problem (low SNR), even with the aid of an amplifier after the antenna.  
Therefore, for retrieving the most information, a large size antennas are preferable,  
and even for special applications (e.g. surveying), a special mechanism structure  
design is desirable, such as choke ring antenna which is used for mitigating multipath  
effect. As a result, an antenna with large size, high power consumption, and high cost  
is produced for high precision applications. Furthermore, for high precision  
applications with millimeter accuracy in position, it is important to have stable phase  
centers (L1/L2) that are exactly known.  
6.1 Passive Antennas  
Utilizing passive antennas in users’ applications, more attention is needed in the  
layout of the RF section. Usually, the passive antenna is placed next to a module as  
close as possible because of dB loss and no power amplification. However, the  
proximity of antenna to electronic parts will induce the interference on the incoming  
GPS signals from the module and the peripheral electronic circuits, even worse the  
interference will cause signal jamming. Therefore, more careful considerations on the  
layout of RF section should be taken. This selection is only suitable for those who are  
familiar with the RF design.  
38  
Download from Www.Somanuals.com. All Manuals Search And Download.  
For using passive antennas, the pin VANT (DC bias voltage) on the module is  
connected to ground, and the antenna is directly connected to the GPS signal input pin  
ANT. Sometimes, a passive matching connection is required to match the electrical  
circuit to 50 Ohms impedance.  
6.2 Active Antennas  
For FV-25, the active antenna is integrated with a Low Noise Amplifier (LNA), which  
is a built-in component part, in the RF section. Through pin ANT, the module obtains  
the incoming signal from the antenna. The power supply for the active antenna is  
from pin VANT and, in general, the supply voltage is transmitted by the coaxial RF  
cable. The supply voltage in pin VANT is supported by either source. One is from the  
external power supply and the other is from the output pin VRF (connected with  
VANT), which is the power supply from the module for RF section. The voltage  
requirements for the antenna and the pins on the module have to be specified.  
The use of the active antennas will decrease the “bad” effects, which result from the  
cable loss and hardware noises, on the received GPS signals. Therefore, the placement  
of the active antenna can be away from the possible noise sources, for example, the  
module and peripheral circuits, and the active antenna will have good performance if  
it is located far from the noise sources. This will ease the circuit design, and the  
received signals is less sensitive to jamming. But the active antenna will increase the  
power consumption of the whole system, typically in the range of 5 mA to 20 mA.  
It is recommended to use an active antenna if the cable length between module and  
antenna exceeds 10 cm. The same advice also goes for users without much experience  
on the RF design. For FV-25, the active antenna gain should not exceeds 25 dB  
because an saturation (overload) condition might occur for high gain (> 25 dB) cases.  
NOTE: Its better not to disconnect antenna during the operation of the module. The  
calculation of the reference floor noise is based on the actual condition after the  
power is turned on. Hence, the reacquisition time may be prolonged after  
re-connecting the antenna to the module.  
NOTE: To verify the reacquisition time, users can use a physical object to block the  
antenna from receiving the signal until the module loses the lock of the satellites and  
then take the object away from the antenna.  
39  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6.3 Active Antenna Supervisor - Short Circuit Protection  
This is a built-in function that is monitored by the BaseBand processor. If an  
abnormal current occurs and is detected, the voltage supply at pin VANT (from the  
external or internal power supply) will be turned off by the BaseBand processor. The  
way to reset the operation of the module is to have a hardware reset of the module,  
such as turning off and then on the module or pressing the reset button.  
NOTE: Without the short circuit protection, the large current will cause the damage  
on the module permanently.  
40  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 7 Available NMEA and UBX Messages  
7.1 NMEA Protocol  
The NMEA protocol expresses the data in the format of ASCII. This is a standard  
format for GPS applications. The module (FV-25) outputs two types of NMEA  
messages. One is the standard NMEA messages, that are widely accepted by plotters  
and GPS related devices, and the other is u-blox proprietary NMEA messages.  
7.1.1 Standard NMEA Messages  
The module can output 10 standard NMEA messages, which are  
GGA – Global Positioning System Fix Data;  
GLL – Geographic Position – Latitude/Longitude;  
GRS – GNSS Range Residuals;  
GSA – GNSS DOP and Active Satellites;  
GST – GNSS Pseudorange Error Statistics;  
GSV – GNSS Satellites in View;  
RMC – Recommended Minimum Specific GNSS Data;  
TXT – Test Transmission;  
VTG – Course Over Ground and Ground Speed;  
ZDA – Time & Date.  
The default output messages include all messages except the TXT message. Those  
messages are output at comm. port 1 at the rate of 19200 bps (default setting). The  
request for outputting user-selected standard NMEA messages is the “$xxGPQ,..”  
message (referred to the following interpretation for GPQ). The port settings can be  
performed by sending the “$PUBX,41,..” message (ASCII format) or UBX-CFG-PRT  
message (Binary format).  
The following will summarize the available NMEA messages. More information  
about the NMEA messages refers to “NMEA 0183, Standard For Interfacing Marine  
Electronic Devices, Version 2.30, March 1, 1998”.  
NOTE: In the NMEA messages, the position fix is valid only if the following  
conditions are satisfied: 1) at least three satellites observable (i.e. 2D or 3D); 2) for  
the 3D case, the position accuracy should be less than the setting value of the  
“Position Accuracy Mask”; 3) The PDOP value is constrained by the setting value of  
41  
Download from Www.Somanuals.com. All Manuals Search And Download.  
the “PDOP Accuracy Mask”.  
42  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GGA – GPS Fix Data  
Position fix related data, such as position, time, number of satellites in use, etc..  
$GPGGA,gga1,gga2,gga3,gga4,gga5,gga6,gga7,gga8,gga9,gga10,gga11,gga12,gga  
13,gga14*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
gga1  
UTC time as position is fixed  
hhmmss.ss: hh – hour; mm –  
minute; ss.ss – second  
gga2  
Latitude  
ddmm.mmmmm: dd – degree;  
mm.mmmmm – minute (0o ~ 90o)  
N – North; S - South  
gga3  
gga4  
Latitude sector  
Longitude  
dddmm.mmmmm: dd – degree;  
mm.mmmmm – minute (0o ~ 180o)  
E – East; W - West  
gga5  
gga6  
Longitude sector  
GPS quality indicator  
0 – No fixed or invalid position  
1 – SPS Position available  
2 – Differential GPS (SPS)  
6 – Estimated position (DR)  
gga7  
Number of SVs used in position xx: 00 ~ 12  
estimation  
gga8  
gga9  
HDOP  
xx.x: 00.0 ~ 99.9  
Altitude above mean sea level  
(geoid)  
gga10  
gga11  
gga12  
gga13  
Unit for Altitude  
M: meter  
Geoidal separation  
Unit for geoidal separation  
Age of differential corrections  
M: meter  
unit : second; null when DGPS is  
not used  
gga14  
hh  
Reference station ID (DGPS)  
Checksum  
xxxx: 0000 ~ 1023  
hex number (2 – character)  
<CR><LF> End of message  
43  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GLL – Geographic Position – Latitude/Longitude  
Navigation data and status.  
$GPGLL,gll1,gll2,gll3,gll4,gll5,gll6,gll7*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
gll1  
Latitude  
ddmm.mmmmm: dd  
mm.mmmmm – minute (0o ~ 90o)  
degree;  
gll2  
gll3  
Latitude sector  
Longitude  
N – North; S – South  
dddmm.mmmmm: ddd  
mm.mmmmm – minute (0o ~ 180o)  
degree;  
gll4  
gll5  
Longitude sector  
E – East; W – West  
UTC time as position is fixed hhmmss.ss: hh – hour; mm – minute;  
ss.ss – second  
gll6  
gll7  
Status for position fix  
A – Valid; V – Invalid  
A – Autonomous mode (fix);  
D – Differential mode (fix);  
E – DR (fix);  
Navigation mode indicator  
N – not valid  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
44  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GRS – GNSS Range Residual  
This message is used to monitor and support RAIM.  
$GPGRS,grs1,grs2,(grs3*12)*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
grs1  
UTC time from the GGA  
hhmmss.ss: hh – hour;  
mm – minute; ss.ss –  
second  
grs2  
Mode to indicate the way to calculate Always in Mode 1  
the range residuals.  
0 – calculate the range residuals while  
the GGA position is estimated;  
1 – recalculate the range residuals after  
the GGA position is estimated.  
grs3*12  
Range residuals for satellites used in -999.9 ~ 999.9  
position calculation. There will be 12  
available fields for residuals. If number  
of satellites is less than 12, the  
remaining fields will be left as empty  
fields. If number of satellites is greater  
than 12, only the values of the first 12  
satellites will be output.  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
45  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GSA – GNSS DOP and Active Satellites  
Receiver operating mode, the values of DOPs, and PRN numbers for satellites used in  
the GGA position solution.  
$GPGSA,gsa1,gsa2,(gsa3*12),gsa4,gsa5,gsa6*hh<CR><LF>  
Parameters  
gsa1  
Descriptions  
Mode for position fix  
Notes  
gsa2  
1 – fix not available;  
2 – 2D;  
3 – 3D;  
gsa3*12  
PRN numbers for satellites used in the xx  
position solution. There will be 12  
available fields for PRN numbers. If  
number of satellites is less than 12, the  
remaining fields will be left as empty  
fields. If number of satellites is greater  
than 12, only the values of the first 12  
satellites will be output.  
gsa4  
gsa5  
gsa6  
hh  
PDOP  
0 ~ 99.9  
HDOP  
0 ~ 99.9  
VDOP  
0 ~ 99.9  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
46  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GST – GNSS Pseudorange Error Statistics  
This message is used to monitor and support RAIM.  
$GPGST,gst1,gst2,gst3,gst4,gst5,gst6,gst7,gst8*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
gst1  
UTC time from the GGA  
hhmmss.ss: hh – hour;  
mm – minute; ss.ss –  
second  
gst2  
gst3  
gst4  
gst5  
gst6  
gst7  
gst8  
hh  
RMS value of the standard deviation of  
the range  
Standard deviation of semi-major axis of Not supported (empty field)  
error ellipse (meters)  
Standard deviation of semi-minor axis of Not supported (empty field)  
error ellipse (meters)  
Orientation of semi-major axis of error Not supported (empty field)  
ellipse  
Standard deviation of latitude error  
(meters)  
Standard deviation of longitude error  
(meters)  
Standard deviation of altitude error  
(meters)  
Checksum  
<CR><LF> End of message  
hex number (2 – character)  
47  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GSV – GNSS Satellites in View  
This message indicates the observable satellites’ information, such as PRN numbers,  
elevation, azimuth, SNR, and number of satellites in view.  
$GPGSV,gsv1,gsv2,gsv3,((gsv4,gsv5,gsv6,gsv7)*n)*hh<CR><LF>  
Parameters  
gsv1  
Descriptions  
Total number of messages  
Message number  
Notes  
1 ~ 9  
1 ~ 9  
gsv2  
gsv3  
Total number of satellites in view  
PRN number  
gsv4  
gsv5  
Elevation (degrees)  
Azimuth (degrees)  
90o maximum  
0o ~ 360o  
gsv6  
gsv7  
SNR (C/N0)  
0 ~ 99 dB-Hz, null when not  
tracking  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
The message can carry at most four (gsv4,gsv5,gsv6,gsv7) sets of observable satellites.  
For a less than four-set case, the message only transmits available sets and the rest of  
them will not be output, i.e., the message doesn’t transmit empty fields.  
48  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RMC – Recommended Minimum Specific GNSS Data  
This message transmits the necessary navigation data, such as time, position, speed,  
course, and so on.  
$GPRMC,rmc1,rmc2,rmc3,rmc4,rmc5,rmc6,rmc7,rmc8,rmc9,rmc10,rmc11,rmc  
12*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
rmc1  
UTC time as position is fixed  
hhmmss.ss: hh – hour; mm –  
minute; ss.ss – second  
rmc2  
rmc3  
Status of position fix  
Latitude  
A – data valid, which includes the  
scenarios of 2D, 3D, and DR.  
V – navigation receiver warning  
ddmm.mmmmm: dd – degree;  
mm.mmmmm – minute (0o ~ 90o)  
N – North; S – South  
rmc4  
rmc5  
Latitude sector  
Longitude  
dddmm.mmmmm: ddd – degree;  
mm.mmmmm – minute (0o ~ 180o)  
dddmm.mmmmm: ddd – degree;  
mm.mmmmm – minute (0o ~ 180o)  
rmc6  
Longitude sector  
rmc7  
rmc8  
Speed over ground (SOG) (knots)  
Course over ground (COG) Referenced to true north  
(degrees)  
rmc9  
UTC Date  
ddmmyy: dd – day; mm – month;  
yy – year  
rmc10  
rmc11  
rmc12  
Magnetic variation (degrees)  
Direction of magnetic variation  
Navigation mode indicator  
Not supported  
Not supported  
A – Autonomous mode (fix);  
D – Differential mode (fix);  
E – DR (fix);  
N – not valid  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
49  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TXT – Text Transmission  
The message is used to transmit short text messages. Transmitting a longer message  
needs multi-TXT messages.  
$GPTXT,txt1,txt2,txt3,txt4*hh<CR><LF>  
Parameters  
txt1  
Descriptions  
Total number of messages  
Message number  
Notes  
01 ~ 99  
01 ~ 99  
00 – error  
txt2  
txt3  
Text identifier  
01 – warning  
02 – notice  
07 – user  
txt4  
hh  
Text  
ASCII format  
hex number (2 – character)  
Checksum  
<CR><LF> End of message  
50  
Download from Www.Somanuals.com. All Manuals Search And Download.  
VTG – Course Over Ground and Ground Speed  
This message transmits the speed and course relative to ground.  
$GPVTG,vtg1,vtg2,vtg3,vtg4,vtg5,vtg6,vtg7,vtg8,vtg9*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
vtg1  
Course over ground (degrees)  
Referenced to true north  
(000.00o ~ 359.99o)  
vtg2  
vtg3  
Indicator of course reference  
Course over ground (degrees)  
T – true north  
Referenced to magnetic  
north (000.00o ~ 359.99o)  
M – magnetic north  
vtg4  
vtg5  
vtg6  
vtg7  
vtg8  
vtg9  
Indicator of course reference  
Speed over ground (knots)  
Unit of speed  
N – nautical miles per hour  
Speed over ground (km/hr)  
Unit of speed  
K – kilometers per hour  
A – Autonomous mode  
(fix);  
Navigation mode indicator  
D – Differential mode (fix);  
E – DR (fix);  
N – not valid  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
51  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ZDA – Time & Date  
This message transmits UTC time and date, and local time zone.  
$GPZDA,zda1,zda2,zda3,zda4,zda5,zda6*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
hhmmss.ss: hh – hour; mm –  
minute; ss.ss – second  
01 ~ 31  
zda1  
UTC time  
zda2  
zda3  
zda4  
zda5  
zda6  
hh  
UTC day  
UTC month  
UTC year  
01 ~ 12  
xxxx (4 digits)  
Local zone hours  
Local zone minutes  
Checksum  
Not supported (default: 00)  
Not supported (default: 00)  
hex number (2 – character)  
<CR><LF> End of message  
52  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7.1.2 Proprietary NMEA Messages  
The non-standard NMEA messages is proposed by u-blox. The proprietary  
(non-standard) NMEA messages are grouped into two categories:  
Proprietary NMEA (PUBX)  
PUBX,00 – Latitude/Longitude Position Data  
PUBX,01 – UTM Position Data  
PUBX,03 – Satellite Status  
PUBX,04 – Time of Day and Clock Information  
PUBX,40 – Set NMEA Message Update Rate  
PUBX,41 – Set Protocols and Baudrate  
Queries  
GPQ – Polls a Standard NMEA Message  
PUBX – Polls a PUBX Message.  
53  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX, 00 – Latitude/Longitude Position Data  
Output message. This message transmits navigation data defined in the local geodetic  
frame.  
$PUBX,00,p00x1,p00x2,p00x3,p00x4,p00x5,p00x6,p00x7,p00x8,p00x9,p00x10,p0  
0x11,p00x12,p00x13,p00x14,p00x15,p00x16,p00x17,p00x18,p00x19*hh<CR><LF  
>
Parameters  
Descriptions  
Notes  
p00x1  
UTC time  
Latitude  
hhmmss.ss: hh – hour; mm –  
minute; ss.ss – second  
p00x2  
ddmm.mmmmm: dd – degree;  
mm.mmmmm – minute (0o ~ 90o)  
N – North; S – South  
p00x3  
p00x4  
Latitude sector  
Longitude  
dddmm.mmmmm: ddd – degree;  
mm.mmmmm – minute (0o ~ 180o)  
E – East; W – West  
p00x5  
p00x6  
p00x7  
Longitude sector  
Altitude above ellipsoid (meters)  
Navigation mode  
NF – not fix  
DR – dead reckoning solution  
G2 – 2D  
G3 – 3D  
D2 – differential 2D  
D3 – differential 3D  
p00x8  
p00x9  
Position accuracy in the horizontal 0 ~ 9999  
direction (meters)  
Position accuracy in the vertical 0 ~ 9999  
direction (meters)  
p00x10  
p00x11  
p00x12  
Speed over ground (km/hr)  
Course over ground (degrees)  
-999.99 ~ 999.99  
000.00 ~ 359.99  
Velocity in the vertical direction -999.99 ~ 999.99 (positive: up)  
(m/s)  
p00x13  
Age  
of  
DGPS  
corrections 000.00 ~ 999.99 (empty field for  
(seconds)  
HDOP  
not available)  
00.0 ~ 99.9  
00.0 ~ 99.9  
00.0 ~ 99.9  
p00x14  
p00x15  
p00x16  
p00x17  
VDOP  
GDOP  
Number of GPS satellites used in  
54  
Download from Www.Somanuals.com. All Manuals Search And Download.  
the position calculation  
p00x18  
Number of GLONASS satellites Always 0  
used in the position calculation  
p00x19  
hh  
Dead reckoning used  
Checksum  
0 – No; 1 – Yes  
hex number (2 – character)  
<CR><LF> End of message  
55  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX, 01 – UTM Position Data  
Output message. This message transmits navigation data defined in the Universal  
Transverse Mercator (UTM) frame.  
$PUBX,01,p01x1,p01x2,p01x3,p01x4,p01x5,p01x6,p01x7,p01x8,p01x9,p01x10,p0  
1x11,p01x12,p01x13,p01x14,p01x15,p01x16,p01x17,p01x18,p01x19*hh<CR><LF  
>
Parameters  
Descriptions  
Notes  
p01x1  
UTC time  
hhmmss.ss: hh – hour; mm –  
minute; ss.ss – second  
p01x2  
p01x3  
p01x4  
p01x5  
p01x6  
p01x7  
UTM Easting (meters)  
Longitude sector  
E – East; W – West  
N – North; S – South  
UTM Northing (meters)  
Hemisphere  
Altitude above ellipsoid (meters)  
Navigation mode  
NF – not fix  
DR – dead reckoning solution  
G2 – 2D  
G3 – 3D  
D2 – differential 2D  
D3 – differential 3D  
p01x8  
p01x9  
Position accuracy in the horizontal 0 ~ 9999  
direction (meters)  
Position accuracy in the vertical 0 ~ 9999  
direction (meters)  
p01x10  
p01x11  
p01x12  
Speed over ground (km/hr)  
Course over ground (degrees)  
-999.99 ~ 999.99  
000.00 ~ 359.99  
Velocity in the vertical direction -999.99 ~ 999.99 (positive: up)  
(m/s)  
p01x13  
Age  
of  
DGPS  
corrections 000.00 ~ 999.99 (empty field for  
(seconds)  
HDOP  
not available)  
00.0 ~ 99.9  
00.0 ~ 99.9  
00.0 ~ 99.9  
p01x14  
p01x15  
p01x16  
p01x17  
VDOP  
GDOP  
Number of GPS satellites used in  
the position calculation  
p01x18  
Number of GLONASS satellites Always 0  
56  
Download from Www.Somanuals.com. All Manuals Search And Download.  
used in the position calculation  
Dead reckoning used  
Checksum  
p01x19  
hh  
0 – No; 1 – Yes  
hex number (2 – character)  
<CR><LF> End of message  
57  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX,03 – Satellite Status  
Output message.  
$PUBX,03,p03x1,((p03x2,p03x3,p03x4,p03x5,p03x6,p03x7)*n)*hh<CR><LF>  
Parameters  
p03x1  
Descriptions  
Number of GPS satellites tracked  
PRN number  
Notes  
p03x2  
01 ~ 32  
p03x3  
Satellite status  
- – not used  
U – used  
e – available for navigation,  
but no ephemeris  
000 ~ 359  
p03x4  
p03x5  
p03x6  
p03x7  
Azimuth (degrees)  
Elevation (degrees)  
SNR (dB-Hz)  
00 ~ 90  
00 ~ 55  
Carrier lock time (seconds)  
0 ~ 255  
0: code lock only;  
255: lock time at least 255  
seconds.  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
The message will  
repeatedly  
output  
the  
format-  
(p03x2,p03x3,p03x4,p03x5,p03x6,p03x7)- n times, which is equal to the value in  
p03x1 field.  
58  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX,04 – Time of Day and Clock Information  
Output message. This message transmits UTC time, week number, and clock offset.  
$PUBX,04,p04x1,p04x2,p04x3,p04x4,p04x5,p04x6,p04x7,p04x8*hh<CR><LF>  
Parameters  
Descriptions  
Notes  
p04x1  
UTC time  
UTC date  
hhmmss.ss: hh – hour; mm –  
minute; ss.ss – second  
ddmmyy: dd – day; mm – month;  
yy – year  
p04x2  
p04x3  
p04x4  
p04x5  
p04x6  
p04x7  
UTC – time of week (seconds)  
GPS week number  
Reserved  
Receiver clock bias (nanoseconds)  
Receiver  
clock  
drift  
(nanoseconds/second)  
p04x8  
hh  
Time pulse granularity (nanoseconds)  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
59  
Download from Www.Somanuals.com. All Manuals Search And Download.  
GPQ – Poll Message  
Input message. Poll a standard NMEA message.  
$xxGPQ,gpq1*hh<CR><LF>  
Parameters  
$xxGPQ  
gpq1  
Descriptions  
NMEA message header  
NMEA message ids  
Notes  
xx: talker device identifier  
String format: GGA, GLL,  
GRS, GSA, GST, GSV,  
RMC, TXT, VTG, and ZDA  
hex number (2 – character)  
hh  
Checksum  
<CR><LF>  
End of message  
60  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX – Poll a PUBX Message  
Input message. Poll the proprietary PUBX messages.  
$PUBX,p1*hh<CR><LF>  
Parameters  
Descriptions  
Proprietary message ids  
Checksum  
Notes  
p1  
hh  
xx: 00, 01, 03, and 04  
hex number (2 – character)  
<CR><LF> End of message  
61  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX,40 – Set NMEA Message Output Rate  
Input message.  
$PUBX,40,p40x1,p40x2,p40x3,p40x4,p40x5*hh<CR><LF>  
Parameters  
Descriptions  
NMEA message ids  
Notes  
String format: GGA, GLL, GRS,  
GSA, GST, GSV, RMC, TXT, VTG,  
and ZDA  
p40x1  
p40x2  
Number of cycles  
USART 0 output rate  
0 – disabled  
1 - enabled  
p40x3  
p40x4  
p40x5  
hh  
Number of cycles  
Number of cycles  
Reserved  
USART 1 output rate  
USART 2 output rate  
Always 0  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
62  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PUBX,41 – Set Protocols and Baudrate  
Input message.  
$PUBX,41,p41x1,p41x2,p41x3,p41x4,p41x5*hh<CR><LF>  
Parameters  
p41x1  
Descriptions  
Notes  
USART id  
0, 1, 0r 2  
p41x1  
Input protocol mask  
0 – UBX  
1 – NMEA  
2 – RTCM  
12 – 15: USER0 ~ USER3  
0 – UBX  
p41x1  
Output protocol mask  
1 – NMEA  
2 – RAW  
12 – 15: USER0 ~ USER3  
p41x1  
p41x1  
Baudrate (bps)  
Autobauding*  
0 – disabled  
1 - enabled  
hh  
Checksum  
hex number (2 – character)  
<CR><LF> End of message  
*: The Autobauding function will adjust the baud rate of the serial port automatically  
based on the detected conditions, such as multiple break and framing-error conditions.  
NOTE: If the comm. port of your host PC experiences errors frequently, please  
disable the Autobauding function.  
63  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7.2 UBX Binary Protocol  
To obtain the maximum performance from GPS chips, which mainly consists of  
FV-25, u-blox proposed a proprietary binary protocol. The binary protocol can set and  
poll all the available actions and messages from the module. Using asynchronous  
RS232 ports, the module communicates with a host platform in terms of the  
alternative, UBX protocol, to carry GPS data. The noticeable features for the UBX  
protocol are  
1. 8 bits binary data;  
2. low-overhead checksum algorithm;  
3. 2-stage message identifier, i.e., Class ID + Message ID.  
Figure 7.1 depicts the sentence structure for the UBX protocol. The UBX messages  
always begin with “0xB5 0x62” (hex number). The selection of a CLASS ID and  
MESSAGE ID, which are described in the end of this section, depends on the user’s  
need, and it will also define the content of DATA and its corresponding length (i.e. the  
value of DATA LENGTH). For those multi-byte values, the rule of little Endian  
is adopted for transmitting the values. It is noticeable that the DATA LENGTH is  
the value to indicate the length that only contains the subsequent input/output DATA  
and doesn’t include the checksum bytes.  
SYNC  
CHAR  
# 2  
MESSAGE  
ID  
CHECKSUM  
CK_B  
CHECKSUM  
DATA  
Little Endian  
DATA  
LENGTH  
SYNC  
CHAR  
# 1  
CLASS  
ID  
Little Endian  
CK_A  
1 BYTE  
0xB5  
1 BYTE  
2 BYTES  
1 BYTE  
VARIED, depends  
1 BYTE  
0x62  
1 BYTE  
1 BYTE  
on the size of content of the  
“CLASS + MESSAGE”  
ID  
indicates the following length for data which  
doesn’t include the 2 bytes for checksum.  
Figure 7.1 UBX protocol structure.  
64  
Download from Www.Somanuals.com. All Manuals Search And Download.  
For the calculation of the checksum, u-blox utilizes the low-overhead checksum  
algorithm, which is the TCP standard (RFC 1145). The calculation of the checksum  
covers the range from the CLASS ID byte (included) to DATA bytes (included). It can  
be described as  
CK_A=0;  
CK_B=0;  
for(i = 0;i < N;i ++)  
{
CK_A += buffer[i];  
CK_B += CK_A;  
}
where  
CK_A and CK_B: 8-bit unsigned integers;  
buffer[]: vector that contains the data in the calculating range (i.e. from CLASS  
ID to DATA);  
N: number of bytes that contains the desired data.  
The two checksums have to be masked with 0xFF after the operations in the loop, if  
large-sized integer values are executed.  
7.2.1 Data Format  
Table 7.1 describes the types of data that are used in the module. On the basis of  
IEEE754 single/double precision, the floating-point values are defined.  
Acronym  
Date Type  
Size  
Range  
0 ~ 255  
Resolution  
Note  
(bytes)  
U1  
I1  
Unsigned Char  
Signed Char  
1
1
1
1
-128 ~ 127  
2’s  
complement  
U2  
I2  
Unsigned Short  
Signed Short  
2
2
0 ~ 65535  
1
1
-32768 ~ 32767  
2’s  
complement  
U4  
I4  
Unsigned Long  
Signed Long  
4
4
0 ~ 4294967295 1  
-2147483648 ~ 1  
2147483647  
2’s  
complement  
R4  
IEEE754 Single  
Precision  
4
-1*2127 ~ 2127  
~Value*2-24  
65  
Download from Www.Somanuals.com. All Manuals Search And Download.  
R8  
IEEE754 Double  
Precision  
8
1
-1*21023 ~ 21023 ~Value*2-53  
CH  
ASCII  
/
ISO  
8859.1 Encoding  
Table 7.1 The types of data.  
7.2.2 Classification of UBX Messages  
The u-blox proprietary messages are classified into 9 groups. Based on a specific  
topic, each group contains the associated information. They are summarized in Table  
7.2.  
Class ID Class Name Class No (Hex)  
Comment  
Acknowledgement  
Aiding  
Respond to the input request: Ack/Nack  
AGPS or other similar functions  
Configuration input: port setting, DOP mask, etc.  
Printf-Style messages: Error, Warning , Notice  
Monitor the stack usage, CPU load, task status,  
etc.  
ACK  
AID  
0x05  
0x0B  
0x06  
0x04  
0x0A  
Configuration  
Informative  
Monitor  
CFG  
INF  
MON  
Navigation  
Navigation information: PVT, DOP, Course  
Receiver manager messages: Pseudorange,  
Channel status  
NAV  
0x01  
0x02  
Receiver Manager  
RXM  
Timing  
Update  
Time pulse data: 1 PPS  
TIM  
UPD  
0x0D  
0x09  
Firmware update messages  
Table 7.2 UBX message classes.  
7.2.3 Responses to the UsersInputs  
Basically, there are two kinds of module’s responses for the users’ requests:  
Acknowledgement and Polling Mechanism. When users send the Class CFG messages  
to the module, the module will reply the Acknowledgement or Not Acknowledgement  
message based on whether the desired message is implemented correctly or not. For  
the Polling Mechanism, the messages that can be output also can be polled. In this  
particular protocol, the output and polling requests use the same message. The  
difference between both is that, for the polling purpose, the message doesn’t contain  
the DATA, i.e., the value of the DATA LENGTH is 0.  
NOTE: The default settings for output the binary messages from the module are on  
the comm. port 2 with the baud rate 57600 bps.  
66  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7.2.4 UBX Messages  
UBX Class ACK  
This class is used for responding a CFG message.  
ACK – ACK (0x05 0x01)  
Message acknowledged.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x05 0x01  
2
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U1  
Class ID for the desired  
acknowledged message  
Message ID for the desired  
acknowledged message  
1
U1  
67  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ACK – NAK (0x05 0x00)  
Message not-acknowledged.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x05 0x00  
2
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U1  
Class ID for the desired  
not-acknowledged message  
Message ID for the desired  
not-acknowledged message  
1
U1  
68  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class AID  
This class is used to support AGPS function or send aiding data, such as time, position,  
almanac, and ephemeris, to the GPS receiver.  
AID – REQ (0x0B 0x00)  
It’s a virtual request to poll all GPS aiding data (AID-DATA). The character of  
AID-REQ is determined by CFG-MSG. If AID-REQ is set as the output message and  
the internal stored data (i.e. time, position, almanac, and ephemeris) don’t allow the  
receiver to execute a hot start, the receiver will request to poll all the aiding data after  
startup.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x00  
0
None  
CK_A CK_B  
69  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AID – DATA (0x0B 0x10)  
It’s a request to poll all the GPS initial aiding data. This message will activate the  
sending of AID-INI, AID-HUI, AID-EPH, and AID-ALM as it is received by the  
module.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x10  
0
None  
CK_A CK_B  
70  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AID – INI (0x0B 0x01)  
It’s a poll request when “data length” is equal to 0. Poll GPS initial aiding data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x01  
0
None  
CK_A CK_B  
AID – INI (0x0B 0x01)  
This is an I/O message. It contains the information of position and time. As an output  
message, the value of the clock drift is always 0 and assigned invalid.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x01  
48  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
4
I4  
I4  
X coordinate in the ECEF frame (cm)  
Y coordinate in the ECEF frame (cm)  
Z coordinate in the ECEF frame (cm)  
Position accuracy (cm)  
8
I4  
12  
16  
U4  
U2  
Standard deviation  
Time mark configuration  
0x01 – enable time mark  
0x02 – falling edge  
Pin used for time mark:  
0x00 – Extint 0  
0x10 – Extint 1  
0x20 – Extint 2  
18  
20  
24  
28  
32  
36  
40  
44  
U2  
U4  
I4  
GPS week number  
GPS time of week (ms)  
Subms part of GPS time (ns)  
Millisecond part of time accuracy (ms)  
Nanosecond part of time accuracy (ns)  
Clock drift (ns/s)  
U4  
U4  
I4  
U4  
U4  
Clock drift accuracy (ns/s)  
Flags  
0x1 – valid position fields  
0x2 – valid time fields  
0x4 – valid clock drift  
fields  
0x8 – accurate time is  
input by with time pulse  
71  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AID – HUI (0x0B 0x02)  
It’s a poll request when “data length” is equal to 0. Poll GPS health, UTC, and  
Ionosphere data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x02  
0
None  
CK_A CK_B  
AID – HUI (0x0B 0x02)  
It’s an I/O message. It transmits GPS health, UTC, and Ionosphere (Klobuchar  
parameters) data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x02  
72  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Health bit mask  
Notes  
0
U4  
Every bit represents the  
health of a GPS satellite (1  
~ 32). 1 – health; 0 – not  
health  
4
R8  
R8  
I4  
UTC – parameter A1  
12  
20  
24  
26  
UTC – parameter A0  
UTC – reference time of week  
UTC – reference week number  
UTC – time difference because of leap  
seconds before event occurs  
UTC – week number when the next  
leap-second event occurs  
UTC – day of week when the next  
leap-second event occurs  
UTC – time difference because of leap  
seconds after event occurs  
UTC – spare to ensure the sentence  
structure is a multiply of 4 bytes  
Alpha0  
I2  
I2  
28  
30  
32  
34  
I2  
I2  
I2  
I2  
36  
40  
44  
R4  
R4  
R4  
Klobuchar parameters  
Klobuchar parameters  
Klobuchar parameters  
Alpha1  
Alpha2  
72  
Download from Www.Somanuals.com. All Manuals Search And Download.  
48  
52  
56  
60  
64  
68  
R4  
R4  
R4  
R4  
R4  
U4  
Alpha3  
Beta0  
Beta1  
Beta2  
Beta3  
Flag3  
Klobuchar parameters  
Klobuchar parameters  
Klobuchar parameters  
Klobuchar parameters  
Klobuchar parameters  
0x1 – valid health bit  
mask fields  
0x2  
valid  
UCT  
parameter fields  
0x4 – valid Klobuchar  
parameter fields  
73  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AID – ALM (0x0B 0x30)  
It’s a poll request when “data length” is equal to 0. Poll all available aiding almanac  
data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x30  
0
None  
CK_A CK_B  
AID – ALM (0x0B 0x30)  
It’s also a poll request. Poll a specific aiding almanac data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x30  
1
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
PRN number  
This will request the desired  
almanac data for the specific  
GPS satellite  
AID – ALM (0x0B 0x30)  
It’s an I/O message. Poll aiding almanac data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x30  
40  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
PRN number  
The following data are for this  
specific satellite  
4
U4  
Issue date of Almanac  
GPS week number.  
If this value is equal to 0, the  
following Words (0 ~ 7) don’t  
contain the valid data.  
8
U4  
U4  
U4  
U4  
U4  
Almanac – WORD0  
Almanac – WORD1  
Almanac – WORD2  
Almanac – WORD3  
Almanac – WORD4  
12  
16  
20  
24  
74  
Download from Www.Somanuals.com. All Manuals Search And Download.  
28  
32  
36  
U4  
U4  
U4  
Almanac – WORD5  
Almanac – WORD6  
Almanac – WORD7  
NOTE: 1. WORD0 ~ WORD7 contain the data following the Hand-Over Word  
(HOW) in the navigation message. The data are from the sub-frame 4 of Pages 1 ~ 24  
and the sub-frame 5 of Pages 2 ~ 10. More information about almanac data structure  
is referred to ICD-GPS-200.  
2. WORD0 ~ WORD7 dont include the data of the parity bits. Hence, Bits 0 ~ 23 is  
used to locate the 24 bits of the data and Bits 24 ~ 31 are the sign-extension of the  
data.  
75  
Download from Www.Somanuals.com. All Manuals Search And Download.  
AID – EPH (0x0B 0x31)  
It’s a poll request when “data length” is equal to 0. Poll all available aiding ephemeris  
data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x31  
0
None  
CK_A CK_B  
AID – EPH (0x0B 0x31)  
It’s also a poll request. Poll a specific aiding ephemeris data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x31  
1
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
PRN number  
This will request the desired  
almanac data for the specific  
GPS satellite  
AID – EPH (0x0B 0x31)  
It’s an I/O message. Poll aiding almanac data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0B 0x31  
8+n*96  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
PRN number  
The following data are for this  
specific satellite  
4
U4  
Hand-Over Word (HOW) of the 0 – invalid ephemeris data  
first sub-frame  
The following data will be repeated n times (n: number of valid ephemerides).  
8+n*96  
12+n*96  
16+n*96  
20+n*96  
24+n*96  
28+n*96  
U4  
U4  
U4  
U4  
U4  
U4  
Sub-frame 1 – WORD0  
Sub-frame 1 – WORD1  
Sub-frame 1 – WROD2  
Sub-frame 1 – WORD3  
Sub-frame 1 – WORD4  
Sub-frame 1 – WORD5  
76  
Download from Www.Somanuals.com. All Manuals Search And Download.  
32+n*96  
36+n*96  
40+n*96  
44+n*96  
48+n*96  
52+n*96  
56+n*96  
60+n*96  
64+n*96  
68+n*96  
72+n*96  
76+n*96  
80+n*96  
84+n*96  
88+n*96  
92+n*96  
96+n*96  
100+n*96  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
Sub-frame 1 – WORD6  
Sub-frame 1 – WORD7  
Sub-frame 2 – WORD0  
Sub-frame 2 – WORD1  
Sub-frame 2 – WORD2  
Sub-frame 2 – WORD3  
Sub-frame 2 – WORD4  
Sub-frame 2 – WORD5  
Sub-frame 2 – WORD6  
Sub-frame 2 – WORD7  
Sub-frame 3 – WORD0  
Sub-frame 3 – WORD1  
Sub-frame 3 – WORD2  
Sub-frame 3 – WORD3  
Sub-frame 3 – WORD4  
Sub-frame 3 – WORD5  
Sub-frame 3 – WORD6  
Sub-frame 3 – WORD7  
NOTE: 1. Sub-frame 1 – WORD0 ~ Sub-frame 3 – WORD7 contain the data  
following the Hand-Over Word (HOW) in the navigation message. The data are from  
the sub-frame 1 to sub-frame 3. More information about ephemeris data structure is  
referred to ICD-GPS-200.  
2. Sub-frame 1 – WORD0 ~ sub-frame 3 – WORD7 dont include the data of the parity  
bits. Hence, Bits 0 ~ 23 is used to locate the 24 bits of the data and Bits 24 ~ 31 are  
the sign-extension of the data.  
77  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class CFG  
This class is used to configure the GPS module and output the current configuration  
of the GPS module. The module will respond the ACK-ACK message if the request is  
proceeded correctly and ACK-NAK message if the request is failed.  
CFG – PRT (0x06 0x00)  
It’s a poll request. Poll the current configuration for a specific comm. port.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x00  
1
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
Port number  
CFG – PRT (0x06 0x00)  
It’s an I/O message. As an input message, the port configurations for several ports can  
be put together into one input sentence. As an output message, the message only  
transmits the configuration from one specific comm. port.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x00  
N*20  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (number of comm. ports).  
0+N*20  
1+N*20  
2+N*20  
4+N*20  
U1  
U1  
U2  
U4  
Port number  
Reserved  
Reserved  
USART mode  
Bit mask  
Bit[7:6]: character length  
00 – 5 bits ; 01 – 6 bits  
10 – 7 bits ; 11 – 8 bits  
Bit[11:9]: parity  
000 – even ; 001 – odd  
10X – no ; X1X – reserved  
Bit[13:12]  
00 – 1 stop bit ; 01 – 1.5 stop bit  
78  
Download from Www.Somanuals.com. All Manuals Search And Download.  
10 – 2 stop bit ; 11 – reserved  
Bit[16]  
0 – LSB first bit order  
1 – MSB first bit order  
Bit[19]  
0 – 16x oversampling  
1 – 8x oversampling  
8+N*20  
U4  
U2  
Baud rate (bps)  
12+N*20  
Input protocol for a single port. Bit mask  
Multi-protocols can be selected 0x0001 – UBX protocol  
for a single port.  
0x0002 – NMEA protocol  
0x0004 – RTCM protocol  
0x1000 – User0-defined protocol  
0x2000 – User1-defined protocol  
0x4000 – User2-defined protocol  
0x8000 – User3-defined protocol  
The rest of bits are reserved.  
14+N*20  
U2  
Output protocol for a single port. Bit mask.  
Multi-protocols can be selected 0x0001 – UBX protocol  
for a single port.  
0x0002 – NMEA protocol  
0x0008 – RAW protocol  
0x1000 – User0-defined protocol  
0x2000 – User1-defined protocol  
0x4000 – User2-defined protocol  
0x8000 – User3-defined protocol  
The rest of bits are reserved.  
Bit mask.  
16+N*20  
18+N*20  
U2  
U2  
Flags  
Bit 0 – if set, the Autobauding is  
enabled;  
Bits 1 ~ 15 are reserved.  
Reserved  
79  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – MSG (0x06 0x01)  
It’s a poll request. Poll a message configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x01  
2
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
1
U1  
U1  
Class ID  
Message ID  
CFG – MSG (0x06 0x01)  
It’s an I/O message. As an input message, the message rate configurations for several  
targets can be put together into one input sentence. As an output message, the message  
only transmits one message rate configuration from one target.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x01  
N*6  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (number of targets) if needed.  
0+N*6  
1+N*6  
2+N*6  
3+N*6  
4+N*6  
5+N*6  
U1  
U1  
U1  
U1  
U1  
U1  
Class ID  
Message ID  
Message rate on I/O Target 0  
Message rate on I/O Target 1  
Message rate on I/O Target 2  
Message rate on I/O Target 3  
CFG – MSG (0x06 0x01)  
It’s an input message. Set message rate configuration for the current target.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x01  
3
See below  
CK_A CK_B  
80  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
1
2
Class ID  
U1  
Message ID  
U1  
Message rate on the current  
target  
81  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – NMEA (0x06 0x17)  
It’s a poll request. Poll the NMEA protocol configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x17  
0
None  
CK_A CK_B  
CFG – NMEA (0x06 0x17)  
It’s an input message. Set the desired NMEA protocol.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x17  
4
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
U1  
Filtering. Disable or not.  
Bit 0 – position filtering  
Bit 1 – masked position filtering  
Bit 2 – time filtering  
Bit 3 – date filtering  
1
2
U1  
NMEA version  
Reserved  
0x23 – version 2.3  
Only version 2.3 is supported.  
U1(2)  
82  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – RATE (0x06 0x08)  
It’s a poll request. Poll the current navigation/measurement rate setting. The module  
will respond the same message defined below (I/O message).  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x08  
0
None  
CK_A CK_B  
CFG – RATE (0x06 0x08)  
It’s an I/O message. It polls or sets the navigation/measurement rate.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x08  
6
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
2
4
U2  
U2  
U2  
Measurement rate (ms).  
Navigation rate (cycles)  
Alignment to reference time  
Number of measurement cycles  
0 – UTC time  
!0 – GPS time  
NOTE:  
Navigation Update Rate (1/s) = 1000 / (NavigationRate * MeausrementRate(ms)).  
83  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – CFG (0x06 0x09)  
It’s a command message. The message will clear, save, and load configurations. The  
command consists of the three masks (clear, save, and load) in each individual bit.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x09  
12  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
U4  
U4  
U4  
Clear configurations  
Load factory defaults to active  
settings. See below for bit  
definitions.  
4
8
Save configurations  
Load configurations  
Save the active settings to  
non-volatile memory. See below  
for bit definitions.  
Load  
configurations  
from  
non-volatile memory to active  
settings. See below for bit  
definitions.  
Bit Definitions  
Bits  
Descriptions  
0
I/O port assignments, protocols, and baud rates  
(referred to UBX-CFG-PRT).  
1
2
3
Message  
configuration  
(referred  
to  
UBX-CFG-MSG and UBX-CFG-NMEA).  
INF message configuration (referred to  
UBX-CFG-INF).  
Navigation  
configuration  
(referred  
UBX-CFG-NAV,  
UBX-CFG-TM, and  
to  
UBX-CFG-DAT,  
UBX-CFG-RATE,  
UBX-CFG-TP).  
4
5
Receiver manager (RXM) configuration (referred  
to UBX-CFG-RXM and UBX-CFG-SBAS).  
Power saving mode configuration (referred to  
UBX-CFG-FXN).  
6 ~ 9  
10  
EKF receiver (dead reckoning).  
Model-specific settings for receiver (e.g.  
84  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX-CFG-ANT)  
Reserved  
11  
12 ~ 15  
16 ~ 31  
Reserved for user applications  
Reserved  
85  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – TP (0x06 0x07)  
It’s a poll request. Poll time pulse information. The module will respond the same  
message defined below (I/O message).  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x07  
0
None  
CK_A CK_B  
CFG – TP (0x06 0x07)  
It’s an I/O message. Poll and set time pulse information.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x07  
20  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
Time interval for time pulse  
(us).  
4
8
U4  
I1  
Length of time pulse (us).  
Status of time pulse  
> 0 - positive  
0 – off  
< 0 – negative  
0 – UTC time  
!0 – GPS time  
9
U1  
Reference time  
10  
12  
14  
16  
U2  
I2  
Reserved  
Delay due to antenna cable (ns)  
RF group delay (ns)  
I2  
I4  
User time function delay (ns)  
86  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – NAV (0x06 0x03)  
It’s a poll request. Poll engine settings for navigation. The module will respond the  
same message defined below (I/O message).  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x03  
0
None  
CK_A CK_B  
CFG – NAV (0x06 0x03)  
It’s an I/O message. Poll and set engine settings for navigation.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x03  
28  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U1  
Kinematic model  
1 – stationary  
2 – pedestrian  
3 – automotive  
4 – sea  
5 – airborne with acceleration <  
1g  
6 – airborne with acceleration <  
2g  
7 – airborne with acceleration <  
4g  
8 ~ 255 – reserved  
1
2
3
U1  
U1  
U1  
Minimum number of SVs for 1 ~ 16  
navigation  
Maximum number of SVs for 1 ~ 16  
navigation  
C/N0: conditional lower limit  
This condition will be applied if  
and only if enough satellites (say  
5) are being tracked and above  
this limit.  
4
5
U1  
U1  
C/N0: absolute lower limit  
A satellite with C/N0 below this  
limit is not used in the navigation  
solution.  
Minimum elevation for SVs  
87  
Download from Www.Somanuals.com. All Manuals Search And Download.  
used in the navigation solution  
DGPS timetag rounding  
6
7
U1  
U1  
U1  
U1  
U2  
1 – enable  
0 – disable  
Timeout  
correction data (s)  
Timeout for  
correction data (s)  
for  
differential  
8
pseudorange  
9
Timeout for carrier phase  
correction data (s)  
10  
Carrier Lock Time (CLT):  
conditional lower limit (ms)  
CLT: absolute lower limit (ms)  
Epochs for DR  
12  
14  
15  
U2  
U1  
U1  
Navigation options  
Bit mask  
0x01  
enable pseudorange  
check  
0x02 – enable Doppler check  
0x04 – enable Delta range check  
0x08  
consistency check  
0x10 enable  
navigation  
enable ALM-EPH  
almanac  
0x20 – reserved  
0x40 – reserved  
0x80 – reserved  
Scaling : 0.1  
16  
18  
20  
22  
24  
26  
27  
U2  
U2  
U2  
U2  
U2  
U1  
U1  
PDOP mask  
TDOP mask  
Scaling : 0.1  
Position accuracy mask (m)  
Time accuracy mask (m)  
Frequency accuracy mask (m/s) Scaling : 0.1  
Static threshold (cm/s)  
Reserved  
0 – disable  
88  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – DAT (0x06 0x06)  
It’s a poll request. Poll datum setting. The module will respond the same message  
defined below (I/O message).  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x06  
0
None  
CK_A CK_B  
CFG – DAT (0x06 0x06)  
It’s an input message. Set the standard datum.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x06  
2
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U2  
Descriptions  
Notes  
Referred to Appendix A  
0
Datum number  
CFG – DAT (0x06 0x06)  
It’s an input message. Set user-defined datum.  
Header  
ID  
Data Length  
Data  
Checksum  
CK_A CK_B  
0xB5 0x62  
0x06 0x06  
44  
See below  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
8
R8  
R8  
R4  
Semi-major axis (m)  
1.0/flattening  
6,300,000.0 ~ 6,500,000.0  
0.0 ~ 500.0  
16  
Offset from the origin – X axis -5000.0 ~ 5000.0  
(m)  
20  
24  
28  
32  
36  
R4  
R4  
R4  
R4  
R4  
Offset from the origin – Y axis -5000.0 ~ 5000.0  
(m)  
Offset from the origin – Z axis -5000.0 ~ 5000.0  
(m)  
Rotation about X axis (milli-arc -20.0 ~ 20.0  
seconds)  
Rotation about Y axis (milli-arc -20.0 ~ 20.0  
seconds)  
Rotation about Z axis(milli-arc -20.0 ~ 20.0  
89  
Download from Www.Somanuals.com. All Manuals Search And Download.  
seconds)  
40  
R4  
Scale change (ppm)  
0.0 ~ 50.0  
CFG – DAT (0x06 0x06)  
It’s an output message. Poll the current datum. If the datum number is –1, the module  
is using the user-defined datum and only the value for semi-major axis is valid and the  
rest of them are not valid.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x06  
52  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
2
U2  
CH[6]  
R8  
Datum number  
Datum name  
ASCII format  
8
Semi-major axis (m)  
1.0/flattening  
6,300,000.0 ~ 6,500,000.0  
0.0 ~ 500.0  
16  
24  
R8  
R4  
Offset from the origin – X axis -5000.0 ~ 5000.0  
(m)  
28  
32  
36  
40  
44  
48  
R4  
R4  
R4  
R4  
R4  
R4  
Offset from the origin – Y axis -5000.0 ~ 5000.0  
(m)  
Offset from the origin – Z axis -5000.0 ~ 5000.0  
(m)  
Rotation about X axis (milli-arc -20.0 ~ 20.0  
seconds)  
Rotation about Y axis (milli-arc -20.0 ~ 20.0  
seconds)  
Rotation about Z axis(milli-arc -20.0 ~ 20.0  
seconds)  
Scale change (ppm)  
0.0 ~ 50.0  
90  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – INF (0x06 0x02)  
It’s a poll request. It’s used to identify the output protocol.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x02  
1
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
Protocol ID  
0 – UBX protocol  
1 – NMEA protocol  
2 – RTCM protocol (used for  
input only)  
3 – RAW protocol  
4 ~ 11 – reserved  
12 – User0-defined protocol  
13 – User1-defined protocol  
14 – User2-defined protocol  
15 – User3-defined protocol  
16 ~ 255 – reserved  
CFG – INF (0x06 0x02)  
It’s an I/O message. It’s used to set/get message configuration. As an input message,  
several message configurations can be put into as one input sentence. But as an output  
message, the sentence only transmits one message configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x02  
N*8  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (number of comm. ports).  
0+N*8 U1 Protocol ID 0 – UBX protocol  
1 – NMEA protocol  
2 – RTCM protocol (used for  
input only)  
3 – RAW protocol  
4 ~ 11 – reserved  
12 – User0-defined protocol  
91  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13 – User1-defined protocol  
14 – User2-defined protocol  
15 – User3-defined protocol  
16 ~ 255 – reserved  
1+N*8  
2+N*8  
4+N*8  
U1  
U2  
U1  
Reserved  
Reserved  
Information message enabled Bit mask.  
(INF class) at I/O target 0 Referred to INF class, such as  
(USART 0)  
INF-ERROR  
and  
INF-WARNING  
5+N*8  
6+N*8  
7+N*8  
U1  
U1  
U1  
Information message enabled Same as above  
(INF class) at I/O target 1  
(USART 1)  
Information message enabled Same as above  
(INF class) at I/O target 2  
(USART 2)  
Information message enabled Same as above  
(INF class) at I/O target 3  
(reserved)  
92  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – RST (0x06 0x04)  
It’s an input message. It’s used to reset receiver or clear backup data structure.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x04  
4
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
U2  
Clear backup data in BBR  
0x0001 – ephemeris  
0x0002 – almanac  
0x0004 – health  
0x0008 – Klobuchar  
0x0010 – position  
0x0020 – clock drift  
0x0040 – oscillation parameter  
0x0080  
UTC correction  
parameters  
0x0100 – RTC  
0x0000 – hot-start  
0x0001 – warm-start  
0xFFFF – cold-start  
2
U1  
Reset  
0x00  
hardware  
reset  
(watchdog)  
0x01 – controlled software reset  
0x02 – controlled software reset  
(GPS only)  
0x08 – controlled GPS stop  
0x09 – controlled GPS start  
3
U1  
Reserved  
93  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – RXM (0x06 0x11)  
It’s a poll request. It’s used to poll RXM configuration. The module responds the  
same message defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x11  
0
None  
CK_A CK_B  
CFG – RXM (0x06 0x11)  
It’s an I/O message. It’s used to set/get RXM configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x11  
2
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
U1  
GPS sensitivity mode  
0 – Normal  
1 – Fast acquisition  
2 – High sensitivity  
> 2 – Reserved  
1
U1  
Power mode  
0 – Continuous tracking mode  
1 – FixNow mode (power saving  
mode)  
> 1 – Reserved  
94  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – ANT (0x06 0x13)  
It’s a poll request. It’s used to poll antenna control settings. The module responds the  
same message defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x13  
0
None  
CK_A CK_B  
CFG – ANT (0x06 0x13)  
It’s an I/O message. It’s used to set/get antenna control settings.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x13  
4
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
2
U2  
U2  
Antenna flag mask  
Antenna pin configuration  
Bit 0 – enable  
0 – Continuous tracking mode  
1 – FixNow mode (power saving  
mode)  
> 1 – Reserved  
95  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – FXN (0x06 0x0E)  
It’s a poll request. It’s used to poll power saving (FixNow) mode configuration. The  
module responds the same message defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x0E  
0
None  
CK_A CK_B  
CFG – FXN (0x06 0x0E)  
It’s a command message. It’s used to configure the FixNow mode. It is enabled by the  
CFG-RXM message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x0E  
36  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
FixNow mode configuration  
Bit mask  
0x02 – set: Sleep state  
0x04 – reserved (never set this  
bit)  
0x08  
absolute alignment  
(on/off time)  
0x10 – use on/off time  
the rest of bits – not set  
4
U4  
U4  
U4  
U4  
U4  
U4  
Last fix timeout (ms)  
Sleep time (ms)  
8
After a last fix timeout  
12  
16  
20  
24  
Last reset timeout (ms)  
Sleep time (ms)  
After a last reset timeout  
Start with first fix  
On time (ms)  
Sleep time (ms)  
After a normal on time (may  
vary because of data download)  
28  
32  
U4  
U4  
Reserved  
Base TOW (ms)  
TO which “On time” and  
corresponding “Sleep time” are  
aligned if ABSOLUTE_ALIGN  
is set.  
96  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – SBAS (0x06 0x16)  
It’s a command message. It’s used to configure SBAS systems, such as WAAS,  
EGNOS, and MSAS. More information about SBAS services is referred to document  
RTCA/DO-229C (www.rtca.org).  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x16  
8
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U1  
SBAS mode.  
Bit mask  
Bit 0 – 1: SBAS enabled; 0:  
SBAS disabled  
Bit 1 – SBAS testbed; 1: use data  
anyhow; 0: ignore data when in  
test mode (SBAS Msg 0)  
Bits 2-7 – reserved  
1
2
U1  
U1  
SBAS usage  
Bit mask  
Bit 0 – use ranges for navigation  
solution  
Bit 1 – use differential correction  
Bit 2 – use integrity information  
Maximum number of channels 0 ~ 3  
for searching SBAS satellites  
Reserved  
3
4
U1  
U4  
SBAS  
PRN  
numbers  
in All bits are set to 0 – auto-scan  
(searching all available PRNs)  
Bit 0 – PRN 120  
searching channels  
Bit 1 – PRN 121  
….  
Bit 18 – PRN 138  
Bits 19-31 – reserved (set to 0)  
97  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – TM (0x06 0x10)  
It’s a poll request. It’s used to poll time mark configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x10  
0
None  
CK_A CK_B  
CFG – TM (0x06 0x10)  
It’s an I/O message. It’s used to set/get time mark configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x10  
12  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
U4  
Time mark input source  
EXTINT 0 (31)  
EXTINT 1 (30)  
EXTINT 2 (29)  
4
8
U4  
U4  
Rate of time mark task (ms)  
Flags for time mark task  
Bit mask  
Bit 0 – 0: time mark disabled; 1:  
time mark enabled  
Bit 1 – 0: time mark on rising  
edge; 1: time mark on falling  
edge  
Bit 2 – 0: based on GPS time; 1:  
based on UTC time  
98  
Download from Www.Somanuals.com. All Manuals Search And Download.  
CFG – EKF (0x06 0x12)  
It’s a poll request. It’s used to poll EKF configuration. The module responds the same  
message defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x12  
0
None  
CK_A CK_B  
CFG – EKF (0x06 0x12)  
It’s an I/O message. It’s used to set/get EKF configuration.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x06 0x12  
16  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U1  
EKF status  
1 – disabled  
0 – enabled  
1
U1  
Flags  
Bit 0 – reserved (always 0)  
Bit clear temperature  
1
compensation table  
Bit 2 – clear stored calibration  
Bit 3 – reserved (always 0)  
Bit 4 – set nominal tacho pulses  
as defined in Field “Nominal  
pulses per kilometer”  
Bit 5 – set nominal gyro values  
as defined in Fields “Nominal  
gyro zero point output” and  
“Nominal gyro sensitivity”  
Bit 6 – set temperature table  
configuration as defined in Fields  
“Maximum allowable RMS  
threshold” and  
The time  
interval for saving temperature  
table to flash”  
Bit 7 – set direction pin and gyro  
sense meaning as defined in  
Field “Inverse_flags”  
99  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2
3
U1  
U1  
Reserved  
Inverse_flags  
Bit  
0
invert meaning of  
direction pin; 0: High=Forwards;  
1: High=Backwards  
Bit 1 – invert meaning of gyro  
rotation sense; 0: clockwise  
positive; 1: counterclockwise  
positive  
4
8
U4  
U2  
U2  
Reserved  
Always 0  
Nominal pulses per kilometer  
1100 ~ 45000  
10  
Nominal gyro zero point output 2000 ~ 3000  
(mV)  
12  
13  
U1  
U1  
Nominal  
gyro  
sensitivity 20 ~ 40  
(mV/(deg/s))  
Maximum  
allowable  
RMS For zero velocity temperature  
compensation: 1 ~ 10  
threshold (mV)  
Scaling: 0.1  
14  
U2  
The time interval for saving Minimum: 9  
temperature table to flash (s)  
100  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class INF  
Basically, the INF class is an output class. It outputs strings with a printf-style call.  
INF – ERROR (0x04 0x00)  
It outputs an ASCII string to indicate error message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x04 0x00  
N*1  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (variable length).  
0+N*1 U1 ASCII character  
101  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INF – WARNING (0x04 0x01)  
It outputs an ASCII string to indicate warning message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x04 0x01  
N*1  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (variable length).  
0+N*1 U1 ASCII character  
102  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INF – NOTICE (0x04 0x02)  
It outputs an ASCII string to transmit informational contents.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x04 0x02  
N*1  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (variable length).  
0+N*1 U1 ASCII character  
103  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INF – TEST (0x04 0x03)  
It outputs an ASCII string to indicate test message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x04 0x03  
N*1  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (variable length).  
0+N*1 U1 ASCII character  
104  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INF – DEBUG (0x04 0x04)  
It outputs an ASCII string to indicate debug message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x04 0x04  
N*1  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (variable length).  
0+N*1 U1 ASCII character  
105  
Download from Www.Somanuals.com. All Manuals Search And Download.  
INF – USER (0x04 0x07)  
It outputs an ASCII string to indicate user output message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x04 0x07  
N*1  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated N times (variable length).  
0+N*1 U1 ASCII character  
106  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class MON  
This message is used to transmit GPS receiver status, such as CPU status, I/O status,  
etc..  
MON – SCHD (0x0A 0x01)  
It periodically polls the status of system scheduler.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0A 0x01  
24  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
U4  
U4  
U4  
U2  
Status: indicating which tasks Bit mask  
have run  
4
8
Status: indicating which tasks Bit mask  
are scheduled to run  
Status: indicating which tasks Bit mask  
are overrun  
12  
16  
Status: indicating which task IDs Bit mask  
have a registered task function  
Number of bytes used for  
system stack (bytes)  
18  
20  
U2  
U2  
Stack size in bytes  
CPU idle time in the scale of  
1/1000  
22  
23  
U1  
U1  
Number of fully used slots in the  
last 100  
Number of partly used slots in  
the last 100  
107  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MON – IO (0x0A 0x02)  
It periodically polls the I/O status.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0A 0x02  
80  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
The following data will be repeated four times (N = 4).  
0+N*20  
4+N*20  
8+N*20  
10+N*20  
12+N*20  
14+N*20  
U4  
U4  
U2  
U2  
U2  
U2  
Number of bytes which are  
received (bytes)  
Number of bytes which are sent  
(bytes)  
Number of 100 ms slots which  
have overrun errors  
Number of 100 ms slots which  
have framing errors  
Number of 100 ms slots which  
have overrun errors  
Number of 100 ms slots which  
have break conditions  
Flag  
16+N*20  
17+N*20  
18+N*20  
U1  
U1  
U2  
Indicating that receiver is busy  
Indicating that transmitter is busy  
Flag  
Reserved  
108  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MON – MAGPP (0x0A 0x06)  
It periodically polls message parse and process status.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0A 0x06  
144  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U2[16]  
U2[16]  
U2[16]  
U2[16]  
U4[4]  
Number of successful parsed  
message for each protocol on  
Target 0  
32  
64  
Number of successful parsed  
message for each protocol on  
Target 1  
Number of successful parsed  
message for each protocol on  
Target 2  
96  
Number of successful parsed  
message for each protocol on  
Target 3  
128  
Number of skipped bytes for  
each target  
109  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MON – RXBUF (0x0A 0x07)  
It periodically polls the status of receiver buffer.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0A 0x07  
16  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U2[4]  
U1[4]  
U1[4]  
Number of pending bytes in  
receiver buffer on each target  
(bytes)  
8
Maximum usage receiver buffer  
for the last system-monitoring  
period of each target  
12  
Maximum  
current  
usage  
receiver buffer for each target  
110  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MON – TXBUF (0x0A 0x08)  
It periodically polls the status of transmitter buffer.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0A 0x08  
20  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U2[4]  
Number of pending bytes in  
receiver buffer on each target  
(bytes)  
8
U1[4]  
Maximum usage receiver buffer  
for the last system-monitoring  
period of each target  
12  
16  
U1[4]  
U1  
Maximum  
current  
usage  
receiver buffer for each target  
Maximum usage receiver buffer  
for the last system-monitoring  
period of all targets  
17  
18  
U1  
U1  
Maximum  
current  
usage  
receiver buffer for all targets  
Error flags  
Bit mask  
Bits 0 ~ 3 – buffer limit of  
corresponding target  
Bits 4 ~ 6 – reserved  
Bit 7 – allocation error (Tx buffer  
full)  
19  
U1  
Reserved  
111  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MON – VER (0x0A 0x04)  
It is used to poll the hardware/software version.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0A 0x04  
40+N*30  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
CH[30]  
CH[10]  
Software version  
Hardware version  
30  
The following data will be repeated N times.  
40+N*30 CH[30] Extension package version  
112  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class NAV  
The messages in this class transmit navigation data, status flags, and accuracy  
information.  
NAV – POSECEF (0x01 0x01)  
It periodically polls the receiver’s position in the ECEF frame.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x01  
20  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
X coordinate (cm)  
Y coordinate (cm)  
Z coordinate (cm)  
Position accuracy (cm)  
In the ECEF frame  
In the ECEF frame  
In the ECEF frame  
8
I4  
12  
16  
I4  
U4  
113  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – POSLLH (0x01 0x02)  
It periodically polls the receiver’s position in the local geodetic frame.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x02  
28  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
Longitude (degrees)  
In the local geodetic frame  
Scaling: 1E-07  
8
I4  
Latitude (degrees)  
In the local geodetic frame  
Scaling: 1E-07  
12  
16  
I4  
I4  
Height above ellipsoid (mm)  
Height above mean see level  
(mm)  
In the local geodetic frame  
20  
24  
U4  
U4  
Horizontal accuracy (mm)  
Vertical accuracy (mm)  
114  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – POSUTM (0x01 0x08)  
It periodically polls the receiver’s position in the UTM frame.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x08  
18  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
I4  
I4  
I1  
I1  
GPS time of week (ms)  
Easting component (cm)  
Northing component (cm)  
Altitude (cm)  
In the UTM frame  
In the UTM frame  
In the UTM frame  
8
12  
16  
17  
UTM zone number  
Hemisphere sector  
0 – north  
1 – south  
NOTE: 1. Doesnt output zone characters (i.e. northing element of a zone  
description).  
2. Doesnt support the irregularities of UTM grids in the areas of North Pole and  
Scandinavian.  
115  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – DOP (0x01 0x04)  
It periodically polls the values of DOPs.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x04  
18  
See below  
CK_A CK_B  
Data  
Descriptions  
GPS time of week (ms)  
GDOP  
Offset bytes  
Format  
Notes  
0
4
U4  
U2  
U2  
U2  
U2  
U2  
U2  
U2  
Geometric DOP  
Positional DOP  
Time DOP  
6
PDOP  
8
TDOP  
10  
12  
14  
16  
VDOP  
Vertical DOP  
Horizontal DOP  
Northing DOP  
Easting DOP  
HDOP  
NDOP  
EDOP  
NOTE: All have Scaling 0.01.  
116  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – STATUS (0x01 0x03)  
It periodically polls navigation status.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x03  
16  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
U1  
GPS time of week (ms)  
Navigation modes  
0x00 – no fix  
0x01 – dead reckoning  
0x02 – 2D fix  
0x03 – 3D fix  
0x04 – GPS + dead reckoning  
0x05 ~ 0xFF – reserved  
0x01 – GPS fix ok (under DOP  
and accuracy masks)  
5
U1  
Flags  
0x02 – DGPS used  
0x04 – week number valid  
0x08 – time of week valid  
the rest of them – reserved  
Bits[1:0] – DGPS input status  
00 – none  
6
U1  
Differential status  
01 – PR+PRR correction  
10 – PR+PRR+CP correction  
11 – high accuracy PR+PRR+CP  
correction  
the rest of bits – reserved  
7
8
U1  
U4  
U4  
Reserved  
Time to first fix (TTFF)  
Millisecond since startup/reset  
Millisecond time tag  
12  
117  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – SOL (0x01 0x06)  
It periodically polls the information about navigation solution.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x06  
52  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
Remainder of rounded GPS time -500000 ~ 500000  
of week relative to GPS  
millisecond time of week (ns)  
GPS week  
8
I2  
10  
U1  
Navigation mode  
0x00 – no fix  
0x01 – dead reckoning  
0x02 – 2D fix  
0x03 – 3D fix  
0x04 – GPS + dead reckoning  
0x05 ~ 0xFF – reserved  
0x01 – GPS fix ok (under DOP  
and accuracy masks)  
0x02 – DGPS used  
11  
U1  
Flags  
0x04 – week number valid  
0x08 – time of week valid  
the rest of them – reserved  
In the ECEF frame  
12  
16  
20  
24  
28  
32  
36  
40  
44  
46  
47  
I4  
I4  
X coordinate (cm)  
Y coordinate (cm)  
Z coordinate (cm)  
3D position accuracy (cm)  
X velocity (cm/s)  
Y velocity (cm/s)  
Z velocity (cm/s)  
Speed accuracy (cm/s)  
PDOP  
In the ECEF frame  
I4  
In the ECEF frame  
U4  
I4  
In the ECEF frame  
In the ECEF frame  
In the ECEF frame  
I4  
I4  
U4  
U2  
U1  
U1  
Scaling: 0.01  
Reserved  
Number of SVs used in the  
navigation solution  
Reserved  
48  
U4  
118  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – VELECEF (0x01 0x11)  
It periodically polls velocity solution in the ECEF frame.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x11  
20  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
X velocity (cm/s)  
Y velocity (cm/s)  
Z velocity (cm/s)  
Speed accuracy (cm/s)  
In the ECEF frame  
In the ECEF frame  
In the ECEF frame  
8
I4  
12  
16  
I4  
U4  
119  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – VELNED (0x01 0x12)  
It periodically polls velocity solution in the NED frame.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x12  
36  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
North velocity (cm/s)  
East velocity (cm/s)  
Down velocity (cm/s)  
Speed (cm/s)  
In the NED frame  
In the NED frame  
In the NED frame  
3D  
8
I4  
12  
16  
20  
24  
I4  
U4  
U4  
I4  
Ground speed (cm/s)  
Heading (degrees)  
2D  
2D  
Scaling: 1E-05  
28  
32  
U4  
U4  
Speed accuracy (cm/s)  
Course/Heading  
(degrees(  
accuracy Scaling: 1E-05  
120  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – TIMEGPS (0x01 0x20)  
It periodically polls the information about GPS time.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x20  
16  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
Remainder of rounded GPS time -500000 ~ 500000  
of week relative to GPS  
millisecond time of week (ns)  
GPS week  
8
I2  
I1  
10  
11  
Leap seconds (s)  
Flags  
GPS – UTC  
U1  
0x01 – valid time of week  
0x02 – valid week number  
0x04 – valid UTC  
12  
U4  
Time accuracy (ns)  
121  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – TIMEUTC (0x01 0x21)  
It periodically polls the information about UTC time.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x21  
20  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
U4  
U4  
I4  
GPS time of week (ms)  
Time accuracy (ns)  
4
8
Nanoseconds of second (UTC) -500000000 ~ 500000000  
12  
14  
15  
16  
17  
18  
19  
U2  
U1  
U1  
U1  
U1  
U1  
U1  
Year (UTC)  
Month (UTC)  
Day (UTC)  
Hour (UTC)  
Minute (UTC)  
Second (UTC)  
Flags  
1999 ~ 2099  
0 ~ 23  
0 ~ 59  
0 ~ 59  
0x01 – valid time of week  
0x02 – valid week number  
0x04 – valid UTC  
122  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – CLOCK (0x01 0x22)  
It periodically polls receiver clock information.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x22  
20  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
Clock bias (ns)  
8
I4  
Clock drift (ns/s)  
12  
16  
U4  
U4  
Time accuracy (ns)  
Frequency accuracy (ps/s)  
123  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – SVINFO (0x01 0x30)  
It periodically polls the information about UTC time.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x30  
8+N*12  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
5
6
U4  
U1  
U1  
U2  
GPS time of week (ms)  
Number of channels  
Reserved  
1 ~ 16  
0 ~ 15  
Reserved  
The following data will be repeated N times (number of channels).  
8+N*12  
9+N*12  
10+N*12  
U1  
U1  
U1  
Channel number  
PRN number (SV ID)  
Flags for the above specified SV Bit mask  
0x01 – used for navigation  
0x02 – differential correction  
data available  
0x04 – ephemeris or almanac  
available  
0x08 – ephemeris available  
0x10 – unhealth status (shall not  
be used)  
0x20,0x40,0x80 – reserved  
11+N*12  
I1  
Signal quality indicator for the 0 – idle  
above specified SV  
1,2 – searching  
3
– signal detected but unused  
4 – code lock  
5,6 – code and carrier locks  
7 – code and carrier locks,  
receiving navigation message  
data (50 bps)  
12+N*12  
13+N*12  
14+N*12  
16+N*12  
U1  
I1  
CN0 (dBHz)  
Carrier to noise ratio  
Integer value  
Elevation (degrees)  
Azimuth (degrees)  
Pseudo range residual (cm)  
I2  
Integer value  
I4  
124  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – DGPS (0x01 0x31)  
It periodically polls DGPS correction data that are used in the navigation solution.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x31  
16+N*12  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
I4  
GPS time of week (ms)  
Age of newest correction data  
(ms)  
8
I2  
I2  
DGPS reference station ID  
Health status for DGPS station  
Number of channels (correction  
data is following)  
10  
12  
U1  
13  
U1  
DGPS data type  
00 – none  
01 – PR+PRR correction  
10 – PR+PRR+CP correction  
11 – high accuracy PR+PRR+CP  
correction  
14  
U2  
Reserved  
The following data will be repeated N times (number of channels).  
16+N*12  
17+N*12  
U1  
U1  
PRN number (SV ID)  
Flags  
Bit mask  
0x01 ~ 0x08 – channel number  
0x10 – DGPS used  
0x20 ~ 0x80 – reserved  
18+N*12  
U2  
Age of the latest correction data  
(ms)  
20+N*12  
24+N*12  
R4  
R4  
Pseudo range correction (m)  
Pseudo range rate correction  
(m/s)  
125  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NAV – SBAS (0x01 0x32)  
It periodically polls the status of SBAS.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x01 0x32  
12+N*12  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
U1  
GPS time of week (ms)  
PRN number for SBAS, e.g.  
WAAS, EGNOS.  
5
6
U1  
I1  
SBAS mode  
0 – disabled  
1 – enabled integrity  
2 – enabled test mode  
-1 – unknown  
0 – WAAS  
SBAS type  
1 – EGNOS  
2 – MSAS  
16 – GPS  
7
U1  
SBAS services  
Bit 0 – ranging  
Bit 1 – corrections  
Bit 2 – integrity  
Bit 3 – test mode  
8
9
U1  
Number of SV data following  
Reserved  
U1[3]  
The following data will be repeated N times (number of SVs).  
12+N*12  
13+N*12  
14+N*12  
15+N*12  
U1  
U1  
U1  
U1  
PRN number (SV ID)  
Flags  
Monitoring status  
SBAS type  
-1 – unknown  
0 – WAAS  
1 – EGNOS  
2 – MSAS  
16 – GPS  
16+N*12  
U1  
SBAS services  
Bit 0 – ranging  
Bit 1 – corrections  
Bit 2 – integrity  
Bit 3 – test mode  
126  
Download from Www.Somanuals.com. All Manuals Search And Download.  
17+N*12  
18+N*12  
20+N*12  
22+N*12  
U1  
I2  
Reserved  
Pseudo range correction (cm)  
Reserved  
I2  
I2  
Ionosphere correction (cm)  
127  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class RXM  
This class transmits the status of receiver manager and received raw data, e.g.  
pseudorange and carrier phase measurements, ephemeris, and almanac data.  
RXM – RAW (0x02 0x10)  
It periodically outputs raw measurement data. It defines all the necessary data for a  
RINEX file.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x10  
8+N*24  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
6
7
I4  
I2  
GPS time of week (ms)  
GPS week number  
Number of satellites following  
Reserved  
Receiver time  
Receiver time  
U1  
U1  
The following data will be repeated N times (number of satellites).  
8+N*24  
R8  
Carrier phase measurement L1 frequency  
(cycles) CP  
Pseudorange measurement (m) PR  
16+N*24  
24+N*24  
28+N*24  
29+N*24  
R8  
R4  
U1  
I1  
Doppler measurement (Hz)  
PRN number  
DO  
Measurement quality indicator >= 4 – PR+DO  
>=5 – PR+DO+CP  
<6 – likely loss of carrier lock in  
the previous interval  
Carrier to noise ratio  
RINEX definition  
30+N*24  
31+N*24  
I1  
CN0 (dBHz)  
U1  
Indicator for loss of lock  
128  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RXM – SFRB (0x02 0x11)  
It periodically outputs the data in the subframe of navigation message.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x11  
42  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U1  
U1  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
Channel number  
1
PRN number  
WORD0  
WORD1  
WORD2  
WORD3  
WORD4  
WORD5  
WORD6  
WORD7  
WORD8  
WORD9  
2
6
10  
14  
18  
22  
26  
30  
34  
38  
NOTE: For GPS satellites, each word contains the parity checked subframe data in  
24 bits (Bits 23 ~ 0) and the rest of 8 bits in each word are undefined. The higher  
order bits receive data first. For more information about GPS navigation message,  
please refer to the documentation ICD-GPS-200.  
For SBAS satellites, the first 7 words (WORD0 ~ WORD6) contain 224 bits of data  
for the 250 bit message block. The rest of 26-bit data are contained in Bits 25 ~ 0 of  
WORD7, where Bit 25 is last bit of the data. For more information about SBAS,  
please refer to RTCA/DO-229C (MOPS).  
129  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RXM – SVSI (0x02 0x20)  
It periodically polls the information of SV status.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x20  
8+N*6  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
6
7
I4  
I2  
GPS time of week (ms)  
GPS week number  
U1  
U1  
Number of observable satellites  
Number of satellite data  
following  
The following data will be repeated N times (number of satellites).  
8+N*6  
9+N*6  
U1  
U1  
PRN number  
Flags  
0x01 – health SV  
0x02 – ephemeris valid  
0x04 – almanac valid  
10+N*6  
12+N*6  
13+N*6  
I2  
I1  
Azimuth (degrees)  
Elevation (degrees)  
U1  
Age of almanac (ALM) and Bits 0 ~ 3 – age of ALM in days  
ephemeris (EPH)  
offset by 4,  
Bits 4 ~ 7 – age of EPH in hours  
offset by 4.  
i.e. the reference time may be in  
the future:  
age_of_alm = (Age & 0x0f) – 4  
age_of_eph = ((Age & 0xf0) >>  
4) - 4  
130  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RXM – ALM (0x02 0x30)  
It’s an input request for polling almanac data. The receiver responds with all available  
(32) RXM-ALM messages defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x30  
0
None  
CK_A CK_B  
RXM – ALM (0x02 0x30)  
It’s an input request for polling almanac data of one specific SV. The receiver  
responds with a RXM-ALM message defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x30  
1
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
PRN number  
1 ~ 32  
RXM – ALM (0x02 0x30)  
It’s an output message that carries almanac data of one specific SV.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x30  
40  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
PRN number  
1 ~ 32  
1
GPS week number  
WORD0  
2
6
WORD1  
10  
14  
18  
22  
26  
30  
WORD2  
WORD3  
WORD4  
WORD5  
WORD6  
WORD7  
NOTE: 1. If the value of week number is 0, the almanac data in WORDs (0 ~ 7) are  
131  
Download from Www.Somanuals.com. All Manuals Search And Download.  
not valid.  
2. WORD0 ~ WORD7 contain the data following the Hand-Over Word (HOW) in the  
navigation message. The data are from the sub-frame 4 of Pages 1 ~ 24 and the  
sub-frame 5 of Pages 2 ~ 10. More information about almanac data structure is  
referred to ICD-GPS-200.  
3. WORD0 ~ WORD7 dont include the data of the parity bits. Hence, Bits 0 ~ 23 is  
used to locate the 24 bits of the data and Bits 24 ~ 31 are the sign-extension of the  
data.  
132  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RXM – EPH (0x02 0x31)  
It’s an input request for polling ephemeris data. The receiver responds with all  
available RXM-EPH messages defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x31  
0
None  
CK_A CK_B  
RXM – EPH (0x02 0x31)  
It’s an input request for polling ephemeris data of one specific SV. The receiver  
responds with a RXM-EPH message defined below.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x31  
1
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
U1  
Descriptions  
Notes  
0
PRN number  
1 ~ 32  
RXM – EPH (0x02 0x31)  
It’s an output message that carries almanac data of one specific SV.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x31  
8+n*96  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
PRN number  
The following data are for this  
specific satellite  
4
U4  
Hand-Over Word (HOW) of the 0 – invalid ephemeris data  
first sub-frame  
The following data will be repeated n times (n: number of valid ephemerides).  
8+n*96  
12+n*96  
16+n*96  
20+n*96  
24+n*96  
28+n*96  
32+n*96  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
Sub-frame 1 – WORD0  
Sub-frame 1 – WORD1  
Sub-frame 1 – WROD2  
Sub-frame 1 – WORD3  
Sub-frame 1 – WORD4  
Sub-frame 1 – WORD5  
Sub-frame 1 – WORD6  
133  
Download from Www.Somanuals.com. All Manuals Search And Download.  
36+n*96  
40+n*96  
44+n*96  
48+n*96  
52+n*96  
56+n*96  
60+n*96  
64+n*96  
68+n*96  
72+n*96  
76+n*96  
80+n*96  
84+n*96  
88+n*96  
92+n*96  
96+n*96  
100+n*96  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
U4  
Sub-frame 1 – WORD7  
Sub-frame 2 – WORD0  
Sub-frame 2 – WORD1  
Sub-frame 2 – WORD2  
Sub-frame 2 – WORD3  
Sub-frame 2 – WORD4  
Sub-frame 2 – WORD5  
Sub-frame 2 – WORD6  
Sub-frame 2 – WORD7  
Sub-frame 3 – WORD0  
Sub-frame 3 – WORD1  
Sub-frame 3 – WORD2  
Sub-frame 3 – WORD3  
Sub-frame 3 – WORD4  
Sub-frame 3 – WORD5  
Sub-frame 3 – WORD6  
Sub-frame 3 – WORD7  
NOTE: 1. Sub-frame 1 – WORD0 ~ Sub-frame 3 – WORD7 contain the data  
following the Hand-Over Word (HOW) in the navigation message. The data are from  
the sub-frame 1 to sub-frame 3. More information about ephemeris data structure is  
referred to ICD-GPS-200.  
2. Sub-frame 1 – WORD0 ~ sub-frame 3 – WORD7 dont include the data of the parity  
bits. Hence, Bits 0 ~ 23 is used to locate the 24 bits of the data and Bits 24 ~ 31 are  
the sign-extension of the data.  
134  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RXM – POSREQ (0x02 0x40)  
It’s an input message for requesting a position fix in the FixNow mode (power saving  
mode).  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x02 0x40  
0
None  
CK_A CK_B  
135  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class TIM  
This class transmits the information of time pulse and time mark.  
TIM – TM (0x0D 0x02)  
It periodically polls the time mark data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0D 0x02  
28  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
U4  
U4  
Counter difference since last  
polled time  
4
8
Time difference since last polled  
time (ms)  
Sub-millisecond part of “time  
difference” (ms/2^32)  
Quantization (ms/2^32)  
GPS time of week (ms)  
Sub-millisecond part of “GPS  
time of week” (ms/2^32)  
GPS week number  
12  
16  
20  
U4  
U4  
U4  
Time pulse  
Time pulse  
24  
26  
U2  
U1  
Flags  
Bit 0 – 0: GPS time base; 1: UTC  
time base  
Bit 1 – 0: UTC not available; 1:  
UTC available  
Bit 2 – 0: time not available; 1:  
time available  
27  
U1  
Reserved  
136  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TIM – TP (0x0D 0x01)  
It periodically polls the time pulse data.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x0D 0x01  
16  
See below  
CK_A CK_B  
Data  
Offset bytes  
Format  
Descriptions  
Notes  
0
U4  
U4  
I4  
GPS time of week: time pulse  
(ms)  
4
8
Sub-millisecond part of “GPS  
time of week” (ms/2^32)  
Quantization error of time pulse  
(ps)  
12  
14  
U2  
U1  
GPS week number  
Flags  
Time pulse  
Bit 0 – 0: GPS time base; 1: UTC  
time base  
Bit 1 – 0: UTC not available; 1:  
UTC available  
15  
U1  
Reserved  
137  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UBX Class UPD  
This class is used to update the firmware.  
UPD – DOWNL (0x09 0x01)  
It is an I/O message. It is used to download data to memory.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x09 0x01  
8+N*1  
See below  
CK_A CK_B  
Data  
Descriptions  
Offset bytes  
Format  
Notes  
0
4
U4  
U4  
Download starting address  
Flags  
0 – download  
1 – download ACK  
2 – download NACK  
The following data will be repeated N times (depending on the length of data).  
8+N*1 U1 Data  
NOTE: A block of data may be downloaded to memory by implementing several  
UPD-DOWNL messages. The starting addresses are increased for the following  
UPD-DOWNL messages based on the already transmitted bytes.  
138  
Download from Www.Somanuals.com. All Manuals Search And Download.  
UPD – UPLOAD (0x09 0x02)  
It is an I/O message. It is used to upload data from memory.  
Header  
ID  
Data Length  
Data  
Checksum  
0xB5 0x62  
0x09 0x02  
12+N*1  
See below  
CK_A CK_B  
Data  
Descriptions  
Upload starting address  
Data size  
Offset bytes  
Format  
Notes  
0
4
8
U4  
U4  
U4  
Flags  
0 – upload  
1 – upload ACK  
2 – upload NACK  
The following data will be repeated N times (depending on the length of data).  
12+N*1 U1 Data  
NOTE: A block of data may be uploaded from memory by implementing several  
UPD-UPLOAD messages. The starting addresses are increased for the following  
UPD-UPLOAD messages based on the already received bytes.  
139  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chapter 8 Troubleshooting  
The following table lists questions/problems that you might encounter for operating  
the module and possible suggested resolutions for the questions/problems. If you have  
further questions/problems that cannot be resolved in this table, please feel free to  
contact us.  
Questions/Problems  
Suggestions  
1. Nothing is output from the module after 1. Check the port settings, such as baud  
power on.  
rate, comm. port number, etc. ;  
2. Check the cable connection between  
the module and running host platform  
(whether the cable is firmly connected  
or not).  
2. The performance of the module is not as 1. The observability of the antenna is not  
good as one expects.  
good. Move the antenna to open space  
or remove the blockages.  
2. Check the antenna matching problem.  
For the active antennas, the antenna  
gain cannot exceed 25 dB.  
3. The module doesn’t output the desired 1. Check the module whether the desired  
messages.  
messages are activated or not.  
2. Check the port setting whether the  
baud rate is sufficient or not.  
4. Comm. port numbers are not shown in All the available comm. ports for a  
the list.  
computer are listed in the table. If you can  
not select the desired one, make sure the  
comm. port is not used by other  
application.  
5. The variation of position is 1. Check the observability of the antenna.  
significant.  
Make sure the antenna has an open  
space view.  
2. Check the constellation of the  
observable GPS satellites (i.e. the  
values of DOPs). Usually, the higher  
the values of DOPs, the worse the  
position accuracy.  
140  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6. The estimated positions have steadily Make sure the estimated position and  
expressed about a few meters or up to a reference position are expressed in the  
few hundred meters off the reference same coordinate frame. The default datum  
position.  
of the module is WGS 84.  
7. The estimated position has a few The module may execute almanac  
kilometer away from the reference navigation.  
position.  
8. The module doesn’t perform well in A back-up battery is needed to support the  
TTFFs of warm-start and hot-start.  
running of RTC and Battery backed-up  
RAM (BBR). The update position,  
ephemeris, and almanac can be retrieved  
from BBR or flash memory.  
9. The module doesn’t perform the last Save the configuration settings to BBR,  
configuration settings. which needs backed-up battery  
supported, or flash memory.  
a
Table 8.1 Troubleshooting.  
141  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix A Geodetic ID: Coordinate Datum  
Rotation  
and Scale  
(See  
Ellipsoid  
Index  
Name  
Acronym DX (m) DY(m) DZ (m) Index (See  
below)  
below)  
World Geodetic System -  
84  
0
1
2
3
WGS 84  
WGS 72  
ETH 90  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
4.5  
4.0  
0
23  
8
0
1
0
0
World Geodetic System -  
72  
Earth-90 - GLONASS  
Coordinate system  
Adindan - Mean Solution  
(Ethiopia & Sudan)  
ADI-M -166.0 -15.0 204.0  
7
4
Adindan - Burkina Faso  
Adindan - Cameroon  
Adindan - Ethiopia  
Adindan - Mali  
ADI-E  
ADI-F  
-118.0 -14.0 218.0  
-134.0 -2.0 210.0  
7
7
0
0
0
0
0
0
0
5
6
ADI-A -165.0 -11.0 206.0  
ADI-C -123.0 -20.0 220.0  
ADI-D -128.0 -18.0 224.0  
ADI-B -161.0 -14.0 205.0  
7
7
7
8
Adindan - Senegal  
Adindan - Sudan  
7
9
7
10  
Afgooye - Somalia  
AFG  
-43.0 -163.0 45.0  
21  
ARC 1950 - Mean  
(Botswana, Lesotho,  
Malawi, Swaziland,  
Zaire, Zambia,  
11  
ARF-M -143.0 -90.0 -294.0  
7
0
Zimbabwe)  
12  
13  
14  
15  
16  
17  
ARC 1950 - Botswana  
ARC 1950 - Burundi  
ARC 1950 - Lesotho  
ARC 1950 - Malawi  
ARC 1950 - Swaziland  
ARC 1950 - Zaire  
ARF-A -138.0 -105.0 -289.0  
ARF-H -153.0 -5.0 -292.0  
ARF-B -125.0 -108.0 -295.0  
ARF-C -161.0 -73.0 -317.0  
ARF-D -134.0 -105.0 -295.0  
ARF-E -169.0 -19.0 -278.0  
7
7
7
7
7
7
0
0
0
0
0
0
142  
Download from Www.Somanuals.com. All Manuals Search And Download.  
18  
19  
ARC 1950 - Zambia  
ARF-F -147.0 -74.0 -283.0  
ARF-G -142.0 -96.0 -293.0  
7
7
0
0
ARC 1950 - Zimbabwe  
ARC 1960 - Mean  
(Kenya, Tanzania)  
20  
21  
ARS  
PHA  
-160.0 -6.0 -302.0  
-79.0 -129.0 145.0  
7
7
0
0
Ayabelle Lighthouse -  
Djibouti  
22  
23  
24  
25  
26  
27  
Bissau - Guinea-Bissau  
Cape - South Africa  
Carthage - Tunisia  
Dabola - Guinea  
Leigon - Ghana  
BID  
CAP  
CGE  
DAL  
LEH  
LIB  
-173.0 253.0  
27.0  
20  
7
0
0
0
0
0
0
-136.0 -108.0 -292.0  
-263.0  
-83.0  
6.0  
431.0  
124.0  
364.0  
88.0  
7
37.0  
7
-130.0 29.0  
-90.0 40.0  
7
Liberia 1964  
7
Massawa - Eritrea  
(Ethiopia)  
28  
MAS  
639.0 405.0  
60.0  
47.0  
5
0
29  
30  
31  
32  
Merchich - Morocco  
Minna - Cameroon  
Minna - Nigeria  
MER  
MIN-A  
MIN-B  
MPO  
31.0  
146.0  
7
7
7
7
0
0
0
0
-81.0 -84.0 115.0  
-92.0 -93.0 122.0  
-74.0 -130.0 42.0  
M'Poraloko - Gabon  
North Sahara 1959 -  
Algeria  
33  
34  
35  
36  
NSD  
OEG  
PTB  
PTN  
-186.0 -93.0 310.0  
-130.0 110.0 -13.0  
-106.0 -129.0 165.0  
-148.0 51.0 -291.0  
7
17  
7
0
0
0
0
Old Egyptian 1907 -  
Egypt  
Point 58 - Mean Solution  
(Burkina Faso & Niger)  
Pointe Noire 1948 -  
Congo  
7
37  
38  
Schwarzeck - Namibia  
Voirol 1960 - Algeria  
SCK  
VOR  
616.0  
97.0 -251.0  
5
7
0
0
-123.0 -206.0 219.0  
Ain El Abd 1970 -  
Bahrain Island  
39  
40  
AIN-A -150.0 -250.0 -1.0  
20  
20  
0
0
Ain El Abd 1970 - Saudi  
Arabia  
AIN-B -143.0 -236.0  
143  
7.0  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Djakarta (Batavia)-  
Sumatra (Indonesia)  
41  
42  
BAT  
-377.0 681.0 -50.0  
-156.0 -271.0 -189.0  
5
0
0
Hong Kong 1963 - Hong  
Kong  
HKD  
20  
43  
44  
45  
46  
Hu-Tzu-Shan - Taiwan  
Indian - Bangladesh  
HTN  
IND-B  
IND-I  
INF-A  
-637.0 -549.0 -203.0  
282.0 726.0 254.0  
295.0 736.0 257.0  
217.0 823.0 299.0  
20  
9
0
0
0
0
Indian - India & Nepal  
Indian 1954 - Thailand  
11  
9
Indian 1960 - Vietnam  
(near 16N)  
47  
48  
ING-A  
ING-B  
198.0 881.0 317.0  
9
9
0
0
Indian 1960 - Con Son  
Island (Vietnam)  
182.0 915.0 344.0  
209.0 818.0 290.0  
49  
50  
51  
Indian 1975 - Thailand  
Indonesian 1974  
INH-A  
IDN  
9
19  
9
0
0
0
-24.0 -15.0  
-97.0 787.0  
5.0  
Kandawala - Sri Lanka  
KAN  
86.0  
Kertau 1948 - West  
52  
53  
54  
KEA  
-11.0 851.0  
5.0  
13  
7
0
0
0
Malaysia & Singapore  
Nahrwan - Masirah  
Island (Oman)  
NAH-A -247.0 -148.0 369.0  
Nahrwan - United Arab  
Emirates  
NAH-B -249.0 -156.0 381.0  
NAH-C -243.0 -192.0 477.0  
7
55  
56  
57  
58  
Nahrwan - Saudi Arabia  
Oman  
7
7
0
0
0
0
FAH  
QAT  
SOA  
-346.0 -1.0  
-128.0 -283.0 22.0  
7.0 -10.0 -26.0  
224.0  
Qatar National - Qatar  
South Asia - Singapore  
20  
15  
Timbalai 1948 - Brunei &  
East Malaysia (Sarawak  
& Sabah)  
59  
TIL  
-679.0 669.0 -48.0  
10  
0
Tokyo - Mean Solution  
60  
61  
(Japan,Okinawa & South TOY-M -148.0 507.0 685.0  
Korea)  
5
5
0
0
Tokyo - Japan  
TOY-A -148.0 507.0 685.0  
144  
Download from Www.Somanuals.com. All Manuals Search And Download.  
62  
63  
Tokyo - Okinawa  
TOY-C -158.0 507.0 676.0  
TOY-B -146.0 507.0 687.0  
5
5
0
0
Tokyo - South Korea  
Australian Geodetic 1966  
- Australia & Tasmania  
64  
65  
AUA  
AUG  
-133.0 -48.0 148.0  
-134.0 -48.0 149.0  
3
3
0
0
Australian Geodetic 1984  
- Australia & Tasmania  
European 1950 - Mean  
(AU, B, DK, FN, F, G,  
GR, I, LUX, NL, N, P, E,  
S, CH)  
66  
67  
EUR-M  
-87.0 -98.0 -121.0  
-87.0 -96.0 -120.0  
20  
20  
0
0
European 1950 - Western  
Europe (AU, DK, FR, G, EUR-A  
NL, CH)  
68  
69  
European 1950 - Cyprus  
European 1950 - Egypt  
European 1950 -  
EUR-E -104.0 -101.0 -140.0  
EUR-F -130.0 -117.0 -151.0  
20  
20  
0
0
70  
71  
England, Wales, Scotland EUR-G  
& Channel Islands  
-86.0 - 96.0 -120.0  
20  
20  
0
0
European 1950 -  
England, Wales, Scotland EUR-K  
& Ireland  
-86.0 - 96.0 -120.0  
-84.0 -95.0 -130.0  
72  
73  
European 1950 - Greece  
European 1950 - Iran  
EUR-B  
20  
20  
0
0
EUR-H -117.0 -132.0 -164.0  
European 1950 - Italy -  
Sardinia  
74  
EUR-I  
EUR-J  
-97.0 -103.0 -120.0  
-97.0 -88.0 -135.0  
20  
0
European 1950 - Italy -  
Sicily  
75  
76  
77  
20  
20  
20  
0
0
0
European 1950 - Malta  
EUR-L -107.0 -88.0 -149.0  
European 1950 - Norway  
& Finland  
EUR-C  
EUR-D  
-87.0 -95.0 -120.0  
-84.0 -107.0 -120.0  
European 1950 - Portugal  
& Spain  
78  
79  
20  
20  
0
0
European 1950 - Tunisia  
EUR-T -112.0 -77.0 -145.0  
145  
Download from Www.Somanuals.com. All Manuals Search And Download.  
European 1979 - Mean  
Solution (AU, FN, NL,  
N, E, S, CH)  
80  
EUS  
-86.0 -98.0 -119.0  
20  
0
81  
82  
Hjorsey 1955 - Iceland  
Ireland 1965  
HJO  
IRL  
-73.0  
46.0  
-86.0  
20  
2
0
0
506.0 -122.0 611.0  
Ordnance Survey of GB  
83  
84  
85  
1936 - Mean (E, IoM, S, OGB-M 375.0 -111.0 431.0  
ShI, W)  
1
1
1
0
0
0
Ordnance Survey of GB  
OGB-A 371.0 -112.0 434.0  
1936 - England  
Ordnance Survey of GB  
1936 - England, Isle of  
Man & Wales  
OGB-B 371.0 -111.0 434.0  
Ordnance Survey of GB  
1936 - Scotland &  
Shetland Isles  
86  
OGB-C 384.0 -111.0 425.0  
OGB-D 370.0 -108.0 434.0  
1
0
Ordnance Survey of GB  
1936 - Wales  
87  
88  
89  
90  
1
20  
21  
5
0
0
0
0
Rome 1940 - Sardinia  
Island  
MOD  
SPK  
-225.0 -65.0  
9.0  
S-42 (Pulkovo 1942) -  
Hungary  
28.0 -121.0 -77.0  
S-JTSK Czechoslavakia  
(prior to 1 Jan 1993)  
CCD  
589.0  
-2.0  
76.0  
480.0  
Cape Canaveral - Mean  
Solution (Florida &  
Bahamas)  
91  
CAC  
151.0 181.0  
6
0
N. American 1927 -  
92  
93  
NAS-C  
NAS-B  
-8.0  
-8.0  
-9.0  
160.0 176.0  
159.0 175.0  
6
6
0
0
Mean Solution (CONUS)  
N. American 1927 -  
Western US  
N. American 1927 -  
Eastern US  
94  
95  
NAS-A  
NAS-D  
161.0 179.0  
135.0 172.0  
6
6
0
0
N. American 1927 -  
-5.0  
146  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Alaska (excluding  
Aleutian Islands)  
N. American 1927 -  
Aleutian Islands, East of  
180W  
96  
97  
NAS-V  
-2.0  
2.0  
152.0 149.0  
204.0 105.0  
6
6
0
0
N. American 1927 -  
Aleutian Islands, West of NAS-W  
180W  
N. American 1927 -  
98  
99  
Bahamas (excluding San NAS-Q  
Salvador Island)  
-4.0  
1.0  
154.0 178.0  
140.0 165.0  
6
6
0
0
N. American 1927 - San  
NAS-R  
Salvador Island  
N. American 1927 -  
Canada Mean Solution  
NAS-E  
100  
101  
-10.0 158.0 187.0  
6
6
0
0
(including  
Newfoundland)  
N. American 1927 -  
Alberta & British  
Columbia  
NAS-F  
NAS-G  
-7.0  
162.0 188.0  
N. American 1927 -  
Eastern Canada  
102  
(Newfoundland, New  
Brunswick, Nova Scotia  
& Quebec)  
-22.0 160.0 190.0  
6
0
N. American 1927 -  
Manitoba & Ontario  
103  
104  
105  
NAS-H  
NAS-I  
NAS-J  
-9.0  
4.0  
157.0 184.0  
159.0 188.0  
139.0 181.0  
6
6
6
0
0
0
N. American 1927 -  
Northwest Territories &  
Saskatchewan  
N. American 1927 -  
Yukon  
-7.0  
N. American 1927 -  
Canal Zone  
106  
107  
NAS-O  
NAS-P  
0.0  
125.0 201.0  
142.0 183.0  
6
6
0
0
N. American 1927 -  
-3.0  
147  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Caribbean  
N. American 1927 -  
Central America  
108  
109  
NAS-N  
0.0  
125.0 194.0  
152.0 178.0  
6
6
0
0
N. American 1927 - Cuba NAS-T  
N. American 1927 -  
-9.0  
110  
111  
112  
Greenland (Hayes  
Peninsula)  
NAS-U  
NAS-L  
NAR-A  
11.0  
114.0 195.0  
6
6
0
0
0
N. American 1927 -  
Mexico  
-12.0 130.0 190.0  
N. American 1983 -  
Alaska (excluding  
Aleutian Islands)  
0.0  
0.0  
0.0  
16  
N. American 1983 -  
Aleutian Islands  
113  
114  
115  
116  
NAR-E  
NAR-B  
NAR-C  
NAR-H  
-2.0  
0.0  
0.0  
1.0  
0.0  
0.0  
0.0  
1.0  
4.0  
0.0  
16  
16  
16  
16  
0
0
0
0
N. American 1983 -  
Canada  
N. American 1983 -  
0.0  
Mean Solution (CONUS)  
N. American 1983 -  
Hawaii  
-1.0  
N. American 1983 -  
Mexico & Central  
America  
117  
NAR-D  
0.0  
0.0  
0.0  
16  
0
Bogota Observatory -  
Colombia  
118  
119  
BOO  
CAI  
307.0 304.0 -318.0  
20  
20  
0
0
Campo Inchauspe 1969 -  
Argentina  
-148.0 136.0  
90.0  
120  
121  
Chua Astro - Paraguay  
Corrego Alegre - Brazil  
Prov S. American 1956 -  
CHU  
COA  
-134.0 229.0 -29.0  
-206.0 172.0 -6.0  
20  
20  
0
0
122  
123  
Mean Solution (Bol, Col, PRP-M -288.0 175.0 -376.0  
Ecu, Guy, Per & Ven)  
20  
20  
0
0
Prov S. American 1956 -  
PRP-A -270.0 188.0 -388.0  
148  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Bolivia  
Prov S. American 1956 -  
Northern Chile (near  
19S)  
124  
125  
PRP-B -270.0 183.0 -390.0  
20  
20  
0
0
Prov S. American 1956 -  
Southern Chile (near  
43S)  
PRP-C -305.0 243.0 -442.0  
PRP-D -282.0 169.0 -371.0  
Prov S. American 1956 -  
Colombia  
126  
127  
128  
129  
20  
20  
20  
20  
0
0
0
0
Prov S. American 1956 -  
Ecuador  
PRP-E  
PRP-F  
-278.0 171.0 -367.0  
-298.0 159.0 -369.0  
Prov S. American 1956 -  
Guyana  
Prov S. American 1956 -  
Peru  
PRP-G -279.0 175.0 -379.0  
PRP-H -295.0 173.0 -371.0  
Prov S. American 1956 -  
Venezuela  
130  
131  
20  
20  
0
0
Prov South Chilean 1963  
HIT  
16.0  
196.0  
1.0  
93.0  
South American 1969 -  
Mean Solution (Arg, Bol,  
Bra, Chi, Col, Ecu, Guy,  
Par, Per, Tri & Tob, Ven)  
132  
SAN-M  
-57.0  
-41.0  
22  
0
South American 1969 -  
Argentina  
133  
134  
135  
136  
137  
138  
SAN-A  
SAN-B  
SAN-C  
SAN-D  
SAN-E  
SAN-F  
-62.0  
-61.0  
-60.0  
-75.0  
-44.0  
-48.0  
-1.0  
2.0  
-37.0  
-48.0  
-41.0  
-44.0  
-36.0  
-44.0  
22  
22  
22  
22  
22  
22  
0
0
0
0
0
0
South American 1969 -  
Bolivia  
South American 1969 -  
Brazil  
-2.0  
-1.0  
6.0  
South American 1969 -  
Chile  
South American 1969 -  
Colombia  
South American 1969 -  
Ecuador (excluding  
3.0  
149  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Galapagos Islands)  
South American 1969 -  
139  
140  
141  
142  
143  
SAN-J  
SAN-G  
SAN-H  
SAN-I  
-47.0  
-53.0  
-61.0  
-58.0  
-45.0  
-45.0  
26.0  
3.0  
-42.0  
-47.0  
-33.0  
-44.0  
-33.0  
-33.0  
22  
22  
22  
22  
22  
0
0
0
0
0
Baltra, Galapagos Islands  
South American 1969 -  
Guyana  
South American 1969 -  
Paraguay  
2.0  
South American 1969 -  
Peru  
0.0  
South American 1969 -  
Trinidad & Tobago  
SAN-K  
12.0  
8.0  
South American 1969 -  
Venezuela  
144  
145  
SAN-L  
ZAN  
22  
20  
0
0
Zanderij - Suriname  
-265.0 120.0 -358.0  
Antigua Island Astro  
1943 - Antigua, Leeward  
Islands  
146  
AIA  
-270.0 13.0  
-205.0 107.0  
62.0  
53.0  
7
0
147  
148  
Ascension Island 1958  
ASC  
SHB  
20  
20  
0
0
Astro Dos 71/4 - St  
Helena Island  
-320.0 550.0 -494.0  
-73.0 213.0 296.0  
Bermuda 1957 -  
Bermuda Islands  
149  
150  
BER  
DID  
6
7
0
0
Deception Island,  
Antarctica  
260.0  
-7.0  
12.0 -147.0  
215.0 225.0  
Fort Thomas 1955 -  
Nevis, St Kitts, Leeward  
Islands  
151  
FOT  
7
0
Graciosa Base SW 1948 -  
Faial, Graciosa, Pico, Sao  
Jorge, Terceira Islands  
(Azores)  
152  
153  
GRA  
ISG  
-104.0 167.0 -38.0  
20  
20  
0
0
ISTS 061 Astro 1968 -  
South Georgia Islands  
-794.0 119.0 -298.0  
150  
Download from Www.Somanuals.com. All Manuals Search And Download.  
L.C. 5 Astro 1961 -  
Cayman Brac Island  
154  
155  
156  
LCF  
ASM  
NAP  
42.0  
124.0 147.0  
6
7
0
0
0
Montserrat Island Astro  
1958 - Montserrat  
Leeward Islands  
174.0 359.0 365.0  
-10.0 375.0 165.0  
Naparima, BWI -  
Trinidad & Tobago  
20  
Observatorio  
Meteorologico 1939 -  
Corvo and Flores Islands  
(Azores)  
157  
FLO  
-425.0 -169.0 81.0  
20  
0
Pico De Las Nieves -  
Canary Islands  
158  
159  
PLN  
POS  
-307.0 -92.0 127.0  
-499.0 -249.0 314.0  
20  
20  
0
0
Porto Santo 1936 - Porto  
Santo and Madeira  
Islands  
Puerto Rico - Puerto Rico  
& Virgin Islands  
160  
161  
PUR  
11.0  
72.0 -101.0  
6
0
0
Qornoq - South  
Greenland  
QUO  
164.0 138.0 -189.0  
20  
Sao Braz - Soa Miguel,  
Santa Maria Islands  
(Azores)  
162  
SAO  
-203.0 141.0  
-355.0 21.0  
53.0  
72.0  
20  
0
Sapper Hill 1943 - East  
Falkland Island  
163  
164  
165  
166  
SAP  
SGM  
TDC  
ANO  
20  
20  
20  
3
0
0
0
0
Selvagem Grande 1938 -  
Salvage Islands  
-289.0 -124.0 60.0  
-632.0 438.0 -609.0  
-491.0 -22.0 435.0  
Tristan Astro 1968 -  
Tristan du Cunha  
Anna 1 Astro 1965 -  
Cocos Islands  
Gandajika Base 1970 -  
Republic of Maldives  
167  
168  
GAA  
IST  
-133.0 -321.0 50.0  
208.0 -435.0 -229.0  
20  
20  
0
0
ISTS 073 Astro 1969 -  
151  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Diego Garcia  
Kerguelen Island 1949 -  
Kerguelen Island  
169  
170  
171  
KEG  
MIK  
RUE  
145.0 -187.0 103.0  
41.0 -220.0 -134.0  
94.0 -948.0 -1262.0  
20  
7
0
0
0
Mahe 1971 - Mahe Island  
Reunion - Mascarene  
Islands  
20  
American Samoa 1962 -  
American Samoa Islands  
172  
173  
174  
175  
176  
177  
AMA  
ATF  
-115.0 118.0 426.0  
6
0
0
0
0
0
0
Astro Beacon "E" 1945 -  
Iwo Jima  
145.0  
75.0 -272.0  
20  
20  
20  
20  
20  
Astro Tern Island (Frig)  
1961 - Tern Island  
TRN  
ASQ  
IBE  
114.0 -116.0 -333.0  
124.0 -234.0 -25.0  
-127.0 -769.0 472.0  
298.0 -304.0 -375.0  
Astronomical Station  
1952 - Marcus Island  
Bellevue (IGN) - Efate  
and Erromango Islands  
Canton Astro 1966 -  
Phoenix Islands  
CAO  
Chatham Island Astro  
1971 - Chatham Island  
(New Zeland)  
178  
CHI  
175.0 -38.0 113.0  
20  
0
DOS 1968 - Gizo Island  
(New Georgia Islands)  
179  
180  
181  
182  
183  
184  
GIZ  
EAS  
GEO  
GUA  
DOB  
IDN  
230.0 -199.0 -752.0  
211.0 147.0 111.0  
20  
20  
20  
6
0
0
0
0
0
0
Easter Island 1967 -  
Easter Island  
Geodetic Datum 1949 -  
New Zealand  
84.0  
-22.0 209.0  
Guam 1963 - Guam  
Island  
-100.0 -248.0 259.0  
252.0 -209.0 -751.0  
GUX 1 Astro -  
20  
19  
Guadalcanal Island  
Indonesian 1974 -  
Indonesia  
-24.0 -15.0  
5.0  
152  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Johnston Island 1961 -  
Johnston Island  
185  
186  
JOH  
KUS  
189.0 -79.0 -202.0  
647.0 1777.0 -1124.0  
20  
20  
0
0
Kusaie Astro 1951 -  
Caroline Islands, Fed.  
States of Micronesia  
Luzon - Philippines  
(excluding Mindanao  
Island)  
187  
LUZ-A -133.0 -77.0 -51.0  
LUZ-B -133.0 -79.0 -72.0  
6
0
Luzon - Mindanao Island  
(Philippines)  
188  
189  
190  
6
20  
6
0
0
0
Midway Astro 1961 -  
Midway Islands  
MID  
912.0 -58.0 1227.0  
61.0 -285.0 -181.0  
Old Hawaiian - Mean  
Solution  
OHA-M  
191  
192  
193  
194  
Old Hawaiian - Hawaii  
Old Hawaiian - Kauai  
Old Hawaiian - Maui  
Old Hawaiian - Oahu  
OHA-A  
OHA-B  
OHA-C  
OHA-D  
89.0 -279.0 -183.0  
45.0 -290.0 -172.0  
65.0 -290.0 -190.0  
58.0 -283.0 -182.0  
6
6
6
6
0
0
0
0
Pitcairn Astro 1967 -  
Pitcairn Island  
195  
196  
197  
198  
199  
PIT  
185.0 165.0  
42.0  
84.0  
20  
20  
7
0
0
0
0
0
Santo (Dos) 1965 -  
Espirito Santo Island  
SAE  
170.0  
51.0  
42.0  
Viti Levu 1916 - Viti  
MVS  
ENW  
WAK  
391.0 -36.0  
Levu Island (Fiji Islands)  
Wake-Eniwetok 1960 -  
Marshall Islands  
102.0  
52.0  
-38.0  
18  
20  
Wake Island Astro 1952 -  
Wake Atoll  
276.0 -57.0 149.0  
-384.0 664.0 -48.0  
-104.0 -129.0 239.0  
Bukit Rimpah - Bangka  
and Belitung Islands  
(Indonesia)  
200  
201  
BUR  
CAZ  
5
0
0
Camp Area Astro - Camp  
McMurdo Area,  
20  
153  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Antarctica  
European 1950 - Iraq,  
Israel, Jordan, Kuwait,  
Lebanon, Saudi Arabia &  
Syria  
202  
EUR-S -103.0 -106.0 -141.0  
20  
0
Gunung Segara -  
203  
204  
GSE"  
HEN  
-403.0 684.0  
41.0  
5
0
0
Kalimantan (Indonesia)  
Herat North -  
Afghanistan  
-333.0 -222.0 114.0  
20  
205  
206  
Indian - Pakistan  
IND-P  
PUK  
283.0 682.0 231.0  
28.0 -130.0 -95.0  
9
0
0
Pulkovo 1942 - Russia  
21  
Tananarive Observatory  
1925 - Madagascar  
207  
208  
209  
TAN  
YAC  
-189.0 -242.0 -91.0  
20  
20  
21  
0
0
0
Yacare - Uruguay  
-155.0 171.0  
37.0  
Krassovsky 1942 -  
Russia  
KRA42  
26.0 -139.0 -80.0  
Lommel Datum 1950 -  
Belgium & Luxembourg  
210  
211  
BLG50  
-55.0  
49.0 -158.0  
20  
20  
0
0
Reseau National Belge  
1972 - Belgium  
RNB72 -104.0 80.0  
-75.0  
NTF - Nouvelle  
Triangulation de la  
France  
212  
213  
214  
215  
NTF  
NL21  
ED87  
-168.0 -60.0 320.0  
7
5
0
0
2
0
Netherlands 1921 -  
Netherlands  
719.0  
47.0  
640.0  
European Datum 1987,  
IAG RETrig  
-82.5 -91.7 -117.7  
20  
5
Subcommision.  
Swiss Datum 1903+  
(LV95)  
CH95 674.374 15.056 405.346  
154  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Ellipsoids  
Index  
Name  
WGS 84  
Semi Major Axis (m)  
6378137.000  
6377563.396  
6377340.189  
6378160.000  
6377483.865  
6377397.155  
6378206.400  
6378249.145  
6378136.000  
6377276.345  
6377298.556  
6377301.243  
6377295.664  
6377304.063  
6377309.613  
6378155.000  
6378137.000  
6378200.000  
6378270.000  
6378160.000  
6378388.000  
6378245.000  
6378160.000  
6378135.000  
1/Flattening  
298.257223563  
299.3249646  
299.3249646  
298.25  
0
1
Airy 1830  
2
Modified Airy  
3
Australian National  
Bessel 1841 (Namibia)  
Bessel 1841  
4
299.1528128  
299.1528128  
294.9786982  
293.465  
5
6
Clarke 1866  
7
Clarke 1880  
8
Earth 90  
298.257839303  
300.8017  
300.8017  
300.8017  
300.8017  
300.8017  
300.8017  
298.3  
9
Everest (India 1830)  
Everest (Sabah Sarawak)  
Everest (India 1956)  
Everest (Malaysia 1969)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Everest (Malay. & Singapore 1948)  
Everest (Pakistan)  
Modified Fischer 1960  
GRS 80  
298.257222101  
298.3  
Helmert 1906  
Hough 1960  
297.0  
Indonesian 1974  
International 1924  
Krassovsky 1940  
South American 1969  
WGS 72  
298.247  
297.0  
298.3  
298.25  
298.26  
155  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Rotation and Scale Table  
Rot. X  
Rot. Y  
Rot. Z  
Scale  
(-)  
Index  
Name  
(seconds)  
(seconds)  
(seconds)  
0
1
+0.0000  
0.0000  
+0.0000  
0.0000  
+0.0000  
-0.5540  
0.000  
0.220  
European Datum 1987 IAG RETrig  
Subcommision.  
2
0.1338  
-0.0625  
-0.0470  
0.045  
156  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix B Acronyms  
BBR  
Battery Backed-up RAM  
CLT  
Carrier Lock Time  
CN0  
Carrier to Noise Ratio  
COG  
Course Over Ground  
CTM  
DGPS  
DOP  
Continuous Tracking Mode  
Differential GPS  
Dilution of Precision  
DR  
Dead Reckoning  
ECEF  
EDOP  
EGNOS  
EKF  
Earth-Centered Earth-Fixed  
Easting Dilution of Precision  
the European Geostationary Navigation Overlay Service  
Extended Kalman filter  
GDOP  
GNSS  
HDOP  
HOW  
LNA  
Geometric Dilution of Precision  
Global Navigation Satellite System  
Horizontal Dilution of Precision  
Hand-Over Word  
Low Noise Amplifier  
MSAS  
NDOP  
NMEA  
PDOP  
PRN  
MTSAT-Based Augmentation System  
Northing Dilution of Precision  
the National Marine Electronics Association  
Positional Dilution of Precision  
Pseudorandom Noise  
PVT  
Position Velocity Time  
RINEX  
RTC  
Receiver Independent Exchange Format  
Real Time Clock  
RTCM  
SBAS  
SNR  
the Radio Technical Commission for Maritime Services  
Satellite Based Augmentation Systems  
Signal-to-Noise Ratio  
SOG  
Speed Over Ground  
SPS  
Standard Positioning Service  
Time Dilution of Precision  
Time of Week  
TDOP  
TOW  
TTFF  
VDOP  
UTM  
WAAS  
Time To First Fix  
Vertical Dilution of Precision  
Universal Transverse Mercator  
Wide Area Augmentation System  
157  
Download from Www.Somanuals.com. All Manuals Search And Download.  
References  
1. ANTARISR Chipset – System Integration- Manual for San Jose Navigation, Doc.  
No. GPS.G3-DK-03014.  
2. ANTARISR Protocol Specifications, Doc. No. GPS.G3-X-03002.  
3. NMEA 0183, Standard For Interfacing Marine Electronic Devices, Version 2.30,  
March 1, 1998.  
158  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Teledyne TV Converter Box 5000bf User Manual
TiVo DVR SDOC 00091 002 User Manual
Tonino Lamborghini Marine GPS System MDR24 96 User Manual
Toshiba DVD VCR Combo MW27H63 User Manual
Tripp Lite Computer Accessories NB1006BK User Manual
Turbo Chef Technologies Oven HHB 8028 User Manual
Uniden Cordless Telephone DXAI7288 2 User Manual
Uniden Digital Camera UDC 7M User Manual
Vanguard Heating Gas Heater VN18 User Manual
Vivotek Security Camera FD8335H User Manual