Operating System
Windows 2000 DNS
White Paper
Abstract
This paper describes the Microsoft® Windows® 2000 operating system Domain Naming System
(DNS), including design, implementation, and migration issues. It discusses new features of the
Windows 2000 implementation of DNS, provides examples of DNS implementations, and describes
the architectural criteria that network architects and administrators should consider when designing a
DNS namespace for the Active Directory® service to provide reliable network naming services.
Download from Www.Somanuals.com. All Manuals Search And Download.
CONTENTS
WHITE PAPER ..............................................................................1
CONTENTS....................................................................................3
INTRODUCTION............................................................................5
INTRODUCTION............................................................................5
Name Services in Windows 2000.......................................................................2
Name Services in Windows 2000.......................................................................2
Standards and Additional Reading.....................................................................2
Standards and Additional Reading.....................................................................2
DNS FUNDAMENTALS...................................................................1
DNS FUNDAMENTALS...................................................................1
History of DNS....................................................................................................3
History of DNS....................................................................................................3
The Structure of DNS..........................................................................................4
The Structure of DNS..........................................................................................4
The Hierarchy of DNS: Domain Names..........................................................4
DNS and Internet............................................................................................5
Resource Records..........................................................................................5
Distributing the Database: Zone Files and Delegation...................................6
Replicating the DNS database............................................................................7
Replicating the DNS database............................................................................7
Querying the Database.......................................................................................8
Querying the Database.......................................................................................8
NEW FEATURES OF THE WINDOWS 2000 DNS ............................8
NEW FEATURES OF THE WINDOWS 2000 DNS ............................8
Time to Live for Resource Records..............................................................10
Updating the DNS Database.............................................................................10
Updating the DNS Database.............................................................................10
Active Directory Storage and Replication Integration........................................11
Active Directory Storage and Replication Integration........................................11
The Active Directory Service Storage Model................................................11
The Replication Model..................................................................................13
Zone Type Conversions...............................................................................13
Controlling Access to Zones.........................................................................13
Incremental Zone Transfer................................................................................14
Incremental Zone Transfer................................................................................14
Protocol Description.....................................................................................14
IXFR and DS Integration..............................................................................15
Dynamic Update...............................................................................................15
Download from Www.Somanuals.com. All Manuals Search And Download.
Dynamic Update...............................................................................................15
Protocol Description.....................................................................................16
Update Algorithm..........................................................................................16
Dynamic Update of DNS Records ...............................................................16
Secure Dynamic Update...............................................................................18
Controlling Update Access to Zones and Names.........................................21
Aging and Scavenging......................................................................................22
Aging and Scavenging......................................................................................22
Aging and Scavenging Parameters..............................................................23
Record Life Span..........................................................................................26
Scavenging Algorithm..................................................................................27
Configuring Scavenging Parameters............................................................27
Unicode Character Support..............................................................................28
Unicode Character Support..............................................................................28
Interoperability Considerations.....................................................................28
The Domain Locator.........................................................................................29
The Domain Locator.........................................................................................29
IP/DNS Compatible Locator.........................................................................31
Caching Resolver..............................................................................................36
Caching Resolver..............................................................................................36
Name Resolution..........................................................................................37
Name Resolution Scenarios.........................................................................40
DNS Server List Management .....................................................................41
Negative Caching.........................................................................................41
Disabling the Caching Resolver...................................................................42
Administrative Tools..........................................................................................42
Administrative Tools..........................................................................................42
DNS Manager...............................................................................................42
WMI Support for DNS Server Administration...............................................42
Interoperability Issues.......................................................................................43
Interoperability Issues.......................................................................................43
Using WINS and WINSR Records...............................................................43
Using UTF-8 Characters Format..................................................................43
Receiving Non-RFC Compliant Data............................................................44
DNS Server Performance ................................................................................44
DNS Server Performance ................................................................................44
DESIGNING A DNS NAMESPACE FOR THE ACTIVE DIRECTORY...
43
DESIGNING A DNS NAMESPACE FOR THE ACTIVE DIRECTORY...
43
Server Capacity Planning.................................................................................45
Server Capacity Planning.................................................................................45
Choosing Names..............................................................................................46
Choosing Names..............................................................................................46
Download from Www.Somanuals.com. All Manuals Search And Download.
Internet Access Considerations....................................................................46
Characters in Names....................................................................................55
Computer Names.........................................................................................55
Integrating ADS with Existing DNS Structure...............................................57
Deploying DNS to Support Active Directory......................................................60
Deploying DNS to Support Active Directory......................................................60
Partitioning, and Replication (Choosing your Zones)...................................60
Using Automatic Configuration.....................................................................61
WINS Referral..............................................................................................61
SUMMARY...................................................................................60
SUMMARY...................................................................................60
For More Information........................................................................................63
For More Information........................................................................................63
GLOSSARY..................................................................................61
GLOSSARY..................................................................................61
Download from Www.Somanuals.com. All Manuals Search And Download.
Download from Www.Somanuals.com. All Manuals Search And Download.
The designers of the Microsoft ® Windows® 2000 operating system chose the
Domain Name System (DNS) as the name service for the operating system.
Windows 2000 Server includes an IETF standard-based Domain Name System
Server. Because it is RFC compliant it is fully compatible with any other RFC
compliant DNS servers. Use of the Windows 2000 Domain Name System server is
not mandatory. Any DNS Server implementation supporting Service Location
Resource Records (SRV RRs, as described in an Internet Draft “A DNS RR for
specifying the location of services (DNS SRV)”) and Dynamic Update (RFC2136) is
sufficient to provide the name service for Windows 2000–based computers1.
However, because this implementation of DNS is designed to fully take advantage
of the Windows 2000 Active Directory® service, it is the recommended DNS server
for any networked organization with a significant investment in Windows or extranet
partners with Windows-based systems. For example, while conventional DNS
Servers use single-master replication, Windows 2000 DNS can be integrated into
Active Directory service, so that it uses the Windows 2000 multi-master replication
engine. (Note that the Active Directory supports multi-master replication.) In this
way, network managers can simplify system administration by not having to
maintain a separate replication topology for DNS.
DNS FUNDAMENTALS
DNS in Windows 2000 provides a unique DNS Server implementation that is fully
interoperable with other standards-based implementations of DNS Server. Some
special interoperability issues are discussed later in this paper.
The purpose of this document is to assist network architects and administrators in
planning the Windows 2000 Active Directory service DNS deployment strategy. It
covers the design, implementation, and migration issues that need to be considered
when rolling out a scalable and robust DNS solution as a global name service.
While this paper assumes familiarity with DNS, it provides a quick overview of the
DNS basics in ”DNS Fundamentals”. The Windows 2000 implementation of DNS
supports various new features (as compared to Windows NT® 4.0 operating
system) described in ”New Features of the Windows 2000 DNS.” It includes the
description of Active Directory integration and incremental zone transfer (IXFR),
dynamic (including secure) update and Unicode character support, enhanced
Domain Locator, caching resolver service and DNS Manager. It provides the
detailed overview of the name resolution process. It also describes the support for
secure DNS management. It includes an overview of the various issues associated
with designing namespace for the Active Directory. It includes integration of Active
Directory with existing DNS structure and migration to the Windows 2000
implementation of DNS, design of the private namespaces and necessary DNS
support.
1 Berkeley Internet Name Domain - BIND 8.1.1 DNS Server implementation supports both SRV RRs and
Dynamic Update, but it dumps core when Windows 2000-based clients send certain updates to it. 8.1.2 is the
first BIND version that works reliably.
Windows 2000 White Paper
1
Download from Www.Somanuals.com. All Manuals Search And Download.
Name Services in Windows 2000
DNS is the name service of Windows 2000. It is by design a highly reliable,
hierarchical, distributed, and scalable database. Windows 2000 clients use DNS for
name resolution and service location, including locating domain controllers for
logon.
Downlevel clients (Windows NT 3.5 and 3.51, Windows NT 4.0, Windows 95, and
Windows 98), however, rely on NetBIOS which can use NBNS (WINS), broadcast
or flat LmHosts file. In particular, the NetBIOS name service is used for domain
controller location.
Since DNS as implemented in Windows 2000 is Windows Internet Name Services
(WINS)-aware, a combination of both DNS and WINS can be used in a mixed
environment to achieve maximum efficiency in locating various network services
and resources. Additionally, WINS in a legacy or mixed environment plays an
important interoperability role while also preserving current investment.
Windows NT 4.0–based clients can register themselves in Windows 2000 WINS
and Windows 2000–based clients can register in Windows NT 4.0 WINS.
Standards and Additional Reading
The following documents are of interest in the context of the Windows 2000 DNS
Server implementation. They are combined in two categories. A RFC—Request For
Comments—is a standard document, while Draft is work in progress that can
become a standard.
RFCs:
•
•
•
•
•
•
•
•
•
1034 Domain Names—Concepts and Facilities
1035 Domain Names—Implementation and Specification
1123 Requirements for Internet Hosts—Application and Support
1886 DNS Extensions to Support IP Version 6
1995 Incremental Zone Transfer in DNS
1996 A Mechanism for Prompt DNS Notification of Zone Changes
2136 Dynamic Updates in the Domain Name System (DNS UPDATE)
2181 Clarifications to the DNS Specification
2308 Negative Caching of DNS Queries (DNS NCACHE)
Drafts:
•
•
Draft-ietf-dnsind-rfc2052bis-02.txt (A DNS RR for Specifying the Location of
Services (DNS SRV))
Draft-skwan-utf8-dns-02.txt (Using the UTF-8 Character Set in the Domain
Name System)
•
•
Draft-ietf-dhc-dhcp-dns-08.txt (Interaction between DHCP and DNS)
Draft-ietf-dnsind-tsig-11.txt (Secret Key Transaction Signatures for DNS
(TSIG))
•
Draft-ietf-dnsind-tkey-00.txt (Secret Key Establishment for DNS (TKEY RR))
Windows 2000 White Paper
2
Download from Www.Somanuals.com. All Manuals Search And Download.
•
Draft-skwan-gss-tsig-04.txt (GSS Algorithm for TSIG (GSS-TSIG) )
In addition to the listed RFCs and Drafts the implementation of the ATMA DNS
records is based on the “ATM Name System Specification Version 1.0”.
Additional reading:
•
•
•
Microsoft DNS and Windows NT 4.0 White Paper
Designing the Active Directory Structure chapter in the Deployment
Planning Guide
Active Directory papers
ault.asp
•
”DNS and BIND” (Cricket Liu) published by O'Reilly and Associates, 3rd Edition
ISBN: 1-56592-512-2
The Domain Name System is a hierarchical distributed database and an associated
set of protocols that define:
•
•
•
A mechanism for querying and updating the database
A mechanism for replicating the information in the database among servers
A schema of the database
History of DNS
DNS began in the early days of the Internet when the Internet was a small network
established by the Department of Defense for research purposes. The host names
of the computers in this network were managed through the use of a single HOSTS
file located on a centrally administered server. Each site that needed to resolve host
names on the network downloaded this file. As the number of hosts on the Internet
grew, the traffic generated by the update process increased, as well as the size of
the HOSTS file. The need for a new system, which would offer features such as
scalability, decentralized administration, support for various data types, became
more and more obvious.
The Domain Name System (DNS) introduced in 1984, became this new system.
With DNS, the host names reside in a database that can be distributed among
multiple servers, decreasing the load on any one server and providing the ability to
administer this naming system on a per-partition basis. DNS supports hierarchical
names and allows registration of various data types in addition to host name to IP
address mapping used in HOSTS files. By virtue of the DNS database being
distributed, its size is unlimited and performance does not degrade much when
adding more servers.
The original DNS was based on RFC 882 (Domain names: Concepts and facilities)
and RFC 883 (Domain Names–Implementation and Specification), which were
Windows 2000 White Paper
3
Download from Www.Somanuals.com. All Manuals Search And Download.
superceded by RFC 1034 (Domain Names–Concepts and Facilities), and RFC 1035
(Domain Names–Implementation and Specification). RFCs that describe DNS
security, implementation, and administrative issues later augmented these.
The implementation of DNS—Berkeley Internet Name Domain (BIND)—was
originally developed for the 4.3 BSD UNIX operating system.
The Microsoft implementation of DNS Server became a part of the operating system
in Windows NT Server 4.0. The Windows NT 4.0 DNS Server, like most DNS
implementations, has its roots in RFCs 1034 and 1035.
The latest version of the Windows 2000 operating system includes a new version of
DNS. The RFCs used in this version are 1034, 1035, 1886, 1996, 1995, 2136, 2308
and 2052.
The Structure of DNS
The Domain Name System is implemented as a hierarchical and distributed
database containing various types of data including host names and domain
names.
The names in a DNS database form a hierarchical tree structure called the domain
name space.
The Hierarchy of DNS: Domain Names
Domain names consist of individual labels separated by dots. For example:
mydomain.microsoft.com.
A Fully Qualified Domain Name (FQDN) uniquely identifies the host’s position within
the DNS hierarchical tree by specifying a list of names separated by dots on the
path from the referenced host to the root. The following figure shows an example of
a DNS tree with a host called mydomain within the microsoft.com. domain. The
FQDN for the host would be mydomain.microsoft.com.
Windows 2000 White Paper
4
Download from Www.Somanuals.com. All Manuals Search And Download.
Managed by
Registration
Authority
int/net/org
army
com
edu
gov
mit
mil
microsoft
whitehouse
mydomain
Managed by
Microsoft
Microsoft
DNS and Internet
The Internet Domain Name System is managed by a Name Registration Authority
on the Internet, responsible for maintaining top-level domains that are assigned by
organization and by country. These domain names follow the International Standard
3166. Existing abbreviations, reserved for use by organizations, as well as two-
letter and three-letter abbreviations used for countries, are shown in the following
table.
DNS Domain Name
Type of Organization
Commercial organizations
Educational institutions
com
edu
org
Non-profit organizations
net
Networks (the backbone of the Internet)
Non-military government organizations
Type of Organization
Military government organizations
Phone numbers
gov
DNS Domain Name
mil
num
arpa
xx
Reverse DNS
Two-letter country code
Resource Records
A DNS database consists of resource records (RRs). Each RR identifies a particular
resource within the database. There are various types of RRs in DNS.
The following table provides detailed information on structure of common RRs
(Note: this is not an exhaustive list of RRs).
Windows 2000 White Paper
5
Download from Www.Somanuals.com. All Manuals Search And Download.
Description
Class
TTL
Type
Data
Start of Authority
Internet (IN)
Default TTL is
60 minutes
SOA
Owner Name,
Primary Name Server
DNS Name, Serial
Number,
Refresh Interval,
Retry Interval,
Expire Time,
Minimum TTL
Host
Internet (IN)
Zone (SOA)
TTL
A
Owner Name (Host DNS
Name),
Host IP Address
Owner Name,
Name Server
Internet (IN)
Internet (IN)
Zone (SOA)
TTL
NS
MX
Name Server DNS Name
Owner Name,
Mail Exchanger
Zone (SOA)
TTL
Mail Exchange Server
DNS Name, Preference
Number
Canonical Name
(an alias)
Internet (IN)
Zone (SOA)
TTL
CNAME
Owner Name (Alias
Name),
Host DNS Name
Distributing the Database: Zone Files and Delegation
A DNS database can be partitioned into multiple zones. A zone is a portion of the
DNS database that contains the resource records with the owner names that belong
to the contiguous portion of the DNS namespace. Zone files are maintained on DNS
servers. A single DNS server can be configured to host zero, one or multiple zones.
Each zone is anchored at a specific domain name referred to as the zone’s root
domain. A zone contains information about all names that end with the zone’s root
domain name. A DNS server is considered authoritative for a name if it loads the
zone containing that name. The first record in any zone file is a Start of Authority
(SOA) RR. The SOA RR identifies a primary DNS name server for the zone as the
best source of information for the data within that zone and as an entity processing
the updates for the zone.
Names within a zone can also be delegated to other zone(s). Delegation is a
process of assigning responsibility for a portion of a DNS namespace to a separate
entity. This separate entity could be another organization, department or workgroup
within your company. In technical terms, delegating means assigning authority over
portions of your DNS namespace to other zones. Such delegation is represented by
the NS record that specifies the delegated zone and the DNS name of the server
authoritative for that zone. Delegating across multiple zones was part of the original
design goal of DNS. Following are the main reasons for the delegation of a DNS
namespace:
Windows 2000 White Paper
6
Download from Www.Somanuals.com. All Manuals Search And Download.
•
•
A need to delegate management of a DNS domain to a number of
organizations or departments within an organization
A need to distribute the load of maintaining one large DNS database among
multiple name servers to improve the name resolution performance as well as
create a DNS fault tolerant environment
•
A need to allow for host’s organizational affiliation by including them in
appropriate domains
The NS RRs facilitate delegation by identifying DNS servers for each zone. They
appear in all forward and reverse look-up zones. Whenever a DNS server needs to
cross a delegation, it will refer to the NS RRs for DNS servers in the target zone.
In the figure below, the management of the microsoft.com domain is delegated
across two zones, microsoft.com. and mydomain.microsoft.com.
...
com
edu
gov
microsoft
mydomain
ftp
microsoft.com
Zone
...
ntserver
microsoft.com Domain
mydomain.microsoft.com
Zone
Note: If multiple NS records exist for a delegated zone identifying multiple DNS
servers available for querying, the Windows 2000 DNS server will be able to select
the closest DNS server based on the round trip intervals measured over time for
every DNS server.
Replicating the DNS database
There could be multiple zones representing the same portion of the namespace.
Among these zones there are two types:
•
•
Primary
Secondary
Primary is a zone to which all updates for the records that belong to that zone are
made. A secondary zone is represented by a read-only copy of the primary zone.
Windows 2000 White Paper
7
Download from Www.Somanuals.com. All Manuals Search And Download.
The changes made to the primary zone file are then replicated to the secondary
zone file.
NEW FEATURES OF THE
WINDOWS 2000 DNS
As mentioned above, a name server can host multiple zones. A server can
therefore be primary for one zone (it has the master copy of the zone file) and
secondary for another zone (it gets a read-only copy of the zone file).
The process of replicating a zone file to multiple name servers is called zone
transfer. Zone transfer is achieved by copying the zone file information from the
master server to the secondary server.
A master server is the source of the zone information. The master server can be
primary or secondary. If the master is primary, then the zone transfer comes directly
from the source. If the master server is secondary, the file received from the master
server by means of a zone transfer is a copy of the read-only zone file.
The zone transfer is initiated in one of the following ways:
•
•
The master server sends a notification (RFC 1996) to the secondary server(s)
of a change in the zone.
When the secondary server’s DNS service starts or the secondary server’s
refresh interval has expired (by default it is set to 15 minutes in the SOA RR), it
will query the primary server for the changes.
There are two types of zone file replication. The first, full zone transfer (AXFR),
replicates the entire zone file. The second, incremental zone transfer (IXFR),
replicates only the changed records of the zone. The IXFR protocol is discussed in
“Incremental Zone Transfer."
BIND 4.9.3 DNS servers, as well as Windows NT 4.0 DNS, support full zone
transfer (AXFR) only. There are two types of the AXFR: one requires single record
per packet, the other allows multiple records per packet. The Windows 2000 DNS
server supports both, but by default uses multiple records per packet, unless is
configured differently for compatibility with BIND versions 4.9.4 and earlier, that do
not allow multiple records per packet. The Windows 2000 DNS server supports
incremental zone transfer (IXFR).
Querying the Database
DNS queries can be sent from a client (resolver) to a DNS server (a name server),
or between two name servers.
A query is merely a request for records of a specified type with a specified name.
For example, a query can request all host RRs with a particular name.
There are two types of queries that can be made to a DNS server:
•
•
Recursive
Iterative
A recursive query forces a DNS server to respond to a request with either a failure
Windows 2000 White Paper
8
Download from Www.Somanuals.com. All Manuals Search And Download.
or a successful response. Resolvers typically make recursive queries. With a
recursive query, the DNS server must contact any other DNS servers it needs to
resolve the request. When it receives a successful response from the other DNS
Server(s), it then sends a response to the client. The recursive query is typical for a
resolver querying a name server and for a name server querying its forwarder
(another name server configured to handle requests forwarded to it).
When a DNS server processes a recursive query and a query can not be resolved
from local zone files, the query must be escalated to a root DNS server. Each
standards-based implementation of DNS includes a cache file (or root server hints)
that contains entries for Root Servers of the Internet domains. The latest version of
the named cache file can be downloaded from InterNIC at
An iterative query is one in which the name server is expected to provide the best
information (also known as referral if the server is not authoritative for the name)
based on what the server knows from local zone files or from caching. If a name
server doesn’t have any information to answer the query, it simply sends a negative
response. A non-forwarding DNS server makes this type of query as it tries to find
names outside its local domain(s). It may have to query a number of outside DNS
Servers in an attempt to resolve the name.
The following figure shows an example of both types of queries.
2
""
3
Name Server
(root-server)
gov
4
gov
5
Name Server
Name Server
6
7
whitehouse
whitehouse.gov
Name Server
iterative queries
recursive query
www
1
8
client asks for IP
address for
Resolver
In the provided example the following queries are used to determine IP address for
Windows 2000 White Paper
9
Download from Www.Somanuals.com. All Manuals Search And Download.
www.whitehouse.gov:
•
•
•
Referral to the gov name server (NS RRs, for gov); for simplicity iterative A
queries by the DNS server (on the left) to resolve the IP addresses of the Host
names of the name servers returned by other DNS servers have been omitted.
•
•
•
•
•
Referral to the whitehouse.gov name server (NS RR, for whitehouse.gov)
Answer from whitehouse.gov server (the IP address for www.whitehouse.gov)
Answer from local DNS server to Resolver (the IP address for
www.whitehouse.gov)
Time to Live for Resource Records
A resolver caches the information it receives when it resolves queries. These
cached responses can then be used to answer subsequent queries for the same
information. The cached data, however, has a limited lifetime specified in the Time
To Live (TTL) parameter returned with the data. TTL makes sure the DNS Server
doesn’t keep information for so long that it becomes out of date. TTL for the cache
can be set on the DNS database (per individual RR by specifying the TTL field of
the record and per zone through the minimum TTL field of the SOA record) as well
as on the resolver side by specifying the maximum TTL the resolver allows to cache
the resource records.
There are two competing factors to consider when setting the time to live. One is
the accuracy of the cached information, the other is the DNS server’s utilization and
the network traffic. If the TTL is short, then the likelihood of having old information
goes down considerably, but increases the DNS servers utilization and the network
traffic. If the TTL is long, the cached responses could become outdated, meaning
the resolver could give false answers to queries. At the same time a long TTL
decreases the DNS server’s utilization and the network traffic. If a query is
answered with an entry from cache, the TTL of the entry is also passed with the
response. This way the resolvers that receive the response know how long the entry
is valid. The resolvers honor the TTL from the responding server; they don’t set it
again based on their own TTL. Thus entries truly expire rather than live in perpetuity
as they move from server to server with an updated TTL.
Updating the DNS Database
Since the RRs in the zone files are subjected to changes, they must be updated.
The implementation of DNS in Windows 2000 supports both static and dynamic
updates of the DNS database. The details of the dynamic update are discussed
later in the paper.
The new features of Windows 2000 DNS include:
•
Active Directory service Integration
Windows 2000 White Paper
10
Download from Www.Somanuals.com. All Manuals Search And Download.
•
•
•
•
•
•
Incremental Zone Transfer (IXFR)
Dynamic Update and Secure Dynamic Update
Unicode Character Support
Enhanced Domain Locator
Enhanced Caching Resolver Service
Enhanced DNS Manager
Active Directory Storage and Replication Integration
In addition to supporting a conventional way of maintaining and replicating DNS
zone files, the implementation of DNS in Windows 2000 has the option of using the
Active Directory services as the data storage and replication engine. This approach
provides the following benefits:
•
DNS replication will be performed by Active Directory service, so there is no
need to support a separate replication topology for DNS servers.
Active Directory service replication provides per-property replication granularity.
Active Directory service replication is secure.
•
•
•
A primary DNS server is eliminated as a single point of failure. Original DNS
replication is single-master; it relies on a primary DNS server to update all the
secondary servers. Unlike original DNS replication, Active Directory service
replication is multi-master; an update can be made to any domain controller in
it, and the change will be propagated to other domain controllers. In this way if
DNS is integrated into Active Directory service the replication engine will
always synchronize the DNS zone information.
Thus Active Directory service integration significantly simplifies the administration of
a DNS namespace. At the same time standard zone transfer to other servers (non
Windows 2000 DNS servers and previous versions of the Microsoft DNS servers) is
still supported.
The Active Directory Service Storage Model
The Active Directory service is an object-oriented X.500-compliant database, which
organizes resources available on your network in a hierarchical tree-like structure.
This database is managed by the set of Domain Controllers (DC). The portion of the
Active Directory service database for which a specific DC is authoritative is
physically located on the same computer where the DC is. Every resource in Active
Directory service is represented by an object. There are two distinct types of objects
supported by Active Directory service:
•
•
Containers–objects that can contain other container and leaf objects
Leafs–objects representing a specific resource within the Active Directory
service tree
Windows 2000 White Paper
11
Download from Www.Somanuals.com. All Manuals Search And Download.
Each Active Directory service object has attributes associated with it that define
particular characteristics of the object.
The classes of objects in the Active Directory service database as well as each
object’s attributes are defined in the Active Directory service schema. In other
words, the schema contains definitions for each class object available in Active
Directory service. The following are examples of the Active Directory service class
objects:
•
•
•
•
•
User
Group
Organizational Unit
DnsZone
DnsNode
In DS integrated DNS, each DNS zone becomes an Active Directory service
container object (DnsZone). The DnsZone object will contain a DnsNode leaf object
for every unique name within that zone. The DnsNode object will have a DnsRecord
multi-valued attribute with an instance of a value for every record associated with
the object’s name.
In the screen shot above, the object mail.mydomain.microsoft.com may have the A
attribute containing the IP address for mail.mydomain.microsoft.com. and the MX
attribute containing the mail exchange server information for
mail.mydomain.microsoft.com.
Windows 2000 White Paper
12
Download from Www.Somanuals.com. All Manuals Search And Download.
Note: Only DNS servers running on domain controllers can load DS integrated
zones.
The Replication Model
Since DNS zone information is now stored in Active Directory service, whenever an
update is made to a DNS server, it simply writes the data to Active Directory and
continues performing its usual functions. Active Directory service is now responsible
for replicating the data to other domain controllers. The DNS servers running on
other DCs will poll the updates from the DS.
Because Active Directory service uses the multi-master replication model, DNS
updates can be written to any DS integrated DNS server, and the data will
automatically be replicated across all the domain controllers. The multi-master
replication model, however, does have some caveats that are worth discussing. The
ability to write to Active Directory service from multiple domain controllers at the
same time can create a conflicting situation where the changes are made to the
same object on two different DNS servers. The conflict will eventually be resolved in
favor of the last update made to the object based on the timestamps of the updates.
The same rule is applied in the case where two or more nodes with the same name
are created on two or more DNS servers. Until the conflict is resolved and the DNS
server, containing invalid update, polls the valid data from the DS, it is possible that
requests for the same object made to two different DNS servers will be resolved
differently. This is why the ADS database is called loosely consistent.
Note: This subsection described the replication model between different copies of
the DS integrated zones only. There are implemented two other replication models
corresponding to the zone transfer between non-DS-integrated primary and
secondary zone files and between DS integrated primary and secondary zone files,
described below in the sections on “Protocol Description” and “IXFR and DS
Integration” respectively.
Zone Type Conversions
It is possible to convert any type of existing DNS zone to any other type. The issues
surrounding the primary zone conversions are of the most interest.
If a DS integrated zone is converted to an original (non-DS-integrated) primary zone
file, the DNS server loading the new primary zone must become the single primary
of the zone for the update. Therefore, the converted zone has to be deleted from
Active Directory service (namely from all DC databases previously authoritative for
this zone) so that the outdated or incorrect information is not being replicated.
Controlling Access to Zones
Active Directory service integration provides another valuable feature—the Secure
Dynamic DNS Updates. The DS maintains the Access Control Lists (ACL)
specifying groups or users who are allowed to modify the DS-integrated zones.
Windows 2000 White Paper
13
Download from Www.Somanuals.com. All Manuals Search And Download.
Note that only DNS server supports the Secure Dynamic Updates for the DS-
integrated zones. Windows 2000 implementation provides even finer granularity
allowing per-name ACL specification. More details we consider ACLs and specific
Administrative groups later in “Controlling Update Access to Zones and Names.”
Incremental Zone Transfer
To reduce latency in propagation of changes to a DNS database, an algorithm has
to be employed that actively notifies name servers of the change. This is
accomplished by the NOTIFY extension of the DNS. The NOTIFY packet, which is
sent by a Master server, does not contain any zone changes information. It merely
notifies the other party that some changes have been made to a zone and that a
zone transfer needs to be initiated.
The full zone transfer mechanism (AXFR) is not an efficient means to propagate
changes to a zone, as it transfers the entire zone file. Incremental transfer (IXFR) is
a more efficient mechanism, as it transfers only the changed portion(s) of the zone.
The IXFR protocol is defined in RFC 1995.
Protocol Description
When a slave name server capable of IXFR (IXFR client) initiates a zone transfer, it
sends an IXFR message containing the SOA serial number of its copy of the zone.
A master name server responding to the IXFR request (IXFR server) keeps a record
of the newest version of the zone and the differences between that copy and
several older versions. When an IXFR request with an older serial number is
received, the IXFR server sends only the changes required to make the IXFR
client’s version current. In some cases, however, a full zone transfer may be chosen
instead of an incremental transfer:
•
•
The sum of the changes is larger than the entire zone.
Only a limited number of recent changes to the zone are kept on the server for
performance reasons. If the client’s serial number is lower than the one the
server has in its delta changes, a full zone transfer will be initiated.
If a name server responding to the IXFR request, does not recognize the query
type, the IXFR client will automatically initiate an AXFR instead.
•
Windows 2000 White Paper
14
Download from Www.Somanuals.com. All Manuals Search And Download.
The following diagram details the incremental transfer mechanism.
Master DNS
Server
Serial Number 12
Slave DNS
Server 1
Serial Number 11
Serial Number 12
changes
Serial Number 11
changes
Slave DNS
Server 2
Serial Number 8
Serial Number 10
changes
Slave DNS
Server 3
Serial Number 10
IXFR and DS Integration
As was mentioned above, IXFR is an order-based protocol, which will send the
zone changes based on differences in the zone serial numbers. In a DS integrated
multi-master environment, changes to a DNS zone can be applied to any master
server. Therefore, different master servers will contain the zone changes applied in
a different order. This can cause problems in situations where a master IXFR server
that provided the zone changes to an IXFR client the last time is not available. If the
IXFR client selects another master server with zone changes applied in a different
order, the integrity of the IXFR client’s zone may be compromised after the
incremental transfer. In this case the server initiating a zone transfer will request
AXFR.
In summary, the DNS server could be a Slave and a Master with respect to the
same zone at the same time. This can happen if the zone is replicated from the
Master, server1, to the Slave, server2, and further from the Master, server2, to the
Slave, server3. (This chain could continue further, but regardless of its length it
obeys the rules described in this Section.) In this scenario the server2 will support
IXFR to the server3 as long as it receives IXFR from the server1.
Dynamic Update
In a conventional DNS implementation, if the authoritative information must be
changed, the network administrator has to edit the appropriate zone file manually.
The Domain Name System was originally designed to support queries of a statically
configured database. While the data was expected to change, the frequency of
those changes was expected to be fairly low, and all updates were made as
external edits to a zone’s primary master file.
The advent of dynamic, automated IP addressing using DHCP and related
Windows 2000 White Paper
15
Download from Www.Somanuals.com. All Manuals Search And Download.
protocols, rendered manual updating of DNS information insufficient and unusable.
No human administrator can be expected to keep up with dynamic address
assignments even in a medium size network environment. It was clear that
automatic assignment of addresses had to be integrated with dynamic DNS
updates. This capability, known as Dynamic Update, is defined in RFC 2136.
Protocol Description
The Windows 2000 DNS service supports Dynamic DNS (DDNS) as covered in
RFC 2136. The RFC introduces a new opcode or message format called UPDATE.
The update message can add and delete RRs from a specified zone as well as test
for prerequisite conditions. Update is atomic, that is, all prerequisites must be
satisfied or else no update operation will take place.
As in any conventional DNS implementation, the zone update must be committed
on a primary name server for that zone. If an update is received by a secondary
server, it will be forwarded up the replication topology until it reaches the primary
server. Note that in the case of a DS integrated zone, an update for a record in that
zone may be sent to any DNS server running on a domain controller whose DS
contains the zone.
A zone transfer process will always lock a zone so that a secondary server gets a
consistent zone view while transferring the zone data. When the zone is locked it
can no longer accept dynamic updates. If the zone is large and being locked very
often for the zone transfer purposes, it will starve dynamic update clients, and
system can become unstable. The Windows 2000 DNS server queues the update
requests that arrived during the zone transfer and processes them after the zone
transfer is completed.
Update Algorithm
The update sequence consists of the following steps:
•
•
A client, using an SOA query, locates primary DNS server and zone
authoritative for the record to be registered.
The client sends to the located DNS server an assertion or prerequisite-only
update to verify an existing registration. If the registration does not exist, the
client will send the appropriate dynamic update package to register the record.
If the update fails the client will attempt to register the record with other primary
DNS server if the authoritative zone is multimaster. If all primary DNS servers
failed to process the dynamic update it will be repeated after 5 minutes and, if
fails again, after another 10 minutes. If registration still failed, the described
pattern of the registration attempts will be repeated after 50 minutes after the
last retry.
•
Dynamic Update of DNS Records
Every computer running Windows 2000 attempts the registration of its A and PTR
records. The service that actually generates the DNS dynamic updates is the DHCP
client. The DHCP client service runs on every machine regardless of whether it is
configured as DHCP client or not.
Windows 2000 White Paper
16
Download from Www.Somanuals.com. All Manuals Search And Download.
The dynamic update algorithm differs depending on the type of client network
adapter engaging in the dynamic update process. The following three scenarios will
be examined:
•
•
•
DHCP client
Statically configured client
RAS client
DHCP Client
When a Windows 2000 DHCP client bootstraps, it negotiates the dynamic update
procedure with a DHCP server. By default, the DHCP client always proposes that it
update the A resource record, while the DHCP server updates the PTR resource
record.
The Windows 2000 DHCP server can be configured to “Update DNS server
according to client request” (default setting), or ”Always update forward and reverse
look-ups.”
If the DHCP server is configured to Always update forward and reverse lookups, it
will update both A and PTR RRs itself regardless of the DHCP client’s request.
If the DHCP server is disabled to perform dynamic updates, the DHCP client will
attempt to update both A and PTR RRs itself.
At expiration of the IP address lease, these records must be removed from the
appropriate zones. Dynamic cleanup requires that the records are deleted by the
registering computer(s)—in this case the DHCP client or server or both—that
created them. Thus, if the machine that created an A or PTR resource record is
disconnected from the network before the lease expiration, the corresponding
resource records may become stale. Since the DHCP server is the owner of the IP
address it is encouraged that DHCP servers perform PTR records registration when
possible.
Mixed Environment
It is possible that a Windows 2000 DHCP client will try to negotiate the dynamic
update procedure with the Windows NT 4.0 DHCP server (or any other DHCP
server that doesn’t support DNS dynamic updates). Since the Windows NT 4.0
DHCP server does not support dynamic updates, the Windows 2000 DHCP client
will have to update both the A and PTR RRs itself.
In the reverse situation, with down-level clients (for example, Windows 95,
Windows 98, and Windows NT 4.0), the Windows 2000 DHCP server after
negotiation of a lease with a client, will register both the A and PTR records in DNS,
if the ”Do updates for down-level DHCP clients” option is selected in a configuration
of the DHCP server.
DHCP Server Considerations
In addition, when the DHCP client’s lease expires, the DHCP server will remove the
Windows 2000 White Paper
17
Download from Www.Somanuals.com. All Manuals Search And Download.
client’s PTR RR. Also, the DHCP server will remove the corresponding A records if
configured to ”Discard forward lookups when leases expire.”
Statically Configured Client
A statically configured client does not communicate with the DHCP server and
dynamically updates both A and PTR RRs every time it boots up, changes its IP
address or per-adapter domain name.
RAS Client
A RAS client behaves in the same manner as a statically configured client in that no
interaction occurs between the client and the DHCP server. The client is
responsible for dynamically updating both A and PTR RRs. The RAS client attempts
to delete both records before closing the connection, but the records remain stale if
the update failed for some reason (for example, the DNS server was not running at
that time). The records also remain stale if the line goes down unexpectedly. In
these cases a RAS server attempts deregistration of the corresponding PTR record.
Client Reregistration
One of the benefits of Dynamic Update is its ability to reregister RRs in DNS, which
provides a certain level of fault tolerance in case some records in a zone become
corrupted. DHCP server automatically reregisters the DNS records that it registered
upon renewal of the lease. The Windows 2000-based clients reregister their DNS
records every 24 hours. This value could be changed by specifying REG_DWORD
DefaultRegistrationRefreshInterval value under the HKLM\System\
CurrentControlSet\Services\Tcpip\Parameters registry key.
Note: When a client registers in DNS, the associated RRs include TTL, which by
default is set to 20 minutes. This can be changed by specifying REG_DWORD
DefaultRegistrationTtl value under the HKLM\System\CurrentControlSet\
Services\Tcpip\Parameters registry key.
Dealing with Name Conflicts
If, during Dynamic Update registration, a client discovers that its name is already
registered in DNS with an IP address that belongs to some other machine, by
default the client deletes the existing registration and registers its own RRs in its
place. By using the appropriate registry key, this behavior may be disabled and the
client will back out of the registration process and log the error in the Event Viewer.
The first scenario allows you to remove stale records, but is vulnerable to malicious
attacks. The second scenario has opposite effect. The problem of deletion of
existing records when name collision takes place is resolved by using Secure
Dynamic Updates (described in the next section). In this case only the owner of the
existing record can update it.
Secure Dynamic Update
The DS integrated zones may be configured to use a Secure Dynamic Update.
Access Control Lists, as mentioned in “Controlling Access to Zones,” specify the list
of groups or users allowed to update resource records in such zones. The
Windows 2000 DNS implementation of the Secure Dynamic Update is based on the
Windows 2000 White Paper
18
Download from Www.Somanuals.com. All Manuals Search And Download.
algorithm defined in the Internet Draft “GSS Algorithm for TSIG (GSS-TSIG).” This
algorithm is based on the Generic Security Service Application Program Interface
(GSS-API) specified in RFC 2078. It provides security services independently of the
underlying security mechanism, and separates the security services into the
following processes:
•
•
Establishing a security context by passing security tokens.
Once a security context has been established, it has a finite lifetime during
which it can be used to create and verify transaction signatures on messages
between the two parties.
The sequence of events in the Secure Dynamic Update process is described below.
1
Local name server
Find authoritative
server
Result
Client
Find authoritative
server
Server
Active Directory
2
Result
Attempt non-secure
update
3
Refused
TKEY negotiation
TKEY negotiation
TKEY negotiation (Kerberos)
TKEY negotiation (Kerberos)
4
TKEY negotiation (Kerberos)
TKEY negotiation (Kerberos)
Update with TSIG
5
Attempt to Update Active
Directory with LDAP
Reply (Success or
Failure) with LDAP
6
Reply (Success or
Failure) with TSIG
7
Windows 2000 White Paper
19
Download from Www.Somanuals.com. All Manuals Search And Download.
In step 1, the client queries the local name server to discover which server is
authoritative for the name it is attempting to update, and the local name server
responds with the reference to the authoritative server.
In step 2, the client queries the authoritative server to verify that it is authoritative for
the name it is attempting to update, and the server confirms it.
In step 3, the client attempts a non-secure update, and the server refuses the non-
secure update. Had the server been configured for non-secure dynamic update for
the appropriate zone rather than secure dynamic update, the server would have
instead attempted to make the update.
In step 4, the client and server begin security context negotiation. They exchange
one or more security tokens (depending on the underlying security provider) using
the TKEY resource record as the vehicle to transfer security tokens between the
client and the server. The TKEY resource record is specified in the Internet Draft
“Secret Key Establishment for DNS (TKEY RR).”
First, the client and server negotiate an underlying security mechanism.
Windows 2000 dynamic update clients and servers both propose Kerberos, so in
this case, they would decide to use Kerberos. Next, using Kerberos, they verify
each other’s identity.
Once the security context has been established, it will be used to create and verify
transaction signatures on messages between the client and server.
In step 5, the client sends the signed dynamic update request to the server. As a
vehicle to transfer the signatures, the client and server use the TSIG resource
record, specified in the Internet Draft “Secret Key Transaction Signatures for DNS”
(TSIG).
In step 6, the server attempts to make the update to Active Directory. Whether or
not it can depends on whether the client has the proper permissions to make the
update and whether the prerequisites have been satisfied.
In step 7, the server sends a reply to the client stating whether or not it was able to
make the update, signed with the TSIG key. If the client receives a spoofed reply, it
throws it away and waits for a signed response.
Secure Dynamic Update Policy
When a client attempts a dynamic update on the DNS server, it can be configured
to use one of the following approaches:
•
Attempt a non-secure dynamic update first, and if it fails, negotiate a secure
dynamic update (default configuration)
•
•
Always negotiate a secure dynamic update
Attempt only a non-secure dynamic update
The default approach is recommended as it allows client to register with a DNS
servers that are not capable of the secure dynamic update. The default setting,
Windows 2000 White Paper
20
Download from Www.Somanuals.com. All Manuals Search And Download.
however, can be changed through the registry.
Controlling Update Access to Zones and Names
Active Directory controls access to the secure DNS zones and names in them
through the ACLs. The ACLs can be specified for either an entire zone or modified
for some specific names. By default any authenticated user can create the A or
PTR RRs in any zone. But once an owner name has been created (regardless of
type of record) only users or groups specified in the ACL for that name with write
permission are enabled to modify records corresponding to that name. While this
approach is desirable in most scenarios, some special situations need to be
considered separately.
DnsUpdateProxy Group
As described in the “Mixed Environment” section of this paper a DHCP server may
be configured so that it would dynamically register A and PTR records for downlevel
clients. In this situation a default configuration of the secure update may cause stale
records. The following example explains. If a DHCP server performs a secure
dynamic update on a name, the DHCP server becomes the owner of that name, and
only that DHCP server can update the name. This can cause problems in a few
circumstances. For example, suppose the DHCP server DHCP1 created an object
for the name myname.mycompany.com. and then went down, and the backup
DHCP server, DHCP2, tried to update the name. It would not be able to update the
name because it did not own it. In a similar example, suppose DHCP1 added an
object for the name myname.mycompany.com, and then the administrator upgraded
the myname.mycompany.com host to Windows 2000. Because the
myname.mycompany.com host did not own the name, it would not be able to
update its own name.
The solution to this problem is provided by introduction of a new group called “DNS
Update Proxy.” Any object created by the members of this group has no security
and the first user (that is not a member of the DnsUpdateProxy group) to touch a
name becomes its owner. Thus, if every DHCP server registering A records for
downlevel clients is a member of the DNS Update Proxy, the problem is eliminated.
The DNS Update Proxy group is configurable through the Active Directory manager.
At the same time, this solution introduces security holes since any DNS names
registered by the computer running the DHCP server are non-secure. An A resource
record for the computer is an example of such a record. The security holes may
become more significant if a DHCP server (that is, a member of the
DnsUpdateProxy group) is installed on a DC. In this case all SRV, A and CNAME
records registered by netlogon for that DC are non-secure. To minimize the problem
it is not recommended to install a DHCP server on a DC. Another strong argument
against running DHCP server on a Domain Controller is, that such DHCP server
has full control over all DNS objects stored in the Active Directory, since the DHCP
server is running under the computer (in this case, Domain Controller) account.
Windows 2000 White Paper
21
Download from Www.Somanuals.com. All Manuals Search And Download.
DNS Admins Group
By default the DNS Admins group has full control of all zones and records in a
Windows 2000 domain in which it is specified. In order for a user to be able to
enumerate zones in a specific Windows 2000 domain, the user (or a group the user
belongs to) must be enlisted in the DNS Admin group. At the same time it is
possible that a domain administrator(s) may not want to grant such a high level of
administration (full control) to all users listed in the DNS administrator group. The
typical case would be if a domain administrator wanted to grant full control for a
specific zone and read only control for other zones in the domain to a set of users.
Create the groups Zone1Admins, Zone2Admins, and so on for the zones 1,2, and
so on respectively. Then the ACL for zone N will contain a group ZoneNAdmins with
full control. At the same time all the groups Zone1Admins, Zone2Admins, and so
forth will be included in the DNS Admins group. The DNS Admins group should
have read permission only. Since a zone’s ACL always contains the DNS Admins
group, all users enlisted in the Zone1Admins, Zone2Admins, and so forth will have
read permission for all the zones in the Domain.
The DNS Admins group is configurable through the Active Directory Users and
Computers manager.
Reserving Names
The default configuration, where any authenticated user may create a new name in
a zone, may not be sufficient for some environments requiring a high level of
security. In such cases, the default ACL can be changed to allow creation of objects
in a zone only by certain groups or users. Per-name granularity of ACLs provides
another solution to this problem. An administrator may reserve a name in a zone
leaving the rest of the zone open for creation of the new objects by all authenticated
users. To do so an administrator needs to create a record for the reserved name
and set the appropriate list of groups or users in the ACL. Then only the users listed
in the ACL will be able to register another record under the reserved name.
Aging and Scavenging
With dynamic update, records are automatically added to the zone when computers
and domain controllers are added. However, in some cases, they are not
automatically deleted.
Having many stale resource records presents a few different problems. Stale
resource records take up space on the server, and a server might use a stale
resource record to answer a query. As a result, DNS server performance suffers.
To solve these problems, the Windows 2000 DNS server can scavenge stale
records; that is, it can search the database for records that have aged and delete
them. Administrators can control aging and scavenging by specifying the following:
•
Which servers can scavenge zones
Windows 2000 White Paper
22
Download from Www.Somanuals.com. All Manuals Search And Download.
•
•
Which zones can be scavenged
Which records must be scavenged if they become stale
The DNS server uses an algorithm that ensures that it does not accidentally
scavenge a record that must remain, provided that you configure all the parameters
correctly. By default, the scavenging mechanism is disabled. Do not enable it
unless you are absolutely certain that you understand all the parameters.
Otherwise, you might accidentally configure the server to delete records that it
should retain. If a name is accidentally deleted, not only do users fail to resolve
queries for that name, but also, any user can create that name in DNS and then
take ownership of it, even on zones configured for secure dynamic update.
You can manually enable or disable aging and scavenging on a per-server, per-
zone, or per-record basis. You can also enable aging for sets of records by using
Dnscmd.exe. Keep in mind that if you enable scavenging on a record that is not
dynamically updated, the record will be deleted if it is not periodically refreshed, and
you must recreate the record if it is still needed.
If scavenging is disabled on a standard zone and you enable scavenging, the
server does not scavenge records that existed before you enabled scavenging. The
server does not scavenge those records even if you convert the zone to an Active
Directory–integrated zone first. To enable scavenging of such records, use
Dnscmd.exe.
Aging and Scavenging Parameters
The Windows 2000 DNS server uses a record timestamp, along with parameters
that you configure, to determine when to scavenge records.
The table below lists the zone parameters that affect when records are scavenged.
You configure these properties on the zone.
Windows 2000 White Paper
23
Download from Www.Somanuals.com. All Manuals Search And Download.
Aging and Scavenging Parameters for Zones
Description Configuration Tool
Time interval, after the last DNS console and
Zone Parameter
Notes
No-refresh interval
When an Active Directory–
integrated zone is created,
this parameter is set to the
DNS server’s parameter
Default no-refresh interval.
time a record’s timestamp
has been refreshed, during
which the server does not
accept refreshes for the
record. (The server still
accepts updates.)
Dnscmd.exe
This parameter replicates
through Active Directory
replication.
Refresh interval
The refresh interval comes DNS console and
after the no-refresh interval. Dnscmd.exe
On expiration of the no-
When an Active Directory–
integrated zone is created,
this parameter is set to the
DNS server’s parameter
DefaultRefreshInterval.
refresh interval, the server
begins accepting refreshes
for the record. After the
This parameter is replicated
by Active Directory.
refresh interval expires, the
DNS server may scavenge
records that have not been
refreshed during or after the
refresh interval.
Enable Scavenging
This flag indicates whether DNS console and
When an Active Directory–
integrated zone is created,
this parameter is set to the
DNS server’s parameter
DefaultEnableScavenging.
aging and scavenging is
enabled for the records in
the zone.
Dnscmd.exe
This parameter is replicated
by Active Directory.
ScavengingServers
Start scavenging
This parameter determines Only Dnscmd.exe
which servers can
This parameter is replicated
by Active Directory.
scavenge records in this
zone.
This parameter determines Not configurable
when a server can start
This parameter is not
replicated by Active Directory.
scavenging of this zone.
Windows 2000 White Paper
24
Download from Www.Somanuals.com. All Manuals Search And Download.
The table below lists the server parameters that affect when records are scavenged.
You set these parameters on the server.
Aging and Scavenging Parameters for Servers
Server Parameter
Description
Configuration Tool
Notes
Default no-refresh
interval
This value specifies the no- DNS console (shown as
By default, this is 7 days.
refresh interval that is used No-refresh interval) and
by default for an Active
Directory–integrated zone
created on this server.
Dnscmd.exe
Default refresh interval
This value specifies the
DNS console (shown as
By default, this is 7 days.
refresh interval that is used Refresh interval) and
by default for an Active
Directory–integrated zone
created on this server.
Dnscmd.exe
Default Enable
Scavenging
This value specifies the
Enable Scavenging
DNS console (shown as
Enable scavenging)and
Dnscmd.exe
By default, scavenging is
disabled.
parameter that is used by
default for an Active
Directory–integrated zone
created on this server.
Enable scavenging
This flag specifies whether DNS console, Advanced
the DNS server can perform View (shown as Enable
scavenging of stale records. automatic scavenging of
If scavenging is enabled on stale records) and
By default, scavenging is
disabled.
a server, it automatically
repeats scavenging as often
as specified in the
Dnscmd.exe
Scavenging Period
parameter.
Scavenging Period
This period specifies how
often a DNS server
DNS console, Advanced
View (shown as
By default, this is 7 days.
performs scavenging.
Scavenging Period) and
Dnscmd.exe
Windows 2000 White Paper
25
Download from Www.Somanuals.com. All Manuals Search And Download.
Record Life Span
The Figure below shows the life span of a scavengeable record.
When a record is created or refreshed on an Active Directory–integrated zone or on
a standard primary zone for which scavenging is enabled, a record’s timestamp is
written.
Because of the addition of the timestamp, a standard primary zone file for which
scavenging is enabled has a format slightly different from a standard DNS zone file.
This does not cause any problems with zone transfer. However, you cannot copy a
standard zone file for which scavenging is enabled to a non-Windows 2000-based
DNS server.
The value of the timestamp is the time when the record was created or the record
was last refreshed. If the record belongs to an Active Directory–integrated zone,
then every time the timestamp is refreshed, the record is replicated to other domain
controllers in the domain.
By default, the timestamps of records that are created by any method other than
dynamic update are set to zero. A zero value indicates that the timestamp must not
be refreshed and the record must not be scavenged. An Administrator can manually
enable aging of such records.
After the record is refreshed, it cannot be refreshed again for the period specified by
the no-refresh interval. The no-refresh interval, a zone parameter, prevents
unnecessary Active Directory replication traffic.
However, the record can still be updated during the no-refresh interval. If a dynamic
update request requires record modification, it is considered an update. If it does
not require record modifications, it is considered a refresh. Therefore, prerequisite-
only updates—updates that include a list of prerequisites but no zone changes—are
also considered refreshes.
The no-refresh interval is followed by the refresh interval. After the expiration of the
no-refresh interval, the server begins to accept refreshes. The record can be
refreshed as long as the current time is greater than the value of the timestamp plus
the no-refresh interval. When the server accepts a refresh or an update, the value
of the timestamp changes to the current time.
Next, after the expiration of the refresh interval, the server can scavenge the record
if it has not been refreshed. The record can be scavenged if the current time is
greater than the value of the timestamp plus the value of the no-refresh interval plus
the value of the refresh interval. However, the server does not necessarily scavenge
Windows 2000 White Paper
26
Download from Www.Somanuals.com. All Manuals Search And Download.
the record at that time. The time at which records are scavenged depends on
several server parameters.
Scavenging Algorithm
The server can be configured to perform scavenging automatically, using a fixed
frequency. In addition, you can manually trigger scavenging on a server to perform
immediate scavenging. When scavenging starts, the server attempts to scavenge
all primary zones and succeeds if all the following conditions are met:
•
•
•
•
The EnableScavenging parameter is set to 1 on the server.
The EnableScavenging parameter is set to 1 on the zone.
Dynamic update is enabled on the zone.
The zone parameter ScavengingServers is not specified or contains the IP
address of this server.
•
The current time is greater than the value of the zone parameter
StartScavenging.
The server sets StartScavenging whenever any of the following events occur:
•
•
•
•
Dynamic update is turned on.
EnableScavenging is set from 0 to 1 on the zone.
The zone is loaded.
The zone is resumed.
StartScavenging is equal to the time that one of the preceding events occurs plus
the amount of time specified in the refresh interval for the zone. This prevents a
problem that can occur if the client is unable to refresh records because the zone
isn’t available—for example, if the zone is paused or the server is not working. If
that happens and the server does not use StartScavenging, the server could
scavenge the zone before the client has a chance to update the record.
When the server scavenges a zone, it examines all the records in the zone one by
one. If the timestamp is not zero, and the current time is later than the time specified
in the timestamp for the record plus the no-refresh and refresh intervals for the
zone, it deletes the record. All other records are unaffected by the scavenging
procedure.
Configuring Scavenging Parameters
This section discusses issues you must consider when configuring scavenging
parameters.
To ensure that no records are deleted before the dynamic update client has time to
refresh them, the refresh interval must be greater than the refresh period for each
record subjected to scavenging within a zone. Many different services might refresh
records at different intervals; for example, Netlogon refreshes records once an hour,
cluster servers generally refresh records every 15 to 20 minutes, DHCP servers
refresh records at renewal of IP address leases, and Windows 2000–based
computers refresh their A and PTR resource records every 24 hours.
Windows 2000 White Paper
27
Download from Www.Somanuals.com. All Manuals Search And Download.
Usually, the DHCP service requires the longest refresh interval of all services. If you
are using the Windows 2000 DHCP service, you can use the default scavenging
and aging values. If you are using another DHCP server, you might need to modify
the defaults.
The longer you make the no-refresh and refresh intervals, the longer stale records
remain. Therefore, you might want to make those intervals as short as is
reasonable. However, if you make the no-refresh interval too short, you might cause
unnecessary replication by Active Directory.
Unicode Character Support
Original DNS names are restricted to the character set specified in RFCs 1123 and
952. It includes a-z, 0-9, and characters. In addition, the first character of the DNS
name can be a number (to accommodate the needs of companies like 3Com or
3M).
NetBIOS names are restricted to a much broader character set than the DNS
names. The difference in the character sets used by the two name services could
be an issue during upgrade from NetBIOS names (Windows NT 4.0) to DNS names
(Windows 2000).
One solution to the problem is to rename NetBIOS names to DNS names so that
they adhere to existing DNS naming standards. This is a time consuming process,
which in many cases will not be possible.
The Clarification to DNS specification (RFC 2181) enlarges the character set
allowed in DNS names. It specifies that a DNS label can be any binary string, and it
does not necessarily have to be interpreted as ASCII. Based on this definition,
Microsoft has proposed that DNS name specification be readjusted to
accommodate larger character set–the UTF-8 character encoding (RFC 2044), a
superset of ASCII and a translation of the UCS-2 (or Unicode) character encoding.
The Windows 2000 implementation of DNS is designed to support UTF-8 character
encoding.
The UTF-8 character set includes characters from most of the world’s written
languages, allowing a far greater range of possible names and allowing names to
use characters that are relevant to a particular locality. It solves the issue of
transition from NetBIOS names (Windows NT 4.0) to DNS names (Windows 2000).
Caution is advised, however, when implementing a DNS system using the UTF-8
character encoding, as some protocols place restrictions on the characters allowed
in a name. In addition, names that are intended to be globally visible (RFC 1958)
should contain only the characters specified in RFC 1123.
Interoperability Considerations
The Windows 2000 DNS server can be configured to allow or disallow the use of
UTF-8 characters on a per-server or per-zone basis. A non-UTF-8–aware DNS
server may accept a zone transfer of a zone containing UTF-8 names, but it may
not be able to write back those names to a zone file or reload those names from a
Windows 2000 White Paper
28
Download from Www.Somanuals.com. All Manuals Search And Download.
zone file. Administrators should exercise caution when transferring a zone
containing UTF-8 names to a non-UTF–8-aware DNS server.
The Domain Locator
The Windows 2000 Domain Locator, implemented in the Netlogon service, is a
service that enables a client (the machine locating a Domain Controller (DC)) to
locate a DC. It contains the IP/DNS compatible and Windows NT 4.0 compatible
locators which provide interoperability in a mixed Windows 2000- and Windows NT-
based 4.0 environment.
The domain controller location algorithm, shown in the flowchart below, is
implemented as follows:
•
The client collects the information needed to select a domain controller:
•
The DNS domain name of the Active Directory domain the computer is
joined to,
•
The domain GUID of the queried domain. It will typically only be known
if the domain being queried is the primary domain of the machine. If
the domain GUID is not known, it is left blank,
•
The site name. It is either obtained from a previous query or hard
configuration. If neither is available, the site name is left blank.
•
•
The NetLogon service first calls the DNS server using the IP/DNS Compatible
Locator.
If the machine running Netlogon service is not configured to use IP or DNS, or
the IP/DNS Compatible Locator failed to discover a domain controller, the
NetLogon service performs DC discovery using the Windows NT 4 Compatible
Domain Locator.
•
The information on the located domain controller is returned to the caller.
Windows 2000 White Paper
29
Download from Www.Somanuals.com. All Manuals Search And Download.
Collect the following info:
DNS Domain Name,
Domain GUID,
Site Name.
Did client find DNS Domain
Name or Domain GUID?
No
Finish
Yes
Call IP/DNS
compatible
Locator
Call
Did the Locator
discover at least one
running DC?
Windows NT 4
compatible
Locator
No
Yes
Return result
to client
Finish
Windows 2000 White Paper
30
Download from Www.Somanuals.com. All Manuals Search And Download.
The description of the Windows NT 4 Compatible Domain Locator has been
omitted, since it is irrelevant to the DNS and is described in “Windows 2000 Domain
Controller Locator
IP/DNS Compatible Locator
The algorithm behind the IP/DNS Compatible Locator consists of two main parts.
First, the domain DC(s) must be registered with a DNS server. Second, the locator
must submit a DNS query to the DNS server to locate a DC in the specified domain.
After this query is resolved an LDAP User Datagram Protocol (UDP) lookup is sent
to one or more of the DCs listed in the response to the DNS query to ensure their
availability. Finally, the NetLogon service caches the discovered DC to aid in
resolving future requests. Below this algorithm is described in detail.
DNS Record Registration and Resolver Requirements
A Windows 2000 domain is represented by a DNS domain name (for example,
nt.microsoft.com.). Each domain controller registers its address with DNS using the
standard DNS dynamic update. In addition to registering its host name (A record),
the domain controller registers pseudonym(s) (SRV or CNAME records) that will
help finding the DC based on predictable criteria (for example, the DC in a particular
site). If multiple DCs have the same criteria, then there would be multiple records
with the same pseudonym. A client looking for a DC with that criteria would receive
all the applicable records from the DNS server.
For example, a DC named phoenix in the domain nt.microsoft.com. with an IP
address of 157.55.81.157 would register the following records with DNS:
phoenix.nt.microsoft.com. A
_ldap._tcp.nt.microsoft.com.
_kerberos._tcp.nt.microsoft.com.
157.55.81.157
SRV 0 0 389 phoenix.nt.microsoft.com.
SRV
0 0 88 phoenix.nt.microsoft.com.
0 0 389
_ldap._tcp.dc._msdcs.nt.microsoft.com. SRV
phoenix.nt.microsoft.com.
_kerberos._tcp.dc._msdcs.nt.microsoft.com. SRV
phoenix.nt.microsoft.com.
0 0 88
With these records in place (and similar records by all the other DCs in the same
domain), a simple DNS lookup of "_ldap._tcp.dc._msdcs.nt.microsoft.com." will
return the names and addresses of all the DCs in the domain.
The NetLogon service on each Windows 2000 DC registers one or more of the
following DNS SRV records with DNS server(s) as appropriate. The list below
defines the name associated with the registered record, describes the lookup
criteria supported by that record, and defines checks performed by NetLogon as
each record is registered.
Netlogon registers the following DNS SRV records as appropriate:
_ldap._tcp.<DnsDomainName>.
Allows a client to find an LDAP server in the domain named by <DnsDomainName>.
For example, _ldap._tcp.nt.microsoft.com. The LDAP server is not necessarily a
DC. All Windows NT Domain controllers will register this name.
Windows 2000 White Paper
31
Download from Www.Somanuals.com. All Manuals Search And Download.
_ldap._tcp.<SiteName>._sites.<DnsDomainName>.
Allows a client to find an LDAP server in the domain named by <DnsDomainName>
and is in the site named by <SiteName>. For example,
_ldap._tcp.redmond._sites.nt.microsoft.com. All Windows NT Domain controllers
will register this name.
_ldap._tcp.dc._msdcs.<DnsDomainName>
Allows a client to find a DC of the domain named by <DnsDomainName>. All
Windows NT Domain controllers will register this name.
_ldap._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainName>
Allows a client to find a DC of the domain named by <DnsDomainName> and is in
the site named by <SiteName>. All Windows NT Domain controllers will register this
name.
_ldap._tcp.pdc._msdcs.<DnsDomainName>.
Allows a client to find the primary DC (PDC) of the domain named by
<DnsDomainName>. Only the PDC of the domain registers this name. The PDC is
responsible for deregistering any other registrations of this name.
_ldap._tcp.gc._msdcs.<DnsForestName>.
Allows a client to find a Global Catalog (GC) server for this domain. Only a DC
serving the GC of the forest named by <DnsForestName> registers this name. For
example, _ldap._tcp.gc._msdcs.microsoft.com.
_ldap._tcp.<SiteName>._sites.gc._msdcs.<DnsForestName>.
Allows a client to find a Global Catalog (GC) server for this domain and is in the site
named by <SiteName>. Only a DC serving the GC of the forest named by
<DnsForestName> registers this name. For example,
_ldap._tcp.redmond._sites.gc._msdcs.microsoft.com.
_gc._tcp.<DnsForestName>.
Allows a client to find a Global Catalog (GC) server for this domain. Only an LDAP
server serving the GC of the forest named by <DnsForestName> registers this
name. For example, _gc._tcp.microsoft.com. The LDAP server is not necessarily a
DC.
_gc._tcp.<SiteName>._sites.<DnsForestName>.
Allows a client to find a Global Catalog (GC) server for this domain and is in the site
named by <SiteName>. Only an LDAP server serving the GC of the forest named
by <DnsForestName> registers this name. For example,
_gc._tcp.redmond._sites.microsoft.com. The LDAP server is not necessarily a DC.
_ldap._tcp.<DomainGuid>.domains._msdcs.<DnsForestName>.
Allows a client to find a DC in a domain with a GUID of <DomainGuid>. This
operation will only be done if the <DnsDomainName> of the domain has changed
and the <DnsForestName> is known. This operation is expected to be infrequent.
This operation will only function if the Dns Forest Name has not also been renamed.
For example, _ldap._tcp.4f904480-7c78-11cf-b057-
00aa006b4f8f.domains._msdcs.microsoft.com. All Windows NT Domain controllers
will register this name.
_kerberos._tcp.<DnsDomainName>
Allows a client to locate a Kerberos Key Distribution Center (KDC) for the domain.
Windows 2000 White Paper
32
Download from Www.Somanuals.com. All Manuals Search And Download.
All DCs providing the Kerberos service will register this name. This service is at
least an RFC-1510 compliant Kerberos 5 KDC. The KDC is not necessarily a DC.
All Windows NT Domain controllers running the Kerberos KDC service will register
this name.
_kerberos._udp.<DnsDomainName>
Same as _kerberos._tcp.<DnsDomainName> except the UDP is implied.
_kerberos._tcp.<SiteName>._sites.<DnsDomainName>
Allows a client to locate a Kerberos KDC for the domain named by
<DnsDomainName> and is in the site named by <SiteName>. This service is at
least an RFC-1510 compliant Kerberos 5 KDC. The KDC is not necessarily a DC.
All Windows NT Domain controllers running the Kerberos Key Distribution Center
service will register this name.
_kerberos._tcp.dc._msdcs.<DnsDomainName>
Allows a client to find a DC running a Kerberos KDC for the domain named by
<DnsDomainName>. All Windows NT Domain controllers running the Kerberos Key
Distribution Center service will register this name.
_kerberos._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainName>
Allows a client to find a DC running a Kerberos KDC for the domain named by
<DnsDomainName> and is in the site named by <SiteName>. All Windows NT
Domain controllers and running the Kerberos Key Distribution Center service
_kpasswd._tcp.<DnsDomainName>
Allows a client to locate a Kerberos Password Change server for the domain. All
servers providing the Kerberos Password Change service will register this name.
This server at least conforms to draft-ietf-cat-kerb-chg-password-02.txt. The server
is not necessarily a DC. All Windows NT Domain controllers running the Kerberos
Key Distribution Center service will register this name.
_kpasswd._udp.<DnsDomainName>
Same as _kpasswd._tcp.<DnsDomainName> except the UDP is implied.
Netlogon registers the following DNS A records:
<DnsDomainName>.
Allows a client to find any DC in the domain via a normal A record lookup. A name
such as this will be returned to the LDAP client via an LDAP referral.
gc._msdcs.<DnsForestName>
Allows a client to find any GC in the forest via a normal A record lookup. A name
such as this will be returned to the LDAP client via an LDAP referral.
Netlogon registers the following DNS CNAME records:
<DsaGuid>._msdcs.<DnsForestName>
Allows a client to find any DC in the forest via a normal A record lookup. The only
information known about the DC is the GUID of the MSFT-DSA object for the DC
and the name of the forest the DC is in. This name is used to ease the ability to
rename a DC.
Windows 2000 White Paper
33
Download from Www.Somanuals.com. All Manuals Search And Download.
IP/DNS DC Locator Algorithm
The IP/DNS DC Locator algorithm is executed in the context of the NetLogon
service, (typically) running on the client. The algorithm, shown in the flowchart,
works as follows:
•
•
Call DnsQuery specifying one of the criteria specific DNS host names.
If IP is not supported or DNS is not supported, return from the algorithm
indicating so.
•
•
If the specified name cannot be found (perhaps because the domain has been
renamed), return from the algorithm indicating so.
Upon retrieving the list of DCs from DNS, the client will ping the various DCs in
weighted random order. After each ping, the client will wait 1/10th second for a
response to the ping. Choosing the DCs at random provides a first level of load
balancing. Doing multiple pings in quick succession ensures the discovery
algorithm terminates in a reasonable amount of time. The pinging continues
until all the returned DCs have been tried or until positive response has been
received from the pinged DC, whatever comes first.
•
•
When a DC responds to the ping, the parameters supplied in the response is
compared to the parameters required by client. If the information mismatches,
the response is ignored.
The first DC to respond to a ping and satisfy client’s requirements is used by
the client.
Windows 2000 White Paper
34
Download from Www.Somanuals.com. All Manuals Search And Download.
Send a DNS query
specifying one of the
criteria specific DNS
host names
Does the DNS query
response contain at
least one DC?
Quit indicating
the reason
No
No
Yes
Finish
Among all DCs returned in the
DNS response is there at least
one non-pinged one?
Yes
Among all DCs returned by the DNS server, that has not
been pinged yet, choose one DC based on weighted
random order. Ping it. Wait for 0.1 sec and listen for
responses from this and previously pinged DCs.
No
No
Did you receive a
DC's response?
Yes
Does it match
client's
requirements?
Yes
Cache the the
result and
return it to
client
Finish
Discovering Site specific DCs
When a locator searches for a DC, it attempts to find one in the same site where
the client is unless specified otherwise. If at the beginning of the search the locator
is not aware of the client’s site, it will query a DNS server for the records of the DCs
in the specified domain. Then it contacts discovered DCs and finds the site to which
the client belongs. If the discovered DC is not in the same site the locator will repeat
DNS query specifying the client’s site.
Windows 2000 White Paper
35
Download from Www.Somanuals.com. All Manuals Search And Download.
A client might have multiple network adapters and thus might have multiple IP
addresses. That could theoretically put the client in multiple sites. The design above
ignores this remote possibility. Rather, it assumes that the client is in the site
corresponding to the adapter, which was used to ping one of the DCs. To handle
the case where this ambiguity is detrimental, NetLogon allows the site name to be
manually configured by setting the REG_SZ value SiteName under the Registry key
HKLM\System\CurrentControlSet\Services\NetLogon\Parameters. If this parameter
is defined, the Site Name of the machine is forced to be the specified value and the
site name dynamically discovered from Active Directory by the locator will never be
used.
Caching Resolver
The Windows 2000 implementation of DNS introduces a client-side caching
resolver for DNS name resolution. Caching resolver is a Windows 2000 service with
the sole purpose of improving name lookup performance, and reducing network
traffic associated with name lookups by minimizing the number of name resolution
round trips.
Caching resolver runs in the context of the Services.exe process (Service Control
Manager) and can be turned on and off just like any other service.
The Windows 2000DNS caching service includes the following features:
•
•
•
General caching of queries.
Negative caching.
Removal of previously resolved names from the cache based on negative
acknowledgement.
•
Keeping track of transient (Plug and Play) network adapters and their IP
configuration.
•
•
•
•
Keeping a record of each adapter’s DomainName.
Management of unresponsive name servers.
The caching resolver cash can be purged using the IPCONFIG command.
An ability to prioritize multiple A RRs returned from the DNS server based on
their IP address. If the resolver sends a query specifying such prioritization,
then the DNS server finds the A records with IP addresses from the networks
which the computer is directly connected to and places them first in its
response. This feature prevents Round Robin from working properly. It can be
disabled through the Registry.
•
•
Accepting response from non-queried IP address (This feature is enabled by
default. It can be disabled through the Registry).
An ability to automatically reload the updated local Hosts file into the resolver’s
cache. Thus, as soon as a Hosts file is changed the resolver’s cache is
updated.
•
An ability to initiate a network failure timeout. If all resolver’s queries are timed
out then it assumes the network failure and does not submit any queries for a
certain period (30 seconds by default) of time. In case of a multi-adapter
Windows 2000 White Paper
36
Download from Www.Somanuals.com. All Manuals Search And Download.
computer, the same rule is applicable to every adapter separately. This feature
is enabled by default. It can be disabled through the Registry.
Name Resolution
A basic name resolution request consists of a query for a given type of a DNS
record with a given DNS name. The name to be resolved supplied in a query falls
into one of three categories:
•
•
•
Fully qualified. The name specified in the query is dot-terminated.
Unqualified Single-Label. The name specified in the query contains no dots.
Unqualified Multi-Label. The name specified in the query contains a dot(s), but
is not dot-terminated.
Fully-Qualified Query
A fully-qualified name uniquely identifies a particular machine on the network and
requires no alterations, for example ntserver.mydomain.microsoft.com.
If such a name needs to be resolved, first a caching resolver tries to resolve the
fully-qualified query against its cache (note that the HOSTS file is preloaded in the
resolver cache). If it fails then the fully-qualified query is sent directly to a DNS
server. The caching resolver learns of lists of DNS servers it can query through the
TCP/IP configuration of the local machine. A machine with multiple adapters may
have multiple DNS server lists.
The adapters on a multi-homed machine may or may not be participating in a fully-
connected network. If the networks are disjoint, the DNS namespaces on those
adapters may also be disjoint. For this reason, queries must be sent to DNS servers
on all adapters for complete name resolution. The response to a query can be
grouped into one of four classes:
•
•
A positive answer. The name exists and has data associated with it.
A negative answer. The name does not exist, or the name exists, but with no
associated data.
•
•
A server failure. The server cannot service the request.
No answer. The server does not answer within the timeout period.
The DNS servers in a list associated with a particular adapter are assumed to be
members of the same namespace. Servers are queried in the order they are given
in the list, which is defined by the servers priorities. If one server in the list returns a
positive or negative answer, then no other servers in that list are posed the same
question. The resolver may advance to the remaining servers in the list only if the
current server does not respond or responds with a server failure (this scenario is
slightly different for a multi-homed machine, as shown below). Should a server not
respond, the resolver dynamically reorders the list changing the priority of the non-
responding server (for more detailed information on this see the section on “DNS
Server List Management”).
For efficiency, one fast adapter is considered the preferred adapter for name
Windows 2000 White Paper
37
Download from Www.Somanuals.com. All Manuals Search And Download.
resolution. The following summarizes the name resolution algorithm:
•
•
The query is issued to the lead server on the preferred adapter's server list.
If no response was received within a one second interval, the query is issued to
the lead server(s) on all lists, including the one on the preferred adapter.
If no response was received within a two second interval, the query is issued to
all DNS servers on all lists, including the lead servers queried before.
If no response was received within a two second interval, once again the query
is issued to all DNS servers on all lists.
•
•
•
•
This procedure will be repeated after 4 seconds, and later after 8 seconds if no
response is received.
If the query is not resolved after all listed attempts (they may take up to
seventeen seconds), then a timeout is returned to the client.
The algorithm is modified if some response(s) was received:
•
•
•
•
If a positive response is received from a server, the response is returned to the
caller and the algorithm stops
If a negative response is received from a server, the list that server belongs to
is removed from this query.
If a server on every adapter list returns a negative response, then a negative
response is returned to the caller.
If a server returns a server failure, then that server is removed from the query
for a certain period of time as described in the “DNS Server List Management”
section.
Unqualified Single-Label Query
A name containing no dots is called an Unqualified Single-Label name, for example
ntserver.
If such a name needs to be resolved it must be fully-qualified using some suffix
before being placed on the wire. The list of suffixes to try can come from two
places:
•
•
Global suffix search order, and
Primary and per-adapter domain names.
If a suffix search order is predefined, then it is used. If it is not defined then the
Primary and per-adapter domain names are used.
Using Global Suffix Search Order
The global suffix search order is set by means of the TCP/IP configuration User
Interface. It is not a per-adapter value. Suffixes are appended in the order given in
the user interface.
The name concatenation algorithm in a name resolution process is as follows:
•
The first suffix in the search order is appended to the name.
Windows 2000 White Paper
38
Download from Www.Somanuals.com. All Manuals Search And Download.
•
•
•
•
The query is processed as a fully-qualified query.
If the result is a positive response, the response is returned to the caller.
If the result is a timeout, then a timeout is returned to the caller.
If the result is a negative response, the next suffix is appended and the
algorithm is restarted at step 2.
•
If the suffix search list is exhausted without success, then a negative response
is returned to the caller.
Using Primary and Per-adapter Domain Names
A Windows 2000-based computer has a PrimaryDnsDomainName from the
machine configuration. Each adapter may also have an IpDnsDomainName from its
TCP/IP configuration.
The name concatenation algorithm in a name resolution process is as follows:
1. The PrimaryDnsDomainName is appended to the name.
2. The query is submitted as a fully-qualified query
•
•
•
If the result is a positive response, the response is returned to the client.
If the result is a timeout, then a timeout is returned to the client.
If the result is a negative response:
•
append to the original single-label name the IpDnsDomainName that
has not been used yet from an adapter in the TCP/IP binding order,
and the algorithm is restarted at step 2.
•
if all unique IpDnsDomainNames are exhausted, and the Registry flag
for devolution is set, then the devolution algorithm is tried using the
PrimaryDnsDomainName and the algorithm is restarted at step 2. Note
that name devolution does not shrink primary domain name to less
than a 2-label name (for example, microsoft.com.). Also note that the
name devolution algorithm is not applicable to per-adapter
(IpDnsDomainName) domain names.
•
The response is returned to the client.
The registry key for devolution is on by default to mirror the behavior of a
Windows NT 4.0-based client. Administrators may turn it off through the Registry.
Unqualified Multi-Label Query
A name containing dots, but not dot-terminated, is called an Unqualified Multi-Label
name, for example ntserver.mydomain. A name with dots in it may be unique, or
partially qualified.
The name resolution algorithm for such names is as follows:
•
The query is submitted as a fully-qualified query (with the ntserver.mydomain.
name).
•
•
•
If the result is a positive response, the response is returned to the client.
If the result is a timeout, then a timeout is returned to the client.
If the result is a negative response, then the query is submitted as an
unqualified single-label query.
Windows 2000 White Paper
39
Download from Www.Somanuals.com. All Manuals Search And Download.
•
The response is returned to the client.
Name Resolution Scenarios
This section provides name resolution scenarios for a multi-homed machine using
unqualified single-label and fully qualified queries. In this scenario the Global suffix
search list is not specified.
The following table displays the machine’s DNS configuration:
CONFIGURATION PARAMETER
VALUE
Primary DNS Name
mydomain.microsoft.com.
(default–same as domain
membership)
Ethernet0
(preferred)
DNS Servers
e1, e2, e3 (from DHCP)
DNS Domain Name
dns.microsoft.com. (from
DHCP)
TokenRing0
DNS Servers
t1, t2, t3 (from DHCP)
DNS Domain Name
dns.ntlab.microsoft.com.
(from DHCP)
The Unqualified Single-Label Query Scenarios
Lookup a name on the Ethernet segment: ping ntserver
•
•
Query e1 for ntserver.mydomain.microsoft.com.
Positive response
Lookup a name on the Token Ring segment: ping products1
•
•
•
•
Query e1 for products1.mydomain.microsoft.com.
Negative response
Query t1 for ‘products1.mydomain.microsoft.com.’
Positive response
Lookup a name on the Corporation’s Intranet: ping thunder
•
•
•
•
•
•
Query e1 for thunder.mydomain.microsoft.com.
Negative response
Query t1 for thunder.mydomain.microsoft.com.
Negative response
Query e1 for thunder.dns.microsoft.com.
Positive response
Lookup a bogus name: ping boguz
•
•
•
•
•
query e1 for boguz.mydomain.microsoft.com.
negative response
query t1 for boguz.mydomain.microsoft.com.
negative response
query e1 for boguz.dns.microsoft.com.
Windows 2000 White Paper
40
Download from Www.Somanuals.com. All Manuals Search And Download.
•
•
•
•
•
•
•
•
•
•
•
•
negative response
query t1 for boguz.dns.microsoft.com.
negative response
query e1 for boguz.dns.ntlab.microsoft.com.
negative response
query t1 for boguz.dns.ntlab.microsoft.com.
negative response
query e1 for boguz.microsoft.com.
negative response
query t1 for boguz.microsoft.com.
negative response
if a Registry key to send a single label query is set, then query e1 for boguz; if
the response is negative, then query t1 for boguz
The Fully-Qualified Query Scenarios
Lookup a name on the Internet: ping www.microsoft.com.
•
•
Positive response
Lookup a name in the Windows NT Lab: ping www.ntlab.microsoft.com.
•
•
•
•
Negative response
Positive response
DNS Server List Management
If a DNS server does not respond to a query, its priority automatically decreases.
This prevents the resolver from repeatedly timing out on servers that are not
responding. However, as time goes on the priority of that DNS server could improve
if it responds to further queries.
Negative Caching
Negative caching is the storage of the fact that the requested information does not
exist. Just like the fact that a resource record exists and has a particular value can
be cached, the fact of a non-existent resource record or name server can also be
cached.
Negative caching is useful as it reduces the response time for negative answers. It
also reduces the number of messages that have to be sent between resolvers and
name servers, as well as network traffic generated by these messages. A large
proportion of the DNS traffic on the Internet could be eliminated if all resolvers
implemented negative caching.
Microsoft Implementation of Negative Caching
Microsoft’s implementation of negative caching is based on RFC 2308. It can be
disabled by setting to zero the REG_DWORD NegativeCacheTime value under the
Windows 2000 White Paper
41
Download from Www.Somanuals.com. All Manuals Search And Download.
Registry key HKEY_Local_Machine\System\CurrentControlSet\Services\
DNSCache\Parameters.
Disabling the Caching Resolver
There are two ways to disable the caching resolver:
•
•
Manually disable the caching resolver service by typing “net stop dnscache” at
the command prompt. This disables DNS server ordering, support for Plug and
Play adapters, and so forth. The end result is Windows NT 4.0–like name
resolution.
Setting to zero the REG_DWORD MaxCacheEntryTtlLimit value that specifies
maximum limit of how long the positively answered lookup is cached. This
effectively eliminates caching of any RRs, but does not disable DNS server
ordering and support for Plug and Play.
Administrative Tools
Windows 2000 includes various administrative tools to support DNS servers and
clients. The DNS server may be administered using MMC snap-in DNS manager,
command line tool dnscmd.exe and Windows Management Instrumentation (WMI).
The command line tool ipconfig.exe may be used to administer DNS client. Namely,
to initiate registration of the computer A and PTR records, display or flush the
cache.
DNS Manager
The Windows 2000 implementation of DNS introduces a new DNS Manager as a
Microsoft Manager Console Snap-in. It provides all the functionality necessary to
administer DNS server, its zones, security, and so forth.
The DNS Manager features that deserve attention are:
•
•
•
The New Server Configuration Wizard, which now allows priming the root hints
for a new DNS server.
The Filtering Capability, a feature useful for the servers and zones containing a
large number of zones and records, respectively.
The new Security Capability that allows specification of the secondary servers
to be notified of any changes on the master zone, as well as specification of the
sets of servers to be sent the updated zone information.
•
The new security capability, that allows modification of the ACLs for the DS-
integrated zones and entries in such zones.
Note: In order to administer a DNS Server you need to be at least a member of the
Server Operators Group on the server running DNS Server.
For more information on the DNS Manager refer to the product documentation.
WMI Support for DNS Server Administration
The Windows Management Instrumentation (WMI) provider is a set of extensions to
the Windows Driver Model (WDM), an operating system interface through which
Windows 2000 White Paper
42
Download from Www.Somanuals.com. All Manuals Search And Download.
hardware components can provide information and notification of events. WMI
simplifies the instrumentation of various drivers and applications written for
Windows, provides detailed and extensible information that is consistent across
different vendors' products, and allows for consistent access to Windows
instrumentation from non-Windows environments.
DESIGNING A DNS
NAMESPACE FOR THE
ACTIVE DIRECTORY
Among other services, WMI supports the monitoring and management of the DNS
servers, zones and records. It allows enlisting and modification of the DNS servers
and zones properties, enumeration of the zones and resource records, update of
the resource records and creation of the new zones. The WMI allows an
administrator writing an automated application managing the DNS objects. The
WMI method provider enables these applications to invoke methods that are
defined on the DNS server.
Interoperability Issues
In this section the issues that may arise when Microsoft DNS servers are used in
the mixed environment with non-Microsoft DNS servers are discussed. Because it is
RFC compliant, the Microsoft DNS server is fully interoperable with all other RFC
compliant DNS servers. However, since the Microsoft DNS server provides a wider
spectrum of features than specified in the RFC, the user is advised to exercise
caution using these features. These features are limited to the use of WINS and
WINSR resource records (as they are specified in the Windows NT 4.0 DNS white
paper) and to the use of the UTF-8 character encoding.
Using WINS and WINSR Records
Since currently only Microsoft DNS servers support the WINS and WINSR resource
records we recommend disabling replication of these records if all following
conditions are satisfied:
•
•
the primary copy of the zone contains one of these records;
at least one of the secondaries resides on the non-Microsoft DNS server.
At the same time, if the secondaries reside partially on Microsoft and non-Microsoft
DNS servers, disabling WINS and WINSR resource records replication may require
manual input of these records to the secondary zones residing on the Microsoft
DNS servers.
Using UTF-8 Characters Format
The Windows 2000 DNS server can be configured to allow or disallow the use of
UTF-8 characters on a per-server or per-zone basis. A non-UTF-8-aware DNS
server may accept a zone transfer of a zone containing UTF-8 names, but it may
not be able to write back those names to a zone file or reload those names from a
zone file. Administrators should exercise caution when transferring a zone
containing UTF-8 names to a non-UTF-8-aware DNS server.
Windows 2000 White Paper
43
Download from Www.Somanuals.com. All Manuals Search And Download.
Receiving Non-RFC Compliant Data
If a Windows 2000 server supports a secondary zone and receives unknown
resource records, then it drops such records and continues zone replication. It also
drops a circular CNAME resource records if receives them.
DNS Server Performance
The statistics presented below are compiled as a profile of DNS server performance
during preliminary testing of Windows 2000 Server. In testing, two different DNS
server hardware configurations were used and overall DNS query and dynamic
update activity was measured, along with processor utilization.
The results of each of these tests are listed in the table below.
Dynamic
Processor
utilization
Server configuration
Queries/sec
updates/sec
Intel P-II 400 MHz dual-processor 900
100
30%
During these measurements, the monitored DNS server was processing both
queries and dynamic updates at the same time. The numbers above reflect these
concurrent processes. The statistics were collected over a period of a few hours.
For dynamic updates, standard primary type zones were used, not Active Directory-
integrated zones. Where directory integration is used for zones, the rate of the
dynamic updates that can be processed decreases by a factor of 2, since the DNS
server must write to the Active Directory database as well.
In addition, if a zone is configured to accept only secure dynamic updates, the
update rate decreases by 25% compared to the rate of updates processed by the
DNS server for the Active Directory-integrated zones that allow non-secure dynamic
updates. Network performance might also be a factor in these cases since the
directory database might require network activity to process updates.
The previous measurements are not meant in any way to indicate maximum
performance or server limitations for Windows 2000 DNS servers. The objective of
the tests was merely to sample typical DNS server performance and obtain a
working benchmark based on standard available hardware as a basis to begin
server capacity planning.
The list of specific hardware that the Windows 2000 DNS development and test
team for server computers used during the previous testing included the following:
Windows 2000 White Paper
44
Download from Www.Somanuals.com. All Manuals Search And Download.
Hardware components
Number of processors
Processor
Sizing
Two
Intel Pentium II 400 MHz
256 MB (megabytes)
4 GB (gigabytes)
Amount of RAM
Hard disk drive space
These measurements were based on the server computer running a DNS server
and with no other services in use. Where other hardware specifications or software
configurations are used when deploying Windows 2000 DNS servers, your
performance results are likely to vary from those documented here.
Server Capacity Planning
Planning and deploying DNS servers involves examining several aspects of the
network and the capacity requirements for any DNS servers that will be used.
In many cases, adding more RAM to a DNS server can provide the most noticeable
improvements in performance. This is because the DNS Server service fully loads
all its configured zones into memory at startup. If the server is operating and loading
a large number of zones, and dynamic updates are occurring frequently for zone
clients, additional memory can be helpful.
The DNS server consumes memory as follows:
•
•
Approximately 4 MB of RAM is used when the DNS server is started without
any zones.
For each addition of zones or resource records to the server, the DNS server
consumes additional server memory. Its estimated that for the addition of every
resource record to a server zone, an average of approximately 100 bytes of
server memory is used.
For example, if a zone containing 1000 resource records is added to a server, it
would consume approximately 100 KB (kilobytes) of server memory. he previous
recommendations are not meant in any way to indicate maximum performance or
limitations for Windows 2000 DNS servers.
Note: These numbers are approximate and can be influenced by the type of the
resource records entered in zones, the number of resource records with the same
owner name, and the number of zones in use at a specific DNS server.
Before a DNS namespace can be properly implemented in Windows 2000, the
Active Directory services structure needs to be available. The recommended
approach to the ADS and DNS design is to begin with the ADS design and then
support it with the appropriate DNS namespace.
Active Directory design is an iterative process. It involves developing an initial ADS
Windows 2000 White Paper
45
Download from Www.Somanuals.com. All Manuals Search And Download.
namespace and DNS architecture to support it, and then revising the ADS and DNS
design if unforeseen, or undesirable consequences are uncovered.
The Windows 2000 Active Directory Namespace Design white paper describes the
ADS namespace, including the forest and tree domain structure, organizational
units, the global catalog, trust relationships, and replication. It then provides
examples of namespace implementations and describes the architectural criteria
that network architects and administrators should consider when designing an
Active Directory namespace for the Enterprise. By following the recommendations
in that paper, the Enterprise network architect should be able to design a
namespace that is capable of withstanding company reorganizations without
expensive restructuring.
Some of the fundamental DNS design questions that need to be answered are:
•
•
•
•
How many Active Directory domains will you have?
What will their names be?
Will your DNS namespace have a private root?
What will your computer names be?
Choosing Names
In Windows 2000, Active Directory domains are named with DNS names. When
choosing DNS names to use for your Active Directory domains, identify the
registered DNS domain name suffix that your company has reserved for use on the
Internet, such as ‘company.com.’. It is recommended that you use different internal
and external namespaces to simplify name resolution process. So, you could use
internally (and as a forest root) a registered DNS suffix different from the external
one, like “comp.com.”, or subdomain of the external domain, like
“corp.company.com.”. You can then combine this name with a location or
organizational name used within your company to form full names for your Active
Directory domains, for example “hr.corp.company.com.”. This method of naming
ensures that each Active Directory domain name is globally unique.
Once you have decided on DNS names for each of your Active Directory domains,
you can use these names as parents for creating additional child domains to further
manage other divisions within your company. Child domains must have DNS names
that are immediately subordinate to their parent’s DNS name. For example, if a child
domain were to be added in the ”us.corp.company.com.” tree for the human
resources department in the American branch of the company, an appropriate name
for that domain might be “hr.us.corp.company.com.”
Internet Access Considerations
Typically, a company namespace consists of two portions: private and public. The
private one is a portion invisible from the outside world, while the public one is
exposed to the Internet. Here the names that form the private and public
namespaces are referred to as internal and external, respectively. Even though the
private names are not exposed to the Internet, repetition of any external names (not
only from the company, but from the Internet in general) in the private namespace is
Windows 2000 White Paper
46
Download from Www.Somanuals.com. All Manuals Search And Download.
strongly discouraged, since it may lead to the ambiguity in name resolution
processes.
In this section the focus is on the design of the private namespaces and the
configuration of the DNS servers and zones. The specifics of two different designs
are presented by considering two companies using private namespaces of different
structure. These two companies, YYY and ZZZ Corporations, have reserved the
DNS domain name suffixes, yyy.com. and zzz.com. The general approach to DNS
configuration is to have internal (those that are accessible from internal clients only)
and external DNS servers. External DNS servers contain the records that are
supposed to be exposed to the Internet. The internal DNS namespace may contain
a private root, in which case all internal clients that are anticipated to require name
resolution must support Name Exclusion List or Proxy Autoconfiguration File to
distinguish whether to direct name resolution queries to the proxy server or internal
DNS server. An alternative approach is to configure internal DNS server(s) to
forward to the Internet unresolved queries. Depending on the type of the clients that
require DNS name resolution, the DNS configuration may be quite different. Four
types of clients are distinguished based on their software proxy capability:
•
•
•
•
proxy unaware,
supporting LAT (Local Address Table),
supporting Name Exclusion List, and
Supporting Proxy AutoConfiguration file.
If name resolution is required by proxy unaware clients, or clients supporting only
LAT, then the private DNS namespace can’t have a private root and one or more
internal DNS servers must forward to the Internet unresolved queries.
As recommended in the previous section, the desired internal namespaces would
be corp.yyy.com. and corp.zzz.com.
If the internal and external namespaces overlap, the configuration becomes more
and internal computer host1.yyy.com. This approach introduces some complications
to the internal DNS configuration:
•
•
to enable an internal computer to resolve the name of an external server and
contact it, all clients must support Proxy AutoConfiguration File, unless external
servers are cloned internally and external DNS records are copied internally
(which increases the total cost of ownership due to required additional
hardware and administration), or external DNS records are copied internally
and the firewall is properly configured to enable internal clients to contact
external servers,
if all clients support Proxy AutoConfiguration File, then the file must be
configured appropriately to distinguish internal and external computers with the
computer host1.yyy.com.).
Windows 2000 White Paper
47
Download from Www.Somanuals.com. All Manuals Search And Download.
The following DNS configuration and name resolution scenarios are considered in
detail with overlapping internal and external namespaces, since it is the most
complicated case.
It is assumed that the namespaces of both companies consist only of names within
a NSI assigned domain, that is, yyy.com. and zzz.com. It is also assumed that all
computers in the YYY Corporation are proxy clients supporting Proxy
AutoConfiguration File, while none of the computers in the ZZZ Corporation are
proxy clients. The goal in this section is to demonstrate the appropriate
configuration of the DNS servers, zones and clients to satisfy the following
requirements:
•
•
Expose only a public portion of the namespace to the Internet,
Enable a company computer to resolve any (internal or external) names within
its company,
•
Enable a company computer to resolve any name from the Internet.
Finally, assume that the two considered corporations have merged and now every
computer from these two private namespaces should be able to resolve any
(internal and external) name, not only within the namespace of its own company,
but within a namespace of the merged company as well.
The following solution will satisfy all four of these requirements.
Two DNS servers exposed to the Internet are authoritative for two zones, yyy.com.
and zzz.com., as shown on the figure below. (To simplify the example, one server
and one zone per company have been chosen. In reality a company may choose to
have more servers and zones such as first.yyy.com, second.yyy.com. and so forth.)
These zones contain only records corresponding to external names and delegations
of the YYY and ZZZ Corporations (or in other words, only those records which these
two companies wish to expose to the external world). This is the only common
solution for both companies. The rest of the design features are different.
First consider the private namespace design and the configuration of the DNS
servers, zones and clients in case the company’s computers are not proxy clients,
for example, in ZZZ Corporation.
A company must devote a set of DNS Servers that are not exposed to the Internet
to maintain zones containing all names (both internal and external) from the
company namespace. Every DNS client must send DNS queries to some of these
DNS servers. Every DNS server must forward queries to a pre-assigned forwarder
(s). If a DNS server contains a top-level company namespace zone, that is,
zzz.com., then its forwarder is a DNS server(s) exposed to the Internet. The
communication between internal and external servers takes place through a
firewall. Every other internal DNS server forwards unresolved queries to a DNS
server(s) that contains the top-level company namespace zone.
To guarantee that a company client is able to resolve any hostname from the
merged companies every DNS server containing a top-level company namespace
Windows 2000 White Paper
48
Download from Www.Somanuals.com. All Manuals Search And Download.
zone, that is, zzz.com., must also contain the zones containing all (internal and
external) names of the merged companies.
Now take a look at a private namespace design and the configuration of the DNS
servers, zones and clients for the YYY Corporation. The private namespace
includes a private root,”.”.
A company must devote a set of DNS servers that are not exposed to the Internet to
maintain zones containing internal names from the private company namespace.
Every DNS client submits a query to some (preferred or alternative) DNS servers or
to the proxy server(s) based on the Proxy AutoConfiguration File (PAC File). Every
internal DNS server contains in its Root Hints the address(es) of the private root
DNS server(s).
To guarantee that a company client is able to resolve any hostname from the
merged companies the “.” zone must contain delegations to the top-level zones of
the merged companies private namespaces.
The following examples of queries demonstrate the internal and external names in
both corporations, including satisfaction of all requirements listed above.
Windows 2000 White Paper
49
Download from Www.Somanuals.com. All Manuals Search And Download.
.
com.
yyy.com.
zzz.com.
External world / Global Nezzzrk
someother.com.
YYY corporation
Proxy Server
ZZZ corporation
VPN
VPN
Firewall
2
2
.
zzz.com.
yyy.com.
yyy.com.
3
3
4
5
4
5
first.yyy.com. second.yyy.com. third.yyy.com. first.zzz.com. second.zzz.com. third.zzz.com.
6
1
1
6
Zone.Name.
Zone.Name.
Primary Zone
Secondary Zone
A DNS Server, Firewall, VPN or Proxy Server
A DNS Client
Starting with an example when a corporate computer needs to resolve an internal
name (follow the above figure for illustrations).
A computer in the YYY Corporation needs to resolve a DNS query for
on PAC file. Therefore, it submits the query to the assigned DNS server (Step 1). If
contains necessary data, then the server will respond to the client. Otherwise the
server will query a root server (Step 2). A root server returns a reference to the
authoritative server (Step 3). Then the server sends a query to the authoritative
server zone (Step 4), receives a response from it (Step 5) and finally passes it to
the client (Step 6).
A computer in the ZZZ Corporation needs to resolve a DNS query for
necessary data, then the server will respond to the client. Otherwise the server
Windows 2000 White Paper
50
Download from Www.Somanuals.com. All Manuals Search And Download.
forwards the query to the DNS server containing the zzz.com. zone (Step 2). This
server finds a delegation to the third.zzz.com. in the zzz.com. zone. It sends the
query to that server (Step3) receives back the response (Step 4), passes it to the
previous server (Step 5), which finally returns it to the client (Step 6).
.
5
4
4
6
3
com.
8
7
5
7
6
8
9
yyy.com
zzz.com
External world / Global Network
someother.com.
2
9
YYY corporation
Proxy Server
ZZZ corporation
VPN
VPN
Firewall
10
3
2
10
.
zzz.com.
yyy.com.
1
yyy.com.
11
first.yyy.com. second.yyy.com. third.yyy.com.
first.zzz.com. second.zzz.com. third.zzz.com.
12
1
Zone.Name.
Primary Zone
Zone.Name.
Secondary Zone
A DNS
Server,
Firewall,
VPN or
Proxy Se
rver
t
Clien
A DNS
Now consider the example of a corporate computer that needs to resolve an
external name (that does not belong to its company).
A computer in the YYY Corporation needs to open a web page on the
based on the PAC file. The proxy server sends a DNS query to the assigned DNS
server (Step 2) which recursively resolves the query. It sends a query to the root
server (Step 3) and receives a reference to the server that contains the com. zone
(Step 4). Then it sends the query to that server (Step 5) and receives a reference to
the server that contains a zone someother.com. (Step 6). It sends a query to the
latter (Step 7), which resolves the query and returns the response to the server
Windows 2000 White Paper
51
Download from Www.Somanuals.com. All Manuals Search And Download.
(Step 8). The DNS server returns the response to the proxy server (Step 9). Finally,
and provides the necessary information to the client (Step 10).
A computer in the ZZZ Corporation needs to resolve a DNS query for
(Step 1). If its cache contains necessary data, then the server will respond to the
client. Otherwise the server forwards the query to the DNS server containing the
zzz.com. zone (Step 2). This server forwards the query to the external server (Step
3) through the firewall. The latter performs the name resolution similar to the
previous case (Steps 4-9) and passes the result to the client though the firewall and
the chain of participated in the resolution servers (Steps 10-12). Then the client
firewall and download the desired web page.
Windows 2000 White Paper
52
Download from Www.Somanuals.com. All Manuals Search And Download.
.
com.
yyy.com.
zzz.com.
someother.com.
External world / Global Network
2
3
YYY corporation
ZZZ corporation
Proxy Server
VPN
VPN
Firewall
2
4
.
zzz.com.
yyy.com.
1
yyy.com.
3
first.yyy.com. second.yyy.com. third.yyy.com.
first.zzz.com. second.zzz.com. third.zzz.com.
1
4
Zone.Name.
Zone.Name.
Primary Zone
Secondary Zone
A DNS Server, Firewall, VPN or Proxy Server
A DNS Client
Now consider an interesting case of a corporate computer that needs to resolve an
external name of a computer from its own company.
A computer in the YYY Corporation needs to open a web page on the
PAC file. The proxy server sends a DNS query to the assigned DNS server (Step 2)
query and returns the response to the proxy client (Step 3). Finally the proxy server
info to the client (Step 4).
Windows 2000 White Paper
53
Download from Www.Somanuals.com. All Manuals Search And Download.
It submits the query to the assigned DNS server (Step 1). If its cache contains the
necessary data, the server will respond to the client. Otherwise the server forwards
the query to the DNS server containing the zzz.com. zone (Step 2). Since the server
response to the client through the forwarding DNS server (Steps 3-4). At this point it
is important to emphasize the significance of the fact that the zzz.com. zone on the
internal DNS server contains both internal and external names. If it contained only
internal names then this query would not be resolved and name error would be
returned to the client.
Finally, consider an example of a corporate computer that needs to resolve a host
name from the private namespace of a merged company.
.
com.
yyy.com.
zzz.com.
External world / Global Network
someother.com.
YYY corporation
ZZZ corporation
Proxy Server
VPN
VPN
Firewall
4
5
2
.
zzz.com.
yyy.com.
2
3
yyy.com.
3
first.yyy.com. second.yyy.com. third.yyy.com.
first.zzz.com. second.zzz.com. third.zzz.com.
1
6
1
4
Zone.Name.
Zone.Name.
Primary Zone
Secondary Zone
A DNS Server, Firewall, VPN or Proxy Server
A DNS Client
A computer in the YYY Corporation needs to contact a computer myname.zzz.com.
Windows 2000 White Paper
54
Download from Www.Somanuals.com. All Manuals Search And Download.
First it finds that the name myname.zzz.com. is internal, based on the PAC file.
Therefore, it submits a query to the assigned DNS server (Step 1). If the cache
contains the necessary data, the server will respond to the client. Otherwise, the
server will query a root server (Step 2). The root server that contains the “.” zone
finds a delegation to the zzz.com. zone and returns a reference to the authoritative
server (Step 3). The server uses the IP address of the name server that contains
the zzz.com. zone to submit the query (Step 4). Since that server is authoritative for
myname.zzz.com., it resolves the query and returns the answer (Step 5). Finally,
the server returns response to the client (Step 6).
A computer in the ZZZ Corporation needs to resolve a DNS query for
myname.yyy.com. It submits a query to the assigned DNS server (Step 1). If its
cache contains the necessary data, the server responds to the client. Otherwise,
the server forwards the query to the DNS server containing the zzz.com. zone (Step
2). Since this server contains a secondary copy of the zone yyy.com. it resolves the
query and returns it to the client through the previous server (Steps 3-4).
Each of the two suggested solutions has disadvantages associated with it.
The solution of company YYY requires maintenance of the PAC file.
At the same time, the solution of company ZZZ puts a significant load on the
internal DNS servers containing top-level private namespace zones. This is
because the majority of the queries generated within the company are forwarded to
these servers. Moreover, in the case of the same internal and external
namespaces, these servers contain larger zones, since they must contain both
internal and external names.
Characters in Names
As mentioned above, the standard characters for DNS, according to RFC 1123, are
A-Z, a-z, 0-9 and the -. In organizations that have an extensive investment in
Microsoft NetBIOS technology, the names conform to the NetBIOS standard. These
organizations should seriously consider moving towards DNS standard.
The process of adjusting your naming conventions may prove to be time
consuming. In an attempt to ease migration from Windows NT 4.0 NetBIOS names
to Windows 2000 DNS names, Windows 2000 DNS includes support for extended
ASCII and Unicode characters. However, the support for additional characters can
only be taken advantage of in a pure Windows 2000-based network environment,
since most third party resolver software, such as Unix or Apple is RFC 1123
standards-based.
Note: If a non-standard DNS name is entered during Windows 2000 DNS setup, the
warning message will appear suggesting the standard DNS name.
Computer Names
Windows NT 4.0 and previous versions of the operating system use a NetBIOS
name to identify a particular machine on the network. A Windows 2000-based
machine can be identified by a NetBIOS name (for down-level interoperability), and
Windows 2000 White Paper
55
Download from Www.Somanuals.com. All Manuals Search And Download.
a full DNS computer name, which is a concatenation of Host name and primary
DNS suffix. The primary DNS suffix is part of the base machine configuration and is
not related to any networking components. Non-networked or non-TCP/IP-based
machines do not have primary DNS suffix. By default the primary DNS suffix of a
computer is set to the DNS domain name of the Active Directory to which it is
joined. To change the primary DNS suffix of a computer, a computer administrator
should click System in Control Panel, click the Network Identification tab, click
Properties, click More, and then enter a suffix in the Primary DNS suffix of this
computer box. Primary DNS suffix could be also assigned to a group of computers
through the group policy.
The table below contains comparison between a NetBIOS name and a DNS
Hostname.
NetBIOS name
Full computer name
Type
Flat
Hierarchical
Character Restrictions
A-Z, a-z, 0-9, whitespace,
Unicode chars, symbols: !
@ # $ % ^ & ' ) ( . - _ { } ~
A-Z, a-z, 0-9, symbols: -_,
Unicode chars. The dot, '.',
has label separator meaning
Maximum Length
Name Service
16 bytes (including one
reserved byte)
63 UTF-8 bytes per label
255 UTF-8 bytes for whole
name
NBNS (WINS and
broadcast)
DNS
Thus, the NetBIOS name is restricted to 15 bytes, whereas a Host name can be up
to 63 bytes long (DNS names are encoded in UTF-8 and are not necessarily one
byte per character).
The Network Identification property page contains the following entries:
•
•
Full Computer Name: MyComputer.MyCompany.com.
Member of Domain: MyCompany.com.
In this example, the “MyComputer” is the Host name and NetBIOS name, while
“MyCompany.com” is the primary DNS suffix.
Per-Adapter Naming
A machine with multiple adapters can acquire different domain names as part of the
adapters’ IP configuration. The adapters of the machine can then be addressed on
an individual basis by their Hostnames. An example of this configuration is shown
below.
Windows 2000 White Paper
56
Download from Www.Somanuals.com. All Manuals Search And Download.
Active Directory Domain: MyCompany.com
Host name: MyComputer
Internal Backup Network
100BaseT
Public Network
10BaseT
Primary DNS suffix –MyCompany.com
Full computer name : MyComputer.MyCompany.com
Adapter-specific DNS suffix: example1.com
Adapter-specific DNS suffix: example2.com
DNS Names:
DNS Names:
MyComputer.MyCompany.com
MyComputer.MyCompany.com
MyComputer.example2.com
MyComputer.example1.com
In the picture above, a machine with the MyComputer Host name is joined to the
MyCompany.com. AD domain. Its primary DNS suffix is also set by default to
MyCompany.com.
The first adapter, which is being used for public access, is configured with the
example1.com. DNS suffix. The second adapter, which is used exclusively for
backups, has the example2.com. DNS suffix. The machine, therefore, can be
accessed publicly through the first adapter using the MyComputer.example1.com.
DNS name. For backup purposes the same machine can be accessed through the
second adapter using the MyComputer.example2.com. DNS name.
Integrating ADS with Existing DNS Structure
In order for a DNS server to be able to support the Active Directory it is required to
support the SRV records and it is recommended to support the dynamic updates, as
described in the RFC 2136.
When integrating ADS into an existing DNS infrastructure, the decision needs to be
made whether the Active Directory namespace will join, or overlap the existing DNS
namespace.
If there is no overlap, you can delegate a new Windows 2000 DNS namespace from
the existing DNS structure. When a DNS namespace is delegated off an existing
DNS tree, the DNS server that owns the zone file for the newly delegated
namespace, and becomes the primary master for that namespace. The DNS zone
name, that has been delegated, should correspond to the ADS root domain. This
approach is not required, but recommended if you want to use the benefits of the
Windows 2000 DNS server. You may continue using the existing DNS server
without delegating the Active Directory namespace as long as current DNS servers
support the SRV records and the dynamic updates.
If the overlap is inevitable, then the approach you should take depends on whether
the existing DNS tree is implemented using Windows NT 4.0 DNS, or a non-
Microsoft product.
Windows 2000 White Paper
57
Download from Www.Somanuals.com. All Manuals Search And Download.
If existing DNS tree is implemented by Windows NT 4.0 DNS, the solution is to
upgrade the Windows NT 4.0 DNS servers to the Windows 2000 implementation of
DNS.
If a non-Microsoft DNS implementation is in place and it does not support SRV RRs
and Dynamic Update, then the question is: can it be upgraded. Note: The Dynamic
Update feature is not required, but strongly recommended.
If existing non-Microsoft DNS servers can be upgraded, then perform the upgrade.
If existing non-Microsoft DNS servers cannot be upgraded, add another DNS server
that does support SRV records and dynamic updates and delegate certain zones to
this server.
On the DNS server that does not support SRV records and dynamic update,
delegate the following zones to the DNS server that does: _tcp.<Active Directory
domain name>, _udp.<Active Directory domain name>, _msdcs.<Active Directory
domain name>and _sites. <Active Directory domain name>.
On the DNS server that does support these features, create and then enable
dynamic update on each of the zones in the preceding list. Active Directory
dynamically updates the appropriate records in these zones.
The process of integrating ADS into an existing DNS infrastructure is better
understood from the following flowchart:
Windows 2000 White Paper
58
Download from Www.Somanuals.com. All Manuals Search And Download.
Choose
Active
Directory
Domain
Names
Do you have DNS
No
Design/Deploy
Yes
Windows 2000
DNS Topology
Will your ADS
overlap your
DNS name
Overlap
No Overlap
Finish
Delegate
What is your
DNS Naming
platform & topology?
Name Space to
Windows 2000
DNS
Design/Deploy
Windows 2000
DNS Topology
Windows NT 4 DNS
in Place
Non-MS DNS in Place
Supports SRV RRs
Dynamic
No
Yes
Finish
Design/Deploy
Windows 2000
DNS Topology
Finish
Can be upgraded
support SRV RRs and
Update?
No
Upgrade to Windows
2000 DNS
Yes
Add server supporting SRV
records and delegate
appropriate zones
Upgrade
Finish
Finish
Finish
Migration to Windows 2000 DNS
The first step in migrating non-Microsoft DNS servers to the Windows 2000
implementation of DNS is to introduce Windows 2000 DNS servers as secondary
servers for the overlapping zones. One of the key points here is to configure a zone
transfer from a master to a secondary Windows 2000 DNS server and make sure
that the zone transfer process does not generate any errors. Errors can occur if
during the zone transfer the Windows 2000 DNS server is not able to recognize
records sent by the non-Microsoft DNS server. These records should either be
repaired or removed from the zone in order for the zone transfer to complete
successfully.
Once the Windows 2000 DNS servers have stabilized in the new role, their
Windows 2000 White Paper
59
Download from Www.Somanuals.com. All Manuals Search And Download.
secondary zones can be upgraded to DS integrated zones. At this point non-
Microsoft DNS servers can be safely retired and removed from the network.
SUMMARY
Deploying DNS to Support Active Directory
If you are designing a brand new network environment, the process of deploying
Active Directory service/Windows 2000 DNS is relatively straightforward. Chances
are, however, that the Active Directory service you are designing will need to be
integrated into existing DNS infrastructure.
Partitioning, and Replication (Choosing your Zones)
When designing a DNS namespace for an Active Directory, the emphasis should be
placed on creating an effective partition and replication topology while keeping
replication and update traffic at bay.
The following domain/zone configuration is recommended:
•
Each Active Directory domain should have a DNS zone corresponding to the
name of the domain. This zone should be configured on a DNS server running
on the Domain Controllers in that Active Directory domain. The zone should be
Active Directory-integrated.
•
•
DNS servers should running on at least two domain controllers in each Active
Directory domain and at least one Domain Controller in each site.
Since most of the records ending with “_msdcs.<DnsForestName>”suffix should
be accessible through entire forest it could be useful to delegate a zone
“_msdcs.<DnsForestName>”from the zone “<DnsForestName>”. All DNS servers
in the enterprise that are connected to the primary for
“_msdcs.<DnsForestName>”zone servers, over slow or not-permanent links,
should be configured as secondary servers for the “_msdcs.<DnsForestName>”
zone. One DNS server from each site should be configured to poll
“_msdcs.<DnsForestName>”zone transfer from a primary server. All other DNS
server in a site poll the zone transfer from the chosen DNS server in that site.
The primaries should not notify secondaries of any changes in the zone. The
secondaries will pool updates from the primaries at zone refresh intervals. The
DNS server that polls the zone transfer directly from the primary server should
be configured to notify all other DNS servers in the same site. This
configuration doesn’t flood the network with the zone replication traffic while
enabling clients in the child domains to resolve DNS queries addressed to the
“_msdcs.<DnsForestName>”zone when the link is down.
The configuration of the reverse lookup zones is not based on the Windows 2000
Domain structure. Instead it is based on the range of IP addresses assigned to a
company. If a company is assigned B class IP addresses such as 172.56.X.Y. then
a reverse lookup zone of 56.172.in-addr.arpa. will be created. It may contain
delegations to other domains, such as, 1.56.172.in-addr.arpa., 2.56.172.in-
addr.arpa. and so on. It is also possible to configure classless reverse lookup zones
that as described in the Internet Draft “Classless IN_ADDR.ARPA delegation”.
Windows 2000 White Paper
60
Download from Www.Somanuals.com. All Manuals Search And Download.
Using Automatic Configuration
GLOSSARY
The Windows 2000 implementation of DNS offers a DNS Server Configuration
wizard, which greatly simplifies the DNS server installation and configuration
process. For example, it offers an elegant way of priming the root hints for a new
DNS server.
The Server Configuration Wizard sends to the computer’s preferred and (possibly
alternative) DNS server(s) a NS query for the root, ".", node. The response is placed
into the root hints of this new server. If no root servers are detected, then the wizard
sends the same query to the DNS servers specified in the cache.dns file,
corresponding to the root servers on the Internet. If again no root servers are
detected, the wizard prompts the user to either make the server a root server (by
simply choosing the appropriate option) or manually specify root hints.
WINS Referral
WINS filled the role of domain and machine locator service for previous versions of
Windows NT. Windows 2000 will not require WINS in a NetBIOS-less environment.
However, WINS will always be required in a mixed environment where
Windows 2000-based machines interoperate with other systems such as
Windows NT 4.0, Windows 9X, and Windows for Workgroups.
WINS Referral is the recommended way for Windows 2000 DNS clients to address
down-level machines registered in WINS. Because Windows 2000 resolvers are
optimized to use DNS, they would be much more efficient looking up down-level
clients in a DNS database as opposed to WINS database. To enable this kind of
lookup, a WINS referral zone can be created in DNS that points to the WINS
database.
This zone does not perform any registrations or updates; it simply refers DNS
lookups to WINS.
Whenever Windows 2000-based clients send a query with the unqualified name (for
example, ntservermydomain), the default domain name suffix will be tried first.
Additional suffixes, however, can be supplied as part of the DHCP configuration. If
the name of the WINS Referral zone is one of them, all WINS client names will be
able to be resolved.
Windows 2000 White Paper
61
Download from Www.Somanuals.com. All Manuals Search And Download.
NTDEV.MICROSOFT.COM
Windows 2000-based clients
register in DNS
WINS Server
WINS.NTDEV.MICROSOFT.COM
Windows NT 4.0- and
Windows 2000-based
clients register in WINS
WINS Referral
Windows 2000
-based client
Windows 2000
-based client
Windows NT
4.0-based client 4.0-based client
Windows NT
Windows NT
4.0-based client
Windows 2000
-based client
In the picture above, a WINS referral zone called wins.mydomain.microsoft.com.
has been created and pointed to the WINS database. Assume that a Windows NT
4.0-based client has a name client1. A Windows 2000-based client belongs to the
mydomain.microsoft.com. If the Windows 2000-based client has received a
wins.mydomain.microsoft.com. suffix with its DHCP configuration, then in an
attempt to resolve an unqualified name client1, it will first try the
mydomain.microsoft.com. suffix (that is, client1.mydomain.microsoft.com.), and if
that fails, it will then try wins.mydomain.microsoft.com. (that is,
client1.wins.mydomain.microsoft.com.). When the DNS server authoritative for the
wins.mydomain.microsoft.com. zone receives the query it can’t resolve the
requested name. But since it is configured to use WINS look-up it submits a query
for client1 to the WINS server. The WINS server containing appropriate registration
returns the host IP address to the DNS server and that passes it to the
Windows 2000-based client.
Microsoft has chosen DNS to be its strategic name space in Windows 2000
replacing NetBIOS used as a name service in previous versions of Windows NT.
The implementation of DNS in Windows 2000 is a unique DNS Server
implementation that is fully interoperable with other standards-based
implementations of DNS Server. It is a scalable, highly available, and high
performance solution. The following features of Windows 2000 DNS make it a good
choice for the corporations looking to implement a reliable hierarchical distributed
network environment:
•
•
•
•
•
ADS Integration
IXFR
Dynamic Update and Secure Dynamic Update
Unicode Character Support
Enhanced Domain Locator
Windows 2000 White Paper
62
Download from Www.Somanuals.com. All Manuals Search And Download.
•
•
Enhanced Caching Resolver Service
Enhanced DNS Manager
To properly deploy DNS in the Windows 2000-based environment, it is
recommended to start with the ADS design and then support it with the appropriated
DNS namespace. For ADS design refer to the Windows 2000 Active Directory
Namespace Design white paper.
For More Information
For the latest information on Windows 2000 visit our World Wide Web site at
AXFR–Type of zone file replication. AXFR replicates the entire zone. (See also
IXFR.)
Authoritative DNS server–A DNS server is considered authoritative for a name if it
loads the zone authoritative for that name.
Authoritative DNS zone–A DNS zone is considered authoritative for a name if the
name belongs to the DNS sub-tree, delegated to that zone.
DNS–Domain Name System.
IXFR–Type of the zone file replication. IXFR, incremental zone transfer, replicates
only the changed records of the zone file
Master and Slave DNS servers–Two DNS servers are called Master and Slave if
they contain the copies of the same zone, one of which is directly replicated from
another. The source of replication is called Master server, the destination of
replication is called Slave server. Every Master may have one or more Slaves and
vice versa, every Slave may have one or more Masters. The same DNS server may
be the Master and Slave at the same time.
Primary and Secondary zones–The same zone may be represented by primary
and secondary copies. The primary is the zone/copy that allows direct updates of its
resource records. The secondary is the one, that receives all the updates from
primary or secondary zones through the zone transfer mechanism only. Only the DS
integrated zones may have multiple primaries. Multiple secondaries are allowed in
either scenario.
Resource Record–Atomic unit of the DNS database. All resource records have the
same format that includes NAME, TYPE, CLASS, TTL, RDLENGTH and RDATA
that depends on TYPE and CLASS of the resource record. A set of resource
records builds up a DNS zone.
Root Server–A DNS server that contains a root zone is called a root server.
Root Zone–A zone that contains the DNS root domain is called the root zone.
TTL–Time-To-Live (TTL) is a duration of time when a specific resource record could
be cached.
Windows 2000 White Paper
63
Download from Www.Somanuals.com. All Manuals Search And Download.
UCS-2–Also known as Unicode is a character encoding protocol.
UTF-8–A character encoding protocol, specified in RFC 2044
WINS–Windows Name System (WINS) is the pre-DNS name system. It is still
supported in the Windows 2000 in order to maintain interoperability between the
different generations of Windows computers.
Zone Transfer–Process of replication of the zone from Master to Slave server.
Windows 2000 White Paper
64
Download from Www.Somanuals.com. All Manuals Search And Download.
|