Intelligent Motion Systems Home Safety Product MDrive34Plus User Manual

MDrive34Plus  
Microstepping  
Integrated Motor and Driver  
TM  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Important information  
The drive systems described here are products for general use that conform to the  
state of the art in technology and are designed to prevent any dangers. However,  
drives and drive controllers that are not specifically designed for safety functions  
are not approved for applications where the functioning of the drive could endan-  
ger persons. The possibility of unexpected or un-braked movements can never be  
totally excluded without additional safety equipment. For this reason personnel must  
never be in the danger zone of the drives unless additional suitable safety equip-  
ment prevents any personal danger. This applies to operation of the machine during  
production and also to all service and maintenance work on drives and the machine.  
The machine design must ensure personal safety. Suitable measures for prevention  
of property damage are also required.  
Qualification of personnel  
Only technicians who are familiar with and understand the contents of this manual  
and the other relevant documentation are authorized to work on and with this drive  
system. The technicians must be able to detect potential dangers that may be  
caused by setting parameters, changing parameter values and generally by the  
operation of mechanical, electrical and electronic equipment.  
The technicians must have sufficient technical training, knowledge and experience  
to recognise and avoid dangers.  
The technicians must be familiar with the relevant standards, regulations and safety  
regulations that must be observed when working on the drive system.  
Intended Use  
The drive systems described here are products for general use that conform to the  
state of the art in technology and are designed to prevent any dangers. However,  
drives and drive controllers that are not specifically designed for safety functions  
are not approved for applications where the functioning of the drive could endanger  
persons. The possibility of unexpected or unbraked movements can never be totally  
excluded without additional safety equipment.  
For this reason personnel must never be in the danger zone of the drives unless  
additional suitable safety equipment prevents any personal danger. This applies to  
operation of the machine during production and also to all service and maintenance  
work on drives and the machine. The machine design must ensure personal safety.  
Suitable measures for prevention of property damage are also required.  
In all cases the applicable safety regulations and the specified operating conditions,  
such as environmental conditions and specified technical data, must be observed.  
The drive system must not be commissioned and operated until completion of instal-  
lation in accordance with the EMC regulations and the specifications in this manual.  
To prevent personal injury and damage to property damaged drive systems must  
not be installed or operated.  
Changes and modifications of the drive systems are not permitted and if made all no  
warranty and liability will be accepted.  
The drive system must be operated only with the specified wiring and approved  
accessories. In general, use only original accessories and spare parts.  
The drive systems must not be operated in an environment subject to explosion  
hazard (ex area).  
Download from Www.Somanuals.com. All Manuals Search And Download.  
This page intentionally left blank  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table Of Contents  
Getting Started: MDrive34Plus Microstepping .......................................................................... 1-1  
Before You Begin....................................................................................................................... 1-1  
Tools and Equipment Required................................................................................................. 1-1  
Connecting the Power Supply .................................................................................................. 1-1  
Connect Opto Power and Logic Inputs .................................................................................... 1-1  
Connecting Parameter Setup Cable .......................................................................................... 1-1  
Install the IMS SPI Motor Interface ......................................................................................... 1-2  
Part 1: Hardware Specifications  
Section 1.1: Introduction to the MDrive34Plus Microstepping................................................... 1-5  
Configuration Interface............................................................................................................. 1-5  
Features and Benefits................................................................................................................. 1-5  
Section 1.2: MDrive34Plus Microstepping Specifications .......................................................... 1-7  
General Specifications ............................................................................................................... 1-7  
Setup Parameters....................................................................................................................... 1-8  
Mechanical Specifications.......................................................................................................... 1-9  
Pin Assignment And Description - Flying Leads Version......................................................... 1-11  
P1 Connector - Power, I/O and Internal Optical Encoder (Optional) ................................ 1-11  
P2 Connector - SPI Communications ................................................................................ 1-13  
Pin Assignment And Description - Pluggable Interface Version............................................... 1-14  
P1 Connector - I/O and SPI Communications, 12-Pin Locking Wire Crimp..................... 1-14  
P3 Connector - DC Power, 2-Pin Locking Wire Crimp...................................................... 1-15  
P4 Connector - Differential Encoder, 10-Pin Friction Lock Wire Crimp............................ 1-15  
Connectivity ........................................................................................................................... 1-17  
Options................................................................................................................................... 1-17  
Part 2: Interfacing and Configuring  
Section 2.1: Mounting and Interface Guidelines ........................................................................ 2-3  
Mounting Recommendations.................................................................................................... 2-3  
Layout and Interface Guidelines................................................................................................ 2-4  
Rules of Wiring ................................................................................................................... 2-4  
Rules of Shielding ................................................................................................................ 2-4  
Recommended Wiring ......................................................................................................... 2-5  
Recommended Mating Connectors and Pins............................................................................. 2-5  
SPI Communications (Flying Lead Version Only)................................................................ 2-5  
Power ................................................................................................................................... 2-5  
Internal Differential Encoder................................................................................................ 2-5  
12-Pin Locking Wire Crimp (I/O and SPI Communications).............................................. 2-5  
Securing Power Leads and Logic Leads...................................................................................... 2-6  
Section 2.2: Interfacing DC Power............................................................................................. 2-7  
Choosing a Power Supply for Your MDrive............................................................................... 2-7  
DC Power Supply Recommendations........................................................................................ 2-8  
Recommended IMS Power Supplies ..................................................................................... 2-8  
Recommended IMS Power Supplies ..................................................................................... 2-8  
Connecting DC Power.............................................................................................................. 2-9  
Recommended Power and Cable Configurations .................................................................... 2-10  
Example A – Cabling Under 50 Feet, DC Power................................................................ 2-10  
Example B – Cabling 50 Feet or Greater, AC Power to Full Wave Bridge ........................... 2-10  
Example C – Cabling 50 Feet or Greater, AC Power to Power Supply ................................ 2-10  
Section 2.3: Isolated Input Interface and Connection............................................................... 2-13  
Optically Isolated Logic Inputs................................................................................................ 2-13  
Isolated Logic Input Pins and Connections ............................................................................. 2-13  
Isolated Logic Input Characteristics......................................................................................... 2-15  
Enable Input ...................................................................................................................... 2-15  
Clock Inputs....................................................................................................................... 2-15  
Optocoupler Reference............................................................................................................ 2-17  
Input Connection Examples.................................................................................................... 2-18  
Open Collector Interface Example...................................................................................... 2-18  
Switch Interface Example ................................................................................................... 2-19  
i
Download from Www.Somanuals.com. All Manuals Search And Download.  
Minimum Required Connections............................................................................................ 2-20  
Section 2.4: Connecting SPI Communications ......................................................................... 2-21  
Connecting the SPI Interface .................................................................................................. 2-21  
SPI Signal Overview................................................................................................................ 2-21  
SPI Pins and Connections....................................................................................................... 2-22  
Logic Level Shifting and Conditioning Circuit........................................................................ 2-23  
SPI Master with Multiple MDrivePlus Microstepping............................................................. 2-24  
Section 2.5: Using the IMS SPI Motor Interface....................................................................... 2-25  
Installation.............................................................................................................................. 2-25  
Configuration Parameters and Ranges..................................................................................... 2-25  
Color Coded Parameter Values................................................................................................ 2-25  
IMS SPI Motor Interface Menu Options................................................................................. 2-26  
Screen 1: The Motion Settings Configuration Screen .............................................................. 2-27  
MSEL (Microstep Resolution Selection)............................................................................. 2-28  
HCDT (Hold Current Delay Time)................................................................................... 2-29  
MRC (Motor Run Current) ............................................................................................... 2-29  
MHC (Motor Hold Current)............................................................................................. 2-29  
DIR (Motor Direction) ...................................................................................................... 2-29  
User ID .............................................................................................................................. 2-29  
IMS SPI Motor Interface Button Functions ....................................................................... 2-29  
Screen 2: I/O Settings Configuration Screen ........................................................................... 2-30  
Input Clock Type ............................................................................................................... 2-30  
Input Clock Filter............................................................................................................... 2-30  
Enable Active High/Low .................................................................................................... 2-30  
Warning Temperature......................................................................................................... 2-30  
IMS Part Number/Serial Number Screen ................................................................................ 2-31  
Fault Indication....................................................................................................................... 2-31  
Upgrading the Firmware in the MDrivePlus Microstepping.................................................... 2-32  
The IMS SPI Upgrader Screen ........................................................................................... 2-32  
Upgrade Instructions.......................................................................................................... 2-32  
Initialization Screen................................................................................................................. 2-33  
Port Menu.......................................................................................................................... 2-33  
Section 2.6: Using User-Defined SPI........................................................................................ 2-35  
SPI Timing Notes.................................................................................................................... 2-35  
Check Sum Calculation for SPI............................................................................................... 2-35  
SPI Commands and Parameters............................................................................................... 2-36  
SPI Communications Sequence.......................................................................................... 2-37  
Appendices  
Appendix A: MDrive34Plus Microstepping Motor Performance.................................................A-3  
Speed-Torque Curves ................................................................................................................A-3  
Motor Specifications .................................................................................................................A-4  
Appendix B: Planetary Gearboxes..............................................................................................A-5  
Section Overview ......................................................................................................................A-5  
Product Overview .....................................................................................................................A-5  
Selecting a Planetary Gearbox....................................................................................................A-5  
System Inertia ...........................................................................................................................A-9  
Planetary Gearbox for MDrive34Plus......................................................................................A-13  
PM81 Gearbox Ratios and Part Numbers...........................................................................A-13  
Appendix C: Connectivity.........................................................................................................A-15  
MD-CC30x-001: USB to SPI Converter and Parameter Setup Cable .....................................A-15  
Installation Procedure for the MD-CC30x-000.......................................................................A-19  
Installing the Cable/VCP Drivers .......................................................................................A-19  
Determining the Virtual COM Port (VCP)........................................................................A-21  
Prototype Development Cable PD12-1434-FL3 .....................................................................A-22  
PD10-3400-FL3 - Internal Differential Encoder ................................................................A-23  
Prototype Development Cable PD02-3400-FL3 — Main Power.............................................A-24  
Appendix D: Interfacing an Encoder .......................................................................................A-25  
Factory Mounted Internal Encoder .........................................................................................A-25  
General Specifications .............................................................................................................A-25  
ii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Encoder Connections..............................................................................................................A-26  
Encoder Signals.......................................................................................................................A-27  
Encoder Cable.........................................................................................................................A-28  
Recommended Encoder Mating Connectors...........................................................................A-28  
Appendix E: Linear Slide Option ............................................................................................A-29  
Features...................................................................................................................................A-29  
MDrive34Plus Linear Slide .....................................................................................................A-29  
Speed-Force Limitations† ...................................................................................................A-29  
Speed-Torque Curves..........................................................................................................A-29  
Specifications......................................................................................................................A-30  
Mechanical Specifications .............................................................................................................. A-30  
List Of Figures  
Figure GS.1: Minimum Logic and Power Connections ............................................................. 1-1  
Figure GS.3: IMS Motor Interface Showing Default Settings.................................................... 1-2  
Figure GS.2: MDrivePlus CD................................................................................................... 1-2  
Part 1: Hardware Specifications  
Figure 1.1.1: MDrive34Plus Microstepping Integrated Motor and Driver Electronics............... 1-5  
Figure 1.2.1: MDrive34Plus Microstepping Dimensional Information...................................... 1-9  
Figure 1.2.2: MDrive34Plus Microstepping Connector Options............................................. 1-10  
Figure 1.2.3: MDrive34Plus Microstepping Flying Leads........................................................ 1-11  
Figure 1.2.4: MDrive34Plus Microstepping Flying Leads with Single-End Encoder................ 1-12  
Figure 1.2.5: MDrive34Plus Microstepping Flying Leads with Differential Encoder ............... 1-12  
Figure 1.2.6: P2 Connector - SPI Communications ................................................................ 1-13  
Figure 1.2.7: P2 Connector - I/O and SPI Communications.................................................. 1-14  
Figure 1.2.8: P3 Connector - DC Power +12 to +75 VDC...................................................... 1-15  
Figure 1.2.9: P4 Connector – Internal Differential Encoder Interface ..................................... 1-16  
Part 2: Interfacing and Configuring  
Figure 2.1.1: Mounting Recommendations and Drill Pattern.................................................... 2-3  
Figure 2.1.2: Grounding and Shielding for Logic Connections.................................................. 2-4  
Figure 2.1.3: Typical MDrive Shown with Leads Secured.......................................................... 2-6  
Figure 2.2.1: IMS ISP300 Switch Mode Power Supply.............................................................. 2-7  
Figure 2.2.2 DC Power Connections ........................................................................................ 2-9  
Figure 2.2.3: DC Cabling - 50 Feet or Greater - AC To Full Wave Bridge Rectifier................. 2-10  
Figure 2.2.4: AC Cabling - 50 Feet or Greater - AC To Power Supply ..................................... 2-10  
Figure 2.2.5: DC Cabling - Under 50 Feet.............................................................................. 2-10  
Figure 2.3.1: MDrivePlus Microstepping Block Diagram........................................................ 2-13  
Figure 2.3.2: Isolated Input Pins and Connections.................................................................. 2-14  
Figure 2.3.3: Optocoupler Input Circuit Diagram................................................................... 2-14  
Figure 2.3.4: Input Clock Functions ....................................................................................... 2-15  
Figure 2.3.5: Clock Input Timing Characteristics.................................................................... 2-16  
Figure 2.3.6: Open Collector Interface Example...................................................................... 2-18  
Figure 2.3.7: Switch Interface Example ................................................................................... 2-19  
Figure 2.3.8 Minimum Required Connections........................................................................ 2-20  
Figure 2.4.1: MD-CC300-000 Parameter Setup Cable............................................................ 2-21  
Figure 2.4.2: SPI Pins and Connection — All Connector Styles.............................................. 2-22  
Figure 2.4.3: Logic Level Shifting and Conditioning Circuit................................................... 2-23  
Figure 2.4.4: SPI Master with a Single MDrivePlus Microstepping ......................................... 2-24  
Figure 2.4.5: SPI Master with Multiple MDrivePlus Microstepping........................................ 2-24  
Figure 2.5.1: SPI Motor Interface Color Coding..................................................................... 2-26  
Figure 2.5.2: SPI Motor Interface File Menu........................................................................... 2-26  
Figure 2.5.3: SPI Motor Interface View Menu......................................................................... 2-26  
Figure 2.5.4: SPI Motor Interface Recall Menu ....................................................................... 2-27  
Figure 2.5.5: SPI Motor Interface Upgrade Menu ................................................................... 2-27  
Figure 2.5.6: SPI Motor Interface Help Menu and About Screen ............................................ 2-27  
Figure 2.5.7: SPI Motor Interface Motion Settings Screen....................................................... 2-28  
Figure 2.5.8: SPI Motor Interface I/O Settings Screen............................................................. 2-30  
Figure 2.5.9: SPI Motor Interface Part and Serial Number Screen........................................... 2-31  
iii  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 2.5.10: SPI Motor Interface Upgrade Utility ................................................................ 2-32  
Figure 2.5.11: SPI Motor Interface Initialization..................................................................... 2-33  
Figure 2.5.12: SPI Motor Interface Port Menu........................................................................ 2-33  
Figure 2.6.1: SPI Timing......................................................................................................... 2-35  
Figure 2.6.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)....... 2-37  
Appendices  
Figure A.1: MDrive34Plus Microstepping Single Length Speed-Torque Curves ........................A-3  
Figure A.2: MDrive34Plus Microstepping Double Length Speed-Torque Curves ......................A-3  
Figure A.3: MDrive34Plus Microstepping Triple Length Speed-Torque Curves.........................A-4  
Figure B.1: MDrive34 Torque-Speed Curve ..............................................................................A-7  
Figure B.2: Lead Screw System Inertia Considerations ..............................................................A-9  
Figure B.3: Rack and Pinion System Inertia Considerations....................................................A-10  
Figure B.4: Conveyor System Inertia Considerations...............................................................A-10  
Figure B.5: Rotary Table System Inertia Considerations ..........................................................A-11  
Figure B.6: Chain Drive System Inertia Considerations...........................................................A-12  
Figure B.7: Planetary Gearbox Specifications for MDrive34Plus .............................................A-13  
Figure C.1: MD-CC300-001 Mechanical Specifications and Connection...............................A-15  
Figure C.2: 10-Pin IDC ..........................................................................................................A-16  
Figure C.3: MD-CC303-001 Mechanical Specifications and Connection...............................A-17  
Figure C.4: 12-Pin Wire Crimp...............................................................................................A-18  
Figure C.5: Hardware Update Wizard .....................................................................................A-19  
Figure C.6: Hardware Update Wizard Screen 2.......................................................................A-19  
Figure C.7: Hardware Update Wizard Screen 3.......................................................................A-20  
Figure C.8: Windows Logo Compatibility Testing...................................................................A-20  
Figure C.9: Hardware Update Wizard Finish Installation ........................................................A-20  
Figure C.10: Hardware Properties ...........................................................................................A-21  
Figure C.11: Windows Device Manager..................................................................................A-21  
Figure C.12: PD12-1434-FL3.................................................................................................A-22  
Figure C.13: 12-Pin Wire Crimp.............................................................................................A-22  
Figure C.14: PD10-3400-FL3.................................................................................................A-23  
Figure C.15: PD10-3400-FL3.................................................................................................A-23  
Figure C.16: PD02-3400-FL3.................................................................................................A-24  
Figure C.17: 2-Pin Wire Crimp...............................................................................................A-24  
Figure D.1: Single-End and Differential Encoder Connections ...............................................A-26  
Figure D.2: Single-End Encoder Signal Timing.......................................................................A-27  
Figure D.3: Differential Encoder Signal Timing......................................................................A-27  
Figure E.1: Speed Force Limitations........................................................................................A-29  
Figure E.2: MDrive34Plus Speed Torque Curves.....................................................................A-29  
Figure F.3: Mechanical Specifications ......................................................................................A-30  
iv  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of Tables  
Part 1: Hardware Specifications  
Table 1.2.1: MDrive34Plus Microstepping Electrical Specifications .......................................... 1-7  
Table 1.2.2: MDrive34Plus Microstepping Environmental Specifications ................................. 1-7  
Table 1.2.3: MDrive34Plus Microstepping I/O Specifications................................................... 1-7  
Table 1.2.4: MDrive34Plus Microstepping Communications Specifications.............................. 1-7  
Table 1.2.5: MDrive34Plus Microstepping Motion Specifications............................................. 1-7  
Table 1.2.6: MDrive34Plus Microstepping Motor Specifications............................................... 1-8  
Table 1.2.7: Setup Parameters.................................................................................................... 1-8  
Table 1.2.8: P1 — Pin Assignment, Power and I/O................................................................. 1-11  
Table 1.2.9: P2 Connector – SPI Communications................................................................. 1-13  
Table 1.2.10: P1 Connector – I/O and SPI Communications ................................................. 1-14  
Table 1.2.11: P3 Connecter..................................................................................................... 1-15  
Table 1.2.12: P4 Connector – Optional Internal Differential Encoder .................................... 1-15  
Part 2: Interfacing and Configuring  
Table 2.1.1: 12-Pin Locking Wire Crimp Connector Contact and Tool Part Numbers.............. 2-5  
Table 2.2.1: Recommended Wire Gauges ............................................................................... 2-11  
Table 2.3.1: Input Clocks Timing Table .................................................................................. 2-16  
Table 2.3.2: Optocoupler Reference Connection..................................................................... 2-17  
Table 2.5.1: Setup Parameters and Ranges............................................................................... 2-25  
Table 2.5.2: Microstep Resolution Settings.............................................................................. 2-28  
Table 2.5.3: Input Clock Filter Settings................................................................................... 2-30  
Table 2.5.4: MDrivePlus Microstepping Fault Codes .............................................................. 2-31  
Table 2.6.1: SPI Commands and Parameters........................................................................... 2-36  
Appendices  
Table B.1: Planetary Gearbox Operating Factor.........................................................................A-8  
Table B.2: Planetary Gearbox Specifications – PM81 ..............................................................A-13  
Table B.3: Planetary Gearbox Ratios, Inertia Moments and Part Numbers..............................A-13  
Table C.1: PD10-1434-FL3 Wire Color Codes.......................................................................A-22  
Table C.2: PD10-3400-FL3 Wire Color Codes.......................................................................A-23  
Table D.1: Available Encoder Line Counts and Part Numbers.................................................A-25  
Table E.1: MDrive34Plus Linear Slide Specifications ..............................................................A-30  
v
Download from Www.Somanuals.com. All Manuals Search And Download.  
This Page Intentionally Left Blank  
vi  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING!  
The MDrive has  
components which  
Getting Started  
are sensitive to  
MDrive34Plus Microstepping  
Electrostatic Discharge (ESD).  
All handling should be done at  
an ESD protected workstation.  
Before You Begin  
WARNING!  
Hazardous voltage  
levels may be  
The Quick Start guide is designed to help quickly connect and begin using your MDrive34Plus Microstepping  
integrated motor and driver. The following examples will help you get the motor turning for the first time and  
introduce you to the basic settings of the drive.  
present if using an  
open frame power supply to  
power your MDrive product.  
Tools and Equipment Required  
MDrive34Plus Microstepping Unit (MDM34).  
Parameter setup cable MD-CC300-000 (USB to SPI) or equivalent and adapter MD-ADP-1723C for  
pluggable interface.  
WARNING! Ensure  
that the power  
supply output  
voltage does not  
Control Device for Step/Direction.  
+5 to +24 VDC optocoupler supply.  
An Unregulated +12 to +75 VDC Power Supply.  
Basic Tools: Wire Cutters / Strippers / Screwdriver.  
18 AWG Wire for Power Supply, 22-28 AWG Wire for Logic Connections (Not Required for Flying  
Leads version).  
exceed the maximum input  
voltage of the MDrive34Plus  
(+75 VDC).  
A PC with Windows XP SP2.  
Note: A  
characteristic of  
all motors is back  
EMF. Back EMF is  
Connecting the Power Supply  
See Specifications and interface  
information for the pin numbering  
of your MDrivePlus model.  
Using the 18 AWG wire, connect the DC  
output of the power supply to the +V input  
of the MDrive34Plus  
+VDC  
Motor Supply  
a source of current that can  
push the output of a power  
supply beyond the maximum  
operating voltage of the driver.  
As a result, damage to the  
stepper driver could occur  
over a period of time. Care  
should be taken so that the  
back EMF does not exceed  
the maximum input voltage  
rating of +75 VDC.  
+
Connect the power supply ground to Power  
Ground (P3:2 - Wire Crimp, Black Flying  
Lead).  
Step Clock  
Direction  
See Figure GS.1.  
GND  
Connect Opto Power and Logic  
Inputs  
MDrivePlus Microstepping  
+
+5 to +24  
Opto Supply  
Using the recommended wire, connect the  
following to your controller or PLC:  
Figure GS.1: Minimum Logic and Power Connections  
Optocoupler Supply (+5 to +24  
VDC)  
Step Clock Input  
Direction Input  
Connecting Parameter Setup Cable  
Connect the Host PC to the MDrive34Plus Microstepping using the IMS Parameter Setup Cable or equivalent.  
See Appendix D of this document for Cable installation instructions.  
Part 1: Hardware Specifications  
1-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING!  
Because the  
Install the IMS SPI Motor Interface  
MDrive consists  
of two core  
The IMS SPI Motor Interface is a utility that easily allows you to set up the parameters of your MDrive34Plus  
Microstepping. It is available both on the MDrive34Plus CD that came with your product and on the IMS web  
components, a drive and  
a motor, close attention  
must be paid to the thermal  
environment where the device  
is used. Operating Range is  
-40 to +75°C.  
1. Download the IMS SPI Motor Interface from http://www.imshome.com/software_interfaces.html.  
2. Extract to a location on you hard drive.  
3. Double-Click the setup.exe file.  
4. Follow the on-screen instructions.  
5. Once IMS SPI Motor Interface is installed, the MDrive34Plus Microstepping settings can be checked  
and/or set.  
Once installed you can change the motor run current, holding current, microstep resolution and other configura-  
tion settings. By sending clock pulses to the drive you can now change these settings safely on-the-fly as the IMS  
SPI Motor interface will not allow you to set an out-of-range value.  
Note: Interactive  
usage tutorials are  
available at the IMS  
Web Site at http://  
html  
The motor can be run using the default settings without connecting communications or changing the parameters.  
Motion Settings Dialog  
Input Settings Dialog  
Figure GS.2: IMS Motor Interface Showing Default Settings  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
1-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TM  
MICROSTEPPING  
Part 1:  
Hardware  
Specifications  
Section 1.1: MDrive34Plus Microstepping Product Introduction  
Section 1.2: MDrive34Plus Microstepping Detailed Specifications  
Part 1: Hardware Specifications  
1-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
1-4  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 1.1  
Introduction to the MDrive34Plus Microstepping  
The MDrive34Plus Microstepping high torque inte-  
grated motor and driver is ideal for designers who want  
the simplicity of a motor with on-board electronics. The  
integrated electronics of the MDrive34Plus eliminate the  
need to run motor cabling through the machine, reducing  
the potential for problems due to electrical noise.  
The unsurpassed smoothness and performance delivered  
by the MDrive34Plus Microstepping are achieved through  
IMS's advanced 2nd generation current control. By apply-  
ing innovative techniques to control current flow through  
the motor, resonance is significantly dampened over the  
entire speed range and audible noise is reduced.  
The MDrive34Plus accepts a broad input voltage range  
from +12 to +75 VDC, delivering enhanced performance  
and speed. Oversized input capacitors are used to mini-  
mize power line surges, reducing problems that can occur  
with long runs and multiple drive systems. An extended  
operating range of –40° to +75°C (heat sink), –40° to  
Figure 1.1.1: MDrive34Plus Microstepping Integrated Motor  
and Driver Electronics  
+90°C (Motor) provides long life, trouble free service in demanding environments.  
The MDrive34Plus uses a NEMA 34 frame size high torque brushless motor combined with a microstepping  
driver, and accepts up to 20 resolution settings from full to 256 microsteps per full step, including: degrees, metric  
and arc minutes. These settings may be changed on-the-fly or downloaded and stored in nonvolatile memory with  
the use of a simple GUI which is provided. This eliminates the need for external switches or resistors. Parameters  
are changed via an SPI port.  
The versatile MDrive34Plus Microstepping is available in multiple configurations to fit various system needs. Ro-  
tary motor versions come in three lengths and may include an internal optical encoder, control knob or planetary  
gearbox. Interface connections are accomplished with either a pluggable locking wire crimp or 12.0" (30.5 cm)  
flying leads.  
The MDrive34Plus is a compact, powerful and inexpensive solution that will reduce system cost, design and assem-  
bly time for a large range of brushless motor applications.  
Configuration Interface  
The IMS Motor Interface software is an easy to install and use GUI for configuring the MDrive34Plus from a  
computer's USB port. GUI access is via the IMS SPI Motor Interface included on the CD shipped with the prod-  
Easy installation.  
Automatic detection of MDrive version and communication configuration.  
Will not set out-of-range values.  
Tool-tips display valid range setting for each option.  
Simple screen interfaces.  
Features and Benefits  
Highly Integrated Microstepping Driver and NEMA 34 High Torque Brushless Motor  
Advanced 2nd Generation Current Control for Exceptional Performance and Smoothness  
Single Supply: +12 to +75 VDC  
Low Cost  
Extremely Compact  
20 Microstep Resolutions up to  
51,200 Steps Per Rev Including:  
Degrees, Metric, Arc Minutes  
Optically Isolated Logic Inputs will  
Accept +5 to +24 VDC Signals  
Sourcing or Sinking  
Automatic Current Reduction  
Configurable:  
Part 1: Hardware Specifications  
1-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Motor Run/Hold Current  
Motor Direction vs. Direction Input  
Microstep Resolution  
Clock Type: Step and Direction, Quadrature, Step Up and Step Down  
Programmable Digital Filtering for Clock and Direction Inputs  
Available Options:  
Internal Optical Encoder  
Integrated Planetary Gearbox  
Control Knob for Manual Positioning  
3 Rotary Motor Lengths Available  
Current and Microstep Resolution May Be Switched On-The-Fly  
Interface Options:  
Pluggable Locking Wire Crimp  
12.0” (30.5 cm) Flying Leads  
Graphical User Interface (GUI) for Quick and Easy Parameter Setup  
MDrive 34Plus Microstepping Hardware - Revision R071108  
1-6  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING!  
Because the  
MDrive consists  
SECTION 1.2  
of two core  
MDrive34Plus Microstepping  
components, a drive and  
a motor, close attention  
must be paid to the thermal  
environment where the  
device is used. See  
Thermal Specifications.  
General Specifications  
Electrical Specifications  
Input Voltage (+V) Range*  
+12 to +75 VDC  
4 A  
Max Power Supply Current (Per MDrive34Plus)*  
* Actual Power Supply Current will depend on Voltage and Load.  
Table 1.2.1: MDrive34Plus Microstepping Electrical Specifications  
Environmental Specifications  
Heat Sink Temperature (non-condensing humidity)  
Motor Temperature (non-condensing humidity)  
-40°C to +75°C  
-40°C to +90°C  
Table 1.2.2: MDrive34Plus Microstepping Environmental Specifications  
I/O Specifications  
Isolated Inputs — Step Clock, Direction and Enable  
Resolution  
10 Bit  
+5 to +24 VDC  
8.7 mA  
Voltage Range (Sourcing or Sinking)  
Current (+5 VDC Max)  
Current (+24 VDC Max)  
14.6 mA  
Table 1.2.3: MDrive34Plus Microstepping I/O Specifications  
Communications Specifications  
Protocol  
SPI  
Table 1.2.4: MDrive34Plus Microstepping Communications Specifications  
Motion Specifications  
Microstep Resolution  
Number of Resolutions  
20  
Available Microsteps Per Revolution  
200  
400  
800  
25000  
1000  
25600  
1600  
40000  
2000  
50000  
3200  
51200  
5000  
6400  
10000  
12800 20000  
360001  
216002  
254003  
1=0.01 deg/µstep  
2=1 arc minute/µstep  
3=0.001 mm/µstep  
50 nS to 12.9 µS  
(10 MHz to 38.8kHz)  
Digital Filter Range  
Step/Direction,  
Quadrature, Clock  
Up/Clock Down  
Clock Types  
Step Frequency (Max)  
5.0 MHz  
100 nS  
Step Frequency Minimum Pulse Width  
Table 1.2.5: MDrive34Plus Microstepping Motion Specifications  
Part 1: Hardware Specifications  
1-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Motor Specifications  
Single Length  
Holding Torque  
Detent Torque  
381 oz-in/269 N-cm  
10.9 oz-in/7.7 N-cm  
2
2
Rotor Inertia  
0.01416 oz-in-sec /1.0 kg-cm  
Weight (Motor + Driver)  
Double Length  
Holding Torque  
Detent Torque  
4.1 lb/1.9 kg  
575 oz-in/406 N-cm  
14.16 oz-in/10.0 N-cm  
2
2
Rotor Inertia  
0.02266 oz-in-sec /1.6 kg-cm  
Weight (Motor + Driver)  
Triple Length  
5.5 lb/2.5 kg  
Holding Torque  
Detent Torque  
1061 oz-in/749 N-cm  
19.83 oz-in/14.0 N-cm  
2
2
Rotor Inertia  
0.04815 oz-in-sec /3.4 kg-cm  
8.8 lb/4.0 kg  
Weight (Motor + Driver)  
Table 1.2.6: MDrive34Plus Microstepping Motor Specifications  
Setup Parameters  
The following table illustrates the setup parameters. These are easily configured using the IMS SPI Motor Interface  
configuration utility. An optional Parameter Setup Cable is available and recommended with the first order.  
MDrive17Plus Microstepping Setup Parameters  
Name  
MHC  
MRC  
Function  
Range  
0 to 100  
1 to 100  
Units  
percent  
percent  
Default  
Motor Hold Current  
Motor Run Current  
5
25  
1, 2, 4, 5, 8, 10, 16, 25,  
32, 50, 64, 100,108, 125,  
127,128, 180, 200, 250, 256  
µsteps per  
full step  
MSEL  
Microstep Resolution  
256  
EN ACT  
Enable Active High/Low  
High/Low  
High  
DIR  
Motor Direction Override  
Hold Current Delay Time  
0/1  
CW  
500  
HCDT  
0 or 2-65535  
mSec  
Step/Dir. Quadrature, Up/  
Down (CW/CCW)  
50 nS to 12.9 µS  
(10 MHz to 38.8kHz)  
CLK TYPE  
CLK IOF  
Clock Type  
Step/Dir  
nS  
(MHz)  
200 nS  
(2.5 MHz)  
Clock and Direction Filter  
WARN TEMP  
USER ID  
Warning Temperature  
User ID  
0 to +125  
°C  
80  
1-3 characters  
Viewable ASCII  
IMS  
Table 1.2.7: Setup Parameters  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
1-8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Mechanical Specifications  
Dimensions in Inches (mm)  
4X Ø 0.217 (Ø 5.51)  
Ø 0.5512 +0/-0.0004  
(Ø 14.0 +0/-0.010)  
Ø 2.874 ±0.002  
(Ø 73.0 ±0.05)  
2.739 SQ.  
(69.57 SQ.)  
3.39 SQ.  
(86.1 SQ.)  
1.981  
(50.32)  
0.731  
(18.57)  
1.250  
(31.75)  
0.394  
(10.01)  
1.46 ±0.04  
(37.1 ±1.0)  
0.984 ±0.01  
(25.0 ±0.25)  
3.727  
(94.67)  
0.512 +0/–0.004  
(13.0 ±0.10)  
0.079  
(2.0)  
L
MAX  
L
MAX2  
L
Option - Control Knob  
MAX2  
Ø 1.90  
(Ø 48.3)  
Figure 1.2.1: MDrive34Plus Microstepping Dimensional Information  
Part 1: Hardware Specifications  
1-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connector Options  
The MDrive34Plus Microstepping comes in three Connector Options  
1. 12" (30.5 cm) Flying Leads  
2. Locking Wire Crimp Connectors  
Connector  
Options  
Note: All Interface and  
Connection Illustrations  
in this document are  
shown from this  
perspective, Motor facing  
right.  
Flying Leads  
Locking Wire Crimp  
Locking Wire Crimp  
with Internal Optical  
Encoder  
Pin 1  
Pin 1  
P3  
P3  
Pin 1  
P1  
P2  
P4  
Pin 1  
Pin 1  
Pin 1  
P1  
P1  
P1  
P1  
P1  
Type: 12’ (30.5 cm) Flying Leads Type: 12-Pin Locking Wire Crimp  
Type: 12-Pin Locking Wire Crimp  
Function: Power, I/O and Encoder Function: Power, I/O and SPI Comm. Function: Power, I/O and SPI Comm.  
(optional)  
P2  
P3  
P3  
Type: 10-Pin IDC  
Function: SPI Communications  
Type: 2-Pin Locking Wire Crimp  
Function: DC Power  
Type: 2-Pin Locking Wire Crimp  
Function: DC Power  
P4  
Type: 10-Pin Wire Crimp  
Function: Differential Encoder Outputs  
Figure 1.2.2: MDrive34Plus Microstepping Connector Options  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
1-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Pin Assignment And Description - Flying Leads Version  
P1 Connector - Power, I/O and Internal Optical Encoder (Optional)  
Pin Assignment - P1 Power and I/O Connections  
Wire Color  
with Internal  
Encoder  
Flying Lead  
Wire Color  
Function  
Description  
The Signal applied to the Optocoupler Reference will  
determine the sinking/ or sourcing configuration of  
the inputs. To set the inputs for sinking operation, a  
+5 to +24 VDC supply is connected. If sourcing, the  
Reference is connected to Ground  
White  
White  
Opto Reference  
Step Clock input. The step clock input will receive the  
Step Clock/Channel A/ Clock clock pulses which will step the motor 1 step for each  
Orange  
Blue  
Orange  
Blue  
Up  
pulse. It may also receive quadrature and clock up  
type inputs if so configured.  
Direction input. The axis direction will be with respect  
to the state of the Direction Override Parameter. It  
may also receive quadrature and clock up type inputs  
if so configured.  
Direction/Channel B/ Clock  
Down  
Enable/Disable Input will enable or disable the  
driver output to the motor. In the disconnected state  
the driver outputs are enabled in either sinking or  
sourcing configuration.  
Brown  
Brown  
Enable  
Power Ground. The return of the +12 to +75 VDC  
power supply.  
Black  
Red  
Black  
Red  
GND  
+V  
+12 to +75 VDC Motor Power Supply input.  
Differential  
Ground  
Single-End  
Ground  
Yellow/Black  
Yellow/Violet  
Yellow/Blue  
Yellow/Red  
Encoder Ground (common with power ground).  
Index + (Index Single-End) Encoder Output.  
Channel A+ (Channel A Single End) Encoder Output.  
Index +  
Index  
Channel A +  
Channel A  
+5 VDC Input +5 VDC Input +5 VDC Encoder power input.  
Yellow/Brown  
Yellow/Gray  
Yellow/Green  
Channel B +  
Index –  
Channel B  
Channel B+ (Channel B Single End) Encoder Output.  
Index – Differential Encoder Output.  
Channel A –  
Channel A – Differential Encoder Output.  
Channel B – Differential Encoder Output.  
Yellow/Orange Channel B –  
Table 1.2.8 P1 — Pin Assignment, Power and I/O  
White: OptoRef  
Orange: Step Clock  
Blue: Direction  
Brown: Enable  
Black: GND  
Red: +VDC  
Figure 1.2.3: MDrive34Plus Microstepping Flying Leads  
Part 1: Hardware Specifications  
1-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
White: OptoRef  
Orange: Step Clock  
Blue: Direction  
Brown: Enable  
Black: GND  
Red: +VDC  
Yellow/Black: Ground  
Yellow/Violet: Index  
Yellow/Blue: Channel A  
Yellow/Red: +5 VDC Input  
Yellow/Brown: Channel B  
Figure 1.2.4: MDrive34Plus Microstepping Flying Leads with Single-End Encoder  
White: OptoRef  
Orange: Step Clock  
Blue: Direction  
Brown: Enable  
Black: GND  
Red: +VDC  
Yellow/Black: Ground  
Yellow/Violet: Index+  
Yellow/Blue: Channel A+  
Yellow/Red: +5 VDC Input  
Yellow/Brown: Channel B+  
Yellow/Gray: Index -  
Yellow/Green: Channel A -  
Yellow/Orange: Channel B-  
Figure 1.2.5: MDrive34Plus Microstepping Flying Leads with Differential Encoder  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
1-12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Note: The P2  
Connector (10-  
Pin IDC, SPI  
P2 Connector - SPI Communications  
Pin Assignment - P2 SPI Communications  
Communications)  
is only available on the  
Flying Leads version of the  
MDrive34Plus Microstepping.  
On the models with  
10-Pin IDC  
Pin 1  
Function  
Description  
No Connect  
No Connect  
No Connect  
Pin 2  
Pin 3  
pluggable connectors, SPI  
Communications interfaces  
to P1 (12-Pin Locking Wire  
Crimp)  
SPI Chip Select. This signal is used to turn communications  
on multiple MDM units on or off.  
Pin 4  
CS  
Pin 5  
Pin 6  
GND  
Communications Ground.  
+5 VDC Output  
Supply voltage for the MD-CC300-000 Cable ONLY!  
Master-Out/Slave-In. Carries output data from the SPI  
Master to the MDM.  
Pin 7  
MOSI  
The Clock is driven by the SPI Master. The clock cycles  
once for each data bit.  
NEED A  
CABLE?  
The following  
cables and  
converters  
Pin 8  
Pin 9  
SPI Clock  
No Connect  
Master-In/Slave-Out. Carries output data from the MDM  
back to the SPI Master.  
Pin 10  
MISO  
are available to interface  
communications with P2:  
Recommended  
Converter/Cable  
MD-CC300-000  
USB to SPI:  
MD-C300-000  
Table 1.2.9: P2 Connector – SPI Communications  
10 Pin IDC to 12-Pin Locking  
Wire Crimp Adapter:  
MD-ADP-1723C  
Recommended Cable:  
MD-CC300-000  
See Appendix C for details.  
P2  
109  
8 7  
6 5  
4 3  
2 1  
Figure 1.2.6: P2 Connector - SPI Communications  
Part 1: Hardware Specifications  
1-13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NEED A CABLE?  
The following  
cables and  
converters are  
available to  
Pin Assignment And Description - Pluggable Interface Version  
P1 Connector - I/O and SPI Communications, 12-Pin Locking Wire Crimp  
Pin Assignment - P1 Power, I/O and SPI  
Connections  
interface with P1:  
Pin #  
Pin 1  
Pin 2  
Function  
N/C  
Description  
No Connect.  
No Connect.  
12-Pin Locking Wire Crimp  
PD12-1434-FL3  
N/C  
The Signal applied to the Optocoupler Reference will  
determine the sinking/ or sourcing configuration of the inputs.  
To set the inputs for sinking operation, a +5 to +24 VDC  
supply is connected. If sourcing, the Reference is connected  
to Ground  
Pin 3  
Pin 4  
Opto Reference  
Step Clock input. The step clock input will receive the clock  
Step Clock/Channel pulses which will step the motor 1 step for each pulse. It  
A/ Clock Up  
may also receive quadrature and clock up type inputs if so  
configured.  
Enable/Disable Input will enable or disable the driver output  
to the motor. In the disconnected state the driver outputs are  
enabled in either sinking or sourcing configuration. Enable can  
be configured as either active high or active when low in the  
parameters.  
Pin 5  
Pin 6  
Enable  
Direction input. The axis direction will be with respect to the  
state of the Direction Override Parameter. It may also receive  
quadrature and clock up type inputs if so configured.  
Direction/Channel  
B/ Clock Down  
Pin 7  
Pin 8  
Pin 9  
Pin 10  
+5 VDC Output  
SPI Clock  
GND  
Supply voltage for the MD-CC300-000 Cable ONLY!  
The Clock is driven by the SPI Master. The clock cycles once  
for each data bit.  
Communications Ground.  
Master-Out/Slave-In. Carries output data from the SPI Master  
to the MDM.  
MOSI  
SPI Chip Select. This signal is used to turn communications  
on multiple MDM units on or off.  
Pin 11  
Pin 12  
CS  
Master-In/Slave-Out. Carries output data from the MDM back  
to the SPI Master.  
MISO  
Table 1.2.10: P1 Connector – I/O and SPI Communications  
Recommended Cable:  
PD12-1434-FL3  
11  
9
12  
10  
8
7
5
6
3
4
1
2
Figure 1.2.7: P2 Connector - I/O and SPI Communications  
MDrive 34Plus Microstepping Hardware - Revision R071108  
1-14  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NEED A CABLE?  
The following  
cables and  
P3 Connector - DC Power, 2-Pin Locking Wire Crimp  
Pin Assignment - P3 Power  
converters are  
available to  
2-Pin Locking  
Wire Crimp  
Function  
Description  
interface with P3:  
Pin 1  
+V  
+12 to +75 VDC, 4 Amps Maximum per MDrive34Plus.  
Power Supply Return.  
Pin 2  
GND  
2-Pin Locking Wire Crimp  
PD02-3400-FL3  
Table 1.2.11: P3 Connector  
WARNING! Do not  
plug or unplug DC  
Power with power  
applied.  
Recommended Cable:  
P/N PD02-3400-FL3  
P3  
1
2
Figure 1.2.8: P3 Connector - DC Power +12 to +75 VDC  
Part 1: Hardware Specifications  
1-15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NEED A CABLE?  
The following  
cables and  
P4 Connector - Differential Encoder, 10-Pin Friction Lock Wire Crimp  
Pin Assignment - P2 SPI Communications  
converters are  
available to  
interface with P4:  
10-Pin Wire  
Function  
Description  
Crimp  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
Pin 9  
Pin 10  
Ground  
Channel A+  
Channel A –  
Channel B+  
Channel B –  
Index +  
Encoder Ground, common with power ground.  
Channel A + Encoder Output.  
Channel A – Encoder Output.  
Channel B + Encoder Output.  
Channel B – Encoder Output.  
Index + Encoder Output.  
Index – Encoder Output.  
+5 VDC Encoder Power.  
No connect  
10-Pin Friction Lock Wire  
Crimp  
PD10-3400-FL3  
Index –  
+5 VDC  
N/C  
N/C  
No connect  
Recommended  
Cable  
PD10-3400-FL3  
Table 1.2.12: P4 Connector – Optional Internal Differential Encoder  
Recommended Cable:  
P/N PD10-3400-FL3  
2 1  
4 3  
6 5  
P4  
8 7  
10 9  
Figure 1.2.9: P4 Connector – Internal Differential Encoder Interface  
MDrive 34Plus Microstepping Hardware - Revision R071108  
1-16  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connectivity  
QuickStart Kit  
For rapid design verification, all-inclusive QuickStart Kits have communication converter, prototype develop-  
ment cable(s), instructions and CD for MDrivePlus initial functional setup and system testing.  
Communication Converters  
Electrically isolated, in-line converters pre-wired with mating connectors to conveniently set/program com-  
munication parameters for a single MDrivePlus via a PC's USB port. Length 12.0' (3.6m).  
Mates to connector:  
10-Pin IDC ...............................................................................................MD-CC300-001  
12-Pin Wire Crimp....................................................................................MD-CC303-001  
Prototype Development Cables  
Speed test/development with pre-wired mating connectors that have flying leads other end. Length 10.0'  
(3.0m).  
Mates to connector:  
12-Pin Wire Crimp.................................................................................... PD12-1434-FL3  
10-Pin Wire Crimp.................................................................................... PD10-3400-FL3  
2-Pin Wire Crimp...................................................................................... PD02-3400-FL3  
Mating Connector Kits  
Use to build your own cables. Kits contain 5 mating shells with pins. Cable not supplied. Manufacturer's  
crimp tool recommended.  
Mates to connector:  
12-Pin Wire Crimp....................................................................................................CK-03  
10-Pin Wire Crimp....................................................................................................CK-02  
2-Pin Wire Crimp......................................................................................................CK-05  
Kit contains 5 mating connectors that press fit onto ribbon cable. Cable not supplied.  
10-Pin IDC ...............................................................................................................CK-01  
Options  
Internal Encoder  
Internal optical encoders are offered factory-mounted with the MDrive34Plus Microstepping. Refer to the  
Encoder Specifications section for available styles, line counts and part numbers. All encoders come with an  
index mark.  
Control Knob  
The MDrive34Plus is available with a factory-mounted rear control knob for manual shaft positioning.  
Planetary Gearbox  
Efficient, low maintenance planetary gearboxes are  
offered assembled with the MDrive34Plus. Refer to details and part numbers on the back cover.  
Linear Slide  
Integrated linear slides are available factory installed for precision linear movement. Screw leads are 0.1", 0.2",  
0.5" or 1.0" of travel per rev. Slides are 12.0" (30.5cm) to 42.0" (106.7cm) long. Contact factory for custom  
lengths. Refer to separate datasheet or web site for complete details.  
Part 1: Hardware Specifications  
1-17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
1-18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TM  
MICROSTEPPING  
Part 2:  
Interfacing and  
Configuring  
Section 2.1: Mounting and Interface Guidelines  
Section 2.2: Interfacing DC Power  
Section 2.3: Interfacing Logic Inputs  
Section 2.4: Interfacing SPI Communications  
Section 2.3: Using the IMS SPI Motor Interface  
Section 2.4: Using User-Defined SPI  
Part 2: Interfacing and Configuring  
2-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.1  
Mounting and Interface Guidelines  
Mounting Recommendations  
Flange mounting holes are drilled through with a diameter of 0.217" (5.51mm) to take standard 10-32 (M5)  
screws. The length of the screw used will be determined by the mounting flange width.  
Mounting Recommendation  
Allow Top  
Clearance for  
Wiring/Cabling  
MDrive34Plus  
Mounting Hardware  
4 x #10-32 Screw  
4 x #10 Split Lockwasher  
4 x #10 Flat Washer  
Mounting Flange or Adapter Plate*  
4 x #10-32 Lock Nuts  
* When determining material and thickness keep the  
Mounting Hardware (Metric)  
maximum MDrive34Plus temperature of 85°C in consideration.  
4 x M5 - 0.80 Screw  
4 x M5 Split Lockwasher  
4 x M5 Flat Washer  
Mounting Hole Pattern  
4 x M5 - 0.80 Lock Nuts  
Mounting Hardware is not  
supplied  
4x Ø 0.217  
(4x Ø 5.51)  
Ø 2.900  
(Ø 73.66)  
Ø 3.873  
(Ø 98.37)  
2.739 SQ.  
(69.57 SQ.)  
Figure 2.1.1: Mounting Recommendations and Drill Pattern  
Part 2: Interfacing and Configuring  
2-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Layout and Interface Guidelines  
Logic level cables must not run parallel to power cables. Power cables will introduce noise into the logic level  
cables and make your system unreliable.  
Logic level cables must be shielded to reduce the chance of EMI induced noise. The shield needs to be grounded  
at the signal source to earth. The other end of the shield must not be tied to anything, but allowed to float. This  
allows the shield to act as a drain.  
Power supply leads to the MDrivePlus need to be twisted. If more than one driver is to be connected to the  
same power supply, run separate power and ground leads from the supply to each driver.  
Rules of Wiring  
Power Supply and Motor wiring should be shielded twisted pairs, and run separately from signal-  
carrying wires.  
A minimum of one twist per inch is recommended.  
Motor wiring should be shielded twisted pairs using 20 gauge, or for distances of more than 5  
feet, 18 gauge or better.  
Power ground return should be as short as possible to established ground.  
Power supply wiring should be shielded twisted pairs of 18 gauge for less than 4 amps DC and 16  
gauge for more than 4 amps DC.  
Rules of Shielding  
The shield must be tied to zero-signal reference potential. It is necessary that the signal be earthed  
or grounded, for the shield to become earthed or grounded. Earthing or grounding the shield is  
not effective if the signal is not earthed or grounded.  
Do not assume that Earth ground is a true Earth ground. Depending on the distance from the  
main power cabinet, it may be necessary to sink a ground rod at the critical location.  
The shield must be connected so that shield currents drain to signal-earth connections.  
The number of separate shields required in a system is equal to the number of independent  
signals being processed plus one for each power entrance.  
The shield should be tied to a single point to prevent ground loops.  
A second shield can be used over the primary shield; however, the second shield is tied to ground  
at both ends.  
Switch  
Shielded Cable  
Signal  
MDrivePlus  
Common  
IOx  
Cut drain wire  
here. Do not  
terminate  
Keep Unshielded  
Runs Short  
GND  
Shield Drain  
Ground Braid  
(Short Run)  
Wire  
All other I/O  
Drains Connect to  
Common Point  
Control Panel Back  
Panel Earth Stud  
Sand paint off panel  
to ensure bare metal  
contact.  
To Front Panel  
of Enclosure  
To Earth Ground  
Figure 2.1.2: Grounding and Shielding for Logic Connections  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-4  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Recommended Wiring  
The following wiring/cabling is recommended for use with the MDrivePlus:  
Logic Wiring......................................................................................................................22 AWG  
Wire Strip Length ...................................................................................................0.25” (6.0 mm)  
Power and Ground .....................................................................See Section 2.2: Interfacing Power  
Recommended Mating Connectors and Pins  
The recommended connector shells and pins are available from IMS as a kit consisting of five (5) connector shells  
and crimp pins (if required) to construct 5 cable-ends. Also available are communications converters and Prototype  
Development cables to aid in rapid design and prototyping. These connector kits and cables are detailed in Appen-  
dix E of this document.  
SPI Communications (Flying Lead Version Only)  
Press-Fit IDC - P2 (MDrive34Plus Only)  
Mating Connector Kit........................................................................... CK-01  
Communications Converter.................................................................. MD-CC300-001  
Manufacturer PNs  
10-Pin IDC .......................................................................................... Samtec: TCSD-05-01-N  
Ribbon Cable ....................................................................................... Tyco: 1-57051-9  
12-Pin Locking Wire Crimp (I/O and SPI Communications)  
I/O & Communications - P1  
Mating Connector Kit........................................................................... CK-03  
Communications Converter.................................................................. MD-CC303-001  
Prototype Development Cable .............................................................. PD12-1434-FL3  
Manufacturer PNs  
12-pin Locking Wire Crimp Connector Shell ....................................... Tyco 1-794617-2  
Crimp Pins............................................................................................ Tyco 794610-0-1  
Crimp Tool ........................................................................................... Tyco 91501-1  
2-Pin Locking Wire Crimp (Power)  
The following mating connectors are recommended for the MDrive34Plus2 Units ONLY! Please contact a  
JST distributor for ordering and pricing information.  
Power - P3  
WARNING! DO NOT  
bundle the logic leads  
with the power leads  
as this could lead to  
Mating Connector Kit........................................................................... CK-05  
Prototype Development Cable .............................................................. PD02-3400-FL3  
noise induced errors.  
Manufacturer PNs  
2-pin Locking Wire Crimp Connector Shell ......................................... Molex 51067-0200  
Crimp Pins............................................................................................ Molex 50217-9101 Brass  
Crimp Tool ........................................................................................... Molex 63811-1200  
10-Pin Friction Lock Wire Crimp (Internal Differential Encoder)  
Friction Lock Wire Crimp - P4  
10-pin Friction Lock)............................................................................ Hirose DF11-10DS-2C  
Crimp Contact for 10-pin Friction Lock (22 AWG).............................. DF11-22SC  
Crimp Contact for 10-pin Friction Lock (24 - 28 AWG) ...................... DF11-2428SC  
Crimp Contact for 10-pin Friction Lock (30 AWG).............................. DF11-30SC  
Part 2: Interfacing and Configuring  
2-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Securing Power Leads and Logic Leads  
Some applications may require that the MDrive move with the axis motion. If this is a requirement of your  
application, the motor leads must be properly anchored. This will prevent flexing and tugging which can  
cause damage at critical connection points within the MDrive.  
P3: Power  
P1: Logic Wiring  
Separation between  
Logic and Power  
Adhesive Anchor/Tywrap  
Figure 2.1.3: Typical MDrive Shown with Leads Secured  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-6  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.2  
Interfacing DC Power  
Choosing a Power Supply for Your MDrive  
When choosing a power supply for your  
MDrivePlus there are performance and  
sizing issues that must be addressed. An  
undersized power supply can lead to poor  
performance and even possible damage to the  
device, which can be both time consuming  
and expensive. However, The design of the  
MDrivePlus is quite efficient and may not re-  
quire as large a supply as you might suspect.  
Motors have windings that are electrically  
just inductors, and with inductors comes re-  
sistance and inductance. Winding resistance  
and inductance result in a L/R time constant  
that resists the change in current. It requires  
five time constants to reach nominal current.  
To effectively manipulate the di/dt or the rate  
of charge, the voltage applied is increased.  
When traveling at high speeds there is less  
time between steps to reach current. The  
point where the rate of commutation does  
Figure 2.2.1: IMS ISP300 Switch Mode Power Supply  
not allow the driver to reach full current is referred to as Voltage Mode. Ideally you want to be in Current Mode,  
which is when the drive is achieving the desired current between steps. Simply stated, a higher voltage will de-  
crease the time it takes to charge the coil, and therefore will allow for higher torque at higher speeds.  
Another characteristic of all motors is Back EMF, and though nothing can be done about back EMF, we can give  
a path of low impedance by supplying enough output capacitance. Back EMF is a source of current that can push  
the output of a power supply beyond the maximum operating voltage of the driver and as a result could damage  
the MDrivePlus over time.  
The MDrivePlus is very current efficient as far as the power supply is concerned. Once the motor has charged  
one or both windings of the motor, all the power supply has to do is replace losses in the system. The charged  
winding acts as an energy storage in that the current will re-circulate within the bridge, and in and out of each  
phase reservoir. While one phase is in the decaying stage of the variable chopping oscillator, the other phase is in  
the charging stage, this results in a less than expected current draw on the supply.  
The MDrivePlus is designed with the intention that a user’s power supply output will ramp up to greater or equal  
to the minimum operating voltage. The initial current surge is quite substantial and could damage the driver if  
the supply is undersized. If a power supply is undersized, upon a current surge the supply could fall below the  
operating range of the driver. This could cause the power supply to start oscillating in and out of the voltage  
range of the driver and result in damaging either the supply, driver or both. There are two types of supplies com-  
monly used, regulated and unregulated, both of which can be switching or linear. All have their advantages and  
disadvantages.  
An unregulated linear supply is less expensive and more resilient to current surges, however, voltage decreases  
with increasing current draw. This can cause serious problems if the voltage drops below the working range of the  
drive. Also of concern is the fluctuations in line voltage. This can cause the unregulated linear supply to be above  
or below the anticipated voltage.  
A regulated supply maintains a stable output voltage, which is good for high speed performance. They are also  
not bothered by line fluctuations, however, they are more expensive. Depending on the current regulation, a  
regulated supply may crowbar or current clamp and lead to an oscillation that as previously stated can lead to  
damage. Back EMF can cause problems for regulated supplies as well. The current regeneration may be too large  
for the regulated supply to absorb and may lead to an over voltage condition.  
Switching supplies are typically regulated and require little real-estate, which makes them attractive. However,  
their output response time is slow, making them ineffective for inductive loads. IMS has designed a series of low  
cost miniature non-regulated switchers that can handle the extreme varying load conditions which makes them  
ideal for the MDrivePlus.  
Part 2: Interfacing and Configuring  
2-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING! DO NOT  
Plug or unplug Power  
with power applied!  
DC Power Supply Recommendations  
The power requirements for the Motion Control MDrive34Plus are:  
Output Voltage ...................................................................+12 to +75 VDC (Includes Back EMF)  
Current (max. per unit)...............................................................................................................4A  
(Actual power supply current requirement will depend upon voltage and load)  
Recommended IMS Power Supplies  
IMS unregulated linear and unregulated switching power supplies are the best fit for IMS drive products.  
IP804 Unregulated Linear Supply  
Input Range  
120 VAC Versions ...........................................................................................102-132 VAC  
240 VAC Versions ...........................................................................................204-264 VAC  
Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)  
No Load Output Voltage........................................................................76 VDC @ 0 Amps  
Half Load Output..................................................................................65 VDC @ 2 Amps  
Full Load output....................................................................................58 VDC @ 4 Amps  
IP806 Unregulated Linear Supply  
Input Range  
120 VAC Versions ...........................................................................................102-132 VAC  
240 VAC Versions ...........................................................................................204-264 VAC  
Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)  
No Load Output Voltage........................................................................76 VDC @ 0 Amps  
Half Load Output..................................................................................68 VDC @ 3 Amps  
Full Load Output...................................................................................64 VDC @ 6 Amps  
ISP300-7 Unregulated Switching Supply  
Input Range  
120 VAC Versions ...........................................................................................102-132 VAC  
240 VAC Versions ...........................................................................................204-264 VAC  
Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)  
No Load Output Voltage........................................................................68 VDC @ 0 Amps  
Continuous Output Rating....................................................................63 VDC @ 2 Amps  
Peak Output Rating ...............................................................................59 VDC @ 4 Amps  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-8  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connecting DC Power  
Connect the DC Power Supply to your MDrivePlus in accordance with the following illustrations.  
Unregulated  
Linear or  
WARNING! Do not connect  
Switching  
or disconnect cabling while  
Power Supply  
!
power is applied!  
+
Power  
A
B
Ground  
12” Flying Leads  
+VDC  
Shielded Twisted Pair Cable  
Black  
Red  
A
Shield to  
Earth Ground  
B
+V Voltage: +12 to +75* VDC  
+V Current: 4A Max Per MDrive34Plus  
Recommended IMS Power Supplies:  
IP804  
IP806  
ISP300-7  
2-Pin Locking Wire Crimp  
P3  
*Includes Back EMF!  
Pin 1  
Pin 2  
B
A
Figure 2.2.2 DC Power Connections  
Part 2: Interfacing and Configuring  
2-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Recommended Power and Cable Configurations  
Cable length, wire gauge and power conditioning devices play a major role in the performance of your MDrive.  
Example A demonstrates the recommended cable configuration for DC power supply cabling under 50 feet  
long. If cabling of 50 feet or longer is required, the additional length may be gained by adding an AC power  
supply cable (see Examples B & C).  
Correct AWG wire size is determined by the current requirement plus cable length. Please see the MDrive Sup-  
ply Cable AWG Table at the end of this Appendix.  
Example A – Cabling Under 50 Feet, DC Power  
Cable Length  
less than 50 Feet  
π Type RFI Filter  
DC Voltage from  
Required Current  
Power Supply  
To MDrive  
-
+
500 µf  
Per Amp  
-
+
Ferrite  
Beads  
Shielded Twisted Pair  
(Wire Size from  
MDrive Supply Cable AWG Table)  
Shield to Earth Ground  
on Supply End Only  
Figure 2.2.3: DC Cabling - Under 50 Feet  
Example B – Cabling 50 Feet or Greater, AC Power to Full Wave Bridge  
Transformer - 10 to 28 VAC RMS for 48 VDC Systems  
20 to 48 VAC RMS for 75 VDC Systems  
NOTE:  
Connect the cable illustrated  
in Example A to the output of  
the Full Wave Bridge  
π Type RFI Filter  
Shielded Twisted Pair  
(Wire Size from  
Required Current  
MDrive Supply Cable AWG Table)  
+
To Cable A  
-
Full Wave Bridge  
Shield to Earth Ground  
on Supply End Only  
Cable Length  
as required  
Figure 2.2.4: DC Cabling - 50 Feet or Greater - AC To Full Wave Bridge Rectifier  
Example C – Cabling 50 Feet or Greater, AC Power to Power Supply  
NOTE:  
Connect the cable illustrated  
in Example A to the output of  
π Type RFI Filter  
Shielded Twisted Pair  
the Power Supply  
(Wire Size from  
MDrive Supply Cable AWG Ta ble)  
Required Current  
DC Volts Out  
+
-
120 or 240 VAC  
Dependent on  
Power Supply  
To Cable A  
Shield to Earth Ground  
on Supply End Only  
Cable Length  
as required  
Power Supply  
Figure 2.2.5: AC Cabling - 50 Feet or Greater - AC To Power Supply  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MDrive34Plus Recommended Power Supply Cable AWG  
1 Amperes (Peak)  
3 Amperes (Peak)  
10 25 50*  
18 16 14  
4 Amperes (Peak)  
Length (Feet)  
10  
20  
25  
20  
50*  
18  
75* 100*  
18 16  
Length (Feet)  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
2 Amperes (Peak)  
Length (Feet)  
10  
20  
25  
18  
50*  
16  
75* 100*  
14 14  
Length (Feet)  
10  
18  
25  
16  
50*  
14  
75*  
12  
100*  
12  
Minimum AWG  
Minimum AWG  
*Use the alternative methods illustrated in examples B and C when cable length is ≥ 50 feet. Also, use the same  
current rating when the alternate AC power is used.  
Table 2.2.1: Recommended Wire Gauges  
Part 2: Interfacing and Configuring  
2-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.3  
Isolated Input Interface and Connection  
Optically Isolated Logic Inputs  
The MDrivePlus  
Microstepping has  
three optically iso-  
lated inputs which  
Opto Ref.  
ØA  
ØB  
Enhanced  
Torque  
Stepping  
Motor  
Step Clock  
are located at the  
flying leads or on  
connector P1. These  
inputs are iso-  
lated to minimize or  
Direction  
Microstep  
Driver  
Enable  
eliminate electrical  
noise coupled onto  
the drive control  
signals. Each input  
is internally pulled-  
up to the level of  
MDrivePlus Intergrated  
Motor and Microstep Driver  
Power  
the optocoupler  
supply and may be  
connected to sinking  
or +5 to +24 VDC  
sourcing outputs on  
a controller or PLC.  
These inputs are:  
Figure 2.3.1: MDrivePlus Microstepping Block Diagram  
1] Step Clock (SCLK)/Quadrature (CH A)/Clock UP  
2] Direction (DIR)/Quadrature (CH B)/ Clock DOWN  
3] Enable (EN)  
Of these inputs only step clock and direction are required to operate the MDrivePlus Microstepping.  
Isolated Logic Input Pins and Connections  
The following diagram illustrates the pins and connections for the MDrive 17 and 23 Plus Microstepping  
family of products. Careful attention should be paid to verify the connections on the model MDrivePlus  
Microstepping you are using.  
Part 2: Interfacing and Configuring  
2-13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Controller  
12” Flying Leads  
White  
Opto Reference  
A
A
See Input Configuration  
Step Clock  
Channel A  
Clock Up  
Orange  
Blue  
B
C
D
B
C
D
Direction  
Channel B  
Clock Down  
Brown  
Enable  
12-Pin Locking Wire Crimp  
Input Configuration  
Inputs Configured as Sourcing  
P1  
Pin 5  
D
A
A
Pin 3  
Pin 4  
Pin 6  
Controller I/O  
Ground  
B
C
Inputs Configured as Sinking  
+5 to +24VDC  
A
Figure 2.3.2: Isolated Input Pins and Connections  
+5 VDC  
Optocoupler  
Reference  
Optocoupler  
Constant  
Current  
Source  
To Drive Logic  
Input  
(Step Clock,  
Direction, Enable)  
MDrivePlus  
Microstepping  
Figure 2.3.3: Optocoupler Input Circuit Diagram  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Isolated Logic Input Characteristics  
Enable Input  
This input can be used to enable or disable the driver output circuitry. Leaving the enable switch open (Logic  
HIGH, Disconnected) for sinking or sourcing configuration, the driver outputs will be enabled and the step  
clock pulses will cause the motor to advance. When this input switch is closed (Logic LOW) in both sinking  
and sourcing configurations, the driver output circuitry will be disabled. Please note that the internal sine/cosine  
position generator will continue to increment or decrement as long as step clock pluses are being received by the  
MDrivePlus Microstepping.  
Clock Inputs  
The MDrivePlus Microstepping features the ability to configure the clock inputs based upon how the user will  
desire to control the drive. By default the unit is configured for the Step/Direction function.  
Step Clock  
The step clock input is where the motion clock from your  
Step/Direction Function  
control circuitry will be connected. The motor will advance  
one microstep in the plus or minus direction (based upon  
the state of the direction input) on the rising edge of each  
clock pulse. The size of this increment or decrement will  
depend on the microstep resolution setting.  
Step Clock  
Direction  
Direction  
The direction input controls the CW/CCW direction  
of the motor. The input may be configured as sinking or  
sourcing based upon the state of the Optocoupler Refer-  
Quadrature Function  
ence. The CW/CCW rotation, based upon the state of the  
input may be set using the IMS Motor Interface software  
included with the MDrivePlus Microstepping.  
Channel A  
Quadrature  
The Quadrature clock function would typically be  
Channel B  
used for following applications where the MDrivePlus  
Microstepping would be slaved to an MDrivePlus Motion  
Control (or other controller) in an electronic gearing ap-  
plication.  
Up/Down Function  
Up/Down  
The Up/Down clock would typically be used in a dual-  
clock direction control application. This setting is also la-  
beled CW/CCW in the IMS SPI Motor Interface software.  
CW  
Input Timing  
CCW  
The direction input and the microstep resolution inputs  
are internally synchronized to the positive going edge of the  
step clock input. When a step clock pulse goes HIGH, the  
state of the direction input and microstep resolution set-  
tings are latched. Any changes made to the direction and/  
or microstep resolution will occur on the rising edge of the  
Figure 2.3.4: Input Clock Functions  
step clock pulse following this change. Run and Hold Current changes are updated immediately. The follow-  
ing figure and table list the timing specifications.  
Input Filtering  
The clock inputs may also be filtered using the Clock IOF pull down of the IMS SPI Motor Interface. The  
filter range is from 50 nS (10 MHz) to 12.9 µSec. (38.8 kHz).  
The configuration parameters for the input filtering is covered in detail in Section 2.4: Configuring the  
MDrivePlus Microstepping.  
Part 2: Interfacing and Configuring  
2-15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
STEP/DIRECTION TIMING  
TDH  
Direction  
Step  
TDSU  
TSH  
TSL  
QUADRATURE TIMING  
Direction Change  
TCHL  
Channel A  
Channel B  
TDC  
TCHL  
UP/DOWN (CW/CCW) TIMING  
Step Up  
TSH  
TSL  
TDC  
TDC  
Step Down  
TSH  
TSL  
Figure 2.3.5: Clock Input Timing Characteristics  
Clock Input Timing  
Type and Value  
Step/Direction Step Up/Down Quadrature  
Symbol  
Parameter  
Units  
T
T Direction Set Up  
T Direction Hold  
T Step High  
50  
100  
100  
100  
nS min.  
DSU  
T
nS min.  
nS min.  
DH  
T
100  
100  
200  
SH  
T
T Step Low  
nS min.  
SL  
T
T Direction Change  
T Channel High/Low  
F Step Maximum  
F Channel Maximum  
F Edge Rate  
200  
400  
nS min.  
DL  
T
nS min.  
CHL  
F
5
5
MHz Max  
MHz Max  
MHz Max  
SMAX  
F
1.25  
5
CHMAX  
F
ER  
Table 2.3.1: Input Clocks Timing Table  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: When  
connecting the  
Optocoupler Reference  
Optocoupler Supply,  
it is recommended  
that you do not use MDrive  
DC Power Ground as Ground  
as this will defeat the optical  
isolation.  
The MDrivePlus Microstepping Logic Inputs are optically isolated to prevent electrical noise being coupled into  
the inputs and causing erratic operation.  
There are two ways that the Optocoupler Reference will be connected depending whether the Inputs are to be  
configured as sinking or sourcing.  
Ground the Opto supply at  
the controller I/O ground.  
Optocoupler Reference  
Input Type  
Sinking  
Optocoupler Reference Connection  
+5 to +24 VDC  
Sourcing  
Controller Ground  
Table 2.3.2: Optocoupler Reference Connection  
Part 2: Interfacing and Configuring  
2-17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Input Connection Examples  
The following diagrams illustrate possible connection/application of the MDrivePlus Microstepping Logic  
Inputs.  
Open Collector Interface Example  
NPN Open Collector Interface  
(Sinking)  
+5 to +24VDC  
Optocoupler Reference  
+
MDrivePlus  
Microstepping  
Controller Output  
Input  
Controller Ground  
PNP Open Collector Interface  
(Sourcing)  
+5 to +24VDC  
Optocoupler Reference  
+
MDrivePlus  
Controller Output  
Microstepping  
Input  
Controller Ground  
Figure 2.3.6: Open Collector Interface Example  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-18  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Switch Interface Example  
Switch Interface  
(Sinking)  
+5 to +24VDC  
Opto Ref.  
GND  
+
MDrivePlus  
Speed Control  
Input  
SPST  
Switch  
Switch Interface  
(Sourcing)  
+5 to +24VDC  
Opto Ref.  
GND  
+
MDrivePlus  
Speed Control  
Input  
SPST  
Switch  
Figure 2.3.7: Switch Interface Example  
Part 2: Interfacing and Configuring  
2-19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Minimum Required Connections  
The connections shown are the minimum required to operate the MDrivePlus Microstepping. These are  
illustrated in both Sinking and Sourcing Configurations. Please reference the Pin Configuration diagram and  
Specification Tables for the MDrivePlus Microstepping connector option you are using.  
DO NOT use the +5VDC Output P1:7 (Wire Crimp)  
or P2:6 (Flying Lead) for Optocoupler Supply.  
This voltage output is design to power the IMS  
USB to SPI converter cable ONLY!  
+VDC  
Motor Supply  
!
+
P3:1 - Wire Crimp, Red Flying Lead  
P3:2 - Wire Crimp, Black Flying Lead  
Step Clock  
P1:4 - Wire Crimp, Orange Flying Lead  
P1:6 - Wire Crimp, Blue Flying Lead  
Direction  
GND  
P1:3 - Wire Crimp, White Flying Lead  
+
MDrive34Plus Microstepping  
+5 to +24  
Opto Supply  
Figure 2.3.8 Minimum Required Connections  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.4  
Connecting SPI Communications  
Connecting the SPI Interface  
The SPI (Serial Peripheral Interface) is the communications and configuration interface.  
For prototyping we recommend the purchase of the parameter setup cable MD-CC300-000. For more information  
on prototype development cables, please see Appendix: C: Cables and Cordsets  
SPI Signal Overview  
+5 VDC (Output)  
This output is a voltage supply for the setup cable only. It is not designed to power any external devices.  
SPI Clock  
The Clock is driven by the Master and regulates the flow of the data bits. The Master may transmit data at a  
variety of baud rates. The Clock cycles once for each bit that is transferred.  
Logic Ground  
This is the ground for all Communications.  
MISO (Master In/Slave Out)  
Carries output data from the MDrivePlus Microstepping units back to the SPI Master. Only one MDrivePlus  
can transmit data during any particular transfer.  
CS (SPI Chip Select)  
This signal is used to turn communications to multiple MDrivePlus Microstepping units on or off.  
MOSI (Master Out/Slave In)  
Carries output data from the SPI Master to the MDrivePlus Microstepping.  
Part 2: Interfacing and Configuring  
2-21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING! The  
SPI Pins and Connections  
Parallel/SPI Port on  
your PC must be set  
to one of the following:  
output only  
10-Pin IDC (Only present on  
models with Flying Lead)  
PC Parallel Port  
1. bi-directional  
2. EPP (Extended Parallel  
Port)  
+5 VDC ONLY used  
for IMS MD-CC300-000  
P2  
Try the SPI connection using the  
default parallel port setting first.  
If necessary, the Parallel/SPI  
port may be configured in the  
bios of your PC.  
Pin 4  
E
2
3
4
Pin 5  
Pin 7  
A
D
15  
18 - 25  
Pin 10  
Pin 8  
Pin 6  
B
C
Comm GND  
MISO  
A
B
C
SPI Clock  
MOSI  
12-Pin Locking Wire Crimp  
Pin 11  
Pin 9  
Pin 7  
D
E
E
A
SPI Chip Select  
Only required if using  
a 3.3 volt output parallel port.  
See Schematic on Following  
Page  
P1  
Pin 8  
C
Pin 10  
Pin 12  
B
D
Figure 2.4.1: SPI Pins and Connection — All Connector Styles  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-22  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: If making your own  
parameter setup cable, be  
Logic Level Shifting and Conditioning Circuit  
advised the 3.3V output  
parallel ports on some  
laptop PC’s may not be sufficient  
to communicate with the device  
without use of a logic level shifting  
and conditioning Interface.  
The following circuit diagram is of a Logic Level shifting and conditioning circuit. This circuit should be  
used if you are making your own parameter cable and are using a laptop computer with 3.3 V output parallel  
ports.  
1
R1  
R2  
2
3
8
4
2
5
CLK  
U1:A  
100  
HCT125  
+5V  
49.9  
P2: 8  
DB25: 2  
DB25: 3  
14  
C3  
330pF  
100K  
+5V  
3
R9  
C4  
4
100K  
R10  
R4  
R3  
4
6
U1:B  
7
CS  
100  
HCT125  
DB25: 4  
49.9  
P2: 4  
P2: 7  
P2: 10  
330pF  
19  
DB25: 19  
13  
U1:D  
R6  
R5  
7
12  
11  
MOSI  
100  
49.9  
HCT125  
C5  
330pF  
100K  
R8  
R11  
+5V  
4.9K  
+5V  
100K  
10  
R12  
R7  
15  
10  
8
9
MISO  
U1:C  
49.9  
DB25: 15  
HCT125  
+5V  
6
5
+5 VDC  
GND  
+
1µF  
25V  
P2: 6  
P2: 5  
.1µF  
C1  
C2  
Figure 2.4.2: Logic Level Shifting and Conditioning Circuit  
Part 2: Interfacing and Configuring  
2-23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SPI Master with Multiple MDrivePlus Microstepping  
It is possible to link multiple MDrivePlus Microstepping units in an array from a single SPI Master by wiring the system and  
programming the user interface to write to multiple chip selects.  
Each MDrivePlus on the bus will have a dedicated chip select. Only one system MDrivePlus can be communicated with/Pa-  
rameters changed at a time.  
SPI Clock  
MDriveACPlus  
Microstepping  
MOSI  
MISO  
CS  
SPI Master  
Figure 2.4.4: SPI Master with a Single MDrivePlus Microstepping  
SPI Clock  
MDriveACPlus  
MOSI  
Microstepping  
#1  
MISO  
CS1  
SPI Master  
CS2  
MDriveACPlus  
Microstepping  
#2  
Figure 2.4.4: SPI Master with Multiple MDrivePlus Microstepping  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.5  
Using the IMS SPI Motor Interface  
Installation  
The IMS SPI Motor Interface is a utility that easily allows you to set up the parameters of your MDrivePlus  
Microstepping. It is available both on the CD that came with your product and on the IMS web site at http://  
1. Insert the CD into the CD Drive of your PC.  
2. The CD will auto-start.  
3. Click the Software Button in the top-right navigation Area.  
4. Click the IMS SPI Interface link appropriate to your operating system.  
5. Click SETUP in the Setup dialog box and follow the on-screen instructions.  
6. Once IMS SPI Motor Interface is installed, the MDrivePlus Microstepping settings can be  
checked and/or set.  
Configuration Parameters and Ranges  
MDrivePlus Microstepping Setup Parameters  
Name  
MHC  
MRC  
Function  
Range  
0 to 100  
1 to 100  
Units  
percent  
percent  
Default  
Motor Hold Current  
Motor Run Current  
5
25  
1, 2, 4, 5, 8, 10, 16, 25, 32, 50,  
64, 100,108, 125, 127,128,  
180, 200, 250, 256  
µsteps per  
full step  
Microstep  
Resolution  
MSEL  
256  
Motor Direction  
Override  
Hold Current Delay  
Time  
DIR  
0/1  
mSec  
CW  
500  
HCDT  
0 or 2-65535  
Step/Dir. Quadrature, Up/Down  
(CW/CCW)  
CLK TYPE  
Clock Type  
Step/Dir  
Clock and Direction  
Filter  
50 nS to 12.9 µS  
(10 MHz to 38.8kHz)  
50nS (10  
MHz)  
CLK IOF  
USER ID  
EN ACT  
nS (MHz)  
1-3 characters  
User ID  
Customizable  
IMS  
Enable Active  
High/Low  
High/Low  
High  
Warning  
Temperature  
WARN TEMP  
0 to + 125  
°C  
80  
Table 2.5.1: Setup Parameters and Ranges  
Color Coded Parameter Values  
The SPI Motor Interface displays the parameter values using a predefined system of color codes to identify the  
status of the parameter.  
1. Black: the parameter settings currently stored in the device NVM will display as black.  
2. Blue: Blue text indicates a changed parameter setting that has not yet been written to the  
device.  
3. Red: Red text indicates an out-of-range value which cannot be written to the device. When  
an out-of-range parameter is entered into a field, the "set" button will disable, preventing the  
value to be written to NVM. To view the valid parameter range, hover the mouse pointer over  
the field. The valid range will display in a tool tip.  
The color coding is illustrated in Figure 2.5.1.  
Part 2: Interfacing and Configuring  
2-25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Blue: New Value which has not yet  
been set to NVM.  
Red: Out of Range Value.  
The Set Button will disable  
as the the Motor Interface will  
not allow an out of range value  
to be stored.  
Black: This is the value  
Currently Stored in NVM  
Figure 2.5.1: SPI Motor Interface Color Coding  
IMS SPI Motor Interface Menu Options  
File  
>
>
>
>
Open: Opens a saved *.mot (Motor Settings) file.  
Save: Saves the current motor settings as a *.mot file for later re-use  
Save As  
Exit - Disconnects from the device and opens the Initialization Dialog.  
Perform File  
Operation  
Open Motor Settings  
File (*.mot)  
Save Motor Settings  
Save Motor Settings As  
Exit the Motor Interface  
Figure 2.5.2: SPI Motor Interface File Menu  
View  
>
>
>
Motion Settings: Displays the Motion Settings screen  
IO Settings: Displays the IO Settings Screen  
Part and Serial Number: Displays the part and serial number  
View Settings  
Screen  
Motion Settings Screen  
I/O Settings Screen  
Read-Only Part  
and Serial Number Screen  
Figure 2.5.3: SPI Motor Interface View Menu  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Recall!  
Retrieves the settings from the MDrivePlus Microstepping.  
Recall Last Stored  
Parameter Settings  
Figure 2.5.4: SPI Motor Interface Recall Menu  
Upgrade!  
Upgrades the MDrivePlus Microstepping firmware by placing the device in Upgrade Mode and launching the  
firmware upgrader utility.  
Toggle MForce into  
Upgrade Mode for  
Firmware Upgrade  
Figure 2.5.5: SPI Motor Interface Upgrade Menu  
Help  
>
>
IMS Internet Tutorials: Link to an IMS Web Site page containing Interactive flash tutorials.  
About: Opens the About IMS and IMS SPI Motor Interface Screen.  
Links to the Software  
Tutorial page of the  
IMS Website  
Figure 2.5.6: SPI Motor Interface Help Menu and About Screen  
Part 2: Interfacing and Configuring  
2-27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Screen 1: The Motion Settings Configuration Screen  
Motor Run  
Current  
Microstep Resolution  
Selection  
Holding Current  
Delay Time  
Direction  
Override  
Motor Holding  
Current  
Load Factory  
Default Settings  
Exit Program  
Fault/Checksum  
Error  
Three Character  
User ID  
Store Settings  
to NVM  
Figure 2.5.7: SPI Motor Interface Motion Settings Screen  
The IMS SPI Motor Interface Software opens by default to the Motion Settings Screen shown on the left.  
There are six basic parameters that may be set here:  
1. MSEL: Microstep Resolution Select.  
2. HCDT: Holding Current Delay Time.  
3. MRC: Motor Run Current  
4. Motor Holding Current  
5. User ID: 3-character ID  
6. Direction Override: Allows the user to set the CW/CCW direction of the motor in relation to the  
Direction Input from the SPI Motor Interface.  
MSEL (Microstep Resolution Selection)  
The MDrivePlus Microstepping features 20 microstep resolutions. This setting specifies the number of microsteps  
per step the motor will move.  
The MDrivePlus uses a 200 step (1.8°) stepping motor which at the highest (default) resolution of 256 will yield  
51,200 steps per revolution of the motor shaft.  
See Table 2.3.2 for available Microstep Resolutions.  
Microstep Resolution Settings  
Binary µStep Resolution Settings  
Decimal µStep Resolution Settings  
MS=<µSteps/Step>  
Steps/Revolution  
MS=<µSteps/  
Step>  
Steps/Revolution  
1
2
200  
400  
5
1000  
2000  
10  
4
8
800  
25  
50  
5000  
10000  
20000  
25000  
1600  
3200  
6400  
16  
32  
100  
125  
64  
12800  
25600  
51200  
200  
250  
40000  
50000  
128  
256  
Additional Resolution Settings  
180  
108  
36000 (0.01°/µStep)  
21600 (1 Arc Minute/µStep)  
127  
25400 (0.001 mm/µStep)  
Table 2.5.2: Microstep Resolution Settings  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-28  
Download from Www.Somanuals.com. All Manuals Search And Download.  
HCDT (Hold Current Delay Time)  
The HCDT Motor Hold Current Delay sets time in milliseconds for the Run Current to switch to Hold Current when  
motion is complete. When motion is complete, the MDrivePlus Microstepping will reduce the current in the windings of  
the motor to the percentage specified by MHC when the specified time elapses.  
MRC (Motor Run Current)  
The MRC Motor Run Current parameter sets the motor run current to a percentage of the full output current of the  
MDrivePlus driver section.  
MHC (Motor Hold Current)  
The MHC parameter sets the motor holding current as a percentage of the full output current of the driver. If the hold  
current is set to 0, the output circuitry of the driver section will disable when the hold current setting becomes active. The  
hold current setting becomes active HCDT setting mS following the last clock pulse.  
DIR (Motor Direction)  
The DIR Motor Direction parameter changes the motor direction relative to the direction input signal, adapting the direc-  
tion of the MDrivePlus to operate as your system expects.  
User ID  
The User ID is a three character (viewable ASCII) identifier which can be assigned by the user. Default is IMS.  
IMS SPI Motor Interface Button Functions  
The following appear on all of the IMS SPI Motor Interface screens, but will only be documented here.  
Factory  
Clicking the Factory button will load the MDrivePlus Microstepping unit's factory default settings into the IMS SPI  
Motor Interface.  
Connected/Disconnected Indicator  
Displays the connected/disconnected state of the software , and if connected, the port connected on.  
Set  
Set writes the new settings to the MDrivePlus . Un-set settings will display as blue text in the setting fields. Once set  
they will be in black text. Setting the Parameters will also clear most Fault Conditions.  
Exit  
Disconnects and opens the Initialization dialog.  
Part 2: Interfacing and Configuring  
2-29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Screen 2: I/O Settings Configuration Screen  
The I/O Settings screen may be accessed by clicking View > IO Settings on the menu bar. This screen is used to  
configure the Input Clock type, the filtering and the Active High/Low State of the Enable Input.  
Input Clock Type  
The Input Clock Type translates the specified pulse source that the motor will use as a reference for establishing  
stepping resolution based on the frequency.  
Active High/Low  
State of the  
Enable Input  
Input Clock Type  
(Step/Dir, Quadrature or  
Up/Down)  
Input Clock Filter  
Warning  
Temperature  
Figure 2.5.8: SPI Motor Interface I/O Settings Screen  
The three clock types supported are:  
1. Step/Direction  
2. Quadrature  
3. Up/Down (CW/CCW)  
The Clock types are covered in detail in Section 2.2: Logic Interface and Connection.  
Input Clock Filter  
The clock inputs may also be filtered using the Clock IOF pull down of the IMS SPI Motor Interface. The filter  
range is from 50 nS (10 MHz) to 12.9 µSec. (38.8 kHz). Table 2.4.3 shows the filter settings.  
Input Clock Filter Settings  
Min. Pulse  
50 nS  
Cutoff Frequency  
10 MHz  
150 nS  
200 nS  
300 nS  
500 nS  
900 nS  
1.7 µS  
3.3 MHz  
2.5 MHz  
1.67 MHz  
1.0 MHz  
555 kHz  
294.1 kHz  
151 kHz  
3.3 µS  
6.5 µS  
76.9 kHz  
38.8 kHz  
12.9 µS  
Table 2.5.3: Input Clock Filter Settings  
Enable Active High/Low  
The parameter sets the Enable Input to be Active when High (Default, Disconnected) or Active when Low.  
Warning Temperature  
The parameter sets the temperature at which a TW, or temperature warning fault code will be generated. In the  
warning condition the MDrivePlus will continue to operate as normal. The thermal shutdown is +85°C.  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-30  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
IMS Part Number/Serial Number Screen  
The IMS Part Number and Serial Number screen is accessed by clicking "View > Part and Serial Numbers".  
This screen is read-only and will display the part and serial number, as well as the fault code if existing. IMS may  
require this information if calling the factory for support.  
IMS Part #  
IMS Serial Number  
Figure 2.5.9: SPI Motor Interface Part and Serial Number Screen  
Fault Indication  
All of the IMS SPI Motor Interface Screens have the Fault field visible. This read-only field will display a 2 charac-  
ter error code to indicate the type of fault. The table below shows the error codes.  
MDrive34Plus Microstepping Fault Codes  
Binary  
Case*  
Error  
Code  
Description  
Action  
To Clear  
None  
No Fault  
Error  
Displayed  
Write to MDM  
(Set Button)  
4
CS  
SPI Checksum Error  
SPI Checksum Error/  
Sector Changing  
Error  
Displayed  
Write to MDM  
(Set Button)  
8
SC/CS  
DFLT  
DATA  
TW  
Defaults Checksum  
Error  
Error  
Displayed  
Write to MDM  
(Set Button)  
16  
32  
64  
Settings Checksum  
Error  
Error  
Displayed  
Write to MDM  
(Set Button)  
Error  
Displayed  
Write to MDM  
(Set Button)  
Temperature Warning  
*All Fault Codes are OR'ed together  
Table 2.5.4: MDrivePlus Microstepping Fault Codes  
Part 2: Interfacing and Configuring  
2-31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
NOTE: Once entered  
into Upgrade Mode,  
you MUST complete  
the upgrade. If  
Upgrading the Firmware in the MDrivePlus Microstepping  
The IMS SPI Upgrader Screen  
the upgrade process is  
incomplete the IMS SPI Motor  
Interface will continue to open  
to the Upgrade dialog until the  
process is completed!  
The IMS SPI Motor Interface is required to upgrade your MDrivePlus Microstepping product. To launch the  
Upgrader, click "Upgrade!" on the IMS SPI Motor Interface menu.  
The Upgrader screen has 4 read-only text fields that will display the necessary info about your MDrivePlus  
Microstepping.  
Figure 2.5.10: SPI Motor Interface Upgrade Utility  
1. Previous Version: this is the version of the firmware currently on your MDrivePlus Microstepping.  
2. Serial Number: the serial number of your unit.  
3. Upgrade Version: will display the version number of the firmware being installed.  
4. Messages: the messages text area will display step by step instructions through the upgrade process.  
Upgrade Instructions  
Below are listed the upgrade instructions as they will appear in the message box of the IMS SPI Upgrader.  
Note that some steps are not shown as they are accomplished internally, or are not relevant to the model IMS  
product you are updating. The only steps shown are those requiring user action.  
Welcome Message: Welcome to the Motor Interface UPGRADER! Click NEXT to  
continue.  
Step 2: Select Upgrade File  
When this loads, an explorer dialog will open asking you to browse for the firmware upgrade file. This  
file will have the extension *.ims.  
Step 3: Connect SPI Cable  
Step 4: Power up or Cycle Power to the MDrivePlus  
Step 6: Press Upgrade Button  
Progress bar will show upgrade progress in blue, Message box will read "Resetting Motor Interface"  
Step 8: Press DONE, then select Port/Reconnect.  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-32  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Initialization Screen  
This screen will be active under five conditions:  
1. When the program initially starts up and seeks for a compatible device.  
2. The User selects File > Exit when connected to the device.  
3. The User clicks the Exit button while connected to the device.  
4. The Upgrade Process completes.  
5. The SPI Motor Interface is unable to connect to a compatible device.  
Figure 2.5.11: SPI Motor Interface Initialization  
Port Menu  
The Port Menu allows the user to select the COM Port that the device is connected to, either a parallel (LPT) Port,  
or a Hardware Serial or Virtual Serial Port via USB.  
The Reconnect option allows the user to reconnect to a unit using the previously used settings.  
On open or reconnect, the SPI Motor Interface will also try to auto seek for a connected device.  
Communications  
Port Operations  
Select Parallel  
(LPT) Port  
Select Serial or  
USB (VCP)  
Auto-seek Port  
and Reconnect  
to device  
Figure 2.5.12: SPI Motor Interface Port Menu  
Part 2: Interfacing and Configuring  
2-33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-34  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SECTION 2.6  
Using User-Defined SPI  
The MDrivePlus can be configured and operated through the end-user's SPI interface without using the IMS SPI  
Motor Interface software and optional parameter setup cable.  
An example of when this might be used is in cases where the machine design requires parameter settings to be  
changed on-the-fly by a software program or multiple system MDrivePlus Microstepping units parameter states  
being written/read.  
SPI Timing Notes  
1. MSb (Most Significant bit) first and MSB (Most Significant Byte) first.  
2. 8 bit bytes.  
3. 25 kHz SPI Clock (SCK).  
4. Data In (MOSI) on rising clock.  
5. Data Out (MISO) on falling clock.  
Figure 2.6.1: SPI Timing  
Check Sum Calculation for SPI  
The values in the example below are 8-bit binary hexadecimal conversions for the following SPI parameters:  
MRC=25%, MHC=5%, MSEL=256, HCDT=500 mSec, WARNTEMP=80.  
The Check Sum is calculated as follows:  
(Hex) 80+19+05+00+00+01+F4+50  
Sum = E3  
1110 0011  
1’s complement = 1C  
2’s complement = 1D  
Send the check sum value of 1D  
0001 1100 (Invert)  
0001 1101 (Add 1)  
Note: 80 is always the first command on a write.  
Note: Once a write is performed, a read needs to be performed to see if there is a fault. The fault is the last byte of  
the read.  
Part 2: Interfacing and Configuring  
2-35  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SPI Commands and Parameters  
Use the following table and figure found on the following page together as the Byte order read and written from  
the MDrivePlus Microstepping, as well as the checksum at the end of a WRITE is critical.  
SPI Commands and Parameters  
Command/  
Parameter  
HEX  
(Default)  
Range  
Notes  
READ ALL  
0x40  
Reads the hex value of all parameters  
MSB  
Device (M)  
0x4D  
0x10  
M Character precedes every READ  
Firmware Version.Sub-version, eg 1.0  
Version_MSB  
<1-8>.<0-9>  
Firmware Version Appends to Version_  
MSB, eg.00  
Version_LSB  
0x00  
<0-99>  
USR_ID1  
USR_ID2  
USR_ID3  
MRC  
0x49  
0x4D  
0x53  
0x19  
0x05  
Uppercase Letter <I>  
Uppercase Letter <M>  
Uppercase Letter <S>  
Motor Run Current  
1-67%  
0-67%  
MHC  
Motor Hold Current  
0*, 1-259  
*0=256  
Microstep Resolution (See Table in Section  
2.4 for settings)  
MSEL  
0x00  
0x00  
0=no override  
1=override dir  
DIR_OVRID  
Direction Override  
HCDT_HI  
HCDT_LO  
0x01  
0xF4  
Hold Current Delay Time High Byte  
Hold Current Delay Time Low Byte  
0 or 2-65535  
0=s/d,  
1=quad,  
2=u/d  
CLKTYP  
0x00  
Input Clock Type  
CLKIOF  
0x00  
0x50  
<0-9>  
Clock Input Filtering  
OVER_TEMP - 5° C  
WARNTEMP  
0=Low  
1=High,  
EN_ACT  
FAULT  
0x01  
0x00  
0x80  
Enable Active High/Low  
LSB  
See Fault Table, Section 2.4  
Writes the hex value to the following  
parameters.  
WRITE ALL  
MSB  
USR_ID1  
USR_ID2  
USR_ID3  
MRC  
0x49  
0x4D  
0x53  
0x19  
0x05  
Uppercase Letter <I>  
Uppercase Letter <M>  
Uppercase Letter <S>  
Motor Run Current  
1-100%  
0-100%  
MHC  
Motor Hold Current  
0*, 1-259  
*0=256  
Microstep Resolution (See Table in Section  
2.4 for settings)  
MSEL  
0x00  
0x00  
0=no override  
1=override dir  
DIR_OVRID  
Direction Override  
HCDT_HI  
HCDT_LO  
0x01  
0xF4  
Hold Current Delay Time High Byte  
Hold Current Delay Time Low Byte  
0 or 2-65535  
0=s/d,  
1=quad,  
2=u/d  
CLKTYP  
0x00  
Input Clock Type  
CLKIOF  
0x00  
0x50  
<0-9>  
Clock Input Filtering  
OVER_TEMP - 5° C  
WARNTEMP  
0=Low  
1=High  
EN_ACT  
CKSUM  
0x01  
Enable Active High/Low  
34  
LSB  
Table 2.6.1: SPI Commands and Parameters  
MDrive 34Plus Microstepping Hardware - Revision R071108  
2-36  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
READ ALL CMD  
WRITE (MOSI):  
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF  
RESPONSE (MISO):  
XX 4D 10 00 49 4D 53 19 05 00 00 01 F4 00 00  
50 01  
00  
00  
01  
FAULT  
EN_ACT  
WARNTEMP  
CLKIOF  
80  
0
CLKTYP  
HCDT_LO  
HCDT_HI  
DIR_OVRID  
MSEL  
0
500  
0
256  
MHC  
5
MRC  
25  
USR_ID3  
USR_ID2  
USR_ID1  
VERSION  
DEVICE  
S
M
I
1.0.00  
M
USR_ID1  
USR_ID2  
USR_ID3  
I
M
S
25  
5
MRC  
MHC  
256  
0
MSEL  
DIR_OVRID  
HCDT_HI  
HCDT_LO  
CLKTYP  
CLKIOF  
WARNTEMP  
EN_ACT  
CKSUM  
500  
0
0
80  
01  
51  
WRITE ALL CMD  
WRITE (MOSI): 80 49 4D 53 19 05 00 00 01 F4 00 00 50 01 33  
FF FF FF FF FF FF FF FF FF FF FF FF FF FF  
RESPONSE (MISO): XX  
CHECKSUM CALCULATION  
80+49+4D+53+19+05+00+00+01+F4+00+00+50+01=CD  
BINARY = 1100 1101  
1'S COMPLEMENT = 0011 0010  
2'S COMPLEMENT = 0011 0011  
DEC = 51  
HEX = 33  
Figure 2.6.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)  
SPI Communications Sequence  
See Timing Diagram and Byte Order figures.  
READ  
1. Send READ ALL Command 0x40 down MOSI to MDrivePlus Microstepping followed by  
FF (15 Bytes).  
2. Receive Parameter settings from MISO MSB First (M-Device) and ending with LSB (Fault).  
Write  
1. Send WRITE ALL Command (0x80) down MOSI followed by Parameter Bytes beginning with MSB  
(MRC) and ending with the LSB (Checksum of all parameter Bytes).  
2. Response from MISO will be FF (10) Bytes.  
Part 2: Interfacing and Configuring  
2-37  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
2-38  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TM  
MICROSTEPPING  
Appendices  
Appendix A: MDrive34Plus Microstepping Motor Performance  
Appendix B: Planetary Gearboxes  
Appendix C: Connectivity  
Appendix D: Interfacing an Encoder  
Appendix E: Linear Slide Option  
Appendices  
A-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-2  
Download from Www.Somanuals.com. All Manuals Search And Download.  
appendix A  
MDrive34Plus Microstepping Motor Performance  
Speed-Torque Curves  
Single Length Rotary Motor  
706  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
635  
465  
494  
423  
353  
282  
211  
140  
71  
24 VDC  
45 VDC  
75 VDC  
0
1000  
(300)  
2000  
(600)  
3000  
(900)  
4000  
5000  
6000  
7000  
(1200) (1500) (1800) (2100)  
Speed in Full Steps per Second (RPM)  
Figure A.1: MDrive34Plus Microstepping Single Length Speed-Torque Curves  
Double Length Rotary Motor  
706  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
635  
465  
494  
423  
353  
282  
211  
140  
71  
24 VDC  
45 VDC  
75 VDC  
0
1000  
(300)  
2000  
(600)  
3000  
(900)  
4000  
5000  
6000  
7000  
(1200) (1500) (1800) (2100)  
Speed in Full Steps per Second (RPM)  
Figure A.2: MDrive34Plus Microstepping Double Length Speed-Torque Curves  
Appendices  
A-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Triple Length Rotary Motor  
706  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
635  
465  
494  
423  
353  
282  
211  
140  
71  
24 VDC  
45 VDC  
75 VDC  
0
1000  
(300)  
2000  
(600)  
3000  
(900)  
4000  
5000  
6000  
7000  
(1200) (1500) (1800) (2100)  
Speed in Full Steps per Second (RPM)  
Figure A.3: MDrive34Plus Microstepping Triple Length Speed-Torque Curves  
Motor Specifications  
Single Length  
Holding Torque............................................................................................... 381 oz-in/269 N-cm  
Detent Torque................................................................................................. 10.9 oz-in/7.7 N-cm  
2
2
Rotor Inertia ...................................................................................0.01416 oz-in-sec /1.0 kg-cm  
Weight (Motor + Driver)............................................................................................. 4.1 lb/1.9 kg  
Double Length  
Holding Torque............................................................................................... 575 oz-in/406 N-cm  
Detent Torque............................................................................................. 14.16 oz-in/14.0 N-cm  
2
2
Rotor Inertia ...................................................................................0.02266 oz-in-sec /1.6 kg-cm  
Weight (Motor + Driver)............................................................................................. 5.5 lb/2.5 kg  
Triple Length  
Holding Torque............................................................................................. 1061 oz-in/749 N-cm  
Detent Torque............................................................................................. 19.83 oz-in/10.0 N-cm  
2
2
Rotor Inertia ...................................................................................0.04815 oz-in-sec /3.4 kg-cm  
Weight (Motor + Driver)............................................................................................. 8.8 lb/4.0 kg  
MDrive 34Plus Microstepping Hardware - Revision R071108  
A-4  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix B  
Planetary Gearboxes  
Section Overview  
This section contains guidelines and specifications for MDrives equipped with an optional Planetary Gearbox,  
and may include product sizes not relevant to this manual.  
Shown are:  
Product Overview  
Selecting a Planetary Gearbox  
Mechanical Specifications  
Product Overview  
All gearboxes are factory installed.  
Mode of Function  
Optional Planetary Gearbox operate as their name implies: the motor-driven sun wheel is in the center,  
transmitting its movement to three circumferential planet gears which form one stage. They are arranged  
on the bearing pins of a planet carrier. The last planet carrier in each sequence is rigidly linked to the out-  
put shaft and so ensures the power transmission to the output shaft. The planet gears run in an internally  
toothed outer ring gear.  
Service Life  
Depending on ambient and environmental conditions and the operational specification of the driving  
system, the useful service life of a Planetary Gearbox is up to 10,000 hours. The wide variety of potential  
applications prohibits generalizing values for the useful service life.  
Lubrication  
All Planetary Gearbox are grease-packed and therefore maintenance-free throughout their life. The best  
possible lubricant is used for our MDrive/Planetary Gearbox combinations.  
Mounting Position  
The grease lubrication and the different sealing modes allow the Planetary Gearbox to be installed in any  
position.  
Operating Temperature  
The temperature range for the Planetary Gearbox is between –30 and +140° C. However, the temperature  
range recommended for the Heat Sink of the MDrive is -40 to +85º C.  
Overload Torque  
The permitted overload torque (shock load) is defined as a short-term increase in output torque, e.g. dur-  
ing the start-up of a motor. In these all-metal Planetary Gearbox, the overload torque can be as much as  
1.5 times the permitted output torque.  
Available Planetary Gearbox  
The following lists available Planetary Gearbox, diameter and corresponding MDrive.  
Gearbox Diameter  
MDrive  
81 mm  
MDrive34Plus  
Selecting a Planetary Gearbox  
There are many variables and parameters that must be considered when choosing an appropriate reduction  
ratio for an MDrive with Planetary Gearbox. This Addendum includes information to assist in determining a  
suitable combination for your application.  
Appendices  
A-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calculating the Shock Load Output Torque (T  
)
AB  
Note: The following examples are based on picking “temporary variables” which may be adjusted.  
The shock load output torque (T ) is not the actual torque generated by the MDrive and Planetary Gearbox  
AB  
combination, but is a calculated value that includes an operating factor (C ) to compensate for any shock  
B
loads applied to the Planetary Gearbox due to starting and stopping with no acceleration ramps, payloads and  
directional changes. The main reason the shock load output torque (T ) is calculated is to ensure that it does  
AB  
not exceed the maximum specified torque for a Planetary Gearbox.  
Note: There are many variables that affect the calculation of the shock load output torque. Motor speed, motor  
voltage, motor torque and reduction ratio play an important role in determining shock load output torque.  
Some variables must be approximated to perform the calculations for the first time. If the result does not meet  
your requirements, change the variables and re-calculate the shock load output torque. Use the equation com-  
pendium below to calculate the shock load output torque.  
Factors  
i
=
=
=
=
Reduction Ratio - The ratio of the Planetary Gearbox.  
nM  
nAB  
TN  
Motor Speed - In Revolutions Per Minute (Full Steps/Second).  
Output Speed - The speed at the output shaft of the Planetary Gearbox.  
Nominal Output Torque - The output torque at the output shaft of the Planetary  
Gearbox.  
TM  
=
=
Motor Torque - The base MDrive torque. Refer to MDrive Speed Torque Tables.  
η
Gear Efficiency - A value factored into the calculation to allow for any friction in the  
gears.  
TAB  
=
Shock Load Output Torque - A torque value calculated to allow for short term loads  
greater than the nominal output torque.  
CB  
sf  
=
=
Operating Factor - A value that is used to factor the shock load output torque.  
Safety Factor - A 0.5 to 0.7 factor used to create a margin for the MDrive torque  
requirement.  
Reduction Ratio  
Reduction ratio (i) is used to reduce a relatively high motor speed (nM) to a lower output speed (nAB).  
With: i = nM ÷ nAB or: motor speed ÷ output speed = reduction ratio  
Example:  
The required speed at the output shaft of the Planetary Gearbox is 90 RPM.  
You would divide motor speed (nM) by output speed (nAB) to calculate the proper gearbox ratio.  
The MDrive speed you would like to run is approximately 2000 full steps/second or 600 RPM.  
NOTE: In reference to the MDrive speed values, they are given in full steps/second on the Speed/Torque  
Tables. Most speed specifications for the Planetary Gearbox will be given in RPM (revolutions per min-  
ute). To convert full steps/second to RPM, divide by 200 and multiply by 60.  
Where: 200 is the full steps per revolution of a 1.8° stepping motor.  
2000 full steps/second ÷ 200 = 10 RPS (revolutions per second) × 60 Seconds = 600 RPM  
For the Reduction Ratio (i), divide the MDrive speed by the required Planetary Gearbox output speed.  
600 RPM ÷ 90 = 6.67:1 Reduction Ratio  
Referring to the Available Ratio Table at the end of this section, the reduction ratio (i) of the Planetary  
Gearbox will be 7:1. The numbers in the left column are the rounded ratios while the numbers in the  
right column are the actual ratios. The closest actual ratio is 6.75:1 which is the rounded ratio of 7:1. The  
slight difference can be made up in MDrive speed.  
MDrive 34Plus Microstepping Hardware - Revision R071108  
A-6  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Nominal Output Torque  
Calculate the nominal output torque using the torque values from the MDrive’s Speed/Torque Tables.  
Nominal output torque (TN) is the actual torque generated at the Planetary Gearbox output shaft which  
includes reduction ratio (i), gear efficiency (η) and the safety factor (sf) for the MDrive. Once the reduction  
ratio (i) is determined, the nominal output torque (TN) can be calculated as follows:  
TN = TM × i × η ÷ sf or:  
Motor torque × reduction ratio × gear efficiency ÷ safety factor = nominal output torque.  
For gear efficiency (η) refer to the Mechanical Specifications for the 7:1 Planetary Gearbox designed for your  
MDrive.  
706  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
635  
465  
494  
423  
353  
282  
211  
140  
71  
24 VDC  
45 VDC  
75 VDC  
0
1000  
(300)  
2000  
(600)  
3000  
(900)  
4000  
5000  
6000  
7000  
(1200) (1500) (1800) (2100)  
Speed in Full Steps per Second (RPM)  
Figure B.1: MDrive34 Torque-Speed Curve  
For motor torque (TM) see the appropriate MDrive Speed/Torque Table. Dependent on which  
MDrive you have, the torque range will vary. The torque will fall between the high voltage line and the low  
voltage line at the indicated speed for the MDrive. (See the example Speed/Torque Table below.)  
The Speed/Torque Table above is for an MDrive23 Double Length Motor. This MDrive will produce a torque  
range of 51 to 95 oz-in in the full voltage range at the speed of 2000 Full Steps/Second (600 RPM).  
Please note that this is not the usable torque range. The torque output to the Planetary Gearbox must include  
a safety factor (sf) to allow for any voltage and current deviations supplied to the MDrive.  
The motor torque must include a safety factor (sf) ranging from 0.5 to 0.7. This must be factored into the  
nominal output torque calculation. A 0.5 safety factor is aggressive while a 0.7 safety factor is more conserva-  
tive.  
Example:  
The available motor torque (TM) is 51 to 95 oz-in.  
NOTE: You may specify a torque less than but not greater than the motor torque range.  
For this example the motor torque (TM) will be 35 oz-in.  
A 6.75:1 reduction ratio (i) has been determined.  
Gear efficiency (η) = 80% from the appropriate table for the Planetary Gearbox which is used with  
an MDrive23.  
Nominal output torque would be:  
Motor torque (TM = 35) × reduction ratio (i = 6.75) × gear efficiency (η = 0.8) ÷ safety factor (sf =  
0.5 or 0.7)  
35 × 6.75 = 236.25 × 0.8 = 189 ÷ 0.5 = 378 oz-in nominal output torque (TN)  
or  
35 × 6.75 = 236.25 × 0.8 = 189 ÷ 0.7 = 270 oz-in nominal output torque (TN)  
With the safety factor (sf) and gear efficiency (η) included in the calculation, the nominal output torque (TN)  
may be greater than the user requirement.  
Appendices  
A-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Shock Load Output Torque  
The nominal output torque (TN) is the actual working torque the Planetary Gearbox will generate. The shock  
load output torque (TAB) is the additional torque that can be generated by starting and stopping with no  
acceleration ramps, payloads, inertia and directional changes. Although the nominal output torque (TN) of  
the Planetary Gearbox is accurately calculated, shock loads can greatly increase the dynamic torque on the  
Planetary Gearbox.  
Each Planetary Gearbox has a maximum specified output torque. In this example a 7:1 single stage MD23  
Planetary Gearbox is being used. The maximum specified output torque is 566 oz-in. By calculating the shock  
load output torque (TAB) you can verify that value is not exceeding the maximum specified output torque.  
When calculating the shock load output torque (TAB), the calculated nominal output torque (TN) and the  
operating factor (CB) are taken into account. CB is merely a factor which addresses the different working  
conditions of a Planetary Gearbox and is the result of your subjective appraisal. It is therefore only meant as a  
guide value. The following factors are included in the approximate estimation of the operating factor (CB):  
Direction of rotation (constant or alternating)  
Load (shocks)  
Daily operating time  
Note: The higher the operating factor (CB), the closer the shock load output torque (TAB) will be to the maxi-  
mum specified output torque for the Planetary Gearbox. Refer to the table below to calculate the approximate  
operating factor (CB).  
With the most extreme conditions which would be a CB of 1.9, the shock load output torque (TAB) is over the  
maximum specified torque of the Planetary Gearbox with a 0.5 safety factor but under with a 0.7 safety factor.  
The nominal output torque (TN) × the operating factor (CB) = shock load or maximum output torque (TAB).  
With a 0.5 safety factor, the shock load output torque is greater than the maximum output torque specifica-  
tion of the MDrive23 Planetary Gearbox.  
(378 × 1.9 = 718.2 oz-in.)  
With a 0.7 safety factor the shock load output torque is within maximum output torque specification of the  
MDrive23 Planetary Gearbox.  
(270 × 1.9 = 513 oz-in.)  
The 0.5 safety factor could only be used with a lower operating factor (CB) such as 1.5 or less, or a lower mo-  
tor torque.  
Note: All published torque specifications are based on CB = 1.0. Therefore, the shock load output torque  
(TAB) = nominal output torque (TN).  
WARNING! Excessive torque may damage your Planetary Gearbox. If the MDrive/Planetary Gearbox should  
hit an obstruction, especially at lower speeds (300 RPM or 1000 Full Steps/Second), the torque generated  
will exceed the maximum torque for the Planetary Gearbox. Precautions must be taken to ensure there are no  
obstructions in the system.  
Determining the Operating Factor (CB)  
Direction of  
Rotation  
Load  
(Shocks)  
Daily Operating Time  
3 Hours  
8 Hours  
CB=1.1  
CB=1.3  
CB=1.4  
CB=1.7  
24 Hours  
Constant  
Low*  
Medium**  
Low†  
CB=1.0  
CB=1.2  
CB=1.3  
CB=1.3  
CB=1.5  
CB=1.6  
CB=1.9  
Alternating  
Medium†† CB=1.6  
* Low Shock = Motor turns in one direction and has ramp up at start.  
** Medium Shock = Motor turns in one direction and has no ramp up at start.  
† Low Shock = Motor turns in both directions and has ramp up at start.  
†† Medium Shock = Motor turns in both directions and has no ramp up at start.  
Table B.1: Planetary Gearbox Operating Factor  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-8  
Download from Www.Somanuals.com. All Manuals Search And Download.  
System Inertia  
System inertia must be included in the selection of an MDrive and Planetary Gearbox. Inertia is the resistance an  
object has relative to changes in velocity. Inertia must be calculated and matched to the motor inertia. The Plan-  
etary Gearbox ratio plays an important role in matching system inertia to motor inertia. There are many variable  
factors that affect the inertia. Some of these factors are:  
The type of system being driven.  
Weight and frictional forces of that system.  
The load the system is moving or carrying.  
The ratio of the system inertia to motor inertia should be between 1:1 and 10:1. With 1:1 being ideal, a 1:1 to 5:1  
ratio is good while a ratio greater than 5:1 and up to 10:1 is the maximum.  
Type of System  
There are many systems and drives, from simple to complex, which react differently and possess varied  
amounts of inertia. All of the moving components of a given system will have some inertia factor which must  
be included in the total inertia calculation. Some of these systems include:  
Lead screw  
Rack and pinion  
Conveyor belt  
Rotary table  
Belt drive  
Chain drive  
Not only must the inertia of the system be calculated, but also any load that it may be moving or carrying.  
The examples below illustrate some of the factors that must be considered when calculating the inertia of a  
system.  
Lead Screw  
In a system with a lead screw, the following must be considered:  
The weight and preload of the screw  
The weight of the lead screw nut  
The weight of a table or slide  
The friction caused by the table guideways  
The weight of any parts  
Weight of  
table  
Weight of  
parts  
Weight of  
screw  
Weight of  
nut  
Friction of  
guideways  
Preload on  
leadscrew  
Figure B.2: Lead Screw System Inertia Considerations  
Appendices  
A-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Rack and Pinion  
In a system with a rack and pinion, the following must be considered:  
The weight or mass of the pinion  
The weight or mass of the rack  
The friction and/or preload between the pinion and the rack  
Any friction in the guidance of the rack  
The weight or mass of the object the rack is moving  
Weight of  
rack  
Preload or friction  
between pinion and rack  
Friction of  
rack in guide  
Weight of  
pinion and shaft  
Load on  
rack  
Gearbox  
Motor  
Figure B.3: Rack and Pinion System Inertia Considerations  
Conveyor Belt  
In a system with a conveyor belt, the following must be considered:  
The weight and size of the cylindrical driving pulley or roller  
The weight of the belt  
The weight or mass and size of the idler roller or pulley on the opposite end  
The angle or elevation of the belt  
Any load the belt may be carrying  
Motor  
Weight of  
conveyor belt  
Gearbox  
Weight and size  
of idler roller  
Weight and size  
of drive roller  
Friction  
of belt  
Weight of  
parts  
Elevation  
Figure B.4: Conveyor System Inertia Considerations  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Rotary Table  
In a system with a rotary table, the following must be considered:  
The weight or mass and size of the table  
Any parts or load the table is carrying  
The position of the load on the table, the distance from the center of the table will af-  
fect the inertia  
How the table is being driven and supported also affects the inertia  
Belt Drive  
In a system with a belt drive, the following must be considered:  
The weight or mass and size of the driving pulley  
The tension and/or friction of the belt  
The weight or mass and size of the driven pulley  
Any load the system may be moving or carrying  
The position of parts relative  
to the center of the  
rotary table is important  
Motor  
Weight and  
size of table  
Weight and position  
of parts on table  
Gearbox  
Friction of any  
bearing or support  
Weight of  
shaft  
Friction created by  
tension on belt  
Weight and size  
of driven pulley  
Weight and size  
of drive pulley  
Figure B.5: Rotary Table System Inertia Considerations  
Appendices  
A-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Chain Drive  
In a system with a chain drive, the following must be considered:  
the weight and size of drive sprocket and any attaching hub  
the weight and size of the driven sprocket and shaft  
the weight of the chain  
the weight of any material or parts being moved  
Weight of  
chain  
Weight and size  
of drive  
sprocket and hub  
Weight and size  
of driven sprocket,  
shaft and any material  
or parts being moved  
Figure B.6: Chain Drive System Inertia Considerations  
2
Once the system inertia (JL) has been calculated in oz-in-sec , it can be matched to the motor inertia. To  
match the system inertia to the motor inertia, divide the system inertia by the square of the gearbox ratio.  
The result is called Reflected Inertia or (Jref).  
2
Jref = JL ÷ Ζ  
Where:  
2
JL = System Inertia in oz-in-sec  
2
Jref = Reflected Inertia in oz-in-sec  
Z = Gearbox Ratio  
The ideal situation would be to have a 1:1 system inertia to motor inertia ratio. This will yield the best  
positioning and accuracy. The reflected inertia (Jref) must not exceed 10 times the motor inertia.  
Your system may require a reflected inertia ratio as close to 1:1 as possible. To achieve the 1:1 ratio, you  
must calculate an Optimal Gearbox Ratio (Zopt) which would be the square root of JL divided by the  
desired Jref. In this case since you want the system inertia to match the motor inertia with a 1:1 ratio, Jref  
would be equal to the motor inertia.  
Zopt  
=
JL ÷ Jref  
Where:  
Zopt = Optimal Gearbox Ratio  
JL = System Inertia in oz-in-sec  
2
2
Jref = Desired Reflected Inertia in oz-in-sec (Motor Inertia)  
MDrive 34Plus Microstepping Hardware - Revision R071108  
A-12  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Planetary Gearbox for MDrive34Plus  
MDrive34Plus Planetary Gearbox Parameters  
Output Side with Ball Bearing  
Permitted  
Gearbox  
Maximum  
Backlash  
Maximum Load  
(lb-force/N)  
Radial  
Weight  
(oz/g)  
Output Torque  
Efficiency  
(oz-in/Nm)  
Axial  
18/80  
Gearbox  
64.4/1827  
89.5/2538  
92.6/2625  
with Flange  
1-STAGE  
2-STAGE  
3-STAGE  
2832/20.0  
8496/60.0  
16992/120.0  
0.80  
0.75  
0.70  
1.0°  
1.5°  
2.0°  
90/400  
135/600  
225/1000  
66.7/1890  
92.6/2625  
118.5/3360  
27/120  
45/200  
Table B.2: Planetary Gearbox Specifications – PM81  
*Gearbox without Flange  
Gearbox with Flange  
1.929*  
(49.0)  
or  
K1 0.02 ( 0.5)  
1.811  
4x Ø 0.217 (Ø5.5) Hole  
(46.0)  
0.197*  
0.079  
(2.0)  
M6 x 0.472 (12.0) Deep*  
or  
(5.0)  
1.575  
(40.0)  
0.394  
Ø 2.56*  
Ctrg. DIN 332-D M6x16  
Key DIN 6885-A-6x6x28mm  
(10.0)  
(Ø 65.0)  
Dimensions in inches (mm)  
2.739 SQ.  
K1  
Stages  
K1  
(Gearbox)  
(69.58 SQ.)  
(NEMA Flange)  
4.433 (112.6)  
5.287 (134.3)  
6.142 (156.0)  
1-Stage  
4.315 (109.6)  
5.169 (131.3)  
6.024 (153.0)  
2-Stage  
3-Stage  
Figure B.7: Planetary Gearbox Specifications for MDrive34Plus  
PM81 Gearbox Ratios and Part Numbers  
Ratio  
Part  
Ratio  
Part  
Planetary  
Gearbox  
Inertia  
Planetary  
Gearbox  
Inertia  
Moments  
Moments  
(Rounded)  
3.71:1  
5.18:1  
Number  
G1A1  
G1A2  
(Rounded)  
50.89:1  
58.86:1  
68.07:1  
71.16:1  
78.72:1  
92.70:1  
95.18:1  
99.51:1  
107.21:1  
115.08:1  
123.98:1  
129.62:1  
139.14:1  
149.90:1  
168.85:1  
181.25:1  
195.27:1  
236.10:1  
307.55:1  
Number  
G1B5  
G1B6  
G1B7  
G1B8  
G1B9  
G1C1  
G1C2  
G1C3  
G1C4  
G1C5  
G1C6  
G1C7  
G1C8  
G1C9  
G1D1  
G1D2  
G1D3  
G1D4  
G1D5  
1-Stage  
1-Stage  
1-Stage  
0.00233660  
0.00154357  
0.00128867  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
3-Stage  
0.00218082  
0.00178431  
0.00179847  
0.00147276  
0.00179847  
0.00124619  
0.00147276  
0.00148693  
0.00124619  
0.00148693  
0.00124619  
0.00124619  
0.00144444  
0.00124619  
0.00126035  
0.00124619  
0.00126035  
0.00126035  
0.00126035  
6.75:1  
G1A3  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
2-Stage  
13.73:1  
15.88:1  
18.37:1  
19.20:1  
22.21:1  
25.01:1  
26.85:1  
28.93:1  
34.98:1  
45.56:1  
0.00219499  
0.00179847  
0.00182679  
0.00141612  
0.00148693  
0.00177015  
0.00148693  
0.00124619  
0.001260345  
0.00126035  
G1A4  
G1A5  
G1A6  
G1A7  
G1A8  
G1A9  
G1B1  
G1B2  
G1B3  
G1B4  
Table B.3: Planetary Gearbox Ratios, Inertia Moments and Part Numbers  
Appendices  
A-13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Page Intentionally Left Blank  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARNING! DO  
NOT connect or  
disconnect the MD-  
Appendix C  
CC300-001 Communications  
Converter Cable from MDrive  
while power is applied!  
Connectivity  
MD-CC30x-001: USB to SPI Converter and Parameter Setup Cable  
The MD-CC30x-001 USB to SPI Parameter Setup Cable provides a communication connection between the  
Microstepping MDrives and the USB port on a PC.  
IMS SPI Interface Software communicates to the Parameter Setup Cable through the PC's USB port.  
The Parameter Setup Cable interprets SPI commands and sends these commands to the MDrivePlus through the  
SPI interface.  
Supplied Components: MD-CC30 communications converter, Parameter Setup Cable, USB Cable, USB Drivers,  
IMS SPI Interface Software.  
MD-CC300-001  
The MD-CC300-001 interfaces to the model MDrivePlus Microstepping with a 10-Pin IDC type connector  
at location P2.  
NEMA 17 Size MDrivePlus Microstepping shown in Figure below. Connection for a NEMA 23 will be  
identical.  
3.75 in  
(95.0 mm)  
1.0 in  
(25.0 mm)  
USB  
0.875 in  
MD-CC3  
USB to SPI Converter Cable  
(22.0 mm)  
USB Cable  
Length 6.0 ft (1.8 m)  
To PC USB  
10 Pin IDC Connector  
To MDrive  
Cable Length 6.0 ft (1.8 m)  
Connection Diagram  
Plug into  
Computer USB  
Port  
6’ (1.8 m)  
USB Cable  
MD-CC300-001 USB to SPI  
Communications Converter  
6.0’ (1.8 m)  
Ribbon Cable  
Figure C.1: MD-CC300-001 Mechanical Specifications and Connection  
Appendices  
A-15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Note: Interactive  
installation tutorials  
are available at  
Connector Detail and Mating Connector Kit  
Should you choose to create your own interface cable IMS now has mating connector kits available which  
assist you in creating interface cables in small quantities. These kits come with the connector shells and crimp  
pins (if applicable) to create five interface cables.  
the IMS Web Site  
tutorials.html  
Connector Details  
1
3
5
7
2
4
6
8
Chip Select  
+5 VDC Out*  
SPI Clock  
MISO  
GND  
MOSI  
9 10  
pins not labeled are no connect.  
*used to power the MD-CC300-001 only.  
Figure C.2: 10-Pin IDC  
Mating Connector Kit p/n: CK-01  
Description: 5 mating connector shells for making interface cables to MDrive’s 10-pin IDC connector.  
2-piece connector shell crimps onto a 10 conductor AMP ribbon cable. Ribbon Cable is  
not included.  
IDC Parts:  
Shell:  
SAMTEC TCSD-05-01-N  
AMP 1-57051-9  
Ribbon Cable:  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
MD-CC303-001  
The MD-CC3030-001 interfaces to the model MDrivePlus Microstepping with a 12-Pin locking wire crimp  
type connector at location P1. This cable consists of two joined cables:  
1. 6' (1.8m) RJ-45 Cable which plugs into the RJ-45 Jack of the converter body.  
2. 13' (4.0 m) for I/O and Power connection.  
RJ-45  
3.75 in  
1.0 in  
(95.0 mm)  
(25.0 mm)  
USB  
0.875 in  
MD-CC3  
USB to SPI Converter Cable  
(22.0 mm)  
USB Cable  
Length 6.0 ft (1.8 m)  
To PC USB  
RJ-45 Cable - Communications  
Length 6.0 ft (1.8 m)  
Flying Leads  
AMP  
Cable - Power and I/O  
Length 13.0 ft (4.0 m)  
Connection Diagram  
13’ (4.0 m)  
Wire Colors Function  
Orange  
Blue  
White  
Green  
Enable  
Direction  
Opto Ref  
Step Clock  
Red and Black wires are N/C  
P1  
6’ (1.8 m)  
USB Cable  
Plug into  
Computer  
USB Port  
MD-CC303-001 USB to SPI  
Communications Converter  
6’ (1.8 m)  
*A Prototype Development cable with out integrated communications is also available.  
Order P/N PD12-1434-FL3  
Figure C.3: MD-CC303-001 Mechanical Specifications and Connection  
Appendices  
A-17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connector Detail and Mating Connector Kit  
Should you choose to create your own interface cable IMS now has mating connector kits available which  
assist you in creating interface cables in small quantities. These kits come with the connector shells and  
crimp pins to create five interface cables.  
Connector Details  
Chip Select  
SPI MISO  
11 12  
9 10  
Comm Gnd  
+5 VDC  
Enable  
Opto Ref  
N/C  
SPI MOSI  
SPI Clock  
Direction  
Step Clock  
N/C  
7
5
3
1
8
6
4
2
Figure C.4: 12-Pin Wire Crimp  
Mating Connector Kit p/n: CK-03  
Description: 5 mating connector shells and crimp pins. Recommend Tyco Crimp tool (Not included).  
Tyco Parts:  
Shell:  
Pins:  
Crimp Tool:  
1-794617-2  
794610-1  
91501-1  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Installation Procedure for the MD-CC30x-000  
These Installation procedures are written for Microsoft Windows XP Service Pack 2 or greater.  
The installation of the MD-CC30x-001 requires the installation of two sets of drivers, which may be downloaded  
from http://www.imshome.com:  
Drivers for the IMS USB to SPI Converter Hardware.  
Drivers for the Virtual Communications Port (VCP) used to communicate to your IMS Product.  
Therefore the Hardware Update wizard will run twice during the installation process.  
The full installation procedure will be a two-part process: Installing the Cable/VCP drivers and Determining the  
Virtual COM Port used.  
Installing the Cable/VCP Drivers  
2) Extract the driver files from the *.zip archive, remember the extracted location.  
3) Plug the USB Converter Cable into the USB port of the MD-CC30x-001.  
4) Plug the other end of the USB cable into an open USB port on your PC.  
5) Your PC will recognize the new hardware and open the Hardware Update dialog.  
6) Select “No, not this time” on the radio buttons in answer to the query “Can Windows Connect to  
Windows Update to search for software?” Click “Next” (Figure C.5).  
7) Select “Install from a list or specific location (Advanced)” on the radio buttons in answer to the query  
Figure C.5: Hardware Update Wizard  
“What do you want the wizard to do?” Click “Next” (Figure C.6).  
Figure C.6: Hardware Update Wizard Screen 2  
Appendices  
A-19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
86) Select “Search for the best driver in these locations.”  
(a) Check “Include this location in the search.”  
(b) Browse to the location where you extracted the files in Step #2.  
(c) Click Next (Figure C.7).  
Figure C.7: Hardware Update Wizard Screen 3  
9) The drivers will begin to copy.  
10) On the Dialog for Windows Logo Compatibility Testing, click “Continue Anyway” (Figure C.8).  
11) The Driver Installation will proceed. When the Completing the Found New Hardware Wizard dialog  
Figure C.8: Windows Logo Compatibility  
Testing  
appears, Click “Finish” (Figure C.9).  
Figure C.9: Hardware Update Wizard Finish Installation  
12) Upon finish, the Welcome to the Hardware Update Wizard will reappear to guide you through the  
second part of the install process. Repeat steps 3 through 11 above to complete the cable installation.  
11) Your IMS MD-CC30x-001 is now ready to use.  
MDrive 34Plus Microstepping Hardware - Revision R071108  
A-20  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Determining the Virtual COM Port (VCP)  
The MD-CC30x-001 uses a Virtual COM Port to communicate through the USB port to the MDrive. A VCP is a  
software driven serial port which emulates a hardware port in Windows.  
The drivers for the MD-CC30x-001 will automatically assign a VCP to the device during installation. The VCP  
port number will be needed when IMS Terminal is set up in order that IMS Terminal will know where to find and  
communicate with your IMS Product.  
To locate the Virtual COM Port.  
1) Right-Click the “My Computer” Icon and select “Properties”.  
2) Browse to the Hardware Tab (Figure D.9), Click the Button labeled “Device Manager”.  
3) Look in the heading “Ports (COM & LPT)” IMS USB to SPI Converter Cable (COMx) will be listed  
(Figure D.10). The COM # will be the Virtual COM Port connected. You will enter this number into  
your IMS SPI Motor Interface Configuration.  
Figure C.10: Hardware Properties  
Figure C.11: Windows Device Manager  
Appendices  
A-21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Prototype Development Cable PD12-1434-FL3  
Wire Color Code  
Pair Number  
(Cable/Pair)  
Color Combination  
Interface Signal  
MDrive Wire Crimp  
Connection Pin Number  
White/Blue  
Blue/White  
White/Orange  
Orange/White  
White/Green  
Green/White  
White/Brown  
Brown/White  
White/Gray  
Gray//White  
Black  
Opto Reference  
Step Clock  
Enable  
3
4
1/1  
1/2  
1/3  
1/4  
1/5  
2/1  
5
Direction  
6
SPI Clock  
8
COMM GND  
+5VDC  
9
7
Master In - Slave Out  
Master Out - Slave In  
SPI Chip Select  
N/C  
12  
10  
11  
1
Red  
N/C  
2
Table C.1: PD10-1434-FL3 Wire Color Codes  
To MDrivePlus  
12-pin wire crimp  
Tyco connector  
To I/O &  
Communications  
Cable #2 is N/C and  
may be removed  
Cable 2  
Cable 1  
10.0’ (3.0m)  
Figure C.12: PD12-1434-FL3  
Connector Detail and Mating Connector Kit  
Should you choose to create your own interface cable IMS now has mating connector kits available which  
assist you in creating interface cables in small quantities. These kits come with the connector shells and  
crimp pins to create five interface cables.  
Connector Details  
Chip Select  
SPI MISO  
11 12  
9 10  
Comm Gnd  
+5 VDC  
Enable  
Opto Ref  
N/C  
SPI MOSI  
SPI Clock  
Direction  
Step Clock  
N/C  
7
5
3
1
8
6
4
2
Figure C.13: 12-Pin Wire Crimp  
Mating Connector Kit p/n: CK-03  
Description: 5 mating connector shells and crimp pins. Recommend Tyco Crimp tool (Not included).  
Tyco Parts:  
Shell:  
Pins:  
Crimp Tool:  
1-794617-2  
794610-1  
91501-1  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
PD10-3400-FL3 - Internal Differential Encoder  
The PD10-3400-FL3 is a 10' (3.0 M) Prototype Development Cable used to interface the encoder signals to the  
user's controller. The Connector end plugs into the P4 Connector of the MDrive34Plus. The Flying Lead end con-  
nects to a Control Interface such as a PLC.  
Wire Color Code  
Pair Number  
(Cable/Pair)  
Color Combination  
Interface Signal  
MDrive Wire Crimp  
Connection Pin Number  
White/Blue  
Blue/White  
Index +  
Index –  
6
7
4
5
2
3
1
8
1/1  
1/2  
1/3  
1/4  
White/Orange  
Orange/White  
White/Green  
Green/White  
White/Brown  
Brown/White  
Channel B +  
Channel B –  
Channel A +  
Channel B –  
Ground  
+5 VDC Input  
Table C.2: PD10-3400-FL3 Wire Color Codes  
To MDrivePlus 10-pin friction lock  
wire crimp connector  
To Controller or PLC  
Flying leads  
10.0’ (3.0m)  
Figure C.14: PD10-3400-FL3  
Connector Detail and Mating Connector Kit  
Should you choose to create your own interface cable IMS now has mating connector kits available which  
assist you in creating interface cables in small quantities. These kits come with the connector shells and crimp  
pins to create five interface cables.  
Connector Details  
N/C  
N/C  
9 10  
7
5
3
1
8
6
4
2
+5VDC  
IDX+  
IDX-  
CH B-  
CH A-  
GND  
CH B+  
CH A+  
Figure C.15: PD10-3400-FL3  
Mating Connector Kit p/n: CK-02  
Description: 5 mating connector shells and crimp pins. Recommend Hirose Crimp tool (Not included).  
Hirose Parts: Shell:  
Pins:  
DF11-10DS-2C  
DF11-2428SC  
Crimp Tool:  
DF11-TA2428HC  
Appendices  
A-23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Prototype Development Cable PD02-3400-FL3 — Main Power  
IMS recommends the Prototype Development Cable PD02-3400-FL3 for interfacing power to the MDrive-  
34Plus2 Motion Control.  
To MDrivePlus  
2-pin wire crimp  
Molex connector  
To Power  
Wire Colors  
Black  
Red  
Function  
Power Ground  
+V  
10.0’ (3.0m)  
Figure C.16: PD02-3400-FL3  
Connector Details  
side view  
front view pin details  
GND  
2
1
Power  
locking tab  
shell  
Figure C.17: 2-Pin Wire Crimp  
Mating Connector Kit p/n: CK-05  
Description: 5 mating connector shells and crimp pins. Recommend Molex Crimp tool (Not in-  
cluded).  
Molex Parts: Shell:  
Pins:  
510-67-0200  
502-17-9101  
63811-1200  
Crimp Tool:  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix D  
Interfacing an Encoder  
Factory Mounted Internal Encoder  
The MDrivePlus Microstepping are available with a factory-mounted internal optical encoder. See Table E.1 for  
available line counts. Encoders are available in both single-end and differential configurations. All encoders have an  
index mark.  
Use of the encoder feedback feature of this product requires a controller such as an IMS MicroLYNX or PLC.  
The encoder has a 100 kHz maximum output frequency.  
DIFFERENTIAL  
ENCODER  
SINGLE-END  
ENCODER  
Line Count  
100  
Part Number  
Part Number  
EA  
EB  
EC  
EW  
ED  
EH  
EX  
EJ  
E1  
E2  
E3  
EP  
E4  
E5  
EQ  
E6  
ER  
200  
250  
256  
400  
500  
512  
1000  
1024  
EY  
Table D.1: Available Encoder Line Counts and Part Numbers  
Note: The MDrive34Plus with Pluggable Interface is available with Differential Encoder only. The MDrive34Plus  
with Flying Leads is available with both Single-End or Differential Encoder.  
General Specifications  
Min  
Typ  
Max  
Units  
Supply Voltage (VDC)......................... -0.5 ........................................................... 7......................Volts  
Supply Current ......................................30............................. 57..........................85 ..................... mA  
Output Voltage .................................... -0.5 ......................................................... Vcc...................Volts  
Output Current (Per Channel)............. -1.0 ........................................................... 5....................... mA  
Maximum Frequency ................................................................................................................. 100kHz  
Inertia ............................................................................................... 0.565 g-cm2 (8.0 x 10-6 oz-in-sec2)  
Temperature  
Operating ................................................................................................................ -40 to +100° C  
Storage..................................................................................................................... -40 to +100° C  
Humidity............................................................................................................ 90% (non-condensing)  
Appendices  
A-25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Encoder Connections  
Note: The MDM34  
with Pluggable  
Interface is only  
available with a  
Yellow/Black: Ground  
Yellow/Violet: Index+  
Yellow/Blue: Channel A+  
Yellow/Red: +5VDC Input  
differential encoder.  
Yellow/Brown: Channel B+  
Yellow/Gray: Index -  
Yellow/Green: Channel A-  
Yellow/Orange: Channel B-  
Differental Encoder  
Flying Leads  
Yellow/Black: Ground  
Yellow/Violet: Index  
Yellow/Blue: Channel A  
Yellow/Red: +5VDC Input  
Yellow/Brown: Channel B  
Single-End Encoder  
Flying Leads  
Pin 2: Channel A+  
Pin 4: Channe; B+  
Pin 1: Ground  
P3  
Pin 3: Channel A -  
1
Pin 6: Index+  
Pin 5: Channel B -  
Pin 7: Index -  
P4  
P1  
Pin 8: +5VDC Input  
Differental Encoder  
Pluggable Interface  
Figure D.1: Single-End and Differential Encoder Connections  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Encoder Signals  
Single-End Encoder (Available with Flying Leads Version only)  
C
Y
X
Rotation:  
CW – B Leads A  
CCW – A Leads B  
2.4 V  
0.4 V  
Channel A  
Channel B  
Index  
Z
2.4 V  
0.4 V  
t1  
t2  
2.4 V  
0.4 V  
Po  
Figure D.2: Single-End Encoder Signal Timing  
Differential Encoder  
C
Rotation:  
CW – B Leads A  
CCW – A Leads B  
Y
X
2.4 V  
0.4 V  
Channel A +  
Channel A -  
2.4 V  
0.4 V  
Z
2.4 V  
0.4 V  
Channel B +  
Channel B -  
Index +  
2.4 V  
0.4 V  
t1  
t2  
2.4 V  
0.4 V  
Po  
2.4 V  
0.4 V  
Index -  
Figure D.3: Differential Encoder Signal Timing  
Note: Rotation is as viewed from the cover side.  
(C)  
One Cycle: 360 electrical degrees (°e)  
(X/Y)  
(Z)  
Symmetry: A measure of the relationship between X and Y, nominally 180°e.  
Quadrature: The phase lag or lead between channels A and B, nominally 90°e.  
(Po) Index Pulse Width: Nominally 90°e.  
Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Cycle Error................................................................................................ 3.................... 5.5.................°e  
Symmetry............................................................................. 130............ 180..................230................°e  
Quadrature............................................................................ 40.............. 90...................140................°e  
Index Pulse Width..............................................Po .............. 60.............. 90...................120................°e  
Index Rise After CH B or CH A fall................... t1..............-300........... 100..................250................ns  
Index Fall After CH A or CH B rise................... t2............... 70............. 150.................1000...............ns  
Over recommended operating range. Values are for worst error over a full rotation.  
Appendices  
A-27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Encoder Cable  
IMS offers an assembled cable for use with the Differential Encoder on MDM34 with the Pluggable Locking Wire  
Crimp interface . The IMS Part Number is listed below.  
Differential Encoder Cable (10' leads)......................................................................... PD10-3400-FL3  
Recommended Encoder Mating Connectors  
IMS recommends the following mating connectors (or equivalent) if you make your own cables.  
Differential Encoder  
10-Pin Friction Lock Wire Crimp................................................................Hirose DF11-10DS-2C  
Pins  
22 AWG ............................................................................................................Hirose DF11-22SC  
24/28 AWG...................................................................................................Hirose DF11-2428SC  
30 AWG ............................................................................................................Hirose DF11-30SC  
MDrive 34Plus Microstepping Hardware - Revision R071108  
A-28  
Relevant to Firmware Version 3.0.02  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix E  
Linear Slide Option  
Features  
Screw driven slide offering exceptional linear speed, accurate positioning and long life at a compelling  
value  
High bidirectional repeatability of up to 50 micro-inches (1.25 microns)  
Positional lead accuracy of 0.0006"/in. – accuracies to 0.0001"/in. available  
Linear speeds not limited by critical screw speed  
Standard leads:  
-
-
0.10" travel per revolution  
0.20" travel per revolution  
- 0.50" travel per revolution  
- 1.00" travel per revolution  
Achieve speeds that exceed 60.0"/second while offering excellent repeatability, accuracy and axial  
stiffness  
Optional sensor flag kit available for home, limits and general purpose inputs  
Assembly includes a precision aluminum guide and carriage which is driven by a precision rolled  
stainless steel lead screw  
Sliding contact areas coated with TFE (Teflon) permanent lubrication to offer a low 0.09 coefficient of  
friction  
Exceptional torsional stiffness and stability  
Standard lengths from 12.0" to 42.0", longer sizes available upon request  
Comes standard with wear-compensating, anti-backlash driven carriage  
Additional passive carriages or slides available to support cantilevered loads  
Easily mountable with provided mounting flange and holes  
Extrusions provided for sensor mounts  
MDrive34Plus Linear Slide  
Speed-Force Limitations  
445  
100  
90  
400  
356  
Speed/Force correlating equations:  
1.00" Screw Lead  
0.50" Screw Lead  
0.20" Screw Lead  
0.10" Screw Lead  
80  
70  
Axial Force = Ffriction + Facceleration + Fgravity  
1
311  
267  
222  
178  
133  
89  
60  
50  
Ffriction = (Weight)(0.09)  
Facceleration = (Weight)(Acceleration) / Accel. of gravity  
Fgravity = 0 for horizontal application and 1 Weight for vertical application  
40  
30  
20  
10  
0
(Axial Force)(Screw Lead)  
Torque =  
44  
2
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
(0.393)(Screw Efficiency)  
(127) (254) (381) (508) (635) (762) (889) (1016) (1143) (1270)  
Force in lbs; Torque in oz-in, Lead in inches/rev  
V Inches / sec (mm / sec)  
Full Steps (200 Full Steps/Rev)(Velocity)  
=
3
Second  
Lead  
Figure E.1: Speed Force Limitations  
Lead in inches/rev; Velocity in inches/second  
Speed-Torque Curves  
706  
635  
1000  
Single Stack  
Double Stack  
Triple Stack  
A
B
C
C
900  
800  
700  
600  
24 VDC  
45 VDC  
75 VDC  
465  
494  
423  
353  
282  
211  
140  
71  
B
500  
400  
300  
A
200  
100  
0
0
1000  
(300)  
2000  
(600)  
3000  
(900)  
4000  
5000  
6000  
7000  
(1200) (1500) (1800) (2100)  
Speed in Full Steps per Second (RPM)  
Figure E2: MDrive34Plus Speed Torque Curves  
Appendices  
A-29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Specifications  
Screw  
Efficiency  
Nom. Screw  
Diam.  
Max Drag  
Torque  
Life @ ¼  
Design Load  
Torque to  
Move Load  
Axial  
Design Load  
Inch Lead  
inches (mm)  
0.100 (2.54)  
0.200 (5.08)  
0.500 (12.70)  
1.000 (25.40)  
Screw Inertia  
2
Screw  
Lead  
inches  
(mm)  
oz inch  
(Nm)  
inches  
(cm)  
oz inch/lb  
(Nm/kg)  
lbs  
(kg)  
oz.in.sec /inch  
%
40  
53  
76  
81  
2
(Kgm /m)  
-5  
14.2 x 10  
100,000,000  
(254,000,000)  
0.10"  
0.625 (15.9)  
0.625 (15.9)  
0.625 (15.9)  
0.625 (15.9)  
5.0 (0.04)  
6.0 (0.04)  
7.0 (0.05)  
8.5 (0.06)  
1.3 (0.020)  
2.0 (0.031)  
3.0 (0.047)  
6.5 (0.101)  
100 (46)  
100 (46)  
100 (46)  
100 (46)  
-5  
(3.9 x 10  
)
-5  
)
100,000,000  
(254,000,000)  
14.2 x 10  
0.20"  
0.50"  
1.00"  
-5  
(3.9 x 10  
-5  
100,000,000  
(254,000,000)  
14.2 x 10  
(3.9 x 10  
-5  
)
-5  
)
100,000,000  
(254,000,000)  
14.2 x 10  
(3.9 x 10  
-5  
Table E.1: MDrive34Plus Linear Slide Specifications  
Mechanical Specifications  
Dimensions in Inches (mm)  
2.00  
(50.8)  
0.56  
(14.2)  
END VIEw  
1
2
3
Motor Mounting Plate  
Heli-Cal Coupling  
1.000  
(25.4)  
Sunx P/N PM-L24 sensor or equivalent  
(not supplied)  
0.69  
(17.5)  
4
Optional Sensor Flag Kit  
for use with U-channel sensor  
(details below)  
2.34  
(59.3)  
2.14  
(54.4)  
SIDE VIEw  
1.23  
(31.2)  
3.38 SQ.  
L
(85.9 SQ.)  
1
0.50  
(12.7)  
0.95  
(24.1)  
O
3.25  
(82.6)  
2.20  
(55.9)  
P
1.30  
(33.0)  
1.56  
(39.6)  
5
1.25  
(31.8)  
2
TOP VIEw  
0.85 0.60  
(21.6) (15.2)  
Mounting Holes  
D
1.50  
(38.1)  
0.750  
(19.1)  
1.1  
(27.9)  
4 x 1/4-20  
SHCS  
Slide  
Length  
Max Hole Extra Hole  
Equal  
Space  
3
4
0.75  
(19.1)  
Distance  
Sets (not  
shown)  
Between  
Holes  
L
D
12"  
18"  
24"  
36"  
42"  
10.5"  
16.5"  
22.5"  
34.5"  
40.5"  
none  
10.5"  
8.25"  
7.5"  
1
2
2
2
2.6  
(66.0)  
11.5"  
13.5"  
1.250  
(31.8)  
Mounting Holes  
Ø 0.26 (6.6)  
THRU HOLE  
[O + P = 4.55" (115.6mm)]  
Travel distance = L – (O + P)  
2.25  
(57.2)  
Mounting Bracket Kit Option  
Sensor Flag Kit Option  
Optical sensor – Sunx P/N PM-L24  
or equivalent (not supplied)  
P/N RSM10-K Includes:  
P/N RMB10-K Includes:  
A
B
C
D
E
#2-56 X 1/4" Long BHCS (6)  
Sensor Holder (3)  
F
Mounting Bracket (2)  
G
#1/4-20 X 3/4" Long SHCS (4)  
A
D
#4-40 X 1/2" Long SHCS (3)  
Flag for Optical Sensor (1)  
#6-32 X 1/2" Long SHCS (2)  
G
C
2X M8 SHCS  
(not supplied)  
B
2X M8 steel washer  
F
(not supplied)  
E
Figure F.3: Mechanical Specifications  
MDrive 34Plus Microstepping Hardware - Revision R071108  
Relevant to Firmware Version 3.0.02  
A-30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
WARRANTY  
TWENTY-FOUR (24) MONTH LIMITED WARRANTY  
Intelligent Motion Systems, Inc. (“IMS”), warrants only to the purchaser of the Product from IMS (the “Customer”) that the  
product purchased from IMS (the “Product”) will be free from defects in materials and workmanship under the normal use  
and service for which the Product was designed for a period of 24 months from the date of purchase of the Product by the  
Customer. Customer’s exclusive remedy under this Limited Warranty shall be the repair or replacement, at Company’s  
sole option, of the Product, or any part of the Product, determined by IMS to be defective. In order to exercise its warranty  
rights, Customer must notify Company in accordance with the instructions described under the heading “Obtaining Warranty  
Service.”  
This Limited Warranty does not extend to any Product damaged by reason of alteration, accident, abuse, neglect or  
misuse or improper or inadequate handling; improper or inadequate wiring utilized or installed in connection with the  
Product; installation, operation or use of the Product not made in strict accordance with the specifications and written  
instructions provided by IMS; use of the Product for any purpose other than those for which it was designed; ordinary  
wear and tear; disasters or Acts of God; unauthorized attachments, alterations or modifications to the Product; the misuse  
or failure of any item or equipment connected to the Product not supplied by IMS; improper maintenance or repair of the  
Product; or any other reason or event not caused by IMS.  
IMS HEREBY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS OR IMPLIED BY  
LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS  
FOR ANY PARTICULAR PURPOSE. CUSTOMER’S SOLE REMEDY FOR ANY DEFECTIVE PRODUCT WILL BE AS  
STATED ABOVE, AND IN NO EVENT WILL THE IMS BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR  
INDIRECT DAMAGES IN CONNECTION WITH THE PRODUCT.  
This Limited Warranty shall be void if the Customer fails to comply with all of the terms set forth in this Limited Warranty. This  
Limited Warranty is the sole warranty offered by IMS with respect to the Product. IMS does not assume any other liability in  
connection with the sale of the Product. No representative of IMS is authorized to extend this Limited Warranty or to change  
it in any manner whatsoever. No warranty applies to any party other than the original Customer.  
IMS and its directors, officers, employees, subsidiaries and affiliates shall not be liable for any damages arising from any  
loss of equipment, loss or distortion of data, loss of time, loss or destruction of software or other property, loss of production  
or profits, overhead costs, claims of third parties, labor or materials, penalties or liquidated damages or punitive damages,  
whatsoever, whether based upon breach of warranty, breach of contract, negligence, strict liability or any other legal theory,  
or other losses or expenses incurred by the Customer or any third party.  
OBTAINING WARRANTY SERVICE  
Warranty service may obtained by a distributor, if the Product was purchased from IMS by a distributor, or by the Customer  
directly from IMS, if the Product was purchased directly from IMS. Prior to returning the Product for service, a Returned  
which an RMA Authorization Form with RMA number will then be faxed to you. Any questions, contact IMS Customer  
Service (860) 295-6102.  
Include a copy of the RMA Authorization Form, contact name and address, and any additional notes regarding the Product  
failure with shipment. Return Product in its original packaging, or packaged so it is protected against electrostatic discharge  
or physical damage in transit. The RMA number MUST appear on the box or packing slip. Send Product to: Intelligent Motion  
Systems, Inc., 370 N. Main Street, Marlborough, CT 06447.  
Customer shall prepay shipping changes for Products returned to IMS for warranty service and IMS shall pay for return of  
Products to Customer by ground transportation. However, Customer shall pay all shipping charges, duties and taxes for  
Products returned to IMS from outside the United States.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
U.S.A. SALES OFFICES  
Eastern Region  
IMS EUROPEAN SALES MANAGEMENT  
4 Quai Des Etroits  
Tel. 862 208-9742 - Fax 973 661-1275  
e-mail: jroake@imshome.com  
Central Region  
69005 Lyon, France  
Tel. +33/4 7256 5113 - Fax +33/4 7838 1537  
e-mail: bmartinez@imshome.com  
Tel. 260 402-6016 - Fax 419 858-0375  
e-mail: dwaksman@imshome.com  
Western Region  
Tel. 602 578-7201  
IMS UK LTD.  
Sanderson Centre, 15 Lees Lane  
Gosport, Hampshire PO12 3UL  
Tel. +44/0 2392-520775 - Fax +44/0 2392-502559  
e-mail: mcheckley@imshome.com  
IMS ASIA PACIFIC OFFICE  
30 Raffles Pl., 23-00 Caltex House, Singapore  
048622  
Tel. +65/6233/6846 - Fax +65/6233/5044  
e-mail: wllee@imshome.com  
TECHNICAL SUPPORT  
Tel. +00 (1) 860 295-6102 - Fax +00 (1) 860 295-6107  
e-mail: etech@imshome.com  
Intelligent Motion Systems, Inc.  
370 North Main Street, P.O. Box 457  
Marlborough, CT 06447 - U.S.A.  
Tel. +00 (1) 860 295-6102 - Fax +00 (1) 860 295-6107  
e-mail: info@imshome.com  
© Intelligent Motion Systems, Inc. All Rights Reserved.  
REV071108  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Ingersoll Rand Water Pump 650941 X C User Manual
JBL Speaker PS100 User Manual
Jensen Indoor Furnishings KT3099 User Manual
JVC TV DVD Combo AV 20FD23 User Manual
Kenmore Range 7909659 User Manual
Kenwood Blender HB630 User Manual
Kenwood CD Player K CD01 User Manual
Kenwood CD Player KRC 666 User Manual
Kompernass Planer PEH 900 User Manual
Konica Minolta All in One Printer C30P User Manual