SERVICE AND INSTALLATION MANUAL
THE ICE SERIES CUBERS
ICE0250 through ICE2100 SERIES*
*Includes Undercounter and 22 Inch Series
ICE-O-Matic
11100 East 45th Ave
Denver, Colorado 80239
Part Number 9081270-01
Date 1/08
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Table Of Contents
Table of Contents
Table of Contents
Page A1
General Information
How To Use This Manual
Model And Serial Number Format
Page A2
Page A3
Electrical And Mechanical Specifications
Installation Guidelines
Page A5-A8
Page A9
Electrical And Plumbing Requirements
Remote Condenser Installation
How The Machine Works
Page A10-A17
Page A18-A19
Page A20
Undercounter Model Bin Removal
Warranty Information
Page A21-A22
Page A23-A24
Scheduled Maintenance
Maintenance Procedure
Cleaning and Sanitizing Instructions
Winterizing Procedure
Cabinet Care
Page B1
Page B1-B2
Page B3
Page B4
Troubleshooting Trees
How to Use The Troubleshooting Trees
Troubleshooting Trees Table Of Contents
Troubleshooting Trees
Page C1
Page C2
Page C3-C18
Water System
Water Distribution And Components
Page D1-D5
Refrigeration System
Refrigeration Cycle And Components
Harvest Cycle
Page E1
Page E5
Remote System
Pump Down System
Page E5-E6
Page E7
Refrigerant Specifications
Page E8-E20
Electrical System
Control Circuit
Page F1
Compressor And Start Components
Untimed Freeze Cycle
Timed Freeze Cycle
Page F1-F2
Page F3
Page F4
Harvest Cycle
Pump Down System
Page F5-F9
Page F9
Electrical Sequence ICE1400-2100 Version 3
Wiring Diagrams
Page F10
Page G1
Page A1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
How To Use This Manual
Ice-O-Matic provides this manual as an aid to the service technician in installation, operation,
and maintenance of the ICE Series (electro-mechanical) cube ice machines. If used properly
this manual can also assist the service technician to troubleshoot and diagnose most of the
problems that may occur with the machine.
The first two sections of this manual provide general information and maintenance information.
The remainder of the manual beginning with Section C provides troubleshooting and service
information. Section C contains flow charts called troubleshooting trees. Page C-1 provides
instructions on using the troubleshooting trees. Each troubleshooting tree is named to describe
a particular problem with the operation of the machine.
When following the troubleshooting trees, the service technician will be led through questions
and checks and end up with a probable solution. When using the troubleshooting trees, it is
important that the service technician understand the operation and adjustments of the
components being checked and the component suspected of malfunctioning. A detailed
description of the operation and adjustments of the components as well as other service
information is available in the pages that follow Section C.
Sections D, E, and F focus on a particular system in the ice machine: water distribution system,
refrigeration system, and it is important that these sections be used together with the
Troubleshooting Trees in Section C.
Most aspects of the ICE Series machines are covered in this manual, however, should you
encounter any conditions not addressed herein, please contact the Ice-O-Matic Technical
Service Department for assistance. You may also fax, e-mail or write the Ice-O-Matic Technical
Service Department:
Ice-O-Matic
11100 E. 45th Ave.
Denver, Co. 80239
Attn: Technical Service Department
E-Mail: [email protected]
Telephone Numbers
Any Service communication must include:
• Model Number
800-423-3367 All Department
888-349-4423 Technical Assistance Only
303-371-3737
• Serial number
• A detailed explanation of the problem
Note the warning symbol where it appears in this manual.
It is an alert for important safety information on a hazard
that might cause serious injury.
Keep this manual for future reference.
The ICE Series Service Parts Manuals are available separately.
Ice-O-Matic products are not designed for outdoor installation.
Page A2
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Model and Serial Number Format
Model Numbers
ICE 040 0 H A
Condenser Type: A=Air W=Water R=Remote T=Top Discharge Air Cooled
Cube Size: H=Half (3/8 X 7/8 X7/8) F=Full (7/8 X 7/8 X7/8)
Voltage: 0=115V 5=240/50/1 6=208-230/60/1 7=208-230/60/3
Approximate 24 hour ice production: (x 10 @ 70°F/21°C Air and 50°F/10°C Water)
Series: Slab ice cuber, Stainless Steel Cabinet
Serial Number Date Code
The first letter in the serial number indicates the month and decade of manufacture.
The first digit in the serial number indicates the year of manufacture.
Example: A0XX-XXXXX-Z is manufactured January 2000
A1XX-XXXXX-Z is manufactured January 2001
1990-1999
MONTH
2000-2004
M
N
P
Q
R
S
T
U
V
W
Y
Z
JANUARY
FEBRUARY
MARCH
A
B
C
D
E
F
G
H
I
APRIL
MAY
JUNE
JULY
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER
J
K
L
Note: The letter O and letter X are not used.
Reference new serial number format on next page.
Page A3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Model and Serial Number Format
Since all Enodis companies will eventually be
utilizing same operating system, a company wide
format for serial numbers has been designed.
This format is 14 characters long and begins with a
date code followed by the Ice-O-Matic identifier, and
then a sequential number. This is an entirely
numerical serial number.
The new serial number will look like the example.
0407 1280 010123
010123 is the serial identifier.
1280 is the identifier. (Ice-O-Matic)
0407 is the date code, in YYMM format. (2004 July)
The date code will change monthly and yearly to
reflect the date of manufacture.
Large data plate will be placed on the back of
the unit.
Small data plate will be placed by the service
valves.
Page A4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
24 Hour
Capacity
Wires
Max
Min.
Circuit Comp.
Voltage
@ 90/70
Including
Fuse
**Refrigerant
Oz.
Model
Hz/Phase
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
230/60/1
230/60/1
230/60/1
230/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
115/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
Lbs.
Kg.
53
BTUH
3148
3392
3148
3392
3572
3732
4435
4199
4435
4199
4609
4642
4115
4009
4321
4263
5928
6097
6221
6221
6030
6248
6248
5855
5910
6195
5910
6195
5910
6195
8064
8101
8388
8064
8101
8388
7835
7757
7563
7712
7664
7712
7664
7832
7770
Ground
Size
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
20
20
15
15
15
15
15
15
15
Amps
9.6
RLA
6.8
5.9
6.8
5.9
6.9
5.9
8.2
6.7
8.2
6.7
8.5
6.7
3.2
2.9
4.2
3.2
8.8
8.5
8.6
8.6
8.2
8.6
8.6
8.2
9.0
8.3
9.0
10.1
9.0
10.1
9.5
9.3
10.3
9.5
9.3
10.3
11.7
11.7
9.9
5.9
5.7
5.9
5.7
5.3
4.8
Type
Grams
369
284
369
284
340
284
369
256
369
256
340
256
397
312
340
256
454
369
454
454
369
709
709
369
510
425
510
312
510
312
907
907
397
822
822
397
851
851
397
907
454
907
454
850
397
ICEU150*A1
ICEU150*W1
ICEU150*A2
ICEU150*W2
ICEU150*A3
ICEU150*W3
ICEU200*A1
ICEU200*W1
ICEU200*A2
ICEU200*W2
ICEU220A
117
166
117
166
112
155
157
183
157
183
175
220
162
190
168
192
228
296
244
244
284
253
253
275
214
312
214
312
214
312
366
368
449
366
368
449
368
357
407
323
381
323
381
385
439
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R-134a
R-134a
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
13
10
13
10
12
9
75
7.9
53
9.6
75
7.9
51
9.7
70
7.9
71
11.6
8.9
13
9
83
71
11.6
8.9
13
9
83
80
11.9
8.9
12
9
ICEU220W
100
74
ICEU206*A1
ICEU206*W1
ICEU226A
4.8
14
11
12
9
86
4.0
76
6.0
ICEU226W
87
4.4
ICEU300A
104
135
111
111
129
115
115
125
97
13.1
11.1
13.3
13.3
10.8
13.3
13.3
10.8
13.8
10.9
13.8
13.1
13.8
13.1
14.4
14.1
13.4
14.4
14.1
13.4
17.1
17.1
12.9
8.8
16
13
16
16
13
25
25
13
18
15
18
11
18
11
32
32
14
29
29
14
30
30
14
32
16
32
16
30
14
ICEU300W
ICE0250*A3
ICE0250*A-T3
ICE0250*W3
ICE0250*A4
ICE0250*A-T4
ICE0250*W4
ICE0320*A1
ICE0320*W1
ICE0320*A2
ICE0320*W2
ICE0320*A3
ICE0320*W3
ICE0400*A1
ICE0400*A-T1
ICE0400*W1
ICE0400*A2
ICE0400*A-T2
ICE0400*W2
ICE0400*A3
ICE0400*A-T3
ICE0400*W3
ICE0406*A1
ICE0406*W1
ICE0406*A2
ICE0406*W2
ICE0406*A3
ICE0406*W3
142
97
142
97
142
166
167
204
166
167
204
167
162
185
147
173
147
173
175
200
7.5
8.8
7.5
8.0
6.4
Page A5
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
24 Hour
Capacity
Wires
Max
Min.
Circuit Comp.
Voltage
@ 90/70
Including
Fuse
**Refrigerant
Oz.
Model
Hz/Phase
115/60/1
Lbs.
Kg.
210
207
227
199
210
207
227
199
208
214
233
203
207
160
201
160
201
168
201
239
232
268
247
239
232
268
247
247
230
230
262
228
317
382
346
317
382
346
375
369
428
411
369
428
411
419
349
412
384
349
412
384
384
BTUH
10843
10736
10242
10881
10843
10736
10242
10881
9990
Ground
Size
20
20
20
20
20
20
20
20
20
20
20
20
20
20
15
20
15
20
15
15
15
15
15
15
15
15
15
15
15
15
15
15
20
20
20
20
20
20
20
20
20
20
20
20
20
20
15
15
15
15
15
15
15
Amps
24.8*
24.8*
13.6
18.7
19.9
19.9
13.6
18.7
19.1
19.1
14.3
18.7
14.9
18.3
13.5
15.4
13.5
16.0
13.1
12.4
13.3
9.5
RLA
18.5
18.5
10.5
12.3
13.9
13.9
10.5
12.3
13.3
13.3
11.0
12.3
9.3
Type
Grams
1049
1049
425
ICE0500*A1
ICE0500*A-T1
ICE0500*W1
ICE0500*R1
ICE0500*A2
ICE0500*A-T2
ICE0500*W2
ICE0500*R2
ICE0500*A3
ICE0500*A-T3
ICE0500*W3
ICE0500*R3
ICE0500*R4
ICE0520*A1
ICE0520*W1
ICE0520*A2
ICE0520*W2
ICE0520*A3
ICE0520*W3
ICE0606*A1
ICE0606*A-T1
ICE0606*W1
ICE0606*R1
ICE0606*A2
ICE0606*A-T2
ICE0606*W2
ICE0606*R2
ICE0606*R3
ICE0606*A3
ICE0606*A-T3
ICE0606*W3
ICE0606*R4
ICE0806*A1
ICE0806*W1
ICE0806*R1
ICE0806*A2
ICE0806*W2
ICE0806*R2
ICE0806*R3
ICE1006*A1
ICE1006*W1
ICE1006*R1
ICE1006*A2
ICE1006*W2
ICE1006*R2
ICE1006*R3
ICE1007*A1
ICE1007*W1
ICE1007*R1
ICE1007*A2
ICE1007*W2
ICE1007*R2
ICE1007*R3
461
455
499
407
461
455
499
407
458
470
513
446
455
353
442
353
442
370
442
525
510
590
544
525
510
590
544
543
506
506
576
502
698
840
762
698
840
762
826
811
941
905
811
941
905
921
767
906
844
767
906
844
844
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
37
37
115/60/1
115/60/1
15
115/60/1
160
22
4536
624
115/60/1
115/60/1
22
624
115/60/1
15
425
115/60/1
160
25
4536
710
115/60/1
115/60/1
9982
25
710
115/60/1
9777
15
425
115/60/1
11357
10278
8441
132
132
32
3742
3742
907
115/60/1
115/60/1
12.3
10.4
10.6
10.4
11.1
9.0
115/60/1
8356
14
397
115/60/1
8441
20
567
115/60/1
8356
14
397
115/60/1
7753
21
595
115/60/1
7852
12
340
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
11538
11293
11473
12269
11538
11293
11473
12269
12132
10566
10566
10767
10850
15003
14458
15168
15003
14458
15168
16371
16239
15986
18149
16239
15986
18149
18377
15614
16487
17653
15614
16487
17653
17653
8.8
36
1021
1021
510
9.5
36
7.3
18
13.0
12.0
11.7
9.5
8.7
160
24
4536
680
8.5
8.2
24
680
7.3
18
510
13.0
13.0
11.5
10.4
8.7
8.7
160
132
24
4536
3742
680
8.7
7.9
7.0
24
680
6.6
17
482
12.9
13.0
9.8
8.6
132
41
3742
1163
823
9.2
7.4
29
12.3
13.0
9.8
8.1
240
27
6804
765
9.2
7.4
24
680
12.3
12.3
13.8
9.0
8.1
240
176
50
6804
4990
1418
908
8.1
9.0
6.8
32
13.8
13.8
9.0
9.3
240
34
6804
964
9.0
6.8
24
680
13.8
13.8
11.8
7.1
9.3
240
176
50
6804
4990
1418
908
9.3
7.4
5.3
32
10.8
11.8
7.1
6.9
240
34
6804
964
7.4
5.3
24
680
10.8
10.8
6.9
240
176
6804
4990
6.9
Page A6
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
24 Hour
Capacity
Wires
Max
Fuse
Size
30
20
25
30
20
25
30
20
30
25
20
25
25
20
25
20
20
20
30
30
30
30
30
30
30
30
30
15
15
15
15
15
20
30
50
30
50
30
30
20
25
20
25
Min.
Circuit Comp.
Voltage
@ 90/70
Including
**Refrigerant
Oz.
Model
Hz/Phase
Lbs.
Kg.
510
540
515
510
540
515
504
563
523
450
497
435
450
497
435
514
577
543
559
549
564
664
667
664
667
740
664
707
678
707
678
729
656
843
783
843
783
769
710
842
790
842
790
BTUH
22590
22529
23085
22590
22529
23085
21957
21994
22126
19765
19809
20173
19765
19809
20173
21761
22308
22547
24337
22999
24343
25663
27152
25663
27152
27687
28110
27146
27966
27146
27966
27560
27514
33333
35369
33333
35369
29406
30325
32928
34714
32928
34714
Ground
Amps
20.2
15.6
23.3
20.2
15.6
23.3
26.1
17.8
22.2
15.1
9.8
RLA
13.8
11.7
16.5
13.8
11.7
16.5
13.8
11.7
16.5
9.7
Type
Grams
3062
794
ICE1406*A1
ICE1406*W1
ICE1406*R1
ICE1406*A2
ICE1406*W2
ICE1406*R2
ICE1406*A3
ICE1406*W3
ICE1406*R3
ICE1407*A1
ICE1407*W1
ICE1407*R1
ICE1407*A2
ICE1407*W2
ICE1407*R2
ICE1407*A3
ICE1407*W3
ICE1407*R3
ICE1506*R
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/1
208-230/60/3
208-230/60/3
208-230/60/3
208-230/60/3
1122
1187
1134
1122
1187
1134
1109
1239
1150
989
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
3
3
3
3
3
3
4
4
4
4
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
108
28
240
104
25
6804
2948
709
240
60
6804
1701
850
30
240
108
28
6804
3062
794
1093
956
7.1
14.0
15.1
9.8
9.1
240
104
25
6804
2948
709
989
9.7
1093
956
7.1
14.0
16.0
10.7
14.7
27.4
24.5
25.8
17.0
22.3
17.0
22.3
22.0
27.7
10.7
15.5
10.7
15.5
12.3
17.1
28.5
43.1
25.3
33.7
22.3
26.9
13.9
22.3
16.6
23.2
9.1
240
60
6804
1701
850
1131
1270
1195
1202
1207
1240
1461
1468
1461
1468
1628
1461
1556
1491
1556
1491
1603
1444
1855
1723
1855
1723
1692
1561
1853
1737
1853
1737
9.7
7.1
30
9.1
240
240
240
240
42
6804
6804
6804
6804
1191
11340
992
19.8
ICE1506*R
ICE1606*R1
ICE1806*W1
ICE1806*R1
ICE1806*W2
ICE1806*R2
ICE1806*W3
ICE1806*R3
ICE1807*W1
ICE1807*R1
ICE1807*W2
ICE1807*R2
ICE1807*W3
ICE1807*R3
ICE2106*W1
ICE2106*R1
ICE2106*W2
ICE2106*R2
ICE2106*W3
ICE2106*R3
ICE2107*W1
ICE2107*R1
ICE2107*W2
ICE2107*R2
18.6
12.9
15.7
12.9
15.7
16.9
20.1
7.8
400
35
400
37
11340
1049
7711
1191
11340
992
272
42
10.3
7.8
400
35
10.3
9.1
400
37
11340
1049
7711
1418
11340
1049
11340
1247
7711
1418
11340
1049
11340
11.6
22.1
31.0
19.5
23.5
17.1
18.1
10.4
14.4
12.6
15.1
272
50
400
37
400
44
272
50
400
37
400
ICE2107*W3
ICE2107*R3
208-230/60/3
208-230/60/3
1650
750
693
28676
29342
4
4
30
25
13.5
21.2
10.1
13.5
R404A
R404A
44
1247
7711
1525
24 Hour
Capacity
272
50HZ.
Wires
Max
Min.
Voltage
@ 90°/70°
Including
Fuse
Circuit
Comp.
**Refrigerant
Oz.
Model
Hz/Phase
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
Lbs.
Kg.
66
BTUH
3842
3768
3842
3768
3774
3780
5392
5080
Ground
Size
15
15
15
15
15
15
15
15
Amps
6.0
RLA
4.1
4.2
4.1
4.2
3.3
3.0
4.2
3.5
Type
Grams
397
312
397
312
340
256
397
369
ICEU205*A1
ICEU205*W1
ICEU205*A2
ICEU205*W2
ICEU225*A
ICEU225*W
ICEU305A
145
175
145
175
143
174
223
267
3
3
3
3
3
3
3
3
R-134a
R-134a
R-134a
R-134a
R404A
R404A
R404A
R404A
14
11
14
11
12
9
80
5.6
66
6.0
80
5.6
65
4.9
79
4.1
101
121
6.4
14
13
ICEU305W
4.7
Page A7
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
24 Hour
50 hz.
Capacity
Wires
Max
Fuse
Size
15
15
16
16
15
15
16
15
15
15
15
16
16
15
15
16
15
15
15
15
15
15
15
16
16
16
15
15
15
15
15
15
15
15
15
15
15
15
15
15
25
20
25
25
20
25
30
20
30
30
50
Min.
Circuit
Amps
12.4
8.5
Voltage
Hz/Phase
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
230/50/1
@ 90°/70°
Including
Comp.
RLA
8.2
**Refrigerant
Model
Lbs.
Kg.
121
132
127
135
97
BTUH
7079
Ground
Type
Oz.
26
Grams
737
ICE0305*A2
ICE0305*W2
ICE0305*A4
ICE0305*W4
ICE0325*A1
ICE0325*A2
ICE0325*A3
ICE0405*A1
ICE0405*W1
ICE0405*A2
ICE0405*W2
ICE0405*A3
ICE0405*W3
ICE0525*A1
ICE0525*A2
ICE0525*A3
ICE0605*A1
ICE0605*W1
ICE0605*R1
ICE0605*A2
ICE0605*W2
ICE0605*R2
ICE0605*R3
ICE0605*A3
ICE0605*W3
ICE0605*R4
ICE0805*A1
ICE0805*W1
ICE0805*R1
ICE0805*A2
ICE0805*W2
ICE0805*R2
ICE0805*R3
ICE1005*A1
ICE1005*W1
ICE1005*R1
ICE1005*A2
ICE1005*W2
ICE1005*R2
ICE1005*R3
ICE1405*A1
ICE1405*W1
ICE1405*R1
ICE1405*A2
ICE1405*W2
ICE1405*R2
ICE1405*A3
ICE1405*W3
ICE1405*R3
ICE2005*W1
ICE2005*R1
266
291
279
296
214
214
214
370
470
370
470
366
440
478
478
404
466
470
425
466
470
425
425
459
523
474
615
855
738
615
855
738
738
742
917
801
742
917
801
801
901
1107
1002
901
1107
1002
1070
1185
1139
1702
1490
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
R404A
6590
8.2
14
397
6689
8.4
5.8
23
650
6265
6.6
5.0
12
340
4990
6.2
4.4
22
624
97
4990
6.2
4.4
22
624
97
4990
6.6
4.4
22
624
168
214
168
214
166
200
217
217
184
212
214
193
212
214
193
193
209
238
215
280
389
335
280
389
335
335
337
417
364
337
417
364
364
410
503
455
410
503
455
486
539
518
774
677
9371
13.3
10.1
13.3
10.1
8.2
8.2
32
907
8562
8.2
16
454
9371
8.2
23
650
8562
8.2
16
454
7735
5.4
23
650
8213
6.2
4.4
13
369
8061
7.8
5.1
21
595
8061
7.8
5.1
21
595
8617
9.2
5.5
21
595
10284
9909
8.8
8.4
32
907
6.8
8.4
14
397
10708
10284
9909
9.9
8.4
160
22
4536
624
8.8
8.4
6.8
8.4
14
397
10708
10708
9523
9.9
8.4
160
132
22
4536
3742
624
9.9
8.4
8.7
6.7
9684
6.8
5.4
14
397
10138
13321
14382
14474
13321
14382
14474
14474
15699
16005
16127
15699
16005
16127
16127
19348
20269
21330
19348
20269
21330
21185
21035
22239
29643
29750
9.9
6.3
132
41
3742
1162
822
12.0
9.2
10.9
10.9
10.9
10.9
10.9
10.9
10.9
12.5
12.5
12.5
12.5
12.5
12.5
12.5
15.4
15.4
15.4
15.4
15.4
15.4
14.5
11.5
15.6
21.5
21.5
29
13.0
12.0
9.2
240
27
6804
765
24
680
13.0
13.0
13.3
9.5
240
176
50
6804
4990
1417
907
32
15.1
13.3
9.5
240
33
6804
936
24
680
15.1
15.1
20.8
15.4
18.1
20.8
15.4
18.1
21.7
15.1
21.9
20.3
34.3
240
176
108
28
6804
4990
3062
794
240
104
25
6804
2950
710
240
60
6804
1701
710
25
240
50
6804
1417
11340
400
Page A8
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Installation Guidelines
Note: Installation should be performed by an Ice-O-Matic trained Service Technician.
For proper operation of the Ice-O-Matic ice machine, the following installation guidelines must be
followed. Failure to do so may result in loss of production capacity, premature part failures, and
may void all warranties.
Ambient Operating Temperatures
Minimum Operating Temperature: 50°F (10°C)
Maximum Operating Temperature 100°F (38°C), 110°F (43°C) on 50 Hz. Models.
Note: Ice-O-Matic products are not designed for outdoor installation.
Incoming Water Supply (See Plumbing Diagram for line sizing Page A10-A17)
Minimum incoming water temperature: 40°F (4.5°C)
Maximum incoming water temperature: 100°F (38°C)
Minimum incoming water pressure: 20 psi (1.4 bar)
Maximum incoming water pressure: 60 psi (4.1 bar)
Note: If water pressure exceeds 60 psi (4.1 bar), a water pressure regulator must be
installed.
Drains: All drain lines must be installed per local codes. Flexible tubing is not recommended.
Route bin drain, purge drain and water condenser drain individually to a floor drain. The use of
condensate pumps for draining water is not recommended by Ice-O-Matic. Ice-O-Matic assumes
no responsibility for improperly installed equipment.
Water Filtration: A water filter system should be installed with the ice machine.
Clearance Requirements: Self contained air cooled ice machines must have a minimum of 6
inches (15cm) of clearance at the rear, top, and sides of the ice machine for proper air circulation.
Stacking: If the ice machines are to be stacked, refer to the instructions in the stacking kit.
Ice-O-Matic does not endorse stacking air-cooled ice machines.
Dispenser Application: A thermostatic bin control kit must be installed if the ICE Series ice
machine is placed on a dispenser. A bin top may or may not be required. (Exception is the
CD400 Dispenser)
Electrical Specifications: Refer to the serial plate at the rear of the ice machine or the charts on
page A5, A6, A7 or A8.
Adjustments
Level the machine within 1/8 inch in all directions.
Check the bin control for proper adjustment, Page F9
Check the water in the water trough for proper level, Page D1
Check the ice bridge for proper thickness, Page F4
Check the cam switch adjustment. Page F8
Check the water regulating valve adjustment if water cooled, Page E2
Page A9
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICEU150, ICEU220, ICEU205 and ICEU206
Page A10
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICEU150, 220, 225 and 226
Note: The ICEU150, ICEU220, ICEU225
and ICEU226 do not have a splash
curtain.
These models utilize a thermostatic
bin control in place of a mechanical
bin switch.
Page A11
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICEU300 and 305
Note: The ICEU300 does not have a
splash curtain.
This model utilize a thermostatic bin
control in place of a mechanical bin
switch.
Page A12
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICE0250, ICE0400, ICE0500, ICE0606, ICE0806
and ICE1006 (30 Inch Wide Cubers)
Page A13
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICE1406, ICE1806, ICE2106 (48 Inch Wide Cubers)
Prior to January 2008
Page A14
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICE0320 and ICE0520 (22 Inch Wide Cubers)
Page A15
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICE1400, ICE1800 and ICE2100 Revision 3
(From January 2008)
Page A16
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Electrical and Plumbing Requirements: ICE1506 Remote
Page A17
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Remote Condenser Installation
For proper operation of the Ice-O-matic ice machine, the following installation guidelines must be
followed. Failure to do so may result in loss of production capacity, premature part failure, and
may void all warranties.
Installation Guidelines
Ambient operating temperatures: -20°F (-28.9°C) to 120°F (48.9°C)
Maximum refrigerant line length: 60 ft. (18.29 Meters)
Maximum vertical rise:
16 ft. (4.88 Meters)
Minimum condenser height:
ICE Series ice machine remote condensers must not be
installed more than 6 feet (1.3 meters) below the refrigerant line quick connects at the rear of the
ice machine. No part of the refrigerant lines, between the ice machine and the remote
condenser, should fall below this point. Condensers must have a vertical airflow.
Air Flow
Page A18
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
The following remote ice makers incorporate the mixing valve in the condenser. This configuration allows
up to a 100 foot calculated remote line set run. Reference the diagram below to calculate the maximum 100
foot line set run.
ICE Machine Model Number
ICE2100R3
Remote Condenser Model Number
VRC5061B
ICE1800R3
VRC5061B
ICE1400R3
VRC2661B
ICE1506HR2
ICE1006R3
VRC2661B
VRC2061B
ICE0806R3
VRC2061B
ICE0606R3&4
ICE0500R3&4
VRC1061B
VRC1001B
Limitations for new remote machines that have the mixing valve mounted in the condenser.
Maximum Rise is 35 feet.
Maximum Drop is 15 feet.
Maximum equivalent run is 100 feet.
Formula for figuring maximum equivalent run is as follows:
Rise x 1.7 + Drop x 6.6 + horizontal run = equivalent run.
Examples: 35 ft. rise x 1.7 + 40 ft. horizontal = 99.5 equivalent feet line run
35 ft. rise
40 ft. horizontal
Verify the ICE machine is compatible with the remote
condenser. Some ice machines and some remote
condensers may or may not have a Mixing Valve (Head
Master). Only one valve is required per system. Kits are
available to modify the condenser for compatibility. For
more information contact your Ice-O-Matic Distributor.
34 ft. horizontal
10 ft. drop x 6.6 + 34 ft horizontal = 100
equivalent feet line run
10 ft. drop
Page A19
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
How the ICE Machine Works
A general description of how the ICE Series cubers work is given below. The remainder of the
manual provides more detail about the components and systems.
With the ICE/OFF/WASH switch in the ICE position, the compressor, water pump and condenser
fan motor (when applicable) will energize starting the freeze cycle.
During the freeze cycle, water is circulated over the evaporator(s) where the ice cubes are formed.
When the suction pressure has pulled down to the proper cut-in pressure of the timer initiate
(pressure control), the contacts will close and energize the time delay module (timer). See Page
F3 for proper cut-in pressures. At this time the cubes will close to completion.
The remaining portion of the freeze cycle is determined by the timer setting. The timer is pre-set at
the factory to achieve the proper ice bridge thickness but may need to be adjusted upon initial
start-up, see Page F4 for initial timer settings.
Once the amount of time on the timer has passed, the control relay will be energized and the
machine will enter harvest. Power is now supplied to the water purge valve, hot gas valve, and the
harvest motor. The water purge valve opens, and allows the water pump to purge the water
remaining in the water, removing impurities and sediment. This allows the machine to produce
clear ice cubes and keep mineral build up at a minimum. The hot gas solenoid opens allowing hot
gas to go directly to the evaporator, heating the evaporator and breaking the bond between the
evaporator and the ice slab.
The harvest assist motor, which is also energized during harvest, turns a slip clutch, which pushes
a probe against the back of the ice slab. Once the evaporator has reached approximately 40°F
(4.5°F) in temperature, the slip clutch overcomes the bonding of the ice to the evaporator and
pushes the slab of ice off of the evaporator and into the storage bin. The clutch also actuates a
switch that rides on the outer edge of the clutch. When the clutch completes one revolution, the
switch is tripped and the machine enters the next freeze cycle.
When ice drops into a full bin during harvest, the splash curtain is held open which activates a bin
switch shutting the machine off. When ice is removed from the bin, the splash curtain will close
and the machine will come back on.
Page A20
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Undercounter Bin Removal-ICEU300 Series
The storage bin can be removed by:
1 Remove the lower grill.
2. Remove two screws securing bin to cabinet base.
3. Remove the thumbscrews from the back wall of the bin.
4. Disconnect bin drain.
5. Lift front of bin slightly and pull bin forward to remove.
3
2
Page A21
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Undercounter Bin Removal-ICEU150/200 Series
The storage bin can be removed by:
1. Remove the two screws at the rear of the top panel.
2. Remove the two screws from the front panel.
3. Remove two screws securing bin to cabinet base.
4. Disconnect bin drain.
5. Lift front of bin slightly and pull bin forward to remove.
1
4
5
2
3
Page A22
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Warranty Information
Every Ice-O-Matic machine is backed by a warranty that provides both parts and labor coverage.
PARTS
LABOR
Two years on all parts*
Two years on all components*
Three years on all cube ICE Maker components*
Three years on all ICE Maker parts*
Five years on compressors*
Five years on cuber evaporators*
Water Filtration System Extended Warranty Program
Purchase a new Ice-O-Matic IFQ or IFI Series Water Filtration System with a new ICE Series ICE
Machine, replace the filter cartridge every 6 month and Ice-O-Matic will extend the limited cuber
evaporator warranty to 7 years parts and labor.
•New machine and filter must be installed at same time.
•Must send in both the machine and water filter registration cards within 10 days of
installation.
•Must send in additional registration card for each new filter installed. This must be done
every 180 days (6 months) or less.
•Program is available with all IFQ and IFI filter systems.
•Replacement filter must be model number IOMQ or IOMWFRC.
•Available in the USA and Canada only.
Warranty If, during the warranty period, customer uses a part for this Ice-O-Matic equipment other
than an unmodified new part purchased directly from Ice-O-Matic, Ice-O-Matic Distributors, or any
of its authorized service agents and/or the part being used is modified from its original
configuration, this warranty will be void. Further, Ice-O-Matic and its affiliates will not be liable for
any claims, damages or expenses incurred by customer which arises directly or indirectly, in whole
or in part, due to the installation of any modified part and/or part received from an unauthorized
service center. Adjustments are not covered under warranty.
Warranty Procedure If the customer is using a part that results in a voided warranty and an Ice-O-
Matic authorized representative travels to the installation address to perform warranty service, the
service representative will advise customer the warranty is void. Such service call will be billed to
the customer at the authorized service center’s then-applicable time and material rates.
Page A23
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
General Information
Ice-O-Matic
Parts and Labor
Domestic & International Limited Warranty
Mile High Equipment LLC (the “Company”) warrants Ice-O-Matic brand ice machines, ice dispensers, remote condensers, water filters, and ice
storage bins to the end customer against defects in material and factory workmanship for the following:
• Cube ice machines,”GEM” model compressed ice
machines ,” MFI” model flake ice machines and remote
condensers. - Thirty-six (36) months parts and labor
• “EF” and “EMF” model flake ice machines - Twenty-four
(24) months parts and labor
•
Ice storage bins -Twenty-four (24) month parts and labor
•
•
IOD model dispensers - Twenty-four (24) months parts, Twelve (12) months
labor
Water filter systems - Twelve (12) months parts and labor (not including filter
cartridges)
• CD model dispensers - Thirty-six (36) months parts and
labor
An additional twenty-four (24) month warranty on parts (excluding labor) will be extended to all cube ice machine evaporator plates and
compressors, “GEM” model compressed ice machine compressors, and “MFI” model flake ice machine compressors from the date of original
installation. An additional thirty-six (36) month warranty on parts (excluding labor) will be extended to all “EF” and “EMF” model flake ice machine
compressors from the date of original installation. The company will replace EXW (Incoterms 2000) the Company plant or, EXW (Incoterms 2000)
the Company-authorized distributor, without cost to the Customer, that part of any such machine that becomes defective. In the event that the
Warranty Registration Card indicating the installation date has not been returned to Ice-O-Matic, the warranty period will begin on the date of
shipment from the Company. Irrespective of the actual installation date, the product will be warranted for a maximum of seventy-two (72) months
from date of shipment from the Company.
ICE-model cube ice machines which are registered in the Water Filter Extended Warranty Program will receive a total of eighty-four (84) months
parts and labor coverage on the evaporator plate from the date of original installation. Water filters must be installed at the time of installation and
registered with the Company at that time. Water filter cartridges must be changed every six (6) months and that change reported to the Company to
maintain the extended evaporator warranty.
No replacement will be made for any part or assembly which (I) has been subject to an alteration or accident; (II) was used in any way which, in the
Company’s opinion, adversely affects the machine’s performance; (III) is from a machine on which the serial number has been altered or removed;
or, (IV) uses any replacement part not authorized by the Company. This warranty does not apply to destruction or damage caused by unauthorized
service, using other than Ice-O-Matic authorized replacements, risks of transportation, damage resulting from adverse environmental or water
conditions, accidents, misuse, abuse, improper drainage, interruption in the electrical or water supply, charges related to the replacement of non-
defective parts or components, damage by fire, flood, or acts of God.
This warranty is valid only when installation, service, and preventive maintenance are performed by a Company-authorized distributor, a Company-
authorized service agency, or a Company Regional Manager. The Company reserves the right to refuse claims made for ice machines or bins used
in more than one location. This Limited Warranty does not cover ice bills, normal maintenance, after-install adjustments, and cleaning.
Limitation of Warranty
This warranty is valid only for products produced and shipped from the Company after January, 2007. A product produced or installed
before that date shall be covered by the Limited Warranty in effect at the date of its shipment. The liability of the Company for breach of
this warranty shall, in any case, be limited to the cost of a new part to replace any part, which proves to be defective. The Company
makes no representations or warranties of any character as to accessories or auxiliary equipment not manufactured by the Company.
REPAIR OR REPLACEMENT AS PROVIDED UNDER THIS WARRANTY IS THE EXCLUSIVE REMEDY OF THE CUSTOMER. MILE HIGH
EQUIPMENT SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR BREACH OF ANY EXPRESS OR
IMPLIED WARRANTY ON THIS PRODUCT. EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, ANY IMPLIED WARRANTY OR
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ON THIS PRODUCT IS LIMITED IN DURATION TO THE LENGTH OF THIS
WARRANTY.
Filing a Claim
All claims for reimbursement must be received at the factory within 90 days from date of service to be eligible for credit. All claims outside
this time period will be void. The model, the serial number and, if necessary, proof of installation, must be included in the claim. Claims for labor
to replace defective parts must be included with the part claim to receive consideration. Payment on claims for labor will be limited to the published
labor time allowance hours in effect at the time of repair. The Company may elect to require the return of components to validate a claim. Any
defective part returned must be shipped to the Company or the Company-authorized distributor, transportation charges pre-paid, and properly
sealed and tagged. The Company does not assume any responsibility for any expenses incurred in the field incidental to the repair of equipment
covered by this warranty. The decision of the Company with respect to repair or replacement of a part shall be final. No person is authorized to give
any other warranties or to assume any other liability on the Company’s behalf unless done in writing by an officer of the Company.
GOVERNING LAW
This Limited Warranty shall be governed by the laws of the state of Delaware, U.S.A., excluding their conflicts of law principles. The United Nations
Convention on Contracts for the International Sale of Goods is hereby excluded in its entirety from application to this Limited Warranty.
Mile High Equipment LLC, 11100 East 45th Avenue, Denver, Colorado 80239 (303) 371-3737
January 2007
Page A24
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Scheduled Maintenance
Maintenance
Note: Maintenance should be performed by an Ice-O-Matic trained Service Technician.
Electrical shock and/or injury from moving parts inside this
machine can cause serious injury. Disconnect electrical
supply to machine prior to performing any adjustments or
repairs.
Failure to perform the required maintenance at the frequency specified will void warranty coverage
in the event of a related failure. To insure economical, trouble free operation of the machine, the
following maintenance is required every 6 months.
Maintenance Procedure
1. Clean the ice-making section per the instructions below. Cleaning should be performed a
minimum of every 6 months. Local water conditions may require that cleaning be performed more
often.
2. Check ice bridge thickness. See page F4 for proper thickness and adjustment procedure.
3. Check water level in trough. See page D1 for proper water level and adjustment.
4. Clean the condenser (air-cooled machines) to insure unobstructed air flow.
5. Check for leaks of any kind: Water, Refrigerant, Oil, Etc.
6. Check the bin switch for proper adjustment. See page F9 for bin switch adjustment.
7. Check the cam switch adjustment. See page F8 for cam switch adjustment.
8. Check the water valve (water-cooled machines) for proper adjustment. See page E2.
9. Check all electrical connection.
10. Oil the fan motor if the motor has an oil fitting. (Self contained air-cooled models only)
Cleaning and Sanitizing
1. Harvest problems may occur if the following procedures are not performed every 6 months.
2. Remove the ice machine front panel.
3. Make sure that all the ice is off of the evaporator. If ice is being made, wait for cycle
completion, then turn the machine “OFF” at the ICE/OFF/WASH selector switch.
4. Remove or melt all ice in the storage bin.
Page B1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Scheduled Maintenance
Cleaning and Sanitizing (continued)
5. Add recommended amount of approved Nickel Safe ice machine cleaner to the water trough
according to label instructions on the container.
6. Initiate the wash cycle at the ICE/OFF/WASH switch by placing the switch in the “WASH”
position. Allow the cleaner to circulate for approximately 15 minutes to remove mineral
deposits.
7. Depress the purge switch and hold until the ice machine cleaner has been flushed down the
drain and diluted by fresh incoming water.
8. Terminate the wash cycle at the ICE/OFF/WASH switch by placing the switch in the “OFF”
position. Remove the splash curtain and inspect the evaporator and water spillway to assure all
mineral residue has been removed.
9. If necessary, wipe the evaporator, spillway and other water transport surfaces with a clean soft
cloth to remove any remaining residue. If necessary, remove the water distribution tube,
disassemble and clean with a bottlebrush, see page D2. Reassemble all components and
repeat steps 4 through 7 as required to remove residue.
10. Turn OFF ice machine water supply and clean the water trough thoroughly to remove all scale
or slime build-up. If necessary, remove the water trough to reach all splash areas and float.
11. Prepare 1½ to 2 gallons (5.7 to 7.5 liters) of approved (EPA/FDA) sodium hypochloride food
equipment sanitizer to form a solution with 100 to 200 ppm free chlorine yield.
12. Add enough sanitizing solution to fill the water trough to overflowing and place the
ICE/OFF/WASH switch to the “WASH” position and allow circulation to occur for 10 minutes
and inspect all disassembled fittings for leaks. During this time, wipe down all other ice
machine splash areas, plus the interior surfaces of the bin, deflector and door with the
remaining sanitizing solution. Inspect to insure that all functional parts, fasteners, thermostat
bulbs (if used), etc. are in place.
13. Depress the purge switch and hold until sanitizer has been flushed down the drain. Turn ON
the ice machine water supply and continue to purge to the diluted sanitizing solution for another
1 to 2 minutes.
14. Place the ICE/OFF/WASH switch to the “ICE” position and replace the front panel.
15. Discard the first two ice harvests.
Page B2
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Winterizing Procedures
Winterizing Procedures
Important!
Whenever the ice machine is taken out of operation during the winter months, the procedure below
must be performed. Failure to do so may cause serious damage and will void all warranties.
1. Turn off water to machine.
2. Make sure all ice is off of the evaporator(s). If ice is being made, initiate harvest or wait for
cycle completion.
3. Place the ICE/OFF/WASH switch to the “OFF” position.
4. Disconnect the tubing between the water pump discharge and water distribution tube.
5. Drain the water system completely.
6. On water cooled machines, hold the water regulating valve
open by prying upward on the water valve spring with a
screwdriver while using compressed air to blow all the water out
of the condenser.
7. Remove all of the ice in the storage bin and discard.
Page B3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Cabinet Care
Cleaning stainless steel
Commercial grades of stainless steel are susceptible to rusting. It is important that you properly
care for the stainless steel surfaces of your ice machine and bin to avoid the possibility of rust or
corrosion. Use the following recommended guidelines for keeping your stainless steel looking like
new:
1. Clean the stainless steel thoroughly once a week. Clean frequently to avoid build-up of
hard, stubborn stains. Also, hard water stains left to sit can weaken the steel's corrosion
resistance and lead to rust. Use a nonabrasive cloth or sponge, working with, not across, the
grain.
2. Don't use abrasive tools to clean the steel surface. Do not use steel wool, abrasive sponge
pads, wire brushes or scrapers to clean the steel. Such tools can break through the "passivation"
layer - the thin layer on the surface of stainless steel that protects it from corrosion.
3. Don't use cleaners that use chlorine or chlorides. Don't use chlorine bleach or products like
Comet to clean the steel. Chlorides break down the passivation layer and can cause rusting.
4. Rinse with clean water. If chlorinated cleansers are used, you must thoroughly rinse the
surface with clean water and wipe dry immediately.
5. Use the right cleaning agent. The table below lists the recommended cleaning agents for
common stainless steel cleaning problems:
Cleaning Activity
Cleaning Agent
Method of Application
Routine cleaning
Soap, Ammonia, Windex, or
detergent with water.
Fantastik, 409 Spic’nSpan
Liquid are also approve for
Stainless Steel.
Apply with a clean cloth
or sponge. Rinse with
clean water and wipe dry.
Removing grease or
fatty acids
Easy-Off or similar oven
cleaners.
Apply generously, allow
to stand for 15-20 minutes.
Rinse with clean water.
Repeat as required.
Removing hard water spots
and scale.
Vinegar
Swab or wipe with clean cloth.
Rinse with clean water and
dry.
Page B4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
How To Use The Troubleshooting Trees
The troubleshooting trees were developed to be used in conjunction with the service information in
the sections that follow. If used together as intended, these two parts of the manual will allow the
ice machine service technician to quickly diagnose many of the problems encountered with the ice
machines. When used as designed, the troubleshooting trees can lead you from a general
symptom to the most likely component to suspect as the cause of the problem. The trees are not
designed to be “parts changer guides”: please do not use them as such.
Components returned to the factory for warranty are tested by the factory and will not be covered
under the warranty policy if they are not defective.
The troubleshooting trees are made of three types of boxes:
?
9
!
QUESTION boxes (Circle) ask a yes/no question and the answer will lead to either another
question box, a check box or a solution box.
CHECK boxes (Rectangle) will suggest a point to check for proper operation, and will often refer
you to a page in the service information sections of this manual. The result of the check may lead
to another box, or a solution box.
SOLUTION boxes (Hexagon) suggest the most likely component to cause the malfunction
described in the heading of the tree. When reaching a solution box, DO NOT immediately assume
the component is defective. The final step is to verify that the component is indeed defective, by
using the service information in the sections that follow.
To use the troubleshooting trees, first find the page with the heading describing the type of
problem occurring. Begin at the top of the page and follow the tree, step-by-step. When a check
box is reached, it may be necessary to refer to another section in the manual.
Once a solution box is reached, refer to the appropriate section to verify that the component in the
solution box is, indeed, the problem. Adjust, repair or replace the component as necessary.
Page C1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Troubleshooting Trees Table Of Contents
Machine Does Not Run
C3
Machine Runs, Does Not Make Ice
Slow Production (Cube Formation Good)
Low Suction Pressure
C4 – C5
C6
C7
High Suction Pressure
C8
Cubes Are Hollow
C9
Uneven Bridge Thickness
C10
C11
C12
C13
C14
C15
C16
C17
C18
Ice Bridge Thickness Varies Cycle To Cycle
Machine Produces Cloudy Ice
Poor Water Distribution Over Evaporator
Machine Does Not Enter Harvest
Machine Enters Harvest, Then Returns To Freeze Prematurely
Length Of Harvest Excessive
Ice Does Not Release From Evaporator
Hot Evaporator, Low Suction Pressure (Remote Only)
Page C2
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Machine Does Not Run
YES
NOT OK
TRIPPED
OPEN
Check for correct
power supply to the
machine
Is the selector
switch set to
ICE?
Correct field
wiring deficiency
OK
NO
Check High
Pressure Safety
Control
Reset and
identify reason
for high head
pressure
Set selector
Switch to the
ICE position
OK
Check High
Temperature Safety
Control
Replace or
identify reason
for being open.
OK
BAD
Check Bin Control
for proper
adjustment, see
page F9
Adjust as
required or
replace if
defective
GOOD
NO
Selector Switch
could be
Is this a Remote
unit?
defective, see
page F1
OK
OK
NOT OK
Is the Liquid line
Solenoid energized
and open?
Find reason for
non-activity or
replace if
defective
Page C3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Machine Runs, Does Not Make Ice
YES
GO TO PAGE C5
Is water
Is the
running over
the
compressor
running?
evaporator?
NO
NO
Go to the
Troubleshooting
Tree on page
C12
GOOD
Check for power to
the compressor
contactor coil
Check contactor for
bad contactor or coil.
Replace if defective
OK
Compressor or
Start
Components
could be
defective, see
page F2
YES
Check High
Pressure reset if
necessary
Does the unit
have a remote
condenser?
OK
NO
OK
Check Selector
Switch,
Replace if defective
Continue if the
machine has a
remote
condenser
OK
HIGH
Pumpdown
Control possibly
bad
Check the suction
pressure, is it low or
high?
LOW
OK
Liquid Line
Solenoid not
opening
Check refrigerant
charge
Page C4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Machine Runs, Does Not Make Ice (continued)
HIGH OR NORMAL
SUCTION
If head pressure is
also high, make sure
Condenser is clean
and machine has
good air flow
Is water
leaking out of
the Purge
Drain or Water
Trough?
NO
Check refrigerant
pressures, see page
E1
LOW SUCTION
OK
Recover and weigh
in refrigerant charge
Check Hot Gas
Valve for leakage
during freeze, see
page E5
YES
OK
OK
Repair water
leakage defect
Low side
restriction or
defective TXV
Check for inefficient
Compressor
Page C5
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Slow Production (Cube Formation Good)
Does
YES
OK
installation
Check for excessive
head pressure
Check refrigeration
system, Section E
meet
guidelines?
NO
TOO HIGH
Correct any
installation
defects
YES
AIR
Is this unit air
Is the Air
Check refrigeration
system, Section E
cooled or
water cooled?
Condenser
clean?
NO
WATER
Clean
Condenser and
Condenser Fan
Blade
NOT OK
Check Water
Regulating Valve,
See page E2
Adjust or
replace Water
Regulating
Valve
OK
See Condenser
service information
page E2
Page C6
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Low Suction Pressure
NO
Correct
deficiency in
installation
Does
installation
meet
guidelines?
YES
NO
Go to
Troubleshooting
Tree on page
C12
Is the water
flow over the
Evaporator
correct?
YES
Low charge,
locate and
repair leak,
evacuate and
recharge
NOT OK
NO
Check for correct
head pressure, see
page E10
Is the
machine a
remote unit?
system
YES
See
OK
Troubleshooting
Tree page C18
DRY SYSTEM
NOT OK
Check TXV for
moisture based
restriction
Check for refrigerant
tubing restriction,
crimps, etc.
Correct
restricted tubing
OK
NOT OK
Check Evaporator
coil separation, see
page E4
Replace
defective
Evaporator
WET SYSTEM
OK
Replace drier,
evacuate and
recharge
TXV possibly
defective, see
page E3 and
page E4
system
Page C7
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
High Suction Pressure
Have you
checked the
“Slow
Production”
Tree?
NO
Go to “Slow
Production”
Troubleshooting
Tree
Replace
Compressor
YES
NOT OK
NO
OK
Is the head
pressure also
high?
Check Hot Gas
Valve, see page E5
Check Compressor,
see page E1
OK
YES
NOT OK
TXV could be
defective, see
Expansion
Valve, see page
E3 and E4
Hot Gas Valve
is possibility
defective
Is the machine
installed to
specifications?
NO
Correct
installation
defects
YES
Repair or
replace
defective part
YES
TVX Thermal
bulb loose or
TXV could be
defective
Clean the
Condenser
Is the
Condenser
dirty?
NOT OK
STILL TOO
HIGH
NO
Check Condenser
Fan Motor and
Blade for proper
operation, and/or
Water Valve or
Mixing Valve
OK
OK
Check for leaking
Purge valve
Evacuate and
recharge system
Page C8
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Cubes Are Hollow
NO
YES
YES
Is the water
temperature
above 100°F
(38°C)?
Is there good
water flow
over the
Is water
leaking from
the Purge
Drain?
Purge Valve has
an obstruction
or could be
Evaporator?
defective
YES
NO
NO
OK
Water
temperature too
high, correct
water
Go to the “Poor
Water Distribution
Over Evaporator”
Troubleshooting
Tree, page C13
Timer Module
requires
adjustment or
could be
Check Timer for
proper setting, see
page F4
temperature
defective
NOT OK
Timer Initiate
Control out of
adjustment of
defective
Page C9
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Uneven Bridge Thickness
Make sure
supply water
temperature is
below 100°F
(38°C)
OK
YES
Problem in
water system,
see pages D1
and D2.
Is water
running into
the bin?
NO
Serpentine coil
on back of
evaporator
could be
separated, see
page E4
Are the
Evaporator(s)
flooded? See
page E4 and
E5
YES
NO
Check for water
leaking out of Purge
Drain
NO
HIGH
Check the suction
pressure, is it high or
low? See pageE1
Hot Gas Valve
could be
leaking, see
page E5
Dirty or
defective Purge
Valve
LOW
Make sure the
system is charged
properly, recover the
charge and weigh in
the correct amount
OK
Refer to page
E3 and E4 for
TXV diagnosis.
Page C10
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Ice bridge Thickness Varies Cycle To Cycle
Is air and
water temps
consistent and
within
NO
Correct
installation
deficiency
guidelines?
YES
NOT OK
NOT OK
NOT OK
NOT OK
Check the Purge
Valve for water leaks
Clean Purge
Valve or replace
if defective
OK
Check Hot Gas
valve for proper
operation
Replace Hot
Gas Valve
OK
Check Timer Initiate
Control for proper
operation
Replace Timer
Initiate
OK
Check Solid State
Timer for proper
operation
Adjust Timer or
replace if
defective
OK
TXV(s) could be
defective, see
page E3 and E4
Page C11
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Machine Produces Cloudy Ice
NO
See “Poor
Is water
running evenly
across the
Water Running
Over Evaporator
Troubleshooting
Tree page C13
evaporator?
YES
NO
Correct
installation
deficiency
Doe machine
meet
installation
guidelines?
See Section A
YES
Cloudiness is a
result of properties
in the incoming
supply water
Page C12
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Poor Water Distribution Over The Evaporator
Is the water
YES
NO
NO
Correct
deficiency in
supply water
pressure
level in the
Is the supply
water
pressure
correct?
Is the machine
level?
Water Trough
correct? See
Section D
YES
YES
NO
YES
Check Water
Distribution Tube for
obstructions or
improper assembly
See Section D
Purge valve
stuck open,
clean or replace
if defective
Is water
leaking from
the Purge
Drain?
Level the
machine
NO
Float Valve not
adjusted
properly or
could be
OBSTRUCTED
CLEAR
defective
Clean Water
Distribution
Tube; insure
that it is
assembled
correctly
Clean
GOOD
Evaporator and
Spillway. See
Section B for
cleaning
Check Water Pump
for proper operation
instructions
BAD
Water Pump
obstructed or
may be
defective
Page C13
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Machine Does Not Enter Harvest
NO
NO
OK
Check Purge Valve
to make sure it is not
leaking, if it is
replace valve or
remove obstruction
Will suction
pressure drop
below cut-in of
Timer Initiate?
Is the freeze
Hot Gas Valve
could be leaking
pattern on the
Evaporator
even?
YES
OK
OK
TXV(s) may be
stuck open, see
page E3 and E4
YES
Check for signs of a
weak Compressor,
see page E1
Make sure system is
not overcharged
Does the
manual Purge
Switch
energize the
Purge Valve?
YES
NOT OK
Timer Initiate
Control out of
adjustment or
may be
Check Timer Initiate
Control for correct
cut-in pressure
defective
OK
NO
High
NOT OK
Temperature
Safety Control
may be open,
see page F8
Check Timer
Number 1 for proper
setting and
Timer may be
defective
operation
OK
Check Timer
Number 2
OK
Relay Number 1
or Relay Base
may be
defective
Page C14
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Machine Enters Harvest, Then Returns To Freeze Prematurely
Check the Manual
Is the Harvest
YES
Purge Switch
OPEN
Purge Switch is
defective
Assist working
properly? See
Normally Closed
contacts. See page
page F6
F1
CLOSED
NO
Adjust as
required or
replace
Check High
Temperature Safety
Control. See page
F8
High
OPEN
Temperature
Safety Control is
defective
defective part
CLOSED
Relay 1 or relay
Base may be
defective
Page C15
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Length Of Harvest Excessive
Does the
machine meet
installation
NO
Correct
installation
deficiency
guidelines?
YES
Check Harvest
Assist Assembly for
proper operation,
see page F6
Low refrigerant
charge, repair
leak and weigh
in proper charge
Is the ice
formation
even on the
Evaporator?
OK
NO
NOT OK
YES
Remote: Check
Mixing Valve
operation, page E6
Water Cooled: check
Water Valve for
Adjust or
replace
defective part
YES
Does the
machine have
a remote
condenser?
proper adjustment
OK
NO
Check suction
pressure during
harvest. See page
E5
Hot Gas Valve
may be
TOO LOW
defective
OK
Clean Evaporator
per instructions in
Section B
Go to “Ice Does
Not Release”
Troubleshooting
Tree, page C17
STILL TOO LONG
Page C16
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Ice Does Not Release From Evaporator
Is the ice
bridge
correct? See
page F4
YES
NO
Level the
machine
Is the machine
level?
YES
NO
Does water
run over the
Evaporator
during
Set proper
bridge
thickness, see
page F4
Clean the
Evaporator, see
page B2
Check Harvest
Assist for proper
operation, see page
F6
NO
OK
harvest?
YES
NOT OK
OK
Repair Harvest
Assist as
NOT OK
Check Purge valve
and Tubing for
obstructions and
proper operation,
see page D2
Replace Purge
Valve or repair
tubing
required
obstruction
Check suction
Evaporator may
be defective,
see page E4
and E5
GOOD
pressure during
harvest, see page
E5
OK
TOO LOW
Check Relay 1 and
Relay Base for
proper operation,
see page F5
Relay or Relay
Base defective
Check discharge
pressure during
Hot Gas valve
may be
GOOD
freeze, see page E2
restricted or
defective, see
page E5
OK
Selector
Switch may be
defective,
TOO LOW
WASH contacts
closed in ICE
mode
Low ambient or
Water regulating
Valve set too
low
Page C17
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Troubleshooting Trees
Hot Evaporator, Low Suction And Discharge Pressure (Remote Only)
Does the
machine meet
the installation
guidelines?
Correct
installation
deficiency
NO
YES
Does the
machine have
the proper
refrigeration
charge?
Mixing Valve
may be
defective, see
page E6
YES
NO
Repair leak,
evacuate and
weigh in
refrigerant
charge per
nameplate
Page C18
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Water System
Water Distribution and Components
Water enters the machine through the float valve located in the water trough. The water trough
holds water used for ice making. The float valve is used to maintain the proper water level in the
water trough. During the freeze cycle water is continuously circulated over the evaporator by the
water pump. When the machine enters harvest, the purge valve (not shown) opens and mineral
laden water is pumped out of the water trough to the drain. After water is purged from the trough,
the water pump and purge valve are de-energized and the trough refills.
Float Valve
The water level can be adjusted by carefully bending the arm of the float. The water level should
be ½ inch (13mm) above the top of the water pump impeller housing during the freeze cycle.
If the float valve does not allow water into the trough or water flow is slow, the float valve may be
restricted. Remove and disassemble the float valve and clean the orifice. If the water flow is still
slow, check the water pressure to be sure it is at least 20 PSI (1.4 bar).
If the float valve does not stop the water flow, make sure the water pressure to the machine does
not exceed 60 PSI (4.1 Bar). Install a water pressure regulator if the pressure is too high. If the
water pressure is not the problem, the float plunger or the entire float valve assembly may need to
be cleaned or replaced.
Page D1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Water System
Water Distribution Tube
Water is pumped to a distribution tube located at the top of the evaporator and is used to distribute
water evenly over the evaporator. The distribution tube can be removed and dissembled for
cleaning if the hole becomes plugged or if there is excessive mineral build-up in the water system.
The water distribution tube is a tube within a tube. Water enters and fills the inner tube and exits
through a series of holes along the top of the inner tube. Water then fills the outer tube and exits
through a series of holes along the bottom of the outer tube. For proper water flow over the
evaporator, it is important that the tube be assembled correctly after cleaning. The tube can be
checked for proper assembly by checking the “bump” on the flanges at the tube ends, the “bump”
should be at the top.
Water Distribution Disassembly
Remove 2 screws holding the distribution tube to the evaporator spillway. Remove the clamp
holding the water tube to the distribution tube. Twist the end caps of the distribution tube
counterclockwise and pull to remove the inner tube halves from the outer tube. To reassemble,
push the inner tube halves into the outer tube with the holes facing the same direction. Make sure
the inner tube halves seat together completely. Twist the end caps clockwise ½ turn to lock the
inner tubes in place. The holes in the tubes will now be facing in the opposite directions.
Important! For proper water flow over the evaporator, the inner tube holes must face up.
Turn counterclockwise to remove
Page D2
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Water System
Water Splash Curtain
The water splash curtain covers the evaporator to prevent water from splashing into the bin and is
also used to actuate the bin switch. When the bin becomes full of ice, the splash curtain is held
open when the ice drops off of the evaporator. The actuator tab or wire bale on the splash curtain
will release pressure on the bin switch and the machine shuts off. See bin control on page F9.
On single evaporator units, the splash curtain can be opened or removed during the freeze cycle
and the machine will continue to run until the ice drops from the evaporator. On dual evaporator
units, if the curtain is opened or removed during the untimed freeze cycle, or during defrost, the
machine will shut down. If the curtain is opened or removed during the timed freeze cycle, the unit
will continue to operate.
The splash curtain can be removed by swinging the bottom of the curtain away from the
evaporator and lifting the right side of the curtain up and out of the hinge pin slot. To reinstall the
curtain, position the left side pin into the slot first, then insert the right hand side with the actuator
tab of the curtain behind the bin switch.
Note: The ICE0250 and ICE0305 utilize a curtain-retaining clip. The ICE Undercounter Series
ice machines do not utilize a splash curtain.
Water splash curtain actuator tab
positioned behind bin switch
Proper position of wire bale switch actuator
Page D3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Water System
Water Purge Valve
When the machine enters the harvest cycle, the water pump continues to run and the purge valve
opens. This allows mineral laden water to be pumped from the water trough to the drain. This
helps keep the water system clean. The water pump and purge valve de-energizes once the water
is flushed from the water trough. The cam switch controls the length of time that the water pump
and purge valve remains energized see page F7. The purge valve can also be energized
manually by pushing the purge switch. The purge switch is used when cleaning the water system
to flush cleaning solution down the drain. See page B1 for cleaning instructions.
The purge valve must be completely closed during the freeze cycle. If water leaks through the
purge valve during the freeze cycle, the freeze cycle will be extended due to the float allowing
warm water into the trough and poor ice formation will result. The purge valve may be defective or
need cleaning.
The purge valve can be disassembled for cleaning by:
1. Disconnect electrical power form the ice machine.
2. Lift and remove the coil retainer cap.
3. Leave the coil wires attached to the coil and lift coil from the valve body. (Note coil orientation)
4. Rotate the enclosing tube ¼ turn counterclockwise to remove.
5. Remove the enclosing tube, plunger and diaphragm from the valve body
6. Reverse procedure to reassemble.
The purge valve can be easily cleaned or rebuilt without
removing the entire valve body. Dirty or clogged purge
valves are not considered a warranty repair.
Coil Cap
Enclosing Tube
Diaphragm
Plunger
Coil
Body
Page D4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Water System
Water Trough
ICEU150/200 Models
The water trough can be easily removed by the following procedures:
1. Disconnect power to the ice machine.
2. Shut the water supply off to the ice machine.
3. Remove water splash curtains when
applicable.
Mounting Screws
4. Remove water trough mounting screws.
5. Carefully remove water trough from the ice
machine.
6. Reverse procedure to reassemble.
Mounting Screws
ICE 30 Inch Wide Models
Mounting Screws
ICE 22 Inch Wide Models
Version 3 Water
Trough
ICE 48 Inch Wide Models
Mounting Screws
Mounting Screws
Mounting Screws
ICE1506 Model
ICEU300
Page D5
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Refrigerant Cycle and
Components
Before diagnosing the refrigeration
system, it is very important that the
refrigerant charge be correct.
Whenever the refrigeration system
has been opened, the filter-drier
must be replaced and the proper
refrigerant charge must be weighed
in. See refrigerant charge data on
page A5–A8.
Refrigerant Pressures
The suction pressure at the
beginning of the freeze cycle can vary +/- 10 psi
(.7 bar) depending on operating conditions. Reference Chart on page E10-E13. Pressures less
than this may indicate an undercharge. The discharge pressure on water-cooled units should be
250 psi (17.01 bar) for R404a units and 150 psi (10.21 bar) for R134a units. The discharge
pressure on air cooled units will vary with ambient conditions but will typically run higher than water
cooled units. Remote condensers located in ambient temperatures below 70°F (21°C) will typically
run a lower discharge pressure. See Mixing Valve later in this section.
Refrigerant in a gas state is pumped throughout the refrigeration system by a hermetic
compressor to the condenser. Heat is removed from the refrigerant either by forced air
movement through an air-cooled condenser or transferring heat from the refrigerant to water
through a water-cooled condenser. The refrigerant changes to a liquid when cooled.
The refrigerant in a liquid state passes through a filter drier. The filter drier traps
small amounts of moisture and foreign particles from the system. The filter drier must
be replaced whenever the refrigeration system is opened or if the refrigerant charge
has been completely lost.
Compressor
The compressor runs during the entire cycle. If the valves in the
compressor are damaged, the compressor will be unable to pump
refrigerant efficiently. Damaged valves are usually the result of another
problem in the refrigeration system such as liquid refrigerant returning to
the compressor, oil slugging or high head pressure. When a compressor
is replaced it is important that the refrigerant charge be weighed in and
the system checked for proper operation to prevent a repeat failure.
An inefficient compressor will usually have a higher than normal suction
pressure at the end of the cycle. The freeze cycle will be longer than normal and/or the harvest
cycle may be excessively long. Check the compressor amperage draw 5 minutes into the freeze
cycle. If the compressor amp draw (Reference data plate on ice machine back panel) is less than
70% of rated full load amps, the compressor may be inefficient. These symptoms may also be
caused by other problems, therefore it is important to use the troubleshooting trees when
diagnosing a problem. See Electrical System for more information on the compressor and
compressor start components.
Page E1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Refrigerant
Refrigerant in a high-pressure liquid form is fed to an expansion valve where the refrigerant is
reduced to a low-pressure liquid. Under this low pressure, the liquid will absorb heat from the
evaporator causing the liquid to change to a vapor. This vapor is then drawn into the compressor
where the temperature and pressure of the vapor are increased. The high temperature, high
pressure vapor flows to the condenser where the heat is removed, causing the vapor to return to
the liquid form, making the refrigerant ready to flow back to the evaporator to pick up more heat.
Most Ice-O-Matic ice machine use R134a or R404a refrigerant. Always check the serial number
data plate for the proper type of refrigerant and the amount used in the machine you are servicing.
R404a and R134a are both HFC refrigerants, which result in no ozone depletion factor. R404a
cylinders are orange in color, R134a cylinders are light blue in color.
Important: When discharging refrigerant from an icemaker, recover as much of the
refrigerant as possible with a recovery device or some other means to prevent the
refrigerant from entering the atmosphere.
Method of Charging Refrigerant
In order to achieve a properly charged refrigeration system, the system must be completely
evacuated.
To achieve a complete evacuation you will need a service gauge manifold with properly maintained
hoses, and a vacuum pump capable of pulling a 50-micron vacuum. This will require a two-stage
pump.
Connect the service gauge manifold to the high and low side service ports and vacuum pump.
Make sure the valves on the gauge manifold are closed, then start the pump.
Note: Do not use a refrigeration compressor as a vacuum pump. Compressors are able to
pull only a 50,000-micron vacuum.
After the vacuum pump has been started, open the valves on the gauge manifold. This will allow
the refrigeration system to start being evacuated.
If there has not been an excessive amount of moisture in the system, allow the vacuum pump to
pull the system down to about 200 microns or 29.9 inches or less. Once this has been achieved,
allow the vacuum pump to operate for another 30 minutes. Then close the valves on the gauge
manifold and stop the vacuum pump. Then watch your gauges. A rise to 500 microns in three (3)
minutes or less indicates a dry system under a good vacuum.
If your gauge registers a more rapid rise, the system either has moisture remaining or there is a
leak in the system, requiring a check for the leak, and repair and another complete evacuation.
Note: Seal the ends of the gauge manifold hose and pull them into a deep vacuum to determine if
the leak is not in the hoses. The gauge manifold should be able to hold the vacuum for three (3)
minutes.
Page E8
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Thermostatic Expansion Valve (TXV)
The thermostatic expansion valve meters the flow of refrigerant into the
evaporator changing its state from a high-pressure liquid to a low-pressure
liquid. This drop in pressure causes the refrigerant to cool. The cooled
refrigerant absorbs heat from the water circulating over the evaporator. As
the evaporator fills with liquid refrigerant, the evaporator becomes colder.
The flow of refrigerant into the evaporator is controlled by the temperature at the outlet of the
evaporator. The expansion valve bulb, mounted to the top of the suction line, senses the
evaporator outlet temperature causing the expansion valve to open or close. As ice forms on the
evaporator, the temperature drops and the flow of refrigerant into the evaporator decreases,
resulting in a drop in suction pressure.
The evaporator should become completely flooded (filled with liquid refrigerant) during the freeze
cycle. A completely flooded evaporator will have a uniform freeze pattern (ice formation across the
evaporator). A starved evaporator (not enough liquid refrigerant) will have poor or no ice formation
at the top of the evaporator, and the tube(s) exiting the evaporator will not frost. All tubes should
be within 10 degrees of each other and frosted approximately 5 minutes from the start of the freeze
cycle.
An expansion valve that is restricted or not opening properly will starve the evaporator resulting in
lower than normal suction pressure. A low refrigerant charge will also starve the evaporator and
cause low suction and discharge pressures. If not sure of the amount of charge in the system, the
refrigerant should be recovered and the correct charge be weighed in before a defective valve can
be diagnosed.
If the evaporator is starved but the suction pressure is higher than normal, the TXV is not the
problem; refer to the troubleshooting tree in section C. If the TXV sticks open or if the thermal bulb
is not making good contact with the suction line, the flow of refrigerant into the evaporator will be
too great and liquid refrigerant will flood the compressor. The suction pressure will remain higher
than normal and the machine will remain in an extended freeze cycle. Ice will build evenly but will
be very thick.
Symptom
Problem
Possible Remedy
Evaporator flooded but suction
pressure not dropping.
Compressor has been checked
and appears to be good.
Suction line at compressor may
be colder than normal
1 TXV thermal bulb not making 1 Tighten bulb clamp and
good contact with suction
line or uninsulated
insulate bulb.
2 TXV bulb installed incorrect
2 Locate bulb on top of
suction line
3 System overcharged
4 TXV stuck open
3 Recharge system
4 Replace TXV
Evaporator starved, no frost
on line(s) exiting evaporator.
Suction pressure is low.
1 Machine low on charge
1 Recover refrigerant
and weigh in proper
charge
See Evap. Diagram Pg.E4
2 TXV restricted or stuck
closed
2 Replace TXV and
drier
Continued Page E4
Page E3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Thermostatic Expansion Valve (Continued)
A dual evaporator machine will have one TXV for each evaporator. If one TXV sticks open and the
other is operating normally, the suction pressure will be higher than normal and both evaporators
will build thick ice. It is recommended that both valves be replace if one sticks open.
If one TXV sticks closed and one is operating normally, the suction pressure will be normal or low
but the evaporator with the defective valve will be starved (thick ice at the bottom and thin ice at
the top).
Evaporator
As water is circulated over the front of the evaporator, liquid refrigerant is circulated through the
tubing attached to the back of the evaporator. As the liquid refrigerant in the tubing vaporizes, it
absorbs heat from the water causing the water to freeze. The evaporator should be completely
flooded throughout most of the freeze cycle. A flooded evaporator will build ice evenly across the
evaporator. A starved evaporator will have uneven ice formation. Most problems with ice
formation or harvesting are not related to a defective evaporator, use the Troubleshooting Trees in
section C for additional help.
Refrigerant enters the evaporator through the bottom tube and exits through the top tube. On
models ICE800, 1000, 1800 and 2100 the refrigerant line at the TXV outlet splits into two feeder
tubes. This split occurs at the distributor, which is a fitting that is soldered to the TXV. One feeder
tube from the distributor feeds the top of the evaporator; the other tube feeds the bottom of the
evaporator. The evaporator tubes run parallel, in opposite directions, along the back of the
evaporator creating a dual pass.
If the evaporator is flooded but not building ice evenly, it is possible the evaporator has coil
separation. Evaporator coil separation is the separation of the refrigerant tubing from the back of
the evaporator plate. This is very rare but occasionally occurs.
To confirm coil separation, remove and check the back of the evaporator. If the coil is separated,
the evaporator must be replaced. If the outlet(s) of the evaporator is not frosted, the problem is not
with coil separation (Refer to the troubleshooting trees, section C).
In
Out
Out
In
In
Out
Page E4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Note: Permanent discoloration of the evaporator plating is normal and will cause no problems with
harvesting the ice or sanitary conditions. Before condemning the evaporator for plating problems,
be certain it is not just discoloration. Good evaporators will not be covered under warranty. If the
spillway (plastic evaporator top) becomes damaged, it can be replaced. It is not necessary to
replace the entire evaporator.
As liquid refrigerant leaves the evaporator, it changes to a low-pressure gas before returning to the
compressor. Liquid refrigerant must not return to the compressor or damage will result. Frost on
the suction line at the inlet of the compressor indicates liquid returning to the compressor. Check
for frost at the end of the freeze cycle. If liquid is returning to the compressor, the problem must be
located and corrected. See Refrigerant Charge, Thermostatic Valve and Evaporator.
Harvest Cycle
Once the freeze cycle is complete, the machine enters the harvest cycle. The hot gas valve
opens to allow hot discharge gas to enter the evaporator.
Hot Gas Valve
When the machine enters harvest the hot gas valve coil is energized opening
the hot gas valve. Discharge gas is pumped through the hot gas valve directly
into the evaporator. The evaporator temperature will reach approximately 40°F
(4.5°C). The suction pressure during harvest should be a minimum of 70 psi
(4.8 bar) for R404a units or 50psi (3.4 bar) for R134a units. The discharge
pressure will drop during harvest.
If the hot gas valve does not completely open during harvest, there will not be enough hot gas in
the evaporator to defrost the ice. If there is not enough hot gas entering the evaporator, the
suction pressure will be lower than the above stated pressures. It is important when making this
check that the machine has the proper refrigerant charge, normal head pressure and the
compressor is functioning properly. If the hot gas valve leaks during the freeze cycle, ice will not
form on the top of the evaporator and suction pressure will be higher than normal. To check if the
hot gas valve is leaking, let the machine run in the freeze cycle for approximately 5 minutes. Now
feel the temperature between the inlet and outlet of the valve. A definite temperature difference
should be felt. If the lines are the same temperature and the suction pressure is higher than
normal; the valve is leaking and should be replaced. Use Troubleshooting Trees in section C.
Remote System
Machines that use remote condensers have several components that are not used in self
contained machines. A mixing valve controls the head pressure when the ambient temperature at
the condenser drops below 70°F (21°C). When the bin fills with ice or is turned off at the selector
switch, the machine will pump all the refrigerant into the receiver before shutting off.
Remote Condenser
For proper operation, the remote condenser must be installed properly.
Improper installation will void the warranty. See remote guidelines on page
A18. The location of the remote condenser should be such that the ambient
air temperature does not exceed 120°F (48.9°C). If ambient temperature
exceeds 120°F (48.9°C) ice production will decrease until the ambient
temperature decreases.
Air
Flow
Page E5
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Remote Condenser (Continued)
If the airflow is restricted or the condenser is dirty, the head pressure will be excessively high, slow
production will result and the compressor may overheat and eventually become damaged. The
condenser coil and fan blades must be kept clean. The condenser can be cleaned with
compressed air or by using a brush. If a brush is used, brush in the direction of the fins taking care
not to bend the fins. If the condenser fins are bent, this will restrict the airflow through the
condenser and the fins will need to be straightened with a fin comb. Problems related to a dirty
condenser or poor airflow will not be covered under warranty. Note: The condenser fan motor runs
continually, it will shut off when the icemaker shuts off.
Mixing Valve
When the temperature at the condenser is above 70°F (21°C), the refrigerant flow from the
compressor is directed by the mixing valve through the condenser and into the receiver. When the
temperature at the condenser drops below 70°F (21°C), the pressure in the bellows of the mixing
valve becomes greater than the pressure of the liquid refrigerant coming from the condenser. This
change allows the valve to partially restrict the flow of
refrigerant leaving the condenser and allows discharge
gas to by-pass the condenser and flow directly into the
receiver, mixing with the liquid refrigerant from the
condenser. The amount of discharge gas that
bypasses the condenser increases as the ambient
temperature decreases. This action of the mixing
valve allows the discharge pressure to be maintained
at approximately 240 psi (16.5 bar) during low ambient
conditions. If the refrigerant system is undercharged
and the ambient temperature is below 70°F (21°C), the
mixing valve will not work properly. The mixing valve
will allow too much refrigerant to bypass the
condenser.
Problem
Possible Cause
Remedy
1 Head pressure low, Line between
valve and receiver cold. Ambient
condenser temp. below 70°F (21°C)
A. Valve Defective, not allowing A. Replace valve
discharge gas into receiver
2 Head pressure low, Line between
valve and receiver hot.
A. System low on charge.
B. Valve defective, not
allowing liquid
A. Leak check. Recover
refrigerant and weigh
in proper charge.
into receiver.
B. Replace valve
3. Head pressure low, Line
returning from condenser
A. Valve defective not
allowing refrigerant
to circulate through
condenser.
A. Replace valve.
is cool. Ambient condenser
temperature is above 70°F (21°C)
Page E6
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Pump Down System (Remote Only)
The pump down system prevents liquid refrigerant from migrating to the evaporator and
compressor during the off cycle and prevents the compressor from slugging or starting under an
excessive load.
Liquid Line Solenoid
When a machine with a remote condenser shuts off, the liquid line solenoid valve,
located at the outlet of the receiver, is de-energized causing the valve to close
completely restricting the flow of refrigerant. The compressor will pump all of the
refrigerant into the condenser and receiver.
As the system pumps down, the pressure on the low side of the system drops. When the suction
pressure drops to 10 psi (.68 bar), the pump down control opens and shuts the machine off. See
page F9 for pump down control operation. Liquid refrigerant is stored in the condenser and
receiver while the machine is off. It is normal for the machine to pump down once or twice an hour
as the pressures equalize.
When the machine comes back on (the bin switch closes or the selector switch placed to the ICE
position), the liquid line solenoid valve opens and the refrigerant is released from the receiver.
When the suction pressure rises to 35 psi (2.38 bar) the pump down control closes and the
machine comes back on. If the machine will not pump down, the valve may not be closing all the
way. A weak compressor will also prevent the machine from pumping down. Check for signs of a
weak compressor before replacing the liquid line solenoid. Prior to replacing the valve,
disassemble and check for obstructions that may not allow the valve to seat.
Receiver
If the system has a remote condenser, the refrigerant will enter a receiver before
passing through the filter drier. The receiver holds reserve liquid refrigerant during
the freeze cycle. The receiver also stores liquid refrigerant during the off cycle.
Page E7
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Refrigerant
Refrigerant in a high-pressure liquid form is fed to an expansion valve where the refrigerant is
reduced to a low-pressure liquid. Under this low pressure, the liquid will absorb heat from the
evaporator causing the liquid to change to a vapor. This vapor is the drawn into the compressor
where the temperature and pressure of the vapor are increased. The high temperature, high
pressure vapor flows to the condenser where the heat is removed, causing the vapor to return to
the liquid form, making the refrigerant ready to flow back to the evaporator to pick up more heat.
Most Ice-O-Matic ice machine use R134a or R404a refrigerant. Always check the serial number
data plate for the proper type of refrigerant and the amount used in the machine you are servicing.
R404a and R134a are both HFC refrigerants, which result in no ozone depletion factor. R404a
cylinders are orange in color, R134a cylinders are light blue in color.
Important: When discharging refrigerant from an icemaker, recover as much of the
refrigerant as possible with a recovery device or some other means to prevent the
refrigerant from entering the atmosphere.
Method of Charging Refrigerant
In order to achieve a properly charged refrigeration system, the system must be completely
evacuated.
To achieve a complete evacuation you will need a service gauge manifold with properly maintained
hoses, and a vacuum pump capable of pulling a 50-micron vacuum. This will require a two-stage
pump.
Connect the service gauge manifold to the high and low side service ports and vacuum pump.
Make sure the valves on the gauge manifold are closed, then start the pump.
Note: Do not use a refrigeration compressor as a vacuum pump. Compressors are able to
pull only a 50,000-micron vacuum.
After the vacuum pump has been started, open the valves on the gauge manifold. This will allow
the refrigeration system to start being evacuated.
If there has not been an excessive amount of moisture in the system, allow the vacuum pump to
pull the system down to about 200 microns or 29.9 inches or less. Once this has been achieved,
allow the vacuum pump to operate for another 30 minutes. Then close the valves on the gauge
manifold and stop the vacuum pump. Then watch your gauges. A rise to 500 microns in three (3)
minutes or less indicates a dry system under a good vacuum.
If your gauge registers a more rapid rise, the system either has moisture remaining or there is a
leak in the system, requiring a check for the leak, and repair and another complete evacuation.
Note: Seal the ends of the gauge manifold hose and pull them into a deep vacuum to determine if
the leak is not in the hoses. The gauge manifold should be able to hold the vacuum for three (3)
minutes.
Page E8
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
If the refrigeration system is extremely wet, use radiant heat to raise the temperature of the
system. This action will cause the moisture to vaporize at less of a vacuum.
The use of two (2) valves, one between the vacuum pump and gauge manifold and the other
between the refrigerant cylinder and the gauge manifold allows you to evacuate and charge the
system without disconnecting any hoses. If the hoses were disconnected, air or moisture will have
the opportunity to enter the hoses and then the system.
A properly charged icemaker is a service technician’s greatest ally. Proper charging will allow any
concern with the icemaker to be accurately diagnosed.
The refrigerant charge must be weighed into the icemaker either by using a charging scale or with
a dial-a-charge.
The amount of proper refrigerant required for the icemaker is printed on the serial data plate
attached to the icemaker and is listed on the following pages. Never vary the amounts from those
listed.
Remote models with sixty (60) foot lineset runs will need an additional fifteen (15) ounces of
refrigerant added.
In some cases the complete refrigerant charge may not enter the refrigeration system. In those
instances, close the gauge manifold high side valve and disconnect the manifold from the high side
port.
When the icemaker is completely charged, secure the caps to the service ports and check to make
sure the ports are not leaking refrigerant.
Reference Tables on Page E10 and E13.
Page E9
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Electrical and Mechanical Specifications, “ICE” Series 60 Cycle Machine
Cycle Time
Back
Press.
Approx.
Head
Press.
Approx.
Timer
Initiate
Setting
Approx.
Minutes
70/50-90/70
Batch
Weight
Pounds
Ref.
Type
Charge
Ounces
Volt. Cycle
Phase
Model
ICEU150*A1
ICEU150*W1
ICEU150*A2
ICEU150*W2
ICEU150A3
ICEU150W3
ICEU200*A1
ICEU200*W1
ICEU200*A2
ICEU200*W2
ICEU220A
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-134a
R-134a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
13
10
13
10
12
9
65 - 44
65 - 50
65 - 44
65 - 50
60 - 47
60 - 47
65 - 42
65 - 42
65 - 42
65 - 42
60 - 42
60 - 41
30 - 13
30 - 13
60 - 41
60 - 41
51 - 30
60 - 27
60 - 35
60 - 37
60 - 35
60 - 35
60 - 37
60 - 35
60 - 36
60 - 36
60 - 36
60 - 36
60 - 36
60 - 36
65 - 41
65 - 41
60 - 35
65 - 41
65 - 41
60 - 35
54 - 39
56 - 37
60 - 38
60 - 35
60 - 35
60 - 35
60 - 35
58 - 34
57 - 37
175 - 400
250
44
50
44
50
47
47
42
42
42
42
42
41
13
13
41
41
33
33
35
37
35
36
36
35
36
36
36
36
36
36
41
41
35
41
41
35
44
44
43
35
35
35
35
43
43
25 - 45
25 - 45
25 - 45
25 - 45
24 - 38
22 - 28
19 - 36
19 - 36
19 - 36
19 - 36
17 - 24
17 - 20
19 - 36
19 - 36
18 - 28
19 - 23
15 - 20
12 - 15
12 - 22
12 - 22
12 - 19
13 - 17
13 - 17
13 - 16
14 - 25
12 - 17
14 - 25
12 - 17
14 - 25
12 - 17
16 - 21
16 - 26
15 - 21
16 - 21
16 - 26
15 - 21
14 - 20
14 - 21
14 - 18
17 - 30
17 - 25
17 - 25
17 - 25
14 -19
14 - 17
3
3
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
230-60-1
230-60-1
230-60-1
230-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
115-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
175 - 400
250
3
3
205-400
250
3
3
13
9
175 - 400
250
3
3
13
9
175 - 400
250
3
3
12
9
218-400
250
3
ICEU220W
3
ICEU206*A1
ICEU206*W1
ICEU226A
14
11
12
9
120 - 170
125
3
3
218-400
250
3
ICEU226W
3
ICEU300A
16
13
16
16
13
25
25
13
18
15
18
11
18
11
32
32
14
29
29
14
30
30
14
32
16
32
16
30
14
218-400
250
3
ICEU300W
3
ICE0250*A2
ICE0250*A-T2
ICE0250*W2
ICE0250*A4
ICE0250*A-T4
ICE0250*W4
ICE0320*A1
ICE0320*W1
ICE0320*A2
ICE0320*W2
ICE0320*A3
ICE0320*W3
ICE0400*A1
ICE0400*A-T1
ICE0400*W1
ICE0400*A2
ICE0400*A-T2
ICE0400*W2
ICE0400*A3
ICE0400*A-T3
ICE0400*W3
ICE0406*A1
ICE0406*W1
ICE0406*A2
ICE0406*W2
ICE0406*A3
ICE0406*W3
175 - 400
175 - 400
250
3
3
3
200 - 400
200 - 400
250
3
3
3
175 - 400
250
3
3
175 - 400
250
3
3
200 - 400
250
3
3
175 - 400
175 - 400
250
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
175 - 400
175 - 400
250
200-400
200-400
250
175 - 400
250
175 - 400
250
210 - 400
250
Page E10
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Electrical and Mechanical Specifications, “ICE” Series 60 Cycle Machine
Cycle Time
Back
Press.
Approx.
Head
Press.
Approx.
Timer
Initiate
Setting
Approx.
Minutes
70/50-90/70
Batch
Weight
Pounds
Ref.
Type
Charge
Ounces
Volt. Cycle
Phase
Model
ICE0500*A1
ICE0500*A-T1
ICE0500*W1
ICE0500*R1
ICE0500*A2
ICE0500*A-T2
ICE0500*W2
ICE0500*R2
ICE0500*R3
ICE0500*A3
ICE0500*A-T3
ICE0500*W3
ICE0500*R4
ICE0520*A1
ICE0520*W1
ICE0520*A2
ICE0520*W2
ICE0520*A3
ICE0520*W3
ICE0606*A1
ICE0606*A-T1
ICE0606*W1
ICE0606*R1
ICE0606*A2
ICE0606*A-T2
ICE0606*W2
ICE0606*R2
ICE0606*R3
ICE0606*A3
ICE0606*A-T3
ICE0606*W3
ICE0606*R4
ICE0806*A1
ICE0806*W1
ICE0806*R1
ICE0806*A2
ICE0806*W2
ICE0806*R2
ICE0806*R3
ICE1006*A1
ICE1006*W1
ICE1006*R1
ICE1006*A2
ICE1006*W2
ICE1006*R2
ICE1006*R3
ICE1007*A1
ICE1007*W1
ICE1007*R1
ICE1007*A2
ICE1007*W2
ICE1007*R2
ICE1007*R3
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
37
37
60 - 37
60 - 37
60 - 35
60 - 35
60 - 37
60 - 37
60 - 35
60 - 35
60 - 35
55 - 31
60 - 32
48 - 31
50 - 32
65 - 41
65 - 44
65 - 41
65 - 44
56 - 39
54 - 39
60 - 35
60 - 35
60 - 35
60 - 33
60 - 35
60 - 35
60 - 35
60 - 33
60 - 33
60 - 46
60 - 46
45 - 40
44 - 42
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 37
60 - 37
60 - 36
60 - 37
60 - 37
60 - 36
60 - 36
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
175 - 400
175 - 400
250
37
37
35
35
37
37
35
35
35
37
39
38
39
41
44
41
44
46
44
35
35
35
33
35
35
35
33
33
35
35
34
38
35
35
35
35
35
35
35
37
37
36
37
37
36
36
35
35
35
35
35
35
35
13 - 21
13 - 21
13 - 21
13 - 22
13 - 21
13 - 21
13 - 21
13 - 22
13 - 22
13 - 16
13 - 16
13 - 15
13 - 16
16 - 27
16 - 22
16 - 27
16 - 22
14 - 20
14 - 17
11 - 19
11 - 19
12 - 17
11 - 18
11 - 19
11 - 19
12 - 17
11 - 18
11 - 18
11 - 15
11 - 15
11 - 13
12 - 15
11 - 18
10 - 15
9 - 16
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
7
115-60-1
115-60-1
15
115-60-1
160
22
192 - 400
175 - 400
175 - 400
250
115-60-1
115-60-1
22
115-60-1
15
115-60-1
160
132
25
240 - 400
240 - 400
217 - 400
212 - 400
250
115-60-1
115-60-1
115-60-1
25
115-60-1
15
115-60-1
132
32
240 - 400
175 - 400
250
115-60-1
115-60-1
14
115-60-1
20
175 - 400
250
115-60-1
14
115-60-1
21
212 - 400
250
115-60-1
12
115-60-1
36
175 - 400
175 - 400
250
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
36
18
160
24
240 - 400
175 - 400
175 - 400
250
24
18
160
132
24
240 - 400
240 - 400
200 - 400
200 - 400
250
24
17
132
41
240 - 400
175 - 400
250
29
7
240
27
192 - 400
175 - 400
250
7
11 - 18
10 - 15
9 - 16
7
24
7
240
176
50
240 - 400
240 - 400
175 - 400
250
7
9 - 16
7
9 - 15
7
32
9 - 13
7
240
34
192 - 400
175 - 400
250
9 - 14
7
9 - 15
7
24
9 - 13
7
240
176
50
240 - 400
240 - 400
175 - 400
250
9 - 14
7
9 - 14
7
10 - 16
10 - 14
11 - 15
10 - 16
10 - 14
11 - 15
11 - 15
7
32
7
240
34
192 - 400
175 - 400
250
7
7
24
7
240
176
240 - 400
240 - 400
7
7
Page E11
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Cycle Time
Approx.
Minutes
Back
Press.
Approx.
Head
Press.
Approx.
Timer
Initiate
Setting
Batch
Weight
Pounds
Ref.
Type
Charge
Ounces
Volt. Cycle
Phase
Model
70/50-90/70
ICE1406*A1
ICE1406*W1
ICE1406*R1
ICE1406*A2
ICE1406*W2
ICE1406*R2
ICE1406*A3
ICE1406*W3
ICE1406*R3
ICE1407*A1
ICE1407*W1
ICE1407*R1
ICE1407*A2
ICE1407*W2
ICE1407*R2
ICE1407*A3
ICE1407*W3
ICE1407*R3
ICE1506*R
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
108
28
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 34
60 - 37
60 - 34
60 - 37
60 - 53
72 - 61
60 - 35
60 - 35
60 - 35
60 - 35
60 - 53
71 - 63
60 - 35
60 - 37
60 - 35
60 - 37
48 - 46
62 - 56
60 - 35
60 - 35
175 - 400
250
35
35
35
35
35
35
37
32
38
35
35
35
35
35
35
37
34
38
35
38
35
34
37
34
37
38
38
35
35
35
35
38
38
35
37
35
37
34
37
35
35
11 - 17
11 - 16
11 - 17
11 - 17
11 - 16
11 - 17
11 - 15
11 - 14
11 - 15
12 - 20
12 - 18
12 - 20
12 - 20
12 - 18
12 - 20
11 - 15
11 - 13
12 - 14
11 - 16
11 - 14
11 - 16
11 - 17
10 - 17
11 - 17
10 - 17
11 - 13
12 - 15
10 - 16
10 - 17
10 - 16
10 - 17
11 - 13
13 - 14.5
9 - 14
11
11
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-1
208/230/60/1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-1
208/230-60-3
208/230-60-3
240
104
25
192 - 400
175 - 400
250
11
11
11
240
60
192 - 400
200 - 400
250
11
11.6
11.6
11.6
11
30
240
108
28
240 - 400
175 - 400
250
11
240
104
25
192 - 400
175 - 400
250
11
11
11
240
60
240 - 400
200 - 400
250
11
11.6
11.6
11.6
11
30
240
240
240
240
42
240 - 400
240 - 400
240 - 400
192 - 400
250
ICE1506*R3
ICE1606*R1
ICE1806*W1
ICE1806*R1
ICE1806*W2
ICE1806*R2
ICE1806*W3
ICE1806*R3
ICE1807*W1
ICE1807*R1
ICE1807*W2
ICE1807*R2
ICE1807*W3
ICE1807*R3
ICE2106*W1
ICE2106*R1
ICE2106*W2
ICE2106*R2
ICE2106*W3
ICE2106*R3
ICE2107*W1
ICE2107*R1
11.6
11
14
400
35
192 - 400
250
14
14
400
37
240 - 400
250
14
14
272
42
240 - 400
250
14
14
400
35
192 - 400
250
14
14
400
37
240 - 400
250
14
14
272
50
240 - 400
250
14
14
400
37
192 - 400
250
9 - 14
14
9 - 14
14
400
44
240 - 400
250
9 - 14
14
11 - 12
12 - 13
9 - 13
14
272
50
240 - 400
250
14
14
400
192 - 400
9 - 14
14
ICE2107*W2
ICE2107*R2
ICE2107*W3
ICE2107*R3
R-404a
R-404a
R-404a
R-404a
37
400
44
60 - 35
60 - 35
49 - 47
64 - 58
250
35
35
34
37
9 - 13
9 - 14
14
14
14
14
208/230-60-3
208/230-60-3
208/230-60-3
208/230-60-3
240 - 400
250
12 - 13
272
240 - 400
12 - 14
Cycle Time
Approx.
Minutes
70/50-90/80
Back
Press.
Approx.
Head
Press.
Approx.
Timer
Initiate
Setting
Batch
Weight
Pounds
Ref.
Type
Charge
Ounces
Volt. Phase
Cycle
Model
ICEU205*A1
ICEU205*W1
ICEU205*A2
ICEU205*W2
ICEU225*A
ICEU225*W
R-134a
R-134a
R-134a
R-134a
R-404a
R-404a
14
11
14
11
12
9
30 - 13
30 - 13
30 - 13
30 - 13
60 - 35
60 - 35
120 - 170
125
13
13
13
13
45
46
19 - 36
19 - 36
19 - 36
19 - 36
22 - 32
21 - 25
3
3
3
3
3
3
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
120 - 170
125
175 - 400
250
Page E12
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
Cycle Time
Approx.
Minutes
Back
Press.
Approx.
Head
Press.
Approx.
Timer
Initiate
Setting
Batch
Weight
Pounds
Charge
Ounces
Model
Ref. Type
70/50-90/80
Volt. Phase Cycle
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
220-240/50/1
ICEU305A
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
R-404a
14
13
51 - 30
60 - 27
60 - 35
60 - 35
60 - 53
48 - 47
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
56 - 31
54 - 34
56 - 31
57 - 34
60 - 35
60 - 35
55 - 38
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
50 - -46
47 - 45
45 - 43
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 36
60 - 35
60 - 35
60 - 36
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
60 - 35
218-400
250
33
33
35
35
32
31
35
35
35
35
35
35
35
38
41
38
41
35
35
46
35
35
35
35
35
35
35
35
32
35
35
35
35
35
35
35
35
35
36
35
35
36
35
35
35
35
35
35
35
35
36
36
39
35
35
15 - 20
13 - 18
13 - 20
13 - 18
12 - 16
12 - 15
13 - 20
13 - 20
13 - 20
15 - 26
14 - 20
15 - 26
14 - 20
17 - 23
15 - 17
16 - 22
14 - 17
15 - 26
15 - 26
13 - 18
13 - 21
14 - 21
14 - 22
13 - 21
14 - 21
14 - 22
14 - 22
13 - 18
14 - 16
15 - 18
11 - 20
10 - 14
10 - 17
11 - 20
10 - 14
10 - 17
10 - 17
10 - 17
9 - 14
3
3
ICEU305W
ICE0305*A2
ICE0305*W2
ICE0305*A4
ICE0305*W4
ICE0325*A1
ICE0325*A2
ICE0325*A3
ICE0405*A1
ICE0405*W1
ICE0405*A2
ICE0405*W2
ICE0405*A2
ICE0405*W2
ICE0405*A3
ICE0405*W3
ICE0525*A1
ICE0525*A2
ICE0525*A3
ICE0605*A1
ICE0605*W1
ICE0605*R1
ICE0605*A2
ICE0605*W2
ICE0605*R2
ICE0605*R3
ICE0605*A3
ICE0605*W3
ICE0605*R4
ICE0805*A1
ICE0805*W1
ICE0805*R1
ICE0805*A2
ICE0805*W2
ICE0805*R2
ICE0805*R3
ICE1005*A1
ICE1005*W1
ICE1005*R1
ICE1005*A2
ICE1005*W2
ICE1005*R2
ICE1005*R3
ICE1405*A1
ICE1405*W1
ICE1405*R1
ICE1405*A2
ICE1405*W2
ICE1405*R2
ICE1405*A3
ICE1405*W3
ICE1405*R3
ICE2005*W1
ICE2005*R1
26
175 - 400
250
3
14
3
23
200 - 400
250
3
12
3
22
175 - 400
175 - 400
175 - 400
175 - 400
250
3
22
3
33
3
32
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
7
16
23
175 - 400
250
16
23
200 - 400
250
13
23
207-400
250
13
21
175 - 400
175 - 400
200 - 400
175 - 400
250
21
21
32
14
160
22
192 - 400
175 - 400
250
14
160
132
22
240 - 400
240 - 400
200 - 400
250
14
132
41
240 - 400
175 - 400
250
29
7
240
27
192 - 400
175 - 400
250
7
7
24
7
240
176
50
240 - 400
240 - 400
175 - 400
250
7
7
7
32
7
240
33
192 - 400
175 - 400
250
9 - 15
7
10 - 17
9 - 14
7
24
7
240
176
108
28
240 - 400
240 - 400
175 - 400
250
9 - 15
7
9 - 15
7
13 - 21
12 - 18
14 - 19
13 - 21
12 - 18
14 - 19
12 - 16
12 - 14
12 - 15
10 - 15
10 - 17
11
11
11
11
11
11
11.6
11.6
11.6
14
14
240
104
25
192 - 400
175 - 400
250
240
60
192 - 400
200 - 400
250
25
240
50
240 - 400
250
400
192 - 400
Page E13
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICEU150A
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Harv
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Start
End
Start End
Freeze
Harvest Complete
167 150
228 205
305 262
400 325
59
72
89
35
41
43
44
83
93
125 153 43
145 177 55
165 201 68
183 229 88
24 18'11" 1'56"
20'07"
24'15"
38'17"
85'09"
104
126
126
118
150
183
29 23'05" 1'10"
35 37'32" 0'45"
36 84'18" 0'51"
90/70
108/98
107
ICEU150W
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
250 250
250 250
250 250
288 254
65
69
80
95
42
42
41
42
98
109
118
130
137
157 195 53
167 203 58
169 207 66
178 217 82
34 21'33" 1'01"
22'34"
25'17"
30'20
103
108
112
35 24'11" 1'06"
34 29'19" 1'01"
37 39'52" 1'01"
90/70
110/100
40'53"
ICEU220A
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
191 162
260 216
327 276
428 350
61
71
81
94
31
34
39
39
82
85
110 145 41
125 170 55
144 190 70
174 231 87
20 12'38" 2'04"
14'42"
18'43"
28'48"
53'56"
102
118
154
112
140
181
22 17'31" 1'12"
28 27'53" 0'55"
28 53'07" 0'49"
90/70
109/95
ICEU220W
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
250 250
250 250
250 250
290 266
59
63
70
77
32
37
37
39
82
98
107
118
97
120 171 44
127 176 51
135 182 62
145 196 77
18 14'29" 1'36"
16'05"
16'40"
19'42"
26'27"
104
117
132
22 15'29" 1'11"
25 18'32" 1'10"
29 25'41" 0'46"
90/70
110/100
Page E14
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICEU226A
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Harv
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Start
End
Start End
Freeze
Harvest Complete
183 164
265 225
330 275
435 363
57
69
81
92
38
35
36
43
80
83
109 138 44
127 171 58
141 189 71
169 223 88
26 10'54" 1'40"
12'34"
21'06"
27'36"
53'56"
102
117
145
111
138
169
31 19'50" 1'16"
35 26'32" 1'04"
47 53'17" 0'39"
90/70
110/100
ICE0250A
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
193-263
cycling
50/40
70/50
90/70
75
65
93
28
28
31
33
122
100
146
150
128
108
146
167
114 158 51
118 159 56
138 184 76
166 209 89
37
9'14"
0'49"
10'03"
11'45"
15'50"
29'15"
257 196
296 241
381 299
35 10'46" 0'59"
54 15'09" 0'41"
57 28'31" 0'44"
110/100
107
ICE0250W3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
70/50
90/70
250 250
250 250
298 268
60
67
86
25
25
26
94
112
153
98
117
160
118 157 54
127 169 61
139 186 82
32 11'22" 1'05"
37 13'13" 0'51"
51 18'31" 0'41"
12'27"
14'04"
19'12"
110/100
ICE0320A
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
70/50
90/70
Start
End
Start Freeze
End Freeze
Harv
101
136
177
Harv
Start
End
Start End
Freeze
Harvest Complete
232 187
312 247
412 315
62
81
22
27
33
110
144
188
111 156 53
132 184 72
153 214 94
37 11'53" 1'01"
50 16'31" 0'27"
65 26'21" 0'41"
12'54"
16'58"
27'02"
110/100
107
Page E15
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICE0320W
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Harv
Air/Water
70/50
90/70
Start
End
Start Freeze End Freeze
Start
End
Start End
Freeze
Harvest Complete
252 244
254 246
325 268
63
75
25
28
30
94
108
151
99
115
173
121 165 44
134 178 61
130 201 83
30 10'57" 0'55"
40 12'43" 0'50"
57 17"51" 0'40"
11'53"
13'33"
18'31"
110/100
101
ICE0400A3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
Start
End
Start Freeze End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
198-260
cycling
50/40
70/50
90/70
63
67
88
38
37
39
41
100
99
120
140
108
111
135
170
105 157 53
105 157 54
114 181 70
126 206 90
38 10'23" 1'03"
11'26"
13'14"
21'08"
44'40"
263 200
292 251
383 302
37 12'14" 1'00"
56 20'20" 0'48"
62 44'06" 0'34"
110/100
110
ICE0400W3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
250 250
250 250
255 250
275 251
63
73
83
96
38
41
39
38
91
98
98 157 45
105 170 57
108 179 68
114 192 83
30 10'47" 1'10"
11'57"
14'16"
18'11"
25'33"
100
113
140
106
123
154
41 13'18" 0'58"
43 17'16" 0'55"
45 24'42" 0'51"
90/70
110/100
ICE0500A3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
Start
End
Start Freeze
End Freeze Harv
Harv
Start End
Start End Freeze
Harvest Complete
198-265
cycling
50/40
70/50
90/70
57
59
70
84
33
31
34
36
100
92
118
150
110
95
126
163
115 159 50
127 179 55
141 198 70
165 225 88
37
8'03"
0'52"
8'55"
11'50"
15'39"
25'35"
265 217
325 280
435 350
41 10'42" 1'08"
49 14'54" 0'45"
60 24'46" 0'49"
110/100
Page E16
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICE0500W3
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Harv
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Start
End
Start End
Freeze
Harvest Complete
250 250
250 250
250 250
314 277
56
61
69
82
31
31
33
33
85
90
105
145
89
95
113
152
116 171 46
121 177 52
127 187 63
136 212 86
26
9'55"
1'19"
11'14"
12'27"
14'21"
21'15"
28 11'17" 1'10"
35 13'24" 0'57"
43 20'26" 0'49"
90/70
110/100
ICE0500R4
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
-20/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
200 207
240 240
271 245
390 340
52
52
56
56
37
33
35
33
66
65
66
64
65
68
68
130 167 38
146 180 53
169 193 56
182 233 60
30
9'52"
2'07"
11'59"
12'53"
15'54"
30'55"
28 11'52" 1'01"
26 15'03" 0'51"
46 29'59" 0'56"
90/70
110/100
66
ICE0520A3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
230 248
262 254
316 273
403 335
55
67
84
39
39
42
42
80
95
122
140
87
95 149 42
102 154 54
116 183 72
130 207 95
34
9'51"
1'25"
11'16"
13'35"
19'53"
34'01"
103
134
168
39 12'28" 1'07"
52 19'12" 0'41"
62 33'26" 0'35"
90/70
110/100
105
ICE0520W3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
261 248
252 247
254 249
314 277
60
59
68
82
30
30
32
33
83
92
104
145
86
95
112
152
100 164 47
121 177 52
127 187 64
135 212 86
26 10'06" 1'23"
11'29"
12'14"
14'19"
21'14"
28 11'14" 1'00"
36 13'24" 0'55"
42 20'27" 0'47"
90/70
120/100
Page E17
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICE0606A3
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Harv
Air/Water
Start
End
Start Freeze
End Freeze
Start
End
Start End
Freeze
Harvest Complete
198-270
cycling
50/40
70/50
90/70
51
51
62
80
29
27
32
34
86
80
103
132
95
86
113
143
108 157 51
107 159 51
122 182 66
132 206 88
36
37
7'51"
9'48"
0'48"
1'15"
8'39"
11'03"
13'40"
27'19"
270 205
316 260
415 319
48 13'40" 0'42"
59 26'37" 0'42"
110/100
ICE0606W3
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
250 250
250 250
250 250
360 301
48
50
54
74
27
27
28
30
67
66
78
70
72
85
102 155 44
104 162 44
110 169 53
133 206 81
21
23
8'17"
8'40"
2'19"
1'58"
10'36"
10'38"
13'01"
24'33"
90/70
28 11'33" 1'28"
40 23'43" 0'50"
110/100
117
135
ICE0606R4
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
-20/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
238 238
280 270
293 275
410 332
46
53
58
82
33
33
33
32
93
86
107 159 54
118 181 65
120 189 74
140 221 96
44
7'28"
0'46"
8'14"
11'54"
14'38"
31'07"
108
118
161
111
124
176
50 11'12" 0'42"
52 13'55" 0'43"
62 30'27" 0'40"
90/70
120/100
ICE0806A
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze
End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
203 176
245 222
315 277
392 331
55
61
65
76
31
35
37
39
75
90
108
125
79
96
118
144
96 143 43
103 160 53
115 185 71
120 210 89
35
41
7'09"
9'21"
2'12"
1'06"
9'21"
10'27"
15'19"
26'01"
90/70
52 14'19" 1'00"
62 25'11" 0'50"
110/100
Page E18
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICE0806W
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Air/Water
Start
End
Start Freeze End Freeze
Harv
Start
End
Start End
Freeze
Harvest Complete
70/50
90/70
250 250
250 250
321 293
59
61
78
34
34
35
72
79
76
88
103 159 43
105 165 49
116 193 65
27
8'36"
2'01"
10'37"
12'02"
19'27"
32 10'52" 1'10"
45 18'32" 0'55"
110/100
108
121
ICE0806R
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
-20/40
70/50
Start
End
Start Freeze End Freeze
Harv
100
115
118
136
Harv
Start
End
Start End
Freeze
Harvest Complete
240 240
285 265
294 272
401 326
61
68
72
90
29
36
35
33
108
122
125
160
100 160 51
108 170 60
111 177 63
120 216 79
41
45
9'46"
9'31"
1'06"
1'00"
10'52"
10'31"
12'08"
23'24"
90/70
46 11'12" 0'56"
57 22'34" 0'50"
110/100
ICE1006A
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
50/40
70/50
Start
End
Start Freeze End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
186 176
233 210
307 267
374 325
50
56
68
68
33
30
33
33
70
78
98
68
82
104
130
100 132 41
104 152 46
115 177 62
127 205 84
35
32
4'48"
8'00"
1'56"
1'26"
6'44"
9'26"
90/70
34 12"03" 1'01"
53 23'25" 0'36"
13'04"
24'01"
110/100
115
ICE1006W
Compressor Temps
°F
Ambients
°F
Refrigeration Pressures PSIG
Cycle Times
Minutes' Seconds"
Discharge
Suction
Discharge
Suction
Start
End
Air/Water
Start
End
Start Freeze End Freeze
Harv
Harv
Start
End
Start End
Freeze
Harvest Complete
70/50
90/70
249 244
256 250
320 289
58
59
75
27
29
28
69
70
98
66
77
108 163 44
110 168 48
117 192 68
23
30
8'34"
9'31"
2'32"
1'39"
11'06"
11'10"
17'01"
110/100
110
42 15'55" 1'06"
Page E19
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Refrigeration System
ICE1006R
Refrigeration Pressures PSIG
Compressor Temps
°F
Discharge
Ambients
Cycle Times
Minutes' Seconds"
°F
Discharge
Suction
Suction
Start
Harv
End
Harv
Air/Water
-20/40
70/50
Start
End
Start Freeze
End Freeze
Start
End
Start End
Freeze
Harvest Complete
240 240
270 266
287 272
419 323
61
72
77
93
33
34
33
28
94
101
112
117
150
104 159 53
115 173 58
118 182 60
128 221 77
38
42
6'44"
8'36"
0'55"
0'55"
7'39"
9'31"
107
111
135
90/70
43 10'21" 1'01"
43 24'34" 0'55"
11'22"
25'29"
120/100
Page E20
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Control Circuit
All machines in this manual are electro-mechanical controlled; however the control circuitry on the
single evaporator units differs from the dual evaporator units and is detailed below.
Selector Switch
The selector switch is used to put the machine into the ICE making or WASH cycle or to turn the
machine OFF. The WASH position allows only the water pump to run and is used during the
cleaning process to circulate cleaning solution throughout the water system. When the selector
switch is turned to the ICE position, the machine begins the freeze cycle.
Contactor
When the selector switch is in the ICE position, the contactor coil is energized and
pulls in the contactor contacts. This energizes the compressor start components,
which starts the compressor.
Purge Switch
The purge switch is a momentary switch used to manually energize the purge valve. It is used
during the cleaning process to flush the cleaning solution from the water trough. The purge valve
will remain energized as long as the purge switch is depressed.
Note: Single Evaporator Units. The normally closed contacts of the purge switch also create a
circuit to relay 1. These contacts should remain closed unless the switch is depressed. If the
switch is defective and the normally closed contacts are open when the machine enters harvest,
the machine will return to freeze when the timer initiate control opens.
Compressor and Start Components
The compressor should run during the entire cycle. If the machine is in the ICE position but the
compressor is not running, check the compressor contactor to see if it is engaged. If the contactor
is not engaged, the problem is not with the compressor or the compressor start components. If the
contactor is engaged and there is correct voltage through the contactor, there could be a problem
with one of the starting components or the compressor. It is recommended that the compressor
starting components be replaced when replacing a compressor.
Compressor Check
Disconnect power before servicing
If the compressor uses an
internal overload, be
certain that the compressor has cooled and the overload has reset before diagnosing the
compressor. If the compressor is cool and is still not running, check the compressor motor
windings by first removing the wires at the compressor terminals. With an ohmmeter, check for
continuity between all three terminals, if an open circuit exists between any of the terminals, the
compressor may need to be replaced. Check for continuity from each terminal to the compressor
body, if continuity is found from any terminal to the compressor body, the compressor windings are
shorted to ground and the compressor will need to be replaced. If the compressor appears to be
good at this point, it is advisable to use a compressor analyzer to isolate the compressor from the
start components while checking for a locked rotor. If an analyzer is not available, the compressor
starting components must be checked.
Page F1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Compressor Check (Continued)
If all starting components are good, check the voltage from the common terminal of the
compressor, making sure proper voltage is supplied to the compressor and all wiring is properly
connected. If the compressor does not start and there is excessive amperage draw, (see locked
rotor amps on compressor tag) the compressor has a locked rotor and should be replaced.
Important: Compressors returned to the factory for warranty are tested and will not be covered
under the warranty policy if they are not defective.
Overload (External)
If there is no amperage draw check the compressor overload. The compressor overload can be
checked for continuity after removing it from the compressor and letting it cool to room
temperature. If there is no continuity between the two terminals, replace the overload. If the
overload is suspected of opening prematurely, it should be replaced with an overload, which is
known to be good.
Capacitors
The start capacitor is an electrical storage device used to provide starting torque to the
compressor. If a start capacitor is defective, the compressor will not start properly.
The run capacitor is an electrical storage device used to improve the running characteristics and
efficiency of the compressor.
Before checking a capacitor, it should be discharged by shorting across the terminals. If a run or
start capacitor is cracked, leaking or bulging it should be replaced. If a capacitor is suspected of
being defective, it can easily be checked by replacing it with a capacitor of the correct size, which
is known to be good. If the compressor starts and runs properly, replace the original capacitor. A
capacitor tester can also be used.
Start Relay
The start relay breaks the electrical circuit to the start windings when the compressor motor speed
increases. If the relay is defective, the compressor will not start or it may start but will run for a
very short time.
A compressor relay can be checked by removing the relay and checking the relay contacts for
damage and check for continuity across the closed relay points. Check the relay coil with an
ohmmeter. If no continuity is read, replace the relay.
Page F2
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Untimed Freeze Cycle
During the freeze cycle the compressor, water pump and condenser fan motor(s) (if used) are
running. On remote systems the liquid line solenoid is also energized, see Refrigeration System.
As ice forms on the evaporator, the suction pressure drops. The machine is in the untimed portion
of the freeze cycle and will remain in untimed freeze until the suction pressure drops low enough to
close the timer initiate control. See page E10-13 for operating pressures.
Timer Initiate
The timer initiate is a low-pressure control that closes (cut in) on a drop in suction pressure. When
the timer initiate control closes, the freeze timer is energized and the machine enters the timed
portion of the freeze cycle. When the machine enters harvest, the suction pressure rises and
opens the control. The timer initiate control should be adjusted per the chart on page E10-13.
The timer initiate is factory set and does not normally need to be adjusted. If the ice bridge
thickness is incorrect, the freeze timer should be adjusted rather than the timer initiate. See page
F4 for freeze timer adjustment procedure. The timer initiate may need to be adjusted if excessive
time (more than 7 minutes) is needed on the timer to achieve proper bridge thickness of if very little
time (less than 1 minute) is needed on the timer to achieve proper bridge thickness.
If the timer initiate is suspected of being out of adjustment or not operating properly, check the
control as follows. Make sure the high temperature safety control is not open, see page F8. Turn
the machine off and disconnect incoming power by unplugging the machine or switching the circuit
breaker OFF. Attach one lead of a voltmeter to terminal 1 and the other lead to terminal 2 of the
timer initiate control. Reconnect incoming power and turn the machine to the ICE position.
Connect a low pressure gauge to the machine. The volt meter should read line voltage until the
timer initiate control closes at which point the voltmeter should read zero volts. Note the suction
pressure at this point. Adjust the timer initiate if necessary. Turning the adjustment screw counter
clockwise will lower the cut in pressure, turning the adjustment screw
clockwise will raise the cut in pressure. The differential is preset and
does not require adjustment. If the control cannot be adjusted to the
correct pressure setting or if the cut in point is erratic the control must be
replaced. If the suction pressure is not dropping properly, see the
Troubleshooting Tree “Machine Does Not Enter Harvest” in Section C.
Adjustment Screw
Relay 1
Relay 1 is used to energize the fan motor on air-cooled units. The fan is energized through the
common and normally closed contacts.
Relay 2 (Note: Relay 2 is not used on Undercounter models)
On single evaporator machines, relay 2 is used only to bypass the bin control during the freeze
cycle and the first part of the harvest cycle. Relay 2 is energized through the normally closed
contacts of the cam switch at the beginning of the freeze cycle. When energized, Relay 2 will
prevent the machine from shutting off if the bin switch opens. The relay will remain energized until
the cam switch is lifted onto the high part of the cam during harvest. At this time the machine will
shut off if the bin switch is open.
Relay 3 and Relay 4 (ICE1506 Applications) Relay 3 and Relay 4 bypass the bin switches to
allow the curtains to open and close during the freeze cycle on an ice dispenser application. This
will prevent the ice machine from shutting off during dispenser agitation.
Page F3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Timed Freeze
When the freeze timer is energized, the machine
is in the timed portion of the freeze cycle. The
freeze timer will time out the remainder of the
freeze cycle. Once the time has passed, the
machine will enter the harvest cycle.
Freeze Timer
The freeze time is an adjustable timer used to
control the ice bridge thickness. The freeze timer
is factory set but may need to be adjusted upon
initial start up of the machine. When time is
added to the freeze timer, the length of the freeze
cycle is increased, therefore the ice bridge
thickness is increased. When time is removed
from the timer, the freeze cycle is decreased and
the ice bridge thickness is decreased.
The freeze timer can be adjusted by sliding one
or more switches to either the ON or OFF
position to obtain the setting which will produce
the proper bridge thickness. A timer setting of 128 and 256
switched ON will provide an initial timer setting.
Combine time in seconds
The ice bridge thickness should be approximately 3/16”
(5mm) on the ICEU undercounter series, ICE0250 and
ICE0305, and 1/8” (3 mm) on ICE0400 and larger units.
If the bridge is too thick, remove enough time from the
timer to achieve proper thickness. If the bridge is too
thin, add enough time to the timer to achieve proper
thickness.
Bridge Thickness
Check the freeze timer for proper operation as follows: Make sure that the high temperature safety
control is not open, see page F8. Turn the machine OFF and disconnect the incoming power by
unplugging the machine or switching the circuit breaker OFF. Attach one lead of a voltmeter to
terminal 1 and the other lead to terminal 3 of the timer.
Reconnect incoming power and turn the machine to the ICE position. The volt meter should read
zero volts until the timer initiate closes at which point the timer will energize and line voltage should
be read.
When the timer counts out, the voltmeter will again read zero volts. The time it takes the freeze
timer to time out, once it has been energized should match the timer adjustment. If it does not or if
the timer never closes, the timer is defective.
Note: The hot gas delay timer utilized on the ICE1400, ICE1506, ICE1606, ICE1800 and
ICE2100 Series cubers should always be set at 4 seconds. (Not applicable on Version 3)
Page F4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Harvest Cycle
Electrical System
Single Evaporator Machines
Once the freeze timer has timed out, power is sent to relay 1 and the machine enters the harvest
cycle. Once in harvest motor, the purge valve, hot gas valve and harvest motor are energized.
The water pump continues to run during the first part of the harvest cycle so that mineral laden
water remaining in the water trough can be pumped through the purge valve to the drain. The
harvest motor turns the clutch assembly to actuate the cam switch.
The cam switch is in the normally closed position during freeze and at the beginning of harvest.
Once the clutch turns far enough to actuate the cam switch, the water pump and purge valve is de-
energized. The harvest motor continues to turn the clutch. When the cam switch returns to the
normally closed position, the machine returns to the freeze cycle.
If the bin switch is open when the cam switch is actuated by the high part of the cam, the machine
will shut off. Remote units pump down before shutting off.
Relay 1
When relay 1 is energized, the normally open contacts (1-B) close sending power to the hot gas
valve and harvest motor and (1-A) close sends power to the purge valve and the coil of relay 1 to
keep the coil energized when the timer initiate opens. The fan motor on self contained air cooled
model are wired through the NC contacts of relay 1, when the contacts open during harvest, the
condenser fan motor is de-energized.
Relay 2 See Page F4.
Dual Evaporator Machines
Once the freeze timer has counter out, power is sent to: (A) harvest motor 1 and relay coil 1
through the normally closed contacts of cam switch 1, (B) to harvest motor 2 and relay coil 2
through the normally closed contacts of cam switch 2. The contacts of relay 1B and 2B closing,
energizes the 4-second hot gas delay timer (Right Hand Timer)
This 4-second delay will allow the harvest motors to rotate and allow the cam switches to switch to
the normally open position before the low-pressure control opens during hot gas. The cam
switches are now in the normally open position and will continue to energize the harvest motors
and relays until the cam rotates and the switch returns to the normally closed position.
Once the 4-second delay timer has timed out, the hot gas valves and purge valve will energize
and allow hot gas into the evaporators. The bin control switches are by passed through the
normally open contacts of relay 1A and 2A.
The bin switches are bypassed to allow the cam switch to return to the normally closed position
prior to the machine shutting down if the curtain is open. Each harvest assist motor will only make
one revolution prior to shutting down on full bin or advancing to the next freeze cycle.
Both hot gas valves and the water purge valve remain energized until both harvest assist motors
complete one revolution. The water pump is energized throughout the harvest cycle. The unit will
shut down if the curtains are open during the freeze cycle. Remote units pump down before
shutting off. The fan motors on self contained air cooled model are wired through the NC contacts
of relay 1B, when the contacts open during harvest, the condenser fan motors are de-energized.
Page F5
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Harvest Assist Assembly
The harvest assist assembly
has several purposes: to assist
in moving the ice off of the
evaporator, to control the
length of harvest and to
terminate harvest. When the
machine enters harvest, power
is sent to the harvest motor
which turns a slip clutch. A
probe is attached to the
rotating clutch and is pushed
against the back of the ice
slab. The clutch begins to slip
when the probe applies
approximately 25 ounces of
pressure against the ice slab.
It takes approximately 1 minute
for hot gas to heat the evaporator enough to loosen the ice from the evaporator plate. At this point
the clutch pressure overcomes the capillary attraction of the ice to the evaporator plate and the ice
begins to move off of the evaporator. As the ice is being pushed, the clutch stops slipping and
begins to turn, extending the probe enough to push the ice completely off of the evaporator.
Harvest Motor
The harvest motor is energized at the beginning of harvest and will remain energized until the
machine returns to the freeze cycle. A defective harvest motor will usually not run. The harvest
motor rotates in a clockwise direction. It is possible for a defective motor to run backwards
(counterclockwise). If this happens the motor must be replaced. It is also possible for a defective
motor to “bump” backwards immediately when entering harvest. This will activate the cam switch
and cause the machine to return to the freeze cycle immediately after entering harvest. If the
machine is in harvest only for a split second, the harvest motor may be defective. Verify the motor
is defective by watching the clutch closely when the machine enters harvest.
Clutch Assembly
The clutch assembly consists of a slip clutch and cam. A probe is attached to the clutch assembly
and the harvest motor turns the clutch during harvest. As the harvest motor turns, the clutch will
slip while the probe is pushed against the ice. The clutch will continue to slip as long as the
pressure required to move the ice is greater than the 25 oz. Once the evaporator has heated
enough to break the bond of ice to the evaporator, the pressure required to move the ice becomes
less than the 25 oz. And the clutch begins to move.
The clutch assembly is not adjustable. If the clutch tension is weak (less than 25 oz.) a slow
harvest or excessive ice meltage during harvest will result. If the clutch pressure becomes too
tight, the force of the probe against the back of the ice may cause the slab to break and the ice
may not fall off of the evaporator. If the clutch tension is suspected of being too tight or loose, turn
the clutch by hand. The clutch should turn smoothly without “grabbing”, but should offer some
resistance. If in doubt as to whether or not the clutch is defective, compare the tension with one
that is known to be good.
Page F6
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Probe Tip and Swivel
The probe tip is attached to the clutch and makes contact with the back of the ice slab during
harvest. The swivel allows the probe tip to pivot as the clutch turns so that the probe is pushed
straight through the evaporator probe guide.
The tip of the probe should be flush with the back of the evaporator or recessed up the 1/16 of an
inch (.16cm). The probe tip must not extend into the freezing area of the evaporator during freeze.
(Note: Units manufactured after June 2004 utilize a non adjustable probe.)
The length of the probe is adjustable by loosening the locknut and adjusting the probe in or out of
the swivel. Once the probe has been adjusted to the proper length, tighten the locknut. If the
probe tip binds during operation it may cause the clutch to slip unnecessarily. This may occur if
the harvest motor mounting bracket is not aligned properly or if the probe tip has excessive mineral
deposits on it. Remove and clean the probe if necessary.
To check the probe tip for binding, remove the shoulder bolt holding the swivel to the clutch and
simulate the movement of the swivel and probe by moving the swivel in a circular motion around
the outer portion of the clutch. The swivel should also move freely. If any resistance is felt the
bracket should be adjusted by loosening the bracket mounting screws and repositioning the
bracket until the probe moves freely.
Cam Switch Operation-Single Evaporator Machines
The actuator arm of the cam switch rides on the edge of the clutch assembly and is actuated by
the high and low portion of the cam. When the machine is in the freeze cycle the actuator arm of
the cam switch is in the low part of the cam. During freeze, power is supplied to the water pump
and relay 2, through the normally closed contacts of the cam switch. When the machine enters
harvest, power is supplied to the water pump and purge valve through the normally closed
contacts of the cam switch and through the normally open contacts of relay 1 (closed during
harvest). The water pump, purge valve and relay 1 remain energized until the cam switch is lifted
on to the high part of the cam. Relay 2 will also de-energize at this time allowing the machine to
shut off if the bin switch opens. Undercounter machines manufactured after July of 2004 will have
the water pump run continually until the machine shuts down.
Cam Switch Operation-Dual Evaporator Machines (Prior to January 2008)
Once the freeze timer has counted out, power is sent to: (A) harvest motor 1 and relay coil 1
through the normally closed contacts of cam switch 1, (B) to harvest motor 2 and relay coil 2
through the normally closed contacts of cam switch 2.
This 4-second delay will allow the harvest motors to rotate and allow the cam switches to switch to
the normally open position before the low-pressure control opens during hot gas. The cam
switches are now in the normally open position and will continue to energize the harvest motors
and relays until the cam rotates and the switch returns to the normally closed position.
The bin switches are bypassed to allow the cam switch to return to the normally closed position,
prior to the machine shutting down if the curtain is open. Each harvest assist motor will only make
one revolution prior to shutting down on full bin or advancing to the next freeze cycle.
Both hot gas valves and the water purge valve remain energized until both harvest assist motors
complete one revolution. The water pump is energized throughout the harvest cycle. The unit will
shut down if the curtains are open during the freeze cycle.
Page F7
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Cam Switch Adjustment
Check the cam switch for proper adjustment by slowing turning the clutch by hand in a
counterclockwise direction while listening for the switch contacts to change. The switch should
have an audible “click” as the roller reaches the high part of the cam. Now slowly turn the clutch in
a clockwise direction and the switch should have an audible “click” as the roller reaches the low
part of the cam. Adjust the switch by loosening the mounting screws and moving the position of
the switch. If the cam switch is suspected of being defective it should be checked with an
ohmmeter. It should not be assumed that the switch is good because a “click” can be heard
when moving the actuator arm.
High Temperature Safety Control
The high temperature safety control is a thermal disc that protects the
machine if the machine “sticks” in the harvest cycle. The high temperature
safety is clamped to the suction line near the expansion valve thermal bulb.
It opens when the suction line temperature reaches 120ºF (48.8ºC) and closes when the
temperature drops to 80ºF (26.6ºC). If the high temperature safety opens during harvest, it will
de-energize the harvest components. If the high temperature safety is defective and fails open
during the freeze cycle, it will not allow the relay(s) to energize and the machine will not enter
harvest. Remove the high temperature safety control and check it with an ohmmeter to verify that
it is defective.
Note 1: ICE0500R3, ICE0606R3, ICE0806R3 and ICE1006R3: The high temperature safety
control specifications have been changed to open at 120ْF and close at 100ْF.
Note 2: On models where the high temperature safety control is mounted on the hot gas valve
outlet tube, the specifications are open at 180ºF and close at 120 ºF.
Additionally the high temperature safety control is wired in series with the contactor. If the
high temperature safety control opens for any reason, the compressor will shut down.
This is an automatic reset control. Do not allow the machine to operate without the
high temperature safety control. Damage to the machine may result and the
warranty will be void.
Bin Control Operation
The bin control is used to shut the machine off when the bin fills with ice. The bin control must be
checked upon installation or initial start-up and when performing maintenance. Adjustments are
not covered under warranty.
There is one bin switch for each evaporator. The actuator arm of the bin switch comes in contact
with the splash curtain. When the bin is full of ice, the splash curtain is held open when ice drops
off of the evaporator. This releases the pressure of the bin switch actuator arm allowing the switch
to open.
Single evaporator machines: If the bin switch opens during freeze, or the first part of harvest,
relay 2 bypasses the bin switch and the machine will continue running. If the bin switch is opened
during harvest, when the cam switch is lifted onto the high part of the cam, the machine will shut
off. When the bin switch closes again, the machine will restart.
Dual evaporator machines: If either bin switch opens during the freeze cycle, the machine will
shut off. Relay 1 and relay 2 will bypass the bin switches during defrost. If either bin switch is
open when the machine returns to the freeze cycle, the machine will shut off.
Page F8
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Undercounter machines: A thermostatic bin control is used on the undercounter models. The bin
thermostat is located in the control box with a capillary tube, which is in a brass thermo-well
mounted to the water trough. When ice comes in contact with the capillary tube thermo-well, the
bin thermostat opens and the machine will shut off.
Bin Control Adjustment
All Models (Except Undercounter Models): Check the bin switch for proper adjustment by
swinging the bottom of the curtain away from the evaporator. Slowly bring the curtain towards the
evaporator. The switch should close when the bottom edge of the curtain is even with the outer
edge of the water trough. Adjust the switch by loosening the screws the hold the switch in place.
Move the switch to the proper position and retighten the screws. Recheck the adjustment.
Adjustments are not covered under warranty.
Undercounter Models
Turn the machine to the ICE or WASH position. Hold ice against the brass thermal-well mounted
to the water trough making sure the ice is in contact with at least 6 inches (15 cm) of the thermal-
well. The machine should shut off in approximately 1 minute, remove the ice, the machine should
restart in approximately 3 minutes. If a major adjustment is required, turn the adjustment screw
counterclockwise (warmer) until it stops then turn the adjustment screw clockwise (colder) 1/8 of a
turn. This should put the control close to the proper adjustment, recheck and make a minor
adjustment if needed. If a minor adjustment is required, turn the adjustment screw clockwise
(colder) or counterclockwise (warmer). Adjustments are not covered under warranty.
Pump Down System (Remote Only)
If a remote machine is shut down by the selector switch or bin control, the liquid line solenoid valve
is de-energized allowing the valve to close. This blocks the flow of refrigerant causing all the
refrigerant to be pumped into the receiver and condenser. This is done to prevent liquid refrigerant
from migrating into the compressor during the off cycle, which could damage the compressor on
start-up. Also see Pump Down System in the Refrigeration Section on page E7. As the refrigerant
is pumped into the receiver, the suction pressure begins to drop. Once the suction pressure
reaches approximately 10 psi (.68 bar) the pump down control contacts open, which will de-
energize the compressor contactor. When the machine is turned back on, power is supplied to the
liquid line solenoid which opens the valve and allows the suction pressure to rise enough to close
the pump down controls contacts.
Pump Down Control
The pump down control is a low pressure control that shuts the machine off when the
suction pressure drops during the pump down phase. The control is factory set to open at
10 psi (.68 bar) and close at 30 psi (2.04 bar). The pump down control does not normally
need to be adjusted, however an adjustment may be made by turning the adjustment
screw. Note: Later model machines have a non adjustable pump down control.
Fan Control
On models utilizing a fan control, the fan will cycle on at 250 psi (17.01) and
cycle off at 200 psi (13.61 bar).
Page F9
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Electrical Sequence for the ICE1400 Series Version 3, ICE1800 Series Version 3 and the
ICE2100 Series Version 3 Cubers. (Manufactured from January, 2008)
ICE1400A/W3, 1800W3 and 2100W3 Electrical Sequence (Includes 50 hz. And 3 Phase)
1. Suction Pressure starts out at approx 60 psi and slowly drops to close the LP Control.
2. The LP Control energizes Relay Number 2 Coil.
3. Relay Number 2A contacts C and NO close to bypass the bin switches, Relay Number 2B
contacts close and energize the timer.
4. The Timer times out and energizes Relay Number 1 Coil.
5. Relay Number 1A contacts C and NO close to send power to Cam Switch Number 2 contacts C
and NC which energizes Harvest Motor 2, Hot Gas 2 and Relay Number 3 Coil.
6. Relay Number 1B contacts C and NO close to energize Harvest Motor 1 and Hot Gas 1
7. Relay Number 1B contacts C and NC open to de-energize the fan motors.
8. When the LP Control opens during hot gas, the circuit is latched through the Purge Switch
contacts C and NC.
9. Relay Number 3A contacts C and NO close to send power to the Selector Switch and Hot Gas
Valves when the curtain is open.
10. Once Cam Switch 2 contacts C and NO close (High Side of the Cam) it will remain energized
from the Selector Switch until contacts C and NC close. (Rotates 360 degrees)
11. Once Cam Switch 1 contacts C and NO close (High Side of the Cam) the Harvest Motor will be
energized and the Water Pump and Purge Valve will be de-energized when contacts C and NC
open.
12. With the bin switches open, Relay Number 3 Coil de-energized due to Cam Switch 2 contacts
C and NC closing, the unit will shut off on full bin.
Notes:
●C=Common
●NC=Normally Closed
●NO-Normally Open
●Relay Number 9 & 12=Common
●Relay Number 1 & 4=Normally Closed
●Relay Number 5 & 8=Normally Open
●The Fan Control on the air cooled model cycles only one fan.
●Relay 1, Puts unit into defrosts.
●Relay 2, Bypasses the Bin Switches and initiates the Timer.
●Relay 3, Bypasses the bin Switches during harvest when Relay 2 is de-energized from a rise in
the suction pressure opening the Low Pressure Control.
Page F10
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Electrical Sequence for the ICE1400 Series Version 3, ICE1800 Series Version 3 and the
ICE2100 Series Version 3 Cubers. (Manufactured from January, 2008)
ICE1400R3, 1800R3 and 2100R3 Electrical Sequence (Includes 50 hz. And 3 Phase)
This unit incorporates a timer upstream of the Low Pressure Control for Low Ambients.
1. Timer number 2 (Six Minutes) is energized from the Selector Switch through Relay Number 3B
contacts C and NC.
2. Timer Number 2 (Six Minutes) times out and energizes Relay Number 2 Coil.
3. Relay Number 2B contacts C and NO close which energizes the Low Pressure Control.
4. The Low pressure Control closes and energizes the timer.
5. The Timer times out and energizes Relay Number 1 Coil.
6. Relay Number 1A contacts C and NO close to send power to Cam Switch Number 2 C and NC
which energizes Harvest Motor 2, Hot Gas Valve 2 and Relay Number 3 Coil.
7. Relay Number 1B contacts close to energize Harvest Motor 1 and Hot Gas Valve 1.
8. When the Low Pressure Control opens during hot gas defrost, the circuit is latched through the
Purge Switch contacts C and NC.
9. Relay Number 3A contacts C and NO close to send power to the Selector Switch and Hot Gas
Valves when the curtain is open.
10. Once Cam Switch 2 contacts C and NO close (High side of the Cam) it will remain energized
from the Selector Switch until contacts C and NC close. (Rotates 360 degrees)
11. Once Cam Switch 1 contacts C and NO close (High Side of the Cam) the Harvest Motor will be
energized and the Water Pump and Purge Valve will be de-energized when contacts C and NC
open.
12. With the bin switches open, Relay Number 3 Coil de-energized due to Cam Switch 2 contacts
C and NC closing, the unit will shut off on full bin.
Notes:
●C=Common
●NC=Normally Closed
●NO-Normally Open
●Relay Number 9 & 12=Common
●Relay Number 1 & 4=Normally Closed
●Relay Number 5 & 8=Normally Open
●Relay 1, Puts unit into defrosts.
●Relay 2, Bypasses the Bin Switches and initiates the Low Pressure Control
●Relay 3, Bypasses the Bin Switches during harvest when Relay 2 is de-energized from a rise in
the suction pressure opening the Low Pressure Control and energizes Timer Number2
Page F11
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Electrical System
Electrical Sequence for theICE1506 Series Version 3 (Manufactured from January, 2008)
This unit incorporates a timer upstream of the Low Pressure Control for Low Ambients.
1. When the Selector Switch is set to ICE, Relay Number 2 Coil is energized through Cam Switch
contacts C and NC (Bypasses the Bin Controls)
2. Relay Number 4B contacts C and NC energize Timer Number 2 (6 Minutes)
3. Timer number 2 times out and energizes Relay Number 3 Coil.
4. Relay Number 3B contacts C and NO close and energizes the Low Pressure Control.
5. The Low Pressure Control closes to energize Timer Number 1.
6. Timer Number 1 times out and energizes Relay Number 1 Coil
7. Relay Number 1A contacts C and NO close and send power Cam Switch Number 2 C and NC
which energizes Harvest Motor 2, Hot Gas valves and Relay Number 4 Coil.
8. Relay Number 1B contacts C and NO close to energize Harvest Motor 1 and Hot Gas Valve 1.
9. When the Low Pressure Control opens during hot gas, the circuit is latched through the Purge
Switch contacts C and NC.
10. Once Cam Switch 2 contacts C and NO close (High side of the Cam) it will remain energized
from the Selector Switch until contacts C and NC close (Rotates 360 degrees)
11. Once Cam Switch 1 contacts C and NO close (High side of the Cam) the Harvest Motor will be
energized and the Water Pump, Purge Valve and Relay Number 2 Coil will be de-energized
when contacts C and NC open.
12. When Relay Number 2 Coil is de-energized and if the curtain switches or bin stat are open, the
unit will pump down and shut off on full bin.
Notes:
●C=Common
●NC=Normally Closed
●NO-Normally Open
●Relay Number 9 & 12=Common
●Relay Number 1 & 4=Normally Closed
●Relay Number 5 & 8=Normally Open
●Relay 1, Puts unit into defrosts.
●Relay 2, Bypasses the Bin Switches.
●Relay 3,Energizes the Low Pressure Control
●Relay 4,Resets Timer Number 2
Page F12
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU150/200/205/206 Air and Water Wiring Diagram
Page G1
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU150/200/205/206 Air and Water Wiring Schematic
Page G2
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU150/220/225/226 Air and Water Wiring Diagram
Page G3
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU150/220/225/226 Air and Water Wiring Schematic
Page G4
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0250 Air and Water Wiring Diagram
Page G5
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0250 Air and Water Wiring Schematic
Page G6
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0400 Air and Water Wiring Diagram
Page G7
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0400 Air and Water Wiring Schematic
Page G8
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0405/0406 Air and Water Wiring Diagram
Page G9
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0405/0406 Air and Water Wiring Schematic
Page G10
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Air and Water Wiring Diagram
Page G11
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Air and Water Wiring Schematic
Page G12
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Remote Wiring Diagram
Page G13
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Remote Wiring Schematic
Page G14
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0605/0606/0805/0806/1005/1006 Air and Water Wiring Diagram
Page G15
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0605/0606/0805/0806/1005/1006 Air and Water Wiring Schematic
Page G16
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0605/0606/0805/0806/1005/1006 Remote Wiring Diagram
Page G17
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0605/0606/0805/0806/1005/1006 Remote Wiring Schematic
Page G18
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1007 Air and Water Wiring Diagram
Page G19
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1007 Air and Water Wiring Schematic
Page G20
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1007 Remote Wiring Diagram
Page G21
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1007 Remote Wiring Schematic
Page G22
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/1406/1806/2005/2106 Air and Water Wiring Diagram
Page G23
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/1406/1806/2005/2106 Air and Water Wiring Schematic
Page G24
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/1406/1806/2005/2106 Remote Wiring Diagram
Page G25
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/1406/1806/2005/2106 Remote Wiring Schematic
Page G26
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407/1807/2107 Air and Water Wiring Diagram
Page G27
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407/1807/2107 Air and Water Wiring Schematic
Page G28
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407/1807/2107 Remote Wiring Diagram
Page G29
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407/1807/2107 Remote Wiring Schematic
Page G30
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1606 Remote Wiring Diagram
Page G31
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1606 Remote Wiring Schematic
Page G32
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0320 Air and Water Wiring Diagram
Page G33
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0320 Air and Water Wiring Schematic
Page G34
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0520 Air and Water Wiring Diagram
Page G35
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0520 Air and Water Wiring Schematic
Page G36
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0325/0525 Air and Water Wiring Diagram
Page G37
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0325/0525 Air and Water Wiring Schematic
Page G38
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0305 Air and Water Wiring Diagram
Page G39
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0305 Air and Water Wiring Schematic
Page G40
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1506 Remote
Page G41
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1506 Remote
Page G42
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU300 Air and Water
Page G43
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU300 Air and Water
Page G44
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU305 Air and Water
Page G45
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICEU305 Air and Water
Page G46
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Remote Wiring Diagram (R3)
Page G47
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Remote Wiring Schematic (R3)
Page G48
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0605/0606/0806/1006 Remote Wiring Diagram (R3)
Page G49
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0605/0606/0806/1006 Remote Wiring Schematic (R3)
Page G50
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1007 Remote Wiring Diagram (R3)
Page G51
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1007 Remote Wiring Schematic (R3)
Page G52
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0250 Air4 and Water4, ICE0400 Air3 and Water3 Wiring Diagram
Page G53
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0250 Air4 and Water4, ICE0400 Air3 and Water3 Wiring Schematic
Page G54
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0320 Air3 and Water3, ICE0520 Air3 and Water3 Wiring Diagram
Page G55
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0320 Air4 and Water4, ICE0520 Air3 and Water3 Wiring Schematic
Page G56
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0406/405 Air3 and Water3, ICE0305 Air3 and Water3 Wiring Diagram
Page G57
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0406/405 Air3 and Water3, ICE0305 Air3 and Water3 Wiring Schematic
Page G58
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0325 Air3 and Water3, ICE0525 Air3 and Water3 Wiring Diagram
Page G59
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0325 Air3 and Water3, ICE0525 Air3 and Water3 Wiring Schematic
Page G60
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Air3 and Water3 Wiring Diagram
Page G61
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Air3 and Water3 Wiring Schematic
Page G62
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Remote4 Wiring Diagram
Page G63
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0500 Remote4 Wiring Schematic
Page G64
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0606 Air3 and Water3, ICE0605 Air3 and Water3 Wiring Diagram
Page G65
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0606 Air3 and Water3, ICE0605 Air3 and Water3
Page G66
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0606 Remote4 and ICE0605 Remote4 Wiring Diagram
Page G67
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0606 Remote4 and ICE0605 Remote4 Wiring Schematic
Page G68
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE0606 Remote4 and ICE0605 Remote4 Wiring Schematic
Page G68
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/6A3/W3, ICE1806W3 and ICE2106W3 Wiring Diagram
Page G69
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/6A3/W3, ICE1806W3 and ICE2106W3 Wiring Schematic
Page G70
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407A3/W3, ICE1807W3 and ICE2107W3 Wiring Diagram
Page G71
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407A3/W3, ICE1807W3 and ICE2107W3 Wiring Schematic
Page G72
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/6R3, ICE1806R3 and ICE2106R3 Wiring Diagram
Page G73
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1405/6R3, ICE1806R3 and ICE2106R3 Wiring Schematic
Page G74
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407R3, ICE1807R3 and ICE2107R3 Wiring Diagram
Page G75
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1407R3, ICE1807R3 and ICE2107R3 Wiring Schematic
Page G76
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1506R3 Wiring Diagram
Page G77
Download from Www.Somanuals.com. All Manuals Search And Download.
ICE Series
Wiring Diagram
ICE1506R3 Wiring Schematic
Page G78
Download from Www.Somanuals.com. All Manuals Search And Download.
|