Educational Insights Telescope EI 5237 User Manual

®
EI-5237  
Ages 8+  
Grades 3+  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Where Are the Planets Now?  
Because the planets are constantly moving as they orbit the sun, their locations change from day to day. The motions  
of the planets follow very regular patterns. Scientists can calculate where each planet will be at any given time.  
One way to describe the positions of the planets is in terms of their heliocentric longitude. This is a coordinate system  
with the sun as its center: the Greek root helio means “sun.” Scientists use the sun’s equator as a reference point  
to locate objects in space.  
A planet moves in two main ways. It rotates  
(spins) on its own axis. It revolves around, or  
A planet’s heliocentric longitude is given in degrees, from 0º to 359º.  
orbits, the sun. A “planetary day” is the length  
Notice the numbered markings on the top and bottom of the central tower.  
of time a planet takes to completely rotate on  
These are “planetary addresses” or heliocentric longitude markings. Using  
its axis. The time it takes for a planet to  
these with the Heliocentric Longitude Chart below, you can arrange the  
planets to closely approximate their current positions.  
1. Locate the date nearest to the current date on the Heliocentric  
completely revolve around the sun is called a  
“planetary year.” See the “Creating a Living  
Solar System Model” exercise on page 3 and the  
chart on page 4 for related information.  
Longitude Chart.  
2. As you read across the row, you’ll see a number listed for each planet. This indicates the planet’s heliocentric  
longitude.  
3. Move each planet’s rod so that it lines up with the correct number marking. (The electrical power should be  
turned off for this activity.)  
Model Not to Scale  
Explain to students that classroom solar system models cannot show planet sizes to scale. For example, the sun must  
be shown much smaller in comparison to the planets than it actually is. In reality, the sun is about 108 times the Earth’s  
diameter and is about 1 million times greater in volume: a million planets the size of Earth could fit inside it!  
The distance between planets is also difficult to represent on a model. The planets are actually small compared to  
the distances between them! If, for example, our model-sized dwarf planet Pluto were shown a correct relative  
distance from our model-sized sun, it would need to be about 30 miles (48 km) away!  
Heliocentric Longitude (Planetary Address) Chart*  
DATE  
1/1/10  
2/1/10  
3/1/10  
4/1/10  
5/1/10  
6/1/10  
7/1/10  
8/1/10  
9/1/10  
10/1/10  
11/1/10  
12/1/10  
1/1/11  
2/1/11  
3/1/11  
4/1/11  
5/1/11  
6/1/11  
7/1/11  
8/1/11  
9/1/11  
10/1/11  
11/1/11  
12/1/11  
1/1/12  
2/1/12  
3/1/12  
4/1/12  
5/1/12  
6/1/12  
7/1/12  
8/1/12  
9/1/12  
10/1/12  
11/1/12  
12/1/12  
1/1/13  
2/1/13  
3/1/13  
4/1/13  
5/1/13  
6/1/13  
7/1/13  
8/1/13  
9/1/13  
10/1/13  
11/1/13  
12/1/13  
Mercury  
82º  
223º  
303º  
94º  
Venus  
275º  
324º  
8º  
Earth  
101º  
132º  
161º  
191º  
221º  
251º  
279º  
309º  
339º  
8º  
Mars  
117º  
131º  
143º  
157º  
170º  
184º  
197º  
212º  
227º  
242º  
259º  
276º  
294º  
313º  
331º  
351º  
9º  
Jupiter  
335º  
337º  
340º  
343º  
345º  
348º  
351º  
354º  
357º  
359º  
2º  
5º  
8º  
11º  
13º  
16º  
19º  
22º  
24º  
27º  
30º  
33º  
36º  
38º  
41º  
44º  
47º  
49º  
52º  
55º  
58º  
60º  
324°  
66º  
68º  
71º  
Saturn  
179º  
180º  
181º  
182º  
183º  
184º  
185º  
186º  
187º  
188º  
189º  
190º  
191º  
192º  
193º  
194º  
195º  
196º  
197º  
198º  
199º  
200º  
201º  
202º  
203º  
204º  
205º  
206º  
207º  
208º  
209º  
210º  
174°  
212º  
213º  
214º  
214º  
215º  
216º  
217º  
218º  
219º  
220º  
221º  
222º  
223º  
224º  
225º  
Uranus  
356º  
356º  
356º  
357º  
357º  
357º  
358º  
358º  
358º  
359º  
359º  
359º  
0º  
Neptune  
326º  
326º  
326º  
326º  
327º  
327º  
327º  
327º  
327º  
328º  
328º  
328º  
328º  
328º  
328º  
329º  
329º  
329º  
329º  
329º  
330º  
330º  
330º  
330º  
330º  
330º  
331º  
331º  
331º  
331º  
331º  
332º  
325°  
332º  
332º  
332º  
333º  
333º  
333º  
333º  
333º  
333º  
334º  
334º  
334º  
334º  
334º  
335º  
Pluto  
273º  
273º  
273º  
274º  
274º  
274º  
274º  
274º  
274º  
275º  
275º  
275º  
275º  
275º  
276º  
276º  
276º  
276º  
276º  
276º  
277º  
277º  
277º  
277º  
277º  
277º  
278º  
278º  
278º  
278º  
278º  
278º  
272°  
279º  
279º  
279º  
279º  
279º  
280º  
280º  
280º  
280º  
280º  
280º  
281º  
281º  
281º  
281º  
58º  
226º  
317º  
113º  
237º  
331º  
136º  
249º  
344º  
157º  
260º  
353º  
166º  
262º  
12º  
179º  
274º  
34º  
194º  
285º  
52º  
208º  
298º  
71º  
217º  
304º  
96º  
227º  
317º  
287°  
238º  
332º  
138º  
249º  
349º  
148º  
255º  
354º  
167º  
263º  
14º  
106º  
156º  
205º  
255º  
304º  
351º  
41º  
39º  
69º  
89º  
139º  
189º  
234º  
283º  
331º  
20º  
100º  
132º  
160º  
191º  
220º  
250º  
279º  
309º  
338º  
8º  
0º  
0º  
1º  
1º  
1º  
2º  
2º  
2º  
3º  
3º  
3º  
4º  
4º  
4º  
5º  
5º  
5º  
6º  
6º  
354°  
7º  
7º  
7º  
8º  
8º  
8º  
9º  
9º  
9º  
10º  
10º  
10º  
10º  
11º  
11º  
28º  
46º  
63º  
79º  
68º  
118º  
169º  
217º  
267º  
314º  
3º  
094º  
109º  
122º  
136º  
150º  
163º  
176º  
189º  
204º  
218º  
233º  
56°  
266º  
284º  
302º  
322º  
341º  
359º  
18º  
36º  
53º  
70º  
085º  
101º  
115º  
129º  
142º  
38º  
69º  
100º  
132º  
161º  
192º  
221º  
251º  
280º  
309º  
339°  
8º  
053º  
99º  
150º  
198º  
248º  
296º  
345º  
78°  
82º  
132º  
181º  
231º  
280º  
325º  
14º  
39º  
69º  
101º  
132º  
161º  
192º  
221º  
251º  
279º  
309º  
339º  
8º  
74º  
77º  
79º  
82º  
84º  
87º  
90º  
92º  
95º  
97º  
100º  
102º  
62º  
112º  
160º  
211º  
260º  
308º  
357º  
45º  
184º  
274º  
36º  
39º  
69º  
195º  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Classroom Activities  
Where Will the Planets Be When…?  
After students have arranged the planets in their current positions, use the Heliocentric Longitude Chart to see  
where the planets will be on other dates. Try the end of the school year, different winter holidays, or perhaps a  
student’s birthday.  
Creating a Living Solar System Model  
Younger students will enjoy “acting out” the movement of the solar system. This activity works best outdoors, in a  
paved area with plenty of space.  
1. Spend time before class making nine signs, one for the sun and one for each planet. If you wish, draw a 10th  
sign for Pluto. Write each planet’s name and symbol on a large card or on a sheet of paper. The symbols are  
listed in the Planetary Features Chart on page 4. (The sun’s symbol is located on the sun sphere.)  
2. Begin the lesson by drawing a circle about two feet in diameter on the pavement with chalk. This circle  
will be your sun’s position.  
3. Next, draw another circle surrounding it. Draw seven more circles, each encircling the previous one. These  
circles will represent the orbits of the planets. Space the circles widely enough so that students walking  
along the orbits will not bump into each other. If you wish, draw an extra circle for Pluto.  
4. Choose students to enact the roles of the sun and the planets. Pass out the cards. The “sun” should stand  
in the central circle. Each “planet” will walk along its orbital path around the sun.  
5. Here’s the tricky part: The planets and the sun rotate on their axes. They all spin eastward, except for  
Venus, which spins retrograde, or backward. The student portraying Venus should spin to the right,  
while the other students spin to the left.  
6. Tell your “planets” to spin slowly or they’ll dizzily spin out of orbit! In reality, the planets never stop moving,  
but ask your “planets” to rest if they get dizzy!  
Calculating Revolution Periods for the Planets  
In the Motorized Solar System model, all of the planets take the same amount of time to make one revolution  
around the sun. In reality, the planets orbit the sun at very different speeds. In this activity, students will time Earth’s  
revolution, then use the information in the Planetary Features Chart to calculate what the revolution times for  
other planets should be.  
1. Position Earth at 0º longitude.  
2. Start timing (with a stopwatch or digital watch) as you switch on the Motorized Solar System.  
3. Write down how long it takes Earth to make a complete revolution and reach 0º again.  
4. The Planetary Features Chart lists that it takes 88 Earth days for Mercury to orbit the sun, and 365 days  
88  
for Earth to orbit the sun. Multiply your recorded time by 365 . Your result will be the amount of time it  
would take Mercury to complete one orbit of the sun if Earth used your recorded time and if the relative  
speeds in the model were accurate.  
5. Relative revolution periods can be found for other planets in the same way, but make sure students don’t  
confuse years with days. For example, it takes Neptune 164 Earth years to orbit the sun. There’s no need  
to convert that figure to Earth days, since we know that 365 days equals one Earth year. Simply multiply  
your recorded time by 164.  
Locating the Planets in the Night Sky  
Using the Heliocentric Longitude Chart on page 2, choose a particular day and align the planets on their support  
rods according to their degree locations. Look at Earth’s location. The portion of Earth always pointed at the sun  
represents noontime or midday. Taking a straight-edge, veer off to the left—keeping the sun below the horizon,  
represented by the straight-edge—from Earth. Any planets that are above the horizon should be visible in the night  
sky. Depending on the day, you could see Saturn, Jupiter, Mars, Venus, or Mercury with the unaided eye. Viewing  
depends on clear, dark skies.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Planetary Features Chart  
Position  
relative  
to sun  
Average  
distance  
from sun  
Year”: Period Average “Day”: Time it  
Diameter  
Planet Symbol  
of time to  
orbit sun  
Atmosphere  
Moons* Temperature  
orbital  
speed  
takes to  
at equator  
rotate on axis  
almost non-existent;  
trace amounts of  
hydrogen and helium  
35,980,000 mi  
(57,900,000 km)  
30 mi/sec  
(48 km/sec)  
-279 to 801 ºF  
(-173 to 427 ºC)  
3,031 mi  
(4,879 km)  
Mercury  
Venus  
Earth  
88 Earth days  
224.7 Earth days  
365.26 Earth days  
1.88 Earth years  
11.86 Earth years  
29.42 Earth years  
83.75 Earth years  
164 Earth years  
248 Earth years  
0
1st  
2nd  
3rd  
4th  
5th  
6th  
7th  
8th  
59 Earth days  
243 Earth days  
mostly carbon dioxide;  
sulfuric acid clouds obscure  
view of surface  
67,210,000 mi  
(108,200,000 km)  
22 mi/sec  
(35 km/sec)  
900 ºF average  
(482 ºC average)  
7,521 mi  
(12,104 km)  
0
78% nitrogen, 21% oxygen,  
1% argon, carbon dioxide,  
and trace gases  
92,960,000 mi  
(149,600,000 km)  
18.5 mi/sec  
(30 km/sec)  
-129 to 136 ºF  
(-90 to 58 ºC)  
7,926 mi  
(12,756 km)  
23 hours,  
56 minutes  
1
141,700,000 mi  
(227,900,000 km)  
15 mi/sec  
(24 km/sec)  
-185 to 50 ºF  
(-140 to 20 ºC)  
4,222 mi  
(6,794 km)  
24 hours,  
37 minutes  
Mars  
primarily carbon dioxide  
2
average cloud  
483,700,000 mi  
(778,300,000 km)  
8 mi/sec  
(13 km/sec)  
90% hydrogen  
10% helium  
88,846 mi  
(142,980 km)  
9 hours,  
51 minutes  
Jupiter  
Saturn  
Uranus  
Neptune  
Pluto  
60  
33  
21  
11  
1
temperature  
-186 ºF (-121 ºC)  
average cloud  
temperature  
-193 ºF (-125 ºC)  
888,200,000 mi  
(1,429,400,000 km)  
6 mi/sec  
(10 km/sec)  
97% hydrogen  
3% helium  
74,898 mi  
(120,540 km)  
10 hours,  
39 minutes  
83% hydrogen  
15% helium  
2% methane  
average cloud  
temperature  
-193 ºF (-125 ºC)  
1,786,500,000 mi  
(2,875,000,000 km)  
4 mi/sec  
(7 km/sec)  
31,763 mi  
(51,120 km)  
17 hours,  
14 minutes  
74% hydrogen  
25% helium  
1% methane  
average cloud  
temperature  
-315 ºF (-193 ºC)  
2,799,100,000 mi  
(4,504,400,000 km)  
3 mi/sec  
(5 km/sec)  
30,800 mi  
(49,500 km)  
16 hours,  
7 minutes  
6 Earth days,  
9 hours,  
18 minutes  
3,676,200,000 mi  
(5,915,800,000 km)  
3 mi/sec  
(5 km/sec)  
methane gases frozen into  
ice for most of its orbit  
-387 to -369 ºF  
(-233 to 223 ºC)  
Dwarf  
Planet  
1,430 mi  
(2,300 km)  
*Scientists are constantly discovering new planetary moons and space objects. For the most up-to-date information, check one of NASA’s websites  
Interpreting the Planetary Features Chart  
Both younger and older students can benefit from a discussion about the Planetary Features Chart. Duplicate  
this chart and distribute copies to the students. Begin your discussion by posing some simple riddles that students  
can answer by using the chart. For example, “I spin the fastest on my axis” (Jupiter), or “I’m the smallest planet”  
(Mercury). Then explore some of the topics below. Each begins with questions you might raise to get students  
thinking about the characteristics of the planets.  
Which are the hottest planets? Where are they located?  
Which are the coldest planets? Where are they located?  
The planets closest to the sun tend to be the hottest. As you would expect, it gets very hot on Mercury, the  
planet closest to the sun. During Mercury’s night (which lasts 59 Earth days), however, it can be much colder  
than the lowest temperatures ever recorded on Earth. This is because Mercury has almost no atmosphere to  
hold in the heat and because the night lasts so long. Venus has an atmosphere much denser than Earth’s.  
Its thick atmosphere traps and holds the heat of the sun. Combined with its closeness to the sun, this makes  
Venus the most consistently hot planet with surface temperatures high enough to melt lead!  
Which are the four smallest planets? What are they made of?  
Which are the four biggest planets? What are they made of?  
The four inner planets—Mercury, Venus, Earth, and Mars—are small and dense. They are made up of  
rocks and metals. Scientists call these terrestrial, or earth-like, planets.  
Jupiter, Saturn, Uranus, and Neptune are often called the “gas giants.” They are made mostly of gases,  
liquid, and ice. They are made up mainly of the elements hydrogen and helium. Because they consist mostly  
of gas, they are much less dense than the inner planets. This means that they contain less matter per  
unit of volume. Saturn’s density is less than water. In fact, Saturn could float on a giant body of either  
fresh or salt water.  
Very little is known about the dwarf planet, Pluto. Scientists believe it is made largely of ice.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Which planets have the most moons? Are they large or small planets?  
The larger planets have a stronger gravitational pull, so they often have many satellites, or moons. These  
larger planets can “capture” or pull moons into their gravitational fields more easily because objects (such  
as moons) move more slowly in space.  
Which planet has a “day” that is longer than its “year”?  
Venus rotates very slowly on its axis: one day is as long as 243 days on Earth! Yet Venus completes an  
orbit around the sun in only 225 days.  
Which planets have the fastest orbital speeds? Are the faster planets near the sun or far from the sun?  
The planets closer to the sun move through space faster.  
What else is out there?  
Beyond Neptune there is a ring of thousands of small bodies orbiting the sun. This disk-shaped ring  
of icy objects is called the Kuiper (KI-per) Belt. Pluto and its moon, Charon, are part of the Kuiper Belt.  
There are also a number of comets in this region. The Kuiper Belt has been called the ”Final Frontier”  
of our solar system.  
Fun Facts  
Pluto was discovered in 1930. For 76 years it was considered a planet. In 2006, Pluto was reclassified as a  
dwarf planet. Since its discovery, Pluto has completed only 31% of one revolution around the sun. By the  
year 2178, it will have completed one revolution (or one Plutonian year).  
Jupiter spins the fastest on its axis. Its day lasts less than 10 hours. It also spins so fast that the round planet has a  
flattened appearance.  
In 1543, the Polish astronomer and priest Nicolaus Copernicus noted that Earth revolved around the sun. Before  
then, people believed that the sun revolved around Earth.  
The sun is very large compared to the planets. However, compared to other stars, the sun is an average-sized star.  
The sun is our closest star.  
Using the Star Dome  
Here’s a second way to explore space: create your own classroom planetarium! The  
star dome converts the solar system model into a planetarium projector.  
1. Remove the top half of the sun sphere. Put the star dome in its place. Make  
sure the tab on the edge of the star dome fits into the notch on the lower half  
of the sun sphere.  
2. The projected image will look best in a darkened room. If possible, turn off  
the lights and close the shades.  
3. Switch on the light at the base of the tower. Stars, constellation names, and  
constellation outlines will be projected onto the walls and ceiling of the room.  
The farther light travels before hitting a surface, the bigger the image will  
appear. Moving the tower closer to and further from the walls or ceiling will  
alter the image. To get the best image, experiment with different distances.  
Star Dome Classroom Activities  
Constellations are clusters of stars whose patterns resemble shapes and figures. Breaking the 1,000 to 1,500 stars visible  
on a dark night into constellations helps people easily find and remember the names and locations of stars. For  
thousands of years, different cultures have divided the night sky into different constellations. They used the stars to help  
them navigate, to plan when to plant crops, and for religious purposes. The Greeks and Romans named their  
constellations after the gods and heroes in their mythology. In 1929 the International Astronomical Union  
divided the stars into 88 official constellations that are used by astronomers today. Most of these constellations  
come from the Greek and Roman view of the sky. The next page lists constellations that are on this model’s star  
dome. As your class observes this stellar display, try some of the activities provided. Note: Southern Hemisphere  
constellations are not included in this list.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Northern Hemisphere Constellations  
Andromeda (Andromeda)  
Aquila (Eagle)  
Hydra (Water Monster)  
Lacerta (Lizard)  
Aries (Ram)  
Leo (Lion)  
Auriga (Charioteer)  
Boötes (Herdsman)  
Camelopardus (Giraffe)  
Cancer (Crab)  
Canes Venatici (Hunting Dogs)  
Canis Minor (Little Dog)  
Cassiopeia (Cassiopeia)  
Cepheus (Cepheus)  
Cetus (Whale)  
Leo Minor (Little Lion)  
Lynx (Lynx)  
Lyra (Lyre)  
Ophiuchus (Serpent Holder)  
Orion (Orion/hunter)  
Pegasus (Pegasus)  
Perseus (Perseus)  
Pisces (Fishes)  
Polaris (North Star)*  
Sagitta (Arrow)  
Serpens (Serpent)  
Taurus (Bull)  
Coma Berenices (Berenice’s Hair)  
Corona Borealis (Northern Crown)  
Cygnus (Swan)  
Delphinus (Dolphin)  
Draco (Dragon)  
Equuleus (Little Horse)  
Gemini (Twins)  
Triangulum (Triangle)  
Ursa Major (Great Bear)  
Ursa Minor (Little Bear)  
Virgo (Virgin)  
Hercules (Hercules)  
*not a constellation  
Pictures in the Sky  
Ask students whether they think the constellations projected by the star dome resemble the names  
they’ve been given. Tell each student to choose a constellation. What kind of figure or object do they  
see in the pattern of stars? Encourage creativity: students might look at the constellation traditionally  
called the Great Bear and see a skunk, a man waving hello, or a frying pan. Students should copy  
down the pattern of stars, draw a figure around them, and name their constellation. Have your students  
write stories and create histories around their invented constellations.  
What’s in a Name?  
Assign names from the list above such as Hercules, Orion, or  
Cassiopeia. Have your students research and write about these  
mythological figures. Who was Hercules? What did he do? Why  
was he important?  
Star Stories  
Other cultures view the evening sky differently. For example, Native  
American groups see different patterns than those previously discussed.  
These constellations have rich stories and traditions behind them. This topic is  
called “archaeoastronomy.” Have your students research the Lakota, the Navajo, and other groups  
and compare findings. Research additional non-Western cultures in a similar fashion.  
Related Websites  
NASA’s informative website with links for students and educators  
http://www.nasm.si.edu/ceps/etp/ The Smithsonian’s National Air and Space Museum’s “Exploring the  
Planets” website  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Adapter Use  
Always follow these steps when using the Motorized Solar System and Planetarium  
with an adapter.  
1. Turn the on/off switch to the OFF position.  
2. Plug the AC adapter jack into the AC adapter port at the base of the tower.  
3. Carefully plug the AC adapter into a wall socket.  
4. Turn the on/off switch to ON.  
5. Adapters used with this are to be regularly examined for damage to the cord, plug enclosure and other parts, and  
that, in the event of such damage, this item must not be used with this adapter until the damage has been repaired.  
Battery Installation  
1. Use a screwdriver to carefully open the battery compartment on the  
bottom of the tower.  
2. Install four fresh C-size batteries in a two-on-two format, following the  
illustration here.  
Batteries must be installed with the correct polarity.  
Only batteries of the same or equivalent type are to be used.  
Alkaline batteries are preferable.  
Do not mix old and new batteries.  
Do not mix different types of batteries: alkaline, standard  
(carbon-zinc), or rechargeable (nickel-cadmium) batteries.  
Do not use rechargeable batteries.  
The supply terminals must not be short-circuited.  
Non-rechargeable batteries are not to be recharged.  
Remove exhausted batteries from the unit.  
3. Secure the compartment door.  
4. To prevent battery corrosion, it is recommended that the batteries be  
removed from the unit if it is not in use for two weeks.  
Bulb Replacement  
This krypton bulb’s product number is: KPR113. When replacing the bulb, refer to this product number.  
Please also note these additional specifications:  
Bulb Type: 4.5V 0.5A krypton lamp  
Current Voltage: 4.5V  
Current Rating: 500MA  
Filament Shape: C-2R  
Caution: While the unit is in operation, the light bulb gets hot. Warn students not to touch the bulb. If the bulb  
burns out, wait until it has cooled before replacing it.  
Cleaning Instructions  
1. Disconnect the AC adapter before cleaning.  
2. Clean the product with a dry or damp cloth.  
3. Do not immerse or spray any liquid or water on the product.  
Developed in Southern California by Educational Insights.  
© Educational Insights, Inc., Gardena, CA (U.S.A.). All rights reserved. Learning  
Resources Ltd., King’s Lynn, Norfolk (U.K.). Please retain this information.  
Made in China.  
Fabriqué en Chine. Informations à conserver.  
Made in China.  
Bitte bewahren Sie unsere  
Adresse für spätere Nachfragen auf.  
Conservar estos datos.  
Hecho en China.  
Download from Www.Somanuals.com. All Manuals Search And Download.  

EdgeStar Dehumidifier DEP400EW User Manual
Edirol Recording Equipment R 44 User Manual
Eizo Computer Monitor iSound L2 User Manual
Electro Voice Microphone HM1x User Manual
Electro Voice Portable Speaker 1 Series II User Manual
FujiFilm Digital Camera S9600 User Manual
Fusion Car Amplifier RE AM45020 User Manual
GE Clothes Dryer 405 User Manual
GE Telephone 15929620 User Manual
Gianni Industries Door EB 200N User Manual