Emerson Computer Hardware 752I User Manual

User’s Manual  
from Emerson Network Power™  
Embedded Computing  
®
Katana 752i: Intelligent CompactPCI Blade for cPSB  
April 2008  
 
Regulatory Agency Warnings & Notices  
The Emerson Katana752i meets the requirements set forth by the Federal Communications  
Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information  
is provided as required by this agency.  
This device complies with part 15 of the FCC Rules. Operation is subject to the following  
two conditions: (1) This device may not cause harmful interference, and (2) this device  
must accept any interference received, including interference that may cause undesired  
operation.  
FCC RULES AND REGULATIONS — PART 15  
This equipment has been tested and found to comply with the limits for a Class A digital  
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reason-  
able protection against harmful interference when the equipment is operated in a commer-  
cial environment. This equipment generates, uses and can radiate radio frequency energy  
and, if not installed and used in accordance with the instructions, may cause harmful inter-  
ference to radio communications. Operation of this equipment in a residential area is likely  
to cause harmful interference, in which case the user will be required to correct the interfer-  
ence at his own expense.  
Caution: Making changes or modifications to the Katana752i hardware without the explicit consent  
of Emerson Network Power could invalidate the user’s authority to operate this equipment.  
!
EMC COMPLIANCE  
The electromagnetic compatibility (EMC) tests used a Katana752i model that includes a  
front panel assembly from Emerson Network Power.  
Caution: For applications where the Katana752i is provided without a front panel, or where the front  
panel has been removed, your system chassis/enclosure must provide the required  
electromagnetic interference (EMI) shielding to maintain EMC compliance.  
!
i
10006024-04  
Katana®752i User’s Manual  
(continued)  
EC Declaration of Conformity  
According to EN 45014:1998  
Manufacturer’s Name:  
Emerson Network Power  
Embedded Computing  
Manufacturer’s Address:  
8310 Excelsior Drive  
Madison, Wisconsin 53717  
Declares that the following product, in accordance with the requirements of 2004/108/EEC, EMC  
Directive and 1999/5/EC, RTTE Directive and their amending directives,  
Product:  
Real-Time Processing Blade  
Katana752i/10006008-xx  
Model Name/Number:  
has been designed and manufactured to the following specifications:  
EN55022:1998 Information Technology Equipment, Radio disturbance characteristics, Limits and  
methods of measurement  
EN55024:1998 Information Technology Equipment, Immunity characteristics, Limits and methods  
of measurement  
EN300386 V.1.3.2:2003-05 Electromagnetic compatibility and radio spectrum matters (ERM);  
Telecommunication network equipment; EMC requirements  
As manufacturer we hereby declare that the product named above has been designed to comply  
with the relevant sections of the above referenced specifications. This product complies with the  
essential health and safety requirements of the EMC Directive and RTTE Directive. We have an inter-  
nal production control system that ensures compliance between the manufactured products and  
the technical documentation.  
Bill Fleury  
Compliance Engineer  
Issue date: April 21, 2008  
ii  
Katana®752i User’s Manual  
10006024-04  
Contents  
Hardware Implementation Dependent  
0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
Hardware Implementation Dependent  
1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
Hardware Implementation Dependent  
2 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
®
iii  
10006024-04  
Katana 752i User’s Manual  
 
CT Bus Routing Without the T8110 (option  
1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4  
CT Bus Routing With the T8110 Installed  
(option 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6  
Front Panel Ethernet Connector Pinouts . . .  
10-2  
Get Sensor Reading (Sensor/Event) . . .  
11-11  
Master Write-Read I2C (Application) . .  
11-14  
Hot Swap LED and Ejector Switch Control . .  
12-2  
®
iv  
Katana 752i User’s Manual  
10006024-04  
Contents (continued)  
Ethernet Controller EEPROM Commands . .  
15-18  
®
v
10006024-04  
Katana 752i User’s Manual  
(blank page)  
®
vi  
Katana 752i User’s Manual  
10006024-04  
Figures  
®
vii  
10006024-04  
Katana 752i User’s Manual  
 
(blank page)  
®
viii  
Katana 752i User’s Manual  
10006024-04  
Tables  
®
ix  
10006024-04  
Katana 752i User’s Manual  
 
Tables (continued)  
®
x
Katana 752i User’s Manual  
10006024-04  
Registers  
®
i
10006024-04  
Katana 752i User’s Manual  
(blank page)  
®
ii  
Katana 752i User’s Manual  
10006024-04  
Section 1  
Overview  
®
The Emerson Katana 752i is an intelligent input/output (I/O) processing blade for use in a  
CompactPCI backplane. It is compatible with the CompactPCI Packet-Switched Backplane  
(cPSB) and has two PCI Telecom Mezzanine Card (PTMC) sites that can support two tele-  
communications interface cards, such as the Emerson PM/3Gv. The Katana®752i draws  
®
processing power from its IBM PowerPC 750GL microprocessor, running at a speed of up  
to 1GHz. A Marvell system controller serves as a PCI bridge. In the standard configuration,  
the Katana®752i connects two Gigabit Ethernet ports to the front panel and two Gigabit  
Ethernet ports to the J3 backplane connector, which (depending upon the configuration)  
provides access to a rear transition module or cPSB. The Katana®752i supports various  
memory configurations, user Flash memory, a front-panel serial port, and user I/O from the  
PTMC sites. Optionally, the Katana®752i supports the H.110 Computer Telephony (CT) bus  
and various clocking signals.  
COMPONENTS AND FEATURES  
The following is a brief summary of the Katana®752i hardware components and features:  
CPU: The Katana®752i features an IBM 750GL central processing unit (CPU), operating at a rate  
of up to 1GHz. The CPU is a 32-bit PowerPC RISC microprocessor with 32-kilobyte, Level-1,  
data and instruction caches, as well as a one-megabyte, four-way, set-associative, Level-2  
cache.  
System Controller/PCI Bridge:  
The Katana®752i employs a system controller/PCI bridge device from Marvell. The Discov-  
ery III MV64460 is a single-chip solution that provides a high-speed (up to 200MHz) 60x  
bus interface, double-data rate (DDR) SDRAM controller, two 66-MHz PCI interfaces (64  
bits for CompactPCI, 32 bits for PTMC sites), three 10/100/1000BaseT Ethernet MAC con-  
trollers, two multi-protocol serial controllers (MPSC), an interrupt controller, and 32 gen-  
eral-purpose input/output (I/O) signals. The MV64460 also includes an inter-integrated  
2
circuit (I C) interface.  
1-1  
10006024-04  
Katana®752i User’s Manual  
     
Overview: Components and Features  
SDRAM: The Katana®752i allows for a 72-bit Small-Outline Dual In-Line Memory Module (SO-  
DIMM) of up to two gigabytes to support the CPU. (Please contact Emerson for the avail-  
ability of one- and two-gigabyte SO-DIMMs.) This SDRAM operates at a speed of up to 200  
MHz and has Error Checking and Correction (ECC) code.  
Flash: The Katana®752i supports up to 128 megabytes soldered user Flash memory for the CPU.  
The Flash bank is 32 bits wide, using two or four 16-bit wide devices. The Katana®752i also  
supports 512 kilobytes of socketed Flash. The Flash memory conforms to the Intel  
StrataFlash architecture. The CPU is capable of booting from either Flash memory.  
H.110: The Katana®752i has an optional configuration that supports the H.110 Computer Tele-  
phony (CT) bus in accordance with the PICMG 2.5 Computer Telephony Specification and  
ECTF H.110 Specification, and it complies with Configuration 2 of the PICMG 2.15 PCI Tele-  
com Mezzanine/Carrier Card Specification. The optional Agere Systems T8110 Time Slot  
Interchanger (TSI) serves as a bridge between the H.110 and local CT bus.  
Ethernet Ports: The Katana®752i provides four, 10/100/1000BaseT, Gigabit Media-Independent Interface  
(GMII) Ethernet ports (three from the MV64460 system controller, one from the 82544EI  
Ethernet controller). Two ports route to the front panel RJ45 connectors, and two ports  
route to the J3 CompactPCI (cPCI) connector for use either by a rear transition module or a  
cPCI packet-switched backplane (cPSB). Four PHY devices (three Broadcom BCM5461S,  
one Intel 82544EI) provide the physical interface for these ports. Optionally, the  
Katana®752i can support two Reduced Media-Independent (RMII) 10/100BaseT Ethernet  
ports routed from the PTMC sites to connector J5. Two Micrel KS8721CL PHYs support  
these ports.  
Serial I/O: The MV64460 system controllers provides an asynchronous console serial port, which sup-  
ports EIA-232 signal levels. This serial port is accessible via a mini-DB9 connector on the  
Katana®752i front panel and the backplane connector J5.  
CT Bus Clocks: Optionally, the Katana®752i can provide computer telephony (CT) bus clocking. One  
option supports only the CT clocks (C8A, C8B, FRAMEA, FRAMEB, NETREF1, and NETFER2)  
between J4 and the PTMC sites. A second option supports CT bus clocking plus CT data traf-  
fic via an Agere Systems T8110 Time Slot Interchanger (TSI). This routes H.110 to the back-  
plane connector J4.  
1-2  
Katana®752i User’s Manual  
10006024-04  
 
Overview: Components and Features  
PTMC Sites: The Katana®752i has two standard PCI Telecom Mezzanine Card (PTMC) slots, which allow  
for the use of two compatible PTMC boards, such as the Emerson PM/3Gv telecommunica-  
tions interface card. (Refer to the PM/3Gv User’s Manual for details on the PM/3Gv.) The  
Katana®752i complies with Configuration 2 of the PCI Telecom Mezzanine/Carrier Card Spec-  
ification, PICMG 2.15.  
IPMI: The Katana®752i supports an Intelligent Platform Management Interface (IPMI) by using a  
Zircon PM controller device from QLogic Corporation.  
Rear Transition Module:  
An optional TmPIM rear transition module (RTM) can host two PCI Mezzanine Card  
Input/Output Modules (PIMs). This RTM routes input/output signals from the Katana®752i  
PMC slots to the PIM slots. It can also route two Ethernet ports and an EIA-232 serial port  
from the J3 backplane connector to its rear panel. The Katana®752i also supports the  
TM/cSpan-P16 and TM/cSpan-P8E RTMs from Emerson. See the appropriate RTM user man-  
uals more information.  
1-3  
10006024-04  
Katana®752i User’s Manual  
Overview: Functional Overview  
FUNCTIONAL OVERVIEW  
The following block diagram provides a functional overview for the Katana®752i.  
Figure 1-1: General System Block Diagram  
CPCI  
3.3V  
2.5V  
1.5V  
User I/O  
CT Bus Clocks  
RMII  
RMII  
User I/O  
1-4  
Katana®752i User’s Manual  
10006024-04  
     
Overview: Additional Information  
ADDITIONAL INFORMATION  
This section lists the Katana®752i hardware’s regulatory certifications and briefly discusses  
the terminology and notation conventions used in this manual. It also lists general technical  
references.  
Mean time between failures (MTBF) has been calculated at 500,674 hours using Telcordia  
SR-232, Issue 1, Reliability Prediction for Electronic Equipment at 40°C.  
Product Certification  
The Katana®752i hardware has been tested to comply with various safety, immunity, and  
emissions requirements as specified by the Federal Communications Commission (FCC),  
Underwriters Laboratories (UL), and others. The following table summarizes this compli-  
ance.  
Table 1-1: Regulatory Agency Compliance  
Type:  
Specification:  
Safety  
IEC60950/EN60950 – Safety of Information Technology  
Equipment (Western Europe)  
UL60950, CSA C22.2 No. 60950, Third Edition – Safety of  
Information Technology Equipment, including Electrical  
Business Equipment (BI-National)  
Global IEC – CB Scheme Report IEC 60950, all country deviations  
Environmental  
NEBS: Telecordia GR-63 –  
Section 4.1.1 Transportation and Storage Environmental  
Criteria;  
Section 4.3 Equipment Handling Criteria;  
Section 4.4.1 Earthquake Environment and Criteria;  
Section 4.4.3 Office Vibration Environment and Criteria;  
Section 4.4.4 Transportation Vibration Criteria  
Section 4.5 Airborne Contaminants  
EMC  
FCC Part 15, Class A – Title 47, Code of Federal Regulations,  
Radio Frequency Devices  
ICES 003, Class A – Radiated and Conducted Emissions, Canada  
NEBS: Telecordia GR-1089 level 3 – Emissions and Immunity  
(circuit pack level testing only)  
ETSI EN300386 – Electromagnetic Compatibility and Radio  
Spectrum Matters (ERM), Telecommunication Network  
Equipment, Electromagnetic Compatibility (EMC) Requirements  
1-5  
10006024-04  
Katana®752i User’s Manual  
         
Overview: Additional Information  
Emerson maintains test reports that provide specific information regarding the methods  
and equipment used in compliance testing. Unshielded external I/O cables, loose screws, or  
a poorly grounded chassis may adversely affect the Katana®752i hardware’s ability to com-  
ply with any of the stated specifications.  
The UL web site at ul.com has a list of Emerson’s UL certifications. To find the list, search in  
the online certifications directory using Emerson’s UL file number, E190079. There is a list  
for products distributed in the United States, as well as a list for products shipped to Can-  
ada. To find the Katana®752i, search in the list for 10006008-xx, where xx changes with  
each revision of the printed circuit board.  
RoHS Compliance  
The Katana®752i is compliant with the European Union’s RoHS (Restriction of Use of Haz-  
ardous Substances) directive, created to limit harm to the environment and human health  
by restricting the use of harmful substances in electrical and electronic equipment. Effec-  
tive July 1, 2006, RoHS restricts the use of six substances: cadmium (Cd), mercury (Hg),  
hexavalent chromium (Cr (VI)), polybrominated biphenyls (PBBs), polybrominated diphe-  
nyl ethers (PBDEs), and lead (Pb). Configurations that are RoHS compliant are built with  
lead-free solder. Configurations that are 5-of-6 are built with tin-lead solder per the lead-in-  
solder RoHS exemption.  
To obtain a certificate of conformity (CoC) for the Katana®752i, send an e-mail to  
[email protected] or call 1-800-356-9602. Please have the part number(s)  
(e.g., C000####-##) for your configuration(s) available when contacting Emerson.  
Terminology and Notation  
Active low signals: An active low signal is indicated with an asterisk * after the signal name.  
Byte, word: Throughout this manual byte refers to 8 bits, word refers to 16 bits, and long word refers to  
32 bits, double long word refers to 64 bits.  
PLD: This manual uses the acronym, PLD, as a generic term for programmable logic device (also  
known as FPGA, CPLD, EPLD, etc.).  
Radix 2 and 16: Hexadecimal numbers end with a subscript 16. Binary numbers are shown with a subscript  
2.  
Technical References  
Further information on basic operation and programming of the Katana®752i components  
can be found in the following documents.  
1-6  
Katana®752i User’s Manual  
10006024-04  
             
Overview: Additional Information  
Table 1-2: Technical References  
1
Device/Interface:  
CompactPCI  
Type:  
Document:  
CompactPCI® Specification  
(PCI Industrial Computers Manufacturers Group, PICMG® 2.0  
R3.0, Oct. 1, 1999)  
Hot Swap Specification  
(PICMG® 2.1 R2.0, Jan. 17, 2001)  
System Management Specification  
(PICMG® 2.9 R1.0, Feb. 2, 2000)  
PCI Telecom Mezzanine/Carrier Card Specification  
(PICMG® 2.15 R1.0, Apr. 11, 2001)  
Packet Switching Backplane Specification  
(PICMG® 2.16 R1.0, Sept. 5, 2001)  
CPU  
750GL  
IBM PowerPC 750GX and 750GL RISC Microprocessor User’s  
Manual  
(IBM Corporation, Version 1.2, March 27, 2006)  
IBM PowerPC 750GL RISC Microprocessor Revision Level  
DD1.X Datasheet  
(IBM Corporation, Preliminary, Version 1.2,  
March 13, 2006)  
PowerPC Microprocessor Family: The Programming  
Environments for 32-Bit Microprocessors  
(IBM Corporation, G522-0290-01)  
PowerPC Microprocessor Family: The Bus Interface for 32-Bit  
Microprocessors  
(IBM Corporation, G522-0291-00)  
1-7  
10006024-04  
Katana®752i User’s Manual  
   
Overview: Additional Information  
1
Device/Interface:  
Type:  
Document:  
(continued)  
Ethernet  
BCM5461S  
BCM5461S 10/100/1000Base-T Gigabit Ethernet Transceiver  
Advance Data Sheet  
(Broadcom Corp., 5461S-DS04-R, April 27, 2004)  
82544EI  
82544EI Gigabit Ethernet Controller Datasheet and Hardware  
Design Guide; Application Note (AP-422)  
(Intel Corp., Doc. No. A44740-005, Rev. 0.80, Dec. 2003)  
KS8721CL  
KS8721CL 3.3V Single Power Supply 10/100BASE-TX/FX MII  
Physical Layer Transceiver Data Sheet, Rev. 1.2  
(Micrel, Inc., M9999-041405, April 2005)  
IEEE Standard for Information Technology: IEEE Std 802.3, 2000  
Edition  
(IEEE: New York, NY)  
Hot Swap  
Controller  
LTC1643L  
LTC1643L/LTC1643L-1/LTC1643H PCI-Bus Hot Swap Controller  
Data Sheet  
(Linear Technology Corp., 1998)  
IPMI/IPMB  
IPMI — Intelligent Platform Management Interface  
Specification v1.5  
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer  
Corp., Rev. 1.1, Feb. 20, 2002)  
IPMI — Intelligent Platform Management Bus  
Communications Protocol Specification v1.0  
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer  
Corp., Rev. 1.0, Sept. 16, 1998)  
IPMI Controller  
Zircon PM  
Zircon PM Technical Manual  
(QLogic Corp., 36000-510-03, Rev. C, Apr. 2002)  
PCI  
PCI Local Bus Specification  
(PCI Special Interest Group, Revision 2.3, March 29, 2002)  
PMC  
IEEE Standard for a Common Mezzanine Card (CMC) Family: IEEE  
Std 1386-2001  
(IEEE: New York, NY)  
IEEE Standard for Physical and Environmental Layers for PCI  
Mezzanine Cards: IEEE Std 1386.1-2001  
(IEEE: New York, NY)  
1-8  
Katana®752i User’s Manual  
10006024-04  
Overview: Additional Information  
1
Device/Interface:  
H.110  
Type:  
T8110  
Document:  
(continued)  
Ambassador® T8110 PCI-Based H.100/H.110 Switch and Packet  
Payload Engine  
(Agere Systems, April 2001 AY01-021CT1)  
H.110 Hardware Compatibility Specification: CT Bus  
(ECTF, revision 1.0)  
Serial  
Interface  
EIA-232-F  
TIA/EIA-232-F: Interface Between Data Terminal Equipment and  
Data Circuit-Terminating Equipment Employing Serial Binary  
Data Interchange  
(Electronic Industries Association, October 1997)  
System Controller  
PTMC Module  
MV64460  
PM/3Gv  
MV6446x System Controller for PowerPC Processors  
(Marvell, MV-S101286-01, Rev. A, June 19, 2003)  
PM/3Gv User’s Manual  
(Emerson Network Power, Embedded Computing #10003035-xx)  
Transition Module  
TmPIM  
TmPIM User’s Manual  
TM/cSpan-P16  
TM/cSpan-P8E  
(Emerson Network Power, Embedded Computing #10005691-xx)  
TM/cSpan-P16 User’s Manual  
(Emerson Network Power, Embedded Computing #10001320-xx)  
TM/cSpan-P8E User’s Manual  
(Emerson Network Power, Embedded Computing #10005363-xx)  
1. Frequently, the most current information regarding addenda/errata for specific documents may be found  
on the corresponding web site.  
1-9  
10006024-04  
Katana®752i User’s Manual  
   
(blank page)  
1-10  
Katana®752i User’s Manual  
10006024-04  
Section 2  
Setup  
This chapter describes the physical layout of the boards, the setup process, and how to  
check for proper operation once the boards have been installed. This chapter also includes  
troubleshooting, service, and warranty information.  
ELECTROSTATIC DISCHARGE  
Before you begin the setup process, please remember that electrostatic discharge (ESD)  
®
can easily damage the components on the Katana 752i hardware. Electronic devices,  
especially those with programmable parts, are susceptible to ESD, which can result in oper-  
ational failure. Unless you ground yourself properly, static charges can accumulate in your  
body and cause ESD damage when you touch the board.  
®
Caution: Use proper static protection and handle Katana 752i boards only when absolutely  
necessary. Always wear a wriststrap to ground your body before touching a board. Keep  
!
your body grounded while handling the board. Hold the board by its edges–do not touch  
any components or circuits. When the board is not in an enclosure, store it in a static-  
shielding bag.  
To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a  
static-shielding bag does not provide any protection–place it on a grounded dissipative  
mat. Do not place the board on metal or other conductive surfaces.  
KATANA®752I CIRCUIT BOARD  
®
The Katana 752i circuit board is a 6U CompactPCI card assembly. It uses a 14-layer printed  
circuit board with the following dimensions.  
Table 2-1: Circuit Board Dimensions  
Width:  
Depth:  
Height:  
9.19 in. (233.35 mm)  
6.30 in. (160 mm)  
< 0.8 in. (< 20.32 mm)  
The figures on the following pages show the front panel, component maps, and jumper  
®
locations for the Katana 752i circuit board.  
®
2-1  
10006024-04  
           
Setup: Katana®752i Circuit Board  
Figure 2-1: Katana®752i Front Panel  
PMC Site #2  
PMC Site #1  
Note:  
PMC Site #1 is not available  
for standard 2-GB SO-DIMM  
configurations. However, it  
may be available for some  
custom 2-GB configurations.  
Please contact Artesyn for  
details.  
Ethernet LED Coding  
ACT  
SP  
green  
green  
green  
green  
yellow  
off  
1000BASE-T  
100BASE-T  
10BASE-T  
activity  
flash green yellow or green  
off  
off  
no link  
GbE Port, 82544EI  
(ETH4)  
Speed LED, ETH4  
Activity LED, ETH4  
Speed LED, ETH3  
GbE Port, MV64460  
(ETH3)  
Activity LED, ETH3  
EIA-232  
Serial Port  
Programmable  
LEDs 1–4, Green  
Reset Switch  
Fault LED, Red  
Hot Swap LED, Blue  
®
2-2  
Katana 752i User’s Manual  
10006024-04  
     
Setup: Katana®752i Circuit Board  
Figure 2-2: Component Map, Top (Rev. 03)  
C 9 0  
C 1 0 7  
C 1 0 6  
C 8 1 0  
C 7 8 2  
L 2 7  
C 7 7 7  
U 7 8  
R 9 5 1  
R 9 3 3  
R 9 2 6  
R 9 2 8  
R 9 2 5  
C 8 0 2  
U 7 9  
R 9 2 9  
R 9 3 0  
C 7 9 7  
C 8 0 6  
L 2 8  
C 1 0 5  
C 9 6  
R 9 5 3  
R 9 3 9  
R 9 3 7  
R 9 5 0  
R 9 4 1  
R 9 4 7 R 9 4 0  
C 8 0 3  
R 9 3 5 R 9 4 9  
C 8 0 4  
U 5 2  
C 2 4  
R 9 4 5  
C 4 4  
C 5 3  
U 7 6  
C 4 2  
C 5 0  
C552  
C 1 0 4  
C550  
U 2 6  
U 2 7  
C548  
C546  
C 1 4  
C 8 7  
C 6 8 9  
C 6 8 8  
U 1 3  
U 1 4  
U 1 6  
C R 7  
C 1 0 3  
C 1 0 2  
C 1 0 1  
C 1 0 0  
C 9 5  
U29  
T8110  
TSI  
C 4 8  
C 6 3  
C 7 8 8  
C 8 6  
C544  
C543  
C541  
U15  
C540  
C539  
C 4 3  
C 5 2  
SO-DIMM  
DDR  
SDRAM  
C 7 2  
J P 3  
R 9 1 1  
U24  
HSL  
PLD  
C 7 3 5  
Y 2  
R 8 7 3  
U 7 5  
U 1 7  
R 9 1 4  
U20  
C 8 5  
82544EI  
Ethernet  
Controller  
U 1 8  
C 3 2  
U8  
Device  
Bus  
C 3 1  
C 7 6 6  
C 2 9  
C 2 1  
C 6 8  
C 5 1  
C 6 6  
C 7 5  
RN14  
PLD  
C 7  
C 1 8  
C 1 1 5  
U23  
IBM 750GX  
CPU  
U 7  
U 1 1  
U28  
MV64460  
System Controller  
C 3  
C R 6  
C R 5  
C R 4  
C R 3  
C R 2  
RN13  
R 9 0 4  
RN4  
RN5  
RN8  
RN9  
RN10 RN11 RN12  
C 4 1  
RN6  
RN7  
L 3  
L 2  
L 4  
L 1  
C 2 5  
U 3  
6  
1 0  
C 3 6  
C 4 9  
C 7 6 7  
C 6 3 8  
C 7 9 4  
C 7 6 2  
C 1 1 1  
C 7 1  
C 8 8  
R 1 8  
R 1 7  
C 9 1  
C 1 1 0  
R 2 8 8  
R 2 8 4  
R 9 2 4  
R 9 2 1  
R 9 2 3  
R 9 2 0 R 9 1 9  
R 9 3 2  
R 9 4 6  
U5  
Socketed  
Flash  
C 4 5  
C 1 2 4  
C 1 2 3  
U 5 4  
U 7 7  
R 1  
C 7 3  
C 8 2  
L 2 6  
C 8 0 5  
P3  
M 5  
C 7 7 4  
P 3  
R 2 1  
C 1 2 2  
JTAG  
(750GX)  
R 1 9  
C 1 9  
J6  
J 6  
HotSwap  
®
2-3  
10006024-04  
     
Setup: Katana®752i Circuit Board  
Figure 2-3: Component Map, Bottom (Rev. 03)  
R367  
C347  
R761  
R760  
R795  
R794  
C780  
R N 2 2 2  
C799  
CR30  
CR45  
CR46  
R885  
R884  
R811  
R810  
R809  
R808  
R807  
C678  
C677  
C730  
C728  
C729  
R840  
C710  
R883  
R882  
R844  
C725  
R905  
R494  
R493  
R492  
C458  
L20  
R 7 3 3  
R 7 3 2  
R852  
R692  
R691  
R857  
C724  
C726  
R874  
R875  
R881  
R880  
R853  
R690  
R689  
R856  
C231  
R 7 3 1  
R 7 3 0  
R876  
R877  
R 4 9 1  
C441 C432 C422 C402  
R456 R408  
R 2 2 3  
L22  
R601  
R627  
R600C 5 5 1  
C498  
R688  
R687  
R686  
RN197 C497  
C496  
R625  
R626  
R664  
R666  
R665  
R663  
R662C 5 4 9 RN196  
R685  
C495  
R510 C457  
C431  
R 4 9 0  
C494  
C493  
C676  
C675  
R624  
R661  
R599  
R623  
RN195  
R660  
C 5 4 7  
R716  
R715  
R509  
C472 C456  
C492  
C491  
R622  
R657  
C329  
RN194  
R598  
R659  
R684  
R701  
R658  
R889  
R154  
U55  
R759  
R756  
R725  
R137  
R77  
C440  
R758  
C666  
C665  
U45  
U42  
R890  
C328  
R888  
R757  
R754  
U59  
C283  
C263  
R753  
C218  
R106  
R755  
R752  
C248  
RN215  
C203  
L14  
R682  
R488  
R487  
R135  
R751  
R750  
C681  
C327  
R305  
C300  
C299  
C513  
C421  
C R 2 3  
R 2 2 0  
R 2 1 9  
R 2 1 8  
R 2 1 7  
C594  
C523  
R314  
R279 R260  
R259  
C R 2 2  
C R 2 1  
C R 2 0  
Y3  
CR15  
R893  
R790  
R789  
R278  
R328  
R304  
C673  
C672  
C168  
U40  
C213  
U70  
R518  
C490  
R508  
C471  
R178  
R177  
C255  
C298  
C297  
R265  
C278  
C277  
R258  
C326  
C325  
R303  
U43  
C180 C167  
R94  
R327  
R326  
R906  
R506  
R505  
R504  
C671  
R93  
R656  
R654  
IPMI  
Controller  
R92  
C489  
C488  
R655  
RN193  
C179  
C178  
C177  
R74  
R653  
R597  
R302  
R176  
R503  
R175  
R174  
R620  
R651  
C487  
C486  
C470  
R652  
RN192  
RN191  
R257  
R256  
R255  
R254  
R277  
R276  
R275  
R274  
R202  
R201  
R200  
R199  
R198  
R73  
C542  
R301  
R300  
C322  
R299  
C485  
C484  
R325  
R324  
R323  
R238  
C537  
C651  
C176  
C175  
R72  
R618  
R616  
R596  
C454 C439 C430 C412  
R451  
R595  
R N 6 2  
R830  
C483  
C482  
C230  
C229  
C195  
R412  
R649  
R648  
R650  
R647  
RN190  
C174  
R N 5 9  
CR17  
CR11  
CR43  
R871  
R870  
R450  
R449  
R909  
C463  
CR44  
R253  
C276  
C275  
C274  
R298  
C324  
C295  
C296  
R424  
R423  
R422  
R480  
R152  
R126  
C323  
R479  
R322  
R321  
R197  
R173  
U50  
R297  
R71  
R681 R 6 8 0  
R501  
R500  
R478  
C718  
C712  
R477  
R476  
C719  
C720  
R865  
R864  
R273  
R272  
R252  
R296  
R872  
R474  
U46  
C721  
C711  
R869  
C715  
C716  
R679  
R678  
C650  
R748  
R473  
R839  
R850  
R915  
C365  
R714  
R713  
R712  
R711  
R710  
R709  
R406  
R405  
C708  
R863  
R862  
R868  
R866  
R867  
C707  
R421  
R472  
R372  
R371  
R788  
R787  
R251  
C273  
R295  
C563  
R677  
R676  
R675  
R313  
R448  
R447  
CR36  
R835  
C512  
R233  
R146  
C202  
R271  
R250  
R294  
C571  
R320  
C353  
R699  
C399  
R360  
C247  
C243  
C586  
C294  
C293  
C292  
C272  
C271  
C270  
R249  
C321  
C320  
C319  
R293  
Y6  
R708  
R707  
C352  
U39  
R898  
R216  
R215  
R897  
R644  
R270  
C216  
L15  
C410  
R319  
R339  
C351  
R698  
R674  
R643  
L25 R747  
C663  
C419  
R231  
R230  
C462  
U69  
C438  
R292  
R269  
R248  
C187  
R318  
C505  
R214  
C350  
R213  
R212  
C409  
C627  
C318  
C317  
C307  
C269  
C268  
R86  
R85  
R84  
R83  
R82  
R81  
C521  
C475  
C426  
C398  
R 2 8 1  
C257  
R237  
RN66  
RN58 RN55  
R66  
R65  
R64  
R63  
R62  
R61  
C236  
C226  
C220  
C408  
C680  
R697  
C607  
CR29  
RN82 RN78 RN70 RN65 RN61 RN57 RN54  
C504  
C461  
C437  
R N 1 8 0  
C242  
R 7 6 4  
R264 C262 R236  
C261  
C346  
C557  
CR28  
R38  
C592  
R672  
C 1 4 9  
C 1 4 8  
C 1 4 7  
C 1 4 6  
C 1 4 5  
C 1 4 4  
C 1 4 3  
C 1 4 2  
C186  
R195  
R194  
Y5  
R608  
C556  
C166  
C165  
R 3 7  
R 3 6  
C306  
RN49  
R100  
C164  
U72  
C 6 6 1  
R229  
R 2 4 7 R228  
R227  
RN48  
RN47  
R 5 4 8  
C511  
C185 C163  
C267  
C382  
C397  
C621  
R719  
C310  
R394  
C225 C215  
R547  
R546  
R545  
R544  
C345  
C211  
C201  
C162  
C161  
R607  
C576  
C562  
C468  
C467  
RN167  
R386  
R N 1 0 1  
C266  
C662  
RN164  
C160  
C159  
C424  
C450  
RN46  
C633  
C580  
C584  
R N 2 0 3 R N 2 0 0  
C479  
R515  
R99  
R98  
R N 2 0 4  
C249  
R210  
R209 R192  
R208 R191  
R207 R190  
R206 R189  
RN216  
RN214  
R706  
C561  
R193  
C184  
C602  
R385  
C396  
R33  
R32  
R290  
R285  
R338  
C339  
R780  
C 1 4 1  
C 1 4 0  
C 1 3 9  
C 1 3 8  
C 1 3 7  
C 1 3 6  
C 1 3 5  
C 1 3 4  
R779  
R778  
C305  
RN81 RN73 RN69  
RN60  
R741  
R740  
C158  
C157  
RN45  
C344  
R777  
R776  
C760  
C756  
R739  
R900  
R205  
C381  
C304  
C520  
C502  
C632  
R738  
C156  
C155  
C314  
C333 C309  
RN44  
RN43  
RN42  
C380  
C342  
C361  
C200  
R N 2 6 2  
R 2 9  
R 2 8  
C154  
C153  
C152  
R534  
C526  
C303  
C583  
C379  
C630  
C629  
C751  
C337  
C151  
C694  
C241  
R N 8 7 R N 8 5  
C754  
R N 7 7  
C755  
C658  
C206  
C560  
C555  
C302  
C301  
R737  
R775  
R774  
R773  
C657  
R772  
R N 7 2  
R899  
C752  
C704  
C599  
C702  
C701  
C582  
C519 C695  
C706  
C577  
R511  
C559  
R736  
R735  
R734  
C335  
R N 1 3 9  
C312  
C527  
C532  
C525  
R347  
R331  
C193  
R N 8 6 R N 8 4 R N 7 6 R N 7 1  
C129  
C444  
R N 1 6 8  
C531  
R 5 4 3  
R49  
R48  
R47  
R46  
R45  
C128  
R44  
R43  
C501  
R519  
R591  
U63  
R N 1 6 6 R N 1 6 5 R N 1 6 3 R N 1 5 4  
R N 1 1 4 R N 1 1 3  
R N 1 2 7 R N 1 2 6  
R834  
R468  
R467  
R466  
R465  
R464  
R463  
R462  
R461  
C753  
C669  
R771  
R 7 9 9  
C259  
C656  
R770  
R769  
C500  
C554  
U61  
U66  
C518  
C423  
C340  
R590  
C401  
C369  
R768  
C258  
R767  
R766  
R765  
C759  
C757  
R N 2 6 1  
C224  
C199  
R403  
C389  
R39  
R N 6 4  
R460  
R459  
C443  
R N 8 0 R N 7 5 R N 6 8  
R417  
R N 6 3  
U37  
R434  
R433  
R N 2 1 3  
RN212  
R N 2 1 1 R N 2 0 9  
R N 2 0 6  
RN202 RN199 RN188 RN186 RN183  
RN50 RN41 RN40  
R52  
R N 7 9 R N 7 4 R N 6 7  
C628  
R356  
R355  
C367  
R588  
R704 R695  
R168  
R160  
R159  
R158  
R157  
R156  
R155  
C649  
C668  
C667  
C653  
R798  
R N 2 0 7 R N 2 0 5  
RN201 RN198 RN187 RN185 RN182  
R703  
C610  
R N 2 1 0 R N 2 0 8  
C416  
M8  
C127  
C126  
C771  
R51  
C509  
F7  
CR31  
R118  
R117  
C131  
U38  
C652  
R797  
R 3 6 8  
C648  
C647  
C558  
R554  
R605  
C 5 8 7  
R 6 9 4  
CR9  
CR8  
R528  
R527  
R526  
R604  
R603  
R60  
R59  
F6  
R401  
C130  
R40  
C508  
C507  
R149  
®
2-4  
Katana 752i User’s Manual  
10006024-04  
     
Setup: Katana®752i Circuit Board  
Figure 2-4: Jumper, Fuse, and Switch Locations, Top  
2 0 0 4  
C O P Y R I G H T  
A
1 0 0 0 6 0 0 8 - 0 0 R E V  
F4 – Fuse  
for 5-Volt Supply to RTM, 2.5A  
F3 – Fuse  
for 3.3-Volt Supply to RTM, 2.5A  
F2 – Fuse  
for –12-Volt Supply to RTM, 1A  
F1 – Fuse  
for +12-Volt Supply to RTM, 1A  
JP1 – Signal Enable Jumpers  
(pins 10–9 are spares)  
Jumper on pins 8 & 7, cPCI enabled  
Jumper on pins 6 & 5, PCIXCAP enabled  
Jumper on pins 4 & 3, CT_EN enabled  
Jumper on pins 2 & 1, cPCI_RST enable  
10  
8
6
4
2
9
7
5
3
1
10  
8
6
4
2
9
7
5
3
1
JP1  
JP2  
Note: To enable cPCI functionality, use a  
jumper on pins 8-7 and on pins 2-1.  
JP2 – Configuration Jumpers  
Jumpers off pins 10–7, MV64460 is Monarch  
Jumper on pins 10 & 9, PPMC #2 is Monarch  
Jumper on pins 8 & 7, PPMC #1 is Monarch  
Jumper on pins 6 & 5, enable cPCI_PRST out  
Jumper on pins 4 & 3, disable SROM load  
Jumper on pins 2 & 1, boot from socket  
SW1 – Reset Switch  
®
2-5  
10006024-04  
     
Setup: Katana®752i Circuit Board  
Figure 2-5: Fuse, and LED Locations, Bottom  
R367  
C347  
R761  
R760  
R795  
R794  
C780  
R N 2 2 2  
GbE Port 1 LEDs  
CR35 – Link1, CR34 – Act  
CR33 – Link2, CR32 – Link  
PMC Slot 2 Ethernet LEDs  
CR30  
CR45 – PMC2 Act  
CR45  
CR46  
R885  
R884  
CR46 – PMC2 Link  
R809  
R808  
R807  
C678  
C677  
C730  
C728  
C729  
R840  
C710  
R883  
R882  
Ethernet LED Coding  
R844  
C725  
R905  
R494  
R493  
R492  
C458  
L20  
R 7 3 3  
R 7 3 2  
R852  
R692  
R691  
R857  
C724  
C726  
Link1 Link2  
R874  
R875  
R881  
R880  
R853  
R690  
R689  
R856  
on  
on  
off  
off  
on  
off  
on  
off  
1000BASE-T  
100BASE-T  
10BASE-T  
no link  
R 7 3 1  
R 7 3 0  
R876  
R877  
R 4 9 1  
C441 C432 C422 C402  
R456 R408  
R 2 2 3  
L22  
R601  
R627  
R600C 5 5 1  
C498  
R688  
R687  
R686  
RN197 C497  
C496  
R625  
R626  
R664  
R666  
R665  
R663  
R662C 5 4 9 RN196  
R685  
C495  
R510 C457  
C431  
R 4 9 0  
C494  
C493  
C676  
C675  
R624  
R661  
R599  
R623  
RN195  
R660  
C 5 4 7  
R716  
R715  
R509  
C472 C456  
C492  
C491  
R622  
R657  
C329  
RN194  
R598  
R659  
R684  
R701  
R658  
R889  
R154  
U55  
R759  
R756  
R725  
R137  
U45  
R77  
C440  
R758  
C666  
C665  
U42  
R890  
R888  
R757  
R754  
U59  
R753  
C218  
R106  
GbE Port 2 LEDs  
R755  
R752  
C248  
RN215  
C203  
L14  
CR23 – Link1, CR22 – Link2  
R682  
R135  
R751  
R750  
CR21 – Link, CR20 – Act  
C R 2 3  
C R 2 2  
C R 2 1  
C R 2 0  
R 2 2 0  
R 2 1 9  
R 2 1 8  
R 2 1 7  
C594  
C523  
0  
Y3  
CR15  
R893  
R790  
R789  
R278  
R259  
R328  
R304  
C673  
C168  
U40  
C213  
U70  
R518  
C490  
C672  
R508  
C471  
R178  
C255  
R177  
C180 C167  
R94  
CR10 – LED  
C671  
R93  
U43  
R656  
R654  
R92  
R655  
R
I
PMI Status Out Indicator  
C179  
C178  
C177  
R74  
R653  
R176  
R175  
R174  
R597  
R652  
R620  
R651  
C487  
C486  
C470  
RN192  
R257  
R256  
R255  
R254  
R830  
R277  
R202  
R201  
R200  
R199  
R198  
R73  
C542  
R301  
R300  
C322  
R299  
R276  
R275  
R274  
C485  
C484  
R325  
R324  
R323  
R238  
C537  
PMC Slot 1 Ethe  
r  
net LEDs  
C176  
C175  
R72  
RN191  
R618  
R616  
R596  
C454 C439 C430 C412  
R451  
R595  
R N 6 2  
C483  
C482  
C230  
C229  
C195  
R412  
CR43 – PMC1 Act  
R649  
R648  
R650  
R647  
RN190  
C174  
R N 5 9  
CR17  
CR43  
R871  
R870  
R450  
R449  
CR44 – PMC1 Link  
R909  
C463  
CR11  
CR44  
R253  
C276  
C275  
C274  
R298  
C324  
C295  
C296  
R424  
R423  
R422  
R480  
R152  
U46  
C323  
R479  
R322  
R321  
R197  
R173  
U50  
R297  
R71  
R126  
R681 R 6 8 0  
R501  
R500  
R478  
C718  
C719  
C720  
C712  
R477  
R476  
R865  
R864  
R273  
R272  
R252  
R296  
R872  
R474  
U44  
U41  
C721  
C711  
R869  
C715  
C716  
R679  
R678  
C650  
R473  
R839  
R850  
R915  
C365  
R714  
R713  
R712  
R711  
R710  
R709  
R868  
R866  
R406  
R405  
C708  
R863  
R862  
R421  
R472  
R372  
R371  
R788  
R787  
R251  
C273  
R295  
C563  
R677  
R676  
R675  
R313  
R448  
R447  
CR36  
R835  
C512  
R233  
R146  
C202  
R867  
C707  
R748  
R271  
R250  
R294  
C571  
R320  
C353  
R699  
C399  
R360  
C247  
C243  
C586  
C294  
C293  
C292  
C272  
C271  
C270  
R249  
C321  
C320  
C319  
R293  
Y6  
R708  
R707  
C352  
U39  
R898  
R216  
R215  
R897  
R644  
R270  
C216  
L15  
C410  
R319  
R339  
R698  
R674  
R643  
C351  
L25 R747  
C663  
C419  
R231  
R230  
R214  
C462  
U69  
C438  
R292  
R269  
R248  
C187  
R318  
C505  
C350  
R213  
R212  
C409  
C627  
C269  
C268  
C318  
C317  
C307  
R86  
R85  
R84  
R83  
R82  
R81  
C521  
C475  
C426  
C398  
R 2 8 1  
C257  
R237  
RN66  
RN58 RN55  
R66  
R65  
R64  
R63  
R62  
R61  
C236  
C226  
C220  
C408  
C680  
R697  
C607  
CR29  
RN82 RN78 RN70 RN65 RN61 RN57 RN54  
C504  
C461  
C437  
R N 1 8 0  
C242  
R 7 6 4  
R264 C262 R236  
C261  
C346  
C557  
CR28  
R38  
C592  
R672  
C 1 4 9  
C186  
R195  
R194  
Y5  
R608  
C556  
C 1 4 8  
C 1 4 7  
C 1 4 6  
C 1 4 5  
C 1 4 4  
C 1 4 3  
C 1 4 2  
C166  
C165  
R 3 7  
R 3 6  
C306  
RN49  
R100  
C164  
U72  
R229  
R 2 4 7 R228  
R227  
RN48  
RN47  
R 5 4 8  
C511  
C185 C163  
C267  
C382  
C397  
C621  
R719  
C310  
R394  
C225 C215  
R547  
R546  
R545  
R544  
C345  
C211  
C201  
C162  
C161  
C468  
C467  
RN167  
R386  
R607  
C576  
C562  
R N 1 0 1  
C266  
C662  
C 6 6 1  
RN164  
C160  
C159  
C424  
C450  
RN46  
C633  
C580  
C584  
R N 2 0 4  
C479  
R N 2 0 3 R N 2 0 0  
R515  
R99  
R98  
C249  
R210  
R209 R192  
R208 R191  
R207 R190  
R206 R189  
RN216  
RN214  
R706  
C561  
R193  
C184  
C602  
R385  
C396  
R33  
R32  
R290  
R285  
R338  
C339  
R780  
R779  
R778  
C 1 4 1  
C 1 4 0  
C 1 3 9  
C 1 3 8  
C 1 3 7  
C 1 3 6  
C 1 3 5  
C 1 3 4  
C305  
RN81 RN73 RN69  
RN60  
R741  
R740  
C158  
C157  
RN45  
C344  
R777  
R776  
C760  
C756  
R739  
R900  
R205  
C381  
C304  
C520  
C502  
C632  
R738  
C156  
C155  
C314  
C333 C309  
RN44  
RN43  
RN42  
C380  
C342  
C361  
C200  
R N 2 6 2  
R 2 9  
R 2 8  
C154  
C153  
C152  
R534  
C526  
C303  
C583  
C379  
C630  
C629  
C751  
C337  
C151  
C694  
C241  
R N 8 7 R N 8 5  
C754  
R N 7 7  
C755  
C658  
C206  
C560  
C555  
C302  
C301  
R737  
R775  
R774  
R773  
C657  
R772  
R N 7 2  
R899  
C752  
C704  
C599  
C702  
C701  
C582  
C519 C695  
C706  
C577  
R511  
C559  
R736  
R735  
R734  
C335  
C312  
C527  
C532  
C525  
R347  
R331  
C193  
R N 8 6 R N 8 4 R N 7 6 R N 7 1  
C129  
C444  
R N 1 6 8  
C
R 5 4 3  
R49  
R48  
R47  
R46  
R45  
C128  
R44  
R43  
9  
CR31 – LED  
750GX Checkstop Indicator  
F5 – Fuse  
18  
for 3.3V JTAG (J7), 0.75A  
R461  
R766  
C759  
C757  
R N 2 6 1  
C224  
C199  
R403  
C389  
R765  
R39  
R N 6 4  
R460  
R459  
C443  
R N 8 0 R N 7 5 R N 6 8  
R417  
R N 6 3  
U37  
R434  
R433  
N 2 0 9  
R N 2 0 6  
RN202 RN199 RN188 RN186 RN183  
RN50 RN41 RN40  
R52  
R N 7 9 R N 7 4 R N 6 7  
R356  
R355  
C367  
F7 – Fuse  
R588  
R168  
R160  
R159  
R158  
R157  
R156  
R155  
R N 2 0 7 R N 2 0 5  
RN201 RN198 RN187 RN185 RN182  
2 0 8  
C416  
C127  
C126  
for 2.5V JTA  
G
(P3), 0.75A  
C771  
R51  
C509  
F7  
CR31  
R118  
R117  
C131  
U38  
C667  
C652  
R 3 6 8  
C648  
C558  
R554  
605  
7  
CR9  
CR8  
R528  
R527  
R526  
604  
03  
R60  
R59  
F6  
R401  
F6 – Fuse  
for 3.3V JTAG (P3), 0.75A  
C130  
R40  
C508  
C507  
R149  
®
2-6  
Katana 752i User’s Manual  
10006024-04  
   
Setup: Katana®752i Circuit Board  
Identification Numbers  
®
Before you install the Katana 752i circuit board in a system, you should record the follow-  
ing information:  
The board serial number:____________________________________________ .  
The board serial number appears on a bar code sticker located on the back of the board.  
The board product identification: _____________________________________ .  
This sticker is located near the board serial number.  
The monitor version: _______________________________________________ .  
The version number of the monitor is on the monitor start-up display.  
The operating system version and part number: _________________________ .  
This information is labeled on the master media supplied by Emerson or another vendor.  
Any custom or user ROM installed, including version and serial number:  
________________________________________________________________ .  
It is useful to have these numbers available if you need to contact Technical Support at  
Emerson Network Power, Embedded Computing.  
Connectors  
®
The Katana 752i circuit board has various connectors, summarized as follows:  
P1: P1 is a dual-RJ45 connector that provides front panel access to two 10/100/1000BaseT  
Ethernet ports (see Fig. 2-1). One port routes to the MV64460 system controller. The other  
routes to the 82544EI Ethernet controller on the local PCI bus. The connector also has inte-  
grated link, speed, and activity LEDs for each port. See Chapter for pinouts.  
P2: P2 is a 9-pin Micro D connector on the front panel that provides EIA-232 console port access  
for the 750GL processor. See Table 5-4 for pinouts.  
P3: P3 is a 16-pin header on the circuit board for the 750GL COP/JTAG interface. See Table 4-6  
for pinouts.  
J1: J1 is a 110-pin connector that routes power supply signals, various CompactPCI (cPCI) util-  
ity signals and Intelligent Platform Management Interface (IPMI) control signals to and from  
the CompactPCI backplane. See Chapter for pinouts.  
J2: J2 is a 110-pin connector that routes Geographical Address (GA) signals and power supply  
signals from the CompactPCI backplane. See Chapter for pinouts.  
J3: J3 is a 95-pin connector that routes the gigabit Ethernet signals to and from the Compact-  
PCI packet-switched backplane (cPSB) or rear transition module. It also routes user  
input/output signals directly from the J14 connector at PTMC expansion site #1. See  
Chapter for pinouts.  
®
2-7  
10006024-04  
           
Setup: Katana®752i Circuit Board  
J4 : J4 is a 90-pin connector that routes computer telephony (CT) bus signals to the Compact-  
PCI backplane. See Chapter for pinouts.  
J5: J5 is a 110-pin connector that routes user input/output signals directly from the J24 connec-  
tor at PTMC expansion site #2. It also routes optional RMII signals from both PTMC sites. See  
Chapter for pinouts.  
J6: J6 is a 3-pin header on the circuit board for the ejector switch (for factory use only).  
J7: J7 is a 10-pin header on the circuit board that provides an in-system programmable (ISP)  
JTAG interface to the programmable logic (PLD) devices (factory use only).  
J11—J14: J11, J12, J13, and J14 are 64-pin connectors that support PTMC expansion site #1. See  
Table 9-1 for pinouts.  
J21—J24: J21, J22, J23, and J24 are 64-pin connectors that support PTMC expansion site #2. See  
Table 9-2 for pinouts.  
Fuses  
®
There are seven fuses on the Katana 752i circuit board.  
Note: The part numbers for these fuses are subject to change. Please check with Emerson before ordering replace-  
ment fuses.  
F1—F2: These 1-amp fuses (see Fig. 2-4) protect the ±12-volt power supplies. They are Emerson part  
number 02739005-00.  
F3—F4: These surface-mounted, socketed, 2.5-amp fuses (see Fig. 2-4) protect the 3.3-volt and 5-  
volt power supplies. They are Emerson part number 02959021-00.  
F5—F7: These 0.75 amp fuses (see Fig. 2-5) protect the power supplies for the COP/JTAG interface  
(P3) and PLD header (J7). They are Emerson part number 02959012-00.  
LEDs  
®
The Katana 752i has various light-emitting diodes (LEDs), as described in the following  
table. Please refer to Fig. 2-1 and Fig. 2-5 to locate these LEDs.  
Table 2-2: LEDs  
LED:  
CR1  
Color:  
Blue  
Signal Name:  
HOTSWAP_LED*  
PWRLED_OUT  
Comments:  
front panel Hot Swap status  
front panel Fault LED  
CPU checkstop indicator  
CR2  
Red  
CR31  
750GL_CHKSTP_OUT*  
®
2-8  
Katana 752i User’s Manual  
10006024-04  
       
Setup: Katana®752i Setup  
LED:  
CR3  
Color:  
Green  
Signal Name:  
750GL_LED4  
Comments:  
programmable LED on front  
panel  
CR4  
750GL_LED3  
(via light pipe LP1)  
CR5  
750GL_LED2  
CR6  
750GL_LED1  
CR10  
CR32  
CR33  
CR34  
CR35  
CR20  
CR21  
CR22  
CR23  
CR39  
CR41  
CR38  
CR40  
IPMI_STATUSOUT  
GIG0_LINK_LED*  
GIG0_LINK2*  
IPMI controller status  
Port 1 Gigabit Ethernet  
GIG0_ACT_LED*  
GIG0_LINK1*  
GIG1_ACT_LED*  
GIG1_LINK_LED*  
GIG1_LINK2*  
Port 2 Gigabit Ethernet  
GIG1_LINK1*  
PMC0_ACTLED  
PMC0_LINKLED_R  
PMC1_ACTLED  
PMC1_LINKLED_R  
PMC1 RMII  
PMC2 RMII  
Green/Ye  
llow  
FP1_LED1_1  
FP1_LED1_2  
front panel SP LED for ETH4  
(integrated with connector  
P1)  
FP1_LED2_1  
FP1_LED2_2  
front panel ACT LED for ETH4  
(integrated with connector  
P1)  
FP2_LED1_1  
FP2_LED1_2  
front panel SP LED for ETH3  
(integrated with connector  
P1)  
FP2_LED2_1  
FP2_LED2_2  
front panel ACT LED for ETH3  
(integrated with connector  
P1)  
KATANA®752I SETUP  
You need the following items to set up and check the operation of the Emerson  
®
Katana 752i.  
®
Emerson Katana 752i board  
Card cage and power supply  
Serial interface cable (EIA-232)  
Terminal  
Save the antistatic bag and box for future shipping or storage.  
®
2-9  
10006024-04  
   
Setup: Troubleshooting  
Power Requirements  
®
The Emerson Katana 752i circuit board typically requires about 35 watts of power when  
performing a simple memory test with no PMC/PTMC modules installed. The exact power  
®
requirements for the Katana 752i circuit board depend upon the specific configuration of  
the board, including the CPU frequency, amount of memory installed on the board, and  
PTMC configuration. Please contact Emerson Technical Support at 1-800-327-1251 if you  
have specific questions regarding the board’s power requirements.  
Note: The power value is an approximate–not measured–value.  
Environmental Requirements  
®
The Emerson Katana 752i circuit board is specified to operate in an ambient air tempera-  
ture range of 0° to +55° Centigrade. This range meets the NEBS Telecordia GR-63 specifica-  
tion. The entire chassis should be cooled with forced air. The recommended minimum air  
flow rate is 11 cubic feet/minute. The exact air flow requirement depends upon the chassis  
®
configuration and the ambient air temperature. The Katana 752i board’s relative humidity  
and storage temperature ranges fully comply with NEBS Telecordia GR-63 specification.  
TROUBLESHOOTING  
In case of difficulty, use this checklist:  
®
Be sure the Katana 752i circuit board is seated firmly in the card cage.  
Be sure the system is not overheating.  
Check the cables and connectors to be certain they are secure.  
®
If you are using the Katana 752i monitor, run the power-up diagnostics and check the  
results. Chapter describes the power-up diagnostics.  
Check your power supply for proper DC voltages. If possible, use an oscilloscope to look  
for excessive power supply ripple or noise (over 50 mV below 10 MHz).  
pp  
Check that your terminal is connected to a console port.  
®
2
The Katana 752i monitor uses values stored in on-card NVRAM (I C EEPROM) to  
configure and set the baud rates for its console port. The lack of a prompt might be  
caused by incorrect terminal settings, and incorrect configuration of the NVRAM, or a  
malfunctioning NVRAM.  
To force the board to boot using the default settings, first configure the terminal  
parameters to: 9600 baud, no parity, 8 data bits, and 1 stop bit. Then, reset the board  
while holding down the ‘s’ key. After the board boots to the prompt, you can initialize  
the configuration settings to their factory defaults with the following command:  
®
2-10  
Katana 752i User’s Manual  
10006024-04  
           
Setup: Troubleshooting  
moninit <four-digit board serial number> noburn  
Executing the above command will set all environment variables to default values and  
erase any user-added environment variables. Please see “Environment Parameter  
Commands” on page 15-18, for additional information.  
Technical Support  
If you need help resolving a problem with your Katana 752i, visit  
®
®
• Katana 752i serial number and product identification from the stickers on the board  
• baseboard model number and BIOS revision level (if applicable)  
• version and part number of the operating system (if applicable)  
• whether your board has been customized for options such as a higher processor speed  
or additional memory  
• license agreements (if applicable)  
If you do not have Internet access, please call Emerson for further assistance:  
(800) 327-1251 or (608) 826-8006 (US)  
44-131-475-7070 (UK)  
Product Repair  
[email protected] to obtain a Return Merchandise Authorization (RMA) number. We will  
ask you to list which items you are returning and the board serial number, plus your pur-  
chase order number and billing information if your Katana752i hardware is out of warranty.  
Contact our Test and Repair Services Department for any warranty questions. If you return  
the board, be sure to enclose it in an antistatic bag, such as the one in which it was originally  
shipped. Send it prepaid to:  
Emerson Network Power, Embedded Computing  
Test and Repair Services Department  
8310 Excelsior Drive  
Madison, WI 53717  
RMA #____________  
®
2-11  
10006024-04  
         
Setup: Troubleshooting  
Please put the RMA number on the outside of the package so we can handle your problem  
efficiently. Our service department cannot accept material received without an RMA num-  
ber.  
®
2-12  
Katana 752i User’s Manual  
10006024-04  
Section 3  
Reset Logic  
®
This chapter provides a system-level overview of the reset logic for the Katana 752i. It also  
describes the various reset sources.  
GENERAL OVERVIEW  
®
The Katana 752i uses discrete logic on a programmable logic device (PLD) to implement  
the reset circuitry. Fig. 3-1 on the following page shows an overview of the reset signals and  
logic.  
®
3-1  
10006024-04  
       
Reset Logic: General Overview  
Figure 3-1: Katana®752i Reset Diagram  
®
3-2  
Katana 752i User’s Manual  
10006024-04  
   
Reset Logic: Reset Sources  
RESET SOURCES  
®
The Katana 752i circuit board can be reset from the following sources:  
• Power-On Reset (POR) circuitry  
• CompactPCI Reset  
• Power Monitor Reset  
• 750GL Processor Reset (JTAG header)  
• Remote IPMI Reset  
• Front Panel Reset  
• Watchdog Timer Reset  
CompactPCI Reset Enable  
®
The Katana 752i has an optional configuration jumper at JP2 (see Fig. 2-4). When installed  
(default condition), this jumper enables the board to send a reset signal (when the front  
panel reset switch is pressed) to the cPCI system controller via the cPCI_PRST pin. Upon  
receiving this signal, the cPCI system controller generates a cPCI reset. When the jumper is  
®
not installed, the Katana 752i does not send the reset signal to the cPCI system controller  
when the reset switch is pressed.  
Another optional configuration jumper at JP1 (see Fig. 2-4), when installed (default condi-  
tion), enables the cPCI reset signal to drive a local PCI reset to the 750GL reset logic (see  
®
Fig. 3-2). When the jumper is not installed, the Katana 752i ignores the cPCI reset signal.  
Power Monitor  
®
The Katana 752i has a power monitor circuit that detects low voltage conditions on any of  
the power supply sources. The circuit will hold the oscillators off and drive the power-on  
reset (POR) for as long as the low voltage condition exists.  
750GL Processor Reset  
The Device Bus PLD (see Chapter ) on the Katana 752i implements the 750GL processor  
®
reset logic. Fig. 3-2 shows how the reset signals connect to the related devices.  
Note: The Device Bus PLD is also known as the MVC PLD.  
®
3-3  
10006024-04  
         
Reset Logic: Reset Sources  
Figure 3-2: 750GL Reset Logic  
hreset  
sreset  
trst  
flash_wp  
Soldered  
Flash  
COP/JTAG  
cop_hreset  
cop_sreset  
fl_rp  
hreset  
sreset  
cop_trst  
pmc_rst  
start_lrst  
cpu_hreset  
cpu_sreset  
cpu_trst  
PMC Sites  
750G
GL  
trst  
pwr_good  
pwr_good Device  
Bus  
Power  
reset  
reset  
ks8721_rst  
eth_rst  
PLD  
por_rst  
ipmi_rst  
start_rst (switch_rst)  
por_rst  
cpci_rst  
gt_wde  
KS8721CL  
gt_pci0  
gt_pci1  
gt_sysrst  
HSL  
PLD  
rst  
cPCI  
IPMI  
reset  
rst  
reset  
gt_wde  
sysrst  
reset  
5461S  
MV64460  
pci1_rst  
pci0_rst  
®
3-4  
Katana 752i User’s Manual  
10006024-04  
   
Section 4  
Processor  
®
The Katana 752i processor complex consists of a processor and a system controller/PCI  
bridge device (see Chapter ) with associated memory and input/output interfaces. The pro-  
cessor complex supports soldered and socketed user Flash memory, DDR SDRAM, an EIA-  
232 serial console port, and three 10/100/1000BaseT Ethernet ports.  
PROCESSOR OVERVIEW  
®
This chapter provides an overview of the processor logic on the Katana 752i. It includes  
®
information on the CPU, exception handling, and cache memory. The Katana 752i utilizes  
the IBM PowerPC 750GL microprocessor. For more detailed information, please refer to  
the following IBM document: PowerPC Microprocessor Family: The Bus Interface for 32-Bit  
Microprocessors.  
Features  
The following table outlines some of the key features for the 750GL CPU.  
Table 4-1: Katana®752i CPU Features  
Category:  
Instruction Set  
750GL Key Features:  
32-bit  
CPU Speed (internal)  
Data Bus  
Up to 1GHz  
64-bit  
Address Bus  
32-bit  
Four stage pipeline control  
Fetch, dispatch/decode, execute,  
complete/write back  
Cache (L1)  
32KB Instruction, 32KB Data, 8-way set  
associative  
Cache (L2)  
1MB, 4-way set associative, ECC checking  
Execution Units  
Branch Processing, Dispatch, Decode,  
Load/Store, Fixed-point, Floating-point,  
System  
Dual issue superscalar  
control  
Maximum of two instructions completed plus  
one branch folded per cycle  
Voltages  
Internal, 1.5V; input/output, 2.5V  
The following block diagram provides an overview of the IBM 750GL architecture.  
®
4-1  
10006024-04  
               
Processor: Processor Overview  
Figure 4-1: 750GL Block Diagram  
Control Unit  
Instruction Fetch  
Branch Unit  
Completion  
32KB I-Cache  
with Parity  
System  
Unit  
Dispatch  
BHT/BTIC  
GPRs  
FPRs  
FXU1  
FXU2  
LSU  
FPU  
Rename  
Buffers  
Rename  
Buffers  
1MB  
32KB D-Cache  
with Parity  
L2 Tags  
with Parity  
Enhanced 60x  
BIU  
L2 Cache  
w/ECC  
Physical Memory Map  
®
The Katana 752i monitor (see Chapter ) initializes the devices required to configure the  
memory map for the 750GL bus. The following figure shows the 750GL physical memory  
map.  
®
4-2  
Katana 752i User’s Manual  
10006024-04  
       
Processor: Processor Overview  
Figure 4-2: 750GL Memory Map  
32-Bit  
Hex Address:  
FFFF,FFFF  
Boot Mirror  
FF80,0000  
Reserved  
F834,0000  
SRAM  
F830,0000  
HSL PLD Registers  
F821,0000  
F820,0000  
F811,0000  
F810,0000  
F808,0000  
F800,0000  
Device Bus PLD Registers  
Reserved  
MV64460 Registers  
Reserved  
Flash Socket  
FLASH  
(up to 128MB)  
E800,0000  
E000,0000  
cPCI  
I/O Space  
cPCI  
Memory Space  
C000,0000  
Reserved  
B400,0000  
B000,0000  
PMC  
PCI I/O Space  
PMC  
PCI Memory Space  
8000,0000  
0000,0000  
SDRAM  
(up to 2GB)  
®
4-3  
10006024-04  
 
Processor: Processor Reset  
®
This table summarizes the physical addresses for the 750GL on the Katana 752i board and  
provides a reference to more detailed information.  
Table 4-2: Katana®752i Address Summary  
Hex Address  
(32-bit):  
FF80,0000  
F834,0000  
F830,0000  
F821,0000  
Access  
Mode:  
R
Description:  
Boot Mirror  
See Page:  
Reserved  
R/W  
R/W  
MV64460 SRAM  
HSL PLD Registers  
F820,0000  
F811,0000  
F810,0000  
F808,0000  
F800,0000  
E800,0000  
E000,0000  
C000,0000  
B400,0000  
B000,0000  
8000,0000  
0000,0000  
R/W  
Device Bus PLD Registers  
Reserved  
R/W  
MV64460 Registers  
Reserved  
R/W  
R/W  
R/W  
R/W  
Flash socket  
Flash (up to 128MB)  
cPCI I/O Space  
cPCI Memory Space  
Reserved  
R/W  
R/W  
R/W  
PMC PCI I/O Space  
PMC PCI Memory Space  
SO-DIMM SDRAM (up to 2GB)  
PROCESSOR RESET  
®
Circuitry on the Katana 752i resets the processor and the board. Please refer to Chapter  
for details.  
PROCESSOR INITIALIZATION  
®
Initially, the Katana 752i powers up with specific values stored in the CPU registers. The ini-  
tial power-up state of the Hardware Implementation Dependent registers (HID0) and the  
Machine State register (MSR) are given in Table 4-3.  
Table 4-3: CPU Internal Register Initialization  
Register:  
Default After Initialization (Hex):  
Notes:  
HID0  
8000,0000  
8000,C000  
0000,B032  
(icache and dcache off)  
(icache and dcache on)  
Hardware Implementation Dependent  
MSR  
Machine State register.  
®
4-4  
Katana 752i User’s Manual  
10006024-04  
         
Processor: Processor Initialization  
Hardware Implementation Dependent 0 Register  
The Hardware Implementation Dependent 0 Register (HID0) contains bits for CPU-specific  
®
features. Most of these bits are cleared on initial power-up of the Katana 752i. Please refer  
to the IBM PowerPC documentation for more detailed descriptions of the HIDx registers.  
The following register map summarizes HID0 for the 750GL CPU:  
Register 4-1: 750GL Hardware Implementation Dependent, HID0  
0
1
2
3
4
6
7
8
9
10  
11  
12  
13  
14  
15  
EMCP  
DBP  
EBA  
EBD  
Reserved  
PAR  
DOZE  
NAP  
SLEEP  
DPM  
RISEG  
Res.  
MUM  
NHR  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
ICE  
DCE  
ILOCK  
DLOCK  
ICFI  
DCFI  
SPD  
IFEM  
SGE  
DCFA  
BTIC  
Res  
ABE  
BHT  
Res  
NOOPTI  
®
EMCP: Enable Machine Check Pin. Initially enabled on the Katana 752i.  
DBP: Disable 60x Bus address and data Parity generation (in conjunction with EBA/EBD).  
EBA: Enable 60x Bus Address parity checking.  
EBD: Enable 60x Bus Data parity checking.  
PAR: Disable Precharge of ARTRY* and shared signals.  
DOZE: Select low-power doze.  
NAP: Select low-power nap.  
SLEEP: Select low-power sleep.  
DPM: Enable Dynamic Power Management.  
RISEG: Read Instruction Segment Register (test only).  
NHR: Not Hard Reset (software use only).  
MUM: Miss-Under-Miss Enable.  
ICE/DCE: Instruction and Data Cache Enables.  
I/DLOCK: Instruction and Data Cache Lock bits.  
ICFI/DCFI: Instruction and Data Cache Flash Invalidate bits.  
SPD: DCache and ICache Speculative access disable.  
IFEM: Enable M bit on bus for Instruction Fetches.  
SGE: Store Gathering Enable.  
DCFA: Data Cache Flush Assist.  
Force data cache to ignore invalid sets on miss replacement selection.  
®
4-5  
10006024-04  
     
Processor: Processor Initialization  
BTIC: Branch Target Instruction Cache enable.  
ABE: Address Broadcast Enable (for cache ops, eieio, sync).  
BHT: Branch History Table enable.  
NOOPTI: No-op the dcbt/dcbst instructions.  
Hardware Implementation Dependent 1 Register  
The 750GL includes two phase-lock loops (PLL0 and PLL1), which allow the processor clock  
frequency to be changed to one of the PLL frequencies via software control. The HID1 regis-  
ter contains:  
• Fields that specify the frequency range of each PLL  
• The clock multiplier of each PLL  
• External or internal control of PLL0  
• A bit to choose which PLL is selected (source of the processor clock at any given time):  
Register 4-2: 750GL Hardware Implementation Dependent, HID1  
0
4
5
6
7
8
ECLK  
9
13  
29  
14  
PI0  
15  
PS  
PCE  
PRE  
PSTAT1  
Reserved  
16  
20  
21  
22  
23  
24  
28  
30  
31  
PC0  
PR0  
Res.  
PC1  
PR1  
Res.  
PCE: PLL External Configuration bits (read only).  
PRE: PLL External Range bits (read only).  
PSTAT1: PLL Status (not supported in DD1.x).  
0 = PLL0 is the processor clock source  
1 = PLL1 is the processor clock source  
ECLK: Enable the CLKOUT pin (set to 1).  
PI0: PLL 0 Internal configuration select.  
0 = Select external configuration and range bits to control PLL0  
1 = Select internal fields in HID1 to control PLL0  
PS: PLL Select.  
0 = Select PLL0 as source for processor clock  
1 = Select PLL1 as source for processor clock  
PC0: PLL0 Configuration bits.  
®
4-6  
Katana 752i User’s Manual  
10006024-04  
     
Processor: Processor Initialization  
PR0: PLL0 Range select bits.  
PC1: PLL1 Configuration bits.  
PRI: PLL1 Range bits.  
Hardware Implementation Dependent 2 Register  
Parity is implemented for the following arrays: I-Cache, I-Tag, D-Cache, D-Tag, and L2 Tag.  
Status bits are set when a parity error is detected and cleared when the HID2 register is  
written.  
Register 4-3: 750GL Hardware Implementation Dependent, HID2  
0
2
3
4
15  
Reserved  
STMUMD  
Reserved  
1
6
1
9
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
FICBP  
FITBP  
FDCBP  
FDTBP  
FL2TBP  
ICPS  
DCPS  
L2PS  
Res.  
ICPE  
DCPE  
L2PE  
STMUMD: Disable store miss-under-miss processing.  
FICBP: Force I-Cache bad parity.  
FITBP: Force I-Tag bad parity.  
FDCBP: Force D-Cache bad parity.  
FDTBP: Force D-Tag bad parity.  
FL2TBP: Force L2-Tag bad parity.  
ICPS: L1 I-Cache/I-Tag Parity Error Status/Mask.  
DCPS: L1 D-Cache/D-Tag Parity Error Status/Mask.  
L2PS: L2 Tag Parity Error Status/Mask.  
ICPE: L1 I-Cache/I-Tag Parity checking Enable.  
DCPE: L1 D-Cache/D-Tag Parity checking Enable.  
L2PE: L2 Tag Parity checking Enable.  
®
4-7  
10006024-04  
     
Processor: Exception Handling  
EXCEPTION HANDLING  
Each CPU exception type transfers control to a different address in the vector table. The  
vector table normally occupies the first 2000 bytes of RAM (with a base address of  
0000,0000 ) or ROM (with a base address of F800,0000 ). An unassigned vector position  
16  
16  
may be used to point to an error routine or for code or data storage. Table 4-4 lists the  
exceptions recognized by the processor from the lowest to highest priority.  
Table 4-4: 750GL Exception Priorities  
Vector Address  
Hex Offset:  
Exception:  
Notes:  
Trace  
00D00  
Lowest priority. Due to MSR[SE]=1 or MSR[BE]=1 for  
branches.  
Data Storage (DSI)  
00300  
DABR address match.  
TLB page protection violation.  
Any access except cache operations to T=1 (bit 5 of  
DSISR) or T=0->T=1 crossing.  
BAT page protection violation.  
Due to eciwx, ecowx with EAR(E)=0 (bit 11 of  
DSIDSR).  
Alignment  
00600  
00700  
Any alignment exception condition.  
Program (PI)  
Due to a floating-point enabled exception.  
Due to an illegal instruction, a privileged instruction,  
or a trap.  
Floating Point Unavailable (FPA)  
System call (SC)  
00800  
00C00  
01300  
Any floating-point unavailable exception.  
Execution of system call (sc) instruction.  
Any IABR exception condition.  
Instruction Address Breakpoint  
(IABR)  
Instruction Storage (ISI)  
00400  
01700  
Instruction fetch exceptions.  
Thermal Management (TMI)  
Junction temperature exceeds the threshold  
specified in THRM1 or THRM2, and MSR[EE]=1.  
Decrementer (DEC)  
Performance Monitor (PFM)  
External (EI)  
00900  
00F00  
00500  
Decrementer passed through zero.  
Programmer-specified.  
INT* (Refer to Section for description of interrupt  
sources and interrupt handling.)  
System Management (SMI)  
Machine check  
01400  
00200  
MSR[EE]=1 and SMI* is asserted.  
Assertion of TEA*, 60x Address Parity Error, 60x Data  
Parity Error, L2 ECC Double Bit Error, MCP*, L2-Tag  
Parity Error, D-Tag Parity Error, I-Tag Parity Error, I-  
Cache Parity Error, D-Cache Parity Error, or locked L2  
snoop hit.  
System reset  
00100  
Soft reset (SRESET*).  
Highest priority. Hard reset (HRESET* and POR).  
®
4-8  
Katana 752i User’s Manual  
10006024-04  
     
Processor: Exception Processing  
Vector Address  
Hex Offset:  
Exception:  
Notes: (continued)  
00000  
Reserved.  
EXCEPTION PROCESSING  
When an exception occurs, the address saved in Machine Status Save/Restore register 0  
(SRR0) helps determine where instruction processing should resume when the exception  
handler returns control to the interrupted process. Machine Status Save/Restore register 1  
(SRR1) is used to save machine status on exceptions and to restore those values when an rfi  
instruction is executed.  
When an exception is taken, the 750GL controller uses SRR0 and SRR1 to save the contents  
of the Machine State register (MSR) for the current context and to identify where instruc-  
tion execution resumes after the exception is handled.  
The Machine State register (MSR) configures the state of the 750GL CPU. On initial power-  
®
up of the Katana 752i, most of the MSR bits are cleared. Please refer to the IBM PowerPC  
documentation for more detailed descriptions of the individual bit fields.  
Register 4-4: CPU Machine State (MSR)  
0
1
12  
13  
14  
15  
Reserved  
POW  
Res.  
ILE  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
EE  
PR  
FP  
ME  
FE0  
SE  
BE  
FE1  
Res.  
IP  
IR  
DR  
Res.  
PM  
RI  
LE  
POW: Power Management enable. Setting this bit enables the programmable power manage-  
ment modes: nap, doze, or sleep. These modes are selected in the HID0 register. This bit  
has no effect on dynamic power management.  
0= Power management disabled (normal operation mode)  
1= Power management enabled (reduced power mode)  
ILE: Exception Little-Endian mode.  
EE: External interrupt Enable. This bit allows the processor to take an external interrupt, system  
management interrupt, or decrementer interrupt.  
0= External interrupts and decrementer exception conditions delayed.  
1= External interrupt or decrementer exception enabled.  
PR: Privilege level.  
0= User- and supervisor-level instructions are executed  
1= Only user-level instructions are executed  
®
4-9  
10006024-04  
       
Processor: Exception Processing  
FP: Floating-Point available. This bit is set on initial power-up.  
0= Prevents floating-point instructions dispatch (loads, stores, moves).  
1= Executes floating-point instructions.  
ME: Machine check Enable.  
0= Machine check exceptions disabled.  
1= Machine check exceptions enabled.  
FE0/FE1: These bits define the Floating-point Exception mode.  
Table 4-5: Floating Point Exception Mode Bits  
FE0:  
FE1:  
FP Exception Mode:  
Disabled  
0
0
1
1
0
1
0
1
Imprecise nonrecoverable  
Imprecise recoverable  
Precise  
SE: Single-step trace Enable.  
0= Executes instructions normally.  
1= Single-step trace exception generated.  
BE: Branch trace Enable.  
0= Executes instructions normally.  
1= Branch type trace exception generated.  
IP: Exception Prefix. Initially, this bit is cleared so that the exception vector table is placed at  
the base of RAM (0000,0000 ). When this bit is set, the vector table is placed at the base of  
16  
ROM (FFF0,0000 ).  
16  
IR/DR: Instruction and Data address translation enables.  
0= Address translation disabled.  
1= Address translation enabled.  
PM: Marks a process for the Performance Monitor.  
0= Process is not marked.  
1= Process is marked.  
RI: Recoverable exception enable for system reset and machine check. This feature is enabled  
on initial power-up.  
0= Exception is not recoverable.  
1= Exception is recoverable.  
LE: Little-endian mode enable.  
0= Big-endian mode (default).  
1= Little-endian mode.  
®
4-10  
Katana 752i User’s Manual  
10006024-04  
   
Processor: Cache Memory  
CACHE MEMORY  
The 750GL processor provides both level 1 (L1) and level 2 (L2) cache memory. This section  
describes this memory.  
L1 Cache  
The 750GL processor has separate, on-chip, 32-kilobyte, Level 1 (L1) instruction and data  
caches with eight-way, set-associative translation lookaside buffers (TLBs). The CPU sup-  
ports the modified/exclusive/invalid (MEI) cache coherency protocol. The data bus width  
for bus interface unit (BIU) accesses of the L1 data cache array is 256 bits. This enables  
cache line data burst to be read from or written to the cache array in a single cycle, reducing  
cache contention between the BIU and the load-store unit. The 750GL also employs  
pseudo-least recently used (PLRU) replacement algorithms for enhanced performance.  
L2 Cache  
The internal L2 cache is four-way set associative. Each way contains 4096 blocks, and each  
block consists of two 32-byte sectors. It can be configured with any combination of individ-  
ual ways locked. It can lock half or all of the ways, or it can unlock them all. When unlocked,  
the L2 cache is four-way set associative. Each way contains 262144 blocks, and each block  
consists of two 32-byte sectors.  
The L2 cache can be configured to contain instructions or data only. Array read and write  
operations execute in one processor cycle—writes are 64 bits wide and reads are 256 bits  
wide. The L2 has a 1MB SRAM which includes an 8-bit ECC for every 64-bit word in memory  
that can be used to correct most single bit errors and detect multiple bit errors.  
The L2 cache control register (L2CR) configures and enables the L2 cache. The L2CR is  
read/write and contents are cleared during power-on reset.  
Register 4-5: L2 Cache Control Register (L2CR)  
0
1
2
8
9
10  
11  
12  
13  
14  
15  
L2E  
L2CE  
Reserved  
L2DO  
L2I  
Res.  
L2WT  
L2TS  
Reserved  
1
9
16  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29 30  
31  
Reserved  
L2  
L2  
SHEE  
SHERR  
L2  
L2  
L2  
L2  
L2IO  
Reserved  
L2IP  
L0CK LO  
LOCK HI  
LOCK0  
LOCK1  
LOCK2  
LOCK3  
L2E: L2 Enable.  
Enables and disables the operation of the L2 cache, starting with the next transaction.  
L2CE: L2 double bit error Checkstop Enable.  
®
4-11  
10006024-04  
           
Processor: Cache Memory  
L2DO: L2 Data-Only.  
Setting this bit inhibits the caching of instructions in the L2 cache. All accesses from the L2  
instruction cache are treated as cache-inhibited by the L2 cache.  
L2I: L2 global Invalidate.  
Setting this bit invalidates the L2 cache globally by clearing the L2 status bits.  
L2WT: L2 Write-Through.  
Setting this bit selects write-through mode (rather than default copy-back mode) so all  
writes to the L2 cache also write through to the 60x bus.  
L2TS: L2 Test Support.  
Setting this bit causes cache block pushes from the L1 data cache that result from dcbf and  
dcbst instructions to be written only into the L2 cache and marked valid. Also causes single-  
beat store operations that miss in the L2 cache to be discarded.  
L2L0CKLO: L2 cache locking: lock ways 0 and 1.  
L2LOCKHI: L2 cache locking: lock ways 2 and 3.  
SHEE: Snoop Hit in locked line Error Enable.  
SHERR: Snoop Hit in locked line Error.  
L2LOCK0: Lock way 0 if either bit 20 or bit 24 is set to one.  
L2LOCK1: Lock way 1 if either bit 20 or bit 25 is set to one.  
L2LOCK2: Lock way 2 if either bit 21 or bit 26 is set to one.  
L2LOCK3: Lock way 3 if either bit 21 or bit 27 is set to one.  
L2IO: L2 Instruction-Only.  
Setting this bit inhibits data caching in the L2 cache.  
L2IP: L2 global Invalidate in Progress.  
This read only bit indicates whether an L2 global invalidate is occurring.  
The L2 cache is disabled following a power-on or hard reset. Before enabling the L2 cache,  
configuration parameters must be set in the L2CR and the L2 tags must be globally invali-  
dated. Initialize the L2 cache during system start-up per the following sequence:  
1
2
3
4
5
Power-on reset (automatically performed by the assertion of HRESET* signal).  
Disable interrupts and dynamic power management (DPM).  
Disable L2 cache by clearing L2CR[L2E].  
Perform an L2 global invalidate.  
Enable the L2 cache for normal operation by setting the L2CR[L2E] bit to 1.  
®
4-12  
Katana 752i User’s Manual  
10006024-04  
Processor: JTAG/COP Headers  
JTAG/COP HEADERS  
The 750GL CPU provides a dedicated user-accessible test access port (TAP) that is fully  
compatible with the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architec-  
ture. The internal common-on-chip (COP) debug processor allows access to internal scan  
chains for debugging purposes, and can also be used as a serial connection to the core for  
emulator support.  
Table 4-6: 750GL JTAG/COP Interface Pin Assignments, (P3)  
Pin:  
Signal:  
I/O:  
Description:  
1
TDO  
Output  
The Test Data Out is a standard JTAG signal. This is the scan  
path output, driven by the falling edge of the TCK signal and  
sampled on the rising edge of TCK.  
2
3
Not connected  
TDI  
Input  
The Test Data In is a standard JTAG signal, and is the input  
data for the scan path. TDI is driven by the JTAG controller on  
the falling edge of TCK, and sampled on the rising edge of  
TCK by the JTAG slave.  
4
TRST*  
Input  
Test Reset is a standard JTAG signal. When this signal is active  
(low), the JTAG logic is reset and inactive, allowing normal  
operation of the 750GL.  
5
6
Not connected  
+3.3V  
Output  
This is the power supply for the 750GL which indicates to the  
debug station the voltage at which the target processor is  
powered. (For the Katana 752i, this signal is tied to 2.5V  
through a resettable PTC fuse.)  
®
7
TCK  
Input  
The Test Clock is a standard JTAG signal, and is the clock for  
the JTAG machine. JTAG signals are driven according to the  
TCK falling edge and sampled over its rising edge.  
8
9
Not connected  
TMS  
Input  
The Test Mode Select is a standard JTAG signal. This signal,  
along with TCK, controls the TAP controller state machine  
allowing movement between its different states. When high,  
it causes a change in the TAP controller state on the rising  
edge of TMS. When low, the TAP controller state machine  
remains in its current state.  
10  
11  
Not connected  
SRESET*  
Input  
The Soft Reset is required to enable the debug station to  
either generate a Soft Reset sequence, or observe the 750GL  
taking a Soft Reset sequence.  
12  
13  
GND  
Ground  
HRESET*  
Input  
The Hard Reset is required to enable the debug station to  
either generate a Hard Reset sequence, or observe the 750GL  
taking a Hard Reset sequence.  
14  
Key  
Pin 14 is not installed.  
®
4-13  
10006024-04  
     
Processor: JTAG/COP Headers  
Pin:  
Signal:  
I/O:  
Description: (continued)  
15  
CHKSTPO*  
Output  
Checkstop (halted) indication (see also Checkstop LED  
indicator, CR31, in Fig. 2-5)  
16  
GND  
Ground  
®
4-14  
Katana 752i User’s Manual  
10006024-04  
Section 5  
System Controller  
®
The Katana 752i processor complex consists of a processor (see Chapter ) and a system  
controller/PCI bridge device with associated memory and input/output interfaces. This  
chapter describes the Marvell MV64460 system controller/PCI bridge device implementa-  
tion.  
OVERVIEW  
®
The Discovery III PowerPC System Controller (MV64460) from Marvell is an integrated  
system controller with a PCI interface and communication ports for high performance con-  
trol applications. The MV64460 has a five bus architecture:  
• A 64-bit interface to the CPU bus  
• A 64-bit interface to DDR SDRAM  
• A 32-bit interface to devices  
®
• Two PCI interfaces: The Katana 752i implementation uses a 32-bit interface for the  
local PCI bus (PCI1) and a 32/64-bit interface for the CompactPCI bus (PCI0).  
The five buses function independently which enables simultaneous operation of the CPU  
bus, PCI device, and access to memory.  
The MV64460 communications unit includes the following:  
• Three Gigabit Ethernet ports  
• Two multi-protocol serial controllers (MPSC)  
• Ten serial DMAs (SDMA)  
• Two baud rate generators (BRG)  
2
• I C interface  
The crossbar fabric, or central routing unit, controls the data path routing. It contains pro-  
grammable arbitration mechanisms to optimize device performance.  
®
5-1  
10006024-04  
         
System Controller: CPU Interface  
Figure 5-1: MV64460 Block Diagram  
CPU at up to 200 MHz  
CPU Interface  
+ 2 Mb SRAM  
4 DMA  
2 XOR  
72-bit at up to  
200 MHz  
DDR  
GPIO, SCC,  
TWSI, Int,  
Timers  
32-bit at  
66 MHz  
SCC, TWSI  
10/100/1000  
Device  
3 Ports Gb  
Ethernet +  
FIFO Interface  
PCI  
PCI  
64-bit at 33/66 MHz  
64-bit at 33/66 MHz  
CPU INTERFACE  
CPU interface features include:  
• 32-bit address and 64-bit data buses  
• Support for Symmetrical Multi-Processing (SMP) in both 60x and MPX bus modes  
• Support for up to four slave devices on the same 60x bus  
• Up to 200 MHz CPU bus frequency  
• CPU address remapping to PCI  
• Support for access, write, and cache protection to a configurable address range  
• Support for up to 16 pipelined address transactions  
Note: Proprietary information on the Marvell MV64460 device is not available in this user’s manual. Please refer to  
the Marvell web site at http://www.marvell.com for available documentation.  
®
The Katana 752i monitor configures the MV64460 controller so that it provides these 32-  
bit registers to the PowerPC processor in the correct byte order (assuming the access width  
is 32 bits). The CPU setting of the CPU Configuration register affects the MV64460 behavior  
on subsequent CPU accesses. This register activates with transactions pipeline disabled. In  
order to gain the maximum CPU interface performance, change this default by following  
these steps:  
®
5-2  
Katana 752i User’s Manual  
10006024-04  
       
System Controller: SDRAM Controller  
1
Read the CPU Configuration register. This guarantees that all previous transactions in the  
CPU interface pipe are flushed.  
2
3
Program the register to its new value.  
Read polling of the register until the new data is being read.  
Caution: Setting the CPU Configuration register must be done only once. For example, if the CPU  
interface is configured to support Out of Order (OOO) read completion, changing the  
register to not support OOO read completion is fatal.  
!
SDRAM CONTROLLER  
The MV64460 supports double data rate (DDR) synchronous dynamic random access  
memory (SDRAM). The SDRAM controller supports up to four banks of SDRAMs. It has a 16-  
bit address bus (M_DA[13:0] and M_BA[1:0]) and a 72-bit data bus (M_DQ[63:0] and  
M_CB7[7:0]). The SDRAM controller supports both registered and unbuffered SDRAM  
devices. Other features include:  
• 64-bit wide (+ 8-bit ECC) SDRAM interface  
• Up to 200-MHz SDRAM frequency  
• Support for 64-megabit to one-gigabit DDR SDRAM devices  
• Supports both physical and virtual bank interleaving  
The MV64460 has a number of SDRAM registers. Refer to the Marvell web site for available  
documentation.  
DEVICE CONTROLLER INTERFACE  
The device controller supports up to five banks of devices. Each bank’s supported memory  
space can be programmed separately in one megabyte quantities up to 512 megabytes of  
address space with a total device space of 2.5 gigabytes. Other features include:  
• Dedicated 32-bit multiplexed address/data bus (separate from the SDRAM bus)  
• 66 MHz bus frequency  
• Five chip selects, each with programmable timing  
• Use as a high bandwidth interface to user specific logic  
• Supports many types of standard memory and I/O devices  
Each bank has its own parameter register and can be programmed to 8, 16, or 32-bits wide.  
The device interface consists of 128 bytes of write buffer and 128 bytes of read buffer.  
®
5-3  
10006024-04  
         
System Controller: Internal (IDMA) Controller  
INTERNAL (IDMA) CONTROLLER  
Each of the four DMA engines can move data between any source and any destination, such  
as the SDRAM, device, PCI_0, or CPU bus. These engines optimize system performance by  
moving large amounts of data without significant CPU intervention. Read and write are  
handled independently and concurrently.  
TIMER/COUNTERS  
Each of the four 32-bit wide timer/counters can be selected to operate as a timer or a  
counter. Each timer/counter increments with every Tclk rising edge. In counter mode, the  
counter counts down to terminal count, stops, and issues an interrupt. In timer mode, the  
timer counts down, issues an interrupt on terminal count, reloads itself to the programmed  
value, and continues to count. Reads from the counter or timer are completed directly from  
the counter, and writes are to the timer/counter register.  
PCI INTERFACE  
The MV64460 supports two 64-bit PCI interfaces, which comply with the PCI Local Bus Spec-  
ification revision 2.3. Other features include:  
• Supports P2P memory, I/O, and configuration transactions  
• PCI bus speed up to 66 MHz with zero wait states  
• Operates either synchronous or asynchronous to CPU clock; at slower, equal, or faster  
clock frequency  
• 32/64-bit PCI master and target operations  
®
For the Katana 752i, PCI1 is a 32-bit, 33/66MHz local PCI bus interface.  
PCI_0 is a 32/64-bit, 33/66MHz cPCI bus interface.  
PCI Configuration Space  
The PCI slave supports Type 00 configuration space header as defined in the PCI specifica-  
tion. The MV64460 is a multi-function device and the header is implemented in all eight  
functions. The PCI interface implements the configuration header and this space is accessi-  
ble from the CPU or PCI bus.  
®
5-4  
Katana 752i User’s Manual  
10006024-04  
                 
System Controller: PCI Interface  
PCI Identification  
®
The Katana 752i has been assigned the following PCI identification numbers.  
Table 5-1: PCI Identification Values  
Field:  
Vendor ID  
Value:  
0x11AB  
0x6480  
0x1223  
0x0048  
Description:  
Marvell  
Device ID  
MV64460 System Controller  
Emerson Network Power  
Katana®752i  
Subsystem Vendor ID  
Subsystem Device ID  
PCI Read/Write  
The MV64460 becomes a PCI bus master when the CPU, IDMA, or MPSC SDMAs initiate a  
bus cycle to a PCI device. Conventional PCI mode allows unlimited DMA bursts between PCI  
and memory. It supports all PCI commands including 64-bit addressing using dual access  
cycles (DAC).  
The MV64460 acts as a target when a PCI device initiates a memory access (or an I/O access  
in the case of internal registers, or a P2P transaction). It responds to all memory read and  
write accesses, including DAC, and to all configuration and I/O cycles in the case of internal  
registers. Its internal buffers allow unlimited burst reads and writes, and they support up to  
four pending delayed reads in conventional PCI mode.  
PCI Interface Registers  
PCI0 and PCI1 contain the same set of internal registers, but are located at different offsets.  
A CPU access to the MV64460 PCIx Configuration register is performed via the PCIx Config-  
uration Address and Data registers.  
All PCI configuration registers are located at their standard offset in the configuration  
header, as defined in the PCI specification, when accessed from their corresponding PCI  
bus. For example, if a master on PCI1 performs a PCI configuration cycle on PCI’s Status and  
Command register, the register is located at 0x004.  
A host access from the PCI interface to this register allows the target PCI device to acknowl-  
edge the interrupt by turning off the INTA* interrupt. Although the interrupts are active  
low, the register values are active high. For example, a value of one in the INTA field indi-  
cates that an interrupt is pending on INTA*. Also, writing a one to this location asserts the  
INTA* interrupt.  
®
The Katana 752i may generate interrupts to other PCI devices by accessing doorbell-type  
interrupt-generating registers or address ranges within their PCI bridges. The board will  
respond to interrupts caused by another PCI device when it accesses a programmable  
range of local memory, as provided by the MV64460 memory controller. In addition, it may  
®
5-5  
10006024-04  
           
System Controller: Doorbell Registers  
monitor the state of the PCI bus INTA*—INTD* signals (PCI1 only). The MV64460 contains  
registers that control the masking, unmasking, and priority of the PMC interrupts as inputs  
to the processor.  
DOORBELL REGISTERS  
The MV64460 uses the doorbell registers in the messaging unit (MU) to request interrupts  
on both the PCI and CPU buses. There are two types of doorbell registers:  
Outbound: These are set by the MV64460’s local CPU to request an interrupt service on the PCI bus.  
Inbound: These are set by an external PCI agent to request interrupt service from the local CPU.  
Outbound Doorbells  
The local CPU generates an interrupt request to the PCI bus by setting bits in the Outbound  
Doorbell register (ODR). The interrupt may be masked in the Outbound Interrupt Mask reg-  
ister (OIMR), but that does not prevent the bit from being set in the ODR. The ODR is  
located at PCI_0 offset 0x1C2C.  
Note: The CPU or the PCI interface can set the ODR bits. This allows for passing interrupt requests between CPU and  
PCI interfaces.  
Inbound Doorbells  
The PCI bus generates an interrupt request to the local CPU by setting bits in the Inbound  
Doorbell register (IDR). The interrupt may be masked in the Inbound Interrupt Mask regis-  
ter (IIMR), but masking the interrupt does not prevent the bit from being set in the IDR. The  
IDR is located at PCI_0 offset 0x1C20.  
Note: The interrupt request triggered from the PCI bus can be targeted to the CPU or to the PCI interface, depending  
on the software setting of the interrupt mask registers.  
WATCHDOG TIMER  
The 32-bit count down watchdog timer generates a nonmaskable interrupt or resets the  
system in the event of unpredictable software behavior. After the watchdog is enabled, it is  
a free-running counter that requires periodic servicing to prevent its expiration. After reset,  
the watchdog is disabled.  
RESET  
®
Circuitry on the Katana 752i resets the entire board if the voltages fall out of tolerance or if  
the optional on-board reset switch is activated. Please refer to Chapter for additional infor-  
mation.  
®
5-6  
Katana 752i User’s Manual  
10006024-04  
               
System Controller: On-Card Memory  
ON-CARD MEMORY  
®
The Katana 752i has various types of on-card memory to support the MV64460 system  
controller and the 750GL processor. It has user Flash, SDRAM for data storage, and several  
serial EEPROMs for non-volatile memory storage. The following subsections describe these  
memory devices.  
User Flash  
®
The Katana 752i user Flash memory interface supports soldered devices of 32, 64, or 128  
megabytes for the processor complex. The 32-megabyte configuration uses one bank of  
two 128 Mbit devices. The 64-megabyte configuration uses two banks of two 128 Mbit  
devices or one bank of 256 Mbit devices. The 128-megabyte configuration uses two banks  
of two 256 megabit devices. The soldered Flash banks provide a maximum of 128 mega-  
bytes of contiguous true Flash file system (TFFS) memory. The MV64460 controls this  
memory, located at E800,0000 on the processor 60x bus. By default, the 750GL proces-  
16  
sor boots from the soldered Flash (see Jumper JP2 location on page 2-5).  
®
In addition to the soldered Flash memory, the Katana 752i also supports a single Flash  
memory device of up to 512 kilobytes for the 750GL processor complex. This memory  
device is socketed and located at F800,0000 on the processor 60x bus. The 750GL pro-  
16  
cessor can write to and boot from this memory.  
SDRAM  
®
The Katana 752i supports up to two gigabytes of 72-bit wide synchronous dynamic ran-  
dom access memory (SDRAM) for the 750GL processor complex. The SDRAM interface  
implements eight additional bits to allow for error correcting code (ECC).  
Note: If a standard two-gigabyte SO-DIMM is installed, PMC Site #1 becomes inaccessible due to the dimensions of  
the SO-DIMM. Also, the CPU and local bus frequencies are slightly different for this configuration. Using a  
two-gigabyte SO-DIMM will slightly increase the Katana®752i’s airflow requirements.  
The SDRAM is in the form of a small-outline, dual in-line memory module (SO-DIMM)  
device. A serial EEPROM on the SO-DIMM provides configuration information, accessible via  
2
the I C interface at address AE . The SDRAM occupies physical addresses from  
16  
0000,0000 to 7FFF,FFFF on the processor 60x bus. The MV64460 controls the SDRAM  
16  
16  
and supports a double data rate (DDR) interface that allows for transfer speeds of up to 400  
MHz (clock rates of up to 200 MHz).  
®
5-7  
10006024-04  
           
System Controller: I2C Interface  
EEPROMs  
2
The MV64460 uses an 8-kilobyte serial EEPROM at hex location 53 on the I C bus to store  
16  
configuration data. Also, the MV64460 provides a second 8-kilobyte serial EEPROM at hex  
2
location A6 on the I C bus to provide additional non-volatile information such as board,  
16  
monitor, and operating system configurations. All Emerson-specific data is stored in the  
upper 2 kilobytes of the device. The SROM data organization is allocated as follows.  
Table 5-2: NVRAM Allocation  
Address Offset:  
Name:  
Window Size:  
0x1E00-0x1FFF  
0x1DDC-0x1DFF  
0x1DD8-0x1DDB  
0x1800-0x1DD7  
0x1600-0x17FF  
0x0000-0x15FF  
Reserved  
0x0200 (512) bytes  
0x0024 (36) bytes  
0x0004 (4) bytes  
BootVerify parameters  
Power-on self-test (POST) diagnostic results  
Monitor configuration parameters  
Operating system  
0x05D8 (1496) bytes  
0x0200 (512) bytes  
0x1600 (5632) bytes  
User Defined  
I2C INTERFACE  
2
The MV64460 has a built-in inter-integrated circuit (I C) interface that supports master and  
2
2
slave I C devices. The following devices connect to the I C bus:  
• SO-DIMM SDRAM  
• two 64-kilobit serial EEPROMs  
• real-time clock (RTC) device  
• Zircon PM IPMI controller and associated devices  
The multiplexer shown in Fig. 5-2 actually consists of two switches. One switch allows the  
750GL processor to access the IPMI serial ROMs only while the IPMI controller is held in  
2
reset. The second switch allows the 750GL processor to access I C Port #1 only while back-  
®
end power is up–otherwise this connection is isolated. (Please refer to the Katana 752i  
schematics for details.)  
®
5-8  
Katana 752i User’s Manual  
10006024-04  
         
System Controller: I2C Interface  
Figure 5-2: I2C Interface Diagram  
®
5-9  
10006024-04  
   
System Controller: GPIO Signal Definitions  
GPIO SIGNAL DEFINITIONS  
®
The MV64460 system controller on the Katana 752i has 32 general-purpose input output  
(GPIO) pins that are used for various purposes. The following table describes the GPIO pin  
assignments.  
Table 5-3: GPIO Signals Definitions  
Pin:  
Direction:  
Description:  
0
output  
console port transmit data  
console port receive data  
PTMC site #1 PCI grant  
1
input  
2
output  
input  
3
PTMC site #1 PCI request  
PTMC site #2 PCI grant  
4
output  
input  
5
PTMC site #2 PCI request  
Ethernet MAC PCI grant  
6
output  
input  
7
Ethernet MAC PCI request  
PCI1 INTA  
8
input  
9
input  
PCI1 INTB  
10  
11  
12  
13  
input  
PCI1 INTC  
output  
input  
INIT_ACT, driven to indicate the bridge is loading from serial ROM  
input from CPLD, used as synchronous versions of PERR and SERR  
output  
driven low to turn off front panel fault LED once processor section is up  
and running  
14  
input  
PCI1 INTD  
15  
unused  
16  
output  
output  
output  
output  
input  
watchdog NMI  
17  
watchdog expired  
18  
I2C_HOLDOFF signal (Zircon PM)  
output enable for PTMC RMII clocks  
baud rate input clock for serial port  
unused  
19  
20  
21—22  
23  
input  
IPMI Timerout, driven by IPMI microcontroller when there is a time-  
out condition  
24  
25  
26  
27  
output  
output  
input  
POST indicator  
driven high to put the IPMI microcontroller in reset  
Watchdog Maskable Interrupt (in)  
input  
GIG0_INT interrupt signal from gigabit PHY (unused on rev. 0—1  
boards)  
28  
29  
input  
input  
GIG1_INT interrupt signal from gigabit PHY (unused on rev. 0—1  
boards)  
GIG2_INT interrupt signal from gigabit PHY (unused on rev. 0—1  
boards)  
®
5-10  
Katana 752i User’s Manual  
10006024-04  
     
System Controller: Console Serial Port  
Pin:  
30  
Direction:  
Description: (continued)  
unused  
31  
input  
MVL_PCI0_HS signal, ejector handle status; 1=latch closed, 0=latch  
open  
(For rev. 0 boards, software must debounce switch input.)  
CONSOLE SERIAL PORT  
®
The processor complex on the Katana 752i has an asynchronous console serial port on the  
front panel. This port operates at EIA-232 signal levels, but does not provide any handshak-  
ing functionality. The connector for the front panel console port is a mini-DB9 connector,  
with the following pin assignments.  
Table 5-4: Serial Console Port Pin Assignments, (P2)  
Pin:  
Signal:  
Pin:  
Signal:  
1
2
3
4
5
no connection  
RXD (Data Out)  
TXD (Data In)  
no connection  
ground  
6
no connection  
no connection  
no connection  
no connection  
CHS_GND  
7
8
9
10-11  
The standard Emerson console cable (#10007665-00) is cross-pinned, as shown in the fig-  
ure below. A straight-through connector (#10007664-00) also is available.  
Figure 5-3: Standard Console Cable Wiring, #10007665-00  
DB9 Connector  
Mini DB9 Connector  
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
Twisted Pairs  
GND (Green)  
CONSOLE Rx (Red)  
CONSOLE Tx (Black)  
CONSOLE Tx (Black)  
CONSOLE Rx (Red)  
o
Shield (Braid to shell 360 connection)  
SHELL  
SHELL  
Note: Cable part numbers are subject to change. Please check with Emerson before ordering replacement cables.  
®
The Katana 752i also provides serial console port access via the J5 CompactPCI connector  
at pins E15 and D15 (refer to page 14-3 for pinouts).  
®
5-11  
10006024-04  
           
(blank page)  
®
5-12  
Katana 752i User’s Manual  
10006024-04  
Section 6  
Device Bus PLD  
®
The processor complex on the Katana 752i has a programmable logic device (PLD) that  
provides control logic for the 750GL device bus. This PLD implements various registers  
relating to reset control, interrupt handling, product identification, PCI enumeration, and  
board configuration. This chapter describes the registers in the device bus PLD, which is  
also known as the MVC PLD.  
RESET REGISTERS  
The device bus PLD routes and distributes the reset signals. Two registers support this func-  
tionality. The read-only Reset Event register at hex location F820,0000 indicates the rea-  
16  
son for the last reset as follows.  
Register 6-1: Reset Event  
7
6
5
4
3
2
1
0
InitAct  
Reserved  
WD  
COPS  
COPH  
PMCR  
CPCI  
FP  
InitAct: Initialization Active:  
Set to 1 when the MV64460 InitAct pin does not go inactive after reset  
WD: Watchdog:  
Set to 1 when a reset was caused by the expiration of the MV64460 watchdog timer  
COPS: Soft Reset:  
Set to 1 when a COP header soft reset (SRESET) has occurred  
COPH: Hard Reset:  
Set to 1 when a COP header hard reset (HRESET) has occurred  
PMCR: PMC Reset:  
Set to 1 when a PPMC issues a PMC Reset Out  
CPCI: CPCI:  
Set to 1 when a cPCI reset (RST* signal) has occurred  
FP: Front Panel:  
Set to 1 when the front panel switch caused a reset  
The Reset Command register at hex location F820,1000 forces one of several types of  
16  
resets, as shown below. After a reset sequence is initiated by writing a one to a valid bit, the  
bit is automatically cleared.  
Note: When writing to this register, only set one bit at a time.  
®
6-1  
10006024-04  
           
Device Bus PLD: Interrupt Registers  
Register 6-2: Reset Command  
7
6
5
4
3
2
1
0
SCL  
SDA  
PCI0  
Reserved  
FR  
Reserved  
HR  
2
SCL: Direct control for I C clock signal:  
1=Tri-states the PLD  
0=Drives logic low  
2
SDA: Direct control for I C data signal:  
1=Tri-states the PLD  
0=Drives logic low  
PCI0 : PCI0 reset status, as set by JP1, pins 7-8;  
software should not overwrite this value:  
1=cPCI functionality is disabled  
(MV64460 PCI0 interface held in reset)  
0=cPCI functionality is enabled  
(MV64460 PCI0 interface reset deasserted)  
FR: Flash Reset command:  
1=Causes Flash to be reset, clears automatically  
0=No Flash reset (default)  
HR: Hard Reset command:  
1=Causes a hard reset on board, clears automatically  
0=No hard reset (default)  
INTERRUPT REGISTERS  
The system error and parity error interrupts from the PCI bus route to the device bus PLD.  
Sampling for these signals occurs on the rising edge of the PCI clock, according to the PCI  
specification. The software should hold these signals low for a clock cycle, otherwise they  
will be ignored. PERR and SERR have two loads, which are combined in the PLD to a single  
interrupt and route to the MPP12 pin on the MV64460.  
The Interrupt Enable register at hex location F820,2000 contains two enable bits, as fol-  
16  
lows.  
Register 6-3: Interrupt Enable  
7
6
5
4
3
2
1
0
Reserved  
SREN  
PREN  
®
6-2  
Katana 752i User’s Manual  
10006024-04  
       
Device Bus PLD: Product Identification  
SREN: PCI SERR Enable interrupt routed from PCI SERR to MV64460:  
1=Enabled to generate an interrupt  
0=Disabled (default)  
PREN: PCI PERR Enable interrupt routed from PCI PERR to MV64460:  
1=Enabled to generate an interrupt  
0=Disabled (default)  
The Interrupt Pending register at hex location F820,3000 allows software to determine  
16  
which source has caused an interrupt, as follows.  
Register 6-4: Interrupt Pending  
7
6
5
4
3
2
1
0
Reserved  
SERR  
PERR  
SERR: PCI SERR Enable  
1=SERR has occurred and is enabled (IER SR1EN=1)  
0=No SERR (default).  
PERR: PCI PERR Enable  
1=PERR has occurred and is enabled (IER PR1EN=1)  
0=No PERR (default).  
PRODUCT IDENTIFICATION  
®
The read-only Product ID register at hex location F820,4000 identifies the Katana 752i.  
16  
Register 6-5: Product ID  
7
6
5
4
3
2
1
0
PIR  
PIR: Product Identification register:  
®
04 =Katana 752i  
16  
PCI ENUMERATION  
®
The Katana 752i provides a register for status and control of enumeration. In a Monarch  
system, the EReady register at hex location F820,5000 is readable to indicate that other  
16  
boards in the system are ready for enumeration. In a non-Monarch system, the register is  
®
writeable to indicate the Katana 752i is ready for enumeration.  
®
6-3  
10006024-04  
           
Device Bus PLD: Revision Registers  
Register 6-6: EReady  
7
6
5
4
3
2
1
0
Reserved  
ERdy  
ERdy: Monarch (read):  
1=PCI devices are ready to be enumerated  
0=PCI devices not ready to be enumerated  
Non-Monarch (write):  
1=PMC is ready to be enumerated  
0=PMC is not ready to be enumerated  
REVISION REGISTERS  
®
The Katana 752i device bus PLD provides two read only registers to track hardware and  
PLD revisions. The Hardware Version register at hex location F820,7000 provides a hard-  
16  
coded tracking number for the hardware.  
Register 6-7: Hardware Version  
7
6
5
4
3
2
1
0
HVR  
HVR: Hardware version number:  
This is hard coded in the PLD and changed with every major PCB version. Version starts at  
00  
.
16  
The PLD Version register at hex location F820,8000 provides a hard-coded tracking num-  
16  
ber for the PLD code.  
Register 6-8: PLD Version  
7
6
5
4
3
2
1
0
PVR  
PVR: Code version number:  
This is hard coded in the PLD and changed with every major code change. Version starts at  
00  
.
16  
BOARD CONFIGURATION REGISTERS  
Three byte-wide, read-only Board Configuration registers allow the monitor software to  
easily determine specific hardware configurations. The Board Configuration 3 register at  
®
hex location F820,C000 indicates if the Katana 752i is a Monarch.  
16  
®
6-4  
Katana 752i User’s Manual  
10006024-04  
               
Device Bus PLD: Board Configuration Registers  
Note: Board Configuration 2 register is not implemented in the Katana®752i.  
Register 6-9: Board Configuration 3.  
7
6
5
4
3
2
1
0
Reserved  
cPCI  
Mon  
Reserved  
cPCI: cPCI bus status indication:  
1=cPCI bus is disabled (held in reset) (default)  
0=cPCI bus is enabled  
Mon: Monarch indication:  
®
1=Katana 752i is Monarch  
0=PMC is Monarch  
The Board Configuration 1 register at hex location F820,A000 provides status informa-  
16  
tion about the Flash memory, as follows.  
Register 6-10: Board Configuration 1  
7
6
5
4
3
2
1
0
Reserved  
Boot  
Reserved  
Socket  
Boot Socket: Boot from socketed Flash or from soldered Flash:  
1=Boot from socketed Flash  
0=Boot from soldered Flash  
The Board Configuration 0 register at hex location F820,9000 indicates the system clock  
16  
speed and the H.110 option status, as follows.  
Register 6-11: Board Configuration 0  
7
6
5
4
3
2
1
0
SysCLK  
H110  
Reserved  
SysCLK: System clock speed:  
11=133MHz  
10=166MHz  
01=100MHz  
00=200MHz  
H110: H.110 option installed:  
1=yes  
0=no (default)  
®
6-5  
10006024-04  
     
Device Bus PLD: Other Registers  
OTHER REGISTERS  
The IPMI Port Select register at hex location F820,E000 allows access to the IPMI inter-  
16  
face, as follows.  
Register 6-12: IPMI Port Select  
7
6
5
4
3
2
1
0
PORT_SEL  
Reserved  
PORT_SEL: IPMI Port Selection:  
Allow processor access to the IPMI controller and temperature sensors  
1=Disabled (default)  
0=Enabled  
The LED register at hex location F820,D000 allows software to access the programmable  
16  
®
LEDs (on the Katana 752i front panel), as follows.  
Register 6-13: Programmable LED  
7
6
5
4
3
2
1
0
Reserved  
LED4  
LED3  
LED2  
LED1  
LED1—LED4: Programmable LEDs:  
Illuminate the corresponding LED  
1=on  
0=off (default)  
®
6-6  
Katana 752i User’s Manual  
10006024-04  
     
Section 7  
Real-Time Clock  
®
The processor complex on the Katana 752i has a standard real-time clock (RTC), consisting  
of an M41T00 device from STMicroelectronics. The M41T00 has an integrated year-2000-  
compatible RTC, power sense circuitry, and uses eight bytes of non-volatile RAM for the  
clock/calendar function. It is powered from the  
2
+3.3 volt rail during normal operation. The M41T00 device connects to an I C bus (see  
page 5-8). The M41T00 device is backed up by power from a single, super capacitor, which  
will hold a charge for at least two hours.  
BLOCK DIAGRAM  
The following block diagram shows the basic structure of the M41T00 device.  
Figure 7-1: M41T00 Real-Time Clock Block Diagram  
OSC1  
OSC0  
1Hz  
Oscillator  
Seconds  
Minutes  
Century/Hours  
Day  
Divider  
32.768 KHz  
FT/OUT  
V
Voltage  
Sense and  
Switch  
CC  
Control  
Logic  
V
SS  
Circuitry  
V
BAT  
Date  
Month  
Serial  
Bus  
Interface  
SCL  
SDA  
Year  
Address  
Register  
Control  
OPERATION  
The M41T00 clock operates as a slave device on the serial bus. To obtain access, the RTC  
implements a start condition followed by the correct slave address (D0 ). Access the eight  
16  
bytes in the following order:  
®
7-1  
10006024-04  
             
Real-Time Clock: Clock Operation  
1
2
3
4
5
6
7
8
Seconds register  
Minutes register  
Century/Hours register  
Day register  
Date register  
Month register  
Years register  
Control register  
The M41T00 clock continually monitors the supply voltage (Vcc) for an out of tolerance  
condition. If Vcc falls below switch-over voltage (Vso), the M41T00:  
• Terminates an access in progress  
• Resets the device address counter  
• Does not recognize inputs (prevents erroneous data from being written)  
At power-up, the M41T00 uses Vcc at Vso and recognizes inputs.  
CLOCK OPERATION  
Read the seven Clock registers one byte at a time or in a sequential block. Access the Con-  
trol register (address location 7) independently. An update to the Clock registers is delayed  
for 250 ms to allow the read to be completed before the update occurs. This delay does not  
alter the actual clock time. The eight byte clock register sets the clock and reads the date  
and time from the clock, as summarized in Table 7-1.  
Table 7-1: RTC Register Map  
Address:  
Data:  
D4 D3  
Function/Range:  
BCD Format:  
D7  
ST  
D6  
D5  
10 Seconds  
10 Minutes  
D2  
D1  
D0  
00  
01  
02  
03  
04  
05  
06  
07  
Seconds  
Minutes  
Hours  
Seconds  
00—59  
00—59  
0-1/00-23  
01—07  
01—31  
01—12  
00—99  
X
Minutes  
Century/Hours  
Day  
CEB  
X
CB  
X
10 Hours  
X
X
X
Day  
X
X
10 Date  
Date  
Month  
Years  
Date  
X
X
X
10 M  
Month  
Years  
10 Years  
OUT FT  
S
Calibration  
Control  
®
7-2  
Katana 752i User’s Manual  
10006024-04  
   
Real-Time Clock: Clock Operation  
ST: Stop bit  
1=Stops the oscillator  
0=Restarts the oscillator within one second  
CEB: Century Enable Bit  
1=Causes CB to toggle either from 0 to 1 or from 1 to 0 at the turn of the century  
0=CB will not toggle  
CB: Century Bit  
Day: Day of the week  
Date: Day of the month  
OUT: Output level  
1=Default at initial power-up  
0=FT/OUT (pin 7) driven low when FT is also zero  
FT: Frequency Test bit  
1=When oscillator is running at 32,768 Hz, the FT/OUT pin will toggle at 512 Hz  
0=The FT/OUT pin is an output driver (default at initial power-up)  
S: Sign bit  
1=Positive calibration  
0=Negative calibration  
Calibration: Calibration bits  
The calibration circuit adds or subtracts counts from the oscillator divider circuit at the  
divide by 256 stage. The number of times pulses are blanked (subtracted, negative calibra-  
tion) or split (added, positive calibration) depends on this five-bit byte. Adding counts  
accelerates the clock, and subtracting counts slows the clock down.  
X: Don’t care bit.  
®
7-3  
10006024-04  
(blank page)  
®
7-4  
Katana 752i User’s Manual  
10006024-04  
Section 8  
Local PCI Bus  
®
The Katana 752i utilizes the Peripheral Component Interconnect (PCI) bus as the interface  
between the 750GL processor complex, PCI Telecom Mezzanine Card (PTMC) sites,  
optional T8110 time slot interchanger (TSI), and 82544 Ethernet media access controller  
®
(MAC). The Katana 752i complies with the PCI bus interface standard and the associated  
PMC mechanical interface standard. The Marvell MV64460 device functions as the PCI  
bridge and always performs local PCI bus arbitration.  
The following devices are on the PCI bus:  
• IBM 750GL processor complex (host controller by default)  
• Two PCI expansion sites (Monarch or non-Monarch)  
• Optional Ambassador T8110 TSI (PCI target only)  
• Intel 82544 Ethernet MAC  
Note: When the optional T8110 time slot interchanger is installed, the PCI bus speed is limited to 33MHz.  
PCI ENUMERATION  
By default, the 750GL processor complex functions as a Monarch. In this mode, the  
MV64460 serves as a PCI system controller. It provides PCI arbitration and PCI bus enumer-  
®
ation. The Katana 752i also has configuration jumpers at JP2 (see Fig. 2-4) which can set  
either PTMC site as the Monarch.  
The PCI standard allows for environments where the number and types of devices on the  
®
PCI bus varies. Therefore, the Katana 752i does not support a fixed memory map. The PCI  
system controller dynamically defines the memory map using a process called enumera-  
tion. In this process, the PCI system controller probes the PCI bus to discover what devices  
are installed and how much memory space each device is requesting. The system controller  
then allocates the available PCI memory, defines the base address of each device, and con-  
figures the PCI base address registers for each device accordingly.  
PCI device software should assign physical addresses dynamically, in the format of “base  
address + offset”. The enumeration routine can retrieve the base address. The offset is  
device-dependent and fixed. The monitor software performs enumeration routines at  
power-up and PCI reset. The operating system also performs enumeration upon booting.  
The monitor and operating system both have built-in hooks for retrieving the base  
addresses.  
PCI ID SELECT AND INTERRUPTS  
®
The Katana 752i follows the typical PCI convention for assigning ID Select signals, as  
shown in the following table.  
®
8-1  
10006024-04  
           
Local PCI Bus: Geographical Addressing  
Table 8-1: ID Select Connections  
®
Katana 752i PCI Device  
PTMC Site 1 (at J12)  
IDSEL Address  
AD20  
AD21  
AD22  
AD23  
AD24  
PTMC Site 2 (at J22)  
T8110 Time Slot Interchanger (TSI)  
MV64460 System Controller  
82544 Ethernet MAC  
The T8110 TSI connects to INTD. The MV64460 system controller connects to INTA. The  
Ethernet MAC connects to INTD. The PCI devices on the PTMC module(s) use the following  
connections.  
Table 8-2: Interrupt Connections for Katana®752i  
MV64460:  
INTA  
PTMC #1:  
INTD  
PTMC #2:  
INTC  
82544EI:  
T8110:  
INTB  
INTA  
INTD  
INTC  
INTB  
INTA  
INTD  
INTC  
INTB  
INT  
INT  
GEOGRAPHICAL ADDRESSING  
®
The Katana 752i has three read-only registers that allow the software to read Geographical  
Addresses from the CompactPCI backplane connectors. The following table describes  
these registers.  
Table 8-3: Geographical Address Registers  
Register  
Address (Hex)  
Description  
J4SGA  
F821,0000  
Read the Shelf Enumeration Bus pins from cPCI J4 connector.  
Read the Geographical Address from cPCI J4 connector.  
Read the Geographical Address from the cPCI J2 connector.  
J4GA  
J2GA  
F821,0001  
F821,0002  
PCI BUS CONTROL SIGNALS  
This section lists signals for the PCI interface which are available on PMC connectors J11,  
J12, J21, and J22 (see also pinout tables beginning on page 9-3). Please refer to the PCI  
specification for details on using these signals. All signals are bi-directional unless otherwise  
stated.  
Note: A sustained three-state line is driven high for one clock cycle before float.  
®
8-2  
Katana 752i User’s Manual  
10006024-04  
             
Local PCI Bus: PCI Bus Control Signals  
ACK64*, REQ64*: These sustained three-state output signals tell a 64-bit PCI device whether to use the 64-bit  
®
or the 32-bit data width. Since the Katana 752i is a 32-bit board, these signals are tied off  
to indicate the 32-bit data width.  
AD00-AD31: ADDRESS and DATA bus (bits 0-31). These three-state lines are used for both address and  
data handling. A bus transaction consists of an address phase followed by one or more data  
phases.  
C/BE0*-C/BE3*: BUS COMMAND and BYTE ENABLES. These three-state lines have different functions  
depending on the phase of a transaction. During the address phase of a transaction these  
lines define the bus command. During a data phase the lines are used as byte enables.  
CLK: CLOCK. This is an input signal that provides timing for PCI transactions. (This is unused,  
®
since the Katana 752i generates its own PCI clock signal.)  
DEVSEL*: DEVICE SELECT. This sustained three-state signal indicates when a device on the bus has  
been selected as the target of the current access.  
EREADY: READY. This signal is an input for Monarch devices and an output for non-Monarch devices.  
It indicates that all modules are initialized and the PCI bus is ready to be enumerated.  
FRAME*: CYCLE FRAME. This sustained three-state line is driven by the current master to indicate the  
beginning of an access, and continues to be asserted until transaction reaches its final data  
phase.  
GNT*: GRANT. This input signal indicates that access to the bus has been granted to a particular  
master. Each master has its own GNT*.  
IDSEL: INITIALIZATION DEVICE SELECT. This input signal acts as a chip select during configuration  
read and write transactions.  
INTA*, INTB*, INTC*, INTD*:  
PMC INTERRUPTS A, B, C, D. These interrupt lines are used by PCI devices to interrupt the  
host processor.  
IRDY*: INITIATOR READY. This sustained three-state signal indicates that the bus master is ready  
to complete the data phase of the transaction.  
M66EN: ENABLE 66 MHZ. When grounded, this signal prevents 66 MHz operation of the PCI bus.  
®
MONARCH*: MONARCH. When this signal is grounded, it indicates that the Katana 752i baseboard is a  
Monarch and must provide PCI bus enumeration and interrupt handling.  
LOCK*: LOCK. This sustained three-state signal indicates that an automatic operation may require  
®
multiple transactions to complete. (The Katana 752i does not support this signal.)  
®
8-3  
10006024-04  
                             
Local PCI Bus: PCI Bus Control Signals  
PAR: PARITY. This is even parity across AD00-AD31 and C/BE0-C/BE3*. Parity generation is  
required by all PCI agents. This three-state signal is stable and valid one clock after the  
address phase, and one clock after the bus master indicates that it is ready to complete the  
data phase (either IRDY* or TRDY* is asserted). Once PAR is asserted, it remains valid until  
one clock after the completion of the current data phase.  
PERR*: PARITY ERROR. This sustained three-state line is used to report parity errors during all PCI  
transactions.  
PME*: POWER MANAGEMENT EVENT. This optional open-drain signal (pull-up resistor required)  
allows a device to request a change in the power state. Devices must be enabled by soft-  
®
ware before asserting this signal. (The Katana 752i does not support this signal.)  
PRESENT*: PRESENT. When grounded, this signal indicates to a carrier that a PMC module is installed.  
®
(The Katana 752i does not support this signal.)  
RESET_OUT*: RESET OUTPUT. This optional output signal may be used to support another source. To  
avoid reset loops, do not use RST* to generate RESET_OUT*.  
REQ*: REQUEST. This output pin indicates to the arbiter that a particular master wants to use the  
bus.  
RST*: RESET. The assertion of this input line brings PCI registers, sequencers, and signals to a con-  
sistent state.  
SERR*: SYSTEMS ERROR. This open-collector output signal is used to report any system error with  
catastrophic results.  
STOP*: STOP. This is a sustained three-state signal used by the current target to request that the  
bus master stop the current transaction.  
TRDY*: TARGET READY. This is a sustained three-state signal that indicates the target’s ability to  
complete the current data phase of the transaction.  
®
8-4  
Katana 752i User’s Manual  
10006024-04  
                   
Section 9  
PTMC Interface  
®
The Katana 752i Peripheral Component Interconnect (PCI) interface supports two PCI  
Telecom Mezzanine Card (PTMC) expansion sites. This chapter describes how to install  
PTMC modules and provides additional information about the PTMC signals. Each PTMC  
site can connect to two optional KS8721CL RMII PHY devices that route to the CompactPCI  
®
backplane connector J5 (see page 10-3). The Katana 752i complies with Configuration 2 of  
the PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15 (see also “Timing Consid-  
PTMC INSTALLATION  
®
The Katana 752i baseboard has two sets of four connectors (J11—J14 and J21—J24), as  
defined by the PMC specification. Fig. 9-1 shows the location of these connectors on the  
®
Katana 752i. (Connectors J13 and J23 are only present in the optional CT bus configura-  
tion.)  
Figure 9-1: PTMC Module Location on Baseboard  
J5  
J4  
J3  
J2  
J1  
J12  
J14  
J22  
J24  
J11  
J13  
J21  
J23  
PTMC Module  
PTMC Module  
(bottom side)  
(bottom side)  
PTMC2  
PTMC1  
P1  
P2  
®
9-1  
10006024-04  
         
PTMC Interface: PTMC Installation  
®
The following procedure describes how to attach a PTMC module to the Katana 752i base-  
board:  
1
2
Remove the screws from the standoffs on the PTMC module.  
Hold the module at an angle and gently slide the faceplate into the opening on the  
baseboard.  
3
Align the P11, P12, P13, and P14 connectors and gently press the module into place until  
firmly mated.  
Caution: To avoid damaging the module and/or baseboard, do not force the module onto the  
baseboard.  
!
P13  
P14  
P12  
P11  
PTMC Module  
PTMC1  
PTMC2  
Tighten these two screws first.  
4
Using four M2.5x6mm flathead screws, secure the PTMC module from the bottom of the  
baseboard. First, insert and tighten the screws closest to the P11, P12, P13, and P14  
connectors. Next, insert and tighten the screws nearest to the front panel.  
®
9-2  
Katana 752i User’s Manual  
10006024-04  
PTMC Interface: PTMC Connector Pinouts  
PTMC CONNECTOR PINOUTS  
PCI expansion site #1 has four 64-pin connectors, J11—J14 (see Fig. 2-2 on page 2-3 for con-  
nector locations). Table 9-1 shows the pin assignments.  
Table 9-1: J1x PTMC Connector Pin Assignments  
Pin  
J11  
J12  
J13  
J14  
1
TCK  
POS_12V  
PMC1_TRST*  
PMC1_TMS  
PMC1_TDO  
PMC1_TDI  
GND  
MDIO  
GND  
J3_E13  
J3_D13  
J3_C13  
J3_B13  
J3_A13  
J3_E12  
J3_D12  
J3_C12  
J3_B12  
J3_A12  
J3_E11  
J3_D11  
J3_C11  
J3_B11  
J3_A11  
J3_E10  
J3_D10  
J3_C10  
J3_B10  
J3_A10  
J3_E9  
2
NEG_12V  
GND  
3
GND  
4
INTA*  
INTB*  
INTC*  
PRESENT*  
+5V  
STX  
5
MDC  
6
SRX  
7
GND  
RXER  
8
no connection  
no connection  
no connection  
PUP0  
GND  
9
INTD*  
no connection  
GND  
PTID2  
TXD0  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
+3.3V  
PCICLK  
GND  
+3.3V  
TXD1  
REFCLK  
GND  
RST*  
PDN0  
GND  
+3.3V  
GND  
GNT*  
REQ*  
+5V  
PDN1  
RXD0  
CT_FA  
RXD1  
CT_FB  
GND  
PME*  
GND  
+3.3V  
AD31  
AD28  
AD27  
AD25  
GND  
AD30  
AD29  
GND  
PTID0  
TXEN  
GND  
AD26  
J3_D9  
J3_C9  
AD24  
+3.3V  
CAS_DV  
CT_C8A  
GND  
J3_B9  
GND  
IDSEL  
J3_A9  
CBE3*  
AD22  
AD21  
AD19  
+5V  
AD23  
J3_E8  
+3.3V  
GND  
J3_D8  
J3_C8  
AD20  
CT_D19  
CT_D18  
CT_D17  
CT_D16  
GND  
AD18  
J3_B8  
GND  
J3_A8  
+3.3V  
AD17  
FRAME*  
GND  
AD16  
J3_E7  
CBE2*  
GND  
J3_D7  
J3_C7  
GND  
IDSELB  
NETREF2  
J3_B7  
®
9-3  
10006024-04  
           
PTMC Interface: PTMC Connector Pinouts  
Pin  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
J11  
GND  
J12  
J13  
J14  
TRDY*  
+3.3V  
GND  
CT_D14  
no connection  
CT_D12  
GND  
J3_A7  
J3_E6  
J3_D6  
J3_C6  
J3_B6  
J3_A6  
J3_E5  
J3_D5  
J3_C5  
J3_B5  
J3_A5  
J3_E4  
J3_D4  
J3_C4  
J3_B4  
J3_A4  
J3_E3  
J3_D3  
J3_C3  
J3_B3  
J3_A3  
J3_E2  
J3_D2  
J3_C2  
J3_B2  
J3_A2  
J3_E1  
J3_D1  
J3_C1  
J3_B1  
IRDY*  
DEVSEL*  
+5V  
STOP*  
PERR*  
GND  
GND  
PTENB*  
no connection  
GND  
LOCK*  
SDONE*  
SBO*  
PAR  
+3.3V  
SERR*  
CBE1*  
GND  
NETREF1  
CT_C8B  
GND  
GND  
+3.3V  
AD15  
AD12  
AD11  
AD9  
AD14  
GND  
AD13  
CT_D15  
CT_D10  
CT_D13  
CT_D8  
CT_D11  
GND  
M66EN  
AD10  
AD8  
+5V  
+3.3V  
AD7  
GND  
CBE0*  
AD6  
REQB*  
+3.3V  
GNTB*  
no connection  
GND  
CT_D9  
CT_D6  
CT_D7  
CT_D4  
GND  
AD5  
AD4  
GND  
+3.3V  
AD3  
no connection  
EREADY  
GND  
PTID1  
CT_D5  
CT_D2  
CT_D3  
CT_D0  
GND  
AD2  
AD1  
RESETOUT*  
ACK64*  
+3.3V  
GND  
AD0  
+5V  
GND  
GND  
REQ64*  
MONARCH*  
CT_D1  
®
9-4  
Katana 752i User’s Manual  
10006024-04  
PTMC Interface: PTMC Connector Pinouts  
PCI expansion site #2 has four 64-pin connectors, J21—J24 (see Fig. 2-2 on page 2-3 for con-  
nector locations). Table 9-2 shows the pin assignments.  
Table 9-2: J2x PTMC Connector Pin Assignments  
Pin  
J21  
J22  
J23  
J24  
1
TCK  
POS_12V  
PMC2_TRST*  
PMC2_TMS  
PMC2_TDO  
PMC2_TDI  
GND  
MDIO  
GND  
J5_E13  
J5_D13  
J5_C13  
J5_B13  
J5_A13  
J5_E12  
J5_D12  
J5_C12  
J5_B12  
J5_A12  
J5_E11  
J5_D11  
J5_C11  
J5_B11  
J5_A11  
J5_E10  
J5_D10  
J5_C10  
J5_B10  
J5_A10  
J5_E9  
2
NEG_12V  
GND  
3
GND  
4
INTA*  
INTB*  
INTC*  
PRESENT*  
+5V  
STX  
5
MDC  
6
SRX  
7
GND  
RXER  
8
no connection  
no connection  
no connection  
PUP0  
GND  
9
INTD*  
no connection  
GND  
PTID2  
TXD0  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
+3.3V  
PCICLK  
GND  
+3.3V  
TXD1  
REFCLK  
GND  
RST*  
PDN0  
GND  
+3.3V  
GND  
GNT*  
REQ*  
+5V  
PDN1  
RXD0  
CT_FA  
RXD1  
CT_FB  
GND  
PME*  
GND  
+3.3V  
AD31  
AD28  
AD27  
AD25  
GND  
AD30  
AD29  
GND  
PTID0  
TXEN  
AD26  
J5_D9  
J5_C9  
AD24  
GND  
+3.3V  
CAS_DV  
CT_C8A  
GND  
J5_B9  
GND  
AD21  
J5_A9  
CBE3*  
AD22  
AD21  
AD19  
+5V  
AD23  
J5_E8  
+3.3V  
GND  
J5_D8  
J5_C8  
AD20  
CT_D19  
CT_D18  
CT_D17  
CT_D16  
GND  
AD18  
J5_B8  
GND  
J5_A8  
+3.3V  
AD17  
FRAME*  
GND  
AD16  
J5_E7  
CBE2*  
GND  
J5_D7  
J5_C7  
GND  
IDSELB  
TRDY*  
+3.3V  
NETREF2  
CT_D14  
no connection  
J5_B7  
GND  
J5_A7  
IRDY*  
J5_E6  
®
9-5  
10006024-04  
       
PTMC Interface: PTMC Connector Pinouts  
Pin  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
J21  
DEVSEL*  
+5V  
J22  
GND  
J23  
CT_D12  
GND  
J24  
J5_D6  
J5_C6  
J5_B6  
J5_A6  
J5_E5  
J5_D5  
J5_C5  
J5_B5  
J5_A5  
J5_E4  
J5_D4  
J5_C4  
J5_B4  
J5_A4  
J5_E3  
J5_D3  
J5_C3  
J5_B3  
J5_A3  
J5_E2  
J5_D2  
J5_C2  
J5_B2  
J5_A2  
J5_E1  
J5_D1  
J5_C1  
J5_B1  
STOP*  
PERR*  
GND  
GND  
LOCK*  
SDONE*  
SBO*  
PAR  
PTENB*  
no connection  
GND  
+3.3V  
SERR*  
CBE1*  
GND  
NETREF1  
CT_C8B  
GND  
GND  
+3.3V  
AD15  
AD12  
AD11  
AD9  
AD14  
GND  
AD13  
CT_D15  
CT_D10  
CT_D13  
CT_D8  
CT_D11  
GND  
M66EN  
AD10  
AD8  
+5V  
+3.3V  
AD7  
GND  
CBE0*  
AD6  
REQB*  
+3.3V  
GNTB*  
no connection  
GND  
CT_D9  
CT_D6  
CT_D7  
CT_D4  
GND  
AD5  
AD4  
GND  
+3.3V  
AD3  
no connection  
EREADY  
GND  
PTID1  
CT_D5  
CT_D2  
CT_D3  
CT_D0  
GND  
AD2  
AD1  
RESETOUT*  
ACK64*  
+3.3V  
GND  
AD0  
+5V  
GND  
REQ64*  
GND  
MONARCH*  
CT_D1  
®
9-6  
Katana 752i User’s Manual  
10006024-04  
Section 10  
Ethernet Interfaces  
®
The Katana 752i supports four 10/100/1000BaseT Ethernet ports. The MV64460 system  
controller provides three Ethernet Media Access Control (MAC) units, and an Intel 82544EI  
Ethernet controller device provides direct access from the local PCI bus. Three Broadcom  
BCM5461S transceivers and an integrated PHY in the 82544EI provide interfaces for the  
®
10/100/1000BaseT Ethernet ports. Two of these ports route to the Katana 752i front  
panel, and two route to the J3 CompactPCI packet-switched backplane (cPSB) connector.  
®
The Katana 752i also provides optional Ethernet connectivity for each PTMC site, using  
two RMII PHY devices that route to the J5 CompactPCI (cPCI) backplane connector.  
ETHERNET ADDRESS  
The Ethernet address for your board is a unique identifier on a network and must not be  
altered. The address consists of 48 bits (Medium Access Control—MAC[47:0]) divided into  
two equal parts. The upper 24 bits define a unique identifier that has been assigned to  
Emerson Network Power, Embedded Computing by IEEE. The lower 24 bits are defined by  
Emerson for identification of each of our products.  
®
The Ethernet address for the Katana 752i is a binary number referenced as 12 hexadecimal  
digits separated into pairs, with each pair representing eight bits. The address assigned to  
®
the Katana 752i has the following form:  
00 80 F9 6x yy zz  
00 80 F9 is Emerson’s identifier. The last three bytes of the Ethernet address comprise the  
data for the Ethernet addresses in non-volatile memory. 6 is defined by Emerson and is spe-  
®
cific to the Katana 752i. x, yy, and zz are calculated.  
For the purpose of this calculation, the entire MAC address can be thought of as a 48-bit  
Register 10-1: MAC Calculation  
MAC[47:0]  
00  
80  
F9  
6x  
yy  
zz  
0000  
0000  
1000  
0000  
1111  
1001  
0110  
110x  
yyyy  
yyyy  
zzzz  
zzzz  
47:24  
Fixed  
23:17  
Fixed  
16:3  
Calculated  
2:0  
List  
To determine the last 17 bits of the MAC address (x, yy, and zz):  
1
2
Subtract 1000 from the decimal serial number, convert it to hex, and place the 14-bit result  
in MAC[16:3].  
Set the remaining three bits, MAC[2:0], according to the following list:  
000 = CPSB_1 (MAC address #1)  
®
10-1  
10006024-04  
             
Ethernet Interfaces: Ethernet Ports  
001 = CPSB_1 (MAC address #2)  
010 = CPSB_2  
011 = FRNT_1 (ETH3)  
100 = FRNT_2 (ETH4)  
101 = reserved  
110 = reserved  
111 = reserved  
®
So for example, if the Katana 752i serial number is 1234, the CPSB_2 MAC address is:  
00:80:F9:6C:07:52.  
ETHERNET PORTS  
The MV64460 system controller (see Chapter ) provides three 10/100/1000BaseT gigabit  
®
Ethernet (GbE) ports. Also, the Katana 752i provides direct access to a fourth GbE port  
from the local PCI bus via an Intel 82544EI Ethernet controller device. Two ports connect to  
the front panel (see Section for pinouts), and two connect to the J3 cPSB connector (see  
Table 14-3 for pinouts).  
®
If the Katana 752i is installed in a system that supports a cPSB backplane, the two ports at  
®
J3 allow for cPSB functionality. If the Katana 752i is installed in a system that does not  
support a cPSB backplane, the J3 ports can be routed via a rear transition module to provide  
two GbE input/output ports.  
Four Broadcom BCM5461S transceivers provide the physical interface for these ports.  
There are eight LEDs associated with the GbE ports (see the component map on page 2-6  
for LED locations).  
Table 10-1: GbE Port LEDs  
GbE Port 1  
CR34=ACT  
GbE Port 2  
CR20=ACT  
CR32=LINK  
CR33=LINK2  
CR35=LINK1  
CR21=LINK  
CR22=LINK2  
CR23=LINK1  
FRONT PANEL ETHERNET CONNECTOR PINOUTS  
®
The Katana 752i has a dual-RJ45 connector, P1, for the two front panel Ethernet ports.  
(Refer to the front panel drawing on page 2-2.) The ETH4 port connects to the 82544EI  
Ethernet controller. The ETH3 port connects to the MV64460 system controller. The dual-  
RJ45 connector has integrated speed (SP) and activity (ACT) LEDs to show the status of each  
port. The pin assignments are as follows.  
®
10-2  
Katana 752i User’s Manual  
10006024-04  
           
Ethernet Interfaces: Optional RMII PHY Devices  
Table 10-2: 82544EI Ethernet Port Pin Assignments, ETH4  
Pin  
1
Signal  
TRD0+  
TRD0—  
TRD1+  
TRD1—  
Pin  
5
Signal  
TRD2+  
TRD2—  
TRD3+  
TRD3—  
2
6
3
7
4
8
Table 10-3: MV64460 Ethernet Port Pin Assignments, ETH3  
Pin  
1
Signal  
TRD0+  
TRD0—  
TRD1+  
TRD1—  
Pin  
5
Signal  
TRD2+  
TRD2—  
TRD3+  
TRD3—  
2
6
3
7
4
8
OPTIONAL RMII PHY DEVICES  
®
In addition to the four GbE ports, the Katana 752i supports an option for two RMII PHY  
®
devices on the Katana 752i (one for each PTMC site). These route to the CompactPCI back-  
plane connector, J5. Each PTMC site has its own PHY address and LEDs, as shown in Table 10-  
4 and Fig. 10-1. See Fig. 2-3 for LED locations.  
Table 10-4: PTMC PHY Address  
PTMC Site:  
PHY Address:  
LEDs:  
1
0x5  
CR43=ACT  
CR44=LINK  
2
0x6  
CR45=ACT  
CR46=LINK  
Note: The Katana®752i may drive the RMII REFCLK to the PTMC connectors and the PHYs. Setting bit 19 at the  
MV64460 MPP port enables this functionality. However, before setting the bit, ensure that the RMII PHYs are  
installed and the PT2MC card supports an RMII interface. By default, REFCLK is enabled (bit is high). Clearing  
this bit causes the Katana®752i to stop driving REFCLK so that a PTMC module can drive it instead.  
Caution: To ensure proper signal integrity, the RTM magnetics must have a +2.5-volt offset on the  
center taps for both the TX and RX differential pairs.  
!
®
10-3  
10006024-04  
             
Ethernet Interfaces: Optional RMII PHY Devices  
Figure 10-1: RMII PHY to Transition Module  
PTMC  
Site 1  
PTMC  
Site 2  
Katana752i  
P13  
P23  
RMII  
RMII  
PHY  
0x5  
PHY  
0x6  
CR45  
CR46  
CR43  
CR44  
J5  
Backplane  
J5  
+2.5V  
+2.5V  
Optional Rear Transition Module  
Magnetics  
(i.e. TM/cSPAN-P8E)  
Magnetics  
RJ45 RJ45  
®
10-4  
Katana 752i User’s Manual  
10006024-04  
   
Section 11  
IPMI Controller  
®
The Katana 752i implements a System Management Bus (SMB), as defined in the Com-  
pactPCI System Management Specification (see Table 1-2). It also supports the Intelligent  
Platform Management Interface (IPMI) Version 1.5 and Intelligent Platform Management  
Bus (IPMB) Version 1.0 specifications. At the core of SMB/IPMI interface is a Zircon PM  
device from QLogic Corporation. This device is a microprocessor-based Intelligent Platform  
Management Controller that implements all the standard IPMI commands and provides  
hardware interfaces for other system management features.  
SMB/IPMI OVERVIEW  
®
The basic features for the Katana 752i SMB/IPMI implementation include:  
• conformance to IPMI version 1.5 and IPMB version 1.0  
• geographical addressing according to PICMG 2.9  
• ability to read and write Field Replaceable Unit (FRU) data  
• ability to reset from SMB or local processor  
• ability to read two airflow temperature sensors  
• ability to read six board voltage sensors  
• ability to read a watchdog sensor for the 750GL processor  
• ability to send event messages to a specified receiver  
• all sensors generate assertion and/or de-assertion event messages  
• ability to control GPIO to assert resets to various sections of the board  
• ability to broadcast a heartbeat message to a specified receiver  
• support for field updates of firmware via SMB or local processor  
®
11-1  
10006024-04  
         
IPMI Controller: SMB/IPMI Overview  
®
The Katana 752i system management interface uses the Zircon PM device’s general-pur-  
pose input/output (GPIO) pins for the following functions:  
• watchdog sensor input (from 750GL processor)  
• GPIO (to 750GL processor)  
• reset outputs (to 750GL processor)  
• IPMI reset control  
• cPCI Geographical Addressing inputs  
The Zircon PM controller also has input pins to sense all on-board voltage supplies. Fig. 11-1  
on the following page shows a block diagram of the Intelligent Platform Management Bus  
®
(IPMB) connections for the Katana 752i.  
2
®
The Katana 752i system management features include two inter-integrated circuit (I C)  
interfaces, as follows:  
• master/slave interface for 750GL communications  
• master-only interface for accessing the temperature sensor readings and the two IPMI  
read-only memory (ROM) devices  
®
11-2  
Katana 752i User’s Manual  
10006024-04  
IPMI Controller: SMB/IPMI Overview  
Figure 11-1: IPMB Connections Block Diagram  
Katana752i  
IPMI_OUT  
Timer Out  
MV64460  
MV1_port_sel  
ipmi_rst*  
Temp  
Sensor  
I2C #1  
IPMI  
Bootloader  
and FRU  
ROM  
Temp  
Sensor  
IPMI  
Bootcode  
ROM  
I2C #2  
GPIO[0:23]  
A-to-D 6  
A-to-D 5  
A-to-D 4  
A-to-D 3  
A-to-D 2  
5 V  
3.3 V  
2.5 V  
1.8 V (optional)  
CPU Core  
1.25V  
IPMI Microcontroller  
Voltage  
Monitor  
IPMI Power  
Reset  
A-to-D 1  
IPMB (SCL, SDA, PWR)  
3
®
11-3  
10006024-04  
   
IPMI Controller: I/O Interface  
I/O INTERFACE  
The Zircon PM provides 24 user-definable input/output (I/O) pins. The following table  
®
shows how the Katana 752i implements these pins.  
Table 11-1: Zircon PM General Purpose I/O Pin Functions  
Zircon PM Pin:  
GPIO0  
Signal Name:  
TEMP1_OS  
Function:  
unused  
GPIO1  
TEMP2_OS  
unused  
GPIO[2:3]  
GPIO4  
unused  
750GL1_IPMI_RST_R*  
active low IPMI reset input from 750GL  
processor  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
unused  
unused  
unused  
IPMI_TIMEROUT_D  
POST_FAULT  
active high input that signals a system  
firmware error  
GPIO9  
unused  
GPIO10  
I2C_holdoff  
active high input that signals Zircon PM off  
the #1 I2C bus  
GPIO11  
750GL1_WD_LATCH  
active high input that signals a watchdog  
expiration event on 750GL processor  
GPIO12  
GPIO13  
unused  
HS_FAULT_R*  
active low output that shuts power down  
to the board via the Hot Swap controller  
GPIO14  
unused  
GPIO[15:19]  
GA[4:0]  
Geographical Address inputs from J2  
connector  
GPIO20  
unused  
unused  
GPIO[21:23]  
750GL_TEMP_INT*  
®
11-4  
Katana 752i User’s Manual  
10006024-04  
   
IPMI Controller: I2C Interfaces  
In addition to the General Purpose I/O, there are six analog-to-digital (A2D) input pins that  
are used for sensing the various power supplies on the board. The following table describes  
®
the Katana 752i implementation of these pins.  
Table 11-2: Zircon PM Analog-to-Digital Input Pin Functions  
Zircon PM  
Pin:  
A2D1  
Nominal  
Voltage:  
2.0V  
Signal Name:  
MON_PMC_3_3V  
MON_CPU_CORE  
Function:  
connects to the 3.3V PTMC power supply  
A2D2  
1.5V  
connects directly to the 750GL core power  
supply  
A2D3  
A2D4  
1_8V  
1.8V  
connects directly to the 1.8V power supply  
MON_2_5V  
1.95V  
connects to the 2.5V power supply via a  
resistor divider network1  
A2D5  
A2D6  
MON_3_3V  
MON_5V  
2.0  
connects to the 3.3V power supply via a  
resistor divider network1  
1.88V  
connects to the 5V power supply via a  
resistor divider network1  
1. The A2D inputs on the Zircon PM have a maximum input voltage rating of 2.5V, which is the A2D power  
supply voltage. Therefore, any sensed voltage that has a value greater than 2.5V must be divided down.  
I2C INTERFACES  
2
The Zircon PM controller supports three I C interfaces. Port 0 is a master/slave interface  
which connects to the public IPMB. Port 1 is a master/slave interface which connects to the  
2
I C bus for the MV64460. Port 2 is a master-only interface for accessing the inlet/outlet  
temperature sensors and the two IPMI bootloader and boot code ROM devices.  
Note: The Zircon PM device must be held in reset when the I2C Port 2 master-only interface is being used by the  
750GL processor to access the serial EEPROM devices.  
The MV64460 system controller can master Port 2 while the Zircon PM is in reset. This  
allows for access to the IPMI serial EEPROMs, which is useful for programming the Zircon  
PM application code. An alternate method for accessing the IPMI serial EEPROMs from the  
MV64460 is to use IPMI commands on I2C Port 1.  
The MV64460 can master Port 1 to send IPMI requests and receive responses from the Zir-  
con PM. All IPMI commands supported on the public IPMB are also supported on the private  
IPMB.  
2
According to the IPMB specification, IPMI devices must use I C Master Write cycles on the  
2
2
IPMB. All IPMI messages overlay the I C Master Write data, including the I C command  
byte. Using this format, the first byte of an IPMI message transmitted on the bus is also the  
I C command byte.  
2
®
11-5  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
The PICMG 2.9 specification defines addressing on the public and private IPMBs. It defines  
the slave addresses assigned to the chassis, power supplies, and peripheral boards based on  
geographical addressing. Table 11-3 lists the slave address of each peripheral board, based  
on its geographical address.  
Table 11-3: IPMB Slave Addresses  
Geographical  
IPMB Address  
Geographical  
IPMB Address  
Address [0:4]  
0
(Hex)  
disabled  
B0  
Address [0:4]  
(Hex)  
D0  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
28  
30  
31  
1
D2  
2
B2  
D4  
3
B4  
D6  
4
B6  
D8  
5
B8  
DA  
DC  
DE  
6
BA  
7
BC  
8
BE  
E0  
9
C0  
E2  
10  
11  
12  
13  
14  
15  
C4  
E4  
C6  
E6  
C8  
E8  
CA  
EA  
CC  
EC  
CE  
disabled  
IPMI MESSAGE PROTOCOL  
The IPMI message protocol is designed to be robust and support many different physical  
interfaces. The Zircon PM supports IPMI messages over the IPMB interface. Messages are  
defined as either a request or a response, as indicated by the least significant bit in the Net-  
work Function Code of the message. Table 11-4 shows the format of an IPMI request mes-  
sage.  
Table 11-4: Format for IPMI Request Message  
Byte:  
Bits:  
7:  
6:  
5:  
4:  
3:  
2:  
1:  
0:  
rsSA  
1
2
3
4
5
netFn  
rsLUN  
Checksum  
rqSA  
rqSeq  
rqLUN  
®
11-6  
Katana 752i User’s Manual  
10006024-04  
     
IPMI Controller: IPMI Message Protocol  
Byte:  
Bits:  
7:  
6:  
5:  
4:  
3:  
2:  
1:  
0:  
Command  
6
Data  
7:N  
Checksum  
N+1  
The first byte contains the responder’s Slave Address, rsSA. The second byte contains the  
Network Function Code, netFn, and the responder’s Logical Unit Number, rsLUN. The third  
byte contains the two’s-complement checksum for the first two bytes. The fourth byte con-  
tains the requester’s Slave Address, rqSA. The fifth byte contains the requester’s Sequence  
Number, rqSeq, and requester’s Logical Unit Number, rqLUN. The Sequence number may  
be used to associate a specific response to a specific request. The sixth byte contains the  
Command Number. The seventh byte and beyond contain parameters for specific com-  
mands (if required). The final byte is the two’s-complement checksum of all of the message  
data after the first checksum.  
An IPMI response message (see Table 11-5) is similar to a IPMI request message. The main  
difference is that the seventh byte contains the Completion Code, and the eighth byte and  
beyond hold data received from the controller (rather than data to send to the controller).  
Also, the Slave Address and Logical Unit Number for the requester and responder are  
swapped.  
Table 11-5: Format for IPMI Response Message  
Byte:  
Bits:  
7:  
6:  
5:  
4:  
3:  
2:  
1:  
0:  
rqSA  
1
2
3
4
5
6
7
netFn  
rsSeq  
rqLUN  
Checksum  
rsSA  
rsLUN  
Command  
Completion Code  
Data  
8:N  
Checksum  
N+1  
®
11-7  
10006024-04  
 
IPMI Controller: IPMI Message Protocol  
IPMI Network Function Codes  
All IPMI messages contain a Network Function Code field, which defines the category for a  
particular command. Each category has two codes assigned to it–one for requests and one  
for responses. The code for a request has the least significant bit of the field set to zero,  
while the code for a response has the least significant bit of the field set to one. Table 11-6  
lists the network function codes (as defined in the IPMI specification) used by the Zircon  
PM.  
Table 11-6: Network Function Codes  
Hex Code  
Value(s):  
Name:  
Type:  
Description:  
00, 01  
Chassis  
chassis device  
requests/responses  
00 = command/request, 01 = response:  
common chassis control and status  
functions  
02, 03  
Bridge  
bridge  
02 = request, 03 = response:  
requests/responses  
message contains data for bridging to the  
next bus. Typically, the data is another  
message, which also may be a bridging  
message. This function is only present on  
bridge nodes.  
04, 05  
06, 07  
Sensor/  
Event  
sensor and event  
requests/responses  
04 = command/request, 05 = response:  
for configuration and transmission of Event  
Messages and system Sensors. This  
function may be present on any node.  
App  
application  
requests/responses  
06 = command/request, 07 = response:  
message is implementation-specific for a  
particular device, as defined by the IPMI  
specification  
08, 09  
0A, 0B  
Firmware  
Storage  
firmware transfer  
requests/responses  
firmware transfer messages match the  
format of application messages, as  
determined by the particular device  
non-volatile storage  
requests/responses  
may be present on any node that provides  
nonvolatile storage and retrieval services  
0C-2F  
30-3F  
Reserved  
OEM  
reserved: 36 network functions (18 pairs)  
vendor specific: 16 network functions (8  
pairs). The vendor defines functional  
semantics for cmd and data fields. The cmd  
field must hold the same value in requests  
and responses for a given operation to  
support IPMI message handling and  
transport mechanisms. The controller’s  
Manufacturer ID value identifies the vendor  
or group.  
®
11-8  
Katana 752i User’s Manual  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
IPMI Completion Codes  
All IPMI response messages contain a hexadecimal Completion Code field that indicates the  
status of the operation. Table 11-7 lists the Completion Codes (as defined in the IPMI specifi-  
cation) used by the Zircon PM.  
Table 11-7: Completion Codes  
Code:  
Description:  
Generic Completion Codes 00, C0-FF  
00  
C0  
Command completed normally  
Node busy–command could not be processed because command-processing  
resources are temporarily unavailable  
C1  
C2  
C3  
C4  
Invalid command–indicates an unrecognized or unsupported command  
Command invalid for given LUN  
Time-out while processing command, response unavailable  
Out of space–command could not be completed because of a lack of storage  
space required to execute the given command operation  
C5  
C6  
C7  
C8  
C9  
Reservation canceled or invalid Reservation ID  
Request data truncated  
Request data length invalid  
Request data field length limit exceeded  
Parameter out of range–one or more parameters in the data field of the Request  
are out of range. This is different from Invalid data field code (CC) because it  
indicates that the erroneous field(s) has a contiguous range of possible values.  
CA  
CB  
CC  
CD  
CE  
CF  
Cannot return number of requested data bytes  
Requested sensor, data, or record not present  
Invalid data field in Request  
Command illegal for specified sensor or record type  
Command response could not be provided  
Cannot execute duplicated request–for devices that cannot return the response  
returned for the original instance of the request. These devices should provide  
separate commands that allow the completion status of the original request to be  
determined. An Event Receiver does not use this completion code, but returns the  
00 completion code in the response to (valid) duplicated requests.  
D0  
D1  
D2  
Command response could not be provided, SDR Repository in update mode  
Command response could not be provided, device in firmware update mode  
Command response could not be provided, BMC initialization or initialization  
agent in progress  
D3  
Destination unavailable–cannot deliver request to selected destination. (This  
code can be returned if a request message is targeted to SMS, but receive  
message queue reception is disabled for the particular channel.)  
D4  
D5  
FF  
Cannot execute command, insufficient privilege level  
Cannot execute command, parameter(s) not supported in present state  
Unspecified error  
®
11-9  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
Code:  
Description: (continued)  
Device-Specific (OEM) Codes 01-7E  
01-7E Device specific (OEM) completion codes–command-specific codes (also specific  
for a particular device and version). Interpretation of these codes requires prior  
knowledge of the device command set.  
Command-Specific Codes 80-BE  
80-BE Standard command-specific codes–reserved for command-specific completion  
codes (described in this chapter)  
Zircon PM IPMI Commands  
The Zircon PM peripheral management controller supports IPMI commands to query board  
information and to control the behavior of the board. These commands provide a means  
to:  
• identify the controller  
• reset the controller  
• return the controller’s self-test results  
• read and write the controller’s SROMs  
• read the temperature, voltage, and watchdog sensors  
• get specific information, such as thresholds, for each sensor  
• read and write the Field Replaceable Unit (FRU) data  
• reserve and read the Sensor Data Record (SDR) repository  
• configure event broadcasts  
• bridge an IPMI request to the public IPMB and return the response  
• read and write the controller’s general-purpose I/O (GPIO)  
• configure heartbeat broadcasts  
Table 11-8 lists the IPMI commands supported by the Zircon PM along with the hexadecimal  
values for each command’s Network Function Code (netFn), Logical Unit Number (LUN),  
and Command Code (Cmd).  
Table 11-8: Zircon PM IPMI Commands  
Command:  
Set Event Receiver  
netFn:  
Sensor/Event  
LUN:  
00  
Cmd:  
00  
04, 05  
04, 05  
04, 05  
04, 05  
Get Event Receiver  
Sensor/Event  
Sensor/Event  
Sensor/Event  
00  
01  
Platform Event (Transmit Only)  
Get Device SDR Information  
00  
02  
00  
20  
®
11-10  
Katana 752i User’s Manual  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
Command: (continued)  
Get Device SDR  
netFn:  
LUN:  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
Cmd:  
21  
22  
23  
26  
27  
2D  
2E  
Sensor/Event  
Sensor/Event  
Sensor/Event  
Sensor/Event  
Sensor/Event  
Sensor/Event  
Sensor/Event  
Sensor/Event  
Application  
Application  
Application  
Application  
Application  
Application  
Application  
Storage  
04, 05  
04, 05  
04, 05  
04, 05  
04, 05  
04, 05  
04, 05  
04, 05  
06, 07  
06, 07  
06, 07  
06, 07  
06, 07  
06,07  
06, 07  
0A, 0B  
0A, 0B  
0A, 0B  
0A, 0B  
0A, 0B  
30, 31  
30, 31  
30, 31  
30, 31  
Reserve Device SDR Repository  
Get Sensor Reading Factors  
Set Sensor Thresholds  
Get Sensor Thresholds  
Get Sensor Reading  
Set Sensor Type  
Get Sensor Type  
2F  
Get Device ID  
01  
01  
02  
03  
04  
34  
52  
10  
11  
12  
2A  
2B  
00  
01  
02  
03  
Broadcast 'Get Device ID'  
Cold Restart  
Warm Restart  
Get Self Test Results  
Send Message (private IPMB only)  
Master Write-Read I2C  
Get FRU Inventory Area Info  
Read FRU Inventory Data  
Write FRU Inventory Data  
Enter SDR Repository Update Mode  
Exit SDR Repository Update Mode  
Write Setting  
Storage  
Storage  
Storage  
Storage  
OEM  
Read Setting  
OEM  
Set Heartbeat  
OEM  
Get Heartbeat  
OEM  
The Zircon PM implements many standard IPMI commands. Please refer to the IPMI specifi-  
cation (listed in Table 1-2) for details about each command’s request and response data. The  
remainder of this section describes standard commands that have Zircon PM-specific  
request/response data.  
Get Sensor Reading (Sensor/Event)  
The Get Sensor Reading command provides access to the Zircon PM’s internal or external  
sensors. The Zircon PM has six analog-to-digital (A/D) converters, two temperature sen-  
sors, and three processor watchdog sensors. All of the A/D converters connect to the  
board’s power supplies, allowing the Zircon PM to monitor board voltages. Two on-board  
temperature sensors monitor the front-side airflow temperature. A watchdog sensor moni-  
tors the operations on the 750GL processor. Table 11-9 shows the request/response data  
parameters for the Get Sensor Reading command.  
®
11-11  
10006024-04  
 
IPMI Controller: IPMI Message Protocol  
Table 11-9: Get Sensor Reading Parameters  
Type:  
Byte:  
Data Field:  
Request  
Data  
1
Sensor Number (hex)  
41=PMC 3.3V Voltage Monitor  
42=CPU_CORE Voltage Monitor  
43=1.8V Voltage Monitor  
44=2.5V Voltage Monitor  
45=3.3V Voltage Monitor  
46=5.0V Voltage Monitor  
50=750GL Watchdog  
60=Outflow Temperature Sensor  
61=Inflow Temperature Sensor  
70=750GL System Firmware Error  
Response  
Data  
1
2
Completion Code  
Sensor Reading  
Bits[0:7], byte of reading. Ignore on read if sensor does not return  
a numeric (analog) reading.  
3
Bit[7], 0=All event messages disabled from this sensor  
Bit[6], 0=Sensor scanning disabled  
Bit[5], 1=Initial update in progress. When set, this bit indicates  
that a rearm or Set Event Receiver command has requested an  
update (which has not yet occurred) of the sensor status.  
Software should use this bit to avoid getting an incorrect status  
while the first sensor update is in progress. This bit is only  
necessary if the controller can receive and process a Get Sensor  
Reading or Get Sensor Event Status command for the sensor  
before the update has completed. For example, a fan RPM sensor  
may require seconds to accumulate the first reading after a re-  
arm.  
Bits[4:0], Reserved. Ignore on read.  
®
11-12  
Katana 752i User’s Manual  
10006024-04  
 
IPMI Controller: IPMI Message Protocol  
Type:  
Byte:  
Data Field: (continued)  
Response  
Data  
4
Present Threshold Comparison Status  
For threshold-based sensors:  
(continued)  
Bits[7:6], Reserved. Returned as 1 (binary). Ignore on read.  
Bit[5], 1=at or above (ε) upper non-recoverable threshold  
Bit[4], 1=at or above (ε) upper critical threshold  
Bit[3], 1=at or above (ε) upper non-critical threshold  
Bit[2], 1=at or below (δ) lower non-recoverable threshold  
Bit[1], 1=at or below (δ) lower critical threshold  
Bit[0], 1=at or below (δ) lower non-critical threshold  
For discrete reading sensors:  
Bit[7], 1=state 7 asserted  
Bit[6], 1=state 6 asserted  
Bit[5], 1=state 5 asserted  
Bit[4], 1=state 4 asserted  
Bit[3], 1=state 3 asserted  
Bit[2], 1=state 2 asserted  
Bit[1], 1=state 1 asserted  
Bit[0], 1=state 0 asserted  
5
For Discrete Reading Sensors Only (optional, otherwise 0x00)  
Bit[7], Reserved. Returned as 1 (binary). Ignore on read.  
Bit[6], 1=state 14 asserted  
Bit[5], 1=state 13 asserted  
Bit[4], 1=state 12 asserted  
Bit[3], 1=state 11 asserted  
Bit[2], 1=state 10 asserted  
Bit[1], 1=state 9 asserted  
Bit[0], 1=state 8 asserted  
®
11-13  
10006024-04  
IPMI Controller: IPMI Message Protocol  
Master Write-Read I2C (Application)  
The Master Write-Read I C command allows for direct accesses to I C devices. This com-  
2
2
2
mand can read from or write to any of the Zircon PM’s private I C devices, such as SROMs or  
temperature sensors. Typically, you would use it to update the Zircon PM’s firmware from  
the management controller. Table 11-10 shows the request/response data parameters for  
this command.  
Table 11-10: Master Write-Read I2C Parameters  
Type:  
Byte:  
Data Field:  
Request  
1
Bus ID  
Data  
Bits[7:4], Channel Number. Write as 0000 (binary).  
Bits[3:1], Bus ID, zero-based  
000=Public IPMB  
001=Private IIC Bus #1, Private IPMB  
111=Private IIC Bus #2  
Bit[0], Bus Type  
0=Public (IPMB)  
1=Private Bus  
2
3
Bits[7:1], Slave Address of Recipient  
Bit[0], Reserved. Write as zero.  
Read Count. Number of bytes to read, one-based.  
0=No bytes to read.  
4:M  
1
Data to Write  
Response  
Data  
Completion Code  
A management controller shall return an error Completion Code  
if an attempt is made to access an unsupported bus.  
Generic, plus following command-specific codes (hex):  
81=Lost Arbitration  
82=Bus Error  
83=NAK on Write  
84=Truncated Read  
2:N  
Bytes read from specified slave address. This field will be absent if  
the read count is 0. The controller terminates the I2C transaction  
with a STOP condition after reading the requested number of  
bytes.  
®
11-14  
Katana 752i User’s Manual  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
Write Setting (OEM)  
The Write Setting command provides the ability to write a value to a general-purpose  
input/output (GPIO) pin on the Zircon PM. By toggling certain GPIO pins, software can reset  
or power-down the board. Table 11-11 shows the request/response data parameters for the  
Write Setting command.  
Table 11-11: Write Setting Parameters  
Type:  
Byte:  
Data Field:  
Request  
Data  
1
Bits[7:1], Device Slave Address  
Bit[0], Reserved. Write as zero.  
Currently defined to be zero.  
Zircon Port Number  
4=GPIO  
2
3
4
Device Type  
192=Zircon  
Device Type Modifier  
5=Inverted Output  
6=Normal Output  
5
6
Sub-Device  
GPIO2=Input from PLD (spare, reserved for future use)  
GPIO4=Reset to 750GL, Active Low  
GPIO13=Hot-Swap Fault (Board Power), Active Low  
Action Setting  
0=De-assert output  
1=Assert output  
7
1
Base Units  
66=Bit setting  
Completion Code  
Response  
Data  
®
11-15  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
Read Setting (OEM)  
The Read Setting command provides the ability to read the value of a general-purpose  
input/output (GPIO) pin on the Zircon PM. Software can read certain GPIO pins to deter-  
mine if the board is in reset or powered-down. Table 11-12 shows the request/response data  
parameters for the Read Setting command.  
Table 11-12: Read Setting Parameters  
Type:  
Byte:  
Data Field:  
Request  
Data  
1
Bits[7:1], Device Slave Address  
Bit[0], Reserved. Write as zero.  
Currently defined to be zero.  
Zircon Port Number  
4=GPIO  
2
3
4
Device Type  
192=Zircon  
Device Type Modifier  
3=Inverted Input  
4=Normal Input  
5
Sub-Device  
GPIO8=750GL System Firmware Error, Active High  
GPIO11=750GL Watchdog Time-out, Active High  
GPIO12=Input from 750GL  
GPIO13=Hot-Swap Fault (Board Power), Active Low  
GPIO15:19=Geographical Address 4 to 0, Active High  
Response  
Data  
1
2
Completion Code  
Action Setting  
0=Input is de-asserted  
1=Input is asserted  
3
Base Units  
66=Bit setting  
®
11-16  
Katana 752i User’s Manual  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
Set Heartbeat (OEM)  
The Set Heartbeat command configures the Zircon PM to send a heartbeat message to a  
2
receiver on the IPMB or private I C bus at a specific interval. The interval can range between  
100 milliseconds and 25.6 seconds. The heartbeat message data may be a string of bytes or  
a command that gets processed at each interval. Table 11-13 shows the request/response  
data parameters for the Set Heartbeat command.  
Table 11-13: Set Heartbeat Parameters  
Type:  
Request  
Byte:  
1
Data Field:  
Bus ID  
Data  
Bits[7:4, Reserved  
Bits[3:1], Bus ID, zero-based  
000=Public IPMB  
001=Private IIC Bus #1, Private IPMB  
111=Private IIC Bus #2  
Bit[0], Bus Type  
0=Public (IPMB)  
1=Private Bus  
2
3
Bits[7:1], Slave Address of Recipient  
Bit[0], Reserved. Write as zero.  
Send Interval  
The interval in 100-millisecond counts between heartbeat  
transmissions. Writing zero disables the heartbeat.  
4
Command/Data  
0=Following is a command to be processed. Its reply data is to be  
sent for the heartbeat data.  
1=Following is constant data to be sent for the heartbeat data.  
Command or Constant Data  
5:N  
1
If the data is a command to be processed, this field must contain a  
properly formatted IPMB message, minus the first byte  
containing the slave address.  
Response  
Data  
Completion Code  
®
11-17  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
Get Heartbeat (OEM)  
The Get Heartbeat command returns the current configuration of the heartbeat function  
for a specified interface. The response data has the same definition as the Set Heartbeat  
request data (see Section ). Table 11-14 shows the request/response data parameters for the  
Get Heartbeat command.  
Table 11-14: Get Heartbeat Parameters  
Type:  
Request  
Byte:  
1
Data Field:  
Bus ID  
Data  
Bits[7:4], Reserved  
Bits[3:1], Bus ID, zero-based  
000=Public IPMB  
001=Private IIC Bus #1, Private IPMB  
111=Private IIC Bus #2  
Bit[0], Bus Type  
0=Public (IPMB)  
1=Private Bus  
Response  
Data  
1
2
Completion Code  
Bits[7:1], Slave Address of recipient  
Bit[0], Reserved. Returned as zero. Ignore on read.  
3
Send Interval.  
The interval in 100-millisecond counts between heartbeat  
transmissions. Zero indicates that the heartbeat is disabled.  
4
Command/Data  
0=Following is a command to be processed. Its reply data is to be  
sent for the heartbeat data.  
1=Following is constant data to be sent for the heartbeat data.  
Command or Constant Data  
5:N  
®
11-18  
Katana 752i User’s Manual  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
IPMI FRU Information  
The Zircon PM stores Field Replaceable Unit (FRU) information in its boot memory (SROM).  
The data structure contains information such as the product name, part number, serial  
number, and manufacturing date. Please refer to the IPMI specification for complete details  
®
on the FRU data structure. Table 11-15 lists the general contents of the Katana 752i’s FRU  
information.  
Table 11-15: FRU Definition  
Item:  
Description:  
Board Information Area  
Manufacturing Date/Time  
Variable, expressed as the number of minutes since 12:00 AM  
on January 1, 1996  
Board Manufacturer  
Board Product Name  
Board Serial Number  
Board Part Number  
FRU File ID  
“Emerson Network Power, Embedded Computing”  
“Katana®752i”  
Variable, formatted as “P683-XXXX”  
Variable, formatted as “10XXXXXX-YY-Z”  
Variable, for example: “smbFruInit.c” if the VxWorks tools  
were used to program the FRU information  
Manufacturing Locale  
Product Information Area  
Manufacturer Name  
Product Name  
“Rosario, Cavite, Philippines”  
“Emerson Network Power, Embedded Computing”  
“Katana®752i”  
Product Part/Model Number  
Product Version  
Variable, formatted as “10XXXXXX-YY-Z”  
Not used, same information is provided by the part number  
Variable, formatted as “P683-XXXX”  
Not Used  
Product Serial Number  
Asset Tag  
FRU File ID  
Variable, for example: “smbFruInit.c” if the VxWorks tools  
were used to program the FRU information  
®
11-19  
10006024-04  
   
IPMI Controller: IPMI Message Protocol  
IPMI Device SDR Repository  
The Zircon PM implements a Device SDR Repository that contains Sensor Data Records for  
the Zircon PM, the FRU device, and each sensor. A system management controller may use  
the Get Device SDR command to read the repository and dynamically discover the capabili-  
ties of the board. Please refer to the IPMI specification (listed in Table 1-2) for more informa-  
tion on using Sensor Data Records and the Device SDR Repository.  
IPMI Event Messages  
Under certain circumstances, some sensors connected to the Zircon PM can generate Event  
Messages for the system management controller, as described below in Table 11-16.  
Table 11-16: IPMI Event Messages Generating Sensors  
Sensor Event/Reading  
Sensor  
Number:  
0x70  
Event  
Generator:  
Yes  
Sensor Name:  
ProcProgress  
ProcWatchdog  
OutflowTemp  
InflowTemp  
+5.0V  
Type:  
0x0F  
0x23  
0x01  
0x01  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
Type:  
0x6F  
0x6F  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x50  
Yes  
0x60  
Yes  
0x61  
Yes  
0x46  
Yes  
+3.3V  
0x45  
Yes  
+2.5V  
0x44  
No  
+1.8V  
0x43  
No  
PPC750GL  
PMC+3.3V  
0x42  
No  
0x41  
No  
To enable these messages, the system management controller must send a Set Event  
Receiver command to the Zircon PM, along with the address of the Event Receiver. Table 11-  
17 shows the format of an Event Message.  
Table 11-17: Event Message Format  
1
Byte:  
Field:  
Description:  
0
1
RsSA  
Responder’s Slave Address (Address of Event Receiver)  
NetFn/RsLUN  
Net Function Code (0x04) in upper 6 bits; Responder’s LUN in lower  
2 bits  
2
3
4
Chk1  
Checksum #1  
RqSA  
Requester’s Slave Address (Address of our board on IPMB)  
RqSeq/RqLUN  
Request Sequence number in upper 6 bits; Requester’s LUN in low  
2 bits  
5
6
Cmd  
Command (Always 0x02 for event message)  
Event Message Revision (0x04 for IPMI 1.5)  
EvMRev  
®
11-20  
Katana 752i User’s Manual  
10006024-04  
       
IPMI Controller: IPMI Message Protocol  
1
Byte:  
Field:  
Description: (continued)  
7
Sensor Type  
Indicates event class or type of sensor that generated the  
message  
8
9
Sensor Number  
A unique number indicating the sensor that generated the  
message  
Event Dir /  
Event Type  
Upper bit indicates direction (0 = Assert, 1 = Deassert); Lower 7 bits  
indicate type of threshold crossing or state transition  
10  
11  
12  
13  
Event Data 0  
Event Data 1  
Event Data 2  
Chk2  
Data for sensor and event type  
(Optional) Data for sensor and event type  
(Optional) Data for sensor and event type  
Checksum #2  
1. Each byte has eight bits.  
Event-generating sensors with a Threshold Event/Reading Type (0x01) initiate an event  
message when a sensor reading crosses the defined threshold. The default thresholds for a  
particular sensor are retrieved by sending the Zircon PM a Get Sensor Thresholds com-  
mand. The system management controller must send the Zircon PM a Get Sensor Reading  
command to retrieve the current sensor reading. (See the IPMI specification listed in  
Table 1-2 for further details regarding these commands.)  
ProcWatchdog is a Watchdog 2 Type (0x23) sensor. It generates an event when the  
750GL1_WD_LATCH signal (see Table 11-1) for a particular sensor is asserted. A timeout in  
the watchdog mechanism of the Marvell system controller asserts this signal. An associated  
®
de-assertion event occurs when the system software on the Katana 752i has recovered  
and the 750GL1_WD_LATCH signal has been cleared.  
®
On the Katana 752i, sensor number 0x70 is a System Firmware Progress sensor. This type  
of sensor (0x0F) generates events to communicate Power On Self-Test (POST) and boot  
failures. Table 11-18 shows the OEM values defined for the data associated with this type of  
sensor.  
Table 11-18: System Firmware Progress OEM Event Data  
Event Data 0  
(Byte 10):  
Event Data 1  
(Byte 11):  
Event Data 2  
(Byte 12):  
Description:  
Memory POST failed  
0xA0  
0x01  
0xFF  
(101000002)  
(000000012)  
(111111112)  
I2C POST failed  
0xA0  
0x40  
0xF0  
(101000002)  
(010000002)  
(111100002)  
Flash POST failed  
0xA0  
0x50  
0xF0  
(101000002)  
(010100002)  
(111100002)  
PCI Enumerated w/o EREADY  
0xA0  
0xFE  
0x01  
(101000002)  
(111111102)  
(000000012)  
®
11-21  
10006024-04  
 
IPMI Controller: IPMI Message Protocol  
The Event Data 0 byte has three fields: Bits 7:6 describe the contents of Event Data 1 (set to  
10 when an OEM code is present in Event Data 1). Bits 5:4 describe the contents of Event  
2
Data 2 (also set to 10 when an OEM code is present). Bits 3:0 store the Sensor-specific Off-  
2
set value for the System Firmware Progress sensor (zero indicates a POST Error). Please see  
the IPMI specification for further information on these fields.  
®
11-22  
Katana 752i User’s Manual  
10006024-04  
Section 12  
Hot Swap  
®
The Katana 752i baseboard incorporates a Linear Technologies LTC1643L Hot Swap con-  
troller device and is fully compliant with the CompactPCI (cPCI) Hot Swap Specification (see  
®
references in Table 1-2). Katana 752i circuit boards allow for High Availability Hot Swap sys-  
tems, including cPCI/PSB systems (without a cPCI interface). Some basic Hot Swap features  
include:  
• Ejector switch indication and Hot Swap LED control  
• Back-end voltage isolation using the BD_SEL* signal and power supply health indication  
using the CPCI_HEALTHY* signal  
• Minimal capacitive loading on power supplies and I/O pins, according to the Hot Swap  
Specification  
• In-rush current limiting  
HOT SWAP LOGIC (HSL) PLD  
®
The Katana 752i utilizes a programmable logic device, called the Hot Swap Logic (HSL)  
PLD to store various registers that provide status and affect the operation of the board.  
These registers are listed below.  
Table 12-1: HSL PLD Register Summary  
Address (Hex):  
Name:  
Description:  
F821,0000  
F821,0001  
F821,0002  
F821,0003  
F821,0004  
J4SGA  
Shelf Enumeration Bus pin status from J4 conn. (read only)  
Geographical Address from J4 connector (read only)  
Geographical Address from J2 connector (read only)  
J4GA  
J2GA  
CT Clk Control  
cPCI Status  
Bit 0, CT_EN signal: 0 = present, 1 = not present  
Bit 1, cPCI present on backplane: 1 = yes, 0 = no  
Bit 2, HSL_CPCI_N signal: 0 = cPCI, 1 = no cPCI  
(remaining bits are zero, only used when cPCI is enabled)  
F821,0005  
F821,0006  
reserved  
HS LED  
Bit 0, Hot Swap LED control: 1 = LED on; 0 = LED off  
(only used when cPCI is disabled)  
F821,0007  
reserved for HSL PLD version  
®
12-1  
10006024-04  
         
Hot Swap: cPCI Functionality  
CPCI FUNCTIONALITY  
®
The Katana 752i implements an optional jumper, JP1 (see Fig. 2-4), which can enable or dis-  
able the board’s cPCI functionality. By default, cPCI is enabled (jumpers placed on JP1, pins  
1—2 and pins 7—8).  
The jumper settings also can prevent the cPCI_RST signal from resetting the board. This  
®
allows system designers the flexibility to choose whether or not the Katana 752i uses the  
cPCI reset signal (from the backplane). When pins 1 and 2 of JP1 are jumpered (default), the  
®
cPCI_RST signal is enabled. With no jumper installed, the Katana 752i ignores the  
cPCI_RST signal.  
HOT SWAP LED AND EJECTOR SWITCH CONTROL  
The specific operation of the Hot Swap LED and Ejector Switch is determined by whether or  
®
not the Katana 752i’s cPCI functionality is enabled (see previous section).  
cPCI Hot Swap  
When cPCI functionality is enabled (this is the default condition, where jumpers are placed  
®
on JP1, pins 1—2 and pins 7—8), the Katana 752i uses Hot Swap logic internal to the  
MV64460 system controller.  
The Hot Swap logic functions as follows when a board is inserted into a slot:  
1
2
3
4
5
The inserted board gets power from Early Power, and its reset is asserted from Local PCI  
PCI0__RSTn. The hardware turns on the Hot Swap LED.  
The local PCI PCI0_RSTn signal is de-asserted, causing the Hot Swap LED to turn off,  
indicating that the operator may lock the ejector handle.  
After the operator locks the handle, the PCI0_HS signal goes high, indicating that the board  
is inserted and locked.  
INS bit is set and PCI0_ENUMn is asserted, notifying the Hot Swap software that a board has  
been inserted.  
System Hot Swap software detects PCI0_ENUMn assertion and checks the INS bits in all Hot  
Swap-compliant boards. It identifies the inserted board and clears the INS bit (by writing a  
value of one).  
6
The MV64460 system controller acknowledges the system software by stopping the  
assertion of the PCI0_ENUMn pin. Now, software may reconfigure all the boards.  
®
12-2  
Katana 752i User’s Manual  
10006024-04  
     
Hot Swap: Hot Swap LED and Ejector Switch Control  
The Hot Swap logic functions as follows when a board is removed from a slot:  
1
The operator opens the board’s ejector handles and the PCI0_HS signals goes low to  
indicate that the board is about to be extracted.  
2
3
The REM bit is set, and the PCI0_ENUMn pin is asserted, if not masked by the EIM bit.  
System Hot Swap software detects PCI0_ENUMn assertion and checks the REM bits in all  
Hot Swap-compliant boards. It identifies the board to be extracted and clears the REM bit  
(by writing a value of one).  
4
5
6
The MV64460 system controller acknowledges the system software by stopping the  
assertion of the PCI0_ENUMn pin.  
The Hot Swap software may reconfigure the rest of the boards. When ready, it sets the LOO  
bit to indicate that the board can be removed.  
The MV64460 system controller drives PCI0_LED pin to one, and the Hot Swap LED turns on  
to indicate to the operator that the board can be removed.  
®
12-3  
10006024-04  
Hot Swap: Hot Swap LED and Ejector Switch Control  
Non-cPCI Hot Swap  
When the cPCI functionality is disabled, the LED/ejector switch control mechanism works in  
conjunction with the Power Good indication from the Hot Swap controller circuit, as shown  
in Fig. 12-1.  
Figure 12-1: Hot Swap Controller Circuit  
3.3_EARLY  
3.3_EARLY  
Healthy*  
BDSEL*  
to backplane  
Blue Hot  
Swap LED  
PWRGD*  
HS Controller  
NOTE: Discrete logic  
contained inside HSL PLD  
Marvell  
MV64460  
3_3V  
PCI0_HS  
Ejector Switch  
Note: The status of the ejector handle latch can be determined by reading the PCI0_HS bit in the MV64460 HS_CTL  
register (PCI0_HS bit high = locked, PCI_HS bit low = unlocked). The status also can be read via MV644460  
MPP/GPIO pin #31. It is an interruptable pin that can detect a change in the Hot Swap status, eliminating the  
need for polling at the MPP pin or PCI0_HS bit.  
The Hot Swap logic functions as follows when a board is inserted into a slot:  
1
The Hot Swap LED illuminates immediately when the board is inserted. This is enabled  
when the power good indicator, PWRGD*, from the Hot Swap controller is not being driven  
®
12-4  
Katana 752i User’s Manual  
10006024-04  
   
Hot Swap: Timing Considerations  
low (active). This occurs when power supply voltages are not within the proper tolerance or  
when the BDSEL* signal is not driven low (active) to the Hot Swap controller. The LED  
remains illuminated until software clears bit 0 at address F821,0006 in the HSL PLD.  
16  
2
When the operator locks the ejector handle, the MV64460 bridge chip senses the event  
and notifies the software that a board has been inserted. It also drives ENUM on the cPCI  
backplane when the switch is closed (until cleared by software).  
The Hot Swap logic functions as follows when a board is removed from a slot:  
1
2
3
4
5
The operator opens the ejector handle (but does not yet remove the board from the slot),  
and the MV64460 bridge chip senses the event.  
The REM bit in the Hot Swap Status and Control register (HS_CSR) is set and the  
PCI0_ENUMn pin on the MV64460 is asserted.  
The software identifies the board to be extracted and clears the REM bit by writing a one to  
it.  
The MV64460 deasserts the PCI0_ENUMn pin and the processor (750GL) performs board  
quiescence tasks.  
Once the board is properly shut down, the processor illuminates the Hot Swap LED by  
writing a one to bit 0 at address F821,0006 in the HSL PLD. This indicates that the board  
16  
can be removed safely from the system.  
TIMING CONSIDERATIONS  
®
The Katana 752i complies with Configuration 2 of the PCI Telecom Mezzanine/Carrier Card  
Specification, PICMG 2.15. It is an initially-retrying board, which means that from the time of  
®
insertion and/or cPCI RST negation, the Katana 752i will assert ENUM and retry all incom-  
ing cPCI configuration cycles until the board is minimally initialized. The time delay associ-  
ated with this functionality is approximately 300 milliseconds. Once this time has expired,  
®
the Katana 752i will respond to cPCI configuration cycles.  
®
In addition to this retry delay, the Katana 752i requires approximately another five sec-  
onds to initialize all on-card DRAM before it can support cPCI memory cycles. Accessing the  
®
Katana 752i on-card DRAM memory within five seconds may result in ECC errors or incor-  
rect data. Please refer to “Power-Up Timing” on page 15-5 for more details.  
®
12-5  
10006024-04  
   
Hot Swap: HEALTHY* Signal  
HEALTHY* SIGNAL  
®
The Katana 752i logic asserts the HEALTHY* signal whenever the Hot Swap controller indi-  
cates that all power supplies provided by the backplane are within the appropriate range.  
This signal passes through the Hot Swap Logic (HSL) programmable logic device (PLD) and  
goes to the backplane. Other logic, including board reset signals, does not affect the  
HEALTHY* signal, except for the front panel reset switch, which deasserts HEALTHY* when  
pressed.  
®
12-6  
Katana 752i User’s Manual  
10006024-04  
 
Section 13  
CT Bus Interface  
®
The Katana 752i supports an optional computer telephony (CT) bus interface that routes  
various signals from the CompactPCI J4 backplane connector to the PCI Telecom Mezza-  
®
nine Card (PTMC) expansion sites. The Katana 752i complies with Configuration 2 of the  
PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15.  
Note: The standard Katana®752i configuration does not support any of the CT bus interface options.  
PICMG 2.15 CONFIGURATION 2  
PTMC mezzanine and carrier cards supporting PICMG 2.15 Configuration 2 are identified as  
PT2MC and PT2CC. This configuration includes a Time Division Multiplexed (TDM) inter-  
face, a Reduced Media Independent Interface (RMII), and a TTL serial port.  
There are several compatibility types between combinations of a carrier card and a mezza-  
nine card. Although PTMC and PTCC are mechanically compatible with each other, the PMC  
mezzanine or carrier cards electrical compatibility is partially determined via PCI Telecom  
®
Identifiers (PTIDs) and enable (PTENB*) signals. The Katana 752i compares the PTID to  
configurations that it supports and activates PTENB* after determining compatibility is  
acceptable. At power-up, PTENB* is inactive and will activate once electrical compatibility  
is determined via the PTIDs.  
Another method to determine compatibility is interoperabilty. There are three interopera-  
bilty categories for combining mezzanine and carrier cards, per PICMG 2.15:  
Fully Interoperable Combination (FIC)  
FIC indicates combinations that do not limit functionality and are never a destructive com-  
®
bination. The Emerson Katana 752i (PT2CC) and  
PM/3Gv (or other PT2MCs) are a fully interoperable combination.  
Non-Destructive Combination (NDC)  
NDC indicates combinations that are not intended to interoperate, but will not cause dam-  
age to either the carrier or mezzanine card. For example, combining a PT2MC and a PT4CC  
is an NDC.  
®
13-1  
10006024-04  
         
CT Bus Interface: Katana®752i CT Bus Options  
User Managed Combination (UMC)  
UMC indicates combinations that are not to be made casually, since they may not be com-  
patible. Potential device destruction must be assumed for these combinations. For exam-  
ple, a PMC64 combined with a PT3CC is subject to damage from incompatible signal  
mapping on Pn3/Jn3.  
®
Caution: Do not install 64-bit PMC cards on the Katana 752i since this is an invalid configuration  
and would cause possible damage.  
!
For a list of these combinations, refer to the compatibility matrix in the PCI Telecom Mezza-  
nine/Carrier Card Specification, PICMG 2.15.  
KATANA®752I CT BUS OPTIONS  
®
Two Katana 752i CT bus options are available:  
Option 1  
(See page 13-4)  
This option supports only CT clocks—C8A, C8B, FRAMEA, FRAMEB, NETREF1, and NETREF2  
between the J4 connector and PTMC sites. There is no data path between the J4 and PTMC  
sites. There is an 8-bit data path between the two PTMC sites with this option, see Fig. 13-2.  
Option 2  
(See page 13-6)  
This option supports CT bus clocking plus CT data traffic via an Agere Systems T8110 Time  
Slot Interchanger (TSI). See Fig. 13-3 for data connectivity between J4 and the two PTMC  
sites.  
CLOCKING  
In a typical system clocking model, the designated primary clock master drives the A clock  
and frame signals and the designated secondary master drives the B clock and frame sig-  
nals. In Fig. 13-1, initially the B clocks are locked to the A clocks. After fallback, the roles of  
the A and B clocks are reversed. For example, the board driving the B clocks becomes the  
primary master after the A clock source fails. The NETFREF signals are generated to the pri-  
mary master to provide a network reference that the primary master will use to synchronize  
clock A with the network reference.  
®
13-2  
Katana 752i User’s Manual  
10006024-04  
         
CT Bus Interface: Signal Control  
Figure 13-1: Typical System Clocking Model  
CT_C8_A/CT_FRAME_A  
CT_C8_B/CT_FRAME_B  
CT_NETREF_1  
CT_NETREF_2  
Slave  
Digital  
Trunk  
Card  
Slave  
Digital  
Trunk  
Card  
Bits  
Derived  
Source  
Primary  
Master  
Secondary  
Master  
SIGNAL CONTROL  
®
The Katana 752i supports control signals that allow a PTMC site to master the CT clocks  
and/or data. The control registers are located in the Hot Swap Logic (HSL) programmable  
logic device (PLD) at hex address F821,0003 . The 750GL processor can access these reg-  
16  
isters. The following table summarizes the direction control registers:  
Table 13-1: CT Clock Control Registers  
Reset  
Value:  
T8110 Not Installed  
(option 1):  
T8110 Installed  
(option 2):  
Register:  
NETREF1_DIR  
NETREF2_DIR  
Bit:  
0
1
1
Controls direction of NETREF (on J4):  
1=Katana®752i is NETREFx slave  
(input)  
These bits are not used.  
1
0=Katana®752i is NETREFx master  
(output)  
C8_FRAME_A_TERM  
C8_FRAME_B_TERM  
2
3
1
1
Controls termination of FRAME and C8 data signals (on J4):  
1=Katana®752i is not clock master (33 ohm series  
termination)  
0=Katana®752i is clock master (no series termination)  
Controls termination on clock signals:  
1=33-ohm series termination present  
0=no termination  
®
13-3  
10006024-04  
         
CT Bus Interface: CT Bus Routing Without the T8110 (option 1)  
CT BUS ROUTING WITHOUT THE T8110 (OPTION 1)  
®
The Katana 752i option 1 routes the NETREF1 and NETREF2 clock signals; as well as the FA,  
C8A, FB, and C8B data signals between the J4 backplane connector and the two PTMC site  
connectors (see Fig. 13-2).  
Note: There is no data path between J4 and the PTMC sites. See Table 13-1 for buffer control settings.  
For the J4 connector pinouts, please refer to Table 14-1. For the PTMC site connector  
pinouts, see Table 9-1 and Table 9-2.  
®
13-4  
Katana 752i User’s Manual  
10006024-04  
   
CT Bus Interface: CT Bus Routing Without the T8110 (option 1)  
Figure 13-2: CT Signal Routing Diagram —T8110 Not Installed (option 1)  
PM/3Gv  
PM/3Gv  
MPC8264  
MPC8264  
T8105  
T8105  
Termination Logic  
Termination Logic  
J13  
J23  
P23  
P13  
CT Data (8)  
CT_NETREF1  
CT_NETREF2  
CT_C8A  
Katana750i  
CT_C8B  
CT_FRAMEA  
NETREF1_DIR  
NETREF2_DIR  
CT_FRAMEB  
C8_FRAME_A_DIR  
C8_FRAME_B_DIR  
Local CT Bus  
J4/P4  
®
13-5  
10006024-04  
 
CT Bus Interface: CT Bus Routing With the T8110 Installed (option 2)  
CT BUS ROUTING WITH THE T8110 INSTALLED (OPTION 2)  
The T8110 Time Slot Interchanger (TSI) is a PCI device that serves as a bridge between the  
®
H.110 and local CT bus on the Katana 752i. It must be properly configured before local and  
H.110 CT traffic can occur. There are several architectural restrictions with the local CT bus  
®
implementation on the Katana 752i as noted below.  
Note: There is local CT data line swapping on PTMC site 2, see Table 13-2.  
Table 13-2: Local CT Bus Bit Map  
T8110:  
LCT_D31  
LCT_D30  
LCT_D29  
LCT_D28  
LCT_D27  
LCT_D26  
LCT_D25  
LCT_D24  
LCT_D23  
LCT_D22  
LCT_D21  
LCT_D20  
LCT_D19  
LCT_D18  
LCT_D17  
LCT_D16  
LCT_D15  
LCT_D14  
LCT_D13  
LCT_D12  
LCT_D11  
LCT_D10  
LCT_D9  
PTMC Site 1:  
PTMC Site 2:  
CT_D0  
CT_D1  
CT_D2  
CT_D3  
CT_D4  
CT_D5  
CT_D6  
CT_D7  
CT_D8  
CT_D9  
CT_D10  
CT_D11  
CT_D12  
CT_D13  
CT_D14  
CT_D15  
CT_D16  
CT_D17  
CT_D18  
CT_D19  
CT_D19  
CT_D18  
CT_D17  
CT_D16  
CT_D15  
CT_D14  
CT_D13  
CT_D12  
CT_D11  
CT_D10  
CT_D9  
CT_D8  
CT_D7  
CT_D6  
CT_D5  
CT_D4  
CT_D3  
CT_D2  
CT_D1  
LCT_D8  
LCT_D7  
LCT_D6  
LCT_D5  
LCT_D4  
LCT_D3  
LCT_D2  
LCT_D1  
®
13-6  
Katana 752i User’s Manual  
10006024-04  
       
CT Bus Interface: CT Bus Routing With the T8110 Installed (option 2)  
T8110:  
PTMC Site 1:  
PTMC Site 2:  
LCT_D0  
CT_D0  
Local CT Bus Operation  
®
On the Katana 752i, option 2, the local CT clock master must always be the T8110. The  
two PTMC sites cannot be local CT bus masters (primary or secondary). They can only be CT  
slaves.  
• PTMCx local CT clocks CT_C8A/B must be sourced from the T8110 L_SCx pins, see  
• PTMCx local CT frames CT_FA/B must be sourced from T8110 FGx pins.  
• TSIs NETREFx signals may come from PTMC sites via the TSI LREFx pins or from H.110  
bus (J4) via the TSI NETREFx pins, see Fig. 13-3.  
• PTMC site 1 routes data lines CD_D19:0 to TSI LCT_D19:0.  
• PTMC site 2 routes data lines CT_D19:0 to TSI LCT_D12:31 (NOTE: data line swapping as  
shown in Table 13-2).  
• PTMC site 2 CT_D12:19 also routes eight data bits directly to PTMC site 1 CT_D19:12  
(NOTE: data line swapping as shown in Table 13-2).  
The local CT bus signals are separated into clock and data/control groups. Clock signals  
include CT_C8A (operates at 8 MHz), CT_C8B, CT_FRAMEA, CT_FRAMEB, NETREF1, and  
NETREF2, see Fig. 13-3. All other signals are data or control.  
®
13-7  
10006024-04  
 
CT Bus Interface: CT Bus Routing With the T8110 Installed (option 2)  
Figure 13-3: CT Signal Routing Diagram —T8110 Installed (option 2)  
From HSL PLD (bits 2:3)  
EN*  
C8A  
C8B  
C8A  
L_SC0  
L_SC1  
FG0  
C8A  
C8B  
FA  
QuickSwitch  
C8B  
FA  
FA  
PTMC 1  
FB  
FB  
FG1  
FB  
NETREF1  
NETREF2  
NETREF1  
NETREF2  
LREF0  
LREF1  
NETREF1  
NETREF2  
D31:0  
CT_D31:0 LCT_D19:0  
CT_D19:0  
T8110  
Data lines swapped here  
J4  
(H.110)  
L_SC2  
L_SC3  
FG2  
C8A  
C8B  
FA  
PTMC 2  
FG3  
FB  
LREF2  
LREF3  
NETREF1  
NETREF2  
CT_D19:12  
CT_D11:0  
NOTE: Data line  
swapping  
LCT_D20:31  
H.110 CT Bus  
Local CT Bus  
H.110 CT Bus Operation  
For H.110 CT operation, the signals C8_FRAME_A_TERM and C8_FRAME_B_TERM in the  
HSL PLD (address F821,0003 , bits 2:3) must be cleared to enable the QuickSwitch; see  
16  
®
13-8  
Katana 752i User’s Manual  
10006024-04  
   
Section 14  
Backplane Signals  
®
This chapter describes the Katana 752i board’s backplane signals. It lists the pinouts for  
connectors J1, J2, J3, J4, and J5 on the CompactPCI backplane.  
OVERVIEW  
®
The Katana 752i backplane connectors provide the following connections:  
• Connector J1 carries power supply source signals, various CompactPCI (cPCI) utility  
signals and Intelligent Platform Management Interface (IPMI) control signals to/from  
the cPCI backplane.  
• Connector J2 carries Geographical Address (GA) signals and power supply source signals  
®
from the cPCI backplane to the Katana 752i circuit board.  
• Connector J3 carries gigabit Ethernet signals to/from the packet-switched CompactPCI  
backplane (cPSB). J3 also routes user input/output (I/O) signals from PTMC expansion  
site #1.  
• Connector J4 (optional) routes H.110 computer telephony (CT) bus signals to the cPCI  
backplane.  
• Connector J5 routes user I/O signals from PTMC expansion site #2.  
®
14-1  
10006024-04  
       
Backplane Signals: Pinouts  
PINOUTS  
J1 is a 110-pin female connector (Emerson #01899062-00) that routes power supply source  
signals from the CompactPCI backplane, and cPCI and IPMI signals to the CompactPCI  
backplane, as listed in the following table.  
Table 14-1: cPCI Connector Pin Assignments, J1  
Pin:  
Row A:  
EP_5V  
Row B:  
CPCI_REQ64_J1*  
Row C:  
CPCI_ENUM_J1*  
LJ1_EPVIO  
Row D:  
EP_3_3V  
Row E:  
EP_5V  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14—12  
11  
10  
9
CPCI_AD1_J1  
EP_3_3V  
EP_5V  
CPCI_AD0_J1  
LJ1_EP5V  
CPCI_ACK64_J1*  
CPCI_AD2_J1  
CPCI_AD5_J1  
CPCI_CBE0_J1*  
CPCI_AD10_J1  
CPCI_AD13_J1  
CPCI_CBE1_J1*  
CPCI_PERR_J1*  
no connection  
CPCI_TRDY_J1*  
keying  
CPCI_AD4_J1  
ground  
CPCI_AD3_J1  
LJ1_EP3_3V  
CPCI_AD8_J1  
EP_VIO  
CPCI_AD7_J1  
EP_3_3V  
CPCI_AD6_J1  
CPCI_66EN_J1  
CPCI_AD11_J1  
ground  
CPCI_AD9_J1  
ground  
CPCI_AD12_J1  
EP_3_3V  
CPCI_AD15_J1  
ground  
CPCI_AD14_J1  
EP_3_3V  
CPCI_SERR_J1*  
EP_3_3V  
CPCI_PAR_J1  
ground  
IPMB_SCL  
IPMB_SDA  
CPCI_DEVSEL_J1*  
EP_3_3V  
CPCI_PCIXCAP_J1  
CPCI_FRAME_J1*  
keying  
EP_VIO  
CPCI_STOP_J1  
CONN_CPCI_BD_SEL*  
keying  
CPCI_IRDY_J1*  
keying  
keying  
CPCI_AD18_J1  
CPCI_AD21_J1  
CPCI_CBE3_J1*  
CPCI_AD26_J1  
CPCI_AD30_J1  
CPCI_REQ0_J1*  
no connection  
IPMB_PWR  
CPCI_AD17_J1  
ground  
CPCI_AD16_J1  
EP_3_3V  
ground  
CPCI_CBE2_J1*  
CPCI_AD19_J1  
CPCI_AD22_J1  
CPCI_AD24_J1  
CPCI_AD27_J1  
CPCI_AD31_J1  
CPCI_GNT0_J1*  
no connection  
no connection  
no connection  
EP_5V  
CPCI_AD20_J1  
ground  
CPCI_IDSEL_J1*  
ground  
CPCI_AD23_J1  
EP_VIO  
8
CPCI_AD25_J1  
ground  
7
CPCI_AD29_J1  
CPCI_PRESENT_J1*  
no connection  
CONN_HEALTHY*  
no connection  
EP_5V  
CPCI_AD28_J1  
LJ1_EP3_3V  
CPCI_RST_J1*  
LJ1_EPVIO  
6
CPCI_CLK_J1  
ground  
5
4
no connection  
LJ1_EP5V  
3
CPCI_INTA_J1*  
no connection  
EP_5V  
no connection  
no connection  
no connection  
2
no connection  
EP_POS12V  
1
EP_NEG12V  
®
14-2  
Katana 752i User’s Manual  
10006024-04  
       
Backplane Signals: Pinouts  
J2 is a 110-pin female connector (Emerson #01899063-00) that routes cPCI, Geographical  
Address, and power signals from the CompactPCI backplane, as listed in the table below.  
Table 14-2: cPCI Connector Pin Assignments, J2  
Pin:  
Row A:  
GA4 (pulled up)  
Row B:  
GA3 (pulled up)  
Row C:  
GA2 (pulled up)  
no connection  
no connection  
no connection  
no connection  
CPCI_PRST_J2*  
no connection  
no connection  
CPCI_AD33_J2  
EP_VIO  
Row D:  
GA1 (pulled up)  
no connection  
ground  
Row E:  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
GA0 (pulled up)  
no connection  
no connection  
no connection  
no connection  
no connection  
no connection  
no connection  
CPCI_AD32_J2  
CPCI_AD36_J2  
CPCI_AD39_J2  
CPCI_AD43_J2  
CPCI_AD46_J2  
CPCI_AD50_J2  
CPCI_AD53_J2  
CPCI_AD57_J2  
CPCI_AD60_J2  
CPCI_PAR64_J2  
CPCI_CBE6_J2*  
no connection  
no connection  
no connection  
no connection  
no connection  
ground  
ground  
ground  
ground  
no connection  
ground  
no connection  
no connection  
no connection  
no connection  
CPCI_AD35_J2  
CPCI_AD38_J2  
CPCI_AD42_J2  
CPCI_AD45_J2  
CPCI_AD49_J2  
CPCI_AD52_J2  
CPCI_AD56_J2  
CPCI_AD59_J2  
CPCI_AD63_J2  
CPCI_CBE5_J2*  
EP_VIO  
no connection  
ground  
no connection  
ground  
no connection  
ground  
no connection  
ground  
CPCI_AD34_J2  
ground  
CPCI_AD37_J2  
ground  
CPCI_AD41_J2  
ground  
CPCI_AD40_J2  
EP_VIO  
CPCI_AD44_J2  
ground  
CPCI_AD48_J2  
ground  
CPCI_AD47_J2  
EP_VIO  
CPCI_AD51_J2  
ground  
8
CPCI_AD55_J2  
ground  
CPCI_AD54_J2  
EP_VIO  
7
CPCI_AD58_J2  
ground  
6
CPCI_AD62_J2  
CPCI_64EN_J2*  
no connection  
ground  
CPCI_AD61_J2  
EP_VIO  
5
CPCI_CBE4_J2*  
ground  
4
CPCI_CBE7_J2*  
no connection  
no connection  
no connection  
3
no connection  
no connection  
no connection  
no connection  
no connection  
no connection  
2
no connection  
ground  
1
®
14-3  
10006024-04  
     
Backplane Signals: Pinouts  
J3 is a 95-pin female connector (Emerson #01899064-00) that routes cPSB Ethernet differ-  
ential signals and PTMC site #1 user I/O signals to the cPCI backplane, as listed in the table  
below.  
Table 14-3: cPSB Connector Pin Assignments, J3  
Pin:  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Row A:  
ground  
Row B:  
ground  
Row C:  
ground  
Row D:  
ground  
Row E:  
ground  
Row F:  
ground  
CPSB1_TRD0P  
CPSB1_TRD1P  
CPSB2_TRD0P  
CPSB2_TRD1P  
no connection  
PMC1_PIN5  
CPSB1_TRD0N  
CPSB1_TRD1N  
CPSB2_TRD0N  
CPSB2_TRD1N  
no connection  
PMC1_PIN4  
ground  
CPSB1_TRD2P  
CPSB1_TRD3P  
CPSB2_TRD2P  
CPSB2_TRD3P  
no connection  
PMC1_PIN2  
CPSB1_TRD2N  
CPSB1_TRD3N  
CPSB2_TRD2N  
CPSB2_TRD3N  
no connection  
PMC1_PIN1  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
no connection  
PMC1_PIN3  
PMC1_PIN8  
PMC1_PIN13  
PMC1_PIN18  
PMC1_PIN23  
PMC1_PIN28  
PMC1_PIN33  
PMC1_PIN38  
PMC1_PIN43  
PMC1_PIN48  
PMC1_PIN53  
PMC1_PIN58  
PMC1_PIN63  
PMC1_PIN10  
PMC1_PIN15  
PMC1_PIN20  
PMC1_PIN25  
PMC1_PIN30  
PMC1_PIN35  
PMC1_PIN40  
PMC1_PIN45  
PMC1_PIN50  
PMC1_PIN55  
PMC1_PIN60  
no connection  
PMC1_PIN9  
PMC1_PIN7  
PMC1_PIN6  
PMC1_PIN14  
PMC1_PIN19  
PMC1_PIN24  
PMC1_PIN29  
PMC1_PIN34  
PMC1_PIN39  
PMC1_PIN44  
PMC1_PIN49  
PMC1_PIN54  
PMC1_PIN59  
PMC1_PIN64  
PMC1_PIN12  
PMC1_PIN17  
PMC1_PIN22  
PMC1_PIN27  
PMC1_PIN32  
PMC1_PIN37  
PMC1_PIN42  
PMC1_PIN47  
PMC1_PIN52  
PMC1_PIN57  
PMC1_PIN62  
PMC1_PIN11  
PMC1_PIN16  
PMC1_PIN21  
PMC1_PIN26  
PMC1_PIN31  
PMC1_PIN36  
PMC1_PIN41  
PMC1_PIN46  
PMC1_PIN51  
PMC1_PIN56  
PMC1_PIN61  
8
7
6
5
4
3
2
1
®
14-4  
Katana 752i User’s Manual  
10006024-04  
     
Backplane Signals: Pinouts  
J4 is an optional 90-pin female connector (Emerson #01899070-00) that routes CT signals  
between the PTMC sites and the cPCI backplane, as listed in the table below.  
Table 14-4: cPSB Connector Pin Assignments, J4  
Pin:  
25  
24  
23  
22  
21  
20—15  
14—12  
11  
10  
9
Row A:  
SGA4  
Row B:  
SGA3  
Row C:  
SGA2  
Row D:  
SGA1  
Row E:  
SGA 0  
Row F:  
FRAME_GND5  
FRAME_GND4  
FRAME_GND3  
FRAME_GND2  
FRAME_GND1  
no connection  
keying  
J4_GA4  
J4_GA3  
J4_GA2  
J4_GA1  
J4_GA0  
EP_POS12  
PSF0*  
no connection  
no connection  
PSF1*  
CT_EN*  
EP_NEG12  
no connection  
no connection  
no connection  
keying  
no connection  
no connection  
no connection  
no connection  
keying  
no connection  
no connection  
no connection  
keying  
no connection  
no connection  
keying  
no connection  
keying  
CT_D29  
CT_D27  
CT_D24  
CT_D21  
CT_D19  
CT_D16  
CT_D13  
CT_D11  
CT_D8  
CT_D30  
EP_3_3V  
CT_D25  
CT_D22  
EP_5V  
CT_D31  
LJ4_EPVIO  
LJ4_EP5V  
ground  
CT_FA_R*  
CT_FB_R*  
FR_COMP*  
CT_C8A_R  
CT_C8B_R  
CT_NETREF1  
CT_NETREF2  
CT_SCLK  
ground  
CT_D28  
ground  
CT_D26  
ground  
8
CT_D23  
LJ4_EP5V  
ground  
ground  
7
CT_D20  
ground  
6
CT_D17  
CT_D14  
EP_5V  
CT_D18  
ground  
ground  
5
CT_D15  
LJ4_EP3_3V  
LJ4_EP3_3V  
ground  
ground  
4
CT_D12  
ground  
3
CT_D9  
CT_D10  
CT_SCLKx2*  
ground  
ground  
2
CT_D4  
CT_D5  
CT_D6  
CT_D7  
ground  
1
CT_D0  
EP_3_3V  
CT_D1  
CT_D2  
CT_D3  
ground  
®
14-5  
10006024-04  
     
Backplane Signals: Pinouts  
J5 is a 110-pin female connector (Emerson #01899063-00) that routes PTMC site user I/O  
and Ethernet signals to the cPCI backplane, as listed in the table below.  
Figure 14-1: cPCI Connector Pin Assignments, J5  
Pin:  
22  
21  
20  
19  
18  
17  
16  
Row A:  
Row B:  
3.3V (fused)  
Row C:  
Row D:  
Row E:  
5V (2.5A fused)  
5V (2.5A fused)  
no connection  
no connection  
no connection  
no connection  
no connection  
PMC1_ENET_TXP  
PMC1_ENET_TXN  
PMC2_ENET_TXP  
PMC2_ENET_TXN  
PMC1_STX  
—12V (fused)  
no connection  
no connection  
no connection  
no connection  
no connection  
PMC1_ENET_RXP  
PMC1_ENET_RXN  
PMC2_ENET_RXP  
PMC2_ENET_RXN  
PMC2_STX  
3.3V (fused)  
no connection  
no connection  
no connection  
no connection  
CPSB2_SPEED1  
PMC1_SRX  
PMC2_SRX  
CPSB2_LINK_ACT  
CPSB2_SPEED  
2
CPSB2_SPEED2  
15  
14  
no connection  
+12V (fused)  
no connection  
RTM_RS232_RX  
no connection  
RTM_RS232_TXD  
no connection  
CPSB1_LINK_ACT  
CPSB1_SPEED1  
CPSB1_SPEED  
2
13  
12  
11  
10  
9
PMC2_PIN5  
PMC2_PIN4  
PMC2_PIN9  
PMC2_PIN14  
PMC2_PIN19  
PMC2_PIN24  
PMC2_PIN29  
PMC2_PIN34  
PMC2_PIN39  
PMC2_PIN44  
PMC2_PIN49  
PMC2_PIN54  
PMC2_PIN59  
PMC2_PIN64  
PMC2_PIN3  
PMC2_PIN8  
PMC2_PIN13  
PMC2_PIN18  
PMC2_PIN23  
PMC2_PIN28  
PMC2_PIN33  
PMC2_PIN38  
PMC2_PIN43  
PMC2_PIN48  
PMC2_PIN53  
PMC2_PIN58  
PMC2_PIN63  
PMC2_PIN2  
PMC2_PIN7  
PMC2_PIN12  
PMC2_PIN17  
PMC2_PIN22  
PMC2_PIN27  
PMC2_PIN32  
PMC2_PIN37  
PMC2_PIN42  
PMC2_PIN47  
PMC2_PIN52  
PMC2_PIN57  
PMC2_PIN62  
PMC2_PIN1  
PMC2_PIN6  
PMC2_PIN11  
PMC2_PIN16  
PMC2_PIN21  
PMC2_PIN26  
PMC2_PIN31  
PMC2_PIN36  
PMC2_PIN41  
PMC2_PIN46  
PMC2_PIN51  
PMC2_PIN56  
PMC2_PIN61  
PMC2_PIN10  
PMC2_PIN15  
PMC2_PIN20  
PMC2_PIN25  
PMC2_PIN30  
PMC2_PIN35  
PMC2_PIN40  
PMC2_PIN45  
PMC2_PIN50  
PMC2_PIN55  
PMC2_PIN60  
no connection  
8
7
6
5
4
3
2
1
®
14-6  
Katana 752i User’s Manual  
10006024-04  
     
Section 15  
Monitor  
The Katana®752i monitor is based on the Embedded PowerPC Linux Boot Project (PPC-  
1-800-327-1251. This chapter describes the monitor’s basic features, operation, and con-  
and functions.  
COMMAND-LINE FEATURES  
The Katana®752i monitor uses a command-line interface with the following features:  
Auto-Repeat: After entering a command, you can re-execute it simply by pressing the ENTER or RETURN  
key.  
TFTP Boot : You can use the TFTP protocol to load application images via Ethernet into the  
Katana®752i’s memory.  
Auto-Boot : You can store specific boot commands in the environment to be executed automatically  
after reset.  
Flash Programming: You can write application images into Flash via the PPCBoot command line.  
At power-up or after a reset, the monitor runs diagnostics and reports the results in the  
start-up display, see Fig. 15-1. During the power-up sequence, the monitor configures the  
board according to the environment variables (see page 15-27) and settings in the Board  
Configuration registers (see page 6-4). If the configuration indicates that autoboot is  
enabled, the monitor attempts to load the application from the specified device. If the  
monitor is not configured for autoboot or a failure occurs during power-up, the monitor  
enters normal command-line mode.  
15-1  
10006024-04  
Katana®752i User’s Manual  
                 
Monitor: Command-Line Features  
Figure 15-1: Example Monitor Start-up Display  
PPCBoot 1.2.0 (Oct 31 2007 - 12:52:52)1.7s  
Hardware  
Initialization  
CPU:  
750GX v1.2 @ 900 MHz  
Board: Katana752i  
BusHz: 200000000  
I2C:  
ready  
DRAM: 512MB DDR SDRAM in slot 0 VM485L6523C-CC Early setup ECC (Clearing..)  
512 MB Reserving 32MB for EDNR at 0x1e000000  
FLASH: [512kB@f8000000] [32MB@e8000000] [32MB@ea000000] 64.5 MB  
cPCI: Enabled Remap Addr: 0x80000000 Window: 0x1000000  
PCI:  
Bus Host  
Waiting For EREADY ('q' to exit w/o enum).  
00 06 11c1 8110 0280 00  
00 08 8086 1008 0200 1d  
Ser#: 1340  
Diags Mem:  
Diags I2C:  
Diags Flash:  
Diags PCI:  
PASSED  
PASSED  
PASSED  
PASSED  
EDNR: Resides 0x1fffffff - 0x1e000000  
Mon:  
Resides 0x1dffffff - 0x1deff9c0  
BtDev: Soldered Flash  
SltAd: 4  
DCach: on (WriteThrough)  
ICach: on  
Monitor  
Command  
Prompt  
L2Che: on (WriteThrough)  
Net:  
eth3, eth4, cpsba, cpsbb  
K752i(1.7s)=>  
15-2  
Katana®752i User’s Manual  
10006024-04  
   
Monitor: Basic Operation  
BASIC OPERATION  
The Katana®752i monitor performs various configuration tasks upon power-up or reset.  
This section describes the monitor operation during initialization of the Katana®752i  
board. The flowchart (see Fig. 15-2) illustrates the power-up and reset sequence (bold text  
indicates environment variables).  
Power-Up/Reset Sequence  
At power-up or board reset, the monitor performs hardware initialization, diagnostic rou-  
tines, autoboot procedures, free memory initialization, and if necessary, invokes the com-  
mand-line.  
Prior to the console port being available, the monitor will display a four-bit binary value  
(1=on, 0=off) on front panel LEDs 1 through 4 to indicate the power-up status. In the event  
of a specific initialization error, the LED pattern will Flash and the board initialization will  
halt. Refer to Fig. 15-2 for the LED values at the various initialization steps.  
15-3  
10006024-04  
Katana®752i User’s Manual  
     
Monitor: Basic Operation  
Figure 15-2: Power-up/Reset Sequence Flowchart  
RESET  
Initialize  
flash  
Initialize HID0  
Enable icache  
Initialize MSR  
Initialize malloc  
area  
Relocate the base  
Is cPCI  
Early I2C Init.  
LED 0010  
of the MV64460  
enabled?  
Yes  
internal registers  
Final Initialization  
PCI &  
cPCI (optional)  
Early mem. Init.  
(no ECC)  
LED 0011  
750GX floating  
point register  
initialization  
Enumerate PCI  
per enumerate  
environment  
variable  
Is module a  
Monarch  
Yes  
Early PCI &  
cPCI Init  
No  
No  
750GX BAT and  
segment register  
initialization  
Stop Retries  
Check IPMI  
controller per  
ipmipresent  
environment var.  
Display LED 0100  
Invalidate the  
cache  
LED 0001  
Perform board  
diagnostics per  
powerondiags  
environment var.  
Final I2C Init  
Final mem. Init.  
Clear per  
clearmem & cfg.  
per ecc env. vars.  
LED 0111  
Configure L2  
cache per l2cache  
and l2mode  
Initialize the  
Invalidate and  
PPCBoot  
enable the cache  
environment  
Display board  
serial number  
environment vars.  
Init. serial port per  
Display LED 1001  
Setup initial stack  
baudrate  
Enable MV64460  
interrupts  
and data region in  
environment var.  
cache  
Mini memory test  
LED 0101  
Initialize Ethernet  
ports  
Configure the  
Configure dcache  
per cachemode  
and dcache  
MV64460 device  
chip selects for  
flash and CPLD  
Display version  
string  
Init. final stack  
Turn off debug  
LEDs and blink  
front panel red  
LED per blinked  
environment var.  
environment vars.  
Display CPU,  
board, and bus  
speed  
Configure icache  
per icache  
environment  
variable  
Initialize the  
MV64460 CPU  
interface settings  
Re-locate  
PPCBoot to RAM  
LED 1000  
Main Loop  
LED 0110  
15-4  
Katana®752i User’s Manual  
10006024-04  
     
Monitor: Basic Operation  
Power-Up Timing  
Upon power-up, the Katana®752i initially retries cPCI cycles for a specific period of time  
(see “cPCI/PCI Stop Retries, Memory Read Access Only” monitor state in the tables below).  
After that time, it stops retrying cycles on the cPCI bus.  
Caution: Any read access between the “cPCI/PCI Stop Retries, Memory Read Access Only” and “Final  
Memory Initialization” monitor states (see Table 15-1 and Table 15-2) may result in an ECC  
exception on the Katana®752i.  
!
The following tables show the monitor power-up timing for booting from both socked and  
soldered flash memory.  
Note: The resolution for the measured times in Table 15-1 and Table 15-2 is ±10 milliseconds. The measurements  
were performed from a front panel reset. The Katana®752i used in these tests had 512 megabytes of RAM  
with ECC and Clear Memory On. CompactPCI mode was also enabled.  
Table 15-1: Power-Up Timing for Booting from Soldered Flash  
Time  
(sec):  
Debug LED  
State (bits):  
Monitor State:  
0
n/a  
System Reset  
0.157  
0.200  
0.216  
0.221  
0.490  
0.623  
2.563  
2.857  
4.627  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
CPU and MV64460 Setup  
Early I2C Setup, cPCI mode only  
Early Memory Initialization, ECC Off  
cPCI/PCI Stop Retries, Memory Read Access Only  
Serial Port Initialized  
Display CPU, Board and Bus Speed Information  
Final Memory Initialization, ECC and Clear  
Monitor code relocated to top of memory  
PCI/cPCI Final Setup. Enumeration. Memory Read/Write Access  
available through PCI/cPCI  
4.915  
0000  
Monitor Prompt  
Table 15-2: Power-Up Timing for Booting from Socketed Flash  
Time  
(sec):  
0
Debug LED  
State (bits):  
n/a  
Monitor State:  
System Reset  
0.159  
0.250  
0.282  
0.293  
0.817  
0.978  
4.864  
0001  
CPU and MV64460 Setup  
0010  
Early I2C Setup, cPCI mode only  
Early Memory Initialization, ECC Off  
cPCI/PCI Stop Retries, Memory Read Access Only  
Serial Port Initialized  
0011  
0100  
0101  
0110  
Display CPU, Board and Bus Speed Information  
Final Memory Initialization, ECC and Clear  
0111  
15-5  
10006024-04  
Katana®752i User’s Manual  
       
Monitor: Basic Operation  
Time  
(sec):  
Debug LED  
State (bits):  
Monitor State:  
5.344  
5.978  
6.265  
1000  
Monitor code relocated to top of memory  
PCI/cPCI Final Setup. Enumeration. Memory Read/Write Access  
Monitor Prompt  
1001  
0000  
POST Diagnostic Results  
The Katana®752i stores Power-On Self-Test (POST) diagnostic results in I C nonvolatile  
2
random-access memory (NVRAM). This memory is located in the EEPROM at hex address  
2
0x53 on the I C bus. The POST results are stored as a 32-bit value at the hex offset 0x1DD8  
of the EEPROM. Each bit indicates the result of a specific test, therefore this field can store  
the results of up to 32 diagnostic tests, as described in the following table.  
Note: For configurations where the front Ethernet port, eth4, is disabled, the monitor will indicate SKIPPED for the  
PCI diagnostic test. This is because the Ethernet controller for eth4 performs the diagnostic testing in this  
case. The POST flag for the PCI test will still be set accordingly.  
Table 15-3: POST Diagnostics Results  
Bit:  
Diagnostic Test:  
Value:  
0
SDRAM (address and data line integrity)  
0=test has passed  
1
Flash  
1=failure detected  
2
I2C access (local I2C devices connected to the I2C bus)  
Reserved for Emerson use  
PCI (known devices present)  
No EREADY  
3
4
5
6 - 23  
24 - 31  
Reserved for Emerson use  
Reserved for customer use  
Monitor SDRAM Usage  
PPCBoot locates its stack, uninitialized data, and code in the top one megabyte of SDRAM.  
The exact address varies with the amount of installed memory. PPCBoot uses the area from  
0x00000000 to 0x00004000 in SDRAM for the MPC750 exception vector table and PPC-  
Boot internal use.  
Caution: Any writes to these areas can cause unpredictable operation of the monitor.  
!
15-6  
Katana®752i User’s Manual  
10006024-04  
         
Monitor: Monitor Recovery and Updates  
MONITOR RECOVERY AND UPDATES  
Note: The monitor provides VxWorks 6.0 support for Error Data and Reporting (EDNR). This feature allocates a per-  
sistent area of memory that retains its contents after a systerm soft reset. Any information stored in the 32-  
megabyte window starting at 0x1E000000 should stil be available after a soft resset.  
This section describes how to recover and/or update the monitor, given one or more of the  
following conditions:  
• If there is no console output, the monitor may be corrupted and need recovering.  
• If the monitor still functions, but is not operating properly, then you may need to reset  
the environment variables.  
Recovering the Monitor  
First, make sure that a monitor ROM device is installed in the PLCC socket. Then, place a  
jumper on JP2, across pins 1 and 2 (see Fig. 2-4).  
1
2
3
4
Issue the following command, where serial# is the four digit serial number, 683-xxxx:  
[Katana 752i (1.0)] => moninit serial#  
Reset the monitor:  
[Katana 752i (1.0)] => reset  
Reset the environment parameters:  
[Katana 752i (1.0)] => envinit serial#  
Power down the board and remove the jumper from JP2, pins 1 and 2.  
Updating the Monitor via TFTP  
To update the monitor, follow the steps below and insert the appropriate data in the itali-  
cized fields.  
1
2
If necessary, edit your network settings:  
[Katana 752i (1.0)] => setenv ipaddr 192.168.1.100  
[Katana 752i (1.0)] => setenv gatewayip 192.168.1.1  
[Katana 752i (1.0)] => setenv netmask 255.255.255.0  
[Katana 752i (1.0)] => setenv serverip 192.168.1.2  
Optionally, save your settings:  
[Katana 752i (1.0)] => saveenv  
TFTP the new monitor (binary) image to memory location 0x100000:  
[Katana 752i (1.0)] =>  
tftpboot 100000 path/on/tftp/server/to/monitor.bin  
15-7  
10006024-04  
Katana®752i User’s Manual  
         
Monitor: Monitor Command Reference  
3
4
5
Update the monitor:  
[Katana 752i (1.0)] => moninit serial# 100000  
Reset the monitor:  
[Katana 752i (1.0)] => reset  
Reset the environment parameters:  
[Katana 752i (1.0)] => envinit serial#  
If moninit( ) fails, burn the new monitor to a ROM and follow the recovery steps in “Recov-  
Resetting Environment Variables  
To reset the monitor’s environment variables, issue the following command, were serial# is  
the four digit serial number, 683-xxxx:  
[Katana 752i (1.0)] => envinit serial#  
MONITOR COMMAND REFERENCE  
This section describes the syntax and typographic conventions for the Katana®752i moni-  
tor commands. Subsequent sections in this chapter describe individual commands, which  
fall into the following categories: boot, memory, Flash, environment variables, test, and  
other commands.  
Command Syntax  
The monitor uses the following basic command syntax:  
<Command> <argument 1> <argument 2> <argument 3>  
• The command line accepts three different argument formats: string, numeric, and  
symbolic. All command arguments must be separated by spaces with the exception of  
argument flags, which are described below.  
• Monitor commands that expect numeric arguments assume a hexadecimal base.  
• All monitor commands are case sensitive.  
• Some commands accept flag arguments. A flag argument is a single character that  
begins with a period (.). There is no white space between an argument flag and a  
command. For example, md.b 80000 is a valid monitor command, while md .b 80000  
is not.  
• Some commands may be abbreviated by typing only the first few characters that  
uniquely identify the command. For example, you can type ver instead of version.  
15-8  
Katana®752i User’s Manual  
10006024-04  
           
Monitor: Boot Commands  
However, commands cannot be abbreviated when accessing on-line help. You must  
type help and the full command name.  
Command Help  
Access the monitor online help for each command by typing help <command>. The full  
command name must be entered to access the online help.  
Typographic Conventions  
In the following command descriptions, Courier Newfont is used to show the command  
format. Square brackets [] enclose optional arguments, and Italic type indicates that you  
must substitute your own selection for the italicized text.  
BOOT COMMANDS  
The boot commands provide facilities for booting application programs and operating sys-  
tems from various devices.  
bootbus  
The bootbus command allows you to boot an application program over a bus interface.  
Definition: bootbus  
bootbus uses the busmagicaddr field from the NVRAM environment parameters as the base  
address of a shared memory region. This region contains two 32-bit (unsigned long) values,  
in the form:  
struct BusComStruct  
{
unsigned long MagicLoc;  
unsigned long CallAddress;  
}
The first is used for synchronization, and the second is the entry address of the application.  
The sequence of events used for loading an application is described below:  
1
2
The host board waits for the target (this board) to write the value 0x496D4F6B (character  
string “ImOk”) to MagicLoc to show that the target is initialized and waiting for a download.  
During initialization, the target loads the contents of its loadaddr environment parameter  
into CallAddress.  
The host board downloads the application to the target board. The host board can choose  
to use the start address specified in CallAddress, or it can download the application to a  
new location and write this new start address to CallAddress.  
15-9  
10006024-04  
Katana®752i User’s Manual  
               
Monitor: Boot Commands  
3
4
The host board finally writes 0x596F4F6B (character string “YoOk”) to MagicLoc to show  
that the application is ready for the target.  
The target writes value 0x42796521 (character string “Bye!”) to MagicLoc to show that the  
application was found. If necessary, the target then updates its memory-resident loadaddr  
environment parameter with the contents of CallAddress, and the bootbus command is  
complete. At this point, the target could perform any number of boot commands,  
including bootelf or go.  
bootcrc  
If the NVRAM parameter trycached (see Table 15-4) is set to true, the bootcrc command cre-  
ates a CRC16 value for the image found at imageaddr. If the value matches that stored in  
imagecrc16, the bootcrc command writes the image to Flash memory and then boots it. If  
the values do not match, it calls TFTP to download an image. If the TFTP image is also not  
valid, it displays an error message and reboots the board. If trycached is false, the command  
skips to the TFTP download. The optional nvonly command line parameter instructs bootcrc  
to try only the cached image.  
Definition: bootcrc [nvonly]  
bootd  
Execute the command stored in the bootcmd environment variable.  
Definition: bootd  
bootelf  
The bootelf command boots from an ELF image in memory, where address is the load  
address of the ELF image.  
Definition: bootelf [address]  
bootm  
The bootm command boots an application image stored in memory, passing any entered  
arguments to the called application. When booting a Linux kernel, arg can be the address of  
an initrd image. If addr is not specified, the environment variable loadaddr is used as the  
default.  
Definition: bootm [addr [arg …]]  
bootp  
The bootp command boots an image via a network connection using the BootP/TFTP pro-  
tocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr  
and bootfile are used as the default.  
15-10  
Katana®752i User’s Manual  
10006024-04  
                   
Monitor: Boot Commands  
Definition: bootp [loadAddress] [bootfilename]  
bootv  
The bootv command checks the checksum on the primary image (in Flash) and boots it, if  
valid. If it is not valid, it checks the checksum on the secondary image (in Flash) and boots it,  
if valid. If neither checksum is valid, the command returns back to the monitor prompt.  
Definition: Verify bootup.  
bootv  
Write image to Flash and update NVRAM.  
bootv primary|secondary write source dest size  
Update NVRAM based on image already in Flash.  
bootv primary|secondary update source size  
Check validity of images in Flash.  
bootv primary|secondary check  
bootvx  
The bootvx command boots VxWorks from an ELF image, where address is the load address  
of the VxWorks ELF image.  
Definition: bootvx [address]  
rarpboot  
The rarpboot command boots an image via a network connection using the RARP/TFTP  
protocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr  
and bootfile are used as the default.  
Definition: rarpboot [loadAddress] [bootfilename]  
tftpboot  
The tftpboot command loads an image via a network connection using the TFTP protocol.  
The environment variable’s ipaddr and serverip are used as additional parameters to this  
command. If loadaddress or bootfilename is not specified, the environment variables  
loadaddr and bootfile are used as the default.  
Definition: tftpboot [loadAddress] [bootfilename]  
15-11  
10006024-04  
Katana®752i User’s Manual  
               
Monitor: JFFS2 File Systems  
JFFS2 FILE SYSTEMS  
This section describes the commands for the read-only JFFS2 file systems. These com-  
mands assume a valid JFFS2 file system in Flash with support provided for two partitions:  
• Base of partition 0 is 0xE8180000  
• Base of partition 1 is 0xE8000000 + (Total_Flash_Size/2) + 0x180000  
ls  
The ls command lists the files in the directory.  
Definition: ls [directory]  
fsinfo  
The fsinfo command prints information about file systems.  
Definition: fsinfo  
fsload  
The fsload command loads the binary file from the Flash bank with offset of ‘off’.  
Definition: fsload [off] [filename]  
chpart  
The chpart command changes the partitions (partitions 0 and 1 supported).  
Definition: chpart [part]  
MEMORY COMMANDS  
The memory commands allow you to manipulate specific regions of memory. For some  
memory commands, the data size is determined by the following flags:  
.b  
.w  
.l  
This is for data in 8-bit bytes.  
This is for data in 16-bit words.  
This is for data in 32-bit long words.  
These flags are optional arguments and describe the objects on which the command oper-  
ates. If you do not specify a flag, memory commands default to 32-bit long words. Numeric  
arguments are in hexadecimal.  
15-12  
Katana®752i User’s Manual  
10006024-04  
                     
Monitor: Memory Commands  
cmp  
The cmp command compares count objects between addr1 and addr2. Any differences are  
displayed on the console display.  
Definition: cmp [.b, .w, .l] addr1 addr2 count  
cp  
The cp command copies count objects located at the source address to the target address.  
Note: If the target address is located in the range of the Flash device, it will program the Flash with count objects  
from the source address. The cp command does not erase the Flash region prior to copying the data. The  
Flash region must be manually erased using the erase command prior to using the cp command.  
Definition: cp [.b, .w, .l] source target count  
Example: In this example, the cp command is used to copy 0x1000, 32-bit values from address  
0x100000 to address 0x80000.  
=> cp 100000 80000 1000  
find  
The find command searches from base_addr to top_addr looking for pattern. For the find  
command to work properly, the size of pattern must match the size of the object flag. The -  
a option searches for the absence of the specified pattern.  
Definition: find [.b, .w, .l] [-a] base_addr top_addr pattern  
Example: In this example, the find command is used to search for the 32-bit pattern 0x12345678 in  
the address range starting at 0x40000, and ending at 0x80000.  
=> find.1 40000 80000 12345678  
Searching from 0x00040000 to 0x00080000  
Match found: data = 0x12345678 Adrs = 0x00050a6c  
=>  
md  
The command md displays the contents of memory starting at address. The number of  
objects displayed can be defined by an optional third argument, # of objects. The memory’s  
numerical value and its ASCII equivalent is displayed.  
Definition: md [.b, .w, .l] address [# of objects]  
Example: In this example, the md command is used to display thirty-two 16-bit words starting at the  
physical address 0x80000.  
=> md.w 80000 20  
00080000: ffff ffff ffff ffff ffff ffff ffff ffff  
00080010: ffff ffff ffff ffff ffff ffff ffff ffff  
................  
................  
15-13  
10006024-04  
Katana®752i User’s Manual  
               
Monitor: Memory Commands  
00080020: ffff ffff ffff ffff ffff ffff ffff ffff  
00080030: ffff ffff ffff ffff ffff ffff ffff ffff  
................  
................  
mm  
The mm command modifies memory one object at a time. Once started, the command line  
prompts for a new value at the starting address. After a new value is entered, pressing  
ENTER auto-increments the address to the next location. Pressing ENTER without entering  
a new value leaves the original value for that address unchanged. To exit the mm com-  
mand, enter a non-valid hexadecimal value (such as x) followed by ENTER.  
Definition: mm [.b, .w, .l] address  
Example: In this example, the mm command is used to write random 8-bit data starting at the physi-  
cal address 0x80000.  
=> mm.b 80000  
00080000: ff ? 12  
00080001: ff ? 23  
00080002: ff ? 34  
00080003: ff ? 45  
00080004: ff ?  
00080005: ff ? x  
=> md.b 80000 6  
00080000: 12 23 34 45 ff ff  
=>  
.#4E  
nm  
The nm command modifies a single object repeatedly. Once started, the command line  
prompts for a new value at the selected address. After a new value is entered, pressing  
ENTER modifies the value in memory and then the new value is displayed. The command  
line then prompts for a new value to be written at the same address. Pressing ENTER with-  
out entering a new value leaves the original value unchanged. To exit the nm command,  
enter a non-valid hexadecimal value (such as x) followed by ENTER.  
Definition: nm [.b, .w, .l] address  
mw  
The command mw writes value to memory starting at address. The number of objects mod-  
ified can be defined by an optional fourth argument, count.  
Definition: mw [.b, .w, .l] address value [count]  
Example: In this example, the mw command is used to write the value 0xabba three times starting at  
the physical address 0x80000.  
=> mw.w 80000 abba 3  
=> md 80000  
00080000: abbaabba abbaffff ffffffff ffffffff  
00080010: ffffffff ffffffff ffffffff ffffffff  
................  
................  
15-14  
Katana®752i User’s Manual  
10006024-04  
           
Monitor: Flash Commands  
00080020: ffffffff ffffffff ffffffff ffffffff  
................  
................  
................  
................  
................  
................  
00080030: ffffffff ffffffff ffffffff ffffffff  
00080040: ffffffff ffffffff ffffffff ffffffff  
00080050: ffffffff ffffffff ffffffff ffffffff  
00080060: ffffffff ffffffff ffffffff ffffffff  
00080070: ffffffff ffffffff ffffffff ffffffff  
FLASH COMMANDS  
The Flash commands affect the StrataFlash devices on the Katana®752i circuit board.  
There is a maximum of two Flash banks on the Katana®752i board. The following Flash  
commands access the individual Flash banks as Flash bank 1 or Flash bank 2. To access the  
individual sectors within each Flash bank, the sector numbers start at 0 and end at one less  
than the total number of sectors in the bank. For a Flash bank with 128 sectors, the follow-  
ing Flash commands access the individual sectors as 0 through 127.  
cp  
The cp command can be used to copy data into the Flash device. For the cp command syn-  
tax, refer to Section .  
erase  
The erase command erases the specified area of Flash memory.  
Definition: Erase all of the sectors in the address range from start to end.  
erase start end  
Erase all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.  
erase N:SF[-SL]  
Erase all of the sectors in Flash bank # N.  
erase bank N  
Erase all of the sectors in all of the Flash banks.  
erase all  
flinfo  
The flinfo command prints out the Flash device’s manufacturer, part number, size, number  
of sectors, and starting address of each sector.  
Definition: Print information for all Flash memory banks.  
flinfo  
Print information for the Flash memory in bank # N.  
flinfo N  
15-15  
10006024-04  
Katana®752i User’s Manual  
               
Monitor: EEPROM / I2C Commands  
protect  
The protect command enables or disables the Flash sector protection for the specified Flash  
sector. Protection is implemented using software only. The protection mechanism inside  
the physical Flash part is not being used.  
Definition: Protect all of the Flash sectors in the address range from start to end.  
protect on start end  
Protect all of the sectors SF (first sector) to SL (last sector) in FLASH bank # N.  
protect on N:SF[-SL]  
Protect all of the sectors in Flash bank # N.  
protect on bank N  
Protect all of the sectors in all of the Flash banks  
protect on all  
Remove protection on all of the Flash sectors in the address range from start to end.  
protect off start end  
Remove protection on all of the sectors SF (first sector) to SL (last sector) in FLASH bank # N.  
protect off N:SF[-SL]  
Remove protection on all of the sectors in Flash bank # N.  
protect off bank N  
Remove protection on all of the sectors in all of the Flash banks.  
protect off all  
EEPROM / I2C COMMANDS  
This section describes commands that allow you to read and write memory on the serial  
2
EEPROMs and I C devices.  
eeprom  
The eeprom command reads and writes from the EEPROM. For example:  
eeprom read 53 100000 1800 100  
reads 100 bytes from offset 0x1800 in serial EEPROM 0x53 (right-shifted 7-bit address) and  
places it in memory at address 0x100000.  
Definition: Read/write cnt bytes from devaddr EEPROM at offset off.  
eeprom read devaddr addr off cnt  
eeprom write devaddr addr off cnt  
15-16  
Katana®752i User’s Manual  
10006024-04  
         
Monitor: EEPROM / I2C Commands  
icrc32  
The icrc32 computes a CRC32 checksum.  
Definition: icrc32 chip_address[.0, .1, .2] count  
iloop  
The iloop command reads in an infinite loop on the specified address range.  
Definition: iloop chip_address[.0, .1, .2] [# of objects]  
imd  
2
The imd command displays I C memory. For example:  
imd 53 1800.2 100  
2
displays 100 bytes from offset 0x1800 of I C device 0x53 (right-shifted 7-bit address). The  
.2at the end of the offset is the length, in bytes, of the offset information sent to the  
device. The serial EEPROMs all have two-byte offset lengths. The RTC has a one-byte offset  
length. The temperature sensors have zero-byte offset lengths.  
Definition: imd chip_address[.0, .1, .2] [# of objects]  
ipmifirmload  
The ipmifirmload command reloads the IPMI controller firmware from an image held in the  
monitor image. The optional boot and run arguments specify to reload the firmware from  
an image held in memory.  
Definition: ipmifirmload [boot boot_image_addr] [run runtime_image_addr]  
imm  
2
The imm command modifies I C memory and automatically increments the address.  
Definition: imm chip_address[.0, .1, .2]  
imw  
The imw command writes (fills) memory.  
Definition: imw chip_address[.0, .1, .2] value [count]  
inm  
2
The inm command modifies I C memory, reads it, and keeps the address.  
Definition: inm chip_address[.0, .1, .2]  
15-17  
10006024-04  
Katana®752i User’s Manual  
                           
Monitor: Ethernet Controller EEPROM Commands  
iprobe  
2
The iprobe command probes to discover valid I C chip addresses.  
Definition: iprobe  
ETHERNET CONTROLLER EEPROM COMMANDS  
This section describes the commands that provide access to the EEPROM for the Intel  
82544EI Ethernet Controller.  
initeth4rom  
The initeth4rom command sets the 82544EI controller’s EEPROM to the default values.  
These values include the ETH4 port Ethernet address, port settings, and ROM checksum.  
Definition: initeth4rom  
filleth4rom  
The filleth4rom command fills the first 64 words of the 82544EI controller’s EEPROM to the  
value specified by fill_value (for test purposes only). For example:  
filleth4rom ffff  
puts 0xFFFF in the first 64 words.  
Definition: filleth4rom fill_value  
showeth4rom  
The showeth4rom command displays the contents of the 82544EI controller’s EEPROM on  
the console.  
Definition: showeth4rom  
ENVIRONMENT PARAMETER COMMANDS  
The monitor uses on-board, non-volatile memory for the storage of environment parame-  
ters. Environment parameters are stored as ASCII strings with the following format.  
<Parameter Name>=<Parameter Value>  
Some environment variables are used for board configuration and identification by the  
monitor. The environment parameter commands deal with the reading and writing of  
these parameters. Refer to Section for a list of monitor environment variables.  
15-18  
Katana®752i User’s Manual  
10006024-04  
                     
Monitor: Environment Parameter Commands  
envinit  
The envinit command resets the NVRAM and serial number. Optional parameters allow you  
to:  
• specify the processor number  
• specify the serial number  
• retrieve the serial number from the FRU device  
• specify parameters not in the default list  
Definition: envinit [p1, p2, p3] [serial#, ‘fru’, ‘old’] [env: ...]  
printenv  
The printenv command displays all of the environment variables and their current values to  
the display.  
Definition: Print the values of all environment variables.  
printenv  
Print the values of all environment variable (exact match) ‘name’.  
printenv name …  
saveenv  
The saveenv command writes the environment variables to non-volatile memory.  
Definition: saveenv  
setenv  
The setenv command adds new environment variables, sets the values of existing environ-  
ment variables, and deletes unwanted environment variables.  
Definition: Set the environment variable name to value or adds the new variable name and value to the  
environment.  
setenv name value  
Removes the environment variable name from the environment.  
setenv name  
15-19  
10006024-04  
Katana®752i User’s Manual  
               
Monitor: Test Commands  
TEST COMMANDS  
The commands described in this section perform diagnostic and memory tests.  
diags  
The diags command runs the power-on self test (POST).  
Definition: diags  
mtest  
The mtest command performs a simple SDRAM read/write test.  
Definition: mtest [start [end [pattern]]]  
um  
The um command is a destructive memory test.  
Definition: um [.b, .w, .l] base_addr [top_addr]  
OTHER COMMANDS  
This section describes all the remaining commands supported by the Katana®752i moni-  
tor.  
autoscr  
The autoscr command runs a script, starting at address addr, from memory.  
A valid autoscr header must be present.  
Definition: autoscr [addr]  
base  
The base command prints or sets the address offset for memory commands.  
Definition: Displays the address offset for the memory commands.  
base  
Sets the address offset for the memory commands to off.  
base off  
bdinfo  
The bdinfo command displays the Board Information Structure.  
Definition: bdinfo  
15-20  
Katana®752i User’s Manual  
10006024-04  
                               
Monitor: Other Commands  
coninfo  
The coninfo command displays the information for all available console devices.  
Definition: coninfo  
crc16  
The crc16 command computes a CRC16 checksum on size bytes starting at buff. Optionally,  
it stores the result at addr.  
Definition: crc16 address count  
crc32  
The crc32 command computes a CRC32 checksum on count bytes starting at address.  
Definition: crc32 address count  
echo  
The echo command echoes args to console.  
Definition: echo [args..]  
enumpci  
The enumpci command enumerates the PCI bus.  
Definition: enumpci  
fpledoff  
The fpledoff command turns off the red front panel LED.  
Definition: fpledoff  
fruget  
The fruget command displays all of the FRU fields.  
Definition: fruget  
frugetuser  
The frugetuser command retrieves count bytes from offset in the FRU user area and copies  
the bytes to storage.  
Definition: frugetuser offset count storage  
15-21  
10006024-04  
Katana®752i User’s Manual  
                               
Monitor: Other Commands  
frusetuser  
The frusetuser command writes count bytes to offset in the FRU user area and copies the  
bytes to storage.  
Definition: frusetuser offset count storage  
gethvr  
The gethvr command returns the contents of the Hardware Version Register (see Register  
Definition: gethvr  
getmonver  
The getmonver command prints the monitor version string of the currently running moni-  
tor (default). Specifying the optional socket or soldered parameter prints the version string  
for the corresponding device.  
Definition: getmonver  
getpcimemsize  
The getpcimemsize command shows the maximum memory window size (starting at the  
base) that is accessible from a device on PCI/cPCI.  
Definition: getpcimemsize  
Example: =>getpcimemsize  
PCI Memory Size Parameters:  
---------------------------  
PCI Memory Size: 0x08000000 (134217728)  
CPCI Memory Size: 0x01000000 (16777216)  
Current Settings for PCI Memory Size Are:  
---------------------------  
PCI CS0: 0x07FFF000 (134213632)  
PCI CS1: 0x00000000 (0)  
PCI CS2: 0x00000000 (0)  
PCI CS3: 0x00000000 (0)  
---------------------------  
CPCI Enabled  
cPCI CS0: 0x00FFF000 (16773120)  
cPCI CS1: 0x00000000 (0)  
cPCI CS2: 0x00000000 (0)  
cPCI CS3: 0x00000000 (0)  
---------------------------  
15-22  
Katana®752i User’s Manual  
10006024-04  
               
Monitor: Other Commands  
getpcimode  
The getpcimode command shows how many Configuration Space Headers the  
Katana®752i is reporting on PCI/cPCI. Single Function means only Function 0 is  
available. Multi Function indicates that multiple functions (i.e. Function 0, Function  
1, etc.) are available.  
Definition: getpcimode  
Example: =>getpcimode  
cPCI/PCI Config Space Function Header Settings:  
PCI: Multi Function  
cPCI: Single Function  
getphysloc  
The getphysloc command returns the board’s chassis identification number.  
Definition: getphysloc  
getspr  
The getspr command returns the contents of the SPR register specified by SPR_ID.  
Definition: getspr  
go  
The go command runs an application at address addr, passing the optional arguments arg  
to the called application.  
Definition: go addr [arg…]  
help  
The help (or ?) command displays the online help. Without arguments, all commands are  
displayed with a short usage message for each. To obtain more detailed information for a  
specific command, enter the desired command as an argument.  
Definition: help [command …]  
iminfo  
The iminfo command displays the header information for an application image that is  
loaded into memory at address addr. Verification of the image contents (magic number,  
header, and payload checksums) are also performed.  
Definition: iminfo addr [addr …]  
15-23  
10006024-04  
Katana®752i User’s Manual  
                       
Monitor: Other Commands  
isdram  
The isdram command displays the SDRAM configuration information (valid chip values  
range from 50 to 57).  
Definition: isdram  
loop  
The loop command executes an infinite loop on address range.  
Definition: loop [.b, .w, .l] address number_of_objects  
memmap  
The memmap command displays the board’s memory map layout.  
Definition: memmap  
moninit  
Note: If you have a socketed PLCC flash device installed and you use the moninit command with the serial# param-  
eter, it copies the socketed flash image to the soldered flash device.  
The moninit command resets the NVRAM and serial number, and it writes the monitor to  
Flash. Optional parameters allow you to:  
• specify the serial number  
• retrieve the serial number from the FRU device  
• specify the source address of a monitor image to copy from  
• specify parameters not in the default list  
Definition: moninit [serial#, ‘fru’, ‘cold’] [src] [env: ...]  
pci  
The pci command enumerates the PCI bus if the Katana®752i is the monarch board. It dis-  
plays enumeration information about each detected device. The pci command allows you  
to display values for and access the PCI Configuration Space.  
Definition: Display a short or long list of PCI devices on the bus specified by bus.  
pci [bus] [long]  
Show the header of PCI device bus.device.function.  
pci header b.d.f  
Display the PCI configuration space (CFG).  
pci display[.b, .w, .l] b.d.f [address] [# of objects]  
15-24  
Katana®752i User’s Manual  
10006024-04  
                   
Monitor: Other Commands  
Modify, read, and keep the CFG address.  
pci next[.b, .w, .l] b.d.f address  
Modify automatically increment the CFG address.  
pci modify[.b, .w, .l] b.d.f address  
Write to the CFG address.  
pci write[.b, .w, .l] b.d.f address value  
reset  
The reset command performs a hard reset of the CPU by writing to the reset register on the  
board.  
Definition: reset  
run  
The run command runs the commands in an environment variable var.  
Definition: run var […]  
setpcimemsize  
The getpcimemsize command stores a user-defined memory window size for PCI/cPCI to  
NVRAM. These window sizes define the amount of memory that can be accessed from a  
PCI/cPCI device. Parameters can be all, defaultor a numerical value, num. The default  
values are 0x80000000 for cPCI, all for PCI Monarch, and one gigabyte for PCI Non-  
Monarch. These are written into NVRAM as 0xFFFFFFFF for the monitor to set defaults.  
Changes take effect on reset.  
Definition: setpcimemsize cpci_memsize pci_memsize (all,default,num)  
Example: =>setpcimemsize 0x80000000 default  
Writing NVRAM parameters CPCI:0x80000000, PCI:0xFFFFFFFF  
... Success  
=>  
setpcimode  
The setpcimode command stores a user-defined setting for the supported configuration  
space headers. You can select single or multiple headers for both PCI and cPCI. The default  
settings are cPCI Single Mode and PCI Multi Mode. Changes take effect on  
reset.  
Definition: setpcimode cpci_mode pci_mode (single, multi, default)  
Example: =>setpcimode  
Setting cPCI Mode to Single ...  
15-25  
10006024-04  
Katana®752i User’s Manual  
               
Monitor: Other Commands  
Setting PCI Mode to Multi ... Complete  
=>  
setspr  
The setspr command sets the contents of the SPR register specified by SPR_ID to  
SDR_Value.  
Definition: setspr SPR_ID SPR_Value  
script  
The script command runs a list of monitor commands out of memory. The list is an ASCII  
string of commands separated by the ; character and terminated with the ;; charac-  
ter sequence. <script address> is the starting location of the script.  
Definition: script script_address  
showmac  
The showmac command displays the Processor MAC addresses.  
Definition: showmac  
showpci  
The showpci command scans the PCI bus and lists the base address of the devices.  
Definition: showpci  
showtemp  
The showtemp command continuously displays the junction temperature for the 750GL  
CPU. The processor sensors are not calibrated, so some offset error is probable.  
Definition: showtemp  
sleep  
The sleep command executes a delay of N seconds.  
Definition: Delay execution for N seconds (N is a decimal value).  
sleep N  
vdhcp  
The vdhcp command sends out a DHCP request and then waits for the response from a  
DHCP server. If available, a vendor-specific module (loaded at 0xFFF6,8000) processes vari-  
ous request/response options.  
Definition: vdhcp  
15-26  
Katana®752i User’s Manual  
10006024-04  
                           
Monitor: Environment Variables  
version  
The version command displays the monitor’s current version number.  
Definition: version  
ENVIRONMENT VARIABLES  
The following table lists the monitor’s standard environment variables. Please note that  
holding down the s key during powerup forces the monitor to use the default environment  
parameters.  
Table 15-4: Standard Environment Variables  
Variable:  
Default Value: Description:  
baudrate  
9600  
Console baud rate.  
Valid rates: 9600, 19200, 38400, 57600, 115200  
blinkled  
false  
Determines if front panel red LED will blink after init  
Valid options: true, false  
bootcmd  
undefined  
Command to be executed after boot. Use a backslash and  
semicolon to specifiy more than one item. For example:  
setenv bootcmd fpledoff\;bootcrc\;  
bootdelay  
bootfile  
1
Countdown to bootcmd execute (-1 to disable autoboot)  
Path to boot file on server (used with TFTP)  
" "  
cachedaddr  
Address of bootcrc cached image, must be set manually  
prior to calling bootcrc  
Valid options: any address in soldered Flash  
cachedcrc16  
cachedname  
Specifies 16-bit CRC value of bootcrc cached image  
Set by bootcrc from newcrc16 (no manual setting required)  
Valid options: 16-bit, polynomial 0xA001 crc value  
Specifies name and path of cached image to TFTP  
Set by bootcrc from bootfile when a new image is cached  
(no manual setting required)  
Valid options: name string of cached image  
cachedsize  
Specifies size in bytes of bootcrc cached image  
Set by bootcrc from newsize (no manual setting required)  
Valid options: any byte size that fits in soldered Flash  
cachemode  
chassisid  
write  
Sets the L1 cache mode to write-through or copy-back.  
Valid options: write, copy  
Specifies the board’s chassis ID (set manually or by call to  
CLI command getphysic)  
Valid options: 1—16  
clearmem  
cpci  
on  
Determines if all of SDRAM is cleared on power-up. This  
option is ignored if ECC is enabled.  
Valid options: on, off  
Displays status of cPCI bus  
(on = accessible, off = held in reset)  
15-27  
10006024-04  
Katana®752i User’s Manual  
         
Monitor: Environment Variables  
Variable:  
Default Value: Description: (continued)  
cpci_remap  
80000000  
Base address in cPCI space for memory window specified  
by cpci_memsize (i.e. 0xC000,0000 from the Katana®752i  
maps to 0x8000,0000 in cPCI space)  
dcache  
ecc  
on  
on  
on  
Initial data cache state Valid options: on, off  
ECC enable/disable (off = disable, on = enable)  
enumerate  
PCI enumeration if module is PPMC monarch  
(on = enumerate if monarch, off = never enumerate)  
eready  
on  
Wait for EREADY as a monarch? (off = no, on = yes)  
ethport  
cpsb  
Specifies Ethernet port  
Valid options:  
portdbg, porta, portb, cpsb, all  
eth3, cpsba, cpsbb, eth4  
gatewayIP  
icache  
0.0.0.0  
on  
Gateway IP address  
Initial instruction cache state. Valid options: on, off  
imageaddr  
Specifies address of image booted by bootcrc  
Set by bootcrc (no manual setting required)  
Valid options: any address in soldered Flash  
imagecrc16  
imagesize  
Specifies 16-bit CRC value of image booted by bootcrc  
Set by bootcrc from newcrc16 (no manual setting required)  
Valid options: 16-bit, polynomial 0xA001 crc value  
Specifies size in bytes of image booted by bootcrc  
Set by bootcrc (no manual setting required)  
Valid options: any byte size that fits in soldered Flash  
initrd_high  
20000000  
Specifies maximum memory location to map Linux  
Ramdisk (PTMC site peripheral)  
ipaddr  
0.0.0.0  
true  
Board IP address  
ipmipresent  
Specifies whether or not to query CMM for chassis ID  
If false, board does not access IPMI controller in boot  
sequence or with getphysloc command  
Valid options: true, false  
l2cache  
l2mode  
on  
Turns the L2 cache on or off. Valid options: on, off  
write  
Sets the L2 cache mode to write-through or copy-back.  
Valid options: write, copy  
loadadder  
lxbootargs  
100000  
Address to which a boot image is loaded  
Specifies Linux boot string to be used by bootcrc  
Valid options: any Linux boot string  
model  
Katana®752i  
0.0.0.0  
Board model name  
Board subnet mask  
netmask  
newcrc16  
Specifies 16-bit CRC value of bootcrc image to use  
Must be set manually, external to bootcrc  
Valid options: 16-bit, polynomial 0xA001 crc value  
15-28  
Katana®752i User’s Manual  
10006024-04  
Monitor: Environment Variables  
Variable:  
Default Value: Description: (continued)  
newsize  
Specifies size in bytes of bootcrc image to use  
Must be set manually, external to bootcrc  
Valid options: byte length of image to boot  
powerondiags  
rebootdelay  
on  
Turns power-on diagnostics on or off.  
Valid options: on, off  
120  
Specifies how long in seconds bootcrc command waits to  
reboot if cached and downloaded images are invalid (must  
be set manually, but if not set value=120 seconds)  
Valid options: any decimal number of seconds  
serial#  
serverip  
slotid  
xxxx  
0.0.0.0  
Board serial number  
Boot server IP address  
Specifies the board’s slot ID on power-up/reset (set by init  
code)  
tftpport  
Specifies the TFTP server port to non-69 values  
Valid options: 00-65535  
trycached  
Specifies if bootcrc tries the cached image in Flash (must  
be manually set). If false, bootcrd either returns (if nvonly  
parameter is passed in) or immediately try to tftp a valid  
image.  
Valid options: true, false  
vxbootargs  
Specifies VxWorks boot string to be used by bootcrc  
The monitor supports optional environment variables that enable additional functionality.  
The moninit command (see Section ) only affects the standard environment variables and  
does not set any parameters for these optional variables.  
Table 15-5: Optional Environment Variables  
1
Variable:  
Description:  
bootargs  
Optional boot argument string, used by some boot commands such as bootm  
bootverifycmd  
Specifies an alternate boot command for bootv. If not defined, bootv uses go. If  
defined, you must specify a valid boot command, such as bootm.  
geoaddr_ip  
Sets the last octet of ipaddr to the cPSB geographical address, plus an offset of  
geoaddr_offset. If not defined, this feature is off.  
Valid options: on, off  
geoaddr_offset  
sec_bootargs  
Decimal offset number added to the geographical address to create the last  
octet of the IP address. If not defined, the monitor uses a value of 10.  
Optional secondary boot argument string for the bootv command. If defined,  
the secondary bootv image uses sec_bootargs. If not defined, both primary and  
secondary bootv images use bootargs.  
1. The moninit command does not initialize these variables.  
15-29  
10006024-04  
Katana®752i User’s Manual  
 
Monitor: Troubleshooting  
TROUBLESHOOTING  
To bypass the full board initialization sequence, attach a terminal to the console located on  
the front of the module. Configure the terminal parameters to be:  
9600 bps, no parity, 8 data bits, 1 stop bit  
Reset the module while holding down the ‘s’ key. Pressing the ‘s’ key forces a default con-  
sole configuration and bypasses enabling of caches, ECC, and PCI.  
DOWNLOAD FORMATS  
The Katana®752i monitor supports binary and Motorola S-Record download formats, as  
described in the following sections.  
Binary  
The binary download format consists of two parts:  
• Magic number (which is 0x12345670) + number of sections  
• Information for each section including: the load address (unsigned long), the section  
size (unsigned long), and a checksum (unsigned long) that is the long-word sum of the  
memory bytes of the data section  
Motorola S-Record  
S-Record download uses the standard Motorola S-Record format. This includes load  
address, section size, and checksum all embedded in an ASCII file.  
15-30  
Katana®752i User’s Manual  
10006024-04  
             
Section 16  
Acronyms  
American Standard Code for Information Interchange  
Baseboard Management Controller  
Command code  
ASCII  
BMC  
Cmd  
COP  
cPSB  
CPU  
CRT  
Common On Chip  
CompactPCI Packet-Switched Backplane  
Central Processing Unit  
Cathode Ray Tube  
Canadian Standards Association  
Dual Access Cycles  
CSA  
DAC  
DDR  
DMA  
DMC  
EC  
Double Data Rate  
Direct Memory Access  
Development Mezzanine Card  
European Community  
Error Checking and Correction  
Electrically Erasable Programmable Read Only Memory  
Electronics Industries Association  
Electromagnetic Compatibility  
Electrostatic Discharge  
ECC  
EEPROM  
EIA  
EMC  
ESD  
European Telecommunications Standards Institute  
Federal Communications Commission  
Field Replaceable Unit  
ETSI  
FCC  
FRU  
GbE  
GNU  
GPIO  
GPL  
Gigabit Ethernet  
GNU’s Not Unix  
General Purpose Input/Output  
General Public License  
Hot Swap Logic  
HSL  
Hot Swap Register  
HSR  
I/O  
Input/Output  
2
Inter-Integrated Circuit  
I C  
16-1  
10006024-04  
Katana®752i User’s Manual  
   
Acronyms:  
Internal Direct Memory Access  
International Electrotechnical Commission  
Institute of Electrical and Electronics Engineers  
Internet Protocol  
IDMA  
IEC  
IEEE  
IP  
Intelligent Platform Management Bus  
Intelligent Platform Management Interface  
In-System Programmable  
IPMB  
IPMI  
ISP  
In-Target Probe  
ITP  
Joint Test Action Group  
JTAG  
LED  
Light-Emitting Diode  
Logical Unit Number  
LUN  
Medium/Media Access Control/Controller  
Module Management Controller  
Multi-Protocol Serial Controllers  
Network Equipment-Building System  
Network Function Code  
MAC  
MMC  
MPSC  
NEBS  
netFn  
NVRAM  
OEM  
PCI  
Non-Volatile Random Access Memory  
Original Equipment Manufacturer  
Peripheral Component Interconnect  
Physical Interface  
PHY  
PLD  
Programmable Logic Device  
Phase Locked Loop  
PLL  
PCI Mezzanine Card  
PMC  
POST  
RMA  
RTC  
Power-On Self Test  
Return Merchandise Authorization  
Real-Time Clock  
Serial Direct Memory Access  
Sensor Data Record  
SDMA  
SDR  
Synchronous Dynamic Random Access Memory  
System Event Log  
SDRAM  
SEL  
16-2  
Katana®752i User’s Manual  
10006024-04  
Acronyms:  
Serializer/Deserializer  
SERDES  
SGMII  
SMS  
Serial Gigabit Media Independent Interface  
System Management Software  
Small-Outline Dual In-line Memory  
Serial Read Only Memory  
SO-DIMM  
SROM  
TAP  
Test Access Port  
Trivial File Transfer Protocol  
Universal Asynchronous Receiver/transmitter  
Underwriters Laboratories  
TFTP  
UART  
UL  
Virtual Local Area Network  
VLAN  
16-3  
10006024-04  
Katana®752i User’s Manual  
(blank page)  
16-4  
Katana®752i User’s Manual  
10006024-04  
Index  
floating-point exception mode 4-10  
CT bus interface  
compatibility types. . . . . . . . . . 13-1  
direction control registers . . . . 13-3  
local CT bus bit swapping. . . . . 13-6  
PICMG 2.15 Configuration 2. . . 13-1  
customer support  
A
H
H.110  
technical reference . . . . . . . . . . 1-9  
B
binary download format . . . . . . .15-30  
block diagram  
monitor power-up . . . . . . . . . .15-4  
board configuration registers, CPLD6-4  
boot commands, monitor . . . . . .15-9  
I
installation of the board . . . . . . . . . 2-9  
interrupts  
C
J
E
caution statements  
PTMC and PTCC compatibility .13-2  
setting the CPU configuration  
JTAG/COP, pin assignments . . . . . 4-13  
environment parameter commands,  
environment variables . . . . . . . . . 15-8  
Ethernet  
L
bottom side locations . . . . . . . . 2-4  
writes to monitor area . . . . . . .15-6  
circuit board dimensions . . . . . . . . 2-1  
compatibility issues, CT bus . . . . .13-1  
component map  
jumpers, fuse, and switch . . . . . . 2-5  
configuration registers, CPLD . . . . . 6-4  
connectors  
CPU  
Emerson identifier . . . . . . . . . . 10-1  
M
machine state register (MSR) . . . . . 4-9  
mean time between failures (MTBF)1-5  
memory  
commands, monitor . . . . . . . 15-12  
monitor  
F
features  
Flash commands, monitor . . . . .15-15  
binary download format . . . . 15-30  
command reference . . . . . . . . 15-8  
command-line interface . . . . . 15-1  
environment parameter commands  
G
geographical addressing . . . . . . . . 8-2  
environment variables . . . . . . 15-27  
flash programming . . . . . . . . . 15-1  
®
i-1  
10006024-04  
Katana 752i User’s Manual  
Index (continued)  
memory commands . . . . . . . .15-12  
Motorola S-record . . . . . . . . .15-30  
power-up/reset sequence flowchart  
typographic conventions . . . . .15-9  
monitor commands  
overview  
P
PCI  
configuration space . . . . . . . . . . 5-4  
device and vendor ID . . . . . . . . . 5-5  
signal descriptions . . . . . . . . . . . 8-2  
PHY interfaces  
pin assignments  
front panel Ethernet. . . . . . . . . 10-2  
POST diagnostic results . . . . . . . . 15-6  
product code, Ethernet . . . . . . . . 10-1  
product ID register (PIR). . . . . . . . . 6-3  
PTMC module installation . . . . . . . 9-1  
R
references, manuals, and data books. .  
regulatory certifications. . . . . . . . . 1-5  
reset  
N
notation conventions . . . . . . . . . . . 1-6  
O
®
i-2  
Katana 752i User’s Manual  
10006024-04  
Index (continued)  
specifications  
system controller  
PCI configuration space . . . . . . . 5-4  
PCI device and vendor ID . . . . . . 5-5  
PCI interface registers . . . . . . . . 5-5  
S
T
serial number  
technical references . . . . . . . . . . . . 1-6  
test commands, monitor . . . . . . 15-20  
troubleshooting  
serial port, console . . . . . . . . . . . .5-11  
setup requirements . . . . . . . . . . . . 2-9  
signals  
ADDRESS and DATA, PCI. . . . . . . 8-3  
device select, PCI . . . . . . . . . . . . 8-3  
initialization device select, PCI . . 8-3  
initiator ready, PCI . . . . . . . . . . . 8-3  
PCI interrupt, PCI . . . . . . . . . . . . 8-3  
power management, PCI . . . . . . 8-4  
U
W
Z
®
i-3  
10006024-04  
Katana 752i User’s Manual  
(blank page)  
®
i-4  
Katana 752i User’s Manual  
10006024-04  
Notes  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
____________________________________________________________________________________________  
10006024-04  
Katana®752i User’s Manual  
AC Power Systems  
Connectivity  
Embedded Power  
Precision Cooling  
Services  
Emerson Network Power  
Integrated Cabinet Solutions  
Outside Plant  
The global leader in enabling  
DC Power Systems  
Embedded Computing  
Site Monitoring  
Surge & Signal Protection  
Business-Critical Continuity  
Power Switching & Controls  
Business-Critical Continuity, Emerson Network Power and the  
Emerson Network Power logo are trademarks and service marks of  
Emerson Network Power, Embedded Computing, Inc.  
Emerson Network Power, Embedded Computing  
8310 Excelsior Drive Madison, WI 53717-1935 USA  
US Toll Free: 1-800-356-9602 Voice: +1-608-831-5500 FAX: 1-608-831-4249  
© 2008 Emerson Network Power, Embedded Computing, Inc.  
E M E R S O N. C O N S I D E R I T S O L V E D.  

HP Hewlett Packard Compaq Advantage LA2006x 20 LED LCD Monitor XN374AA#ABA User Manual
Frigidaire FGEC3045KW User Manual
Extron electronic Extron Electronics Computer Hardware RGB 118 PLUS User Manual
Electrolux U30280 35772G User Manual
Eizo GS520 BLG User Manual
DoubleSight Displays Computer Monitor DS 2700DW User Manual
Dell Computer Monitor P2011H User Manual
Cypress CY7C09189V User Manual
Cypress CY7C1006D User Manual
Asus Computer Monitor VW225 User Manual