| 	
		 CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					72-Mbit (2M x 36/4M x 18/1M x 72)   
					Pipelined SRAM with NoBL™ Architecture   
					Features   
					Functional Description   
					■ Pin-compatible and functionally equivalent to ZBT™   
					The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					are 2.5V, 2M x 36/4M x 18/1M x 72 synchronous pipelined burst   
					SRAMs with No Bus Latency™ (NoBL™) logic, respectively.   
					They are designed to support unlimited true back-to-back read   
					or write operations with no wait states. The CY7C1470BV25,   
					■ Supports 250 MHz bus operations with zero wait states   
					❐ Available speed grades are 250, 200, and 167 MHz   
					■ Internally self-timed output buffer control to eliminate the need   
					CY7C1472BV25, and CY7C1474BV25 are equipped with the   
					advanced (NoBL) logic required to enable consecutive read or   
					write operations with data being transferred on every clock cycle.   
					This feature dramatically improves the throughput of data in   
					systems that require frequent read or write transitions. The   
					CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25 are   
					pin-compatible and functionally equivalent to ZBT devices.   
					to use asynchronous OE   
					■ Fully registered (inputs and outputs) for pipelined operation   
					■ Byte Write capability   
					■ Single 2.5V power supply   
					■ 2.5V IO supply (V   
					) 
					DDQ   
					All synchronous inputs pass through input registers controlled by   
					the rising edge of the clock. All data outputs pass through output   
					registers controlled by the rising edge of the clock. The clock   
					input is qualified by the Clock Enable (CEN) signal, which when   
					deasserted suspends operation and extends the previous clock   
					cycle. Write operations are controlled by the Byte Write Selects   
					■ Fast clock-to-output times   
					❐ 3.0 ns (for 250-MHz device)   
					■ Clock Enable (CEN) pin to suspend operation   
					■ Synchronous self-timed writes   
					(BW –BW   
					for   
					CY7C1470BV25,   
					BW –BW   
					for   
					a 
					d 
					a 
					b 
					■ CY7C1470BV25, CY7C1472BV25 available in   
					CY7C1472BV25, and BW –BW for CY7C1474BV25) and a   
					a 
					h 
					JEDEC-standard Pb-free 100-pin TQFP, Pb-free and   
					non-Pb-free 165-ball FBGA package. CY7C1474BV25   
					available in Pb-free and non-Pb-free 209-ball FBGA package   
					Write Enable (WE) input. All writes are conducted with on-chip   
					synchronous self-timed write circuitry.   
					Three synchronous Chip Enables (CE , CE , CE ) and an   
					1 
					2 
					3 
					■ IEEE 1149.1 JTAG Boundary Scan compatible   
					■ Burst capability—linear or interleaved burst order   
					■ “ZZ” Sleep Mode option and Stop Clock option   
					asynchronous Output Enable (OE) provide for easy bank   
					selection and output tri-state control. To avoid bus contention,   
					the output drivers are synchronously tri-stated during the data   
					portion of a write sequence.   
					Selection Guide   
					Description   
					Maximum Access Time   
					250 MHz   
					200 MHz   
					3.0   
					167 MHz   
					3.4   
					Unit   
					ns   
					3.0   
					450   
					120   
					Maximum Operating Current   
					450   
					400   
					mA   
					mA   
					Maximum CMOS Standby Current   
					120   
					120   
					Cypress Semiconductor Corporation   
					Document #: 001-15032 Rev. *D   
					• 
					198 Champion Court   
					• 
					San Jose, CA 95134-1709   
					• 
					408-943-2600   
					Revised February 29, 2008   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Logic Block Diagram – CY7C1474BV25 (1M x 72)   
					ADDRESS   
					REGISTER   
					A0, A1,   
					A 
					0 
					A1   
					A0   
					A1'   
					A0'   
					D1   
					D0   
					Q1   
					Q0   
					BURST   
					LOGIC   
					MODE   
					ADV/LD   
					CLK   
					CEN   
					C 
					C 
					WRITE ADDRESS   
					REGISTER   
					WRITE ADDRESS   
					1 
					REGISTER   
					2 
					O 
					U 
					T 
					O 
					U 
					T 
					P 
					U 
					T 
					S 
					E 
					P 
					U 
					T 
					D 
					A 
					T 
					ADV/LD   
					N 
					S 
					WRITE REGISTRY   
					AND DATA COHERENCY   
					CONTROL LOGIC   
					A 
					BW   
					BW   
					BW   
					BW   
					BW   
					a 
					R 
					E 
					G 
					I 
					MEMORY   
					ARRAY   
					E 
					B 
					U 
					F 
					F 
					E 
					R 
					S 
					DQ s   
					WRITE   
					DRIVERS   
					b 
					S 
					T 
					E 
					E 
					R 
					I 
					A 
					M 
					P 
					DQ Pa   
					DQ Pb   
					DQ Pc   
					DQ Pd   
					DQ Pe   
					DQ Pf   
					DQ Pg   
					DQ Ph   
					c 
					d 
					e 
					S 
					T 
					E 
					R 
					S 
					S 
					BW   
					f 
					N 
					G 
					BW   
					g 
					E 
					E 
					BW   
					h 
					WE   
					INPUT   
					REGISTER   
					INPUT   
					REGISTER   
					E 
					E 
					1 
					0 
					OE   
					CE1   
					CE2   
					CE3   
					READ LOGIC   
					Sleep   
					Control   
					ZZ   
					Document #: 001-15032 Rev. *D   
					Page 3 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Pin Configurations   
					Figure 1. 100-Pin TQFP Pinout   
					DQPc   
					DQc   
					DQc   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					NC   
					NC   
					NC   
					DDQ   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					A 
					DQPb   
					DQb   
					DQb   
					80   
					79   
					78   
					77   
					76   
					75   
					74   
					73   
					72   
					71   
					70   
					69   
					68   
					67   
					66   
					65   
					64   
					63   
					62   
					61   
					60   
					59   
					58   
					57   
					56   
					55   
					54   
					53   
					52   
					51   
					80   
					79   
					78   
					77   
					76   
					75   
					74   
					73   
					72   
					71   
					70   
					69   
					68   
					67   
					66   
					65   
					64   
					63   
					62   
					61   
					60   
					59   
					58   
					57   
					56   
					55   
					54   
					53   
					52   
					51   
					NC   
					NC   
					V 
					V 
					NC   
					DQPa   
					DQa   
					DQa   
					V 
					V 
					DDQ   
					V 
					DDQ   
					DDQ   
					V 
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					DQc   
					DQc   
					NC   
					NC   
					DQb   
					DQb   
					DQb   
					DQb   
					DQc   
					DQc   
					DQb   
					DQb   
					9 
					9 
					V 
					V 
					SS   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					V 
					SS   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					V 
					SS   
					SS   
					V 
					V 
					DDQ   
					DDQ   
					V 
					V 
					DQa   
					DQa   
					V 
					NC   
					V 
					ZZ   
					DDQ   
					DDQ   
					DQc   
					DQc   
					NC   
					DQb   
					DQb   
					DQb   
					DQb   
					NC   
					V 
					SS   
					SS   
					V 
					V 
					DD   
					NC   
					DD   
					CY7C1470BV25   
					(2M × 36)   
					CY7C1472BV25   
					(4M × 18)   
					NC   
					NC   
					V 
					DD   
					DD   
					V 
					V 
					SS   
					SS   
					ZZ   
					DQa   
					DQa   
					DQd   
					DQb   
					DQb   
					DQa   
					DQa   
					DQd   
					V 
					V 
					DDQ   
					DDQ   
					V 
					V 
					V 
					DQa   
					DQa   
					NC   
					NC   
					V 
					V 
					DDQ   
					DDQ   
					V 
					V 
					SS   
					V 
					SS   
					SS   
					SS   
					DQd   
					DQd   
					DQd   
					DQd   
					DQa   
					DQa   
					DQa   
					DQa   
					DQb   
					DQb   
					DQPb   
					NC   
					V 
					SS   
					V 
					V 
					SS   
					SS   
					SS   
					V 
					V 
					DDQ   
					DDQ   
					V 
					DDQ   
					DDQ   
					DQd   
					DQd   
					DQPd   
					DQa   
					DQa   
					DQPa   
					NC   
					NC   
					NC   
					NC   
					NC   
					NC   
					Document #: 001-15032 Rev. *D   
					Page 4 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Pin Configurations (continued)   
					165-Ball FBGA (15 x 17 x 1.4 mm) Pinout   
					CY7C1470BV25 (2M x 36)   
					1 
					2 
					A 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					A 
					10   
					A 
					11   
					NC   
					NC/576M   
					NC/1G   
					DQPc   
					ADV/LD   
					A 
					B 
					C 
					D 
					CE1   
					BWc   
					BWd   
					VSS   
					VDD   
					BWb   
					BWa   
					VSS   
					VSS   
					CE   
					CEN   
					WE   
					3 
					A 
					CE2   
					VDDQ   
					VDDQ   
					CLK   
					VSS   
					VSS   
					OE   
					VSS   
					VDD   
					A 
					A 
					NC   
					NC   
					DQc   
					VSS   
					VSS   
					VDDQ   
					VDDQ   
					NC   
					DQb   
					DQPb   
					DQb   
					DQc   
					DQc   
					DQc   
					DQc   
					NC   
					DQc   
					DQc   
					DQc   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					DQb   
					DQb   
					DQb   
					NC   
					DQb   
					DQb   
					DQb   
					ZZ   
					E 
					F 
					G 
					H 
					J 
					DQd   
					DQd   
					DQd   
					DQd   
					DQd   
					DQd   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					DQa   
					DQa   
					DQa   
					DQa   
					DQa   
					DQa   
					K 
					L 
					DQd   
					DQPd   
					DQd   
					NC   
					A 
					VDDQ   
					VDDQ   
					A 
					VDD   
					VSS   
					A 
					VSS   
					NC   
					VSS   
					NC   
					A1   
					VSS   
					NC   
					VDD   
					VSS   
					A 
					VDDQ   
					VDDQ   
					A 
					DQa   
					NC   
					A 
					DQa   
					DQPa   
					M 
					N 
					P 
					NC/144M   
					TDI   
					TDO   
					NC/288M   
					MODE   
					A 
					A 
					TMS   
					A0   
					TCK   
					A 
					A 
					A 
					A 
					R 
					A 
					CY7C1472BV25 (4M x 18)   
					1 
					NC/576M   
					NC/1G   
					NC   
					2 
					A 
					3 
					4 
					5 
					NC   
					6 
					CE   
					7 
					8 
					9 
					A 
					10   
					A 
					11   
					A 
					A 
					B 
					C 
					D 
					CE1   
					BWb   
					NC   
					CEN   
					ADV/LD   
					3 
					A 
					CE2   
					VDDQ   
					VDDQ   
					BWa   
					VSS   
					VSS   
					CLK   
					VSS   
					VSS   
					A 
					A 
					NC   
					WE   
					VSS   
					VSS   
					OE   
					VSS   
					VDD   
					NC   
					DQb   
					VSS   
					VDD   
					VDDQ   
					VDDQ   
					NC   
					NC   
					DQPa   
					DQa   
					NC   
					NC   
					NC   
					DQb   
					DQb   
					DQb   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					NC   
					NC   
					DQa   
					DQa   
					DQa   
					ZZ   
					E 
					F 
					NC   
					NC   
					G 
					H 
					J 
					NC   
					NC   
					DQb   
					DQb   
					DQb   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					DQa   
					DQa   
					DQa   
					NC   
					NC   
					NC   
					K 
					L 
					NC   
					NC   
					DQb   
					DQPb   
					NC   
					NC   
					A 
					VDDQ   
					VDDQ   
					A 
					VDD   
					VSS   
					A 
					VSS   
					NC   
					VSS   
					NC   
					A1   
					VSS   
					NC   
					VDD   
					VSS   
					A 
					VDDQ   
					VDDQ   
					A 
					DQa   
					NC   
					A 
					NC   
					NC   
					M 
					N 
					P 
					NC/144M   
					TDI   
					TDO   
					NC/288M   
					MODE   
					A 
					A 
					A 
					TMS   
					A0   
					TCK   
					A 
					A 
					A 
					A 
					R 
					Document #: 001-15032 Rev. *D   
					Page 5 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Pin Configurations (continued)   
					209-Ball FBGA (14 x 22 x 1.76 mm) Pinout   
					CY7C1474BV25 (1M × 72)   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					11   
					DQg   
					DQg   
					DQg   
					DQg   
					DQg   
					A 
					CE   
					A 
					ADV/LD   
					WE   
					A 
					A 
					CE   
					A 
					DQb   
					DQb   
					DQb   
					DQb   
					DQb   
					DQb   
					DQb   
					DQb   
					A 
					B 
					C 
					2 
					3 
					BWS   
					BWS   
					BWS   
					NC   
					BWS   
					BWS   
					NC   
					BWS   
					BWS   
					c 
					g 
					d 
					b 
					e 
					f 
					DQg   
					DQg   
					DQPc   
					DQc   
					BWS   
					NC   
					V 
					NC/576M CE   
					NC   
					NC   
					h 
					1 
					a 
					DQg   
					DQPg   
					DQc   
					V 
					NC/1G   
					OE   
					V 
					SS   
					D 
					E 
					SS   
					V 
					V 
					V 
					V 
					V 
					V 
					DD   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DD   
					DD   
					DQPf   
					DQf   
					DQPb   
					DQf   
					F 
					V 
					V 
					V 
					V 
					V 
					NC   
					NC   
					NC   
					NC   
					CEN   
					NC   
					NC   
					V 
					SS   
					SS   
					SS   
					SS   
					SS   
					SS   
					G 
					H 
					J 
					DQc   
					DQc   
					V 
					DQc   
					V 
					V 
					V 
					V 
					V 
					DD   
					DDQ   
					DDQ   
					DQf   
					DQf   
					DD   
					DDQ   
					DQf   
					DDQ   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					DQc   
					DQc   
					NC   
					SS   
					SS   
					SS   
					SS   
					SS   
					SS   
					DQf   
					DQf   
					NC   
					V 
					DQc   
					NC   
					V 
					V 
					V 
					V 
					DDQ   
					DD   
					DD   
					DDQ   
					DDQ   
					DDQ   
					DQf   
					NC   
					K 
					L 
					CLK   
					V 
					V 
					NC   
					SS   
					SS   
					DD   
					NC   
					NC   
					DQh   
					DQh   
					DQh   
					V 
					V 
					V 
					V 
					V 
					V 
					DDQ   
					DD   
					DDQ   
					DDQ   
					DQa   
					DQa   
					DQa   
					DDQ   
					M 
					N 
					P 
					R 
					T 
					V 
					V 
					V 
					V 
					V 
					SS   
					DQh   
					DQh   
					DQh   
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					SS   
					DQa   
					DQa   
					DQa   
					V 
					V 
					DQh   
					DQh   
					DQPd   
					DQd   
					DQd   
					V 
					V 
					V 
					NC   
					ZZ   
					DD   
					DD   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DQa   
					DQa   
					DQPa   
					DQe   
					DQe   
					V 
					V 
					V 
					V 
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					DD   
					SS   
					SS   
					V 
					V 
					V 
					V 
					V 
					DQPh   
					DQd   
					DQd   
					DQd   
					DQd   
					V 
					V 
					DDQ   
					DD   
					DDQ   
					DDQ   
					DDQ   
					DD   
					DQPe   
					DQe   
					DQe   
					DQe   
					DQe   
					V 
					NC   
					A 
					V 
					NC   
					A 
					NC   
					A 
					NC   
					A 
					MODE   
					A 
					SS   
					SS   
					U 
					V 
					W 
					NC/288M   
					NC/144M   
					A 
					A 
					A1   
					A 
					DQd   
					DQd   
					A 
					A 
					A 
					A 
					DQe   
					DQe   
					TDI   
					TDO   
					TCK   
					A0   
					A 
					TMS   
					Document #: 001-15032 Rev. *D   
					Page 6 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Table 1. Pin Definitions   
					Pin Name   
					IO Type   
					Pin Description   
					A0   
					A1   
					A 
					Input-   
					Synchronous   
					Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the   
					CLK.   
					BW   
					Input-   
					Synchronous   
					Byte Write Select Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM. Sampled   
					a 
					BW   
					BW   
					BW   
					BW   
					BW   
					BW   
					BW   
					on the rising edge of CLK. BW controls DQ and DQP , BW controls DQ and DQP , BW controls   
					b 
					c 
					d 
					e 
					f 
					a 
					a 
					a 
					b 
					b 
					b 
					c 
					DQ and DQP , BW controls DQ and DQP , BW controls DQ and DQP BW controls DQ and   
					c 
					c 
					d 
					d 
					d 
					e 
					e 
					e,   
					f 
					f 
					DQP BW controls DQ and DQP BW controls DQ and DQP .   
					f,   
					g 
					g 
					g,   
					h 
					h 
					h 
					g 
					h 
					WE   
					Input-   
					Synchronous   
					Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This   
					signal must be asserted LOW to initiate a write sequence.   
					ADV/LD   
					Input-   
					Synchronous   
					Advance/Load Input Used to Advance the On-Chip Address Counter or Load a New Address.   
					When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new   
					address can be loaded into the device for an access. After being deselected, ADV/LD must be driven   
					LOW to load a new address.   
					CLK   
					Input-   
					Clock   
					Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK   
					is only recognized if CEN is active LOW.   
					CE   
					CE   
					CE   
					Input-   
					Synchronous   
					Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with   
					1 
					2 
					3 
					CE and CE to select/deselect the device.   
					2 
					3 
					Input-   
					Synchronous   
					Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with   
					CE and CE to select/deselect the device.   
					1 
					3 
					Input-   
					Synchronous   
					Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with   
					CE and CE to select/deselect the device.   
					1 
					2 
					OE   
					Input-   
					Output Enable, Active LOW. Combined with the synchronous logic block inside the device to control   
					Asynchronous the direction of the IO pins. When LOW, the IO pins can behave as outputs. When deasserted HIGH,   
					IO pins are tri-stated, and act as input data pins. OE is masked during the data portion of a write   
					sequence, during the first clock when emerging from a deselected state and when the device has   
					been deselected.   
					CEN   
					Input-   
					Synchronous   
					Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the SRAM.   
					When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the   
					device, CEN can be used to extend the previous cycle when required.   
					DQ   
					IO-   
					Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is triggered by   
					the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified   
					s 
					Synchronous   
					by A   
					during the previous clock rise of the read cycle. The direction of the pins is controlled by   
					[18:0]   
					OE and the internal control logic. When OE is asserted LOW, the pins can behave as outputs. When   
					HIGH, DQ –DQ are placed in a tri-state condition. The outputs are automatically tri-stated during   
					a 
					h 
					the data portion of a write sequence, during the first clock when emerging from a deselected state, and   
					when the device is deselected, regardless of the state of OE.   
					DQP   
					IO-   
					Bidirectional Data Parity IO Lines. Functionally, these signals are identical to DQ   
					. During write   
					[71:0]   
					X 
					Synchronous   
					sequences, DQP is controlled by BW , DQP is controlled by BW , DQP is controlled by BW , and   
					a 
					a 
					b 
					b 
					c 
					c 
					DQP is controlled by BW , DQP is controlled by BW DQP is controlled by BW DQP is controlled   
					d 
					d 
					e 
					e,   
					f 
					f,   
					g 
					by BW DQP is controlled by BW .   
					g,   
					h 
					h 
					MODE   
					TDO   
					TDI   
					Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.   
					Pulled LOW selects the linear burst order. MODE must not change states during operation. When   
					left floating MODE defaults HIGH, to an interleaved burst order.   
					JTAG Serial   
					Output   
					Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK.   
					Synchronous   
					JTAG Serial Input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK.   
					Synchronous   
					Document #: 001-15032 Rev. *D   
					Page 7 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Table 1. Pin Definitions (continued)   
					Pin Name   
					IO Type   
					Pin Description   
					TMS   
					Test Mode Select TMS Pin Controls the Test Access Port State Machine. Sampled on the rising edge of TCK.   
					Synchronous   
					TCK   
					JTAG Clock   
					Clock Input to the JTAG Circuitry.   
					V 
					V 
					V 
					Power Supply   
					Power Supply Inputs to the Core of the Device.   
					DD   
					IO Power Supply Power Supply for the IO Circuitry.   
					DDQ   
					SS   
					Ground   
					Ground for the Device. Must be connected to ground of the system.   
					NC   
					– 
					– 
					No Connects. This pin is not connected to the die.   
					NC(144M,   
					288M,   
					These Pins are Not Connected. They are used for expansion to the 144M, 288M, 576M, and 1G   
					densities.   
					576M, 1G)   
					ZZ   
					Input-   
					ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition   
					Asynchronous with data integrity preserved. For normal operation, this pin has must be LOW or left floating.   
					ZZ pin has an internal pull down.   
					register and onto the data bus within 2.6 ns (250-MHz device)   
					Functional Overview   
					provided OE is active LOW. After the first clock of the read   
					access the output buffers are controlled by OE and the internal   
					control logic. OE must be driven LOW to drive out the requested   
					data. During the second clock, a subsequent operation (read,   
					write, or deselect) can be initiated. Deselecting the device is also   
					pipelined. Therefore, when the SRAM is deselected at clock rise   
					by one of the chip enable signals, its output tri-states following   
					the next clock rise.   
					The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					are synchronous-pipelined Burst NoBL SRAMs designed specif-   
					ically to eliminate wait states during read or write transitions. All   
					synchronous inputs pass through input registers controlled by   
					the rising edge of the clock. The clock signal is qualified with the   
					Clock Enable input signal (CEN). If CEN is HIGH, the clock signal   
					is not recognized and all internal states are maintained. All   
					synchronous operations are qualified with CEN. All data outputs   
					pass through output registers controlled by the rising edge of the   
					Burst Read Accesses   
					clock. Maximum access delay from the clock rise (t ) is 3.0 ns   
					(250-MHz device).   
					The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					have an on-chip burst counter that enables the user to supply a   
					single address and conduct up to four reads without reasserting   
					the address inputs. ADV/LD must be driven LOW to load a new   
					address into the SRAM, as described in the Single Read   
					Accesses section. The sequence of the burst counter is deter-   
					mined by the MODE input signal. A LOW input on MODE selects   
					a linear burst mode, a HIGH selects an interleaved burst   
					sequence. Both burst counters use A0 and A1 in the burst   
					sequence, and wraps around when incremented sufficiently. A   
					HIGH input on ADV/LD increments the internal burst counter   
					regardless of the state of chip enables inputs or WE. WE is   
					latched at the beginning of a burst cycle. Therefore, the type of   
					access (read or write) is maintained throughout the burst   
					sequence.   
					CO   
					Accesses can be initiated by asserting all three Chip Enables   
					(CE , CE , CE ) active at the rising edge of the clock. If CEN is   
					1 
					2 
					3 
					active LOW and ADV/LD is asserted LOW, the address   
					presented to the device is latched. The access can either be a   
					read or write operation, depending on the status of the Write   
					Enable (WE). BW can be used to conduct Byte Write opera-   
					[x]   
					tions.   
					Write operations are qualified by the Write Enable (WE). All   
					writes are simplified with on-chip synchronous self-timed write   
					circuitry.   
					Three synchronous Chip Enables (CE , CE , CE ) and an   
					1 
					2 
					3 
					asynchronous Output Enable (OE) simplify depth expansion. All   
					operations (reads, writes, and deselects) are pipelined. ADV/LD   
					must be driven LOW after the device is deselected to load a new   
					address for the next operation.   
					Single Write Accesses   
					Write accesses are initiated when the following conditions are   
					satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,   
					1 
					2 
					Single Read Accesses   
					and CE are ALL asserted active, and (3) the signal WE is   
					3 
					A read access is initiated when the following conditions are   
					asserted LOW. The address presented to the address inputs is   
					loaded into the Address Register. The write signals are latched   
					into the Control Logic block.   
					satisfied at clock rise: (1) CEN is asserted LOW, (2) CE , CE ,   
					1 
					2 
					and CE are ALL asserted active, (3) the input signal WE is   
					3 
					deasserted HIGH, and (4) ADV/LD is asserted LOW. The   
					address presented to the address inputs is latched into the   
					Address Register and presented to the memory core and control   
					logic. The control logic determines that a read access is in   
					progress and allows the requested data to propagate to the input   
					of the output register. At the rising edge of the next clock the   
					requested data is allowed to propagate through the output   
					On the subsequent clock rise the data lines are automatically   
					tri-stated regardless of the state of the OE input signal. This   
					allows the external logic to present the data on DQ and DQP   
					(DQ   
					/DQP   
					for CY7C1470BV25, DQ /DQP   
					for   
					for   
					a,b,c,d   
					a,b,c,d   
					a,b   
					a,b   
					/DQP   
					a,b,c,d,e,f,g,h   
					CY7C1472BV25, and DQ   
					a,b,c,d,e,f,g,h   
					CY7C1474BV25). In addition, the address for the subsequent   
					Document #: 001-15032 Rev. *D   
					Page 8 of 29   
					
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					access (read, write, or deselect) is latched into the Address   
					Register (provided the appropriate control signals are asserted).   
					on page 8. When ADV/LD is driven HIGH on the subsequent   
					clock rise, the Chip Enables (CE , CE , and CE ) and WE inputs   
					1 
					2 
					3 
					are ignored and the burst counter is incremented. The correct   
					On the next clock rise the data presented to DQ and DQP   
					BW (BW   
					for CY7C1470BV25, BW for CY7C1472BV25,   
					a,b,c,d   
					a,b   
					(DQ   
					/DQP   
					for CY7C1470BV25, DQ /DQP   
					DQ   
					for   
					for   
					a,b,c,d   
					a,b,c,d   
					a,b   
					/DQP   
					a,b,c,d,e,f,g,h a,b,c,d,e,f,g,h   
					a,b   
					and BW   
					for CY7C1474BV25) inputs must be driven   
					a,b,c,d,e,f,g,h   
					CY7C1472BV25,   
					in each cycle of the burst write to write the correct bytes of data.   
					CY7C1474BV25) (or a subset for Byte Write operations, see   
					“Partial Write Cycle Description” on page 11 for details) inputs is   
					latched into the device and the Write is complete.   
					Sleep Mode   
					The ZZ input pin is an asynchronous input. Asserting ZZ places   
					the SRAM in a power conservation “sleep” mode. Two clock   
					cycles are required to enter into or exit from this “sleep” mode.   
					While in this mode, data integrity is guaranteed. Accesses   
					pending when entering the “sleep” mode are not considered valid   
					nor is the completion of the operation guaranteed. The device   
					The data written during the Write operation is controlled by BW   
					(BW   
					for CY7C1470BV25, BW for CY7C1472BV25, and   
					a,b,c,d   
					a,b   
					BW   
					for   
					CY7C1474BV25)   
					signals.   
					The   
					a,b,c,d,e,f,g,h   
					CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					provides Byte Write capability that is described in “Partial Write   
					Cycle Description” on page 11. Asserting the WE input with the   
					selected BW input selectively writes to only the desired bytes.   
					Bytes not selected during a Byte Write operation remain   
					unaltered. A synchronous self-timed write mechanism has been   
					provided to simplify the write operations. Byte Write capability   
					has been included to greatly simplify read, modify, or write   
					sequences, which can be reduced to simple Byte Write opera-   
					tions.   
					must be deselected before entering the “sleep” mode. CE , CE ,   
					1 
					2 
					and CE , must remain inactive for the duration of t   
					after the   
					3 
					ZZREC   
					ZZ input returns LOW.   
					Table 2. Linear Burst Address Table (MODE = GND)   
					First   
					Second   
					Third   
					Fourth   
					Address   
					Address   
					Address   
					Address   
					A1,A0   
					11   
					Because the CY7C1470BV25, CY7C1472BV25, and   
					CY7C1474BV25 are common IO devices, data must not be   
					driven into the device while the outputs are active. OE can be   
					deasserted HIGH before presenting data to the DQ and DQP   
					A1,A0   
					00   
					A1,A0   
					01   
					A1,A0   
					10   
					01   
					10   
					11   
					00   
					(DQ   
					/DQP   
					for CY7C1470BV25, DQ /DQP   
					for   
					for   
					10   
					11   
					00   
					01   
					a,b,c,d   
					a,b,c,d   
					a,b   
					a,b   
					/DQP   
					a,b,c,d,e,f,g,h   
					CY7C1472BV25, and DQ   
					CY7C1474BV25) inputs. Doing so tri-states the output drivers.   
					As a safety precaution, DQ and DQP (DQ /DQP for   
					a,b,c,d,e,f,g,h   
					11   
					00   
					01   
					10   
					a,b,c,d   
					a,b,c,d   
					CY7C1470BV25, DQ /DQP   
					for CY7C1472BV25, and   
					for CY7C1474BV25) are   
					a,b   
					/DQP   
					a,b,c,d,e,f,g,h   
					a,b   
					Table 3. Interleaved Burst Address Table   
					(MODE = Floating or V   
					DQ   
					a,b,c,d,e,f,g,h   
					) 
					DD   
					automatically tri-stated during the data portion of a write cycle,   
					regardless of the state of OE.   
					First   
					Second   
					Third   
					Fourth   
					Address   
					Address   
					Address   
					Address   
					Burst Write Accesses   
					A1,A0   
					00   
					A1,A0   
					01   
					A1,A0   
					10   
					A1,A0   
					11   
					The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					has an on-chip burst counter that enables the user to supply a   
					single address and conduct up to four write operations without   
					reasserting the address inputs. ADV/LD must be driven LOW to   
					load the initial address, as described in “Single Write Accesses”   
					01   
					00   
					11   
					10   
					10   
					11   
					00   
					01   
					11   
					10   
					01   
					00   
					ZZ Mode Electrical Characteristics   
					Parameter   
					Description   
					Sleep mode standby current   
					Device operation to ZZ   
					ZZ recovery time   
					Test Conditions   
					Min   
					Max   
					Unit   
					mA   
					ns   
					I 
					t 
					t 
					t 
					t 
					ZZ > V − 0.2V   
					120   
					DDZZ   
					DD   
					ZZ > V − 0.2V   
					2t   
					ZZS   
					DD   
					CYC   
					ZZ < 0.2V   
					2t   
					ns   
					ZZREC   
					ZZI   
					CYC   
					ZZ active to sleep current   
					ZZ Inactive to exit sleep current   
					This parameter is sampled   
					This parameter is sampled   
					2t   
					ns   
					CYC   
					0 
					ns   
					RZZI   
					Document #: 001-15032 Rev. *D   
					Page 9 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Table 4. Truth Table   
					
					The truth table for CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25 follows.   
					Address   
					Operation   
					Deselect Cycle   
					CE ZZ ADV/LD WE BW   
					OE CEN CLK   
					DQ   
					x 
					Used   
					None   
					H 
					X 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					X 
					X 
					H 
					X 
					X 
					X 
					X 
					X 
					L 
					L 
					L 
					L 
					L-H   
					L-H   
					L-H   
					Tri-State   
					Tri-State   
					Continue Deselect Cycle   
					None   
					Read Cycle   
					External   
					Data Out (Q)   
					(Begin Burst)   
					Read Cycle   
					(Continue Burst)   
					Next   
					External   
					Next   
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					X 
					H 
					X 
					L 
					X 
					X 
					X 
					L 
					L 
					H 
					H 
					X 
					X 
					X 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					L-H   
					L-H   
					L-H   
					L-H   
					L-H   
					L-H   
					L-H   
					Data Out (Q)   
					Tri-State   
					NOP/Dummy Read   
					(Begin Burst)   
					Dummy Read   
					(Continue Burst)   
					X 
					L 
					H 
					L 
					Tri-State   
					Write Cycle   
					(Begin Burst)   
					External   
					Next   
					Data In (D)   
					Data In (D)   
					Tri-State   
					Write Cycle   
					(Continue Burst)   
					X 
					L 
					H 
					L 
					X 
					L 
					L 
					NOP/Write Abort   
					(Begin Burst)   
					None   
					H 
					H 
					Write Abort   
					Next   
					X 
					H 
					X 
					Tri-State   
					(Continue Burst)   
					Ignore Clock Edge (Stall)   
					Sleep Mode   
					Current   
					None   
					X 
					X 
					L 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					H 
					X 
					L-H   
					X 
					– 
					H 
					Tri-State   
					Notes   
					1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BW = L signifies at least one Byte Write Select is active, BW = Valid   
					x 
					x 
					signifies that the desired Byte Write Selects are asserted, see “Partial Write Cycle Description” on page 11 for details.   
					2. Write is defined by WE and BW   
					
					[a:d]   
					3. When a write cycle is detected, all IOs are tri-stated, even during Byte Writes.   
					4. The DQ and DQP pins are controlled by the current cycle and the OE signal.   
					5. CEN = H inserts wait states.   
					6. Device powers up deselected with the IOs in a tri-state condition, regardless of OE.   
					7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a Read cycle DQ and DQP   
					= tri-state when OE is   
					s 
					[a:d]   
					inactive or when the device is deselected, and DQ = data when OE is active.   
					s 
					Document #: 001-15032 Rev. *D   
					Page 10 of 29   
					
					 
					 
					 
					 
					 
					 
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Table 5. Partial Write Cycle Description   
					The partial write cycle description for CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25 follows.   
					
					Function (CY7C1470BV25)   
					Read   
					WE   
					H 
					L 
					BW   
					X 
					H 
					H 
					H 
					H 
					H 
					H 
					H 
					H 
					L 
					BW   
					X 
					H 
					H 
					H 
					H 
					L 
					BW   
					X 
					H 
					H 
					L 
					BW   
					a 
					d 
					c 
					b 
					X 
					H 
					L 
					Write – No bytes written   
					Write Byte a – (DQ and DQP )   
					L 
					a 
					a 
					Write Byte b – (DQ and DQP )   
					L 
					H 
					L 
					b 
					b 
					Write Bytes b, a   
					Write Byte c – (DQ and DQP )   
					L 
					L 
					L 
					H 
					H 
					L 
					H 
					L 
					c 
					c 
					Write Bytes c, a   
					Write Bytes c, b   
					Write Bytes c, b, a   
					L 
					L 
					L 
					LL   
					L 
					H 
					L 
					L 
					L 
					Write Byte d – (DQ and DQP )   
					L 
					H 
					H 
					H 
					H 
					L 
					H 
					H 
					L 
					H 
					L 
					d 
					d 
					Write Bytes d, a   
					Write Bytes d, b   
					Write Bytes d, b, a   
					Write Bytes d, c   
					Write Bytes d, c, a   
					Write Bytes d, c, b   
					Write All Bytes   
					L 
					L 
					L 
					L 
					H 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					H 
					L 
					H 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					L 
					L 
					L 
					L 
					Function (CY7C1472BV25)   
					Read   
					WE   
					H 
					L 
					BW   
					x 
					BW   
					a 
					b 
					x 
					H 
					L 
					Write – No Bytes Written   
					H 
					H 
					L 
					Write Byte a – (DQ and DQP )   
					L 
					a 
					a 
					Write Byte b – (DQ and DQP )   
					L 
					H 
					L 
					b 
					b 
					Write Both Bytes   
					L 
					L 
					Function (CY7C1474BV25)   
					Read   
					WE   
					H 
					BW   
					x 
					x 
					Write – No Bytes Written   
					L 
					H 
					Write Byte X − (DQ and DQP   
					L 
					L 
					x 
					x)   
					Write All Bytes   
					L 
					All BW = L   
					Note   
					8. Table lists only a partial listing of the Byte Write combinations. Any combination of BW   
					is valid. Appropriate write is based on which Byte Write is active.   
					[a:d]   
					Document #: 001-15032 Rev. *D   
					Page 11 of 29   
					
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Test MODE SELECT (TMS)   
					IEEE 1149.1 Serial Boundary Scan (JTAG)   
					The TMS input is used to give commands to the TAP controller   
					and is sampled on the rising edge of TCK. It is allowable to leave   
					this ball unconnected if the TAP is not used. The ball is pulled up   
					internally, resulting in a logic HIGH level.   
					The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					incorporates a serial boundary scan test access port (TAP). This   
					port operates in accordance with IEEE Standard 1149.1-1990   
					but does not have the set of functions required for full 1149.1   
					compliance. These functions from the IEEE specification are   
					excluded because their inclusion places an added delay in the   
					critical speed path of the SRAM. Note that the TAP controller   
					functions in a manner that does not conflict with the operation of   
					other devices using 1149.1 fully compliant TAPs. The TAP   
					operates using JEDEC-standard 2.5V IO logic levels.   
					Test Data-In (TDI)   
					The TDI ball is used to serially input information into the registers   
					and can be connected to the input of any of the registers. The   
					register between TDI and TDO is chosen by the instruction that   
					is loaded into the TAP instruction register. For information about   
					loading the instruction register, see the TAP Controller State   
					Diagram. TDI is internally pulled up and can be unconnected if   
					the TAP is unused in an application. TDI is connected to the most   
					significant bit (MSB) of any register. (See TAP Controller Block   
					Diagram.)   
					The CY7C1470BV25, CY7C1472BV25, and CY7C1474BV25   
					contains a TAP controller, instruction register, boundary scan   
					register, bypass register, and ID register.   
					Disabling the JTAG Feature   
					Test Data-Out (TDO)   
					It is possible to operate the SRAM without using the JTAG   
					feature. To disable the TAP controller, TCK must be tied LOW   
					The TDO output ball is used to serially clock data-out from the   
					registers. The output is active depending upon the current state   
					of the TAP state machine. The output changes on the falling edge   
					of TCK. TDO is connected to the least significant bit (LSB) of any   
					
					(V ) to prevent clocking of the device. TDI and TMS are inter-   
					SS   
					nally pulled up and may be unconnected. They may alternately   
					be connected to V through a pull up resistor. TDO must be left   
					DD   
					unconnected. During power up, the device comes up in a reset   
					state, which does not interfere with the operation of the device.   
					Figure 3. TAP Controller Block Diagram   
					Figure 2. TAP Controller State Diagram   
					0 
					TEST-LOGIC   
					1 
					RESET   
					0 
					Bypass Register   
					2 
					1 
					0 
					0 
					0 
					1 
					1 
					1 
					RUN-TEST/   
					IDLE   
					SELECT   
					DR-SCAN   
					SELECT   
					IR-SCAN   
					0 
					Selection   
					Circuitry   
					Selection   
					Circuitry   
					Instruction Register   
					31 30 29   
					Identification Register   
					0 
					0 
					TDI   
					TDO   
					1 
					1 
					. 
					. 
					. 
					2 
					1 
					CAPTURE-DR   
					CAPTURE-IR   
					0 
					0 
					x 
					. 
					. 
					. 
					. 
					. 
					2 
					1 
					SHIFT-DR   
					0 
					SHIFT-IR   
					0 
					Boundary Scan Register   
					1 
					1 
					1 
					1 
					EXIT1-DR   
					EXIT1-IR   
					0 
					0 
					TCK   
					PAUSE-DR   
					0 
					PAUSE-IR   
					1 
					0 
					TAP CONTROLLER   
					TM S   
					1 
					0 
					0 
					EXIT2-DR   
					1 
					EXIT2-IR   
					1 
					Performing a TAP Reset   
					UPDATE-DR   
					UPDATE-IR   
					A RESET is performed by forcing TMS HIGH (V ) for five rising   
					edges of TCK. This RESET does not affect the operation of the   
					DD   
					1 
					0 
					1 
					0 
					SRAM and may be performed while the SRAM is operating.   
					During power up, the TAP is reset internally to ensure that TDO   
					comes up in a High-Z state.   
					The 0/1 next to each state represents the value of TMS at the   
					rising edge of TCK.   
					TAP Registers   
					Test Access Port (TAP)   
					Registers are connected between the TDI and TDO balls to scan   
					the data in and out of the SRAM test circuitry. Only one register   
					can be selected at a time through the instruction register. Data is   
					serially loaded into the TDI ball on the rising edge of TCK. Data   
					is output on the TDO ball on the falling edge of TCK.   
					Test Clock (TCK)   
					The test clock is used only with the TAP controller. All inputs are   
					captured on the rising edge of TCK. All outputs are driven from   
					the falling edge of TCK.   
					Document #: 001-15032 Rev. *D   
					Page 12 of 29   
					
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Instruction Register   
					Instructions are loaded into the TAP controller during the Shift-IR   
					state when the instruction register is placed between TDI and   
					TDO. During this state, instructions are shifted through the   
					instruction register through the TDI and TDO balls. To execute   
					the instruction after it is shifted in, the TAP controller must be   
					moved into the Update-IR state.   
					Three-bit instructions can be serially loaded into the instruction   
					register. This register is loaded when it is placed between the TDI   
					and TDO balls as shown in the “TAP Controller Block Diagram”   
					on page 12. During power up, the instruction register is loaded   
					with the IDCODE instruction. It is also loaded with the IDCODE   
					instruction if the controller is placed in a reset state as described   
					in the previous section.   
					EXTEST   
					EXTEST is a mandatory 1149.1 instruction which is executed   
					whenever the instruction register is loaded with all 0s. EXTEST   
					is not implemented in this SRAM TAP controller, and therefore   
					this device is not compliant to 1149.1. The TAP controller does   
					recognize an all-0 instruction.   
					When the TAP controller is in the Capture-IR state, the two least   
					significant bits are loaded with a binary ‘01’ pattern to enable fault   
					isolation of the board-level serial test data path.   
					Bypass Register   
					When an EXTEST instruction is loaded into the instruction   
					register, the SRAM responds as if a SAMPLE/PRELOAD   
					instruction has been loaded. There is one difference between the   
					two instructions. Unlike the SAMPLE/PRELOAD instruction,   
					EXTEST places the SRAM outputs in a High-Z state.   
					To save time when serially shifting data through registers, it is   
					sometimes advantageous to skip certain chips. The bypass   
					register is a single-bit register that can be placed between the   
					TDI and TDO balls. This shifts the data through the SRAM with   
					minimal delay. The bypass register is set LOW (V ) when the   
					SS   
					BYPASS instruction is executed.   
					IDCODE   
					Boundary Scan Register   
					The IDCODE instruction loads a vendor-specific, 32-bit code into   
					the instruction register. It also places the instruction register   
					between the TDI and TDO balls and shifts the IDCODE out of the   
					device when the TAP controller enters the Shift-DR state.   
					The boundary scan register is connected to all the input and   
					bidirectional balls on the SRAM.   
					The boundary scan register is loaded with the contents of the   
					RAM IO ring when the TAP controller is in the Capture-DR state   
					and is then placed between the TDI and TDO balls when the   
					controller is moved to the Shift-DR state. The EXTEST,   
					SAMPLE/PRELOAD and SAMPLE Z instructions can be used to   
					capture the contents of the IO ring.   
					The IDCODE instruction is loaded into the instruction register   
					during power up or whenever the TAP controller is in a test logic   
					reset state.   
					SAMPLE Z   
					The SAMPLE Z instruction connects the boundary scan register   
					between the TDI and TDO pins when the TAP controller is in a   
					Shift-DR state. It also places all SRAM outputs into a High-Z   
					state.   
					
					which the bits are connected. Each bit corresponds to one of the   
					bumps on the SRAM package. The MSB of the register is   
					connected to TDI and the LSB is connected to TDO.   
					SAMPLE/PRELOAD   
					Identification (ID) Register   
					SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The   
					PRELOAD portion of this instruction is not implemented, so the   
					device TAP controller is not fully 1149.1 compliant.   
					The ID register is loaded with a vendor-specific, 32-bit code   
					during the Capture-DR state when the IDCODE command is   
					loaded in the instruction register. The IDCODE is hardwired into   
					the SRAM and can be shifted out when the TAP controller is in   
					the Shift-DR state. The ID register has a vendor code and other   
					information described in “Identification Register Definitions” on   
					
					When the SAMPLE/PRELOAD instruction is loaded into the   
					instruction register and the TAP controller is in the Capture-DR   
					state, a snapshot of data on the inputs and bidirectional balls is   
					captured in the boundary scan register.   
					The user must be aware that the TAP controller clock can only   
					operate at a frequency up to 20 MHz, while the SRAM clock   
					operates more than an order of magnitude faster. Because there   
					is a large difference in the clock frequencies, it is possible that   
					during the Capture-DR state, an input or output may undergo a   
					transition. The TAP may then try to capture a signal while in   
					transition (metastable state). This does not harm the device, but   
					there is no guarantee as to the value that is captured.   
					Repeatable results may not be possible.   
					TAP Instruction Set   
					Overview   
					Eight different instructions are possible with the three-bit   
					instruction register. All combinations are listed in “Identification   
					
					RESERVED and must not be used. The other five instructions   
					are described in this section in detail.   
					The TAP controller used in this SRAM is not fully compliant to the   
					1149.1 convention because some of the mandatory 1149.1   
					instructions are not fully implemented.   
					To guarantee that the boundary scan register captures the   
					correct value of a signal, the SRAM signal must be stabilized   
					long enough to meet the TAP controller’s capture setup plus hold   
					time (t plus t ).   
					CS   
					CH   
					The TAP controller cannot be used to load address data or   
					control signals into the SRAM and cannot preload the IO buffers.   
					The SRAM does not implement the 1149.1 commands EXTEST   
					or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;   
					rather, it performs a capture of the IO ring when these instruc-   
					tions are executed.   
					The SRAM clock input might not be captured correctly if there is   
					no way in a design to stop (or slow) the clock during a   
					SAMPLE/PRELOAD instruction. If this is an issue, it is still   
					Document #: 001-15032 Rev. *D   
					Page 13 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					possible to capture all other signals and simply ignore the value   
					of the CLK captured in the boundary scan register.   
					BYPASS   
					When the BYPASS instruction is loaded in the instruction register   
					and the TAP is placed in a Shift-DR state, the bypass register is   
					placed between the TDI and TDO balls. The advantage of the   
					BYPASS instruction is that it shortens the boundary scan path   
					when multiple devices are connected together on a board.   
					After the data is captured, it is possible to shift out the data by   
					putting the TAP into the Shift-DR state. This places the boundary   
					scan register between the TDI and TDO balls.   
					Note that since the PRELOAD part of the command is not imple-   
					mented, putting the TAP to the Update-DR state while performing   
					a SAMPLE/PRELOAD instruction has the same effect as the   
					Pause-DR command.   
					Reserved   
					These instructions are not implemented but are reserved for   
					future use. Do not use these instructions.   
					Figure 4. TAP Timing   
					1 
					2 
					3 
					4 
					5 
					6 
					Test Clock   
					(TCK)   
					t 
					t 
					t 
					TH   
					CYC   
					TL   
					t 
					t 
					t 
					t 
					TM SS   
					TDIS   
					TM SH   
					Test M ode Select   
					(TM S)   
					TDIH   
					Test Data-In   
					(TDI)   
					t 
					TDOV   
					t 
					TDOX   
					Test Data-Out   
					(TDO)   
					DON’T CARE   
					UNDEFINED   
					Document #: 001-15032 Rev. *D   
					Page 14 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					TAP AC Switching Characteristics   
					
					Over the Operating Range   
					Parameter   
					Clock   
					Description   
					Min   
					Max   
					Unit   
					t 
					t 
					t 
					t 
					TCK Clock Cycle Time   
					TCK Clock Frequency   
					TCK Clock HIGH time   
					TCK Clock LOW time   
					50   
					ns   
					MHz   
					ns   
					TCYC   
					TF   
					20   
					20   
					20   
					TH   
					ns   
					TL   
					Output Times   
					t 
					t 
					TCK Clock LOW to TDO Valid   
					TCK Clock LOW to TDO Invalid   
					10   
					ns   
					ns   
					TDOV   
					TDOX   
					0 
					Setup Times   
					t 
					t 
					t 
					TMS Setup to TCK Clock Rise   
					TDI Setup to TCK Clock Rise   
					Capture Setup to TCK Rise   
					5 
					5 
					5 
					ns   
					ns   
					ns   
					TMSS   
					TDIS   
					CS   
					Hold Times   
					t 
					t 
					t 
					TMS Hold after TCK Clock Rise   
					TDI Hold after Clock Rise   
					5 
					5 
					5 
					ns   
					ns   
					ns   
					TMSH   
					TDIH   
					CH   
					Capture Hold after Clock Rise   
					Notes   
					9.   
					10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.   
					t 
					and t refer to the setup and hold time requirements of latching data from the boundary scan register.   
					CH   
					CS   
					R 
					F 
					Document #: 001-15032 Rev. *D   
					Page 15 of 29   
					
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Figure 5. 2.5V TAP AC Output Load Equivalent   
					2.5V TAP AC Test Conditions   
					1.25V   
					Input pulse levels.................................................V to 2.5V   
					SS   
					Input rise and fall time .....................................................1 ns   
					Input timing reference levels......................................... 1.25V   
					Output reference levels ................................................ 1.25V   
					Test load termination supply voltage ............................ 1.25V   
					50Ω   
					TDO   
					ZO= 50Ω   
					20pF   
					TAP DC Electrical Characteristics And Operating Conditions   
					
					(0°C < T < +70°C; V = 2.5V ±0.125V unless otherwise noted)   
					A 
					DD   
					Parameter   
					Description   
					Test Conditions   
					Min   
					1.7   
					2.1   
					Max   
					Unit   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					I 
					Output HIGH Voltage   
					Output HIGH Voltage   
					Output LOW Voltage   
					Output LOW Voltage   
					Input HIGH Voltage   
					Input LOW Voltage   
					Input Load Current   
					I 
					I 
					I 
					I 
					= –1.0 mA, V   
					= 2.5V   
					= 2.5V   
					OH1   
					OH   
					OH   
					OL   
					OL   
					DDQ   
					DDQ   
					= –100 μA, V   
					V 
					OH2   
					OL1   
					OL2   
					IH   
					= 1.0 mA, V   
					= 2.5V   
					= 2.5V   
					0.4   
					0.2   
					V 
					DDQ   
					DDQ   
					= 100 μA, V   
					V 
					V 
					V 
					= 2.5V   
					= 2.5V   
					1.7   
					–0.3   
					–5   
					V 
					+ 0.3   
					V 
					DDQ   
					DDQ   
					DD   
					0.7   
					5 
					V 
					IL   
					GND ≤ V ≤ V   
					DDQ   
					μA   
					X 
					I 
					Table 6. Identification Register Definitions   
					CY7C1470BV25 CY7C1472BV25 CY7C1474BV25   
					Instruction Field   
					Description   
					(2M x 36)   
					(4M x 18)   
					(1M x 72)   
					Revision Number (31:29)   
					Device Depth (28:24)   
					000   
					000   
					000   
					Describes the version number   
					Reserved for internal use   
					01011   
					01011   
					01011   
					Architecture/Memory Type(23:18)   
					001000   
					001000   
					001000   
					Defines memory type and archi-   
					tecture   
					Bus Width/Density(17:12)   
					100100   
					010100   
					110100   
					Defines width and density   
					Cypress JEDEC ID Code (11:1)   
					00000110100   
					00000110100   
					00000110100 Allows unique identification of   
					SRAM vendor   
					ID Register Presence Indicator (0)   
					1 
					1 
					1 
					Indicates the presence of an ID   
					register   
					Table 7. Scan Register Sizes   
					Register Name   
					Bit Size (x36)   
					Bit Size (x18)   
					Bit Size (x72)   
					Instruction   
					3 
					1 
					3 
					1 
					3 
					1 
					Bypass   
					ID   
					32   
					71   
					– 
					32   
					52   
					– 
					32   
					– 
					Boundary Scan Order–165FBGA   
					Boundary Scan Order–209BGA   
					110   
					Note   
					11. All voltages refer to V (GND).   
					SS   
					Document #: 001-15032 Rev. *D   
					Page 16 of 29   
					
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Table 8. Identification Codes   
					Instruction Code   
					EXTEST   
					Description   
					000 Captures IO ring contents. Places the boundary scan register between TDI and TDO.   
					Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.   
					IDCODE   
					001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This   
					operation does not affect SRAM operations.   
					SAMPLE Z   
					010 Captures IO ring contents. Places the boundary scan register between TDI and TDO.   
					Forces all SRAM output drivers to a High-Z state.   
					RESERVED   
					011 Do Not Use: This instruction is reserved for future use.   
					SAMPLE/PRELOAD   
					100 Captures IO ring contents. Places the boundary scan register between TDI and TDO.   
					Does not affect SRAM operation. This instruction does not implement 1149.1 preload function and   
					is therefore not 1149.1-compliant.   
					RESERVED   
					RESERVED   
					BYPASS   
					101 Do Not Use: This instruction is reserved for future use.   
					110 Do Not Use: This instruction is reserved for future use.   
					111   
					Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.   
					Table 9. Boundary Scan Exit Order (2M x 36)   
					Bit #   
					1 
					165-Ball ID   
					C1   
					Bit #   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					40   
					165-Ball ID   
					R3   
					Bit #   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					53   
					54   
					55   
					56   
					57   
					58   
					59   
					60   
					165-Ball ID   
					J11   
					Bit #   
					61   
					62   
					63   
					64   
					65   
					66   
					67   
					68   
					69   
					70   
					71   
					165-Ball ID   
					B7   
					B6   
					A6   
					B5   
					A5   
					A4   
					B4   
					B3   
					A3   
					A2   
					B2   
					2 
					D1   
					P2   
					K10   
					J10   
					3 
					E1   
					R4   
					4 
					D2   
					P6   
					H11   
					G11   
					F11   
					E11   
					D10   
					D11   
					C11   
					G10   
					F10   
					E10   
					A9   
					5 
					E2   
					R6   
					6 
					F1   
					R8   
					7 
					G1   
					F2   
					P3   
					8 
					P4   
					9 
					G2   
					J1   
					P8   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					P9   
					K1   
					P10   
					R9   
					L1   
					J2   
					R10   
					R11   
					N11   
					M11   
					L11   
					M10   
					L10   
					K11   
					M1   
					N1   
					B9   
					K2   
					A10   
					B10   
					A8   
					L2   
					M2   
					R1   
					B8   
					R2   
					A7   
					Document #: 001-15032 Rev. *D   
					Page 17 of 29   
					
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Boundary Scan Exit Order (4M x 18)   
					Bit #   
					1 
					165-Ball ID   
					Bit #   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					165-Ball ID   
					R4   
					Bit #   
					27   
					28   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					165-Ball ID   
					L10   
					Bit #   
					40   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					165-Ball ID   
					B10   
					A8   
					D2   
					E2   
					F2   
					G2   
					J1   
					2 
					P6   
					K10   
					J10   
					3 
					R6   
					B8   
					4 
					R8   
					H11   
					G11   
					F11   
					A7   
					5 
					P3   
					B7   
					6 
					K1   
					L1   
					P4   
					B6   
					7 
					P8   
					E11   
					A6   
					8 
					M1   
					N1   
					R1   
					R2   
					R3   
					P2   
					P9   
					D11   
					C11   
					A11   
					B5   
					9 
					P10   
					R9   
					A4   
					10   
					11   
					12   
					13   
					B3   
					R10   
					R11   
					M10   
					A9   
					A3   
					B9   
					A2   
					A10   
					B2   
					Boundary Scan Exit Order (1M x 72)   
					Bit #   
					1 
					209-Ball ID   
					A1   
					Bit #   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					40   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					53   
					54   
					55   
					56   
					209-Ball ID   
					T1   
					Bit #   
					57   
					58   
					59   
					60   
					61   
					62   
					63   
					64   
					65   
					66   
					67   
					68   
					69   
					70   
					71   
					72   
					73   
					74   
					75   
					76   
					77   
					78   
					79   
					80   
					81   
					82   
					83   
					84   
					209-Ball ID   
					U10   
					T11   
					Bit #   
					85   
					209-Ball ID   
					B11   
					B10   
					A11   
					A10   
					A7   
					2 
					A2   
					T2   
					86   
					3 
					B1   
					U1   
					T10   
					R11   
					R10   
					P11   
					P10   
					N11   
					N10   
					M11   
					M10   
					L11   
					87   
					4 
					B2   
					U2   
					88   
					5 
					C1   
					C2   
					D1   
					D2   
					E1   
					V1   
					89   
					6 
					V2   
					90   
					A5   
					7 
					W1   
					W2   
					T6   
					91   
					A9   
					8 
					92   
					U8   
					9 
					93   
					A6   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					E2   
					V3   
					94   
					D6   
					F1   
					V4   
					95   
					K6   
					F2   
					U4   
					96   
					B6   
					G1   
					G2   
					H1   
					H2   
					J1   
					W5   
					V6   
					L10   
					97   
					K3   
					P6   
					98   
					A8   
					W6   
					V5   
					J11   
					99   
					B4   
					J10   
					100   
					101   
					102   
					103   
					104   
					105   
					106   
					107   
					108   
					109   
					110   
					B3   
					U5   
					H11   
					H10   
					G11   
					G10   
					F11   
					C3   
					J2   
					U6   
					C4   
					L1   
					W7   
					V7   
					C8   
					L2   
					C9   
					M1   
					M2   
					N1   
					N2   
					P1   
					U7   
					B9   
					V8   
					F10   
					E10   
					E11   
					D11   
					D10   
					C11   
					C10   
					B8   
					V9   
					A4   
					W11   
					W10   
					V11   
					V10   
					U11   
					C6   
					B7   
					P2   
					A3   
					R2   
					R1   
					Document #: 001-15032 Rev. *D   
					Page 18 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Current into Outputs (LOW) ........................................ 20 mA   
					Maximum Ratings   
					Static Discharge Voltage.......................................... > 2001V   
					(MIL-STD-883, Method 3015)   
					Exceeding maximum ratings may impair the useful life of the   
					device. These user guidelines are not tested.   
					Latch up Current.................................................... > 200 mA   
					Storage Temperature ................................. –65°C to +150°C   
					Operating Range   
					Ambient Temperature with   
					Power Applied ............................................ –55°C to +125°C   
					Ambient   
					Range   
					V 
					V 
					DDQ   
					DD   
					Supply Voltage on V Relative to GND........–0.5V to +3.6V   
					Temperature   
					DD   
					Supply Voltage on V   
					Relative to GND.......–0.5V to +V   
					Commercial 0°C to +70°C 2.5V –5%/+5% 2.5V–5% to   
					DDQ   
					DD   
					V 
					DD   
					DC to Outputs in Tri-State....................–0.5V to V   
					+ 0.5V   
					Industrial   
					–40°C to +85°C   
					DDQ   
					DC Input Voltage ................................... –0.5V to V + 0.5V   
					DD   
					Electrical Characteristics   
					
					Over the Operating Range   
					Parameter   
					Description   
					Power Supply Voltage   
					IO Supply Voltage   
					Test Conditions   
					Min   
					2.375   
					2.375   
					2.0   
					Max   
					Unit   
					V 
					V 
					V 
					V 
					V 
					V 
					I 
					2.625   
					V 
					V 
					DD   
					DDQ   
					OH   
					OL   
					IH   
					For 2.5V IO   
					For 2.5V IO, I = −1.0 mA   
					V 
					DD   
					Output HIGH Voltage   
					Output LOW Voltage   
					V 
					OH   
					For 2.5V IO, I = 1.0 mA   
					0.4   
					V 
					OL   
					
					Input HIGH Voltage   
					For 2.5V IO   
					For 2.5V IO   
					GND ≤ V ≤ V   
					1.7   
					–0.3   
					–5   
					V 
					+ 0.3V   
					0.7   
					V 
					DD   
					
					Input LOW Voltage   
					V 
					IL   
					Input Leakage Current   
					except ZZ and MODE   
					5 
					μA   
					X 
					I 
					DDQ   
					Input Current of MODE Input = V   
					Input = V   
					–30   
					–5   
					μA   
					μA   
					SS   
					DD   
					SS   
					DD   
					5 
					Input Current of ZZ   
					Input = V   
					Input = V   
					μA   
					30   
					5 
					μA   
					I 
					I 
					Output Leakage Current GND ≤ V ≤ V   
					Output Disabled   
					–5   
					μA   
					OZ   
					I 
					DDQ,   
					
					V 
					Operating Supply   
					V 
					f = f   
					= Max, I   
					= 0 mA,   
					4.0-ns cycle, 250 MHz   
					5.0-ns cycle, 200 MHz   
					6.0-ns cycle, 167 MHz   
					450   
					450   
					400   
					200   
					200   
					200   
					120   
					mA   
					mA   
					mA   
					mA   
					mA   
					mA   
					mA   
					DD   
					DD   
					DD   
					OUT   
					CYC   
					= 1/t   
					MAX   
					I 
					I 
					Automatic CE   
					Power Down   
					Current—TTL Inputs   
					Max. V , Device Deselected, 4.0-ns cycle, 250MHz   
					DD   
					SB1   
					SB2   
					V 
					≥ V or V ≤ V ,   
					IN   
					IH   
					IN   
					IL   
					5.0-ns cycle, 200 MHz   
					6.0-ns cycle, 167 MHz   
					f = f   
					= 1/t   
					MAX CYC   
					Automatic CE   
					Max. V , Device Deselected, All speed grades   
					DD   
					Power Down   
					Current—CMOS Inputs   
					V 
					V 
					≤ 0.3V or   
					IN   
					IN   
					> V   
					− 0.3V, f = 0   
					DDQ   
					Notes   
					12. Overshoot: V (AC) < V +1.5V (pulse width less than t   
					/2). Undershoot: V (AC)> –2V (pulse width less than t /2).   
					CYC   
					IH   
					DD   
					CYC   
					IL   
					13. T   
					: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   
					< V   
					. 
					Power-up   
					DD   
					IH   
					DD   
					DDQ   
					DD   
					14. The operation current is calculated with 50% read cycle and 50% write cycle.   
					Document #: 001-15032 Rev. *D   
					Page 19 of 29   
					
					 
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Electrical Characteristics   
					[12, 13]   
					Over the Operating Range   
					(continued)   
					Parameter Description   
					Test Conditions   
					Max. V , Device Deselected, 4.0-ns cycle, 250 MHz   
					Min   
					Max   
					200   
					200   
					200   
					135   
					Unit   
					mA   
					mA   
					mA   
					mA   
					I 
					I 
					Automatic CE   
					SB3   
					DD   
					Power Down   
					Current—CMOS Inputs   
					V 
					V 
					f = f   
					≤ 0.3V or   
					IN   
					5.0-ns cycle, 200 MHz   
					6.0-ns cycle, 167 MHz   
					> V   
					− 0.3V,   
					IN   
					DDQ   
					= 1/t   
					CYC   
					MAX   
					Automatic CE   
					Max. V , Device Deselected, All speed grades   
					DD   
					SB4   
					Power Down   
					Current—TTL Inputs   
					V 
					≥ V or V ≤ V , f = 0   
					IN IH IN IL   
					Capacitance   
					Tested initially and after any design or process changes that may affect these parameters.   
					100 TQFP 165 FBGA 209 FBGA   
					Parameter   
					Description   
					Test Conditions   
					Unit   
					Max   
					Max   
					Max   
					C 
					C 
					C 
					C 
					C 
					Address Input Capacitance   
					Data Input Capacitance   
					Control Input Capacitance   
					Clock Input Capacitance   
					Input/Output Capacitance   
					T = 25°C, f = 1 MHz,   
					6 
					5 
					8 
					6 
					5 
					6 
					5 
					8 
					6 
					5 
					6 
					5 
					8 
					6 
					5 
					pF   
					pF   
					pF   
					pF   
					pF   
					ADDRESS   
					DATA   
					CTRL   
					CLK   
					A 
					V 
					= 2.5V   
					= 2.5V   
					DD   
					V 
					DDQ   
					IO   
					Thermal Resistance   
					Tested initially and after any design or process changes that may affect these parameters.   
					100 TQFP   
					Package   
					165 FBGA 209 FBGA   
					Parameter   
					Description   
					Test Conditions   
					Unit   
					Package   
					Package   
					Θ 
					Thermal Resistance Test conditions follow standard test   
					(Junction to Ambient) methods and procedures for   
					24.63   
					16.3   
					15.2   
					°C/W   
					JA   
					measuring thermal impedance, per   
					EIA/JESD51.   
					Θ 
					Thermal Resistance   
					(Junction to Case)   
					2.28   
					2.1   
					1.7   
					°C/W   
					JC   
					AC Test Loads and Waveforms   
					2.5V IO Test Load   
					R = 1667Ω   
					2.5V   
					OUTPUT   
					R = 50Ω   
					OUTPUT   
					ALL INPUT PULSES   
					90%   
					VDDQ   
					90%   
					10%   
					Z = 50Ω   
					0 
					10%   
					L 
					GND   
					5 pF   
					R = 1538Ω   
					≤ 1 ns   
					≤ 1 ns   
					V = 1.25V   
					L 
					INCLUDING   
					JIG AND   
					SCOPE   
					(c)   
					(a)   
					(b)   
					Document #: 001-15032 Rev. *D   
					Page 20 of 29   
					
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Switching Characteristics   
					Over the Operating Range. Timing reference is 1.25V when V   
					Waveforms” on page 20 unless otherwise noted.   
					
					DDQ   
					–250   
					–200   
					–167   
					Parameter   
					Description   
					Unit   
					Min   
					Max   
					Min   
					Max   
					Min   
					Max   
					
					t 
					V 
					(typical) to the First Access Read or Write   
					1 
					1 
					1 
					ms   
					Power   
					CC   
					Clock   
					t 
					Clock Cycle Time   
					Maximum Operating Frequency   
					Clock HIGH   
					4.0   
					5.0   
					6.0   
					ns   
					MHz   
					ns   
					CYC   
					F 
					250   
					200   
					167   
					MAX   
					t 
					t 
					2.0   
					2.0   
					2.0   
					2.0   
					2.2   
					2.2   
					CH   
					CL   
					Clock LOW   
					ns   
					Output Times   
					t 
					t 
					t 
					t 
					t 
					t 
					t 
					Data Output Valid After CLK Rise   
					OE LOW to Output Valid   
					3.0   
					3.0   
					3.0   
					3.0   
					3.4   
					3.4   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					CO   
					OEV   
					DOH   
					CHZ   
					CLZ   
					Data Output Hold After CLK Rise   
					1.3   
					1.3   
					0 
					1.3   
					1.3   
					0 
					1.5   
					1.5   
					0 
					
					Clock to High-Z   
					3.0   
					3.0   
					3.0   
					3.0   
					3.4   
					3.4   
					
					Clock to Low-Z   
					
					OE HIGH to Output High-Z   
					EOHZ   
					EOLZ   
					
					OE LOW to Output Low-Z   
					Setup Times   
					t 
					t 
					t 
					t 
					t 
					t 
					Address Setup Before CLK Rise   
					Data Input Setup Before CLK Rise   
					CEN Setup Before CLK Rise   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.4   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					AS   
					DS   
					CENS   
					WES   
					ALS   
					CES   
					WE, BW Setup Before CLK Rise   
					x 
					ADV/LD Setup Before CLK Rise   
					Chip Select Setup   
					Hold Times   
					t 
					t 
					t 
					t 
					t 
					t 
					Address Hold After CLK Rise   
					Data Input Hold After CLK Rise   
					CEN Hold After CLK Rise   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.4   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					AH   
					DH   
					CENH   
					WEH   
					ALH   
					CEH   
					WE, BW Hold After CLK Rise   
					x 
					ADV/LD Hold after CLK Rise   
					Chip Select Hold After CLK Rise   
					Notes   
					15. This part has a voltage regulator internally; t   
					is the time power is supplied above V minimum initially, before a read or write operation can be initiated.   
					DD   
					power   
					16. t   
					, t   
					, t   
					, and t   
					are specified with AC test conditions shown in (b) of “AC Test Loads and Waveforms” on page 20. Transition is measured ±200 mV from   
					CHZ CLZ EOLZ   
					EOHZ   
					steady-state voltage.   
					17. At any supplied voltage and temperature, t   
					is less than t   
					and t   
					is less than t   
					to eliminate bus contention between SRAMs when sharing the same data   
					EOHZ   
					EOLZ   
					CHZ   
					CLZ   
					bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve   
					High-Z before Low-Z under the same system conditions.   
					18. This parameter is sampled and not 100% tested.   
					Document #: 001-15032 Rev. *D   
					Page 21 of 29   
					
					 
					 
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Switching Waveforms   
					
					Figure 6 shows read-write timing waveform.   
					Figure 6. Read/Write Timing   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					t 
					CYC   
					t 
					CLK   
					CEN   
					t 
					t 
					t 
					CENS   
					CENH   
					CL   
					CH   
					t 
					t 
					CES   
					CEH   
					CE   
					ADV/LD   
					WE   
					BW   
					x 
					A1   
					A2   
					A4   
					CO   
					A3   
					A5   
					A6   
					A7   
					ADDRESS   
					t 
					t 
					t 
					t 
					DS   
					DH   
					t 
					t 
					t 
					DOH   
					OEV   
					CLZ   
					CHZ   
					t 
					t 
					AS   
					AH   
					Data   
					D(A1)   
					D(A2)   
					D(A2+1)   
					Q(A3)   
					Q(A4)   
					Q(A4+1)   
					D(A5)   
					Q(A6)   
					In-Out (DQ)   
					t 
					OEHZ   
					t 
					DOH   
					t 
					OELZ   
					OE   
					WRITE   
					D(A1)   
					WRITE   
					D(A2)   
					BURST   
					WRITE   
					READ   
					Q(A3)   
					READ   
					Q(A4)   
					BURST   
					READ   
					WRITE   
					D(A5)   
					READ   
					Q(A6)   
					WRITE   
					D(A7)   
					DESELECT   
					D(A2+1)   
					Q(A4+1)   
					DON’T CARE   
					UNDEFINED   
					Notes   
					19. For this waveform ZZ is tied LOW.   
					20. When CE is LOW, CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH,CE is HIGH, CE is LOW, or CE is HIGH.   
					1 
					2 
					3 
					1 
					2 
					3 
					21. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved).Burst operations are optional.   
					Document #: 001-15032 Rev. *D   
					Page 22 of 29   
					
					 
					 
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Switching Waveforms (continued)   
					
					
					Figure 7. NOP, STALL and DESELECT Cycles   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					CLK   
					CEN   
					CE   
					ADV/LD   
					WE   
					BWx   
					A1   
					A2   
					A3   
					A4   
					A5   
					ADDRESS   
					t 
					CHZ   
					D(A4)   
					D(A1)   
					Q(A2)   
					Q(A3)   
					Q(A5)   
					Data   
					In-Out (DQ)   
					WRITE   
					D(A1)   
					READ   
					Q(A2)   
					STALL   
					READ   
					Q(A3)   
					WRITE   
					D(A4)   
					STALL   
					NOP   
					READ   
					Q(A5)   
					DESELECT   
					CONTINUE   
					DESELECT   
					DON’T CARE   
					UNDEFINED   
					
					Figure 8 shows ZZ Mode timing waveform.   
					Figure 8. ZZ Mode Timing   
					CLK   
					t 
					t 
					ZZ   
					ZZREC   
					ZZ   
					t 
					ZZI   
					I 
					SUPPLY   
					I 
					DDZZ   
					t 
					RZZI   
					ALL INPUTS   
					(except ZZ)   
					DESELECT or READ Only   
					Outputs (Q)   
					High-Z   
					DON’T CARE   
					Notes   
					22. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.   
					23. Device must be deselected when entering ZZ mode. See “Truth Table” on page 10 for all possible signal conditions to deselect the device.   
					24. IOs are in High-Z when exiting ZZ sleep mode.   
					Document #: 001-15032 Rev. *D   
					Page 23 of 29   
					
					 
					 
					 
					 
					 
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Ordering Information   
					Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit   
					www.cypress.com for actual products offered.   
					Speed   
					(MHz)   
					Package   
					Diagram   
					Operating   
					Range   
					Part and Package Type   
					Ordering Code   
					167 CY7C1470BV25-167AXC   
					CY7C1472BV25-167AXC   
					CY7C1470BV25-167BZC   
					CY7C1472BV25-167BZC   
					CY7C1470BV25-167BZXC   
					CY7C1472BV25-167BZXC   
					CY7C1474BV25-167BGC   
					CY7C1474BV25-167BGXC   
					CY7C1470BV25-167AXI   
					CY7C1472BV25-167AXI   
					CY7C1470BV25-167BZI   
					CY7C1472BV25-167BZI   
					CY7C1470BV25-167BZXI   
					CY7C1472BV25-167BZXI   
					CY7C1474BV25-167BGI   
					CY7C1474BV25-167BGXI   
					200 CY7C1470BV25-200AXC   
					CY7C1472BV25-200AXC   
					CY7C1470BV25-200BZC   
					CY7C1472BV25-200BZC   
					CY7C1470BV25-200BZXC   
					CY7C1472BV25-200BZXC   
					CY7C1474BV25-200BGC   
					CY7C1474BV25-200BGXC   
					CY7C1470BV25-200AXI   
					CY7C1472BV25-200AXI   
					CY7C1470BV25-200BZI   
					CY7C1472BV25-200BZI   
					CY7C1470BV25-200BZXI   
					CY7C1472BV25-200BZXI   
					CY7C1474BV25-200BGI   
					CY7C1474BV25-200BGXI   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					Commercial   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					lndustrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					Commercial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					lndustrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					Document #: 001-15032 Rev. *D   
					Page 24 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Ordering Information (continued)   
					Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit   
					www.cypress.com for actual products offered.   
					Speed   
					(MHz)   
					Package   
					Diagram   
					Operating   
					Range   
					Part and Package Type   
					Ordering Code   
					250 CY7C1470BV25-250AXC   
					CY7C1472BV25-250AXC   
					CY7C1470BV25-250BZC   
					CY7C1472BV25-250BZC   
					CY7C1470BV25-250BZXC   
					CY7C1472BV25-250BZXC   
					CY7C1474BV25-250BGC   
					CY7C1474BV25-250BGXC   
					CY7C1470BV25-250AXI   
					CY7C1472BV25-250AXI   
					CY7C1470BV25-250BZI   
					CY7C1472BV25-250BZI   
					CY7C1470BV25-250BZXI   
					CY7C1472BV25-250BZXI   
					CY7C1474BV25-250BGI   
					CY7C1474BV25-250BGXI   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					Commercial   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					Industrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					Document #: 001-15032 Rev. *D   
					Page 25 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Package Diagrams   
					Figure 9. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050   
					16.00 0.20   
					14.00 0.10   
					1.40 0.05   
					100   
					81   
					80   
					1 
					0.30 0.08   
					0.65   
					TYP.   
					12° 1°   
					(8X)   
					SEE DETAIL   
					A 
					30   
					51   
					31   
					50   
					0.20 MAX.   
					1.60 MAX.   
					R 0.08 MIN.   
					0.20 MAX.   
					0° MIN.   
					SEATING PLANE   
					STAND-OFF   
					0.05 MIN.   
					0.15 MAX.   
					NOTE:   
					1. JEDEC STD REF MS-026   
					0.25   
					GAUGE PLANE   
					2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   
					MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   
					R 0.08 MIN.   
					0.20 MAX.   
					BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   
					3. DIMENSIONS IN MILLIMETERS   
					0°-7°   
					0.60 0.15   
					0.20 MIN.   
					1.00 REF.   
					51-85050-*B   
					DETAIL   
					A 
					Document #: 001-15032 Rev. *D   
					Page 26 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Package Diagrams (continued)   
					Figure 10. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165   
					PIN 1 CORNER   
					BOTTOM VIEW   
					TOP VIEW   
					Ø0.05 M C   
					PIN 1 CORNER   
					Ø0.25 M C A B   
					Ø0.45 0.05(165X)   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					11   
					11 10   
					9 
					8 
					7 
					6 
					5 
					4 
					3 
					2 
					1 
					A 
					B 
					A 
					B 
					C 
					D 
					C 
					D 
					E 
					E 
					F 
					F 
					G 
					G 
					H 
					J 
					H 
					J 
					K 
					K 
					L 
					L 
					M 
					M 
					N 
					P 
					R 
					N 
					P 
					R 
					A 
					1.00   
					5.00   
					10.00   
					B 
					15.00 0.10   
					0.15(4X)   
					SEATING PLANE   
					C 
					51-85165-*A   
					Document #: 001-15032 Rev. *D   
					Page 27 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Package Diagrams (continued)   
					Figure 11. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167   
					51-85167-**   
					Document #: 001-15032 Rev. *D   
					Page 28 of 29   
					
				CY7C1470BV25   
					CY7C1472BV25, CY7C1474BV25   
					Document History Page   
					Document Title: CY7C1470BV25/CY7C1472BV25/CY7C1474BV25, 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with   
					NoBL™ Architecture   
					Document Number: 001-15032   
					REV.   
					**   
					ECN No. Issue Date Orig. of Change   
					Description of Change   
					1032642 See ECN   
					1562503 See ECN   
					1897447 See ECN   
					2082487 See ECN   
					2159486 See ECN   
					VKN/KKVTMP New data sheet   
					*A   
					VKN/AESA   
					VKN/AESA   
					VKN   
					Removed 1.8V IO offering from the data sheet   
					Added footnote 14 related to IDD   
					*B   
					*C   
					Converted from preliminary to final   
					*D   
					VKN/PYRS   
					Minor Change-Moved to the external web   
					© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use   
					of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used   
					for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use   
					as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support   
					systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   
					Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),   
					United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,   
					and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress   
					integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without   
					the express written permission of Cypress.   
					Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES   
					OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not   
					assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where   
					a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer   
					assumes all risk of such use and in doing so indemnifies Cypress against all charges.   
					Use may be limited by and subject to the applicable Cypress software license agreement.   
					Document #: 001-15032 Rev. *D   
					Revised February 29, 2008   
					Page 29 of 29   
					NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this   
					document may be the trademarks of their respective holders.   
					
				 |