C141-E192-01EN
MHT2080AT, MHT2060AT, MHT2040AT
MHT2030AT, MHT2020AT
DISK DRIVES
PRODUCT MANUAL
Revision History
(1/1)
Revised section (*1)
(Added/Deleted/Altered)
Edition
01
Date
Details
2003-01-20
*1 Section(s) with asterisk (*) refer to the previous edition when those were deleted.
C141-E192-01EN
This page is intentionally left blank.
Preface
This manual describes the MHT Series, 2.5-inch hard disk drives. These drives
have a built-in controller that is compatible with the ATA interface.
This manual describes the specifications and functions of the drives and explains
in detail how to incorporate the drives into user systems. This manual assumes
that the reader has a basic knowledge of hard disk drives and their
implementations in computer systems.
This manual consists of seven chapters and sections explaining the special
terminology and abbreviations used in this manual:
Overview of Manual
CHAPTER 1
This chapter gives an overview of the MHT Series and describes their features.
CHAPTER 2 Device Configuration
Device Overview
This chapter describes the internal configurations of the MHT Series and the
configuration of the systems in which they operate.
CHAPTER 3
Installation Conditions
This chapter describes the external dimensions, installation conditions, and switch
settings of the MHT Series.
CHAPTER 4
This chapter describes the operation theory of the MHT Series.
CHAPTER 5 Interface
This chapter describes the interface specifications of the MHT Series.
CHAPTER 6 Operations
Theory of Device Operation
This chapter describes the operations of the MHT Series.
Glossary
The glossary describes the technical terms that need to be understood to read this
manual.
Acronyms and Abbreviations
This section gives the meanings of the definitions used in this manual.
C141-E192-01EN
i
Preface
Conventions for Alert Messages
This manual uses the following conventions to show the alert messages. An alert
message consists of an alert signal and alert statements. The alert signal consists
of an alert symbol and a signal word or just a signal word.
The following are the alert signals and their meanings:
This indicates a hazardous situation could result in
minor or moderate personal injury if the user does
not perform the procedure correctly. This alert
signal also indicates that damages to the product or
other property may occur if the user does not perform
the procedure correctly.
This indicates information that could help the user
use the product more efficiently.
In the text, the alert signal is centered, followed below by the indented message.
A wider line space precedes and follows the alert message to show where the alert
message begins and ends. The following is an example:
(Example)
Data corruption: Avoid mounting the disk drive near strong
magnetic sources such as loud speakers. Ensure that the disk drive
is not affected by external magnetic fields.
The main alert messages in the text are also listed in the “Important Alert Items.”
Operating Environment
This product is designed to be used in offices or computer rooms.
Conventions
An MHT series device is sometimes simply referred to as a "hard disk drive,"
"HDD," "drive," or "device" in this document.
Decimal numbers are represented normally.
Hexadecimal numbers are represented as shown in the following examples:
X'17B9', 17B9h, 17B9H, or 17B9H.
Binary numbers are represented as shown in the following examples: 010 or
010b.
ii
C141-E192-01EN
Preface
Attention
Please forward any comments you may have regarding this manual.
To make this manual easier for users to understand, opinions from readers are
needed. Please write your opinions or requests on the Comment at the back of
this manual and forward it to the address described in the sheet.
Liability Exception
“Disk drive defects” refers to defects that involve adjustment, repair, or
replacement.
Fujitsu is not liable for any other disk drive defects, such as those caused by user
misoperation or mishandling, inappropriate operating environments, defects in the
power supply or cable, problems of the host system, or other causes outside the
disk drive.
C141-E192-01EN
iii
This page is intentionally left blank.
Important Alert Items
Important Alert Messages
The important alert messages in this manual are as follows:
A hazardous situation could result in minor or moderate personal
injury if the user does not perform the procedure correctly. Also,
damage to the product or other property, may occur if the user does not
perform the procedure correctly.
Task
Alert message
Page
3-7
Normal Operation
Data corruption: Avoid mounting the disk near strong
magnetic sources such as loud speakers. Ensure that the disk
drive is not affected by external magnetic fields.
Damage: Do not press the cover of the disk drive. Pressing
it too hard, the cover and the spindle motor contact, which
may cause damage to the disk drive.
Static: When handling the device, disconnect the body
ground (500 kΩ or greater). Do not touch the printed circuit
board, but hold it by the edges.
C141-E192-01EN
v
This page is intentionally left blank.
Manual Organization
MHT2080AT, MHT2060AT,
MHT2040AT
MHT2030AT, MHT2020AT
• Device Overview
• Device Configuration
• Installation Conditions
• Theory of Device Operation
• Interface
DISK DRIVES
PRODUCT MANUAL
(C141-E192)
• Operations
<This manual>
MHT2080AT, MHT2060AT,
MHT2040AT
• Maintenance and Diagnosis
• Removal and Replacement Procedure
MHT2030AT, MHT2020AT
DISK DRIVES
MAINTENANCE MANUAL
(C141-F063)
C141-E192-01EN
vii
This page is intentionally left blank.
Contents
Device Overview ................................................................................................ 1-1
1.1 Features................................................................................................... 1-2
1.1.1 Functions and performance................................................................... 1-2
1.1.2 Adaptability .......................................................................................... 1-2
1.1.3 Interface ................................................................................................ 1-3
1.2 Device Specifications ............................................................................. 1-4
1.2.1 Specifications summary........................................................................ 1-4
1.2.2 Model and product number................................................................... 1-5
1.3 Power Requirements............................................................................... 1-5
1.4 Environmental Specifications................................................................. 1-8
1.5 Acoustic Noise........................................................................................ 1-9
1.6 Shock and Vibration ............................................................................... 1-9
1.7 Reliability.............................................................................................. 1-10
1.8 Error Rate.............................................................................................. 1-11
1.9 Media Defects....................................................................................... 1-11
1.10 Load/Unload Function.......................................................................... 1-11
1.11 Advanced Power Management ............................................................. 1-12
CHAPTER 2 Device Configuration................................................................ 2-1
2.1 Device Configuration.............................................................................. 2-2
2.2 System Configuration ............................................................................. 2-3
2.2.1 ATA interface ....................................................................................... 2-3
2.2.2 1 drive connection................................................................................. 2-3
2.2.3 2 drives connection............................................................................... 2-4
C141-E192-01EN
ix
Contents
CHAPTER 3 Installation Conditions..............................................................3-1
3.1 Dimensions..............................................................................................3-2
3.2 Mounting.................................................................................................3-3
3.3 Cable Connections ..................................................................................3-9
3.3.1 Device connector...................................................................................3-9
3.3.2 Cable connector specifications ...........................................................3-10
3.3.3 Device connection...............................................................................3-10
3.3.4 Power supply connector (CN1)...........................................................3-11
3.4 Jumper Settings.....................................................................................3-11
3.4.1 Location of setting jumpers ................................................................3-11
3.4.2 Factory default setting.........................................................................3-12
3.4.3 Master drive-slave drive setting..........................................................3-12
3.4.4 CSEL setting .......................................................................................3-13
3.4.5 Power Up in Standby setting...............................................................3-14
CHAPTER 4 Theory of Device Operation......................................................4-1
4.1 Outline.....................................................................................................4-2
4.2 Subassemblies .........................................................................................4-2
4.2.1 Disk .......................................................................................................4-2
4.2.2 Spindle ..................................................................................................4-2
4.2.3 Actuator.................................................................................................4-2
4.2.4 Air filter ................................................................................................4-3
4.3 Circuit Configuration..............................................................................4-3
4.4 Power-on Sequence.................................................................................4-6
4.5 Self-calibration........................................................................................4-7
4.5.1 Self-calibration contents .......................................................................4-7
4.5.2 Execution timing of self-calibration .....................................................4-8
4.5.3 Command processing during self-calibration .......................................4-9
4.6 Read/write Circuit...................................................................................4-9
4.6.1 Read/write preamplifier (PreAmp) .......................................................4-9
x
C141-E192-01EN
Contents
4.6.2 Write circuit.......................................................................................... 4-9
4.6.3 Read circuit......................................................................................... 4-11
4.6.4 Digital PLL circuit.............................................................................. 4-12
4.7 Servo Control........................................................................................ 4-13
4.7.1 Servo control circuit ........................................................................... 4-13
4.7.2 Data-surface servo format................................................................... 4-16
4.7.3 Servo frame format ............................................................................. 4-18
4.7.4 Actuator motor control ....................................................................... 4-19
4.7.5 Spindle motor control ......................................................................... 4-20
CHAPTER 5 Interface..................................................................................... 5-1
5.1 Physical Interface.................................................................................... 5-2
5.1.1 Interface signals.................................................................................... 5-2
5.1.2 Signal assignment on the connector...................................................... 5-3
5.2 Logical Interface..................................................................................... 5-6
5.2.1 I/O registers........................................................................................... 5-7
5.2.2 Command block registers ..................................................................... 5-8
5.2.3 Control block registers........................................................................ 5-13
5.3 Host Commands.................................................................................... 5-14
5.3.1 Command code and parameters.......................................................... 5-14
5.3.2 Command descriptions ....................................................................... 5-18
5.3.3 Error posting ..................................................................................... 5-107
5.4 Command Protocol ............................................................................. 5-109
5.4.1 PIO Data transferring commands from device to host...................... 5-109
5.4.2 PIO Data transferring commands from host to device...................... 5-111
5.4.3 Commands without data transfer...................................................... 5-113
5.4.4 Other commands............................................................................... 5-115
5.4.5 DMA data transfer commands.......................................................... 5-115
5.5 Ultra DMA Feature Set....................................................................... 5-118
5.5.1 Overview........................................................................................... 5-118
5.5.2 Phases of operation........................................................................... 5-119
5.5.3 Ultra DMA data in commands.......................................................... 5-119
C141-E192-01EN
xi
Contents
5.5.3.1 Initiating an Ultra DMA data in burst.............................................5-119
5.5.3.2 The data in transfer .........................................................................5-120
5.5.3.3 Pausing an Ultra DMA data in burst...............................................5-120
5.5.3.4 Terminating an Ultra DMA data in burst........................................5-121
5.5.4 Ultra DMA data out commands........................................................5-124
5.5.4.1 Initiating an Ultra DMA data out burst...........................................5-124
5.5.4.2 The data out transfer .......................................................................5-124
5.5.4.3 Pausing an Ultra DMA data out burst.............................................5-125
5.5.4.4 Terminating an Ultra DMA data out burst......................................5-126
5.5.5 Ultra DMA CRC rules ......................................................................5-128
5.5.6 Series termination required for Ultra DMA......................................5-129
5.6 Timing.................................................................................................5-130
5.6.1 PIO data transfer ...............................................................................5-130
5.6.2 Multiword data transfer.....................................................................5-131
5.6.3 Ultra DMA data transfer ...................................................................5-132
5.6.3.1 Initiating an Ultra DMA data in burst.............................................5-132
5.6.3.2 Ultra DMA data burst timing requirements....................................5-133
5.6.3.3 Sustained Ultra DMA data in burst.................................................5-136
5.6.3.4 Host pausing an Ultra DMA data in burst ......................................5-137
5.6.3.5 Device terminating an Ultra DMA data in burst.............................5-138
5.6.3.6 Host terminating an Ultra DMA data in burst ................................5-139
5.6.3.7 Initiating an Ultra DMA data out burst...........................................5-140
5.6.3.8 Sustained Ultra DMA data out burst...............................................5-141
5.6.3.9 Device pausing an Ultra DMA data out burst.................................5-142
5.6.3.10 Host terminating an Ultra DMA data out burst ..............................5-143
5.6.3.11 Device terminating an Ultra DMA data out burst...........................5-144
5.6.4 Power-on and reset............................................................................5-145
CHAPTER 6 Operations .................................................................................6-1
6.1 Device Response to the Reset .................................................................6-2
6.1.1 Response to power-on...........................................................................6-2
6.1.2 Response to hardware reset...................................................................6-3
6.1.3 Response to software reset....................................................................6-5
6.1.4 Response to diagnostic command.........................................................6-6
xii
C141-E192-01EN
Contents
6.2 Power Save.............................................................................................. 6-7
6.2.1 Power save mode .................................................................................. 6-7
6.2.2 Power commands.................................................................................. 6-9
6.3 Defect Processing ................................................................................... 6-9
6.3.1 Spare area.............................................................................................. 6-9
6.3.2 Alternating processing for defective sectors ...................................... 6-10
6.4 Read-ahead Cache................................................................................. 6-12
6.4.1 DATA buffer structure ....................................................................... 6-12
6.4.2 Caching operation............................................................................... 6-13
6.4.3 Using the read segment buffer............................................................ 6-15
6.4.3.1 Miss-hit............................................................................................. 6-15
6.4.3.2 Sequential Hit ................................................................................... 6-16
6.4.3.3 Full hit............................................................................................... 6-17
6.4.3.4 Partial hit........................................................................................... 6-18
6.5 Write Cache .......................................................................................... 6-19
6.5.1 Cache operation .................................................................................. 6-19
Glossary............................................................................................................GL-1
Acronyms and Abbreviations ........................................................................ AB-1
Index ..................................................................................................................IN-1
C141-E192-01EN
xiii
Contents
Illustrations
Figures
Figure 1.1 Negative voltage at +5 V when power is turned off..........................1-6
Figure 1.2 Current fluctuation (Typ.) at +5 V when power is turned on............1-8
Figure 2.1 Disk drive outerview..........................................................................2-2
Figure 2.2 1 drive system configuration..............................................................2-3
Figure 2.3 2 drives configuration ........................................................................2-4
Figure 3.1 Dimensions.........................................................................................3-2
Figure 3.2 Orientation .........................................................................................3-3
Figure 3.3 Mounting frame structure ..................................................................3-4
Figure 3.4 Location of breather...........................................................................3-5
Figure 3.5 Surface temperature measurement points ..........................................3-6
Figure 3.6 Service area........................................................................................3-7
Figure 3.7 Handling cautions ..............................................................................3-8
Figure 3.8 Connector locations ...........................................................................3-9
Figure 3.9 Cable connections............................................................................3-10
Figure 3.10 Power supply connector pins (CN1)................................................3-11
Figure 3.11 Jumper location................................................................................3-11
Figure 3.12 Factory default setting......................................................................3-12
Figure 3.13 Jumper setting of master or slave drive ...........................................3-12
Figure 3.14 CSEL setting ....................................................................................3-13
Figure 3.15 Example (1) of Cable Select ............................................................3-13
Figure 3.16 Example (2) of Cable Select ............................................................3-14
Figure 4.1 Power Supply Configuration..............................................................4-4
Figure 4.2 Circuit Configuration.........................................................................4-5
Figure 4.3 Power-on operation sequence ............................................................4-7
Figure 4.4 Read/write circuit block diagram.....................................................4-10
Figure 4.5 Frequency characteristic of programmable filter.............................4-11
Figure 4.6 Block diagram of servo control circuit ............................................4-13
Figure 4.7 Physical sector servo configuration on disk surface........................4-17
Figure 4.8 Servo frame format ..........................................................................4-18
Figure 5.1 Interface signals .................................................................................5-2
Figure 5.2 Execution example of READ MULTIPLE command.....................5-21
xiv
C141-E192-01EN
Contents
Figure 5.3 Read Sector(s) command protocol.................................................5-110
Figure 5.4 Protocol for command abort ..........................................................5-111
Figure 5.5 WRITE SECTOR(S) command protocol.......................................5-113
Figure 5.6 Protocol for the command execution without data transfer...........5-114
Figure 5.7 Normal DMA data transfer ............................................................5-117
Figure 5.8 Ultra DMA termination with pull-up or pull-down .......................5-129
Figure 5.9 PIO data transfer timing.................................................................5-130
Figure 5.10 Multiword DMA data transfer timing (mode 2) ............................5-131
Figure 5.11 Initiating an Ultra DMA data in burst............................................5-132
Figure 5.12 Sustained Ultra DMA data in burst................................................5-136
Figure 5.13 Host pausing an Ultra DMA data in burst .....................................5-137
Figure 5.14 Device terminating an Ultra DMA data in burst............................5-138
Figure 5.15 Host terminating an Ultra DMA data in burst ...............................5-139
Figure 5.16 Initiating an Ultra DMA data out burst..........................................5-140
Figure 5.17 Sustained Ultra DMA data out burst..............................................5-141
Figure 5.18 Device pausing an Ultra DMA data out burst................................5-142
Figure 5.19 Host terminating an Ultra DMA data out burst .............................5-143
Figure 5.20 Device terminating an Ultra DMA data out burst..........................5-144
Figure 5.21 Power-on Reset Timing..................................................................5-145
Figure 6.1 Response to power-on........................................................................6-3
Figure 6.2 Response to hardware reset................................................................6-4
Figure 6.3 Response to software reset.................................................................6-5
Figure 6.4 Response to diagnostic command......................................................6-6
Figure 6.5 Sector slip processing ......................................................................6-10
Figure 6.6 Automatic alternating processing.....................................................6-11
Figure 6.7 Data buffer structure (2 MB Buffer)................................................6-12
C141-E192-01EN
xv
Contents
Tables
Table 1.1 Specifications.....................................................................................1-4
Table 1.2 Model names and product numbers ...................................................1-5
Table 1.3 Current and power dissipation ...........................................................1-7
Table 1.4 Environmental specifications.............................................................1-8
Table 1.5 Acoustic noise specification ..............................................................1-9
Table 1.6 Shock and vibration specification......................................................1-9
Table 3.1 Surface temperature measurement points and standard values..........3-6
Table 3.2 Cable connector specifications ........................................................3-10
Table 5.1 Signal assignment on the interface connector....................................5-3
Table 5.2 I/O registers........................................................................................5-7
Table 5.3 Command code and parameters .......................................................5-15
Table 5.4 Information to be read by IDENTIFY DEVICE command .............5-34
Table 5.5 Features register values and settable modes ....................................5-44
Table 5.6 Diagnostic code................................................................................5-56
Table 5.7 Features Register values (subcommands) and functions .................5-68
Table 5.8 Format of device attribute value data...............................................5-72
Table 5.9 Format of insurance failure threshold value data.............................5-72
Table 5.10 Log Directory Data Format..............................................................5-77
Table 5.11 Data format of SMART Summary Error Log..................................5-78
Table 5.11.1 Data format of SMART Comprehensive Error Log ........................5-79
Table 5.12 SMART self-test log data format.....................................................5-80
Table 5.13 Selective self-test log data structure ................................................5-81
Table 5.14 Selective self-test feature flags ........................................................5-82
Table 5.15 Contents of security password .........................................................5-83
Table 5.16 Contents of SECURITY SET PASSWORD data............................5-87
Table 5.17 Relationship between combination of Identifier and
Security level, and operation of the lock function...........................5-88
Table 5.18 DEVICE CONFIGURATION IDENTIFY data structure ...............5-94
Table 5.19 Operation of DOWNLOAD MICRO CODE.................................5-106
Table 5.20 Example of rewriting procedure of data 384 KBytes
(30000h Bytes) of microcode.........................................................5-106
Table 5.21 Command code and parameters .....................................................5-107
Table 5.22 Recommended series termination for Ultra DMA.........................5-129
Table 5.23 Ultra DMA data burst timing requirements...................................5-133
Table 5.24 Ultra DMA sender and recipient timing requirements ..................5-135
xvi
C141-E192-01EN
CHAPTER 1 Device Overview
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
Features
Device Specifications
Power Requirements
Environmental Specifications
Acoustic Noise
Shock and Vibration
Reliability
Error Rate
Media Defects
1.10 Load/Unload Function
1.11 Advanced Power Management
Overview and features are described in this chapter, and specifications and power
requirement are described.
The MHT Series are 2.5-inch hard disk drives with built-in disk controllers.
These disk drives use the AT-bus hard disk interface protocol and are compact
and reliable.
C141-E192-01EN
1-1
Device Overview
1.1 Features
1.1.1 Functions and performance
The following features of the MHT Series are described.
(1) Compact
The MHT Series has 1 disk or 2 disks of 65 mm (2.5 inches) diameter, and its
height is 9.5 mm (0.374 inch).
(2) Large capacity
The disk drive can record up to 40 GB (formatted) on one disk using the 32/34
RLL recording method and 30 recording zone technology. The MHT Series has a
formatted capacity of 80 GB (MHT2080AT), 60 GB (MHT2060AT), 40 GB
(MHT2040AT), 30 GB (MHT2030AT) and 20 GB (MHT2020AT) respectively.
(3) High-speed Transfer rate
The disk drives (the MHT Series) have an internal data rate up to 41.3 MB/s. The
disk drive supports an external data rate up to 100 MB/s (U-DMA mode 5).
(4) Average positioning time
Use of a rotary voice coil motor in the head positioning mechanism greatly
increases the positioning speed. The average positioning time is 12 ms (at read).
1.1.2 Adaptability
(1) Power save mode
The power save mode feature for idle operation, stand by and sleep modes makes
The disk drives (the MHT Series) ideal for applications where power
consumption is a factor.
(2) Wide temperature range
The disk drives (the MHT Series) can be used over a wide temperature range
(5 °C to 55 °C).
(3) Low noise and vibration
In Ready status, the noise of the disk drives (the MHT Series) is only 24 dBA
(measured at 0.3 m apart from the drive under the idle mode).
(4) High resistance against shock
The Load/Unload mechanism is highly resistant against non-operation shock up
to 8820 m/s2 (900G).
1-2
C141-E192-01EN
1.1 Features
1.1.3 Interface
(1) Connection to ATA interface
The MHT-series disk drives have built-in controllers compatible with the ATA
interface.
(2) 2 MB data buffer
The disk drives (the MHT Series) use a 2 MB data buffer to transfer data between
the host and the disk media.
In combination with the read-ahead cache system described in item (3) and the
write cache described in item (7), the buffer contributes to efficient I/O
processing.
(3) Read-ahead cache system
After the execution of a disk read command, the disk drive automatically reads
the subsequent data block and writes it to the data buffer (read ahead operation).
This cache system enables fast data access. The next disk read command would
normally cause another disk access. But, if the read ahead data corresponds to the
data requested by the next read command, the data in the buffer can be transferred
instead.
(4) Master/slave
The disk drives (the MHT Series) can be connected to ATA interface as daisy
chain configuration. Drive 0 is a master device, drive 1 is a slave device.
(5) Error correction and retry by ECC
If a recoverable error occurs, the disk drives (the MHT Series) themselves attempt
error recovery. The ECC has improved buffer error correction for correctable
data errors.
(6) Self-diagnosis
The disk drives (the MHT Series) have a diagnostic function to check operation of
the controller and disk drives. Executing a diagnostic function of the smart
command invokes self-diagnosis.
(7) Write cache
When the disk drives (the MHT Series) receive a write command, the disk drives
post the command completion at completion of transferring data to the data buffer
completion of writing to the disk media. This feature reduces the access time at
writing.
C141-E192-01EN
1-3
Device Overview
1.2 Device Specifications
1.2.1 Specifications summary
Table 1.1 shows the specifications of the disk drives (MHT Series).
Table 1.1 Specifications (1/2)
MHT2080AT MHT2060AT MHT2040AT MHT2030AT MHT2020AT
Format Capacity (*1)
Number of Sectors (User)
Bytes per Sector
80 GB
60 GB
40 GB
30 GB
20 GB
156,301,488 117,210,240 78,140,160
58,605,120
39,070,080
512
Recording Method
32/34 MEEPRML
4,200 rpm 1%
7.14 ms
Rotational Speed
Average Latency
Positioning time (read and seek)
1.5 ms (typ.)
Read: 12ms (typ.)
22 ms (typ.)
•
•
•
Minimum (Track-Track)
Average
Maximum (Full)
Start time
Interface
3.5 sec (typ.)
ATA-6 (Max. Cable length: 18inches (0.46 m))
(equipped with expansion function)
Data Transfer Rate
41.3 MB/s Max.
•
•
To/From Media
To/From Host
100 MB/s Max (U-DMA mode5)
Data Buffer Size
2 MB
Physical Dimensions
(Height × Width × Depth)
9.5 mm × 100.0 mm × 70.0 mm
Weight
99 g
*1: Capacity under the LBA mode.
1-4
C141-E192-01EN
1.3 Power Requirements
Table 1.1 lists the formatted capacity, number of logical cylinders, number
of heads, and number of sectors of every model for which the CHS mode
has been selected using the BIOS setup utility on the host.
Table 1.1 Specifications (2/2)
Model
Capacity (*1)
No. of Cylinder
No. of Heads
No. of Sectors
MHT2080AT
MHT2060AT
MHT2040AT
MHT2030AT
MHT2020AT
8.45 GB
8.45 GB
8.45 GB
8.45 GB
8.45 GB
16,383
16,383
16,383
16,383
16,383
16
16
16
16
16
63
63
63
63
63
*1 On using for the units of BIOS parameter.
1.2.2 Model and product number
Table 1.2 lists the model names and product numbers of the MHT Series.
Table 1.2 Model names and product numbers
Capacity
Model Name
Mounting screw
Order No.
(user area)
MHT2080AT
MHT2060AT
MHT2040AT
MHT2030AT
MHT2020AT
80 GB
M3 depth 3
M3 depth 3
M3 depth 3
M3 depth 3
M3 depth 3
CA06297-B048
CA06297-B046
CA06297-B024
CA06297-B023
CA06297-B022
60 GB
40 GB
30 GB
20 GB
1.3 Power Requirements
(1) Input Voltage
•
+ 5 V
5 %
(2) Ripple
+5 V
Maximum
Frequency
100 mV (peak to peak)
DC to 1 MHz
C141-E192-01EN
1-5
Device Overview
(3) A negative voltage like the bottom figure isn't to occur at +5 V when power is turned off and, a
thing with no ringing.
Permissible level: −0.2 V
5
4
3
2
1
0
-1
0
100
200
300
400
500
600
700
800
Time [ms]
Figure 1.1 Negative voltage at +5 V when power is turned off
1-6
C141-E192-01EN
1.3 Power Requirements
(4) Current Requirements and Power Dissipation
Table 1.3 lists the current and power dissipation (typical).
Table 1.3 Current and power dissipation
Typical RMS Current
MHT Series
0.9 A
Typical Power (*3)
MHT Series
4.5 W
Spin up (*1)
Idle
130 mA
0.65 W
R/W (on track) (*2) Read 400 mA / Write 420mA
Read 2.0 W / Write 2.1 W
2.3 W
Seek (*5)
Standby
Sleep
460 mA
50 mA
20 mA
—
0.25 W
0.1 W
Energy
0.008 W/GB
Efficiency (*4)
(rank E / MHT2080AT)
0.011 W/GB
(rank E / MHT2060AT)
0.011 W/GB
(rank E / MHT2040AT)
0.022 W/GB
(rank D / MHT2030AT)
0.022 W/GB
(rank D / MHT2020AT)
*1
*2
Current at starting spindle motor.
Current and power level when the operation (command) that accompanies a
transfer of 63 sectors is executed 3 times in 100 ms
*3
*4
Power requirements reflect nominal values for +5 V power.
Energy efficiency based on the Law concerning the Rational Use of Energy
indicates the value obtained by dividing power consumption by the storage
capacity. (Japan only)
*5
The seek average current is specified based on three operations per 100
msec.
(5) Current fluctuation (Typ.) at +5 V when power is turned on
1-7
C141-E192-01EN
Device Overview
Figure 1.2 Current fluctuation (Typ.) at +5 V when power is turned on
(6) Power on/off sequence
The voltage detector circuits (the MHT Series) monitor +5 V. The circuits do not
allow a write signal if either voltage is abnormal. These prevent data from being
destroyed and eliminates the need to be concerned with the power on/off
sequence.
1.4 Environmental Specifications
Table 1.4 lists the environmental specifications.
Table 1.4 Environmental specifications
Specification
Item
Temperature
• Operating
5 °C to 55 °C (ambient)
5 °C to 60 °C (disk enclosure surface)
–40 °C to 65 °C
• Non-operating
• Thermal Gradient
Humidity
20 °C/h or less
• Operating
8 % to 90 % RH (Non-condensing)
5 % to 95 % RH (Non-condensing)
• Non-operating
• Maximum Wet Bulb
29 °C (Operating)
40 °C (Non-operating)
Altitude (relative to sea level)
• Operating
–300 to 3,000 m
–300 to 12,000 m
• Non-operating
1-8
C141-E192-01EN
1.5 Acoustic Noise
1.5 Acoustic Noise
Table 1.5 lists the acoustic noise specification.
Table 1.5 Acoustic noise specification
Item
Specification
Sound Pressure
• Idle mode (DRIVE READY)
24 dBA typical at 0.3 m
Note:
Measure the noise from the cover top surface.
1.6 Shock and Vibration
Table 1.6 lists the shock and vibration specification.
Table 1.6 Shock and vibration specification
Item
Specification
Vibration (Swept sine, 1/4 octave per minute)
• Operating
5 to 500 Hz, 9.8m/s2 0-peak (1G 0-peak)
(without non-recovered errors)
5 to 500 Hz, 49m/s2 0-peak (5G 0-peak)
(no damage)
• Non-operating
Shock (half-sine pulse)
• Operating
2207 m/s2 0-peak (225G 0-peak)
2ms duration
(without non-recovered errors)
• Non-operating
8820 m/s2 0-peak (900G 0-peak)
1ms duration
1176 m/s2 0-peak (120G 0-peak)
11ms duration
(no damage)
C141-E192-01EN
1-9
Device Overview
1.7 Reliability
(1) Mean time between failures (MTBF)
Conditions of 300,000 h Power-on time 250H/month or less 3000H/years
or less
Operating time 20 % or less of power-on time
Environment
5 to 55 °C/8 to 90 %
But humidity bulb temperature
29 °C or less
MTBF is defined as follows:
Total operation time in all fields
MTBF=
(H)
number of device failure in all fields (*1)
*1 “Disk drive defects” refers to defects that involve repair, readjustment, or
replacement. Disk drive defects do not include failures caused by external
factors, such as damage caused by handling, inappropriate operating
environments, defects in the power supply host system, or interface cable.
(2) Mean time to repair (MTTR)
The mean time to repair (MTTR) is 30 minutes or less, if repaired by a specialist
maintenance staff member.
(3) Service life
In situations where management and handling are correct, the disk drive requires
no overhaul for five years when the DE surface temperature is less than 48 °C.
When the DE surface temperature exceeds 48 °C, the disk drives requires no
overhaul for five years or 20,000 hours of operation, whichever occurs first.
Refer to item (3) in Subsection 3.2 for the measurement point of the DE surface
temperature. Also the operating conditions except the environment temperature
are based on the MTBF conditions.
(4) Data assurance in the event of power failure
Except for the data block being written to, the data on the disk media is assured in
the event of any power supply abnormalities. This does not include power supply
abnormalities during disk media initialization (formatting) or processing of
defects (alternative block assignment).
1-10
C141-E192-01EN
1.8 Error Rate
1.8 Error Rate
Known defects, for which alternative blocks can be assigned, are not included in
the error rate count below. It is assumed that the data blocks to be accessed are
evenly distributed on the disk media.
(1) Unrecoverable read error
Read errors that cannot be recovered by maximum read retries of drive without
user’s retry and ECC corrections shall occur no more than 10 times when reading
data of 1014 bits. Read retries are executed according to the disk drive’s error
recovery procedure, and include read retries accompanying head offset
operations.
(2) Positioning error
Positioning (seek) errors that can be recovered by one retry shall occur no more
than 10 times in 107 seek operations.
1.9 Media Defects
Defective sectors are replaced with alternates when the disk (the MHT Series) are
formatted prior to shipment from the factory (low level format). Thus, the hosts
see a defect-free devices.
Alternate sectors are automatically accessed by the disk drive. The user need not
be concerned with access to alternate sectors.
1.10Load/Unload Function
The Load/Unload function is a mechanism that loads the head on the disk and
unloads the head from the disk.
The product supports a minimum of 300,000 normal Load/Unload cycles.
Normal Unload is a normal head unloading operation and the commands listed
below are executed.
•
•
•
•
•
Hard Reset
Standby
Standby immediate
Sleep
Idle
C141-E192-01EN
1-11
Device Overview
Emergency Unload other than Normal Unload is performed when the power is
shut down while the heads are still loaded on the disk.
The product supports the Emergency Unload a minimum of 20,000 times.
When the power is shut down, the controlled Normal Unload cannot be executed.
Therefore, the number of Emergency other than Normal Unload is specified.
Remark:
We recommend cutting the power supply of the HDD for this device after the
Head Unload operation completes. The recommended power supply cutting
sequence for this device is as follows:
1) Disk Flush
Flush Cache command execution.
2) Head Unload
Standby Immediate command execution.
3) Wait Status
Checking whether bit 7 of the status register was set to '0'.
(wait to complete STANDBY IMMEDIATE command)
4) HDD power supply cutting
1.11Advanced Power Management
The disk drive shifts to the three kinds of APM modes automatically under the
Idle condition.
The APM mode can be chosen with a Sector Count register of the
SETFEATURES(EF) command.
In APM Mode-1, which is the APM default mode, the operation status shifts till it
finally reaches "Low Power Idle."
The disk drive complies with the three kinds of APM modes that a command
from the host is required.
FR = 05h : Enable APM
SC = C0h - FEh :
SC = 80h - BFh :
SC = 01h - 7Fh :
Mode-0 Active Idle → Low Power Idle
Mode-1 Active Idle → Low Power Idle (Default)
Mode-2 Active Idle → Low Power Idle → Standby
FR = 85h : Reset APM (return to Default.)
1-12
C141-E192-01EN
1.11 Advanced Power Management
Active Idle:
Low power Idle:
Standby:
The head is in a position of extreme inner in disk medium.
(VCM Lock)
The head is unloaded from disk. (VCM Unload)
The spindle motor rotates.
The spindle motor stops.
Active Idle
(VCM Lock)
Low Power Idle
(VCM Unload)
Standby
(Spin Off)
APM Mode
Mode-0
Mode-1
Mode-2
0.2-1.2 sec
0.2-1.2 sec
0.2-1.2 sec
15 min.
N/A
N/A
10.0-40.0 sec
10.0-40.0 sec
10.0-40.0 sec
When the maximum time that the HDD is waiting for commands has been
exceeded:
Mode-0: Mode shifts from Active condition to Active Idle in 0.2-1.2, and to Low
Power Idle in 15 minutes.
Mode-1: Mode shifts from Active condition to Active Idle in 0.2-1.2 seconds and
to Low power Idle in 10.0-40.0 seconds.
Mode-2: Mode shifts from Active condition to Active Idle in 0.2-1.2 seconds and
to Low Power Idle in 10.0-40.0 seconds. After 10.0-40.0 seconds in
Low Power Idle, the mode shifts to standby.
C141-E192-01EN
1-13
This page is intentionally left blank.
CHAPTER 2 Device Configuration
2.1
2.2
Device Configuration
System Configuration
This chapter describes the internal configurations of the hard disk drives and the
configuration of the systems in which they operate.
C141-E192-01EN
2-1
Device Configuration
2.1 Device Configuration
Figure 2.1 shows the disk drive. The disk drive consists of a disk enclosure (DE),
read/write preamplifier, and controller PCA. The disk enclosure contains the disk
media, heads, spindle motors, actuators, and a circulating air filter.
MHT Series
Figure 2.1 Disk drive outerview
(1) Disk
(2) Head
The outer diameter of the disk is 65 mm. The inner diameter is 20 mm.
The heads are of the load/unload (L/UL) type. The head unloads the disk out of
while the disk is not rotating and loads on the disk when the disk starts.
(3) Spindle motor
The disks are rotated by a direct drive Sensor-less DC motor.
(4) Actuator
The actuator uses a revolving voice coil motor (VCM) structure which consumes
low power and generates very little heat. The head assembly at the edge of the
actuator arm is controlled and positioned by feedback of the servo information
read by the read/write head. If the power is not on or if the spindle motor is
stopped, the head assembly stays on the ramp out of the disk and is fixed by a
mechanical lock.
(5) Air circulation system
The disk enclosure (DE) is sealed to prevent dust and dirt from entering. The disk
enclosure features a closed loop air circulation system that relies on the blower
effect of the rotating disk. This system continuously circulates the air through the
circulation filter to maintain the cleanliness of the air within the disk enclosure.
2-2
C141-E192-01EN
2.2 System Configuration
(6) Read/write circuit
The read/write circuit uses a LSI chip for the read/write preamplifier. It improves
data reliability by preventing errors caused by external noise.
(7) Controller circuit
The controller circuit consists of an LSI chip to improve reliability. The high-
speed microprocessor unit (MPU) achieves a high-performance AT controller.
2.2 System Configuration
2.2.1 ATA interface
Figures 2.2 and 2.3 show the ATA interface system configuration. The drive has
a 44pin PC AT interface connector and supports PIO mode 4 transfer at 16.6
MB/s, Multiword DMA mode 2 transfer at 16.6 MB/s and also U-DMA mode 5
(100 MB/s).
2.2.2 1 drive connection
MHT2080AT
MHT2060AT
MHT2040AT
MHT2030AT
Figure 2.2 1 drive system configuration
C141-E192-01EN
2-3
Device Configuration
2.2.3 2 drives connection
MHT2080AT
MHT2060AT
MHT2040AT
MHT2030AT
(Host adaptor)
MHT2020AT
MHT2080AT
MHT2060AT
MHT2040AT
MHT2030AT
MHT2020AT
Note:
When the drive that is not conformed to ATA is connected to the disk drive above
configuration, the operation is not guaranteed.
Figure 2.3 2 drives configuration
IMPORTANT
HA (host adaptor) consists of address decoder, driver, and receiver.
ATA is an abbreviation of “AT attachment”. The disk drive is
conformed to the ATA-6 interface.
At high speed data transfer (PIO mode 4 or DMA mode 2 U-DMA
mode 5), occurrence of ringing or crosstalk of the signal lines (AT
bus) between the HA and the disk drive may be a great cause of the
obstruction of system reliability. Thus, it is necessary that the
capacitance of the signal lines including the HA and cable does not
exceed the ATA-6 standard, and the cable length between the HA
and the disk drive should be as short as possible.
No need to push the top cover of the disk drive. If the over-power
worked, the cover could be contacted with the spindle motor. Thus,
that could be made it the cause of failure.
2-4
C141-E192-01EN
CHAPTER 3 Installation Conditions
3.1
3.2
3.3
3.4
Dimensions
Mounting
Cable Connections
Jumper Settings
This chapter gives the external dimensions, installation conditions, surface
temperature conditions, cable connections, and switch settings of the hard disk
drives.
For information about handling this hard disk drive and the system installation
procedure, refer to the following Integration Guide.
C141-E144
C141-E192-01EN
3-1
Installation Conditions
3.1 Dimensions
Figure 3.1 illustrates the dimensions of the disk drive and positions of the
mounting screw holes. All dimensions are in mm.
Figure 3.1 Dimensions
3-2
C141-E192-01EN
3.2 Mounting
3.2 Mounting
For information on mounting, see the "FUJITSU 2.5-INCH HDD
INTEGRATION GUIDANCE (C141-E144)."
(1) Orientation
Figure 3.2 illustrates the allowable orientations for the disk drive.
gravity
(a) Horizontal –1
(b) Horizontal –1
gravity
(c) Vertical –1
(d) Vertical –2
gravity
(f) Vertical –4
(e) Vertical –3
Figure 3.2 Orientation
C141-E192-01EN
3-3
Installation Conditions
(2) Frame
The MR head bias of the HDD disk enclosure (DE) is zero. The mounting frame
is connected to SG.
IMPORTANT
Use M3 screw for the mounting screw and the screw length should
satisfy the specification in Figure 3.3.
The tightening torque must be 0.49N·m (5kgf·cm).
When attaching the HDD to the system frame, do not allow the
system frame to touch parts (cover and base) other than parts to
which the HDD is attached.
(3) Limitation of mounting
Note) These dimensions are recommended values; if it is not possible to satisfy
them, contact us.
Side surface
mounting
2.5
2.5
Bottom surface mounting
DE
2.5
2.5
2
B
PCA
Frame of system
cabinet
A
Frame of system
cabinet
3.0 or less
Details of A
Screw
Screw
3.0 or less
Details of B
Figure 3.3 Mounting frame structure
3-4
C141-E192-01EN
3.2 Mounting
IMPORTANT
Because of breather hole mounted to the HDD, do not allow this to
close during mounting.
Locating of breather hole is shown as Figure 3.4.
For breather hole of Figure 3.4, at least, do not allow its around
φ 2.4 to block.
Figure 3.4 Location of breather
C141-E192-01EN
3-5
Installation Conditions
(4) Ambient temperature
The temperature conditions for a disk drive mounted in a cabinet refer to the
ambient temperature at a point 3 cm from the disk drive. The ambient
temperature must satisfy the temperature conditions described in Section 1.4, and
the airflow must be considered to prevent the DE surface temperature from
exceeding 60 °C.
Provide air circulation in the cabinet such that the PCA side, in particular,
receives sufficient cooling. To check the cooling efficiency, measure the surface
temperatures of the DE. Regardless of the ambient temperature, this surface
temperature must meet the standards listed in Table 3.1. Figure 3.5 shows the
temperature measurement point.
1
•
Figure 3.5 Surface temperature measurement points
Table 3.1 Surface temperature measurement points and standard values
No.
1
Measurement point
DE cover
Temperature
60 °C max
3-6
C141-E192-01EN
3.2 Mounting
(5) Service area
Figure 3.6 shows how the drive must be accessed (service areas) during and after
installation.
Mounting screw hole
Cable connection
Mounting screw hole
Figure 3.6 Service area
Data corruption: Avoid mounting the disk drive near strong
magnetic sources such as loud speakers. Ensure that the disk drive
is not affected by external magnetic fields.
Damage: Do not press the cover of the disk drive. Pressing it too
hard, the cover and the spindle motor contact, which may cause
damage to the disk drive.
Static: When handling the device, disconnect the body ground
(500 kΩ or greater). Do not touch the printed circuit board, but
hold it by the edges.
(6) Handling cautions
Please keep the following cautions, and handle the HDD under the safety
environment.
C141-E192-01EN
3-7
Installation Conditions
-
General notes
ESD mat
Shock absorbing mat
Wrist strap
Use the Wrist strap.
Place the shock absorbing mat on the
operation table, and place ESD mat on it.
Do not hit HDD each other.
Do not stack when carrying.
Do not place HDD vertically
to avoid falling down.
Do not drop.
Figure 3.7 Handling cautions
-
Installation
(1)
Please use the driver of a low impact when you use an electric driver.
HDD is occasionally damaged by the impact of the driver.
(2)
-
Please observe the tightening torque of the screw strictly.
M3 ······· 0.49N·m (5 kgf·cm).
Recommended equipments
Contents
Model
Maker
ESD
Wrist strap
ESD mat
JX-1200-3056-8
SUMITOMO 3M
SKY-8A (Color Seiden Mat) Achilles
SS-6500 HIOS
Shock
Low shock driver
3-8
C141-E192-01EN
3.3 Cable Connections
3.3 Cable Connections
3.3.1 Device connector
The disk drive has the connectors and terminals listed below for connecting
external devices. Figure 3.8 shows the locations of these connectors and
terminals.
PCA
Connector,
setting pins
Figure 3.8 Connector locations
C141-E192-01EN
3-9
Installation Conditions
3.3.2 Cable connector specifications
Table 3.2 lists the recommended specifications for the cable connectors.
Table 3.2 Cable connector specifications
Name
Model
Manufacturer
FCI
ATA interface and power
supply cable (44-pin type)
Cable socket
(44-pin type)
89361-144
IMPORTANT
For the host interface cable, use a ribbon cable. A twisted cable or
a cable with wires that have become separated from the ribbon may
cause crosstalk between signal lines. This is because the interface
is designed for ribbon cables and not for cables carrying differential
signals.
3.3.3 Device connection
Figure 3.9 shows how to connect the devices.
ATA-cable
Disk Drive #0
Disk Drive #1
Host system
DC
Power supply
Power supply cable
Figure 3.9 Cable connections
3-10
C141-E192-01EN
3.4 Jumper Settings
3.3.4 Power supply connector (CN1)
Figure 3.10 shows the pin assignment of the power supply connector (CN1).
Figure 3.10 Power supply connector pins (CN1)
3.4 Jumper Settings
3.4.1 Location of setting jumpers
Figure 3.11 shows the location of the jumpers to select drive configuration and
functions.
Figure 3.11 Jumper location
C141-E192-01EN
3-11
Installation Conditions
3.4.2 Factory default setting
Figure 3.12 shows the default setting position at the factory.
Open
Figure 3.12 Factory default setting
3.4.3 Master drive-slave drive setting
Master drive (disk drive #0) or slave drive (disk drive #1) is selected.
Open
1
2
C
D
A
B
A
1
2
C
Short
Open
D
B
Open
(a) Master drive
(b) Slave drive
Figure 3.13 Jumper setting of master or slave drive
Note:
Pins A and C should be open.
3-12
C141-E192-01EN
3.4 Jumper Settings
3.4.4 CSEL setting
Figure 3.14 shows the cable select (CSEL) setting.
Open
1
2
C
A
D
B
Short
Note:
The CSEL setting is not depended on setting between pins Band D.
Figure 3.14 CSEL setting
Figure 3.15 and 3.16 show examples of cable selection using unique interface
cables.
By connecting the CSEL of the master drive to the CSEL Line (conducer) of the
cable and connecting it to ground further, the CSEL is set to low level. The drive
is identified as a master drive. At this time, the CSEL of the slave drive does not
have a conductor. Thus, since the slave drive is not connected to the CSEL
conductor, the CSEL is set to high level. The drive is identified as a slave drive.
drive
drive
Figure 3.15 Example (1) of Cable Select
C141-E192-01EN
3-13
Installation Conditions
drive
drive
Figure 3.16 Example (2) of Cable Select
3.4.5 Power Up in Standby setting
When pin C is grounded, the drive does not spin up at power on.
3-14
C141-E192-01EN
CHAPTER 4 Theory of Device Operation
4.1
4.2
4.3
4.4
4.5
4.6
4.7
Outline
Subassemblies
Circuit Configuration
Power-on Sequence
Self-calibration
Read/write Circuit
Servo Control
This chapter explains basic design concepts of the disk drive. Also, this chapter
explains subassemblies of the disk drive, each sequence, servo control, and
electrical circuit blocks.
C141-E192-01EN
4-1
Theory of Device Operation
4.1 Outline
This chapter consists of two parts. First part (Section 4.2) explains mechanical
assemblies of the disk drive. Second part (Sections 4.3 through 4.7) explains a
servo information recorded in the disk drive and drive control method.
4.2 Subassemblies
The disk drive consists of a disk enclosure (DE) and printed circuit assembly
(PCA).
The DE contains all movable parts in the disk drive, including the disk, spindle,
actuator, read/write head, and air filter. For details, see Subsections 4.2.1 to 4.2.4.
The PCA contains the control circuits for the disk drive. The disk drive has one
PCA. For details, see Sections 4.3.
4.2.1 Disk
The DE contains disks with an outer diameter of 65 mm and an inner diameter of
20 mm.
Servo data is recorded on each cylinder (total 150). Servo data written at factory
is read out by the read head. For servo data, see Section 4.7.
4.2.2 Spindle
The spindle consists of a disk stack assembly and spindle motor. The disk stack
assembly is activated by the direct drive sensor-less DC spindle motor, which has
a speed of 4,200 rpm 1%. The spindle is controlled with detecting a PHASE
signal generated by counter electromotive voltage of the spindle motor at starting.
4.2.3 Actuator
The actuator consists of a voice coil motor (VCM) and a head carriage. The
VCM moves the head carriage along the inner or outer edge of the disk. The head
carriage position is controlled by feeding back the difference of the target position
that is detected and reproduced from the servo information read by the read/write
head.
4-2
C141-E192-01EN
4.3 Circuit Configuration
4.2.4 Air filter
There are two types of air filters: a breather filter and a circulation filter.
The breather filter makes an air in and out of the DE to prevent unnecessary
pressure around the spindle when the disk starts or stops rotating. When disk
drives are transported under conditions where the air pressure changes a lot,
filtered air is circulated in the DE.
The circulation filter cleans out dust and dirt from inside the DE. The disk drive
cycles air continuously through the circulation filter through an enclosed loop air
cycle system operated by a blower on the rotating disk.
4.3 Circuit Configuration
Figure 4.1 shows the power supply configuration of the disk drive, and Figure 4.2
shows the disk drive circuit configuration.
(1) Read/write circuit
The read/write circuit consists of two circuits; read/write preamplifier (PreAMP)
and read channel (RDC).
The PreAMP consists of the write current switch circuit, that flows the write
current to the head coil, and the voltage amplifier circuit, that amplitudes the read
output from the head.
The RDC is the read demodulation circuit using the Modified Extended Partial
Response (MEEPR), and contains the Viterbi detector, programmable filter,
adaptable transversal filter, times base generator, data separator circuits, 32/34
RLL (Limited) encoder Run Length and servo demodulation circuit.
(2) Servo circuit
The position and speed of the voice coil motor are controlled by 2 closed-loop
servo using the servo information recorded on the data surface. The servo
information is an analog signal converted to digital for processing by a MPU and
then reconverted to an analog signal for control of the voice coil motor.
The MPU precisely sets each head on the track according on the servo
information on the media surface.
(3) Spindle motor driver circuit
The circuit measures the interval of a PHASE signal generated by counter-
electromotive voltage of a motor and controls the motor speed comparing target
speed.
C141-E192-01EN
4-3
Theory of Device Operation
(4) Controller circuit
Major functions are listed below.
•
•
•
•
•
•
Data buffer management
ATA interface control and data transfer control
Sector format control
Defect management
ECC control
Error recovery and self-diagnosis
Figure 4.1 Power Supply Configuration
4-4
C141-E192-01EN
4.3 Circuit Configuration
ATA Interface
PCA
Console
MCU & HDC & RDC
Anchor (88i553x; Marvell)
Data Buffer
SDRAM
MCU
HDC
Flash ROM
FROM
RDC
Shock
Sensor
SVC
TLS2255
Resonator
20MHz
DE
SP Motor
Media
VCM
Thermistor
R/W Pre-Amp
TLS26B624
HEAD
Figure 4.2 Circuit Configuration
C141-E192-01EN
4-5
Theory of Device Operation
4.4 Power-on Sequence
Figure 4.3 describes the operation sequence of the disk drive at power-on. The
outline is described below.
a) After the power is turned on, the disk drive executes the MPU bus test,
internal register read/write test, and work RAM read/write test. When the
self-diagnosis terminates successfully, the disk drive starts the spindle motor.
b) The disk drive executes self-diagnosis (data buffer read/write test) after
enabling response to the ATA bus.
c) After confirming that the spindle motor has reached rated speed, the head
assembly is loaded on the disk.
d) The disk drive positions the heads onto the SA area and reads out the system
information.
e) The disk drive sets up a requirement for execution of self-seek-calibration.
This collects data for VCM torque and mechanical external forces applied to
the actuator, and updates the calibrating value.
f) The drive becomes ready. The host can issue commands.
4-6
C141-E192-01EN
4.5 Self-calibration
Power-on
Start
a)
Self-diagnosis 1
- MPU bus test
- Internal register
write/read test
- Work RAM write/read
test
The spindle motor starts.
b)
c)
Self-diagnosis 2
- Data buffer write/read
test
d)
Initial on-track and read
out of system information
Confirming spindle motor
speed
e)
f)
Execute self-calibration
Load the head assembly
Drive ready state
(command waiting state)
End
Figure 4.3 Power-on operation sequence
4.5 Self-calibration
The disk drive occasionally performs self-calibration in order to sense and
calibrate mechanical external forces on the actuator, and VCM torque. This
enables precise seek and read/write operations.
4.5.1 Self-calibration contents
(1) Sensing and compensating for external forces
The actuator suffers from torque due to the FPC forces and winds accompanying
disk revolution. The torque vary with the disk drive and the cylinder where the
head is positioned. To execute stable fast seek operations, external forces are
occasionally sensed.
The firmware of the drive measures and stores the force (value of the actuator
motor drive current) that balances the torque for stopping head stably. This
includes the current offset in the power amplifier circuit and DAC system.
C141-E192-01EN
4-7
Theory of Device Operation
The forces are compensated by adding the measured value to the specified current
value to the power amplifier. This makes the stable servo control.
To compensate torque varying by the cylinder, the disk is divided into 16 areas
from the innermost to the outermost circumference and the compensating value is
measured at the measuring cylinder on each area at factory calibration. The
measured values are stored in the SA cylinder. In the self-calibration, the
compensating value is updated using the value in the SA cylinder.
(2) Compensating open loop gain
Torque constant value of the VCM has a dispersion for each drive, and varies
depending on the cylinder that the head is positioned. To realize the high speed
seek operation, the value that compensates torque constant value change and loop
gain change of the whole servo system due to temperature change is measured
and stored.
For sensing, the firmware mixes the disturbance signal to the position signal at the
state that the head is positioned to any cylinder. The firmware calculates the loop
gain from the position signal and stores the compensation value against to the
target gain as ratio.
For compensating, the direction current value to the power amplifier is multiplied
by the compensation value. By this compensation, loop gain becomes constant
value and the stable servo control is realized.
To compensate torque constant value change depending on cylinder, whole
cylinders from most inner to most outer cylinder are divided into 14 partitions at
calibration in the factory, and the compensation data is measured for
representative cylinder of each partition. This measured value is stored in the SA
area. The compensation value at self-calibration is calculated using the value in
the SA area.
4.5.2 Execution timing of self-calibration
Self-calibration is performed once when power is turned on. After that, the disk
drive does not perform self-calibration until it detects an error.
That is, self-calibration is performed each time one of the following events occur:
•
When it passes from the power on for ten seconds and the disk drive shifts to
Active Idle mode.
•
•
The number of retries to write or seek data reaches the specified value.
The error rate of data reading, writing, or seeking becomes lower than the
specified value.
4-8
C141-E192-01EN
4.6 Read/write Circuit
4.5.3 Command processing during self-calibration
This enables the host to execute the command without waiting for a long time,
even when the disk drive is performing self-calibration. The command execution
wait time is about maximum 72 ms.
When the error rate of data reading, writing, or seeking becomes lower than the
specified value, self-calibration is performed to maintain disk drive stability.
If the disk drive receives a command execution request from the host while
performing self-calibration, it stops the self-calibration and starts to execute the
command. In other words, if a disk read or write service is necessary, the disk
drive positions the head to the track requested by the host, reads or writes data,
and then restarts calibration after 10 seconds.
If the error rate recovers to a value exceeding the specified value, self-calibration
is not performed.
4.6 Read/write Circuit
The read/write circuit consists of the read/write preamplifier (PreAMP), the write
circuit, the read circuit, and the time base generator in the read channel (RDC).
Figure 4.4 is a block diagram of the read/write circuit.
4.6.1 Read/write preamplifier (PreAMP)
PreAMP equips a read preamplifier and a write current switch, that sets the bias
current to the MR device and the current in writing. Each channel is connected to
each data head, and PreAMP switches channel by serial I/O. In the event of any
abnormalities, including a head short-circuit or head open circuit, the write unsafe
signal is generated so that abnormal write does not occur.
4.6.2 Write circuit
The write data is output from the hard disk controller (HDC) with the NRZ data
format, and sent to the encoder circuit in the RDC. The NRZ write data is
converted from 32-bit data to 34-bit data by the encoder circuit then sent to the
HDIC, and the data is written onto the media.
(1) 32/34 RLL MEEPRML
This device converts data using the 32/34 RLL (Run Length Limited) algorithm.
(2) Write precompensation
Write precompensation compensates, during a write process, for write non-
linearity generated at reading.
C141-E192-01EN
4-9
Theory of Device Operation
Figure 4.4 Read/write circuit block diagram
4-10
C141-E192-01EN
4.6 Read/write Circuit
4.6.3 Read circuit
The head read signal from the PreAMP is regulated by the automatic gain control
(AGC) circuit. Then the output is converted into the sampled read data pulse by
the programmable filter circuit and the flash digitizer circuit. This clock signal is
converted into the NRZ data by the ENDEC circuit based on the read data
maximum-likelihood-detected by the Viterbi detection circuit, then is sent to the
HDC.
(1) AGC circuit
The AGC circuit automatically regulates the output amplitude to a constant value
even when the input amplitude level fluctuates. The AGC amplifier output is
maintained at a constant level even when the head output fluctuates due to the
head characteristics or outer/inner head positions.
(2) Programmable filter circuit
The programmable filter circuit has a low-pass filter function that eliminates
unnecessary high frequency noise component and a high frequency boost-up
function that equalizes the waveform of the read signal.
Cut-off frequency of the low-pass filter and boost-up gain are controlled from the
register in read channel by an instruction of the serial data signal from MPU
(M5). The MPU optimizes the cut-off frequency and boost-up gain according to
the transfer frequency of each zone.
Figure 4.5 shows the frequency characteristic sample of the programmable filter.
-3 dB
Figure 4.5 Frequency characteristic of programmable filter
C141-E192-01EN
4-11
Theory of Device Operation
(3) FIR circuit
This circuit is 10-tap sampled analog transversal filter circuit that equalizes the
head read signal to the Modified Extended Partial Response (MEEPR) waveform.
(4) A/D converter circuit
This circuit changes Sampled Read Data Pulse from the FIR circuit into Digital
Read Data.
(5) Viterbi detection circuit
The sample hold waveform output from the flash digitizer circuit is sent to the
Viterbi detection circuit. The Viterbi detection circuit demodulates data
according to the survivor path sequence.
(6) ENDEC
This circuit converts the 34-bit read data into the 32-bit NRZ data.
4.6.4 Digital PLL circuit
The drive uses constant density recording to increase total capacity. This is
different from the conventional method of recording data with a fixed data
transfer rate at all data area. In the constant density recording method, data area
is divided into zones by radius and the data transfer rate is set so that the
recording density of the inner cylinder of each zone is nearly constant. The drive
divides data area into 30 zones to set the data transfer rate.
The MPU transfers the data transfer rate setup data (SD/SC) to the RDC that
includes the Digital PLL circuit to change the data transfer rate.
4-12
C141-E192-01EN
4.7 Servo Control
4.7 Servo Control
The actuator motor and the spindle motor are submitted to servo control. The
actuator motor is controlled for moving and positioning the head to the track
containing the desired data. To turn the disk at a constant velocity, the actuator
motor is controlled according to the servo data that is written on the data side
beforehand.
4.7.1 Servo control circuit
Figure 4.6 is the block diagram of the servo control circuit. The following
describes the functions of the blocks:
(1)
MPU
SVC
(3)
(4)
Power
(2)
Servo
burst
capture
MPU
core
DAC
Head
VCM current
Amp
CSR
(7)
Position Sense
VCM
(5)
(6)
Driver
Spindle
motor
control
Spindle
motor
CSR: Current Sense Resister
VCM: Voice Coil Motor
Figure 4.6 Block diagram of servo control circuit
(1) Microprocessor unit (MPU)
The MPU executes startup of the spindle motor, movement to the reference
cylinder, seek to the specified cylinder, and calibration operations. Main internal
operation of the MPU are shown below.
C141-E192-01EN
4-13
Theory of Device Operation
The major internal operations are listed below.
a. Spindle motor start
Starts the spindle motor and accelerates it to normal speed when power is
applied.
b. Move head to reference cylinder
Drives the VCM to position the head at the any cylinder in the data area. The
logical initial cylinder is at the outermost circumference (cylinder 0).
c. Seek to specified cylinder
Drives the VCM to position the head to the specified cylinder.
d. Calibration
Senses and stores the thermal offset between heads and the mechanical forces
on the actuator, and stores the calibration value.
4-14
C141-E192-01EN
4.7 Servo Control
(2) Servo burst capture circuit
The servo burst capture circuit reproduces signals (position signals) that indicate
the head position from the servo data on the data surface. From the servo area on
the data area surface, via the data head, the burst signal of SERVO A, SERVO B,
SERVO C, and SERVO D is output as shown in Figure 4.9 in subsequent to the
servo mark, gray code that indicates the cylinder position, and index information.
The servo signals do A/D-convert by Fourier-demodulator in the servo burst
capture circuit. At that time the AGC circuit is in hold mode. The A/D converted
data is recognized by the MPU as position information with A-B and C-D
processed.
(3) D/A converter (DAC)
The control program calculates the specified data value (digital value) of the
VCM drive current, and the value is converted from digital-to-analog so that an
analog output voltage is sent to the power amplifier.
(4) Power amplifier
The power amplifier feeds currents, corresponding to the DAC output signal
voltage to the VCM.
(5) Spindle motor control circuit
The spindle motor control circuit controls the sensor-less spindle motor. A
spindle driver IC with a built-in PLL(FLL) circuit that is on a hardware unit
controls the sensor-less spindle motor.
(6) Driver circuit
The driver circuit is a power amplitude circuit that receives signals from the
spindle motor control circuit and feeds currents to the spindle motor.
(7) VCM current sense resistor (CSR)
This resistor controls current at the power amplifier by converting the VCM
current into voltage and feeding back.
C141-E192-01EN
4-15
Theory of Device Operation
4.7.2 Data-surface servo format
Figure 4.7 describes the physical layout of the servo frame. The three areas
indicated by (1) to (3) in Figure 4.7 are described below.
(1) Inner guard band
This area is located inside the user area, and the rotational speed of the VCM can
be controlled on this cylinder area for head moving.
(2) Data area
This area is used as the user data area SA area.
(3) Outer guard band
This area is located at outer position of the user data area, and the rotational speed
of the spindle can be controlled on this cylinder area for head moving.
4-16
C141-E192-01EN
4.7 Servo Control
Servo frame
(150 servo frames per revolution)
OGB
IGB
Data area
expand
CYLn
CYLn – 1 (n: even number)
CYLn + 1
!" Diameter
direction
W/R Recovery
Servo Mark
Gray Code
W/R Recovery
Servo Mark
Gray Code
W/R Recovery
Servo Mark
Gray Code
#
#
Erase
Servo B
Servo C
Erase
Servo A
Erase
Erase
Servo B
Servo A
Erase
Circumference
Direction
Erase
Servo D
PAD
Servo C
Erase
Erase: DC erase
area
Figure 4.7 Physical sector servo configuration on disk surface
C141-E192-01EN
4-17
Theory of Device Operation
4.7.3 Servo frame format
As the servo information, the IDD uses the two-phase servo generated from the
gray code and servo A to D. This servo information is used for positioning
operation of radius direction and position detection of circumstance direction.
The servo frame consists of 6 blocks; write/read recovery, servo mark, gray code,
servo A to D, and PAD. Figure 4.8 shows the servo frame format.
Figure 4.8 Servo frame format
4-18
C141-E192-01EN
4.7 Servo Control
(1) Write/read recovery
This area is used to absorb the write/read transient and to stabilize the AGC.
(2) Servo mark
This area generates a timing for demodulating the gray code and position-
demodulating the servo A to D by detecting the servo mark.
(3) Gray code (including sector address bits)
This area is used as cylinder address. The data in this area is converted into the
binary data by the gray code demodulation circuit
(4) Servo A, servo B, servo C, servo D
This area is used as position signals between tracks and the IDD control at on-
track so that servo A level equals to servo B level.
(5) PAD
This area is used as a gap between servo and data.
4.7.4 Actuator motor control
The voice coil motor (VCM) is controlled by feeding back the servo data recorded
on the data surface. The MPU fetches the position sense data on the servo frame
at a constant interval of sampling time, executes calculation, and updates the
VCM drive current.
The servo control of the actuator includes the operation to move the head to the
reference cylinder, the seek operation to move the head to the target cylinder to
read or write data, and the track-following operation to position the head onto the
target track.
(1) Operation to move the head to the reference cylinder
The MPU moves the head to the reference cylinder when the power is turned.
The reference cylinder is in the data area.
When power is applied the heads are moved from the outside of media to the
normal servo data zone in the following sequence:
a) Micro current is fed to the VCM to press the head against the outer direction.
b) The head is loaded on the disk.
c) When the servo mark is detected the head is moved slowly toward the inner
circumference at a constant speed.
d) If the head is stopped at the reference cylinder from there. Track following
control starts.
C141-E192-01EN
4-19
Theory of Device Operation
(2) Seek operation
Upon a data read/write request from the host, the MPU confirms the necessity of
access to the disk. If a read/write instruction is issued, the MPU seeks the desired
track.
The MPU feeds the VCM current via the D/A converter and power amplifier to
move the head. The MPU calculates the difference (speed error) between the
specified target position and the current position for each sampling timing during
head moving. The MPU then feeds the VCM drive current by setting the
calculated result into the D/A converter. The calculation is digitally executed by
the firmware. When the head arrives at the target cylinder, the track is followed.
(3) Track following operation
Except during head movement to the reference cylinder and seek operation under
the spindle rotates in steady speed, the MPU does track following control. To
position the head at the center of a track, the DSP drives the VCM by feeding
micro current. For each sampling time, the VCM drive current is determined by
filtering the position difference between the target position and the position
clarified by the detected position sense data. The filtering includes servo
compensation. These are digitally controlled by the firmware.
4.7.5 Spindle motor control
Hall-less three-phase twelve-pole motor is used for the spindle motor, and the 3-
phase full/half-wave analog current control circuit is used as the spindle motor
driver (called SVC hereafter). The firmware operates on the MPU manufactured
by Fujitsu. The spindle motor is controlled by sending several signals from the
MPU to the SVC. There are three modes for the spindle control; start mode,
acceleration mode, and stable rotation mode.
(1) Start mode
When power is supplied, the spindle motor is started in the following sequence:
a) After the power is turned on, the MPU sends a signal to the SVC to charge
the charge pump capacitor of the SVC. The charged amount defines the
current that flows in the spindle motor.
b) When the charge pump capacitor is charged enough, the MPU sets the SVC
to the motor start mode. Then, a current (approx. 0.3 A) flows into the
spindle motor.
c) A phase switching signal is generated and the phase of the current flowed in
the motor is changed in the order of (V-phase to U-phase), (W-phase to U-
phase), (W-phase to V-phase), (U-phase to V-phase), (U-phase to W-phase),
and (V-phase to W-phase) (after that, repeating this order).
d) During phase switching, the spindle motor starts rotating in low speed, and
generates a counter electromotive force. The SVC detects this counter
electromotive force and reports to the MPU using a PHASE signal for speed
detection.
4-20
C141-E192-01EN
4.7 Servo Control
e) The MPU is waiting for a PHASE signal. When no phase signal is sent for a
specific period, the MPU resets the SVC and starts from the beginning.
When a PHASE signal is sent, the SVC enters the acceleration mode.
(2) Acceleration mode
In this mode, the MPU stops to send the phase switching signal to the SVC. The
SVC starts a phase switching by itself based on the counter electromotive force.
Then, rotation of the spindle motor accelerates. The MPU calculates a rotational
speed of the spindle motor based on the PHASE signal from the SVC, and waits
till the rotational speed reaches 4,200 rpm. When the rotational speed reaches
4,200 rpm, the SVC enters the stable rotation mode.
(3) Stable rotation mode
The SVC calculates a time for one revolution of the spindle motor based on the
PHASE signal. The MPU takes a difference between the current time and a time
for one revolution at 4,200 rpm that the MPU already recognized. Then, the MPU
keeps the rotational speed to 4,200 rpm by charging or discharging the charge
pump for the different time. For example, when the actual rotational speed is
4,000 rpm, the time for one revolution is 15.000 ms. And the time for one
revolution at 4,200 rpm is 14.286 ms. Therefore, the MPU charges the charge
pump for 0.714 ms × k (k: constant value). This makes the flowed current into
the motor higher and the rotational speed up. When the actual rotational speed is
faster than 4,200 rpm, the MPU discharges the pump the other way. This control
(charging/discharging) is performed every 1 revolution.
C141-E192-01EN
4-21
This page is intentionally left blank.
CHAPTER 5 Interface
5.1
5.2
5.3
5.4
5.5
5.6
Physical Interface
Logical Interface
Host Commands
Command Protocol
Ultra DMA Feature Set
Timing
This chapter gives details about the interface, and the interface commands and
timings.
C141-E192-01EN
5-1
Interface
5.1 Physical Interface
5.1.1 Interface signals
Figure 5.1 shows the interface signals.
Host
IDD
DATA 0-15: DATA BUS
DMACK-: DMA ACKNOWLEDGE
DMARQ: DMA REQUEST
INTRO: INTERRUPT REQUEST
DIOW-: I/O WRITE
STOP: STOP DURING ULTRA DMA DATA BURSTS
DIOR-:I/O READ
HDMARDY:DMA READY DURING ULTRA DMA DATA IN BURSTS
HSTROBE:DATA STROBE DURING ULTRA DMA DATA OUT BURST
PDIAG-: PASSED DIAGNOSTICS
CBLID-: CABLE TYPE IDENTIFIER
DASP-: DEVICE ACTIVE/SLAVE PRESENT
IORDY:I/O READY
DDMARDY:DMA READY DURING ULTRA DMA DATA OUT BURSTS
DSTROBE: DATA STROBE DURING ULTRA DMA DATA IN BURSTS
DA 0-2: DEVICE ADDRESS
CS0-: CHIP SELECT 0
CS1-: CHIP SELECT 1
RESET-: RESET
CSEL: CABLE SELECT
MSTR: Master
ENCSEL: ENABLE CSEL
+5V DC: +5 volt
GND: GROUND
Figure 5.1 Interface signals
5-2
C141-E192-01EN
5.1 Physical Interface
5.1.2 Signal assignment on the connector
Table 5.1 shows the signal assignment on the interface connector.
Table 5.1 Signal assignment on the interface connector
Pin No.
Signal
Pin No.
Signal
A
C
MSTR
B
D
MSTR/ENCSEL
ENCSEL
(KEY)
PUS-
E
(KEY)
F
1
RESET–
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
GND
2
GND
3
4
DATA8
DATA9
DATA10
DATA11
DATA12
DATA13
DATA14
DATA15
(KEY)
5
6
7
8
9
10
12
14
16
18
20
22
24
26
11
13
15
17
19
21
23
25
DMARQ
GND
DIOW-, STOP
GND
DIOR-, HDMRDY,
HSTROBE
GND
27
IORDY, DDMARDY,
DSTROBE
28
CSEL
29
31
33
35
37
39
41
43
DMACK–
INTRQ
DA1
30
32
34
36
38
40
42
44
GND
reserved (IOCS16-)
PDIAG–, CBLID–
DA2
DA0
CS0–
CS1–
DASP–
+5 VDC
GND
GND
+5 VDC
unused
C141-E192-01EN
5-3
Interface
[signal]
[I/O]
I
[Description]
ENCSEL
This signal is used to set master/slave using the CSEL signal (pin 28).
Pins B and D
Open: Sets master/slave using the CSEL signal
is disabled.
Short: Sets master/slave using the CSEL signal
is enabled.
MSTR-
I
MSTR, I, Master/slave setting
Pin A, B, C, D open: Master setting
Pin A, B Short:
Slave setting
PUS-
I
I
When pin C is grounded, the drive does not spin up at power on.
RESET-
Reset signal from the host. This signal is low active and is
asserted for a minimum of 25 µs during power on.
DATA 0-15
DIOW-
I/O Sixteen-bit bi-directional data bus between the host and the
device. These signals are used for data transfer
I
Signal asserted by the host to write to the device register or data
port.
STOP
I
DIOW- must be negated by the host before starting the Ultra
DMA transfer. The STOP signal must be negated by the host
before data is transferred during the Ultra DMA transfer. During
data transfer in Ultra DMA mode, the assertion of the STOP
signal asserted by the host later indicates that the transfer has been
suspended.
DIOR-
I
I
Read strobe signal from the host to read the device register or data
port
HDMARDY-
Flow control signal for Ultra DMA data In transfer (READ DMA
command). This signal is asserted by the host to inform the
device that the host is ready to receive the Ultra DMA data In
transfer. The host can negate the HDMARDY- signal to suspend
the Ultra DMA data In transfer.
HSTROBE
INTRQ
I
Data Out Strobe signal from the host during Ultra DMA data Out
transfer (WRITE DMA command). Both the rising and falling
edges of the HSTROBE signal latch data from Data 15-0 into the
device. The host can suspend the inversion of the HSTROBE
signal to suspend the Ultra DMA data Out transfer.
O
Interrupt signal to the host.
This signal is negated in the following cases:
−
−
−
−
−
assertion of RESET- signal
Reset by SRST of the Device Control register
Write to the command register by the host
Read of the status register by the host
Completion of sector data transfer
(without reading the Status register)
The signal output line has a high impedance when no devices are
selected or interruption is disabled.
5-4
C141-E192-01EN
5.1 Physical Interface
[signal]
CS0-
[I/O]
I
[Description]
Chip select signal decoded from the host address bus. This signal
is used by the host to select the command block registers.
CS1-
I
I
-
Chip select signal decoded from the host address bus. This signal
is used by the host to select the control block registers.
DA 0-2
Binary decoded address signals asserted by the host to access task
file registers.
KEY
Key pin for prevention of erroneous connector insertion
PDIAG-
I/O This signal is an input mode for the master device and an output
mode for the slave device in a daisy chain configuration. This
signal indicates that the slave device has been completed self
diagnostics.
This signal is pulled up to +5 V through 10 kΩ resistor at each device.
CBLID-
DASP-
I/O This signal is used to detect the type of cable installed in the
system.
This signal is pulled up to +5 V through 10 kΩ resistor at each device.
I/O This is a time-multiplexed signal that indicates that the device is
active and a slave device is present.
This signal is pulled up to +5 V through 10 kΩ resistor at each device.
IORDY
O
O
This signal requests the host system to delay the transfer cycle
when the device is not ready to respond to a data transfer request
from the host system.
DDMARDY-
Flow control signal for Ultra DMA data Out transfer (WRITE
DMA command). This signal is asserted by the device to inform
the host that the device is ready to receive the Ultra DMA data
Out transfer. The device can negate the DDMARDY- signal to
suspend the Ultra DMA data Out transfer.
DSTROBE
CSEL
O
I
Data In Strobe signal from the device during Ultra DMA data In
transfer. Both the rising and falling edges of the DSTROBE
signal latch data from Data 15-0 into the host. The device can
suspend the inversion of the DSTROBE signal to suspend the
Ultra DMA data In transfer.
This signal to configure the device as a master or a slave device.
−
−
When CSEL signal is grounded, the IDD is a master device.
When CSEL signal is open, the IDD is a slave device.
This signal is pulled up with 240 kΩ resistor at each device.
DMACK-
I
The host system asserts this signal as a response that the host
system receive data or to indicate that data is valid.
C141-E192-01EN
5-5
Interface
[signal]
[I/O]
O
[Description]
DMARQ
This signal is used for DMA transfer between the host system and
the device. The device asserts this signal when the device
completes the preparation of DMA data transfer to the host
system (at reading) or from the host system (at writing).
The direction of data transfer is controlled by the DIOR and
DIOW signals. This signal hand shakes with the DMACK-signal.
In other words, the device negates the DMARQ signal after the
host system asserts the DMACK signal. When there is other data
to be transferred, the device asserts the DMARQ signal again.
When the DMA data transfer is performed, IOCS16-, CS0- and
CS1- signals are not asserted. The DMA data transfer is a 16-bit
data transfer.
+5 VDC
GND
I
-
+5 VDC power supplying to the device.
Grounded signal at each signal wire.
Note:
“I” indicates input signal from the host to the device.
“O” indicates output signal from the device to the host.
“I/O” indicates common output or bi-directional signal between the host
and the device.
5.2 Logical Interface
The device can operate for command execution in either address-specified mode;
cylinder-head-sector (CHS) or Logical block address (LBA) mode. The
IDENTIFY DEVICE information indicates whether the device supports the LBA
mode. When the host system specifies the LBA mode by setting bit 6 in the
Device/Head register to 1, HS3 to HS0 bits of the Device/Head register indicates
the head No. under the LBA mode, and all bits of the Cylinder High, Cylinder
Low, and Sector Number registers are LBA bits.
The sector No. under the LBA mode proceeds in the ascending order with the
start point of LBA0 (defined as follows).
LBA0 = [Cylinder 0, Head 0, Sector 1]
Even if the host system changes the assignment of the CHS mode by the
INITIALIZE DEVICE PARAMETER command, the sector LBA address is not
changed.
LBA = [((Cylinder No.) × (Number of head) + (Head No.)) × (Number of
sector/track)] + (Sector No.) − 1
5-6
C141-E192-01EN
5.2 Logical Interface
5.2.1 I/O registers
Communication between the host system and the device is done through input-
output (I/O) registers of the device.
These I/O registers can be selected by the coded signals, CS0-, CS1-, and DA0 to
DA2 from the host system. Table 5.2. shows the coding address and the function
of I/O registers.
Table 5.2 I/O registers
I/O registers
Host I/O
address
CS0– CS1–
DA2
DA1
DA0
Read operation Write operation
Command block registers
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
H
L
Data
Data
X’1F0’
X’1F1’
X’1F2’
X’1F3’
X’1F4’
X’1F5’
X’1F6’
X’1F7’
—
Error Register
Sector Count
Features
Sector Count
L
H
H
L
L
H
L
Sector Number Sector Number
H
H
H
H
X
Cylinder Low
Cylinder High
Device/Head
Status
Cylinder Low
Cylinder High
Device/Head
Command
L
H
L
H
H
X
H
X
(Invalid)
(Invalid)
Control block registers
H
H
L
L
H
H
H
H
L
Alternate Status Device Control
X’3F6’
X’3F7’
H
—
—
Notes:
1.
The Data register for read or write operation can be accessed by 16 bit data
bus (DATA0 to DATA15).
2.
The registers for read or write operation other than the Data registers can be
accessed by 8 bit data bus (DATA0 to DATA7).
3.
4.
When reading the Drive Address register, bit 7 is high-impedance state.
H indicates signal level High and L indicates signal level Low.
There are two methods for specifying the LBA mode. One method is to
specify the LBA mode with 28-bit address information, and the other is to
specify it with 48-bit address information (command of EXT system). If
the LBA mode is specified with 28-bit address information, the
C141-E192-01EN
5-7
Interface
Device/Head, Cylinder High, Cylinder Low, Sector Number registers
indicate LBA bits 27 to 24, bits 23 to 16, bits 15 to 8, and bits 7 to 0,
respectively.
If the LBA mode is specified with 48-bit address information, the Cylinder
High, Cylinder Low, Sector Number registers are set twice. In the first
time, the registers indicate LBA bits 47 to 40, bits 39 to 32, and bits 31 to
24, respectively. In the second time, the registers indicate LBA bits 23 to
16, bits 15 to 8, and bits 7 to 0, respectively.
5.2.2 Command block registers
(1) Data register (X’1F0’)
The Data register is a 16-bit register for data block transfer between the device
and the host system. Data transfer mode is PIO or DMA mode.
(2) Error register (X’1F1’)
The Error register indicates the status of the command executed by the device.
The contents of this register are valid when the ERR bit of the Status register is 1.
This register contains a diagnostic code after power is turned on, a reset , or the
EXECUTIVE DEVICE DIAGNOSTIC command is executed.
[Status at the completion of command execution other than diagnostic command]
Bit 7
Bit 6
UNC
Bit 5
X
Bit 4
Bit 3
X
Bit 2
Bit 1
Bit 0
ICRC
IDNF
ABRT TK0NF AMNF
X: Unused
- Bit 7: Interface CRC Error (ICRC). This bit indicates that a CRC error
occurred during Ultra DMA transfer.
- Bit 6: Uncorrectable Data Error (UNC). This bit indicates that an
uncorrectable data error has been encountered.
- Bit 5: Unused
- Bit 4: ID Not Found (IDNF). This bit indicates an error except for bad
sector, uncorrectable error and SB not found.
- Bit 3: Unused
- Bit 2: Aborted Command (ABRT). This bit indicates that the requested
command was aborted due to a device status error (e.g. Not Ready,
Write Fault) or the command code was invalid.
5-8
C141-E192-01EN
5.2 Logical Interface
- Bit 1: Track 0 Not Found (TK0NF). This bit indicates that track 0 was not
found during RECALIBRATE command execution.
- Bit 0: Address Mark Not Found (AMNF). This bit indicates that the SB Not
Found error occurred.
[Diagnostic code]
X’01’: No Error Detected.
X’02’: HDC Diagnostic Error
X’03’: Data Buffer Diagnostic Error.
X’04’: Memory Diagnostic Error.
X’05’: Reading the system area is abnormal.
X’06’: Calibration is abnormal.
X’80’: Device 1 (slave device) Failed.
Error register of the master device is valid under two devices (master
and slave) configuration. If the slave device fails, the master device
posts X’80’ OR (the diagnostic code) with its own status (X’01’ to
X’06’).
However, when the host system selects the slave device, the diagnostic
code of the slave device is posted.
(3) Features register (X’1F1’)
The Features register provides specific feature to a command. For instance, it is
used with SET FEATURES command to enable or disable caching.
(4) Sector Count register (X’1F2’)
The Sector Count register indicates the number of sectors of data to be transferred
in a read or write operation between the host system and the device. When the
value in this register is X’00’, the sector count is 256. With the EXT system
command, the sector count is 65536 when value of this register is X'00' in the first
setting and X'00' in the second setting.
When this register indicates X’00’ at the completion of the command execution,
this indicates that the command is completed successfully. If the command is not
completed successfully, this register indicates the number of sectors to be
transferred to complete the request from the host system. That is, this register
indicates the number of remaining sectors that the data has not been transferred
due to the error.
The contents of this register has other definition for the following commands;
INITIALIZE DEVICE PARAMETERS, SET FEATURES, IDLE, STANDBY
and SET MULTIPLE MODE.
C141-E192-01EN
5-9
Interface
(5) Sector Number register (X’1F3’)
The contents of this register indicates the starting sector number for the
subsequent command. The sector number should be between X’01’ and [the
number of sectors per track defined by INITIALIZE DEVICE PARAMETERS
command.
Under the LBA mode, this register indicates LBA bits 7 to 0.
Under the LBA mode of the EXT system command, LBA bits 31 to 24 are set in
the first setting, and LBA bits 7 to 0 are set in the second setting.
(6) Cylinder Low register (X’1F4’)
The contents of this register indicates low-order 8 bits of the starting cylinder
address for any disk-access.
At the end of a command, the contents of this register are updated to the current
cylinder number.
Under the LBA mode, this register indicates LBA bits 15 to 8.
Under the LBA mode of the EXT system command, LBA bits 39 to 32 are set in
the first setting, and LBA bits 15 to 8 are set in the second setting.
(7) Cylinder High register (X’1F5’)
The contents of this register indicates high-order 8 bits of the disk-access start
cylinder address.
At the end of a command, the contents of this register are updated to the current
cylinder number. The high-order 8 bits of the cylinder address are set to the
Cylinder High register.
Under the LBA mode, this register indicates LBA bits 23 to 16.
Under the LBA mode of the EXT system command, LBA bits 47 to 40 are set in
the first setting, and LBA bits 23 to 16 are set in the second setting.
5-10
C141-E192-01EN
5.2 Logical Interface
(8) Device/Head register (X’1F6’)
The contents of this register indicate the device and the head number.
When executing INITIALIZE DEVICE PARAMETERS command, the contents
of this register defines “the number of heads minus 1” (a maximum head No.).
Bit 7
X
Bit 6
L
Bit 5
X
Bit 4
DEV
Bit 3
HS3
Bit 2
HS2
Bit 1
HS1
Bit 0
HS0
- Bit 7: Unused
- Bit 6: L. 0 for CHS mode and 1 for LBA mode.
- Bit 5: Unused
- Bit 4: DEV bit. 0 for the master device and 1 for the slave device.
- Bit 3: HS3 CHS mode head address 3 (23). bit 27 for LBA mode. Unused
under the LBA mode of the EXT command.
- Bit 2: HS2 CHS mode head address 2 (22). bit 26 for LBA mode. Unused
under the LBA mode of the EXT command.
- Bit 1: HS1 CHS mode head address 1 (21). bit 25 for LBA mode. Unused
under the LBA mode of the EXT command.
- Bit 0: HS0 CHS mode head address 0 (20). bit 24 for LBA mode. Unused
under the LBA mode of the EXT command.
(9) Status register (X’1F7’)
The contents of this register indicate the status of the device. The contents of this
register are updated at the completion of each command. When the BSY bit is
cleared, other bits in this register should be validated within 400 ns. When the
BSY bit is 1, other bits of this register are invalid. When the host system reads
this register while an interrupt is pending, it is considered to be the Interrupt
Acknowledge (the host system acknowledges the interrupt). Any pending
interrupt is cleared (negating INTRQ signal) whenever this register is read.
Bit 7
BSY
Bit 6
Bit 5
DF
Bit 4
DSC
Bit 3
DRQ
Bit 2
0
Bit 1
0
Bit 0
ERR
DRDY
C141-E192-01EN
5-11
Interface
- Bit 7: Busy (BSY) bit. This bit is set whenever the Command register is
accessed. Then this bit is cleared when the command is completed.
However, even if a command is being executed, this bit is 0 while data
transfer is being requested (DRQ bit = 1).When BSY bit is 1, the host
system should not write the command block registers. If the host
system reads any command block register when BSY bit is 1, the
contents of the Status register are posted. This bit is set by the device
under following conditions:
(a) Within 400 ns after RESET- is negated or SRST is set in the
Device Control register, the BSY bit is set. the BSY bit is cleared,
when the reset process is completed.
The BSY bit is set for no longer than 15 seconds after the IDD
accepts reset.
(b) Within 400 ns from the host system starts writing to the
Command register.
(c) Within 5 µs following transfer of 512 bytes data during execution
of the READ SECTOR(S), WRITE SECTOR(S), or WRITE
BUFFER command.
Within 5 µs following transfer of 512 bytes of data and the
appropriate number of ECC bytes during execution of READ
LONG or WRITE LONG command.
- Bit 6: Device Ready (DRDY) bit. This bit indicates that the device is
capable to respond to a command.
The IDD checks its status when it receives a command. If an error is
detected (not ready state), the IDD clears this bit to 0. This is cleared
to 0 at power-on and it is cleared until the rotational speed of the
spindle motor reaches the steady speed.
- Bit 5: The Device Write Fault (DF) bit. This bit indicates that a device fault
(write fault) condition has been detected.
If a write fault is detected during command execution, this bit is
latched and retained until the device accepts the next command or
reset.
- Bit 4: Device Seek Complete (DSC) bit. This bit indicates that the device
heads are positioned over a track.
In the IDD, this bit is always set to 1 after the spin-up control is
completed.
- Bit 3: Data Request (DRQ) bit. This bit indicates that the device is ready to
transfer data of word unit or byte unit between the host system and the
device.
- Bit 2: Always 0.
5-12
C141-E192-01EN
5.2 Logical Interface
- Bit 1: Always 0.
- Bit 0: Error (ERR) bit. This bit indicates that an error was detected while the
previous command was being executed. The Error register indicates
the additional information of the cause for the error.
(10) Command register (X’1F7’)
The Command register contains a command code being sent to the device. After
this register is written, the command execution starts immediately.
Table 5.3 lists the executable commands and their command codes. This table
also lists the necessary parameters for each command which are written to certain
registers before the Command register is written.
5.2.3 Control block registers
(1) Alternate Status register (X’3F6’)
The Alternate Status register contains the same information as the Status register
of the command block register.
The only difference from the Status register is that a read of this register does not
imply Interrupt Acknowledge and INTRQ signal is not reset.
Bit 7
BSY
Bit 6
Bit 5
DF
Bit 4
DSC
Bit 3
DRQ
Bit 2
0
Bit 1
0
Bit 0
ERR
DRDY
C141-E192-01EN
5-13
Interface
(2) Device Control register (X’3F6’)
The Device Control register contains device interrupt and software reset.
Bit 7
HOB
Bit 6
X
Bit 5
X
Bit 4
X
Bit 3
X
Bit 2
Bit 1
nIEN
Bit 0
0
SRST
- Bit 7: High Order Byte (HOB) is the selector bit that selects higher-order
information or lower-order information of the EXT system command.
If HOB = 1, LBA bits 47 to 24 and the higher-order 8 bits of the sector
count are displayed in the task register.
If HOB = 0, LBA bits 23 to 0 and the lower-order 8 bits of the sector
count are displayed in the task register.
- Bit 2: Software Reset (SRST) is the host software reset bit. When this bit is
set, the device is held reset state. When two device are daisy chained
on the interface, setting this bit resets both device simultaneously.
The slave device is not required to execute the DASP- handshake.
- Bit 1: nIEN bit enables an interrupt (INTRQ signal) from the device to the
host. When this bit is 0 and the device is selected, an interruption
(INTRQ signal) can be enabled through a tri-state buffer. When this
bit is 1 or the device is not selected, the INTRQ signal is in the high-
impedance state.
5.3 Host Commands
The host system issues a command to the device by writing necessary parameters
in related registers in the command block and writing a command code in the
Command register.
The device can accept the command when the BSY bit is 0 (the device is not in
the busy status).
The host system can halt the uncompleted command execution only at execution
of hardware or software reset.
When the BSY bit is 1 or the DRQ bit is 1 (the device is requesting the data
transfer) and the host system writes to the command register, the correct device
operation is not guaranteed.
5.3.1 Command code and parameters
Table 5.3 lists the supported commands, command code and the registers that
needed parameters are written.
5-14
C141-E192-01EN
5.3 Host Commands
Table 5.3 Command code and parameters (1 of 3)
Command code (Bit)
Parameters used
Command name
7
6
5
4
3
2
1
0
FR SC SN CY DH
READ SECTOR(S)
0
1
1
0
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0
0
0
0
1
1
0
1
0
1
1
1
0
1
1
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
0
1
0
0
0
0
1
0
0
1
1
0
X
X
0
1
1
1
0
1
1
0
0
0
0
1
0
1
0
0
1
0
1
0
X
X
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
X
X
0
0
0
1
1
0
0
0
1
1
0
0
R
0
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
N
N
N*
Y
Y
N
N
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
N
N
N
N
N
Y
N
N
Y
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
N
N
N
N
N
Y
N
N
Y
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
D
Y
Y
D
D
D
D
Y
D
D*
Y
Y
D
D
D
READ MULTIPLE
READ DMA
R
R
1
READ VERIFY SECTOR(S)
WRITE MULTIPLE
WRITE DMA
R
0
WRITE VERIFY
WRITE SECTOR(S)
RECALIBRATE
SEEK
R
X
X
1
INITIALIZE DEVICE PARAMETERS 1
IDENTIFY DEVICE
IDENTIFY DEVICE DMA
SET FEATURES
1
1
1
1
1
1
1
0
0
1
1
0
0
1
SET MULTIPLE MODE
SET MAX
0
1
READ NATIVE MAX ADDRESS
EXECUTE DEVICE DIAGNOSTIC
READ LONG
0
0
R
R
0
WRITE LONG
READ BUFFER
WRITE BUFFER
0
IDLE
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
1
C141-E192-01EN
5-15
Interface
Table 5.3 Command code and parameters (2 of 3)
Command code (Bit)
Parameters used
Command name
7
6
5
4
3
2
1
0
FR SC SN CY DH
IDLE IMMEDIATE
STANDBY
1
1
0
1
0
1
1
0
0
0
1
0
0
0
1
1
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
D
D
D
D
D
1
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
STANDBY IMMEDIATE
SLEEP
1
1
0
1
0
1
1
0
0
0
1
0
0
0
0
0
1
1
0
1
0
1
1
0
1
0
0
1
0
1
1
0
CHECK POWER MODE
1
1
0
1
0
1
1
0
1
0
0
1
0
0
0
1
SMART
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
1
1
1
1
1
1
0
0
1
Y
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
N
Y
Y
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
Y
N
D
D
D
D
D
D
D
D
D
Y
Y
Y
Y
Y
D
D
D
SECURITY DISABLE PASSWORD
SECURITY ERASE PREPARE
SECURITY ERASE UNIT
SECURITY FREEZE LOCK
SECURITY SET PASSWORD
SECURITY UNLOCK
FLUSH CACHE
DEVICE CONFIGURATION
SET MAX ADDRESS
SET MAX SET PASSWORD
SET MAX LOCK
SET MAX UNLOCK
SET MAX FREEZE LOCK
READ NATIVE MAX ADDRESS
IDENTIFY COMPONENT
DEVICE CONFIGURATION
RESTORE
DEVICE CONFIGURATION
FREEZE LOCK
1
0
1
1
0
0
0
1
Y
N
N
N
D
5-16
C141-E192-01EN
5.3 Host Commands
Table 5.3 Command code and parameters (3 of 3)
Command code (Bit)
Parameters used
Command name
7
1
6
0
5
1
4
1
3
0
2
0
1
0
0
1
FR SC SN CY DH
DEVICE CONFIGURATION
IDENTIFY
Y
N
N
N
D
DEVICE CONFIGURATION SET
1
1
0
1
1
1
1
1
0
1
0
0
0
0
1
0
Y
N
N
N
N
N
N
N
D
D
READ NATIVE MAX ADDRESS
EXT
*O
*O
*O
*O
*O
*O
*O
*O
*O
SET MAX ADDRESS EXT
FLUSH CACHE EXT
WRITE DMA EXT
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
N
N
N
N
N
N
N
N
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
N
Y
D
D
D
D
D
D
D
D
READ DMA EXT
WRITE MULTIPLE EXT
READ MULTIPLE EXT
WRITE SECTOR (S) EXT
READ SECTOR (S) EXT
DOWNLOAD MICRO CODE
Notes:
FR: Features Register
CY: Cylinder Registers
SC: Sector Count Register
DH: Drive/Head Register
SN: Sector Number Register
R:
Retry at error
1 = Without retry
0 = With retry
Y:
Necessary to set parameters
Y*: Necessary to set parameters under the LBA mode.
N: Not necessary to set parameters (The parameter is ignored if it is set.)
N*: May set parameters
C141-E192-01EN
5-17
Interface
D:
The device parameter is valid, and the head parameter is ignored.
*O: Option (customizing)
D*: The command is addressed to the master device, but both the master device
and the slave device execute it.
X:
Do not care
5.3.2 Command descriptions
The contents of the I/O registers to be necessary for issuing a command and the
example indication of the I/O registers at command completion are shown as
following in this subsection.
Example: READ SECTOR(S)
At command issuance (I/O registers setting contents)
Bit
7
6
5
4
0
3
0
2
0
1
0
0
0
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
0
x
0
1
x
L
DV Head No. / LBA [MSB]
Start cylinder address [MSB] / LBA
Start cylinder address [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
Bit
7
6
5
4
3
2
1
0
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
L
x
DV Head No. / LBA [MSB]
End cylinder address [MSB] / LBA
End cylinder address [LSB] / LBA
End sector No. / LBA [LSB]
X’00’
Error information
5-18
C141-E192-01EN
5.3 Host Commands
CM: Command register
DH: Device/Head register
FR: Features register
ST: Status register
CH: Cylinder High register ER: Error register
CL: Cylinder Low register
L: LBA (logical block address) setting bit
SN: Sector Number register DV: Device address. bit
SC: Sector Count register
Note:
x, xx: Do not care (no necessary to set)
1.
When the L bit is specified to 1, the lower 4 bits of the DH register and all
bits of the CH, CL and SN registers indicate the LBA bits (bits of the DH
register are the MSB (most significant bit) and bits of the SN register are
the LSB (least significant bit).
2.
3.
At error occurrence, the SC register indicates the remaining sector count of data
transfer.
In the table indicating I/O registers contents in this subsection, bit indication is
omitted.
(1) READ SECTOR(S) (X’20’ or X’21’)
This command reads data of sectors specified in the Sector Count register from
the address specified in the Device/Head, Cylinder High, Cylinder Low and
Sector Number registers. Number of sectors can be specified from 1 to 256
sectors. To specify 256 sectors reading, ‘00’ is specified. For the DRQ, INTRQ,
and BSY protocols related to data transfer, see Subsection 5.4.1.
If the head is not on the track specified by the host, the device performs an
implied seek. After the head reaches to the specified track, the device reads the
target sector.
If an error occurs, retry reads are attempted to read the target sector before
reporting an error, irrespective of the R bit setting.
The DRQ bit of the Status register is always set prior to the data transfer
regardless of an error condition.
Upon the completion of the command execution, command block registers
contain the cylinder, head, and sector addresses (in the CHS mode) or logical
block address (in the LBA mode) of the last sector read.
If an unrecoverable error occurs in a sector, the read operation is terminated at the
sector where the error occurred. Command block registers contain the cylinder, the
head, and the sector addresses of the sector (in the CHS mode) or the logical
block address (in the LBA mode) where the error occurred, and remaining
number of sectors of which data was not transferred.
C141-E192-01EN
5-19
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
0
x
0
1
x
0
0
0
0
R
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
(R: Retry)
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00 (*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors of which data was not transferred is set in this register.
(2) READ MULTIPLE (X’C4’)
The READ MULTIPLE Command performs the same as the READ SECTOR(S)
Command except that when the device is ready to transfer data for a block of
sectors, and enters the interrupt pending state only before the data transfer for the
first sector of the block sectors. In the READ MULTIPLE command operation,
the DRQ bit of the Status register is set only at the start of the data block, and is
not set on each sector.
The number of sectors per block is defined by a successful SET MULTIPLE
MODE Command. The SET MULTIPLE MODE command should be executed
prior to the READ MULTIPLE command.
If the number of requested sectors is not divided evenly (having the same number
of sectors [block count]), as many full blocks as possible are transferred, then a
5-20
C141-E192-01EN
5.3 Host Commands
final partial block is transferred. The number of sectors in the partial block to be
transferred is n where n = remainder of (“number of sectors”/”block count”).
If the READ MULTIPLE command is issued before the SET MULTIPLE MODE
command is executed or when the READ MULTIPLE command is disabled, the
device rejects the READ MULTIPLE command with an ABORTED COMMAND
error.
Figure 5.2 shows an example of the execution of the READ MULTIPLE
command.
•
Block count specified by SET MULTIPLE MODE command = 4 (number of
sectors in a block)
•
READ MULTIPLE command specifies;
Number of requested sectors = 9 (Sector Count register = 9)
Figure 5.2 Execution example of READ MULTIPLE command
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1
x
1
0
x
0
0
1
0
0
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
C141-E192-01EN
5-21
Interface
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00(*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors for which data was not transferred is set in this register.
(3) READ DMA (X’C8’ or X’C9’)
This command operates similarly to the READ SECTOR(S) command except for
following events.
•
•
•
The data transfer starts at the timing of DMARQ signal assertion.
The device controls the assertion or negation timing of the DMARQ signal.
The device posts a status as the result of command execution only once at
completion of the data transfer.
When an error, such as an unrecoverable medium error, that the command
execution cannot be continued is detected, the data transfer is stopped without
transferring data of sectors after the erred sector. The device generates an
interrupt using the INTRQ signal and posts a status to the host system. The
format of the error information is the same as the READ SECTOR(S) command.
In LBA mode
The logical block address is specified using the start head No., start cylinder No.,
and first sector No. fields. At command completion, the logical block address of
the last sector and remaining number of sectors of which data was not transferred,
like in the CHS mode, are set.
The host system can select the DMA transfer mode by using the SET FEATURES
command.
•
•
Multiword DMA transfer mode 0 to 2
Ultra DMA transfer mode 0 to 5
5-22
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1
x
1
0
x
0
1
0
0
R
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00 (*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors of which data was not transferred is set in this register.
(4) READ VERIFY SECTOR(S) (X’40’ or X’41’)
This command operates similarly to the READ SECTOR(S) command except that
the data is not transferred to the host system.
After all requested sectors are verified, the device clears the BSY bit of the Status
register and generates an interrupt. Upon the completion of the command
execution, the command block registers contain the cylinder, head, and sector
number of the last sector verified.
If an unrecoverable error occurs, the verify operation is terminated at the sector
where the error occurred. The command block registers contain the cylinder, the
head, and the sector addresses (in the CHS mode) or the logical block address (in
the LBA mode) of the sector where the error occurred. The Sector Count register
indicates the number of sectors that have not been verified.
C141-E192-01EN
5-23
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
0
x
1
0
x
0
0
0
0
R
L
DV Start head No. / LBA [MSB]
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00 (*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors of which data was not transferred is set in this register.
(5) WRITE SECTOR(S) (X’30’ or X’31’)
This command writes data of sectors from the address specified in the
Device/Head, Cylinder High, Cylinder Low, and Sector Number registers to the
address specified in the Sector Count register. Number of sectors can be specified
from 1 to 256 sectors. A sector count of 0 requests 256 sectors. Data transfer
begins at the sector specified in the Sector Number register. For the DRQ,
INTRQ, and BSY protocols related to data transfer, see Subsection 5.4.2.
If the head is not on the track specified by the host, the device performs an
implied seek. After the head reaches to the specified track, the device writes the
target sector.
If an error occurs when writing to the target sector, retries are attempted
irrespectively of the R bit setting.
The data stored in the buffer, and CRC code and ECC bytes are written to the data
field of the corresponding sector(s). Upon the completion of the command
execution, the command block registers contain the cylinder, head, and sector
addresses of the last sector written.
5-24
C141-E192-01EN
5.3 Host Commands
If an error occurs during multiple sector write operation, the write operation is
terminated at the sector where the error occurred. Command block registers
contain the cylinder, the head, the sector addresses (in the CHS mode) or the
logical block address (in the LBA mode) of the sector where the error occurred.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
0
x
0
1
x
1
0
0
0
R
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00 (*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors of which data was not transferred is set in this register.
C141-E192-01EN
5-25
Interface
(6) WRITE MULTIPLE (X’C5’)
This command is similar to the WRITE SECTOR(S) command. The device does
not generate interrupts (assertion of the INTRQ) signal) on each sector but on the
transfer of a block which contains the number of sectors for which the number is
defined by the SET MULTIPLE MODE command. The DRQ bit of the Status
register is required to set only at the start of the data block, not on each sector.
The number of sectors per block is defined by a successful SET MULTIPLE
MODE command. The SET MULTIPLE MODE command should be executed
prior to the WRITE MULTIPLE command.
If the number of requested sectors is not divided evenly (having the same number
of sectors [block count]), as many full blocks as possible are transferred, then a
final partial block is transferred. The number of sectors in the partial block to be
transferred is n where n = remainder of (“number of sectors”/”block count”).
If the WRITE MULTIPLE command is issued before the SET MULTIPLE
MODE command is executed or when WRITE MULTIPLE command is disabled,
the device rejects the WRITE MULTIPLE command with an ABORTED
COMMAND error.
Disk errors encountered during execution of the WRITE MULTIPLE command are
posted after attempting to write the block or the partial block that was transferred.
Write operation ends at the sector where the error was encountered even if the sector is
in the middle of a block. If an error occurs, the subsequent block shall not be
transferred. Interrupts are generated when the DRQ bit of the Status register is set at
the beginning of each block or partial block.
The contents of the command block registers related to addresses after the transfer
of a data block containing an erred sector are undefined. To obtain a valid error
information, the host should retry data transfer as an individual request.
5-26
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1
x
1
0
x
0
0
1
0
1
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00
Error information
(7) WRITE DMA (X’CA’ or X’CB’)
This command operates similarly to the WRITE SECTOR(S) command except
for following events.
•
•
•
The data transfer starts at the timing of DMARQ signal assertion.
The device controls the assertion or negation timing of the DMARQ signal.
The device posts a status as the result of command execution only once at
completion of the data transfer or completion of processing in the device.
•
The device posts a status as the result of command execution only once at
completion of the data transfer.
When an error, such as an unrecoverable medium error, that the command
execution cannot be continued is detected, the data transfer is stopped without
transferring data of sectors after the erred sector. The device generates an
interrupt using the INTRQ signal and posts a status to the host system. The
format of the error information is the same as the WRITE SECTOR(S) command.
C141-E192-01EN
5-27
Interface
A host system can select the following transfer mode using the SET FEATURES
command.
•
•
Multiword DMA transfer mode 0 to 2
Ultra DMA transfer mode 0 to 5
At command issuance (I/O registers setting contents)
1F7H(CM)
1
x
1
0
x
0
1
0
1
R
1F6H(DH)
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00 (*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors of which data was not transferred is set in this register.
(8) WRITE VERIFY (X’3C’)
This command operates similarly to the WRITE SECTOR(S) command except
that the device verifies each sector immediately after being written. The verify
operation is a read and check for data errors without data transfer. Any error that
is detected during the verify operation is posted.
After all sectors are verified, the last interruption (INTRQ for command
termination) is generated.
5-28
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
0
x
0
1
x
1
1
1
0
0
L
DV Start head No. / LBA
[MSB]
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
Start cylinder No. [MSB] / LBA
Start cylinder No. [LSB] / LBA
Start sector No. / LBA [LSB]
Transfer sector count
xx
At command completion (I/O registers contents to be read)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
L
x
DV End head No. / LBA [MSB]
End cylinder No. [MSB] / LBA
End cylinder No. [LSB] / LBA
End sector No. / LBA [LSB]
00 (*1)
Error information
*1
If the command is terminated due to an error, the remaining number of
sectors of which data was not transferred is set in this register.
(9) RECALIBRATE (X’10’ to X’1F’)
This command performs the calibration. Upon receipt of this command, the
device sets BSY bit of the Status register and performs a calibration. When the
device completes the calibration, the device updates the Status register, clears the
BSY bit, and generates an interrupt.
This command can be issued in the LBA mode.
C141-E192-01EN
5-29
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
0
x
0
x
0
x
1
x
x
x
x
DV xx
xx
xx
xx
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
Note:
Also executable in LBA mode.
(10) SEEK (X’70’ to X’7F’)
This command performs a seek operation to the track and selects the head
specified in the command block registers. After completing the seek operation,
the device clears the BSY bit in the Status register and generates an interrupt.
In the LBA mode, this command performs the seek operation to the cylinder and
head position in which the sector is specified with the logical block address.
5-30
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
0
x
1
1
x
1
x
x
x
x
L
DV Head No. / LBA [MSB]
Cylinder No. [MSB] / LBA
Cylinder No. [LSB] / LBA
Sector No. / LBA [LSB]
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
L
x
DV Head No. / LBA [MSB]
Cylinder No. [MSB] / LBA
Cylinder No. [LSB] / LBA
Sector No. / LBA [LSB]
xx
Error information
(11) INITIALIZE DEVICE PARAMETERS (X’91’)
The host system can set the number of sectors per track and the maximum head
number (maximum head number is “number of heads minus 1”) per cylinder with
this command. Upon receipt of this command, the device sets the BSY bit of
Status register and saves the parameters. Then the device clears the BSY bit and
generates an interrupt.
When the SC register is specified to X’00’, an ABORTED COMMAND error is
posted. Other than X’00’ is specified, this command terminates normally.
The parameters set by this command are retained even after reset or power save
operation regardless of the setting of disabling the reverting to default setting.
The device ignores the L bit specification and operates with only CHS mode
specification.
C141-E192-01EN
5-31
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
0
x
0
x
1
0
0
0
1
DV Max. head No.
xx
xx
xx
Number of sectors/track
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
x
x
DV Max. head No.
Number of sectors/track
Error information
(12) IDENTIFY DEVICE (X’EC’)
The host system issues the IDENTIFY DEVICE command to read parameter
information from the device. Upon receipt of this command, the drive sets the
BSY bit to one, prepares to transfer the 256 words of device identification data to
the host, sets the DRQ bit to one, clears the BSY bit to zero, and generates an
interrupt. After that, the host system reads the information out of the sector
buffer. Table 5.4 shows the values of the parameter words and the meaning in the
buffer.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
0
1
1
1
0
DV xx
xx
xx
xx
xx
xx
5-32
C141-E192-01EN
5.3 Host Commands
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
(13) IDENTIFY DEVICE DMA (X’EE’)
When this command is not used to transfer data to the host in DMA mode, this
command functions in the same way as the Identify Device command.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
0
1
1
1
0
DV xx
xx
xx
xx
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
C141-E192-01EN
5-33
Interface
Table 5.4 Information to be read by IDENTIFY DEVICE command (1 of 2)
Word
0
Value
X’045A’
X’3FFF’
X’xxxx’
X’10’
Description
General Configuration *1
1
Number of Logical cylinders *2
Detailed Configuration *3
2
3
Number of Logical Heads *2
Undefined
4-5
6
X’0000’
X’3F’
Number of Logical sectors per Logical track *2
Undefined
7-9
10-19
20
21
22
X’0000’
Set by a device
X’0003’
X’xxxx’
X’0004’
Serial number (ASCII code, 20 characters, right)
Undefined
Buffer Size (1 LSB: 512 Byte) ex. Buffer Size=2MByte: X’1000’
Number of ECC bytes transferred at READ LONG or WRITE
LONG command
23-26
27-46
47
–
Firmware revision (ASCII code, 8 characters, left)
Model name (ASCII code, 40 characters, left)
Set by a device
X’8010’
Maximum number of sectors per interrupt on READ/WRITE
MULTIPLE command
48
49
X’0000’
X’2B00’
X’400x’
X’0200’
X’0200’
X’0007’
(Variable)
(Variable)
(Variable)
(Variable)
*8
Reserved
Capabilities *4
50
Capabilities *5
51
PIO data transfer mode *6
Reserved
52
53
Enable/disable setting of words 54-58 and 64-70, 88 *7
Number of current Cylinders
Number of current Head
Number of current sectors per track
Total number of current sectors
54
55
56
57-58
59
Transfer sector count currently set by READ/WRITE
MULTIPLE command *8
60-61
62
*2
Total number of user addressable sectors (LBA mode only) *2
Reserved
X’0000’
X’xx07’
X’0003’
X’0078’
63
Multiword DMA transfer mode *9
64
Advance PIO transfer mode support status *10
65
Minimum multiword DMA transfer cycle time per word :
120 [ns]
5-34
C141-E192-01EN
5.3 Host Commands
Table 5.4 Information to be read by IDENTIFY DEVICE command (2 of 2)
Word
66
Value
Description
X’0078’
Manufacturer’s recommended DMA transfer cycle time : 120
[ns]
67
68
X’00F0’
X’0078’
Minimum PIO transfer cycle time without IORDY flow control
: 240 [ns]
Minimum PIO transfer cycle time with IORDY flow control :
120 [ns]
69-79
80
X’0000’
X’007C’
X’0019’
X’346B’
X’7x28’
X’40xx’
*15
Reserved
Major version number *11
81
Minor version number
82
Support of command sets *12
Support of command sets *13
Support of command sets/function *14
Valid of command sets/function *15
Valid of command sets/function *16
Default of command sets/function *17
Ultra DMA transfer mode *18
Security Erase Unit execution time (1 LSB: 2 min.) *19
83
84
85
86
*16
87
*17
88
X’xx3F’
Set by a device
X’0000’
89
90
Enhanced Security Erase Unit execution time
(1 LSB: 2 min.)
91
92
(Variable)
(Variable)
*20
Advance power management level
Master password revision
Hardware configuration *20
Acoustic Management level *21
Reserved
93
94
(Variable)
X’0000’
X’xx’
95-99
100-103
Total number of sectors accessible by users in the 48-bit LBA
mode *22
104-127
128
X’00’
Reserved
X’0xxx’
X’xxxx’
X’0000’
X’xxA5’
Security status *23
Undefined
129-159
160-254
255
Reserved
Check sum (The 2 complement of the lower order byte resulting
from summing bits 7 to 0 of word 0 to 254 and word 255, in
byte units.)
*1 Word 0: General configuration
Bit 15:
ATA device = 0, ATAPI device = 1
C141-E192-01EN
5-35
Interface
Bit 14-8: Undefined
Bit 7:
Removable disk drive = 1
Bit 6:
Fixed drive = 1
Bit 5-3:
Bit 2:
Undefined
IDENTIFY DEVICE Valid = 0
Reserved
Bit 1-0:
*2 Word 1, 3, 6, 60-61
MHT2080AT MHT2060AT MHT2040AT MHT2030AT MHT2020AT
Word 01
Word 03
Word 06
Word 60-61
X’3FFF’
X’10’
X’3FFF’
X’10’
X’3FFF’
X’10’
X’3FFF’
X’10’
X’3FFF’
X’10’
X’3F’
X’3F’
X’3F’
X’3F’
X’3F’
X’950F8B0’
X’6FC7C80’
X’4A85300’
X’37E3E40’
X’2542980’
*3 Status of the Word 2 Identify information is shown as follows:
37C8h
738Ch
8C73h
C837h
Others
The device requires the SET FEATURES sub-command after the
power-on sequence in order to spin-up. The Identify information
is incomplete.
The device requires the SET FEATURES sub-command after the
power-on sequence in order to spin-up. The Identify information
is incomplete.
The device requires the SET FEATURES sub-command after the
power-on sequence in order to spin-up. The Identify information
is incomplete.
The device requires the SET FEATURES sub-command after the
power-on sequence in order to spin-up. The Identify information
is incomplete.
Reserved
*4 Word 49: Capabilities
Bit 15-14: Reserved
Bit 13:
Bit 12:
Bit 11:
Standby timer value. ATA spec is '1.'
Reserved
1 = Supported
Bit 10:
Bit 7-0:
Bit 8:
0 = Disable inhibition
Undefined
1 = LBA Supported
Bit 9:
1 = DMA Supported
5-36
C141-E192-01EN
5.3 Host Commands
*5 Word 50: Device capability
Bit 15:
Bit 14:
0
1
Bit 13 to 1 Reserved
Bit 0
Standby timer value '1' = Standby timer value of the device is the
smallest value.
*6 Word 51: PIO data transfer mode
Bit 15-8: PIO data transfer mode
X’02’=PIO mode 2
Bit 7-0:
Undefined
*7 Word 53: Enable/disable setting of word 54-58 and 64-70
Bit 15-3: Reserved
Bit 2:
Bit 1:
Bit 0:
1 = Enable the word 88
1 = Enable the word 64-70
1 = Enable the word 54-58
*8 Word 59: Transfer sector count currently set by READ/WRITE
MULTIPLE command
Bit 15-9: Reserved
Bit 8:
1 = Enable the multiple sector transfer
Bit 7-0:
Transfer sector count currently set by READ/WRITE
MULTIPLE command without interrupt supports 2, 4, 8 and 16
sectors.
*9 Word 63: Multiword DMA transfer mode
Bit 15-11: Reserved
Bit 10:
Bit 9:
Bit 8:
Bit 7-3:
Bit 2:
Bit 1:
Bit 0:
'1' = multiword DMA mode 2 is selected.
'1' = multiword DMA mode 1 is selected.
'1' = multiword DMA mode 0 is selected.
Reserved
1 = Multiword DMA mode 2, 1, and 0 supported (Bit 1 = 0 = '1')
1 = Multiword DMA mode 1, and 0 supported (Bit 0 = '1')
1 = Mode 0
*10 Word 64: Advance PIO transfer mode support status
Bit 15-8: Reserved
C141-E192-01EN
5-37
Interface
Bit 7-0:
Bit 1:
Advance PIO transfer mode
1 = Mode 4
Bit 0:
1 = Mode 3
*11 WORD 80
Bit 15-7: Reserved
Bit 6:
Bit 5:
1 = ATA/ATAPI-6 supported
1 = ATA/ATAPI-5 supported
1 = ATA/ATAPI-4 supported
1 = ATA-3 supported
Bit 4:
Bit 3:
Bit 2:
1 = ATA-2 supported
Bit 1-0:
*12 WORD 82
Bit 15:
Bit 14:
Bit 13:
Bit 12:
Bit 11:
Bit 10:
Bit 9:
Undefined
Undefined
'1' = Supports the NOP command.
'1' = Supports the READ BUFFER command.
'1' = Supports the WRITE BUFFER command.
Undefined
'1' = Supports the Host Protected Area feature set.
'1' = Supports the DEVICE RESET command.
'1' = Supports the SERVICE interrupt.
'1' = Supports the release interrupt.
Bit 8:
Bit 7:
Bit 6:
'1' = Supports the read cache function.
'1' = Supports the write cache function.
'1' = Supports the PACKET command feature set.
'1' = Supports the power management feature set.
'1' = Supports the Removable Media feature set.
'1' = Supports the Security Mode feature set.
'1' = Supports the SMART feature set.
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:
5-38
C141-E192-01EN
5.3 Host Commands
*13 WORD 83
Bits 15-14: Undefined
Bit 13:
Bit 12:
Bit 11:
Bit 10:*
Bit 9:
'1' = FLUSH CACHE EXT command supported.
'1' = FLUSH CACHE command supported.
'1' = Device Configuration Overlay feature set supported.
'1' = 48 bit LBA feature set.
'1' = Automatic Acoustic Management feature set.
'1' = Supports the SET MAX Security extending command.
Reserved
Bit 8:
Bit 7:
Bit 6:
'1' = When the power is turned on, spin is started by the SET
FEATURES sub-command.
Bit 5:
Bit 4:
'1' = Supports the Power-Up In Standby set.
'1' = Supports the Removable Media Status Notification feature
set.
Bit 3:
Bit 2:
Bit 1:
Bit 0:
'1' = Supports the Advanced Power Management feature set.
'1' = Supports the CFA (Compact Flash Association) feature set.
'1' = Supports the READ/WRITE DMA QUEUED command.
'1' = Supports the DOWNLOAD MICROCODE command.
*: Option (customizing)
*14 WORD 84
Bit 15:
= 0
Bit 14:
Bit 13-2:
Bit 1:
= 1
Reserved
'1' = Supports the SMART SELF-TEST.
'1' = Supports the SMART Error Logging.
Bit 0:
*15 WORD 85
Bit 15:
Undefined.
Bit 14:
'1' = Supports the NOP command.
'1' = Supports the READ BUFFER command.
'1' = Supports the WRITE BUFFER command.
Undefined.
Bit 13:
Bit 12:
Bit 11:
C141-E192-01EN
5-39
Interface
Bit 10:
Bit 9:
Bit 8:
'1' = Supports the Host Protected Area function.
'1' = Supports the DEVICE RESET command.
'1' = Enables the SERVICE interrupt. From the SET FEATURES
command
Bit 7:
Bit 6:
'1' = Enables the release interrupt. From the SET FEATURES
command
'1' = Enables the read cache function. From the SET FEATURES
command
Bit 5:
Bit 4:
'1' = Enables the write cache function.
'1' = Enables the P PACKET command set.
Bit 3:
'1' = Supports the Power Management function.
'1' = Supports the Removable Media function.
'1' = From the SECURITY SET PASSWORD command
'1' = From the SMART ENABLE OPERATION command
Bit 2:
Bit 1:
Bit 0:
*16 WORD 86
Bits 15:
Reserved
Bit 13-10: Same definition as WORD 83.
Bit 9:
'1' = Enables the Automatic Acoustic Management function.
From the SET FEATURES command
Bit 8:
'1' = From the SET MAX SET PASSWORD command
Bits 7-6: Same definition as WORD 83.
Bit 5:
Bit 4:
Bit 3:
'1' = Enables the Power-Up In Standby function.
'1' = Enables the Removable Media Status Notification function.
'1' = Enables the Advanced Power Management function.
Bits 2-0: Same definition as WORD 83.
*17 WORD 87
Bits 15:
Bits 14:
= '0'
= '1'
Bits 13-2: Reserved
Bit 1-0: Same definition as WORD 84.
5-40
C141-E192-01EN
5.3 Host Commands
*18 WORD 88
Bit 15-8: Currently used Ultra DMA transfer mode
Bit 13: '1' = Mode 5 is selected.
Bit 12: '1' = Mode 4 is selected.
Bit 11: '1' = Mode 3 is selected.
Bit 10: '1' = Mode 2 is selected.
Bit 9: '1' = Mode 1 is selected.
Bit 8: '1' = Mode 0 is selected.
Supportable Ultra DMA transfer mode
Bit 5: '1' = Supports the Mode 5
Bit 4: '1' = Supports the Mode 4
Bit 3: '1' = Supports the Mode 3
Bit 2: '1' = Supports the Mode 2
Bit 1: '1' = Supports the Mode 1
Bit 0: '1' = Supports the Mode 0
Bit 7-0:
*19 WORD 89
MHT2080AT = X'30': 96 minutes
MHT2060AT = X'24': 72 minutes
MHT2040AT = X'18': 48 minutes
MHT2030AT = X'12': 36 minutes
MHT2020AT = X'0C': 24 minutes
*20 WORD 93
Bits 15:
= 0
Bit 14:
Bit 13:
= '1'
'1' = CBLID- is a higher level than VIH (80-conductor cable).
'0' = CBLID- is a lower level than VIL (40-conductor cable).
Bits 12-8: In the case of Device 1 (slave drive), a valid value is set.
Bit 12:
Bit 11:
Reserved
'1' = Device asserts PDIAG-.
Bit 10, 9: Method for deciding the device No. of Device 1.
C141-E192-01EN
5-41
Interface
'00' = Reserved
'01' = Using a jumper.
'10' = Using the CSEL signal.
'11' = Other method.
Bit 8:
= '1' (In the case of device 1)
Bits 7-0: In the case of Device 0 (master drive), a valid value is set.
Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Reserved
'1' = Device 1 is selected, Device 0 responds.
'1' = Device 0, assertion of DASP- was detected.
'1' = Device 0, assertion of PDIAG- was detected.
'1' = Device 0, an error was not detected in the self-
diagnosis.
Bit 2, 1: Method for deciding the device No. of Device 0.
'00' = Reserved
'01' = Using a jumper.
'10' = Using the CSEL signal.
'11' = Other method.
Bit 0:
'1'= (In the case of device 0)
*21 WORD 94
Bit 15-8: X'FE' Recommended acoustic management value.
Bit 7-0:
X'XX' Current set value.
FE-C0: Performance mode
BF-80: Acoustic mode
00:
Acoustic management is unused it.
(It is same as "FE-CO")
*22 WORD 100-103
When "48 bit LBA" of the option (customize) is supported, same number of
LBA as WORD 60-61 is displayed.
*23 WORD 128
Bit 15-9: Reserved
Bit 8:
Security level. 0: High, 1: Maximum
Reserved
Bit 7-6:
5-42
C141-E192-01EN
5.3 Host Commands
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:
'1' = Enhanced security erase supported
'1' = Security counter expired
'1' = Security frozen
'1' = Security locked
'1' = Security enabled
'1' = Security supported
(14) SET FEATURES (X’EF’)
The host system issues the SET FEATURES command to set parameters in the
Features register for the purpose of changing the device features to be executed.
Upon receipt of this command, the device sets the BSY bit of the Status register
and saves the parameters in the Features register. Then, the device clears the
BSY bit, and generates an interrupt.
If the value in the Features register is not supported or it is invalid, the device
posts an ABORTED COMMAND error.
Table 5.5 lists the available values and operational modes that may be set in the
Features register.
C141-E192-01EN
5-43
Interface
Table 5.5 Features register values and settable modes
Features
Drive operation mode
Register
X’02’
X’03’
X’05’
X’42’
X’55’
X’66’
X’82’
X’85’
X’AA’
X’BB’
Enables the write cache function.
Set the data transfer mode. *1
Enables the advanced power management function. *2
Enables the Acoustic management function. *3
Disables read cache function.
Disables the reverting to power-on default settings after software reset. (*1)
Disables the write cache function.
Set the advanced power management mode to the default mode.
Enables the read cache function.
Specifies the transfer of 4-byte ECC for READ LONG and WRITE LONG
commands.
(*1)
X’C2’
X’CC’
Disables the Acoustic management function.
Enables the reverting to power-on default settings after software reset. (*1)
*1 Although there is a response to the command, nothing is done.
At power-on or after hardware reset, the default mode is set as follows.
Write cashe function
Transfer mode
: Enabled
: PIO Mode-4, Multiworld DMA Mode-2
Advanced power
management function
: Enabled (Mode-1)
Acoustic
management function
: State keeping
: Enabled
Read cashe function
5-44
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
0
1
1
1
1
DV xx
xx
xx
xx
xx or *1~3
[See Table 5.5]
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
*1) Data Transfer Mode
The host sets X’03’ to the Features register. By issuing this command with
setting a value to the Sector Count register, the transfer mode can be selected.
Upper 5 bits of the Sector Count register defines the transfer type and lower 3 bits
specifies the binary mode value.
The IDD supports following values in the Sector Count register value. If other
value than below is specified, an ABORTED COMMAND error is posted.
PIO default transfer mode
00000 000 (X’00’)
PIO flow control transfer mode X
00001 000 (X’08’: Mode 0)
00001 001 (X’09’: Mode 1)
00001 010 (X’0A’: Mode 2)
00001 011 (X’0B’: Mode 3)
00001 100 (X’0C’: Mode 4)
C141-E192-01EN
5-45
Interface
Multiword DMA transfer mode X
Ultra DMA transfer mode X
00100 000 (X’20’: Mode 0)
00100 001 (X’21’: Mode 1)
00100 010 (X’22’: Mode 2)
01000 000 (X’40’: Mode 0)
01000 001 (X’41’: Mode 1)
01000 010 (X’42’: Mode 2)
01000 011 (X’43’: Mode 3)
01000 100 (X’44’: Mode 4)
01000 101 (X’45’: Mode 5)
*2) Advanced Power Management (APM)
The host writes the Sector Count register with the desired power management
level and executes this command with the Features register X’05’, and then
Advanced Power Management is enabled.
The drive automatically shifts to power saving mode up to the specified APM
level when the drive does not receive any commands for a specific time. The
sequence in which the power management level shifts is from Active Idle to Low
Power Idle to Standby. The Mode-2 level requires the longest shifting time,
depending on the APM level settings. The settings of the APM level revert to
their default values when power-on or a hardware or software reset occurs for the
drive.
APM Level
Mode 0 Active Idle
Mode 1 Low Power Idle
Mode 2 Standby
Sector Count Register
C0h-FEh
80h-BFh
01h-7Fh
00h, FFh
Reserve (State Keep)
Active Idle:
The spindle motor rotates, and the head is loaded on the
media.
Low Power Idle: The spindle motor rotates, and the head is unloaded.
Standby: The spindle motor stops, and the head is unloaded.
5-46
C141-E192-01EN
5.3 Host Commands
*3) Automatic Acoustic Management (AAM)
The host writes to the Sector Count register with the requested acoustic
management level and executes this command with subcommand code 42h, and
then Automatic Acoustic Management is enabled. The AAM level setting is
preserved by the drive across power on, hardware and software resets.
AAM Level
Sector Count Register
Performance mode (Fast Seek)
Acoustic mode (Slow Seek)
Abort
C0h-FEh
80h-BFh
01h-7Fh
00h, FFh
Non Operate
High-speed seek to which gives priority to the performance operates as for
"Performance mode", and low-speed seek by which the seek sound is suppressed
operates as for "Acoustic mode".
Setting the seek mode by this command is applied to the seek operation in all
command processing.
(15) SET MULTIPLE MODE (X’C6’)
This command enables the device to perform the READ MULTIPLE and
WRITE MULTIPLE commands. The block count (number of sectors in a
block) for these commands are also specified by the SET MULTIPLE MODE
command.
The number of sectors per block is written into the Sector Count register. The
IDD supports 2, 4, 8, 16 and 32 (sectors) as the block counts.
Upon receipt of this command, the device sets the BSY bit of the Status register
and checks the contents of the Sector Count register. If the contents of the Sector
Count register is valid and is a supported block count, the value is stored for all
subsequent READ MULTIPLE and WRITE MULTIPLE commands. Execution
of these commands is then enabled. If the value of the Sector Count register is
not a supported block count, an ABORTED COMMAND error is posted and the
READ MULTIPLE and WRITE MULTIPLE commands are disabled.
If the contents of the Sector Count register is 0, when the SET MULTIPLE
MODE command is issued, the READ MULTIPLE and WRITE MULTIPLE
commands are disabled.
When the SET MULTIPLE MODE command operation is completed, the device
clears the BSY bit and generates an interrupt.
C141-E192-01EN
5-47
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
0
x
0
0
1
1
0
DV xx
xx
xx
xx
Sector count/block
xx
After power-on the READ MULTIPLE and WRITE MULTIPLE command
operation are disabled as the default mode.
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
x
x
DV xx
Sector count/block
Error information
(16) SET MAX (F9)
SET MAX Features Register Values
Value
Command
00h
01h
02h
03h
04h
Obsolete
SET MAX SET PASSWORD
SET MAX LOCK
SET MAX UNLOCK
SET MAX FREEZE LOCK
Reserved
05h - FFh
5-48
C141-E192-01EN
5.3 Host Commands
•
SET MAX ADDRESS
A successful READ NATIVE MAX ADDRESS command shall immediately
precede a SET MAX ADDRESS command.
This command allows the maximum address accessible by the user to be set in
LBA or CHS mode. Upon receipt of the command, the device sets the BSY bit
and saves the maximum address specified in the DH, CH, CL and SN registers.
Then, it clears BSY and generates an interrupt.
The new address information set by this command is reflected in Words 1, 54, 57,
58, 60 and 61 of IDENTIFY DEVICE information. If an attempt is made to
perform a read or write operation for an address beyond the new address space, an
ID Not Found error will result.
When SC register bit 0, VV (Value Volatile), is 1, the value set by this command
is held even after power on and the occurrence of a hard reset. When the VV bit is
0, the value set by this command becomes invalid when the power is turned on or
a hard reset occurs, and the maximum address returns to the value most lately set
when VV bit = 1. (The value by VV bit = 0 is held in case that this command
with VV bit = 1 has not been issued or had set the default value, and hard reset
occurs.)
After power on and the occurrence of a hard reset, the host can issue this
command only once when VV bit = 1. If this command with VV bit = 1 is issued
twice or more, any command following the first time will result in an Aborted
Command error.
When the SET MAX ADDRESS EXT command is executed, all SET MAX
ADRESS commands are aborted. The address value returns to the origin when the
SET MAX ADDRESS EXT command is executed using the address value
returned by the READ NATIVE MAX ADDRESS command.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
1
x
1
1
0
0
1
L
DV Max head/LBA [MSB]
Max. cylinder [MSB]/Max. LBA
Max. cylinder [LSB]/Max. LBA
Max. sector/Max. LBA [LSB]
xx
xx
VV
C141-E192-01EN
5-49
Interface
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
x
x
DV Max head/LBA [MSB]
Max. cylinder [MSB]/Max. LBA
Max. cylinder [LSB]/Max. LBA
Max. sector/Max. LBA [LSB]
xx
Error information
•
SET MAX SET PASSWORD (FR = 01h)
This command requests a transfer of 1 sector of data from the host, and defines
the contents of SET MAX password. The password is retained by the device until
the next power cycle.
The READ NATIVE MAX ADDRESS command is not executed just before this
command. The command is the SET MAX ADDRESS command if it is the
command just after the READ NATIVE MAX ADDRESS command is executed.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
1
1
0
0
1
DV xx
xx
xx
xx
xx
01
5-50
C141-E192-01EN
5.3 Host Commands
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
xx
xx
xx
xx
xx
Error information
Password information
Words
Contents
0
Reserved
1 to 16
Password (32 bytes)
Reserved
17 to 255
•
SET MAX LOCK (FR = 02h)
The SET MAX LOCK command sets the device into SET_MAX_LOCK state.
After this command is completed, any other SET MAX commands except SET
MAX UNLOCK and SET MAX FREEZE LOCK commands are rejected. And
the device returns command aborted.
The device remains in the SET MAX LOCK state until a power cycle or the
acceptance of SET MAX UNLOCK or SET MAX FREEZE LOCK command.
The READ NATIVE MAX ADDRESS command is not executed just before this
command. The command is the SET MAX ADDRESS command if it is the
command just after the READ NATIVE MAX ADDRESS command is executed.
C141-E192-01EN
5-51
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
1
1
0
0
1
DV xx
xx
xx
xx
xx
02
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
xx
xx
xx
xx
xx
Error information
•
SET MAX UNLOCK (FR = 03h)
This command requests a transfer of single sector of data from the host, and
defines the contents of SET MAX ADDRESS password.
The password supplied in the sector of data transferred shall be compared with the
stored password.
If the password compare fails, the device returns command aborted and
decrements the Unlock counter, and remains in the Set Max Lock state. On the
acceptance of the SET MAX LOCK command, the Unlock counter is set to a
value of five. When this counter reaches zero, then SET MAX UNLOCK
command returns command aborted until a power cycle.
If the password compare matches, then the device makes a transition to the Set
Max Unlocked state and all SET MAX commands will be accepted.
The READ NATIVE MAX ADDRESS command is not executed just before this
command. The command is the SET MAX ADDRESS command if it is the
command just after the READ NATIVE MAX ADDRESS command is executed.
5-52
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
1
1
0
0
1
DV xx
xx
xx
xx
xx
03
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
xx
xx
xx
xx
xx
Error information
•
SET MAX FREEZE LOCK (FR=04h)
The Set MAX FREEZE LOCK command sets the device to SET_MAX_Frozen
state.
After the device made a transition to the Set Max Freeze Lock state, the following
SET MAX commands are rejected, then the device returns command aborted:
−
−
−
−
SET MAX ADDRESS
SET MAX SET PASSWORD
SET MAX LOCK
SET MAX UNLOCK
If the Device is in the SET_MAX_UNLOCK state with the SET MAX FREEZE
LOCK command, then the device returns command aborted.
The READ NATIVE MAX ADDRESS command is not executed just before this
command. The command is the SET MAX ADDRESS command if it is the
command just after the READ NATIVE MAX ADDRESS command is executed.
C141-E192-01EN
5-53
Interface
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
1
1
0
0
1
DV xx
xx
xx
xx
xx
04
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
xx
xx
xx
xx
xx
Error information
(17) READ NATIVE MAX ADDRESS (F8)
This command posts the maximum address intrinsic to the device, which can be
set by the SET MAX ADDRESS command. Upon receipt of this command, the
device sets the BSY bit and indicates the maximum address in the DH, CH, CL
and SN registers. Then, it clears BSY and generates an interrupt.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
1
x
1
1
0
0
0
L
DV xx
xx
xx
xx
xx
xx
5-54
C141-E192-01EN
5.3 Host Commands
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
x
x
DV Max head/LBA [MSB]
Max. cylinder [MSB]/Max. LBA
Max. cylinder [LSB]/Max. LBA
Max. sector/Max. LBA [LSB]
xx
Error information
(18) EXECUTE DEVICE DIAGNOSTIC (X’90’)
This command performs an internal diagnostic test (self-diagnosis) of the device.
This command usually sets the DRV bit of the Drive/Head register is to 0
(however, the DV bit is not checked). If two devices are present, both devices
execute self-diagnosis.
If device 1 is present:
•
•
Both devices shall execute self-diagnosis.
The device 0 waits for up to 6 seconds until device 1 asserts the PDIAG-
signal.
•
•
•
If the device 1 does not assert the PDIAG- signal but indicates an error, the
device 0 shall append X’80’ to its own diagnostic status.
The device 0 clears the BSY bit of the Status register and generates an
interrupt. (The device 1 does not generate an interrupt.)
A diagnostic status of the device 0 is read by the host system. When a
diagnostic failure of the device 1 is detected, the host system can read a status
of the device 1 by setting the DV bit (selecting the device 1).
When device 1 is not present:
•
•
The device 0 posts only the results of its own self-diagnosis.
The device 0 clears the BSY bit of the Status register, and generates an
interrupt.
Table 5.6 lists the diagnostic code written in the Error register which is 8-bit code.
If the device 1 fails the self-diagnosis, the device 0 “ORs” X’80’ with its own
status and sets that code to the Error register.
C141-E192-01EN
5-55
Interface
Table 5.6 Diagnostic code
Code
Result of diagnostic
X’01’
X’02’
X’03’
X’04’
X’05’
X’06’
X’8x’
No error detected.
HDC diagnostic error
Data buffer diagnostic error
Memory diagnostic error
Reading the system area is abnormal
Calibration abnormal
Failure of device 1
attention: The device responds to this command with the result of power-on
diagnostic test.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
0
x
0
x
1
0
0
0
0
DV
Head No. /LBA [MSB]
xx
xx
xx
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
x
x
DV
Head No. /LBA [MSB]
xx
01H
01H
Diagnostic code
5-56
C141-E192-01EN
5.3 Host Commands
(19) READ LONG (X’22’ or X’23’)
This command operates similarly to the READ SECTOR(S) command except that
the device transfers the data in the requested sector and the ECC bytes to the host
system. The ECC error correction is not performed for this command. This
command is used for checking ECC function by combining with the WRITE
LONG command. The READ LONG command supports only single sector
operation.
Number of ECC bytes to be transferred is fixed to 4 bytes and cannot be changed
by the SET FEATURES command.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
0
x
0
1
x
0
0
0
1
R
L
DV Head No. /LBA [MSB]
Cylinder No. [MSB] / LBA
Cylinder No. [LSB] / LBA
Sector No. / LBA [LSB]
01
xx
(R: Retry)
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
L
x
DV Head No. /LBA [MSB]
Cylinder No. [MSB] / LBA
Cylinder No. [LSB] / LBA
Sector No. / LBA [LSB]
xx
Error information
C141-E192-01EN
5-57
Interface
(20) WRITE LONG (X’32’ or X’33’)
This command operates similarly to the READ SECTOR(S) command except that
the device writes the data and the ECC bytes transferred from the host system to
the disk medium. The device does not generate ECC bytes by itself. The WRITE
LONG command supports only single sector operation.
The number of ECC bytes to be transferred is fixed to 4 bytes and can not be
changed by the SET FEATURES command.
This command is operated under the following conditions:
•
READ LONG issued → WRITE LONG (Same address) issues sequence
(After READ LONG is issued, WRITE LONG can be issued consecutively.)
If above condition is not satisfied, the WRITE LONG Data becomes the
Uncorrectable error for subsequence READ command.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
0
x
0
1
x
1
0
0
1
R
L
DV Head No. /LBA [MSB]
Cylinder No. [MSB] / LBA
Cylinder No. [LSB] / LBA
Sector No. / LBA [LSB]
01
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
L
x
DV Head No. /LBA [MSB]
Cylinder No. [MSB] / LBA
Cylinder No. [LSB] / LBA
Sector No. / LBA [LSB]
xx
Error information
5-58
C141-E192-01EN
5.3 Host Commands
(21) READ BUFFER (X’E4’)
The host system can read the current contents of the data buffer of the device by
issuing this command. Upon receipt of this command, the device sets the BSY bit
of Status register and sets up for a read operation. Then the device sets the DRQ
bit of Status register, clears the BSY bit, and generates an interrupt. After that,
the host system can read up to 512 bytes of data from the buffer.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
1
1
0
1
0
0
x
x
DV xx
xx
xx
xx
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
C141-E192-01EN
5-59
Interface
(22) WRITE BUFFER (X’E8’)
The host system can overwrite the contents of the data buffer of the device with a
desired data pattern by issuing this command. Upon receipt of this command, the
device sets the BSY bit of the Status register. Then the device sets the DRQ bit of
Status register and clears the BSY bit when the device is ready to receive the data.
After that, 512 bytes of data is transferred from the host and the device writes the
data to the buffer, then generates an interrupt.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
1
x
1
x
1
1
0
0
0
DV xx
xx
xx
xx
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
5-60
C141-E192-01EN
5.3 Host Commands
(23) IDLE (X’97’ or X’E3’)
Upon receipt of this command, the device sets the BSY bit of the Status register,
and enters the idle mode. Then, the device clears the BSY bit, and generates an
interrupt. The device generates interrupt even if the device has not fully entered
the idle mode. If the spindle of the device is already rotating, the spin-up
sequence shall not be implemented.
By using this command, the APS (Automatic Power Standby) timer function is
enabled and the timer immediately starts the countdown. When the timer reaches
the specified value, the device enters standby mode. The APS timer is set to
prohibition if the Sector Count register's value was "00h" when device has
received this command.
The APS timer allows the device to change to the standby mode automatically
after specified period. When the device enters the idle mode, the timer starts
countdown. If any command is not issued while the timer is counting down, the
device automatically enters the standby mode. If any command is issued while the
timer is counting down, the timer is initialized and the command is executed. The
timer restarts countdown after completion of the command execution.
The period of timer count is set depending on the value of the Sector Count
register as shown below.
Sector Count register value
[X’00’]
Point of timer
Timeout disabled
0
1 to 240
241 to 251 [X’F1’ to X’FB’]
[X’01’ to X’F0’]
(Value × 5) seconds
((Value-240) × 30) min
21 minutes
252
253
[X’FC’]
[X’FD’]
8 hrs
254 to 255 [X’FE’ to X’FF’]
21 minutes 15 seconds
At command issuance (I/O registers setting contents)
1F7H(CM) X’97’ or X’E3’
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
x
xx
xx
xx
x
x
DV xx
Period of timer
xx
C141-E192-01EN
5-61
Interface
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
(24) IDLE IMMEDIATE (X’95’ or X’E1’)
Upon receipt of this command, the device sets the BSY bit of the Status register,
and enters the idle mode. Then, the device clears the BSY bit, and generates an
interrupt. This command does not support the APS timer function.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
X’95’ or X’E1’
x
xx
xx
xx
xx
xx
x
x
DV xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
5-62
C141-E192-01EN
5.3 Host Commands
(25) STANDBY (X’96’ or X’E2’)
Upon receipt of this command, the device sets the BSY bit of the Status register
and enters the standby mode. The device then clears the BSY bit and generates an
interrupt. If the device has already spun down, the spin-down sequence is not
implemented.
By using this command, the APS (Automatic Power Standby) timer function is
enabled and the timer starts the countdown when the device returns to idle mode.
If the device has not received any command during specified period, then the
device enters standby mode automatically.
Under the standby mode, the spindle motor is stopped. Thus, when the command
involving a seek such as READ SECTOR(s) command is received, the device
processes the command after driving the spindle motor.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
X’96’ or X’E2’
x
xx
xx
xx
x
x
DV xx
Period of timer
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
C141-E192-01EN
5-63
Interface
(26) STANDBY IMMEDIATE (X’94’ or X’E0’)
Upon receipt of this command, the device sets the BSY bit of the Status register
and enters the standby mode. The device then clears the BSY bit and generates an
interrupt. This command does not support the APS timer function.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
X’94’ or X’E0’
x
xx
xx
xx
xx
xx
x
x
DV xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
5-64
C141-E192-01EN
5.3 Host Commands
(27) SLEEP (X’99’ or X’E6’)
This command is the only way to make the device enter the sleep mode.
Upon receipt of this command, the device sets the BSY bit of the Status register
and enters the sleep mode. The device then clears the BSY bit and generates an
interrupt. The device generates an interrupt even if the device has not fully
entered the sleep mode.
In the sleep mode, the spindle motor is stopped and the ATA interface section is
inactive. All I/O register outputs are in high-impedance state.
The only way to release the device from sleep mode is to execute a software or
hardware reset.
At command issuance (I/O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
X’99’ or X’E6’
x
xx
xx
xx
xx
xx
x
x
DV xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
xx
x
x
DV xx
Error information
C141-E192-01EN
5-65
Interface
(28) CHECK POWER MODE (X’98’ or X’E5’)
The host checks the power mode of the device with this command.
The host system can confirm the power save mode of the device by the contents
of the Sector Count register.
The device sets the BSY bit and sets the following register value. After that, the
device clears the BSY bit and generates an interrupt.
Power save mode
Sector Count register
• During moving to standby mode
• Standby mode
X’00’
X’FF’
X’FF’
• Idle mode
• Active mode
At command issuance (I/O registers setting contents)
1F7H(CM) X’98’ or X’E5’
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
x
x
x
DV xx
xx
xx
xx
xx
xx
At command completion (I/O registers contents to be read)
1F7H(ST)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
Status information
x
xx
xx
xx
x
x
DV xx
X’00’ or X’FF’
Error information
5-66
C141-E192-01EN
5.3 Host Commands
(29) SMART (X’B0)
This command predicts the occurrence of device failures depending on the
subcommand specified in the FR register. If the FR register contains values that
are not supported with the command, the Aborted Command error is issued.
Before issuing the command, the host must set the key values in the CL and CH
registers (4Fh in the CL register and C2h in the CH register). If the key values
are incorrect, the Aborted Command error is issued.
If the failure prediction function is disabled, the device returns the Aborted
Command error to subcommands other than those of the SMART Enable
Operations (with the FR register set to D8h).
If the failure prediction function is enabled, the device collects and updates data
on specific items. The values of items whose data is collected and updated by the
device in order to predict device failures are hereinafter referred to as attribute
values.
C141-E192-01EN
5-67
Interface
Table 5.7 Features Register values (subcommands) and functions (1 of 3)
Features Resister
X’D0’
Function
SMART Read Attribute Values:
A device that received this subcommand asserts the BSY bit and saves all
the updated attribute values. The device then clears the BSY bit and
transfers 512-byte attribute value information to the host.
* For information about the format of the attribute value information, see
Table 5.8.
X’D1’
X’D2’
SMART Read Attribute Thresholds:
This subcommand is used to transfer 512-byte insurance failure threshold
value data to the host.
* For information about the format of the insurance failure threshold value
data, see Table 5.9.
SMART Enable/Disable Attribute AutoSave:
Enables (by setting the SC register to a value other than 00h) or disables (by
setting the SC register to 00h) a function that automatically saves device
attribute values (“automatic attribute save function”). This setting is held
regardless of whether the device is turned on or off. If the automatic
attribute save function is enabled and more than 15 minutes has elapsed
since the last time that attributes were saved, then the attributes are saved.
However, if the automatic attribute save function is disabled, the attributes
are not saved. Upon receiving this subcommand, a device asserts BSY,
enables or disables the automatic attribute save function, and clears BSY.
X’D3’
X’D4’
SMART Save Attribute Values:
When the device receives this subcommand, it asserts the BSY bit, saves
device attribute value data, then clears the BSY bit.
SMART Executive Off-line Immediate:
A device which receives this command asserts the BSY bit, then starts
collecting the off-line data specified in the SN register, or stops.
In the off-line mode, after BSY is cleared, off-line data are collected. In the
captive mode, it collects off-line data with the BSY assertion as is, then
clears the BSY when collection of data is completed.
SN Off-line data collection mode
00h: Off-line diagnosis (off-line mode)
01h: Simple self-test (off-line mode)
02h: Comprehensive self-test (off-line mode)
03h: Conveyance self-test (off-line mode)
04h: Selective self-test (off-line mode)
7Fh: Self-test stop
81h: Simple self-test (captive mode)
82h: Comprehensive self-test (captive mode)
83h: Conveyance self-test (captive mode)
84h: Selective self-test (captive mode)
5-68
C141-E192-01EN
5.3 Host Commands
Table 5.7 Features Register values (subcommands) and functions (2 of 3)
Features Resister
X’D5’
Function
SMART Read Log Sector:
A device which receives this sub-command asserts the BSY bit, then reads
the log sector specified in the SN register. Next, it clears the BSY bit and
transmits the log sector to the host computer.
SN:
SC:
Log sector
00h:
01h:
02h:
06h:
09h:
01h:
01h:
33h:
01h:
01h:
SMART log directory
SMART summary error log
SMART comprehensive error log
SMART self-test log
SMART selective self-test log
80h-9Fh: 01h-10h: Host vendor log
* See Table 5.11 concerning the SMART error log data format.
See Table 5.12 concerning the SMART self-test log data format.
See Table 5.13 concerning the SMART selective self-test log data
format.
X’D6’
SMART Write Log Sector:
A device which receives this sub-command asserts the BSY bit and when it
has prepared to receive data from the host computer, it sets DRQ and clears
the BSY bit. Next, it receives data from the host computer and writes the
specified log sector in the SN register.
SN:
SC:
Log sector
09h:
01h:
SMART selective self-test log
80h-9Fh: 01h-10h Host vendor log
* The host can write any desired data in the host vendor log.
SMART Enable Operations:
This subcommand enables the failure prediction feature. The setting is
maintained even when the device is turned off and then on.
When the device receives this subcommand, it asserts the BSY bit, enables
the failure prediction feature, then clears the BSY bit.
X’D8’
X’D9’
SMART Disable Operations:
This subcommand disables the failure prediction feature. The setting is
maintained even when the device is turned off and then on.
When the device receives this subcommand, it asserts the BSY bit, disables
the failure prediction feature, then clears the BSY bit.
C141-E192-01EN
5-69
Interface
Table 5.7 Features Register values (subcommands) and functions (3 of 3)
Features Resister
X’DA’
Function
SMART Return Status:
When the device receives this subcommand, it asserts the BSY bit and saves the
current device attribute values. Then the device compares the device attribute
values with insurance failure threshold values. If there is an attribute value
exceeding the threshold, F4h and 2Ch are loaded into the CL and CH registers.
If there are no attribute values exceeding the thresholds, 4Fh and C2h are loaded
into the CL and CH registers. After the settings for the CL and CH registers
have been determined, the device clears the BSY bit
X’DB’
SMART Enable/Disable Auto Off-line:
This sets automatic off-line data collection in the enabled (when the SC
register specification ≠ 00h) or disabled (when the SC register specification
= 00) state. This setting is preserved whether the drive’s power is switched
on or off.
If 24 hours have passed since the power was switched on, or since the last
time that off-line data were collected, off-line data collection is performed
without relation to any command from the host computer.
The host must regularly issue the SMART Read Attribute Values subcommand
(FR register = D0h), SMART Save Attribute Values subcommand (FR register =
D3h), or SMART Return Status subcommand (FR register = DAh) to save the
device attribute value data on a medium.
Alternative, the device must issue the SMART Enable-Disable Attribute
AutoSave subcommand (FR register = D2h) to use a feature which regularly save
the device attribute value data to a medium.
The host can predict failures in the device by periodically issuing the SMART Return
Status subcommand (FR register = DAh) to reference the CL and CH registers.
If an attribute value is below the insurance failure threshold value, the device is
about to fail or the device is nearing the end of its life . In this case, the host
recommends that the user quickly backs up the data.
At command issuance (I-O registers setting contents)
1F7H(CM)
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(FR)
1
x
0
x
1
x
1
0
0
0
0
DV xx
Key (C2h)
Key (4Fh)
xx
xx
Subcommand
5-70
C141-E192-01EN
5.3 Host Commands
At command completion (I-O registers setting contents)
1F7H(ST) Status information
1F6H(DH)
1F5H(CH)
1F4H(CL)
1F3H(SN)
1F2H(SC)
1F1H(ER)
x
x
x
DV xx
Key-failure prediction status (C2h/2Ch)
Key-failure prediction status (4Fh/F4h)
xx
xx
Error information
The attribute value information is 512-byte data; the format of this data is shown
the following Table 5.8. The host can access this data using the SMART Read
Attribute Values subcommand (FR register = D0h). The insurance failure
threshold value data is 512-byte data; the format of this data is shown the
following Table 5.9. The host can access this data using the SMART Read
Attribute Thresholds subcommand (FR register = D1h).
C141-E192-01EN
5-71
Interface
Table 5.8 Format of device attribute value data
Byte
Item
00
01
Data format version number
02
Attribute 1
Attribute ID
Status flag
03
04
05
06
Current attribute value
Attribute value for worst case so far
Raw attribute value
07 to 0C
0D
Reserved
0E to 169 Attribute 2 to
attribute 30
(The format of each attribute value is the same as
that of bytes 02 to 0D.)
16A
16B
Off-line data collection status
Self-test execution status
16C, 16D Off-line data collection execution time [sec.]
16E
16F
Reserved
Off-line data collection capability
Trouble prediction capability flag
Error logging capability
170, 171
172
173
(Self-test error detection point)
174
Simple self-test (Quick Test) execution time [min.]
Comprehensive self-test (Comprehensive Test) execution time [min.]
Conveyance self-test execution time [min.]
175
176
177 to 181 Reserved
182 to 1FE Vendor unique
1FF
Table 5.9 Format of insurance failure threshold value data
Byte Item
Check sum
00
01
Data format version number
02
03
Threshold 1 Attribute ID
Insurance failure threshold
Reserved
04 to 0D
0E to 169 Threshold 2 to (The format of each threshold value is the same as
Threshold 30 that of bytes 02 to 0D.)
16A to 17B Reserved
17C to 1FE Vendor unique
1FF Check sum
5-72
C141-E192-01EN
5.3 Host Commands
•
Data format version number
The data format version number indicates the version number of the data
format of the device attribute values or insurance failure thresholds. The data
format version numbers of the device attribute values and insurance failure
thresholds are the same. When a data format is changed, the data format
version numbers are updated.
•
Attribute ID
The attribute ID is defined as follows:
Attribute ID
Attribute name
(Indicates unused attribute data.)
Read Error Rate
0
1
2
Throughput Performance
Spin Up Time
3
4
Start/Stop Count
5
Reallocated Sector Count
Seek Error Rate
7
8
Seek Time Performance
Power-On Hours Count
Spin Retry Count
9
10
12
192
193
194
195
196
197
198
199
200
203
Drive Power Cycle Count
Emergency Retract Cycle Count
Load/Unload Cycle Count
HDA Temperature
ECC On the Flag Count
Reallocated Event Count
Current Pending Sector Count
Off-Line Scan Uncorrectable Sector Count
Ultra ATA CRC Error Count
Write Error Rate
Run Out
C141-E192-01EN
5-73
Interface
•
Status Flag
Bit
0
Meaning
If this bit is 1, it indicates normal operations are assured with the
attribute when the attribute value exceeds the threshold value.
1
If this bit is 1 (0), it indicates the attribute only updated by an on-
line test (off-line test).
2
3
4
If this bit 1, it indicates the attribute that represents performance.
If this bit 1, it indicates the attribute that represents an error rate.
If this bit 1, it indicates the attribute that represents the number of
occurrences.
5
If this bit 1, it indicates the attribute that can be collected/saved
even if the drive fault prediction function is disabled.
6 to 15
Reserve bit
•
Current attribute value
It indicates the normalized value of the original attribute value. The value
deviates in a range of 01h to 64h (range of 01h to C8h for the ultra ATA CRC
error rate). It indicates that the closer the value is to 01h, the higher the
possibility of a failure. The host compares the attribute value with the
threshold value. If the attribute value is larger than the threshold value, the
drive is determined to be normal.
•
Attribute value for the worst case so far
This is the worst attribute value among the attribute values collected to date.
This value indicates the state nearest to a failure so far.
•
•
Raw attribute value
Raw attributes data is retained.
Off-line data collection status
5-74
C141-E192-01EN
5.3 Host Commands
Status Byte
Meaning
00h or 80h Off-line data acquisition is not executed.
02h or 82h Off-line data acquisition has ended without an error.
04h or 84h Off-line data acquisition is interrupted by a command from the host.
05h or 85h Off-line data acquisition has ended before completion because of a
command from the host.
06h or 86h Off-line data acquisition has ended before completion because of an
error that makes acquisition impossible. (Not used)
40 to 7Fh Vendor unique (Not used)
C0h to FFh
01h or 81h
03h or 83h
Reserved
07h or 3Fh
87h to BFh
•
Self-test execution status
Bit
Meaning
0 to 3:
Remainder of the self-test is indicated as a percentage in a range
of "0h to 9h" (corresponding to 0 to 90 %).
4 to 7:
= 0h:
Self-test execution status
Self-test has ended successfully, or self-test has not been
executed.
= 1h:
= 2h:
Self-test is suspended by the host.
Self-test is interrupted by a soft/hard reset from the host.
= 3h:
= 4h:
Self-test cannot be executed.
Self-test has ended with an abnormality because of unknown
contents.
= 5h:
= 6h:
= 7h:
Self-test has ended with "Write/Read Test" error.
Self-test has ended with "Servo Check," error.
Self-test has ended with "SMART Drive Error Log Check,"
"Random Read Test," or "Read Scan Test" error.
= 8h:
Self-test has ended with "Pre-SMART Check," or "Post-SMART
Check" error.
= 9h:
= Ah:
= Bh:
Reserved
Reserved
Reserved
= Ch to Eh: Reserved
= Fh:
Self-test is in progress.
C141-E192-01EN
5-75
Interface
•
Off-line data collection capability
Indicates the method of off-line data collection carried out by the drive. If
the off-line data collection capability is 0, it indicates that off-line data
collection is not supported.
Bit
Meaning
0
If this bit is 1, it indicates that the SMART EXECUTE OFF-
LINE IMMEDATE sub-command (FR register = D4h) is
supported.
1
2
Vendor unique
If this bit is 1, it indicates that acquisition of off-line data
under execution is aborted when a new command is received.
3
4
5
6
7
If this bit is 1, it indicates that the SMART Off-line Read
Scanning Technology is supported.
If this bit is 1, it indicates that the SMART Self-test function
is supported.
If this bit is 1, it indicates that the SMART Conveyance Self-
test is supported.
If this bit is 1, it indicates that the SMART Selective Self-
test is supported.
Reserved bits
•
Failure prediction capability flag
Bit
Meaning
0
If this bit is 1, it indicates that the attribute value is saved on
media before the drive enters the power save mode.
1
If this bit is 1, it indicates that the attribute value is saved
automatically after the pre-set operation of the drive.
2 to 15
Reserved bits
•
Error logging capability
Bit
0
Meaning
If this bit is 1, it indicates that the drive error logging
function is supported.
1 to 7
Reserved bits
•
Check sum
Two’s complement of the lower byte, obtained by adding 511-byte data one
byte at a time from the beginning.
5-76
C141-E192-01EN
5.3 Host Commands
•
Insurance failure threshold
The limit of a varying attribute value. The host compares the attribute values
with the thresholds to identify a failure.
Table 5.10 Log Directory Data Format
Byte
Item
00
01
SMART Logging Version
02
Number of sectors of Address "01h"
03
04
05-0B
Reserved
Number of sectors of Address "02h"
Reserved
0C
Number of sectors of Address "06h"
Reserved
0D-11
12
Number of sectors of Address "09h"
Reserved
13-FF
100
Number of sector
Address 80h
101
Reserved
102
Address 81h
Address 9Fh
"102" and "13F" are both the same
format as "100-101"
13F
140
Reserved
1FF
•
SMART error logging
If the device detects an unrecoverable error during execution of a command
received from the host, the device registers the error information in the SMART
Summary Error Log (see Table 5.11) and the SMART Comprehensive Error Log
(see Table 5.11.1), and saves the information on media.
The host issues the SMART Read Log Sector sub-command (FR register = D5h,
SN register = 01h, SC register = 01h) and can read the SMART Summary Error
Log.
The host issues the SMART Read Log Sector sub-command (FR register = D5h,
SN register = 02h, SC register = 33h) and can read the SMART Comprehensive
Error Log.
C141-E192-01EN
5-77
Interface
Table 5.11 Data format of SMART Summary Error Log
Byte
00
Item
Version of this function
01
Pointer for the latest "Error Log Data Structure"
02 to 31
Error log data Reserved
structure
32
33
Command data
structure
Device Control register value
Features register value
34
Sector Count register value
Sector Number register value
Cylinder Low register value
Cylinder High register value
Drive/Head register value
Command register value
35
36
37
38
39
3A to 3D
Elapsed time after the power-on
sequence (unit: ms)
3E
3F
Error data
structure
Reserved
Error register value
Sector Count register value
Sector Number register value
Cylinder Low register value
Cylinder High register value
Drive/Head register value
Status register value
Vendor unique
40
41
42
43
44
45
46 to 58
59
State
5A
5B
Power-on time (unit: h)
5C to 1C3 Error log data Format of each error log data structure is same as those of
structure 2 to
Error log data
structure 5
bytes 02 to 5B.
1C4, 1C5 Number of unrecoverable errors that have occurred.
1C6 to 1FE Reserved
1FF
Check sum
5-78
C141-E192-01EN
5.3 Host Commands
•
•
•
•
Command data structure
Indicates the command received when an error occurs.
Error data structure
Indicates the status register when an error occurs.
Total number of drive errors
Indicates total number of errors registered in the error log.
Checksum
Two's complementary for the lowest-order 1 byte that is obtained by adding 1
byte after another for as many as 511 bytes beginning from the top of the
structure.
•
Status
Bits 0 to 3: Indicates the drive status when received error commands
according to the following table.
Bits 4 to 7: Vendor unique
Status
Meaning
0
Unclear status
Sleep status
1
2
3
Standby status
Active status (BSY bit = 0)
Off-line data collection being executed
Reserved
4
5 to F
Table 5.11.1 Data format of SMART Comprehensive Error Log
Byte
First sector
SMART Error Logging 01h
Index Pointer Latest Error Data Structure.
1st Error Log Data Structure
2nd Error Log Data Structure
3rd Error Log Data Structure
4th Error Log Data Structure
5th Error Log Data Structure
Total Error Count
Next sector
Reserved
00h
01h
Reserved
02h...5Bh
Data Structure 5n + 1
Data Structure 5n + 2
Data Structure 5n + 3
Data Structure 5n + 4
Data Structure 5n + 5
Reserved
5Ch...B5h
B6h...10Fh
110h...169h
16Ah...1C3h
1C4h...1C5h
1C6h...1FEh
1FFh
Reserved
Reserved
Checksum
Checksum
C141-E192-01EN
5-79
Interface
•
SMART Self-Test
The host computer can issue the SMART Execute Off-line Immediate sub-
command (FR Register = D4h) and cause the device to execute a self-test. When
the self-test is completed, the device saves the SMART self-test log to the disk
medium.
The host computer can issue the SMART Read Log Sector sub-command (FR
Register = D5h, SN Register = 06h, SC register = 01h) and can read the SMART
self-test log.
Table 5.12 SMART self-test log data format
Byte
Item
00, 01
02
Self-test log data structure
Self-test log 1 Self-test number (SN Register Value)
03
Self-test execution status
Life time. Total power-on time [hours]
Self-test error No.
04, 05
06
07 to 0A
0B to 19
Error LBA
Vendor unique
1A to 1F9 Self-test log 2 to 21
(Each log data format is the same as that in
byte 02 to 19.)
1FA, 1FB Vendor unique
1FC
Self-test index
1FD, 1FE Reserved
1FF
Check sum
•
•
•
Self-test number
Indicates the type of self-test executed.
Self-test execution status
Same as byte 16Bh of the attribute value.
Self-test index
If this is "00h", it indicates the status where the self-test has never been
executed.
•
Checksum
Two's complementary for the lowest-order 1 byte that is obtained by adding 1
byte after another for as many as 511 bytes from the top.
5-80
C141-E192-01EN
5.3 Host Commands
Table 5.13 Selective self-test log data structure
Offset
Description
Initial
00h, 01h
01h, 00h
Data Structure Revision Number
02h...09h
0Ah...11h
12h...19h
1Ah...21h
22h...29h
2Ah...31h
32h...39h
3Ah...41h
42h...49h
4Ah...51h
52h...151h
152h...1EBh
1Ech...1F3h
1F4h...1F5h
1F6h...1F7h
1F8h
Starting LBA
Test Span 1
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h...00h
00h
Ending LBA
Starting LBA
Test Span 2
Ending LBA
Starting LBA
Test Span 3
Ending LBA
Starting LBA
Test Span 4
Ending LBA
Starting LBA
Test Span 5
Ending LBA
Reserved
Vender Unique
Current LBA under test
Current Span under test
Feature Flags
Offline Execution Flag
1F9h
Vender Unique
Selective Offline Scan Number
Reserved
00h
1FAh, 1FBh
1FCh, 1FDh
1FEh, 1FFh
00h, 00h
00h, 00h
00h, FFh
Selective Self-test pending time [min]
Checksum
•
Test Span
Selective self-test log provides for the definition of up to five test spans. If
the starting and ending LBA values for a test span are both zero, a test span is
not defined and not tested.
•
•
•
Current LBA under test
As the self-test progress, the device shall modify this value to contain the
LBA currently being tested.
Current Span under test
As the self-test progress, the device shall modify this value to contain the test
span number currently being tested.
Feature Flags
C141-E192-01EN
5-81
Interface
Table 5.14 Selective self-test feature flags
Bit
Description
Vendor specific (unused)
0
1
When set to one, perform off-line scan after selective test
Vendor specific (unused)
2
3
When set to one, off-line scan after selective test is pending.
When set to one, off-line scan after selective test is active.
Reserved
4
5...15
Bit [l] shall be written by the host and returned unmodified by the device. Bit
[3:4] shall be written as zeros by the host and the device shall modify them as
the test progress.
•
Selective Self-test pending time [min]
The selective self-test pending time is the time in minutes from power-on to
the resumption of the off-line testing if the pending bit is set.
(30) SECURITY DISABLE PASSWORD (F6h)
This command invalidates the user password already set and releases the lock
function.
The host transfers the 512-byte data shown in Table 5.15 to the device. The
device compares the user password or master password in the transferred data
with the user password or master password already set, and releases the lock
function if the passwords are the same.
Although this command invalidates the user password, the master password is
retained. To recover the master password, issue the SECURITY SET
PASSWORD command and reset the user password.
If the user password or master password transferred from the host does not match,
the Aborted Command error is returned.
Issuing this command while in LOCKED MODE or FROZEN MODE returns the
Aborted Command error.
(The section about the SECURITY FREEZE LOCK command describes
LOCKED MODE and FROZEN MODE.)
5-82
C141-E192-01EN
5.3 Host Commands
Table 5.15 Contents of security password
Word
0
Contents
Control word
Bit 0: Identifier
0 = Compares the user passwords.
1 = Compares the master passwords.
Bits 1 to 15: Reserved
1 to 16
Password (32 bytes)
17 to 255 Reserved
At command issuance (I-O register contents))
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
1
x
1
x
1
0
1
1
0
DV xx
xx
xx
xx
xx
xx
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
C141-E192-01EN
5-83
Interface
(31) SECURITY ERASE PREPARE (F3h)
The SECURITY ERASE UNIT command feature is enabled by issuing the
SECURITY ERASE PREPARE command and then the SECURITY ERASE
UNIT command. The SECURITY ERASE PREPARE command prevents data
from being erased unnecessarily by the SECURITY ERASE UNIT command.
Issuing this command during FROZEN MODE returns the Aborted Command
error.
At command issuance (I-O register contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
1
x
1
x
1
0
0
1
1
DV xx
xx
xx
xx
xx
xx
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
(32) SECURITY ERASE UNIT (F4h)
This command erases all user data. This command also invalidates the user
password and releases the lock function.
The host transfers the 512-byte data shown in Table 5.15 to the device. The
device compares the user password or master password in the transferred data
with the user password or master password already set. The device erases user
data, invalidates the user password, and releases the lock function if the
passwords are the same.
5-84
C141-E192-01EN
5.3 Host Commands
Although this command invalidates the user password, the master password is
retained. To recover the master password, issue the SECURITY SET
PASSWORD command and reset the user password.
If the SECURITY ERASE PREPARE command is not issued immediately before
this command is issued, the Aborted Command error is returned.
Issuing this command while in FROZEN MODE returns the Aborted Command
error.
At command issuance (I-O register contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
1
x
1
x
1
0
1
0
0
DV xx
xx
xx
xx
xx
xx
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
(33) SECURITY FREEZE LOCK (F5h)
This command puts the device into FROZEN MODE. The following commands
used to change the lock function return the Aborted Command error if the device
is in FROZEN MODE.
•
•
•
•
SECURITY SET PASSWORD
SECURITY UNLOCK
SECURITY DISABLE PASSWORD
SECURITY ERASE PREPARE
C141-E192-01EN
5-85
Interface
•
SECURITY ERASE UNIT
FROZEN MODE is canceled when the power is turned off, or when hardware is
reseted. If this command is reissued in FROZEN MODE, the command is
completed and FROZEN MODE remains unchanged.
Issuing this command during LOCKED MODE returns the Aborted Command
error.
The following medium access commands return the Aborted Command error
when the device is in LOCKED MODE:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
READ DMA (EXT)
READ LONG
READ MULTIPLE (EXT)
READ SECTORS
READ VERIFY SECTORS
WRITE DMA (EXT)
WRITE LONG
WRITE MULTIPLE (EXT)
WRITE SECTORS (EXT)
WRITE VERIFY
SECURITY DISABLE PASSWORD
SECURITY FREEZE LOCK
SECURITY SET PASSWORD
SET MAX ADDRESS (EXT)
FLUSH CACHE (EXT)
DCO RESTORE
DCO SET
SET MAX ADDRESS (EXT)
At command issuance (I-O register contents)
1F7h(CM)
1
x
1
x
1
x
1
0
1
0
1
1F6h(DH)
1F5h(CH)
1F4h(CL)
DV xx
xx
xx
5-86
C141-E192-01EN
5.3 Host Commands
1F3h(SN)
1F2h(SC)
1F1h(FR)
xx
xx
xx
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
(34) SECURITY SET PASSWORD (F1h)
This command enables a user password or master password to be set.
The host transfers the 512-byte data shown in Table 5.16 to the device. The
device determines the operation of the lock function according to the
specifications of the Identifier bit and Security level bit in the transferred data.
(Table 5.17)
Issuing this command in LOCKED MODE or FROZEN MODE returns the
Aborted Command error.
Table 5.16 Contents of SECURITY SET PASSWORD data
Word
0
Contents
Control word
Bit 0 Identifier
0 = Sets a user password.
1 = Sets a master password.
Bits 1 to 7 Reserved
Bit 8 Security level
0 = High
1 = Maximum
Bits 9 to 15 Reserved
1 to 16
17
Password (32 bytes)
Master password version number
18 to 255 Reserved
C141-E192-01EN
5-87
Interface
Table 5.17 Relationship between combination of Identifier and Security level, and
operation of the lock function
Identifier
User
Level
High
Description
The specified password is saved as a new user password.
The lock function is enabled after the device is turned off
and then on. LOCKED MODE can be canceled using the
user password or the master password already set.
Master
User
High
The specified password is saved as a new master password.
The lock function is not enabled.
Maximum The specified password is saved as a new user password.
The lock function is enabled after the device is turned off
and then on. LOCKED MODE can be canceled using the
user password only. The master password already set
cannot cancel LOCKED MODE.
Master
Maximum The specified password is saved as a new master password.
The lock function is not enabled.
At command issuance (I-O register contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
1
x
1
x
1
0
0
0
1
DV xx
xx
xx
xx
xx
xx
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
5-88
C141-E192-01EN
5.3 Host Commands
(35) SECURITY UNLOCK
This command cancels LOCKED MODE.
The host transfers the 512-byte data shown in Table 5.15 to the device. Operation
of the device varies as follows depending on whether the host specifies the master
password.
•
When the master password is selected
When the security level is LOCKED MODE is high, the password is
compared with the master password already set. If the passwords are the
same, LOCKED MODE is canceled. Otherwise, the Aborted Command error
is returned. If the security level in LOCKED MODE is set to the highest
level, the Aborted Command error is always returned.
•
When the user password is selected
The password is compared with the user password already set. If the
passwords are the same, LOCKED MODE is canceled. Otherwise, the
Aborted Command error is returned.
If the password comparison fails, the device decrements the UNLOCK counter.
The UNLOCK counter initially has a value of five. When the value of the
UNLOCK counter reaches zero, this command or the SECURITY ERASE UNIT
command causes the Aborted Command error until the device is turned off and
then on, or until a hardware reset is executed. Issuing this command with
LOCKED MODE canceled (in UNLOCK MODE) has no affect on the UNLOCK
counter.
Issuing this command in FROZEN MODE returns the Aborted Command error.
At command issuance (I-O register contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
1
x
1
x
1
0
0
1
0
DV xx
xx
xx
xx
xx
xx
C141-E192-01EN
5-89
Interface
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
(36) FLUSH CACHE (E7)
This command is used to order to write every write cache data stored by the
device into the medium. BSY bit is held at "1" until every data has been written
normally or an error has occurred. The device performs every error recovery so
that the data are read correctly.
When executing this command, the reading of the data may take several seconds
if much data are to be read.
In case a non-recoverable error has occurred while the data is being read, the error
generation address is put into the command block register before ending the
command. This error sector is deleted from the write cache data, and the
remaining cache data is written into the medium by the execution of the next
Flush Cache command.
At command issuance (I-O register contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
1
x
1
x
0
0
1
1
1
DV xx
xx
xx
xx
xx
xx
5-90
C141-E192-01EN
5.3 Host Commands
At command completion (I-O register contents to be read)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
(37) DEVICE CONFIGURATION (X'B1')
Individual Device Configuration Overlay feature set commands are identified by
the value placed in the Features register. The following table shows these
Features register values. If this command sets with the reserved value of Features
register, an aborted error is posted.
FR values
Command
DEVICE CONFIGURATION RESTORE
DEVICE CONFIGURATION FREEZE
DEVICE CONFIGURATION IDENTIFY
DEVICE CONFIGURATION SET
Reserved
C0h
C1h
C2h
C3h
00h-BFh, C4h-FFh
At command issuance (I-O register contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
x
0
x
1
x
1
0
0
0
1
DV xx
xx
xx
xx
xx
C0h/C1h/C2h/C3h
C141-E192-01EN
5-91
Interface
At command completion (I-O register contents)
1F7h(ST) Status information
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
x
xx
xx
xx
xx
x
x
DV xx
Error information
•
DEVICE CONFIGURATION RESTORE (FR=C0h)
The DEVICE CONFIGURATION RESTORE command disables any setting
previously made by a DEVICE CONFIGURATION SET command and
returns the content of the IDENTIFY DEVICE command response to the
original settings as indicated by the data returned from the execution of a
DEVICE CONFIGURATION IDENTIFY command. After execution of this
command, the settings are kept for the device power down or reset.
If a Host Protected Area has been set by a SET MAX ADDRESS (EXT)
command, or if DEVICE CONFIGURATION FREEZE LOCK is set, an
aborted error is posted.
•
DEVICE CONFIGURATION FREEZE LOCK (FR=C1h)
The DEVICE CONFIGURATION FREEZE LOCK command prevents
accidental modification of the Device Configuration Overlay settings. After
successful execution of a DEVICE CONFIGURATION FREEZE LOCK
command, all DEVICE CONFIGURATION SET, DEVICE
CONFIGURATION FREEZE LOCK, DEVICE CONFIGURATION
IDENTIFY, and DEVICE CONFIGURATION RESTORE commands are
aborted by the device. The DEVICE CONFIGURATION FREEZE LOCK
condition is cleared by a power-down, not cleared by a hardware or software
reset.
If the device has executed a previous DEVICE CONFIGURATION FREEZE
LOCK command since power-up, an aborted error is posted.
5-92
C141-E192-01EN
5.3 Host Commands
•
DEVICE CONFIGURATION IDENTIFY (FR=C2h)
The DEVICE CONFIGURATION IDENTIFY command returns a 512 byte
data structure is shown in Table 5.18. The content of this data structure
indicates the selectable commands, modes, and feature sets that the device is
capable of supporting. If a DEVICE CONFIGURATION SET command has
been issued reducing the capabilities, the response to an IDENTIFY DEVICE
command will reflect the reduced set of capabilities, while the DEVICE
CONFIGURATION IDENTIFY command will reflect the entire set of
selectable capabilities.
If the device has executed a previous DEVICE CONFIGURATION FREEZE
LOCK command since power-up, an aborted error is posted.
•
DEVICE CONFIGURATION SET (FR=C3h)
The DEVICE CONFIGURATION SET command allows to reduce the set of
optional commands, modes, or feature sets supported by a device as indicated
by a DEVICE CONFIGURATION IDENTIFY command. The format of the
overlay transmitted by the device is described in Table 5.18. As a result to
the limitation of the function by the DEVICE CONFIGURATION SET
command, is reflected in IDENTIFY information. When the bits in these
words are cleared, the device no longer supports the indicated command,
mode, or feature set. If a bit is set in the overlay transmitted by the device
that is not set in the overlay received from a DEVICE CONFIGURATION
IDENTIFY command, no action is taken for that bit. After execution of this
command, the settings are kept for the device power down or reset.
If the restriction of Multiword DMA modes or Ultra DMA modes is
executed, a SET FEATURES command should be issued for the modes
restriction prior the DEVICE CONFIGURATION SET command is issued.
When the Automatic Acoustic Management function is assumed to be a
unsupport, Automatic Acoustic Management is prohibited beforehand by
SET FEATURES command (FR=C2h).
If a DEVICE CONFIGURATION SET command has already modified the
original settings as reported by a DEVICE CONFIGURATION IDENTIFY
command, if DEVICE CONFIGURATION FREEZE LOCK is set, if any of
the bit modification restrictions described are violated, or if a Host Protected
Area has been established by the execution of a SET MAX ADDRESS (EXT)
command, an aborted error is posted.
C141-E192-01EN
5-93
Interface
Table 5.18 DEVICE CONFIGURATION IDENTIFY data structure
Word
Value
X'0001'
X'0007'
Content
0
1
Data structure revision
Multiword DMA modes supported
Reflected in IDENTIFY information "WORD63".
Bit 15-3: Reserved
Bit 2:
Bit 1:
Bit 0:
1 = Multiword DMA mode 2 and below are supported
1 = Multiword DMA mode 1 and below are supported
1 = Multiword DMA mode 0 is supported
2
X'003F'
Ultra DMA modes supported
Reflected in IDENTIFY information "WORD88".
Bit 15-6: Reserved
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:
1 = Ultra DMA mode 5 and below are supported
1 = Ultra DMA mode 4 and below are supported
1 = Ultra DMA mode 3 and below are supported
1 = Ultra DMA mode 2 and below are supported
1 = Ultra DMA mode 1 and below are supported
1 = Ultra DMA mode 0 is supported
3-6
7
-
Maximum LBA address Reflected in IDENTIFY information
"WORD60-61". (WORD100-103) *
X'00CF'
Command set/feature set supported
(X'01CF') * Reflected in IDENTIFY information "WORD82-87".
Bit 15-9: Reserved
Bit 8:
Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:
Reserved
1 = 48-bit Addressing feature set supported
1 = Host Protected Area feature set supported
1 = Automatic acoustic management supported
1 = READ/WRITE DMA QUEUED commands supported
1 = Power-up in Standby feature set supported
1 = Security feature set supported
1 = SMART error log supported
1 = SMART self-test supported
1 = SMART feature set supported
8-254
255
X'0000'
X'xxA5'
Integrity word. Bits 15:8 contains the data structure checksum that is
the two's complement of the sum of all byte in words 0 through 254
and the byte consisting of bits 7:0 of word 255.
*: When "48 bit LBA" of the option (customize) is supported, same number of
LBA as WORD60-61 is displayed.
5-94
C141-E192-01EN
5.3 Host Commands
(38) READ NATIVE MAX ADDRESS EXT (27H): Option (customizing)
•
Description
This command is used to assign the highest address that the device can
initially set with the SET MAX ADDRESS EXT command. The maximum
address is displayed in the CH, CL, SN registers of the device control register
with HOB bit = 0, 1.
•
Error reporting conditions
−
This command is issued with LBA = 0. (ST = 51h, ER= 04h: Aborted
command)
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
0
1
1
0
1
1
1
L
DV xx
1F5h(CH) P xx
1F5h(CH) C xx
1F4h(CL) P xx
1F4h(CL) C xx
1F3h(SN) P xx
1F3h(SN) C xx
1F2h(SC) P
1F2h(SC) C xx
1F1h(FR) P xx
xx
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 Native max address LBA (47-40)
1F5h(CH) 0 Native max address LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
Native max address LBA (39-32)
Native max address LBA (15-8)
Native max address LBA (31-24)
Native max address LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
C141-E192-01EN
5-95
Interface
(39) SET MAX ADDRESS EXT (37H): Option (customizing)
•
Description
This command limits specifications so that the highest address that can be
accessed by users can be specified only in LBA mode.
The address information specified with this command is set in words 1, 54,
57, 58, 60, 61, and 100 to 103 of the IDENTIFY DEVICE command
response. If read or write processing is executed for an address that is
outside of the new address space, an ID Not Found error occurs.
If the SC register bit is 0 and the value volatile (VV) bit is 1 when this
command is executed, the specified values are maintained after a power-on
reset. If the VV bit is 0 when the command is executed, the specified values
are invalidated during the power-on sequence. If the VV bit is 1, the highest
address value is defined as the last value specified. (If the VV bit is not set to
1, the highest address is the default value.)
After a power-on reset is performed, a host can issue the SET MAX
ADDRESS (EXT) command only once if the VV bit is 1. If the SET MAX
ADDRESS (EXT) command is issued twice or more, an ID Not Found error
occurs.
When the SET MAX ADDRESS EXT command is executed, all SET MAX
ADDRESS commands are aborted. The address value returns to the origin
when the SET MAX ADDRESS EXT command is executed using the
address value returned by the READ NATIVE MAX ADDRESS command.
•
Error reporting conditions
−
This command is issued twice or more in an operation sequence. (ST =
51h, ER = 10h, ID Not Found)
−
The READ NATIVE MAX ADDRESS EXT command (27h) is not
issued immediately before this command (ST = 51h, ER = 04h, Aborted)
is issued.
−
−
This command is issued while LBA = 0 (ST = 51h, ER = 04h, Aborted)
The SET MAX ADDRESS command has already been issued.
5-96
C141-E192-01EN
5.3 Host Commands
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
1
0
1
1
1
L
DV xx
1F5h(CH) P SET MAX LBA (47-40)
1F5h(CH) C SET MAX LBA (23-16)
1F4h(CL) P SET MAX LBA (39-32)
1F4h(CL) C SET MAX LBA (15-8)
1F3h(SN) P SET MAX LBA (31-24)
1F3h(SN) C SET MAX LBA (7-0)
1F2h(SC) P
xx
1F2h(SC) C xx
VV
1F1h(FR) P
1F1h(FR) C
xx
xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 SET MAX LBA (47-40)
1F5h(CH) 0 SET MAX LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
SET MAX LBA (39-32)
SET MAX LBA (15-8)
SET MAX LBA (31-24)
SET MAX LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
(40) FLUSH CACHE EXT (EAH): Option (customizing)
•
Description
This command executes the same operation as the Flush Cache command
(E7h) but only LBA = 1 can be specified.
•
Error reporting conditions
This command is issued with LBA = 0. (ST = 51h, ER= 10h: Aborted)
C141-E192-01EN
5-97
Interface
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
1
1
1
1
1
0
1
0
1
0
L
DV xx
1F5h(CH) P xx
1F5h(CH) C xx
1F4h(CL) P xx
1F4h(CL) C xx
1F3h(SN) P xx
1F3h(SN) C xx
1F2h(SC) P
1F2h(SC) C xx
1F1h(FR) P xx
xx
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 xx
1F5h(CH) 0 xx
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
xx
xx
xx
xx
xx
xx
Error information
0: HOB=0
1: HOB=1
5-98
C141-E192-01EN
5.3 Host Commands
(41) WRITE DMA EXT (35H): Option (customizing)
Description
•
This command is the extended command of the WRITE DMA command.
The LBA specification is increased from 28 bits to 48 bits, and the maximum
number of sectors that can be transferred by a single command is changed
from 100h to 10000h. Other command controls are the same as those of the
WRITE DMA command.
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
1
0
1
0
1
L
DV xx
1F5h(CH) P LBA (47-40)
1F5h(CH) C LBA (23-16)
1F4h(CL) P LBA (39-32)
1F4h(CL) C LBA (15-8)
1F3h(SN) P LBA (31-24)
1F3h(SN) C LBA (7-0)
1F2h(SC) P
1F2h(SC) C Sector count (7-0)
1F1h(FR) P xx
Sector count (15-8)
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 LBA (47-40)
1F5h(CH) 0 LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
LBA (39-32)
LBA (15-8)
LBA (31-24)
LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
C141-E192-01EN
5-99
Interface
(42) READ DMA EXT (25H): Option (customizing)
•
Description
This command is the extended command of the READ DMA command. The
LBA specification is increased from 28 bits to 48 bits, and the maximum
number of sectors that can be transferred by a single command is changed
from 100h to 10000h. Other command controls are the same as those of the
READ DMA command.
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
0
0
1
0
1
L
DV xx
1F5h(CH) P LBA (47-40)
1F5h(CH) C LBA (23-16)
1F4h(CL) P LBA (39-32)
1F4h(CL) C LBA (15-8)
1F3h(SN) P LBA (31-24)
1F3h(SN) C LBA (7-0)
1F2h(SC) P
1F2h(SC) C Sector count (7-0)
1F1h(FR) P xx
Sector count (15-8)
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 LBA (47-40)
1F5h(CH) 0 LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
LBA (39-32)
LBA (15-8)
LBA (31-24)
LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
5-100
C141-E192-01EN
5.3 Host Commands
(43) WRITE MULTIPLE EXT (39H): Option (customizing)
Description
•
This command is the extended command of the WRITE MULTIPLE
command. The LBA specification is increased from 28 bits to 48 bits, and
the maximum number of sectors that can be transferred by a single command
is changed from 100h to 10000h. Other command controls are the same as
those of the WRITE MULTIPLE command.
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
1
1
0
0
1
L
DV xx
1F5h(CH) P LBA (47-40)
1F5h(CH) C LBA (23-16)
1F4h(CL) P LBA (39-32)
1F4h(CL) C LBA (15-8)
1F3h(SN) P LBA (31-24)
1F3h(SN) C LBA (7-0)
1F2h(SC) P
1F2h(SC) C Sector count (7-0)
1F1h(FR) P xx
Sector count (15-8)
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 LBA (47-40)
1F5h(CH) 0 LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
LBA (39-32)
LBA (15-8)
LBA (31-24)
LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
C141-E192-01EN
5-101
Interface
(44) READ MULTIPLE EXT (29H): Option (customizing)
•
Description
This command is the extended command of the READ MULTIPLE
command. The LBA specification is increased from 28 bits to 48 bits, and
the maximum number of sectors that can be transferred by a single command
is changed from 100h to 10000h. Other command controls are the same as
those of the READ MULTIPLE command.
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
1
1
0
0
1
L
DV xx
1F5h(CH) P LBA (47-40)
1F5h(CH) C LBA (23-16)
1F4h(CL) P LBA (39-32)
1F4h(CL) C LBA (15-8)
1F3h(SN) P LBA (31-24)
1F3h(SN) C LBA (7-0)
1F2h(SC) P
1F2h(SC) C Sector count (7-0)
1F1h(FR) P xx
Sector count (15-8)
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 LBA (47-40)
1F5h(CH) 0 LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
LBA (39-32)
LBA (15-8)
LBA (31-24)
LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
5-102
C141-E192-01EN
5.3 Host Commands
(45) WRITE SECTOR (S) EXT (34H): Option (customizing)
Description
•
This command is the extended command of the WRITE SECTOR (S)
command. The LBA specification is increased from 28 bits to 48 bits, and
the maximum number of sectors that can be transferred by a single command
is changed from 100h to 10000h. Other command controls are the same as
those of the WRITE SECTOR (S) command.
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
1
1
0
0
1
L
DV xx
1F5h(CH) P LBA (47-40)
1F5h(CH) C LBA (23-16)
1F4h(CL) P LBA (39-32)
1F4h(CL) C LBA (15-8)
1F3h(SN) P LBA (31-24)
1F3h(SN) C LBA (7-0)
1F2h(SC) P
1F2h(SC) C Sector count (7-0)
1F1h(FR) P xx
Sector count (15-8)
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 LBA (47-40)
1F5h(CH) 0 LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
LBA (39-32)
LBA (15-8)
LBA (31-24)
LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
C141-E192-01EN
5-103
Interface
(46) READ SECTOR (S) EXT (24H): Option (customizing)
•
Description
This command is the extended command of the READ SECTOR (S)
command. The LBA specification is increased from 28 bits to 48 bits, and
the maximum number of sectors that can be transferred by a single command
is changed from 100h to 10000h. Other command controls are the same as
those of the READ SECTOR (S) command.
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
0
1
0
1
1
0
0
1
0
1
L
DV xx
1F5h(CH) P LBA (47-40)
1F5h(CH) C LBA (23-16)
1F4h(CL) P LBA (39-32)
1F4h(CL) C LBA (15-8)
1F3h(SN) P LBA (31-24)
1F3h(SN) C LBA (7-0)
1F2h(SC) P
1F2h(SC) C Sector count (7-0)
1F1h(FR) P xx
Sector count (15-8)
1F1h(FR) C xx
C: Current
P: Previous
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
Status information
1 DV xx
1
L
1F5h(CH) 1 LBA (47-40)
1F5h(CH) 0 LBA (23-16)
1F4h(CL) 1
1F4h(CL) 0
1F3h(SN) 1
1F3h(SN) 0
1F2h(SC) 1
1F2h(SC) 0
1F1h(ER)
LBA (39-32)
LBA (15-8)
LBA (31-24)
LBA (7-0)
xx
xx
Error information
0: HOB=0
1: HOB=1
5-104
C141-E192-01EN
5.3 Host Commands
(47) DOWNLOAD MICRO CODE (92H)
At command issuance (I/O registers setting contents)
1F7h(CM)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(FR)
1
1
0
0
1
1
0
0
0
0
1
0
0
0
X
DV
00
00
Sector count (15-8)
Sector count (7-0)
Subcommand code
At command completion (I/O registers contents to be read)
1F7h(ST)
1F6h(DH)
1F5h(CH)
1F4h(CL)
1F3h(SN)
1F2h(SC)
1F1h(ER)
Status information
DV
1
X
1
0
0
0
0
00
00
XX
XX
Error information
This command rewrites the microcode of the device (firmware).
When this command is accepted, the device does beginning the data transfer of
the microcode or the microcode rewriting according to Subcommand code
(Rewriting is also possible simultaneously with the data transfer). Refer to Table
5-19.
In the data transfer of Subcommand code:01h, transfer by which data is divided
into multiple times is possible. Refer to Table 5-20.
After the designation of rewriting by Subcommand code:07h, reactivates in the
device for the update of the rewriting microcode of the microcode.
C141-E192-01EN
5-105
Interface
Table 5.19 Operation of DOWNLOAD MICRO CODE
Host Command
Subcommand code
Movement of device
Sector count
(SN, SC Reg)
Data transfer
Microcode rewriting execution
(FR Reg)
0000h
xxxxh
0000h
xxxxh
−
Non
It is.
Non
It is.
Rewriting execution reservation
Rewriting execution reservation
Execution. **
01h
07h
Execution. **
Excluding 01h and 07h
Abort
**: In the following cases, Subcommand code=07h returns Abort as an error
though becomes Microcode rewriting execution specification.
1) Abnormality of the transmitted Microcode data is detected.
2) The data transfer is not done (The number of transfer: 0).
3) "DOWNLOAD MICROCODE" The command is not continuously issued.
Table 5.20 Example of rewriting procedure of data 384 KBytes (30000h Bytes)
of microcode
Transfer example 1:
1) CMD = 92h SN, SC = 0100h FR = 0lh
2) CMD = 92h SN, SC = 0100h FR = 0lh
3) CMD = 92h SN, SC = 0100h FR = 0lh
Transfer of 127 KB from the first
Transfer from 128 to 255 KB
Transfer from 256 to 383 KB
4) CMD = 92h SN, SC = 0000h FR = 07h Firmware rewriting execution
Transfer example 2:
1) CMD = 92h SN, SC = 0300h FR = 0lh
Transfer of 384 KB
2) CMD = 92h SN, SC = 0000h FR = 07h Firmware rewriting execution
Transfer example 3:
1) CMD = 92h SN, SC = 0300h FR = 07h Transfer of 384 KB and Firmware rewriting
execution
Transfer example 4:
1) CMD = 92h SN, SC = 0100h FR = 0lh
2) CMD = 92h SN, SC = 0100h FR = 0lh
Transfer of 127 KB from the first
Transfer from 128 to 255 KB
3) CMD = 92h SN, SC = 0100h FR = 07h Transfer from 256 to 383 KB and Firmware
rewriting execution
When the data of the transfer microcode did the rewriting specification with the
illegality and the data transfer not done or the DOWNLOAD MICROCODE
command is not continuously issued, reports on the Aborted Command error.
5-106
C141-E192-01EN
5.3 Host Commands
5.3.3 Error posting
Table 5.21 lists the defined errors that are valid for each command.
Table 5.21 Command code and parameters (1 of 2)
Command name
Error register (X’1F1’)
Status register (X’1F7’)
ICRC
UNC
V
INDF
V
ABRT
V
TK0NF
DRDY
V
DWF
V
ERR
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
READ SECTOR(S)
WRITE SECTOR(S)
READ MULTIPLE
WRITE MULTIPLE
READ DMA
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V *2
V *2
V
V
V
V
WRITE DMA
V
V
V
V
WRITE VERIFY
V
V
V
V
V
V
READ VERIFY SECTOR(S)
RECALIBRATE
V
V
V
V
V
V
V
V
SEEK
V
V
V
V
INITIALIZE DEVICE PARAMETERS
IDENTIFY DEVICE
IDENTIFY DEVICE DMA
SET FEATURES
V
V
V
V
V
V
V
V
V
V
V
V
SET MULTIPLE MODE
SET MAX ADDRESS
READ NATIVE MAX ADDRESS
EXECUTE DEVICE DIAGNOSTIC
READ LONG
V
V
V
V
V
V
V
V
V
V
*1
*1
*1
V
*1
V
*1
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
WRITE LONG
V
V
READ BUFFER
V
WRITE BUFFER
V
IDLE
V
IDLE IMMEDIATE
STANDBY
V
V
STANDBY IMMEDIATE
V
V:
Valid on this command
See the command descriptions.
Valid only for Ultra DMA command.
*1:
*2:
C141-E192-01EN
5-107
Interface
Table 5.21 Command code and parameters (2 of 2)
Command name
Error register (X’1F1’)
Status register (X’1F7’)
ICRC
UNC
INDF
V
ABRT
V
TK0NF
DRDY
V
DWF
V
ERR
V
SLEEP
CHECK POWER MODE
SMART
V
V
V
V
V
V
V
V
SECURITY DISABLE PASSWORD
SECURITY ERASE PREPARE
SECURITY ERASE UNIT
SECURITY FREEZE LOCK
SECURITY SET PASSWORD
SECURITY UNLOCK
FLUSH CACHE
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DEVICE CONFIGURATION
READ NATIVE MAX ADDRESS
V
V
V
V
V
V
V
V
EXT
*O
*O
*O
*O
*O
*O
*O
*O
*O
SET MAX ADDRESS EXT
FLUSH CACHE EXT
WRITE DMA EXT
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V *2
V *2
READ DMA EXT
V
V
V
WRITE MULTIPLE EXT
READ MULTIPLE EXT
WRITE SECTOR (S) EXT
READ SECTOR (S) EXT
DOWNLOAD MICROCODE
Invalid command
V:
Valid on this command
See the command descriptions.
*1:
*2:
*O:
Valid only for Ultra DMA command.
Option (customizing)
5-108
C141-E192-01EN
5.4 Command Protocol
5.4 Command Protocol
The host should confirm that the BSY bit of the Status register of the device is 0
prior to issue a command. If BSY bit is 1, the host should wait for issuing a
command until BSY bit is cleared to 0.
Commands can be executed only when the DRDY bit of the Status register is 1.
However, the following commands can be executed even if DRDY bit is 0.
•
•
EXECUTE DEVICE DIAGNOSTIC
INITIALIZE DEVICE PARAMETERS
5.4.1 PIO Data transferring commands from device to host
The execution of the following commands involves data transfer from the device
to the host.
•
•
•
•
•
•
IDENTIFY DEVICE.
READ SECTOR(S) (EXT)
READ LONG
READ BUFFER
SMART READ DATA
SMART READ LOG SECTOR
The execution of these commands includes the transfer one or more sectors of
data from the device to the host. In the READ LONG command, 516 bytes are
transferred. Following shows the protocol outline.
a) The host writes any required parameters to the Features, Sector Count, Sector
Number, Cylinder, and Device/Head registers.
b) The host writes a command code to the Command register.
c) The device sets the BSY bit of the Status register and prepares for data
transfer.
d) When one sector of data is available for transfer to the host, the device sets
DRQ bit and clears BSY bit. The drive then asserts INTRQ signal.
e) After detecting the INTRQ signal assertion, the host reads the Status register.
The host reads one sector of data via the Data register. In response to the
Status register being read, the device negates the INTRQ signal.
f) The drive clears DRQ bit to 0. If transfer of another sector is requested, the
device sets the BSY bit and steps d) and after are repeated.
Even if an error is encountered, the device prepares for data transfer by setting the
DRQ bit. Whether or not to transfer the data is determined for each host. In other
C141-E192-01EN
5-109
Interface
words, the host should receive the relevant sector of data (512 bytes of uninsured
dummy data) or release the DRQ status by resetting.
Figure 5.3 shows an example of READ SECTOR(S) command protocol, and
Figure 5.4 shows an example protocol for command abort.
Figure 5.3 Read Sector(s) command protocol
IMPORTANT
For transfer of a sector of data, the host needs to read Status register
(X’1F7’) in order to clear INTRQ (interrupt) signal. The Status
register should be read within a period from the DRQ setting by the
5-110
C141-E192-01EN
5.4 Command Protocol
device to starting of the sector data transfer. Note that the host does
not need to read the Status register for the reading of a single sector
or the last sector in multiple-sector reading. If the timing to read
the Status register does not meet above condition, normal data
transfer operation is not guaranteed.
When the host new command even if the device requests the data
transfer (setting in DRQ bit), the correct device operation is not
guaranteed.
Figure 5.4 Protocol for command abort
5.4.2 PIO Data transferring commands from host to device
The execution of the following commands involves Data transfer from the host to
the drive.
•
•
•
•
•
•
•
•
•
WRITE SECTOR(S) (EXT)
WRITE LONG
WRITE BUFFER
WRITE VERIFY
SMART WRITE LOG SECTOR
SECURITY DISABLE PASSWORD
SECURITY ERASE UNIT
SECURITY SET PASSWORD
SECURITY UNCLOK
C141-E192-01EN
5-111
Interface
The execution of these commands includes the transfer one or more sectors of
data from the host to the device. In the WRITE LONG command, 516 bytes are
transferred. Following shows the protocol outline.
a) The host writes any required parameters to the Features, Sector Count, Sector
Number, Cylinder, and Device/Head registers.
b) The host writes a command code in the Command register. The drive sets the
BSY bit of the Status register.
c) When the device is ready to receive the data of the first sector, the device sets
DRQ bit and clears BSY bit.
d) The host writes one sector of data through the Data register.
e) The device clears the DRQ bit and sets the BSY bit.
f) When the drive completes transferring the data of the sector, the device clears
BSY bit and asserts INTRQ signal. If transfer of another sector is requested,
the drive sets the DRQ bit.
g) After detecting the INTRQ signal assertion, the host reads the Status register.
h) The device resets INTRQ (the interrupt signal).
i) If transfer of another sector is requested, steps d) and after are repeated.
Figure 5.5 shows an example of WRITE SECTOR(S) command protocol.
5-112
C141-E192-01EN
5.4 Command Protocol
40 ms
Figure 5.5 WRITE SECTOR(S) command protocol
IMPORTANT
For transfer of a sector of data, the host needs to read Status register
(X’1F7’) in order to clear INTRQ (interrupt) signal. The Status
register should be read within a period from the DRQ setting by the
device to starting of the sector data transfer. Note that the host does
not need to read the Status register for the first and the last sector to
be transferred. If the timing to read the Status register does not
meet above condition, normal data transfer operation is not assured
guaranteed.
When the host issues the command even if the drive requests the
data transfer (DRQ bit is set), or when the host executes resetting,
the device correct operation is not guaranteed.
5.4.3 Commands without data transfer
Execution of the following commands does not involve data transfer between the
host and the device.
•
RECABLIBRATE
C141-E192-01EN
5-113
Interface
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
SEEK
READY VERIFY SECTOR(S)
EXECUTE DEVICE DIAGNOSTIC
INITIALIZE DEVICE PARAMETERS
SET FEATURES
SET MULTIPLE MODE
SET MAX ADDRESS (EXT)
READ NATIVE MAX ADDRESS (EXT)
IDLE
IDLE IMMEDIATE
STANDBY
STANDBY IMMEDIATE
CHECK POWER MODE
SMART DISABLE OPERATION
SMART ENABLE/DISABLE AUTOSAVE
SMART ENABLE OPERATION
SMART EXECUTE OFFLINE IMMEDIATE
SMART RETURN STATUS
SECURITY ERASE PREPARE
SECURITY FREEZE LOCK
FLUSH CACHE (EXT)
Figure 5.6 shows the protocol for the command execution without data transfer.
Figure 5.6 Protocol for the command execution without data transfer
5-114
C141-E192-01EN
5.4 Command Protocol
5.4.4 Other commands
•
•
•
READ MULTIPLE (EXT)
SLEEP
WRITE MULTIPLE (EXT)
See the description of each command.
5.4.5 DMA data transfer commands
•
•
READ DMA (EXT)
WRITE DMA (EXT)
Starting the DMA transfer command is the same as the READ SECTOR(S) or
WRITE SECTOR(S) command except the point that the host initializes the DMA
channel preceding the command issuance.
Interruption processing for DMA transfer does not issue interruptions in any
intermediate sector when a multisector command is executed.
The following outlines the protocol:
C141-E192-01EN
5-115
Interface
The interrupt processing for the DMA transfer differs the following point.
The interrupt processing for the DMA transfer differs the following point.
•
a) The host writes any parameters to the Features, Sector Count, Sector
Number, Cylinder, and Device/Head register.
b) The host initializes the DMA channel
c) The host writes a command code in the Command register.
d) The device sets the BSY bit of the Status register.
e) The device asserts the DMARQ signal after completing the preparation of
data transfer. The device asserts either the BSY bit or DRQ bit during DMA
data transfer.
f) When the command execution is completed, the device clears both BSY and
DRQ bits and asserts the INTRQ signal. Then, the host reads the Status
register.
g) The host resets the DMA channel.
Figure 5.7 shows the correct DMA data transfer protocol.
5-116
C141-E192-01EN
5.4 Command Protocol
f
g
d
d
f
e
Figure 5.7 Normal DMA data transfer
C141-E192-01EN
5-117
Interface
5.5 Ultra DMA Feature Set
5.5.1 Overview
Ultra DMA is a data transfer protocol used with the READ DMA and WRITE
DMA commands. When this protocol is enabled it shall be used instead of the
Multiword DMA protocol when these commands are issued by the host. This
protocol applies to the Ultra DMA data burst only. When this protocol is used
there are no changes to other elements of the ATA protocol (e.g.: Command
Block Register access).
Several signal lines are redefined to provide new functions during an Ultra DMA
burst. These lines assume these definitions when 1) an Ultra DMA Mode is
selected, and 2) a host issues a READ DMA or a WRITE DMA, command
requiring data transfer, and 3) the host asserts DMACK-. These signal lines
revert back to the definitions used for non-Ultra DMA transfers upon the negation
of DMACK- by the host at the termination of an Ultra DMA burst. All of the
control signals are unidirectional. DMARQ and DMACK- retain their standard
definitions.
With the Ultra DMA protocol, the control signal (STROBE) that latches data
from DD (15:0) is generated by the same agent (either host or device) that drives
the data onto the bus. Ownership of DD (15:0) and this data strobe signal are
given either to the device during an Ultra DMA data in burst or to the host for an
Ultra DMA data out burst.
During an Ultra DMA burst a sender shall always drive data onto the bus, and
after a sufficient time to allow for propagation delay, cable settling, and setup
time, the sender shall generate a STROBE edge to latch the data. Both edges of
STROBE are used for data transfers so that the frequency of STROBE is limited
to the same frequency as the data.
Words in the IDENTIFY DEVICE data indicate support of the Ultra DMA feature
and the Ultra DMA Modes the device is capable of supporting. The Set transfer
mode subcommand in the SET FEATURES command shall be used by a host to
select the Ultra DMA Mode at which the system operates. The Ultra DMA Mode
selected by a host shall be less than or equal to the fastest mode of which the
device is capable. Only the Ultra DMA Mode shall be selected at any given time.
All timing requirements for a selected Ultra DMA Mode shall be satisfied.
Devices supporting Ultra DMA Mode 2 shall also support Ultra DMA Modes 0
and 1. Devices supporting Ultra DMA Mode 1 shall also support Ultra DMA
Mode 0.
An Ultra DMA capable device shall retain its previously selected Ultra DMA
Mode after executing a Software reset sequence. An Ultra DMA capable device
shall clear any previously selected Ultra DMA Mode and revert to its default non-
Ultra DMA Modes after executing a Power on or hardware reset.
Both the host and device perform a CRC function during an Ultra DMA burst. At
the end of an Ultra DMA burst the host sends the its CRC data to the device. The
5-118
C141-E192-01EN
5.5 Ultra DMA Feature Set
device compares its CRC data to the data sent from the host. If the two values do
not match the device reports an error in the error register at the end of the
command. If an error occurs during one or more Ultra DMA bursts for any one
command, at the end of the command, the device shall report the first error that
occurred.
5.5.2 Phases of operation
An Ultra DMA data transfer is accomplished through a series of Ultra DMA data
in or data out bursts. Each Ultra DMA burst has three mandatory phases of
operation: the initiation phase, the data transfer phase, and the Ultra DMA burst
termination phase. In addition, an Ultra DMA burst may be paused during the
data transfer phase (see 5.5.3 and 5.5.4 for the detailed protocol descriptions for
each of these phases, 5.6 defines the specific timing requirements). In the
following rules DMARDY- is used in cases that could apply to either
DDMARDY- or HDMARDY-, and STROBE is used in cases that could apply to
either DSTROBE or HSTROBE. The following are general Ultra DMA rules.
a) An Ultra DMA burst is defined as the period from an assertion of DMACK-
by the host to the subsequent negation of DMACK-.
b) A recipient shall be prepared to receive at least two data words whenever it
enters or resumes an Ultra DMA burst.
5.5.3 Ultra DMA data in commands
5.5.3.1 Initiating an Ultra DMA data in burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.1 and 5.6.3.2 for specific timing requirements):
1) The host shall keep DMACK- in the negated state before an Ultra DMA burst
is initiated.
2) The device shall assert DMARQ to initiate an Ultra DMA burst. After
assertion of DMARQ the device shall not negate DMARQ until after the first
negation of DSTROBE.
3) Steps (3), (4) and (5) may occur in any order or at the same time. The host
shall assert STOP.
4) The host shall negate HDMARDY-.
5) The host shall negate CS0-, CS1-, DA2, DA1, and DA0. The host shall keep
CS0-, CS1-, DA2, DA1, and DA0 negated until after negating DMACK- at
the end of the burst.
6) Steps (3), (4) and (5) shall have occurred at least tACK before the host asserts
DMACK-. The host shall keep DMACK- asserted until the end of an Ultra
DMA burst.
7) The host shall release DD (15:0) within tAZ after asserting DMACK-.
C141-E192-01EN
5-119
Interface
8) The device may assert DSTROBE tZIORDY after the host has asserted DMACK-.
Once the device has driven DSTROBE the device shall not release
DSTROBE until after the host has negated DMACK- at the end of an Ultra
DMA burst.
9) The host shall negate STOP and assert HDMARDY- within tENV after
asserting DMACK-. After negating STOP and asserting HDMARDY-, the
host shall not change the state of either signal until after receiving the first
transition of DSTROBE from the device (i.e., after the first data word has
been received).
10) The device shall drive DD (15:0) no sooner than tZAD after the host has
asserted DMACK-, negated STOP, and asserted HDMARDY-.
11) The device shall drive the first word of the data transfer onto DD (15:0).
This step may occur when the device first drives DD (15:0) in step (10).
12) To transfer the first word of data the device shall negate DSTROBE within tFS
after the host has negated STOP and asserted HDMARDY-. The device shall
negate DSTROBE no sooner than tDVS after driving the first word of data onto
DD (15:0).
5.5.3.2 The data in transfer
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.3 and 5.6.3.2 for specific timing requirements):
1) The device shall drive a data word onto DD (15:0).
2) The device shall generate a DSTROBE edge to latch the new word no sooner
than tDVS after changing the state of DD (15:0). The device shall generate a
DSTROBE edge no more frequently than tCYC for the selected Ultra DMA
Mode. The device shall not generate two rising or two falling DSTROBE
edges more frequently than 2tCYC for the selected Ultra DMA mode.
3) The device shall not change the state of DD (15:0) until at least tDVH after
generating a DSTROBE edge to latch the data.
4) The device shall repeat steps (1), (2) and (3) until the data transfer is
complete or an Ultra DMA burst is paused, whichever occurs first.
5.5.3.3 Pausing an Ultra DMA data in burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.4 and 5.6.3.2 for specific timing requirements).
a) Device pausing an Ultra DMA data in burst
1) The device shall not pause an Ultra DMA burst until at least one data
word of an Ultra DMA burst has been transferred.
2) The device shall pause an Ultra DMA burst by not generating
DSTROBE edges.
5-120
C141-E192-01EN
5.5 Ultra DMA Feature Set
NOTE - The host shall not immediately assert STOP to initiate Ultra
DMA burst termination when the device stops generating
STROBE edges. If the device does not negate DMARQ, in
order to initiate ULTRA DMA burst termination, the host shall
negate HDMARDY- and wait tRP before asserting STOP.
3) The device shall resume an Ultra DMA burst by generating a DSTROBE
edge.
b) Host pausing an Ultra DMA data in burst
1) The host shall not pause an Ultra DMA burst until at least one data word
of an Ultra DMA burst has been transferred.
2) The host shall pause an Ultra DMA burst by negating HDMARDY-.
3) The device shall stop generating DSTROBE edges within tRFS of the host
negating HDMARDY-.
4) If the host negates HDMARDY- within tSR after the device has generated
a DSTROBE edge, then the host shall be prepared to receive zero or one
additional data words. If the host negates HDMARDY- greater than tSR
after the device has generated a DSTROBE edge, then the host shall be
prepared to receive zero, one or two additional data words. The
additional data words are a result of cable round trip delay and tRFS timing
for the device.
5) The host shall resume an Ultra DMA burst by asserting HDMARDY-.
5.5.3.4 Terminating an Ultra DMA data in burst
a) Device terminating an Ultra DMA data in burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.5 and 5.6.3.2 for specific timing
requirements):
1) The device shall initiate termination of an Ultra DMA burst by not
generating DSTROBE edges.
2) The device shall negate DMARQ no sooner than tSS after generating the
last DSTROBE edge. The device shall not assert DMARQ again until
after the Ultra DMA burst is terminated.
3) The device shall release DD (15:0) no later than tAZ after negating
DMARQ.
4) The host shall assert STOP within tLI after the device has negated
DMARQ. The host shall not negate STOP again until after the Ultra
DMA burst is terminated.
5) The host shall negate HDMARDY- within tLI after the device has negated
DMARQ. The host shall continue to negate HDMARDY- until the Ultra
DMA burst is terminated. Steps (4) and (5) may occur at the same time.
C141-E192-01EN
5-121
Interface
6) The host shall drive DD (15:0) no sooner than tZAH after the device has
negated DMARQ. For this step, the host may first drive DD (15:0) with
the result of its CRC calculation (see 5.5.5):
7) If DSTROBE is negated, the device shall assert DSTROBE within tLI
after the host has asserted STOP. No data shall be transferred during this
assertion. The host shall ignore this transition on DSTROBE.
DSTROBE shall remain asserted until the Ultra DMA burst is
terminated.
8) If the host has not placed the result of its CRC calculation on DD (15:0)
since first driving DD (15:0) during (6), the host shall place the result of
its CRC calculation on DD (15:0) (see 5.5.5).
9) The host shall negate DMACK- no sooner than tMLI after the device has
asserted DSTROBE and negated DMARQ and the host has asserted
STOP and negated HDMARDY-, and no sooner than tDVS after the host
places the result of its CRC calculation on DD (15:0).
10) The device shall latch the host's CRC data from DD (15:0) on the
negating edge of DMACK-.
11) The device shall compare the CRC data received from the host with the
results of its own CRC calculation. If a miscompare error occurs during
one or more Ultra DMA bursts for any one command, at the end of the
command the device shall report the first error that occurred (see 5.5.5).
12) The device shall release DSTROBE within tIORDYZ after the host negates
DMACK-.
13) The host shall not negate STOP no assert HDMARDY- until at least tACK
after negating DMACK-.
14) The host shall not assert DIOR-, CS0-, CS1-, DA2, DA1, or DA0 until at
least tACK after negating DMACK.
b) Host terminating an Ultra DMA data in burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.6 and 5.6.3.2 for specific timing
requirements):
1) The host shall not initiate Ultra DMA burst termination until at least one
data word of an Ultra DMA burst has been transferred.
2) The host shall initiate Ultra DMA burst termination by negating
HDMARDY-. The host shall continue to negate HDMARDY- until the
Ultra DMA burst is terminated.
3) The device shall stop generating DSTROBE edges within tRFS of the host
negating HDMARDY-.
4) If the host negates HDMARDY- within tSR after the device has generated
a DSTROBE edge, then the host shall be prepared to receive zero or one
additional data words. If the host negates HDMARDY- greater than tSR
5-122
C141-E192-01EN
5.5 Ultra DMA Feature Set
after the device has generated a DSTROBE edge, then the host shall be
prepared to receive zero, one or two additional data words. The
additional data words are a result of cable round trip delay and tRFS timing
for the device.
5) The host shall assert STOP no sooner than tRP after negating
HDMARDY-. The host shall not negate STOP again until after the Ultra
DMA burst is terminated.
6) The device shall negate DMARQ within tLI after the host has asserted
STOP. The device shall not assert DMARQ again until after the Ultra
DMA burst is terminated.
7) If DSTROBE is negated, the device shall assert DSTROBE within tLI
after the host has asserted STOP. No data shall be transferred during this
assertion. The host shall ignore this transition on DSTROBE.
DSTROBE shall remain asserted until the Ultra DMA burst is
terminated.
8) The device shall release DD (15:0) no later than tAZ after negating
DMARQ.
9) The host shall drive DD (15:0) no sooner than tZAH after the device has
negated DMARQ. For this step, the host may first drive DD (15:0) with
the result of its CRC calculation (see 5.5.5).
10) If the host has not placed the result of its CRC calculation on DD (15:0)
since first driving DD (15:0) during (9), the host shall place the result of
its CRC calculation on DD (15:0) (see 5.5.5).
11) The host shall negate DMACK- no sooner than tMLI after the device has
asserted DSTROBE and negated DMARQ and the host has asserted
STOP and negated HDMARDY-, and no sooner than tDVS after the host
places the result of its CRC calculation on DD (15:0).
12) The device shall latch the host's CRC data from DD (15:0) on the
negating edge of DMACK-.
13) The device shall compare the CRC data received from the host with the
results of its own CRC calculation. If a miscompare error occurs during
one or more Ultra DMA burst for any one command, at the end of the
command, the device shall report the first error that occurred (see 5.5.5).
14) The device shall release DSTROBE within tIORDYZ after the host negates
DMACK-.
15) The host shall neither negate STOP nor assert HDMARDY- until at least
tACK after the host has negated DMACK-.
16) The host shall not assert DIOR-, CS0-, CS1-, DA2, DA1, or DA0 until at
least tACK after negating DMACK.
C141-E192-01EN
5-123
Interface
5.5.4 Ultra DMA data out commands
5.5.4.1 Initiating an Ultra DMA data out burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.7 and 5.6.3.2 for specific timing requirements):
1) The host shall keep DMACK- in the negated state before an Ultra DMA burst
is initiated.
2) The device shall assert DMARQ to initiate an Ultra DMA burst.
3) Steps (3), (4), and (5) may occur in any order or at the same time. The host
shall assert STOP.
4) The host shall assert HSTROBE.
5) The host shall negate CS0-, CS1-, DA2, DA1, and DA0. The host shall keep
CS0-, CS1-, DA2, DA1, and DA0 negated until after negating DMACK- at
the end of the burst.
6) Steps (3), (4), and (5) shall have occurred at least tACK before the host asserts
DMACK-. The host shall keep DMACK- asserted until the end of an Ultra
DMA burst.
7) The device may negate DDMARDY- tZIORDY after the host has asserted
DMACK-. Once the device has negated DDMARDY-, the device shall not
release DDMARDY- until after the host has negated DMACK- at the end of
an Ultra DMA burst.
8) The host shall negate STOP within tENV after asserting DMACK-. The host
shall not assert STOP until after the first negation of HSTROBE.
9) The device shall assert DDMARDY- within tLI after the host has negated
STOP. After asserting DMARQ and DDMARDY- the device shall not
negate either signal until after the first negation of HSTROBE by the host.
10) The host shall drive the first word of the data transfer onto DD (15:0). This
step may occur any time during Ultra DMA burst initiation.
11) To transfer the first word of data: the host shall negate HSTROBE no sooner
than tLI after the device has asserted DDMARDY-. The host shall negate
HSTROBE no sooner than tDVS after the driving the first word of data onto
DD (15:0).
5.5.4.2 The data out transfer
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.8 and 5.6.3.2 for specific timing requirements):
1) The host shall drive a data word onto DD (15:0).
5-124
C141-E192-01EN
5.5 Ultra DMA Feature Set
2) The host shall generate an HSTROBE edge to latch the new word no sooner
than tDVS after changing the state of DD (15:0). The host shall generate an
HSTROBE edge no more frequently than tCYC for the selected Ultra DMA
Mode. The host shall not generate two rising or falling HSTROBE edges
more frequently than 2 tCYC for the selected Ultra DMA mode.
3) The host shall not change the state of DD (15:0) until at least tDVH after
generating an HSTROBE edge to latch the data.
4) The host shall repeat steps (1), (2) and (3) until the data transfer is complete
or an Ultra DMA burst is paused, whichever occurs first.
5.5.4.3 Pausing an Ultra DMA data out burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.9 and 5.6.3.2 for specific timing requirements).
a) Host pausing an Ultra DMA data out burst
1) The host shall not pause an Ultra DMA burst until at least one data word
of an Ultra DMA burst has been transferred.
2) The host shall pause an Ultra DMA burst by not generating an
HSTROBE edge.
Note: The device shall not immediately negate DMARQ to initiate Ultra
DMA burst termination when the host stops generating
HSTROBE edges. If the host does not assert STOP, in order to
initiate Ultra DMA burst termination, the device shall negate
DDMARDY- and wait tRP before negating DMARQ.
3) The host shall resume an Ultra DMA burst by generating an HSTROBE
edge.
b) Device pausing an Ultra DMA data out burst
1) The device shall not pause an Ultra DMA burst until at least one data
word of an Ultra DMA burst has been transferred.
2) The device shall pause an Ultra DMA burst by negating DDMARDY-.
3) The host shall stop generating HSTROBE edges within tRFS of the device
negating DDMARDY-.
4) If the device negates DDMARDY- within tSR after the host has generated
an HSTROBE edge, then the device shall be prepared to receive zero or
one additional data words. If the device negates DDMARDY- greater
than tSR after the host has generated an HSTROBE edge, then the device
shall be prepared to receive zero, one or two additional data words. The
additional data words are a result of cable round trip delay and tRFS timing
for the host.
5) The device shall resume an Ultra DMA burst by asserting DDMARDY-.
C141-E192-01EN
5-125
Interface
5.5.4.4 Terminating an Ultra DMA data out burst
a) Host terminating an Ultra DMA data out burst
The following stops shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.10 and 5.6.3.2 for specific timing
requirements):
1) The host shall initiate termination of an Ultra DMA burst by not
generating HSTROBE edges.
2) The host shall assert STOP no sooner than tSS after it last generated an
HSTROBE edge. The host shall not negate STOP again until after the
Ultra DMA burst is terminated.
3) The device shall negate DMARQ within tLI after the host asserts STOP.
The device shall not assert DMARQ again until after the Ultra DMA
burst is terminated.
4) The device shall negate DDMARDY- with tLI after the host has negated
STOP. The device shall not assert DDMARDY- again until after the
Ultra DMA burst termination is complete.
5) If HSTROBE is negated, the host shall assert HSTROBE with tLI after the
device has negated DMARQ. No data shall be transferred during this
assertion. The device shall ignore this transition on HSTROBE.
HSTROBE shall remain asserted until the Ultra DMA burst is
terminated.
6) The host shall place the result of its CRC calculation on DD (15:0) (see
5.5.5)
7) The host shall negate DMACK- no sooner than tMLI after the host has
asserted HSTROBE and STOP and the device has negated DMARQ and
DDMARDY-, and no sooner than tDVS after placing the result of its CRC
calculation on DD (15:0).
8) The device shall latch the host's CRC data from DD (15:0) on the
negating edge of DMACK-.
9) The device shall compare the CRC data received from the host with the
results of its own CRC calculation. If a miscompare error occurs during
one or more Ultra DMA bursts for any one command, at the end of the
command, the device shall report the first error that occurred (see 5.5.5).
10) The device shall release DDMARDY- within tIORDYZ after the host has
negated DMACK-.
11) The host shall neither negate STOP nor negate HSTROBE until at least
tACK after negating DMACK-.
12) The host shall not assert DIOW-, CS0-, CS1-, DA2, DA1, or DA0 until
at least tACK after negating DMACK.
5-126
C141-E192-01EN
5.5 Ultra DMA Feature Set
b) Device terminating an Ultra DMA data out burst
The following steps shall occur in the order they are listed unless otherwise
specifically allowed (see 5.6.3.11 and 5.6.3.2 for specific timing
requirements):
1) The device shall not initiate Ultra DMA burst termination until at least
one data word of an Ultra DMA burst has been transferred.
2) The device shall initiate Ultra DMA burst termination by negating
DDMARDY-.
3) The host shall stop generating an HSTROBE edges within tRFS of the
device negating DDMARDY-.
4) If the device negates DDMARDY- within tSR after the host has generated
an HSTROBE edge, then the device shall be prepared to receive zero or
one additional data words. If the device negates DDMARDY- greater
than tSR after the host has generated an HSTROBE edge, then the device
shall be prepared to receive zero, one or two additional data words. The
additional data words are a result of cable round trip delay and tRFS timing
for the host.
5) The device shall negate DMARQ no sooner than tRP after negating
DDMARDY-. The device shall not assert DMARQ again until after the
Ultra DMA burst is terminated.
6) The host shall assert STOP with tLI after the device has negated DMARQ.
The host shall not negate STOP again until after the Ultra DMA burst is
terminated.
7) If HSTROBE is negated, the host shall assert HSTROBE with tLI after the
device has negated DMARQ. No data shall be transferred during this
assertion. The device shall ignore this transition of HSTROBE.
HSTROBE shall remain asserted until the Ultra DMA burst is
terminated.
8) The host shall place the result of its CRC calculation on DD (15:0) (see
5.5.5).
9) The host shall negate DMACK- no sooner than tMLI after the host has
asserted HSTROBE and STOP and the device has negated DMARQ and
DDMARDY-, and no sooner than tDVS after placing the result of its CRC
calculation on DD (15:0).
10) The device shall latch the host's CRC data from DD (15:0) on the
negating edge of DMACK-.
11) The device shall compare the CRC data received from the host with the
results of its own CRC calculation. If a miscompare error occurs during
one or more Ultra DMA bursts for any one command, at the end of the
command, the device shall report the first error that occurred (see 5.5.5).
12) The device shall release DDMARDY- within tIORDYZ after the host has negated
DMACK-.
C141-E192-01EN
5-127
Interface
13) The host shall neither negate STOP nor HSTROBE until at least tACK after
negating DMACK-.
14) The host shall not assert DIOW-, CS0-, CS1-, DA2, DA1, or DA0 until
at least tACK after negating DMACK.
5.5.5 Ultra DMA CRC rules
The following is a list of rules for calculating CRC, determining if a CRC error
has occurred during an Ultra DMA burst, and reporting any error that occurs at
the end of a command.
a) Both the host and the device shall have a 16-bit CRC calculation function.
b) Both the host and the device shall calculate a CRC value for each Ultra DMA
burst.
c) The CRC function in the host and the device shall be initialized with a seed
of 4ABAh at the beginning of an Ultra DMA burst before any data is
transferred.
d) For each STROBE transition used for data transfer, both the host and the
device shall calculate a new CRC value by applying the CRC polynomial to
the current value of their individual CRC functions and the word being
transferred. CRC is not calculated for the return of STROBE to the asserted
state after the Ultra DMA burst termination request has been acknowledged.
e) At the end of any Ultra DMA burst the host shall send the results of its CRC
calculation function to the device on DD (15:0) with the negation of
DMACK-.
f) The device shall then compare the CRC data from the host with the
calculated value in its own CRC calculation function. If the two values do
not match, the device shall save the error and report it at the end of the
command. A subsequent Ultra DMA burst for the same command that does
not have a CRC error shall not clear an error saved from a previous Ultra
DMa burst in the same command. If a miscompare error occurs during one
or more Ultra DMA bursts for any one command, at the end of the command,
the device shall report the first error that occurred.
g) For READ DMA or WRITE DMA commands: When a CRC error is
detected, it shall be reported by setting both ICRC and ABRT (bit 7 and bit 2
in the Error register) to one. ICRC is defined as the "Interface CRC Error"
bit. The host shall respond to this error by re-issuing the command.
h) A host may send extra data words on the last Ultra DMA burst of a data out
command. If a device determines that all data has been transferred for a
command, the device shall terminate the burst. A device may have already
received more data words than were required for the command. These extra
words are used by both the host and the device to calculate the CRC, but, on
an Ultra DMA data out burst, the extra words shall be discarded by the
device.
5-128
C141-E192-01EN
5.5 Ultra DMA Feature Set
i) The CRC generator polynomial is : G (X) = X16 + X12 + X5 + 1.
Note: Since no bit clock is available, the recommended approach for
calculating CRC is to use a word clock derived from the bus strobe.
The combinational logic shall then be equivalent to shifting sixteen
bits serially through the generator polynomial where DD0 is shifted in
first and DD15 is shifted in last.
5.5.6 Series termination required for Ultra DMA
Series termination resistors are required at both the host and the device for
operation in any of the Ultra DMA Modes. The following table describes
recommended values for series termination at the host and the device.
Table 5.22 Recommended series termination for Ultra DMA
Signal
DIOR-:HDMARDY-:HSTROBE
DIOW-:STOP
Host Termination
22 ohm
Device Termination
82 ohm
22 ohm
82 ohm
CS0-, CS1-
33 ohm
82 ohm
DA0, DA1, DA2
DMACK-
33 ohm
82 ohm
22 ohm
82 ohm
DD15 through DD0
DMARQ
33 ohm
22 ohm
82 ohm
22 ohm
INTRQ
82 ohm
22 ohm
IORDY:DDMARDY-:DSTROBE
RESET-
82 ohm
22 ohm
33 ohm
82 ohm
Note: Only those signals requiring termination are listed in this table. If a signal is not listed,
series termination is not required for operation in an Ultra DMA Mode. For signals also
requiring a pull-up or pull-down resistor at the host see Figure 5.8.
Vcc
Figure 5.8 Ultra DMA termination with pull-up or pull-down
C141-E192-01EN
5-129
Interface
5.6 Timing
5.6.1 PIO data transfer
Figure 5.9 shows of the data transfer timing between the device and the host
system.
t0
Addresses
t1
t9
t2
DIOR-/DIOW-
t2i
Write data
DD0-DD15
t3
t4
Read data
DD0-DD15
t5
t6
t10
t11
IORDY
t12
Symbol
Timing parameter
Min. Max. Unit
t0
t1
Cycle time
120
25
70
25
20
10
—
5
—
—
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Data register selection setup time for DIOR-/DIOW-
Pulse width of DIOR-/DIOW-
t2
—
t2i
t3
Recovery time of DIOR-/DIOW-
—
Data setup time for DIOW-
—
t4
Data hold time for DIOW-
—
t5
Time from DIOR- assertion to read data available
Data hold time for DIOR-
50
t6
—
t9
Data register selection hold time for DIOR-/DIOW-
10
—
0
—
t10
t11
t12
Time from DIOR-/DIOW- assertion to IORDY "low" level
Time from validity of read data to IORDY "high" level
Pulse width of IORDY
35
—
—
1,250
Figure 5.9 PIO data transfer timing
5-130
C141-E192-01EN
5.6 Timing
5.6.2 Multiword data transfer
Figure 5.10 shows the multiword DMA data transfer timing between the device
and the host system.
DMACK-
t
I
DIOR-/DIOW-
t
D
Symbol
Timing parameter
Min. Max. Unit
t0
tD
tE
tF
tG
tH
tI
Cycle time
120
70
—
5
—
—
ns
ns
ns
ns
ns
ns
ns
ns
Pulse width of DIOR-/DIOW-
Data Access time for DIOR-
50
Data hold time for DIOR-
—
—
—
—
—
Data setup time for DIOR-/DIOW-
Data hold time for DIOW-
20
10
0
DMACK setup time for DIOR-/DIOW-
CS (1:0) Available time for DIOR-/DIOW-
t
25
Figure 5.10 Multiword DMA data transfer timing (mode 2)
C141-E192-01EN
5-131
Interface
5.6.3 Ultra DMA data transfer
Figures 5.11 through 5.20 define the timings associated with all phases of Ultra
DMA bursts.
Table 5.23 contains the values for the timings for each of the Ultra DMA Modes.
5.6.3.1 Initiating an Ultra DMA data in burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
DMARQ
(device)
tUI
DMACK-
(host)
tFS
tACK
tENV
tZAD
STOP
(host)
tACK
tFS
tENV
HDMARDY-
(host)
tZAD
tZFS
tZIORDY
DSTROBE
(device)
tDZFS
tVDS
tAZ
tDVH
DD (15:0)
tACK
DA0,DA1,DA2,
CS0-,CS1-
Note:
The definitions for the STOP, HDMARDY-and DSTROBE signal lines are
not in effect until DMARQ and DMACK- are asserted.
Figure 5.11 Initiating an Ultra DMA data in burst
5-132
C141-E192-01EN
5.6 Timing
5.6.3.2 Ultra DMA data burst timing requirements
Table 5.23 Ultra DMA data burst timing requirements (1 of 2)
NAME MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5
(in ns)
(in ns)
(in ns)
(in ns)
(in ns)
(in ns)
COMMENT
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
240
112
160
73
120
54
90
39
60
25
40
Typical sustained average two
cycle time
t2CYCTYP
tCYC
16.8
Cycle time allowing for
asymmetry and clock variations
(from STROBE edge to STROBE
edge)
230
153
115
86
57
38
Two cycle time allowing for
clock variations (from rising edge
to next rising edge or from falling
edge to next falling edge of
STROBE)
t2CYC
15
5
10
5
7
5
7
5
5
5
4
Data setup time at recipient (from
data valid until STROBE edge)
(*2), (*5)
tDS
4.6
Data hold time at recipient (from
STROBE edge until data may
become invalid) (*2), (*5)
tDH
70
6.2
15
48
6.2
10
31
6.2
7
20
6.2
7
6.7
6.2
5
4.8
4.8
5
Data valid setup time at sender
(from data valid until STROBE
edge) (*3)
tDVS
tDVH
tCS
Data valid hold time at sender
(from STROBE edge until data
may become invalid) (*3)
CRC word setup time at device
(*2)
5
5
5
5
5
5
CRC word hold time device (*2)
tCH
70
48
31
20
6.7
10
CRC word valid setup time at
host (from CRC valid until
DMACK-negation) (*3)
tCVS
6.2
6.2
6.2
6.2
6.2
10
CRC word valid hold time at
sender (from DMACK-negation
until CRC may become invalid)
(*3)
tCVH
0
0
0
0
0
35
25
Time from STROBE output
released-to-driving until the first
transition of critical timing
tZFS
tDZFS
tFS
70
48
31
20
6.7
Time from data output released-
to-driving until the first transition
of critical timing
230
200
170
130
120
90 First STROBE time (for device to
first negate DSTROBE from
STOP during a data in burst)
C141-E192-01EN
5-133
Interface
Table 5.23 Ultra DMA data burst timing requirements (2 of 2)
NAME MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5
(in ns) (in ns) (in ns) (in ns) (in ns) (in ns)
COMMENT
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
0
20
0
150
0
20
0
150
0
20
0
150
0
20
0
100
0
20
0
100
0
20
0
75 Limited interlock time (*1)
Interlock time with minimum (*1)
Unlimited interlock time (*1)
tLI
tMLI
TUI
tAZ
10
10
10
10
10
10 Maximum time allowed for output
drivers to release (from asserted or
negated)
tZAH
tZAD
tENV
20
0
20
0
20
0
20
0
20
0
20
0
Minimum delay time required for
output
Drivers to assert or negate (from
released)
20
70
75
20
70
70
20
70
60
20
55
60
20
55
60
20
50 Envelope time (from DMACK- to
STOP and HDMARDY- during
data in burst initiation and from
DMACK to STOP during data out
burst initiation)
tRFS
50 Ready-to-final-STROBE time (no
STROBE edges shall be sent this
long after negation of DMARDY-)
tRP
160
125
100
100
100
85
Ready-to-pause time (that
recipient shall wait to pause after
negating DMARDY-)
tIORDYZ
tZIORDY
tACK
20
20
20
20
20
20 Maximum time before releasing
IORDY
0
0
0
0
0
0
Minimum time before driving
IORDY (*4)
20
20
20
20
20
20
Setup and hold times for
DMACK- (before assertion or
negation)
tSS
50
50
50
50
50
50
Time from STROBE edge to
negation of DMARQ or assertion
of STOP (when sender terminates
a burst)
*1: Except for some instances of tMLI that apply to host signals only, the parameters tUI, tMLI and tLI indicate sender-to-recipient or recipient-
to-sender interlocks, i.e., one agent (either sender or recipient) is waiting for the other agent to respond with a signal before
proceeding. tUI is an unlimited interlock that has no maximum time value. tMLI is a limited time-out that has a defined minimum. tLI
is a limited time-out that has a defined maximum.
*2: 80-conductor cabling shall be required in order to meet setup (tDS, tCS) and hold (tDH, tCH) times in modes greater than 2.
*3: Timing for tDVS, tDVH, tCVS and tCVH shall be met for lumped capacitive loads of 15 and 40 pf at the connector where all signals (Data and
STROBE) have the same capacitive load value. Due to reflections on the cable, the measurement of these timings is not valid in a
normally functioning system.
*4: For all modes the parameter tZIORDY may be greater than tENV due to the fact that the host has a pull up on IORDY- giving it a known
state when not actively driven.
*5: The parameters tDS, and tDH for mode 5 is defined for a recipient at the end of the cable only in a configuration with one device at the
end of the cable.
Note:
All timing measurement switching points (low to high and high to low) shall be taken at 1.5V.
5-134
C141-E192-01EN
5.6 Timing
Table 5.24 Ultra DMA sender and recipient timing requirements
MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5
(in ns)
(in ns)
(in ns)
(in ns)
(in ns)
(in ns)
NAME
COMMENT
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tDSIC
14.7
4.8
72.9
9
9.7
4.8
50.9
9
6.8
4.8
33.9
9
6.8
4.8
22.6
9
4.8
4.8
9.5
9
2.3
2.8
6
Recipient IC data setup time (from
data valid until STROBE edge)
(*1)
tDHIC
Recipient IC data hold time (from
STROBE edge until data may
become invalid) (*1)
tDVSIC
Sender IC data valid setup time
(from data valid until STROBE
edge) (*2)
tDVHIC
6
Sender IC data valid hold time
(from STROBE edge until data
may become invalid) (*2)
*1: The correct data value shall be captured by the recipient given input data with a slew rate of 0.4 V/ns rising and falling and the input
STROBE with a slew rate of 0.4 V/ns rising and falling at tDSIC and tDHIC timing (as measured through 1.5V).
*2: The parameters tDVSIC and tDVHIC shall be met for lumped capacitive loads of 15 and 40 pf at the IC where all signals have the same
capacitive load value. Noise that may couple onto the output signals from external sources in a normally functioning system has not
been included in these values.
Note:
All timing measurement switching points (low to high and high to low) shall be taken at 1.5V.
C141-E192-01EN
5-135
Interface
5.6.3.3 Sustained Ultra DMA data in burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
t2CYC
tCYC
tCYC
t2CYC
DSTROBE
at device
tDVH
tDVHIC
tDVS
tDVSIC
tDVH
tDVHIC
tDVS
tDVSIC
tDVH
tDVHIC
DD(15:0)
at device
DSTROBE
at host
tDH
tDHIC
tDH
tDHIC
tDH
tDHIC
tDS
tDSIC
tDS
tDSIC
DD(15:0)
at host
Note:
DD (15:0) and DSTROBE signals are shown at both the host and the device
to emphasize that cable setting time as well as cable propagation delay shall
not allow the data signals to be considered stable at the host until some time
after they are driven by the device.
Figure 5.12 Sustained Ultra DMA data in burst
5-136
C141-E192-01EN
5.6 Timing
5.6.3.4 Host pausing an Ultra DMA data in burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
DMARQ
(device)
DMACK-
(host)
tRP
STOP
(host)
HDMARDY-
(host)
tRFS
DSTROBE
(device)
DD(15:0)
(device)
Notes:
1) The host may assert STOP to request termination of the Ultra DMA burst
no sooner than tRP after HDMARDY- is negated.
2) After negating HDMARDY-, the host may receive zero, one, two or three
more data words from the device.
Figure 5.13 Host pausing an Ultra DMA data in burst
C141-E192-01EN
5-137
Interface
5.6.3.5 Device terminating an Ultra DMA data in burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
DMARQ
(device)
tMLI
DMACK-
(host)
tACK
tLI
tLI
STOP
(host)
tACK
tLI
HDMARDY-
(host)
tSS
tIORDYZ
DSTROBE
(device)
tZAH
tAZ
tCVS
tCVH
DD(15:0)
CRC
tACK
DA0, DA1, DA2,
CS0-, CS1-
Note:
The definitions for the STOP, HDMARDY- and DSTROBE signal lines are
no longer in effect after DMARQ and DMACK- are negated.
Figure 5.14 Device terminating an Ultra DMA data in burst
5-138
C141-E192-01EN
5.6 Timing
5.6.3.6 Host terminating an Ultra DMA data in burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
DMARQ
(device)
tLI
tMLI
DMACK-
(host)
tZAH
tACK
tAZ
tRP
STOP
(host)
tACK
HDMARDY-
(host)
tMLI
tLI
tRFS
tIORDYZ
DSTROBE
(device)
tCVS
tCVH
DD(15:0)
CRC
tACK
DA0, DA1, DA2,
CS0, CS1
Note:
The definitions for the STOP, HDMARDY- and DSTROBE signal lines are
no longer in effect after DMARQ and DMACK- are negated.
Figure 5.15 Host terminating an Ultra DMA data in burst
C141-E192-01EN
5-139
Interface
5.6.3.7 Initiating an Ultra DMA data out burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
DMARQ
(device)
tUI
DMACK-
(host)
tENV
tACK
STOP
(host)
tLI
tUI
tZIORDY
DDMARDY-
(device)
tACK
HSTROBE
(host)
tDZFS
tDVS
tDVH
DD(15:0)
(host)
tACK
DA0, DA1, DA2
CS0-, CS1-
Note:
The definitions for the STOP, DDMARDY- and HSTROBE signal lines are
not in effect until DMARQ and DMACK- are asserted.
Figure 5.16 Initiating an Ultra DMA data out burst
5-140
C141-E192-01EN
5.6 Timing
5.6.3.8 Sustained Ultra DMA data out burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
t2CYC
tCYC
tCYC
t2CYC
HSTROBE
at host
tDVH
tDVHIC
tDVH
tDVHIC
tDVH
tDVS
tDVSIC
tDVS
tDVSIC
tDVHIC
DD(15:0)
at host
HSTROBE
at device
tDH
tDHIC
tDS
tDSIC
tDH
tDHIC
tDS
tDSIC
tDH
tDHIC
DD(15:0)
at device
Note:
DD (15:0) and HSTROBE signals are shown at both the device and the host
to emphasize that cable setting time as well as cable propagation delay shall
not allow the data signals to be considered stable at the device until some
time after they are driven by the host.
Figure 5.17 Sustained Ultra DMA data out burst
C141-E192-01EN
5-141
Interface
5.6.3.9 Device pausing an Ultra DMA data out burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
tRP
DMARQ
(device)
DMACK-
(host)
STOP
(host)
DDMARDY-
(device)
tRFS
HSTROBE
(host)
DD(15:0)
(host)
Notes:
1) The device may negate DMARQ to request termination of the Ultra DMA
burst no sooner than tRP after DDMARDY- is negated.
2) After negating DDMARDY-, the device may receive zero, one two or three
more data words from the host.
Figure 5.18 Device pausing an Ultra DMA data out burst
5-142
C141-E192-01EN
5.6 Timing
5.6.3.10 Host terminating an Ultra DMA data out burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
tLI
DMARQ
(device)
tMLI
DMACK-
(host)
tLI
tACK
tSS
STOP
(host)
tLI
tIORDYZ
DDMARDY-
(device)
tACK
HSTROBE
(host)
tCVS
tCVH
DD(15:0)
(host)
CRC
tACK
DA0, DA1, DA2
CS0-, CS1-
Note:
The definitions for the STOP, DDMARDY- and HSTROBE signal lines are
no longer in effect after DMARQ and DMACK- are negated.
Figure 5.19 Host terminating an Ultra DMA data out burst
C141-E192-01EN
5-143
Interface
5.6.3.11 Device terminating an Ultra DMA data out burst
5.6.3.2 contains the values for the timings for each of the Ultra DMA Modes.
DMARQ
(device)
DMACK-
(host)
tACK
tLI
tMLI
STOP
(host)
tRP
tIORDYZ
DDMARDY-
(device)
tRFS
tLI
tMLI
tACK
HSTROBE
(host)
tCVS
tCVH
DD(15:0)
(host)
CRC
tACK
DA0, DA1, DA2,
CS0-, CS1-
Note:
The definitions for the STOP, DDMARDY- and HSTROBE signal lines are
no longer in effect after DMARQ and DMACK- are negated.
Figure 5.20 Device terminating an Ultra DMA data out burst
5-144
C141-E192-01EN
5.6 Timing
5.6.4 Power-on and reset
Figure 5.21 shows power-on and reset (hardware and software reset) timing.
(1) Only master device is present
Clear Reset *1
Power-on
tM
RESET-
Software reset
tN
BSY
DASP-
tP
*1: Reset means including Power-on-Reset, Hardware Reset (RESET-), and Software Reset.
(2) Master and slave devices are present (2-drives configuration)
Clear Reset
[Master device]
tN
BSY
DASP-
[Slave device]
BSY
tQ
tP
PDIAG-
DASP-
tS
tR
Symbol
Timing parameter
Pulse width of RESET-
Min. Max. Unit
tM
tN
tP
25
—
—
—
—
—
µs
ns
Time from RESET- negation to BSY set
Time from RESET- negation to DASP- or DIAG- negation
Self-diagnostics execution time
400
1
30
ms
s
tQ
tR
Time from RESET- negation to DASP- assertion (slave
device)
400
ms
tS
Duration of DASP- assertion
—
31
s
Figure 5.21 Power-on Reset Timing
C141-E192-01EN
5-145
This page is intentionally left blank.
CHAPTER 6 Operations
6.1
6.2
6.3
6.4
6.5
Device Response to the Reset
Power Save
Defect Processing
Read-Ahead Cache
Write Cache
C141-E192-01EN
6-1
Operations
6.1 Device Response to the Reset
This section describes how the PDIAG- and DASP- signals responds when the
power of the IDD is turned on or the IDD receives a reset or diagnostic command.
6.1.1 Response to power-on
After the master device (device 0) releases its own power-on reset state, the
master device shall check a DASP- signal for least 500 ms to confirm presence of
a slave device (device 1). The master device recognizes presence of the slave
device when it confirms assertion of the DASP- signal. Then, the master device
checks a PDIAG- signal to see if the slave device has successfully completed the
power-on diagnostics.
If the master device cannot confirm assertion of the DASP- signal within 500 ms,
the master device recognizes that no slave device is connected.
After the slave device (device 1) releases its own power-on reset state, the slave
device shall report its presence and the result of power-on diagnostics to the
master device as described below:
DASP- signal: Asserted within 450 ms.
PDIAG- signal: Negated within 1 ms and asserted within 30 seconds.
The asserted PDIAG-signal is negated 30 seconds after it is asserted if the
command is not received.
6-2
C141-E192-01EN
6.1 Device Response to the Reset
Power on
Master device
Power On Reset-
Status Reg.
BSY bit
Max. 31 sec.
Checks DASP- for up to
500 ms.
If presence of a slave device is
confirmed, PDIAG- is checked for
up to 31 seconds.
Slave device
Power On Reset-
BSY bit
Max. 1 ms.
PDIAG-
DASP-
Max. 30 sec.
Max. 450 ms.
Figure 6.1 Response to power-on
Note: Figure 6.1 has a assumption that the device is kept on the power-off condition for more than
5 sec before the device power is turned on.
6.1.2 Response to hardware reset
Response to RESET- (hardware reset through the interface) is similar to the
power-on reset.
Upon receipt of hardware reset, the master device checks a DASP- signal for up
to 500 ms to confirm presence of a slave device. The master device recognizes the
presence of the slave device when it confirms assertion of the DASP- signal.
Then the master device checks a PDIAG- signal to see if the slave device has
successfully completed the self-diagnostics.
If the master device cannot confirm assertion of the DASP- signal within 450 ms,
the master device recognizes that no slave device is connected.
C141-E192-01EN
6-3
Operations
After the slave device receives the hardware reset, the slave device shall report its
presence and the result of the self-diagnostics to the master device as described
below:
DASP- signal: Asserted within 450 ms.
PDIAG- signal: Negated within 1 ms and asserted within 30 seconds.
The asserted PDIAG-signal is negated 30 seconds after it is asserted if the
command is not received.
Reset-
Master device
Status Reg.
BSY bit
Max. 31 sec.
If presence of a slave device is
Checks DASP- for up to
500 ms.
confirmed, PDIAG- is checked for
up to 31 seconds.
Slave device
BSY bit
Max. 1 ms.
PDIAG-
DASP-
Max. 30 sec.
Max. 450 ms.
.
Figure 6.2 Response to hardware reset
Note: Master Device does not check the DASP signal assertion for 2ms upon receipt of hardware
reset.
6-4
C141-E192-01EN
6.1 Device Response to the Reset
6.1.3 Response to software reset
The master device does not check the DASP- signal for a software reset. If a
slave device is present, the master device checks the PDIAG- signal for up to 15
seconds to see if the slave device has completed the self-diagnosis successfully.
After the slave device receives the software reset, the slave device shall report its
presence and the result of the self-diagnostics to the master device as described
below:
PDIAG- signal: negated within 1 ms and asserted within 30 seconds
The asserted PDIAG-signal is negated 30 seconds after it is asserted if the
command is not received.
When the IDD is set to a slave device, the IDD asserts the DASP- signal when
negating the PDIAG- signal.
X'3F6' Reg.
X"0C"
X"00"
or X"04"
Master device
Status Reg.
BSY bit
Max. 31 sec.
If the slave device is preset, PDIAG- is checked for
up to 31 seconds.
Slave device
BSY bit
Max. 1 ms.
PDIAG-
DASP-
Max. 30 sec.
Figure 6.3 Response to software reset
C141-E192-01EN
6-5
Operations
6.1.4 Response to diagnostic command
When the master device receives an EXECUTE DEVICE DIAGNOSTIC
command and the slave device is present, the master device checks the PDIAG-
signal for up to 6 seconds to see if the slave device has completed the self-
diagnosis successfully.
The master device does not check the DASP- signal.
After the slave device receives the EXECUTE DEVICE DIAGNOSTIC
command, it shall report the result of the self-diagnostics to the master device as
described below:
PDIAG- signal: negated within 1 ms and asserted within 5 seconds
The asserted PDIAG-signal is negated 5 seconds after it is asserted if the
command is not received. If the command is received, the PDIAG-signal is
negated according to timing at which the command is received.
When the IDD is set to a slave device, the IDD asserts the DASP- signal when
negating the PDIAG- signal.
X'1F7' Reg.
Write
Master device
Status Reg.
BSY bit
Max. 6 sec.
If the slave device is preset, PDIAG- signal is checked for
up to6 seconds.
Slave device
BSY bit
Max. 1 ms.
PDIAG-
DASP-
Max. 5 sec.
Figure 6.4 Response to diagnostic command
6-6
C141-E192-01EN
6.2 Power Save
6.2 Power Save
The host can change the power consumption state of the device by issuing a
power command to the device.
6.2.1 Power save mode
There are five types of power consumption state of the device including active
mode where all circuits are active.
•
•
•
•
•
Active mode
Active idle mode
Low power idle mode
Standby mode
Sleep mode
The device enters the active idle mode by itself. The device also enters the idle
mode in the same way after power-on sequence is completed. The subsequent
mode transition changes depending on the APM setting.
(1) Active mode
In this mode, all the electric circuit in the device are active or the device is under
seek, read or write operation.
A device enters the active mode under the following conditions:
•
The media access system is received.
(2) Active idle mode
In this mode, circuits on the device is set to power save mode.
The device enters the Active idle mode under the following conditions:
•
After completion of the command execution other than SLEEP and STANDBY
commands.
(3) Low power idle mode
Sets circuits on the device to the power save mode. The heads are disabled in the
safe state.
The device enters the low power mode under the following conditions:
•
After certain amount of time has elapsed in the active idle state (APM Mode
1 and Mode 2)
•
Upon completion of the power-on sequence
C141-E192-01EN
6-7
Operations
•
•
Upon receipt of a hard reset
Upon receipt of Idle/Idle Intermediate
(4) Standby mode
In this mode, the spindle motor has stopped from the low power idle state.
The device can receive commands through the interface. However if a command
with disk access is issued, response time to the command under the standby mode
takes longer than the active, active idle, or low power idle mode because the
access to the disk medium cannot be made immediately.
The drive enters the standby mode under the following conditions:
•
•
A STANDBY or STANDBY IMMEDIATE command is issued.
A certain amount of time has elapsed in the low power idle state. (APM
Mode 2)
•
The time specified by the STANDBY or IDLE command has elapsed after
completion of the command.
•
A reset is issued in the sleep mode.
When one of following commands is issued, the command is executed normally
and the device is still stayed in the standby mode.
•
•
•
•
•
Reset (hardware or software)
STANDBY command
STANDBY IMMEDIATE command
INITIALIZE DEVICE PARAMETERS command
CHECK POWER MODE command
(5) Sleep mode
The power consumption of the drive is minimal in this mode. The drive enters
only the standby mode from the sleep mode. The only method to return from the
standby mode is to execute a software or hardware reset.
The drive enters the sleep mode under the following condition:
•
A SLEEP command is issued.
In this mode, the device does not accept the command. (It is ignored.)
6-8
C141-E192-01EN
6.3 Defect Processing
6.2.2 Power commands
The following commands are available as power commands.
•
IDLE
IDLE IMMEDIATE
•
•
•
•
•
•
STANDBY
STANDBY IMMEDIATE
SLEEP
CHECK POWER MODE
SET FEATURES (APM setting)
6.3 Defect Processing
This device performs alternating processing where the defective sector is
alternated with the spare area depending on media defect location information.
The media defect location information is registered in the system space specified
for the user area according to the format at shipment of the media from the plant.
6.3.1 Spare area
The following type of area is prepared as the spare area in user areas:
1) Spare cylinder for alternate assignment: This cylinder is used during
automatic alternating processing for defective sector. More than 2000
sectors/drive.
C141-E192-01EN
6-9
Operations
6.3.2 Alternating processing for defective sectors
The following two types of technology are used for alternating processing:
(1) Sector slip processing
In this method, defective sectors are not used (thereby avoiding the effects of
defects), and each defective sector is assigned to the next contiguous sector that is
normal.
Depending on the format defined at shipment from the plant, this processing is
performed for defective sectors.
Figure 6.5 shows an example where sector (physical) 5 with cylinder 0 and head 0
is defective.
Sector (physical)
778
777
779
778
780
779
Defec-
tive
sector
Cylinder 0
Head 0
(Not used)
Note: When an access request for sector 5 is issued, physical sector 6 must be
accessed instead of physical sector 5.
Figure 6.5 Sector slip processing
(2) Track slip processing
In this method, defective tracks not used (there by avoiding the effects of defects),
and each defective track is assigned to the next contiguous track that is normal.
Depending on the format defined at shipment from the plant, this processing is
performed for defective tracks.
6-10
C141-E192-01EN
6.3 Defect Processing
(3)
Automatic alternating processing
This technology assigns a defective sector to a spare sector of an spare cylinder
for alternate assignment.
This device performs automatic alternating processing in the event of any of the
following errors.
•
Automatic alternating processing is attempted for read error recovery by
heightening the ECC correction capability while a read error retry is in
progress.
Before attempting automatic alternating processing, writing and reading of
already corrected data is repeated for the sector in which an error occurred.
If a read error does not occur during this reading operation, automatic
alternating processing is not performed.
•
If error recovery is not successful even if a write fault error retry is executed,
automatic alternating processing is performed.
Figure 6.6 shows an example where automatic alternating processing is applied to
sector (physical) 5 with cylinder 0 and head 0.
Sector (physical)
779
779
780
780
Defec-
tive
sector
Cylinder 0
Head 0
(Not used)
Alternate cylinder 0
Head 0
This is assigned to an unassigned sector.
Already
assigned
Notes:
1. The alternate cylinder is assigned to an inner cylinder in each zone.
2. When an access request for sector 5 is issued, the sector assigned for
alternating processing of the alternate cylinder must be accessed instead of
physical sector 5.
If an access request for sectors after sector 5 is issued, seek is executed to
cylinder 0, head 0 in order to continue processing.
Figure 6.6 Automatic alternating processing
C141-E192-01EN
6-11
Operations
6.4 Read-ahead Cache
Read-ahead Cache is the function for automatically reading data blocks upon
completion of the read command in order to read data from disk media and save
data block on a data buffer.
If a subsequent command requests reading of the read-ahead data, data on the data
buffer can be transferred without accessing the disk media. As the result, faster
data access becomes possible for the host.
6.4.1 DATA buffer structure
This device contains a data buffer 2 MB. This buffer is divided into two areas:
one area is used for MPU work, and the other is used as a read cache for another
command. (See Figures 6.7 and 6.8.)
2048 KB (2097152 bytes)
For MPU work
For R/W command
For MPU work
391 KB
1657 KB
16 KB
(400384 bytes)
(16384 bytes)
(1696768 bytes)
Figure 6.7 Data buffer structure (2 MB Buffer)
The read-ahead operation is done by the following commands.
•
•
•
•
•
•
READ SECTOR (s) (EXT)
READ MULTIPLE (EXT)
READ DMA (EXT)
READ DMA QUEUED (EXT)
READ STREAM PIO
READ STREAM DMA
6-12
C141-E192-01EN
6.4 Read-ahead Cache
6.4.2 Caching operation
The caching operation is performed only when the commands listed below are
received. If any of the following data are stored on the data buffer, the data is
sent to the host system.
•
•
All of the sector data that this command processes.
A part of the sector data including the start sector, that this command
processes.
If part of the data to be processed is stored on the data buffer, the remaining data
is read from disk media and sent to the host system.
(1) Commands that are targets of caching
The commands that are targets of caching are as follows:
•
•
•
•
READ SECTOR (s) (EXT) (QUEUED)
READ MULTIPLE (EXT)
READ DMA(EXT) (QUEUED)
READ STREAM DMA (PIO)
However, if the caching function is prohibited by the SET FEATURES command,
the caching operation is not performed.
(2) Data that is a target of caching
The data that is a target of caching are as follows:
1) Read-ahead data that is read from disk media and saved to the data buffer
upon completion of execution of a command that is a target of caching.
2) Pre-read data that is read from disk media and saved to the data buffer before
execution of a command that is a target of caching.
3) Data required by a command that is a target of caching and has been sent to
the host system one. If the sector data requested by the host has not been
completely stored in the read cache portion of the buffer, this data does not
become a target of caching. Also, If sequential hits occur continuously, the
caching-target data required by the host becomes invalid because that data is
overwrited by new data.
(3) Invalidating caching-target data
Data that is a target of caching on the data buffer is invalidated under the
following conditions:
1)-1Any command other than the following commands is issued. (All caching-
target data is invalidated.)
READ LONG
C141-E192-01EN
6-13
Operations
READ LOG EXT
READ BUFFER
WRITE LONG
WRITE LOG EXT
WRITE BUFFER
RECALIBRATE
FORMAT TRACK
IDENTIFY COMPONENT
SET FEATURES
SECURITY ERASE UNIT
DEVICE CONFIGURATION
DOWNLOAD MICROCODE
UNSUPPORT COMMAND (INVALID COMMAND)
1)-2Commands that partially invalidate caching data
(When data in the buffer or on media is overwritten, the overwritten data is
invalidated.)
READ DMA / READ MULTIPLE / READ SECTOR (s)
READ DMA EXT / READ MULTIPLE EXT / READ SECTOR (s) EXT
WRITE DMA / WRITE MULTIPLE / WRITE SECTOR(s)
WRITE DMA EXT / WRITE MULTIPLE EXT / WRITE SECTOR (s) EXT
READ DMA QUEUED / READ DMA QUEUED EXT
WRITE DMA QUEUED / WRITE DMA QUEUED EXT
READ STREAM PIO / READ STREAM DMA
WRITE STREAM PIO / WRITE STREAM DMA
SMART
2) A hard reset is issued or the power is turned off.
3) When HOST CRC ERROR has occurred.
6-14
C141-E192-01EN
6.4 Read-ahead Cache
6.4.3 Using the read segment buffer
Methods of using the read segment buffer are explained for following situations.
6.4.3.1 Miss-hit
In this situations, the top block of read requested data is not stored at all in the
data buffer. As a result, all of the read requested data is read from disk media.
1) HAP (host address pointer) and DAP (disk address pointer) are defined in the
head of the segment allocated from Buffer. (If pre-read is executed, HAP is
set at the requested data reading position.)
HAP (host address pointer)
!
Read segment
"
DAP (disk address pointer)
2) During reading of read requested data, the request data that has already been
read is sent to the host system.
Read requested data is
stored until this point
HAP
!
Read requested data
Free space
"
DAP
3) When reading of read requested data is completed and transfer of the read
requested data to the host system is completed, reading of the disk continues
until a certain amount of data is stored.
HAP (stop)
!
Read requested data
Read-ahead data
"
DAP
C141-E192-01EN
6-15
Operations
4) The following cache valid data is for the read command that is executed next:
Cache valid data
LAST LBA START LBA
6.4.3.2 Sequential Hit
When the read command that is targeted at a sequential address is received after
execution of the read commands is completed, the read command transmits the
Read requested data to the host system continuing read-ahead without newly
allocating the buffer for read.
1) When the sequential read command is received, HAP is set in the sequential
address of the last read command, and DAP is set at a present read position as
it is.
HAP (host address pointer)
!
Read requested data
Cache valid data
Free space
Read-ahead data
"
DAP (disk address pointer)
2) During reading of read requested data, the request data that has already been
read is sent to the host system.
HAP (host address pointer)
!
Cache valid data
Free space
Read requested data
"
DAP (disk address pointer)
3) When reading of read requested data is completed and transfer of the read
requested data to the host system is completed, the read-ahead operation
continues until a certain amount of data is stored.
HAP (host address pointer)
!
Read-ahead Free
Cache valid data
Read requested data
data
space
"
DAP (disk address pointer)
6-16
C141-E192-01EN
6.4 Read-ahead Cache
4) The following cache valid data is for the read command that is executed next:
Cache valid data
LAST LBA START LBA
6.4.3.3 Full hit
In this situation, all read requested data is stored in the data buffer. Transfer of
the read requested data is started from the location where hit data is stored. For
data that is a target of caching and remains before a full hit, the data is retained
when execution of the command is completed. This is done so that a new read-
ahead operation is not performed. If the full hit command is received during the
read-ahead operation, a transfer of the read requested data starts while the read-
ahead operation is in progress.
1) An example is the state shown below where the previous read command is
executing sequential reading. First, HAP is set at the location where hit data
is stored.
HAP end location of the previous read command
HAP (It is reset to the hit data location for transfers.)
HAP
Cache data
Full hit data
Cache data
DAP
DAP end location of the previous read command
2) The read requested data is transferred, and a new read-ahead operation is not
performed.
HAP
(stop)
Cache data
Full hit data
Cache data
C141-E192-01EN
6-17
Operations
6.4.3.4 Partial hit
In this situation, a part of read requested data including the top sector is stored in
the data buffer. A transfer of the read requested data starts from the address where
the data that is hit is stored until the top sector of the read requested data.
Remaining part of insufficient data is read then.
An example is a case where a partial hit occurs in cache data, as shown below.
Cache valid data
START LBA
LAST LBA
1) HAP is set at the address where partial hit data is stored, and Transfer is
started.
HAP (host address pointer)
!
Cache valid data
Partial hit data
2) DAP and HAP are set at the head of Buffer newly allocated, and insufficient
data is read.
HAP (host address pointer)
!
Read segment
"
DAP (disk address pointer)
3) When reading the read requested data ends and the transmission of the read
requested data to the host system ends, the read-ahead operation continues
until a certain amount of data is stored.
The method of storing the read-ahead data at Partial hit is the same as the
Miss hit.
Cache valid data
LAST LBA START LBA
6-18
C141-E192-01EN
6.5 Write Cache
6.5 Write Cache
Write Cache is the function for reducing the command processing time by
separating command control to disk media from write control to disk media.
When Write Cache is permitted, the write command can be keep receiving as long
as the space available for data transfers remains free on the data buffer. Because
of this function, command processing appears to be completed swiftly from the
viewpoint of the host. It improves system throughput.
6.5.1 Cache operation
(1) Command that are targets of caching
The Commands that are targets of caching are as follows:
•
Write Sector (s)
Write Multiple
•
•
•
•
•
•
•
•
•
Write DMA
Write Sector (s) EXT
Write Multiple EXT
Write DMA EXT
WRITE DMA QUEUED
WRITE DMA QUEUED EXT
WRITE STREAM PIO
WRITE STREAM DMA
However, the caching operation is not performed when the caching function is
prohibited by the SET FEATURES command.
(2) Invalidation of cached data
If an error occurs during writing onto media, write processing is repeated up to as
many times as specified for retry processing. If retry fails for a sector because the
retry limit is reached, automatic alternate sector processing is executed for the
sector. If the automatic alternate sector processing fails, the data in the sector for
which automatic alternate sector processing failed is invalidated without being
guaranteed.
If data remains in sectors following a sector for which automatic alternate sector
processing failed, the data is invalidated without being guaranteed.
Moreover, when the command (clause 6.4.2(3)) is accepted and HOST CRC Error
is generated, the cashing data is invalidated.
C141-E192-01EN
6-19
Operations
<Exception>
If a Reset or command is received while a transfer of one sector of data is in
•
progress, data is not written in the sector of the media where the interruption
occurred, and sectors accepted before interruption occurred is written in the
medium.
(3) Status report in the event of an error
The status report concerning an error occurring during writing onto media is
created when the next command is issued. Where the command reporting the
error status is not executed, only the error status is reported. Only the status of an
error that occurs during write processing is reported.
<Exceptions>
The error status is not reported in the following case:
•
The reset command is received after an error has occurred during writing to
media.
•
Reset processing is performed as usual. The error status that has occurred
during writing to media is not reported.
(4) Enabling and disabling
Enabling and disabling of the Write Cache function can be set only with the SET
FEATURES command. The setting does not changed even when the error status
is reported.
The initial setting is stored in the system area of media. System area information
is loaded whenever the power is turned on.
(5) Reset response
When a reset is received while cached data is stored on the data buffer, data of the
data buffer is written on the media, and reset processing is then performed. This
is true for both a hard reset and soft reset.
(6) Cashing function when power supply is turned on.
The cashing function is invalid until Calibration is done after the power supply is
turned on.(about 10 sec) It is effective in Default after that as long as the cashing
function is not invalidly set by the SET FEATURES command.
IMPORTANT
If Write Cache is enabled, there is a possibility that data transferred
from the host with the Write Cache enable command is not
completely written on disk media before the normal end interrupt is
issued.
If an unrecoverable error occurs while multiple commands that are
targets of write caching are received, the host has difficulty
6-20
C141-E192-01EN
6.5 Write Cache
determining which command caused the error. (An error report is
not issued to the host if automatic alternating processing for the
error is performed normally.) Therefore, the host cannot execute a
retry for the unrecoverable error while Write Cache is enabled. Be
very careful on this point when using this function.
If a write error occurs, an abort response is sent to all subsequent
commands.
C141-E192-01EN
6-21
This page is intentionally left blank.
Glossary
Actuator
AT bus
Head positioning assembly. The actuator consists of a voice coil motor and head
arm. If positions the read-write (R-W) head.
A bus between the host CPU and adapter board
ATA (AT Attachment) standard
The ATA standard is for a PC AT interface regulated to establish compatibility
between products manufactured by different vendors. Interfaces based on this
standard are called ATA interfaces.
BIOS standard for drives
The BIOS standard collectively refers to the parameters defined by the host,
which, for example, include the number of cylinders, the number of heads, and
the number of sectors per track in the drive. The physical specifications of the
drive do not always correspond to these parameters.
The BIOS of a PC AT cannot make full use of the physical specifications of these
drivers. To make the best use of these drives, a BIOS that can handle the standard
parameters of these drives is required.
Command
Data block
DE
Commands are instructions to input data to and output data from a drive.
Commands are written in command registers.
A data block is the unit used to transfer data. A data block normally indicates a
single sector.
Disk enclosure. The DE includes the disks, built-in spindle motor, actuator,
heads, and air filter. The DE is sealed to protect these components from dust.
Master (Device 0)
The master is the first drive that can operate on the AT bus. The master is daisy-
chained with the second drive which can operate in conformity with the ATA
standard.
C141-E192-01EN
GL-1
Glossary
MTBF
Mean time between failures. The MTBF is calculated by dividing the total
operation time (total power-on time) by the number of failures in the disk drive
during operation.
MTTR
Mean time to repair. The MTTR is the average time required for a service person
to diagnose and repair a faulty drive.
PIO (Programmed input-output)
Mode to transfer data under control of the host CPU
Positioning
Sum of the seek time and mean rotational delay
Power save mode
The power save modes are idle mode, standby mode, and sleep mode.
In idle mode, the drive is neither reading, writing, nor seeking data. In standby
mode, the spindle motor is stopped and circuits other than the interface control
circuit are sleeping. The drive enters sleep mode when the host issues the SLEEP
command.
Reserved
Reserved bits, bytes, and fields are set to zero and unusable because they are
reserved for future standards.
Rotational delay
Time delay due to disk rotation. The mean delay is the time required for half a
disk rotation. The mean delay is the average time required for a head to reach a
sector after the head is positioned on a track.
Seek time
The seek time is the time required for a head to move from the current track to
another track. The seek time does not include the mean rotational delay.
Slave (Device 1)
The slave is a second drive that can operate on the AT bus. The slave is daisy-
chained with the first drive operating in conformity with the ATA standard.
GL-2
C141-E192-01EN
Glossary
Status
VCM
The status is a piece of one-byte information posted from the drive to the host
when command execution is ended. The status indicates the command
termination state.
Voice coil motor. The voice coil motor is excited by one or more magnets. In
this drive, the VCM is used to position the heads accurately and quickly.
C141-E192-01EN
GL-3
This page is intentionally left blank.
Acronyms and Abbreviations
HDD
Hard disk drive
A
I
ABRT Aborted command
AIC
AMNF Address mark not found
ATA AT attachment
Automatic idle control
IDNF
ID not found
IRQ14 Interrupt request 14
L
AWG American wire gage
LED
MB
Light emitting diode
B
M
BBK
BIOS
Bad block detected
Basic input-output system
Mega-byte
MB/S Mega-byte per seconds
C
MPU
Micro processor unit
CORR Corrected data
P
CH
Cylinder high register
CL
Cylinder low register
Command register
Current sense register
Current start/stop
Cylinder register
PCA
PIO
Printed circuit assembly
Programmed input-output
CM
CSR
CSS
CY
R
RLL
Run-length-limited
D
S
dBA
DE
DH
dB A-scale weighting
Disk enclosure
Device/head register
SA
SC
SG
SN
ST
System area
Sector count register
Signal ground
Sector number register
Status register
DRDY Drive ready
DRQ
DSC
DWF
Ddata request bit
Drive seek complete
Drive write fault
T
E
TPI
Track per inches
TRONF Track 0 not found
ECC
ER
Error checking and correction
Error register
Typ
Typical
ERR
Error
U
F
UNC
VCM
Uncorrectable ECC error
FR
Feature register
V
H
Voice coil motor
HA
Host adapter
C141-E192-01EN
AB-1
This page is intentionally left blank.
Index
A
H
active idle mode 6-7
active mode 6-7
alternating processing,
automatic 6-11
for defective sector 6-10
for defective sector 6-10
area, spare 6-9
hit, full 6-17
hit, partial 6-18
hit, sequential 6-16
host pausing Ultra DMA data in burst
5-137
host terminating Ultra DMA data
in burst 5-139
assignment processing, alternate cylinder
6-10
out burst 5-143
automatic alternating processing 6-11
I
initiating, Ultra DMA data
in burst 5-132
B
blower 4-3
out burst 5-140
initiating Ultra DMA data
in burst 5-132
out burst 5-140
invalidating, caching-target data 6-13
invalidating caching-target data 6-13
invalidation of cached data 6-19
C
caching operation 6-13, 6-19
command, sequential 6-16
command, target of caching 6-13
command that is target of caching 6-13,
6-19
L
low power idle mode 6-7
D
data, target of caching 6-13
data buffer structure 6-12
data that is target of caching 6-13
data transfer,
M
mean time, mean time between failures
miss, hit 6-15
multiword 5-131
PIO 5-130
miss-hit 6-15
mode, active 6-7
Ultra DMA 5-132
mode, active idle 6-7
mode, power save 6-7
mode, sleep 6-8
defect processing 6-9
device pausing Ultra DMA data out burst
5-142
mode, standby 6-8
device response 6-2
to reset 6-2
multiword data transfer 5-131
multiword DMA data transfer timing 5-131
device terminating Ultra DMA data
in burst 5-138, 5-144
out burst 5-144
O
operation 6-1
operation, caching 6-13
operation, read-ahead 6-12
E
enabling and disabling 6-20
P
F
partial hit 6-18
fluctuation, current 1-7
full hit 6-17
pausing, device Ultra DMA data out burst
5-142
C141-E192-01EN
IN-1
Index
pausing, host Ultra DMA data in burst
5-137
PIO data transfer 5-130
timing 5-130
terminating, host Ultra DMA data
in burst 5-139
out burst 5-143
timing, multiword DMA data transfer
power commands 6-9
power-on 5-145
timing 5-145
power save 6-7
5-131
timing, PIO data transfer 5-130
timing, power-on 5-145
timing, reset 5-145
mode 6-7
timing requirement, Ultra DMA data burst
5-133
processing, defect 6-9
processing, sector slip 6-10
processing, track slip 6-10
U
Ultra DMA data burst timing requirement
5-133
Ultra DMA data transfer 5-132
Ultra DMA recipient timing requirement
5-135
R
read-ahead 6-12
cache 6-12
operation 6-12
READ DMA 6-13
READ MULTIPLE 6-13
READ SECTOR(S) 6-13
reset 5-145, 6-2
Ultra DMA sender timing requirement
5-135
using, read segment buffer 6-15
using read segment buffer 6-15
reset response 6-20
reset timing 5-145
resistor, pull-up or pull-down 5-129
response, to
W
write cache 6-19
WRITE SECTOR (S) EXT (34H) 5-103
diagnostic command 6-6
hardware reset 6-3
power-on 6-2
X
software reset 6-5
X'B1' 5-91
response to
diagnostic command 6-6
hardware reset 6-3
power-on 6-2
software reset 6-5
S
sector slip processing 6-10
sequential command 6-16
sequential hit 6-16
sleep mode 6-8
spare area 6-9
standby mode 6-8
status report in event of error 6-20
sustain, Ultra DMA data
in burst 5-136
out burst 5-141
sustained Ultra DMA data
in burst 5-136
out burst 5-141
T
terminating, device Ultra DMA data out
burst 5-138, 5-144
IN-2
C141-E192-01EN
Comment Form
We would appreciate your comments and suggestions regarding this manual.
Manual code
Manual name
C141-E192-01EN
MHT2080AT, MHT2060AT, MHT2040AT MHT2030AT, MHT2020AT
DISK DRIVES PRODUCT MANUAL
Please mark each item: E(Excellent), G(Good), F(Fair), P(Poor).
General appearance
Technical level
Organization
Clarity
(
(
(
(
(
)
)
)
)
)
Illustration
Glossary
Acronyms & Abbreviations
Index
(
(
(
(
)
)
)
)
Accuracy
Comments & Suggestions
List any errors or suggestions for improvement.
Page
Line
Contents
Please send this form to the address below. We will use your comments in planning future editions.
Address: Fujitsu Learning Media Limited
37-10 Nishikamata 7-chome
Oota-ku
Tokyo 144-0051
JAPAN
Fax: 81-3-3730-3702
Organization:
Name:
C141-E192-01EN
This page is intentionally left blank.
MHT2080AT, MHT2060AT, MHT2040AT MHT2030AT, MHT2020AT
DISK DRIVES PRODUCT MANUAL
C141-E192-01EN
MHT2080AT, MHT2060AT, MHT2040AT MHT2030AT, MHT2020AT
DISK DRIVES PRODUCT MANUAL
C141-E192-01EN
This page is intentionally left blank
|