Teledyne Camera Accessories T100 User Manual

Operation Manual  
Model T100  
UV Fluorescence SO2 Analyzer  
Also supports operation of:  
Model T100U Analyzer  
Model T100H Analyzer  
Model T108 Analyzer  
Model T108U Analyzer  
when used in conjunction with:  
T100U addendum, PN 06840  
T100H addendum, PN 07265  
T108 addendum, PN 07268  
T100U addendum, PN 06840, and  
T108 addendum, PN 07268  
© TELEDYNE ADVANCED POLLUTION INSTRUMENTATION (TAPI)  
9480 CARROLL PARK DRIVE  
SAN DIEGO, CA 92121-5201  
USA  
Toll-free Phone: 800-324-5190  
Phone: 858-657-9800  
Fax: 858-657-9816  
Website: http://www.teledyne-api.com/  
Copyright 2010-2013  
Teledyne Advanced Pollution Instrumentation  
06807C DCN6650  
22 April 2013  
ABOUT TELEDYNE ADVANCED POLLUTION INSTRUMENTATION (TAPI)  
Teledyne Advanced Pollution Instrumentation(TAPI), a business unit of Teledyne  
Instruments, Inc., is a worldwide market leader in the design and manufacture of  
precision analytical instrumentation used for air quality monitoring, continuous  
emissions monitoring, and specialty process monitoring applications. Founded in San  
Diego, California, in 1988, TAPI introduced a complete line of Air Quality Monitoring  
(AQM) instrumentation, which comply with the United States Environmental Protection  
Administration (EPA) and international requirements for the measurement of criteria  
pollutants, including CO, SO2, NOX and Ozone.  
Since 1988 TAPI has combined state-of-the-art technology, proven measuring  
principles, stringent quality assurance systems and world class after-sales support to  
deliver the best products and customer satisfaction in the business.  
For further information on our company, our complete range of products, and the  
applications that they serve, please visit www.teledyne-api.com or contact  
NOTICE OF COPYRIGHT  
© 2010-2013 Teledyne Advanced Pollution Instrumentation. Inc. All rights reserved.  
TRADEMARKS  
All trademarks, registered trademarks, brand names or product names appearing in this  
document are the property of their respective owners and are used herein for  
identification purposes only.  
i
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
ii  
06807C DCN6650  
IMPORTANT SAFETY INFORMATION  
Important safety messages are provided throughout this manual for the purpose of  
avoiding personal injury or instrument damage. Please read these messages carefully.  
Each safety message is associated with a safety alert symbol and placed throughout this  
manual and inside the instrument. The symbols with messages are defined as follows:  
WARNING: Electrical Shock Hazard  
HAZARD: Strong oxidizer  
GENERAL WARNING/CAUTION: Read the accompanying  
message for specific information.  
CAUTION: Hot Surface Warning  
Do Not Touch: Touching some parts of the instrument without  
protection or proper tools could result in damage to the part(s)  
and/or the instrument.  
Technician Symbol: All operations marked with this symbol are  
to be performed by qualified maintenance personnel only.  
Electrical Ground: This symbol inside the instrument marks the  
central safety grounding point for the instrument.  
CAUTION  
GENERAL SAFETY HAZARD  
The T100 Analyzer should only be used for the purpose and in the  
manner described in this manual. If you use the T100 in a manner other  
than that for which it was intended, unpredictable behavior could ensue  
with possible hazardous consequences.  
NEVER use any gas analyzer to sample combustible gas(es).  
Technical Assistance regarding the use and maintenance of the T100 or  
any other Teledyne API product can be obtained by contacting Teledyne  
API’s Technical Service Department:  
Note  
Phone: 800-324-5190  
or by accessing various service options on our website at  
7http://www.teledyne-api.com/.  
iii  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
CONSIGNES DE SÉCURITÉ  
Des consignes de sécurité importantes sont fournies tout au long du présent manuel dans le but d’éviter des  
blessures corporelles ou d’endommager les instruments. Veuillez lire attentivement ces consignes. Chaque  
consigne de sécurité est représentée par un pictogramme d’alerte de sécurité; ces pictogrammes se retrouvent  
dans ce manuel et à l’intérieur des instruments. Les symboles correspondent aux consignes suivantes :  
AVERTISSEMENT : Risque de choc électrique  
DANGER : Oxydant puissant  
AVERTISSEMENT GÉNÉRAL  
/
MISE EN GARDE : Lire la consigne  
complémentaire pour des renseignements spécifiques  
MISE EN GARDE : Surface chaude  
Ne pas toucher : Toucher à certaines parties de l’instrument sans protection ou  
sans les outils appropriés pourrait entraîner des dommages aux pièces ou à  
l’instrument.  
Pictogramme « technicien » : Toutes les opérations portant ce symbole doivent  
être effectuées uniquement par du personnel de maintenance qualifié.  
Mise à la terre : Ce symbole à l’intérieur de l’instrument détermine le point central  
de la mise à la terre sécuritaire de l’instrument.  
MISE EN GARDE  
Cet instrument doit être utilisé aux fins décrites et de la manière décrite  
dans ce manuel. Si vous utilisez cet instrument d’une autre manière  
que celle pour laquelle il a été prévu, l’instrument pourrait se comporter  
de façon imprévisible et entraîner des conséquences dangereuses.  
NE JAMAIS utiliser un analyseur de gaz pour échantillonner des gaz  
combustibles!  
iv  
06807C DCN6650  
 
WARRANTY  
WARRANTY POLICY (02024 F)  
Teledyne Advanced Pollution Instrumentation (TAPI), a business unit of Teledyne  
Instruments, Inc., provides that:  
Prior to shipment, TAPI equipment is thoroughly inspected and tested. Should equipment  
failure occur, TAPI assures its customers that prompt service and support will be available.  
COVERAGE  
After the warranty period and throughout the equipment lifetime, TAPI stands ready to  
provide on-site or in-plant service at reasonable rates similar to those of other manufacturers  
in the industry. All maintenance and the first level of field troubleshooting are to be  
performed by the customer.  
NON-TAPI MANUFACTURED EQUIPMENT  
Equipment provided but not manufactured by TAPI is warranted and will be repaired to the  
extent and according to the current terms and conditions of the respective equipment  
manufacturer’s warranty.  
Product Return  
All units or components returned to Teledyne API should be properly packed for  
handling and returned freight prepaid to the nearest designated Service Center. After the  
repair, the equipment will be returned, freight prepaid.  
The complete Terms and Conditions of Sale can be reviewed at http://www.teledyne-  
api.com/terms_and_conditions.asp  
AVOID WARRANTY INVALIDATION  
ATTENTION  
Failure to comply with proper anti-Electro-Static Discharge (ESD)  
handling and packing instructions and Return Merchandise Authorization  
(RMA) procedures when returning parts for repair or calibration may void  
your warranty. For anti-ESD handling and packing instructions please  
refer to “Packing Components for Return to Teledyne API” in the Primer  
on Electro-Static Discharge section of this manual, and for RMA  
procedures please refer to our Website at http://www.teledyne-api.com under  
Customer Support > Return Authorization.  
v
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
vi  
06807C DCN6650  
ABOUT THIS MANUAL  
Presented here is information regarding the documents that are included with this  
manual (Structure), its history of release and revisions (Revision History), how the  
content is organized (Organization), and the conventions used to present the information  
in this manual (Conventions Used).  
STRUCTURE  
This T100 manual, PN 06807, is comprised of multiple documents, assembled in PDF  
format, as listed below.  
Part No.  
06807  
Rev Name/Description  
C
F
A
A
A
A
F
A
A
Operation Manual, T100 UV Fluorescence SO2 Analyzer  
Appendix A, Menu Trees and related software documentation  
Spare Parts List (in Appendix B of this manual)  
AKIT, Expendables, basic (in Appendix B of this manual)  
AKIT, Expendables, IZS (in Appendix B of this manual)  
AKIT, Spares (in Appendix B of this manual)  
Appendix C, Repair Form  
05036  
06845  
04357  
01475  
04728  
04796  
06908  
Interconnect Diagram (in Appendix D of this manual)  
Interconnect Table (in Appendix D of this manual)  
Schematics (in Appendix D of this manual)  
PCA, 04003, Pressure Flow Sensor Board  
PCA, 04522, Relay Card  
069080100  
04354  
04524  
04181  
05064  
04693  
04932  
04468  
05803  
06698  
06882  
06731  
D
D
H
C
E
C
B
B
D
B
B
PCA, 04180, PMT Preamp  
PCA, 05063, Dual UV Detector  
PCA, 04692, UV Lamp Driver  
PCA, Thermo-Electric Cooler Driver  
PCA, 04467, Analog Output Isolator  
SCH, PCA 05802, MOTHERBOARD, GEN-5  
SCH, PCA 06670, INTRFC, LCD TCH SCRN,  
SCH, LVDS TRANSMITTER BOARD  
SCH, AUX-I/O BOARD  
Note  
We recommend that this manual be read in its entirety before any attempt  
is made to operate the instrument.  
vii  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
ORGANIZATION  
This manual is divided among three main parts and a collection of appendices at the end.  
Part I contains introductory information that includes an overview of the analyzer,  
specifications, descriptions of the available options, installation and connection  
instructions, and the initial calibration and functional checks.  
Part II comprises the operating instructions, which include initial functional checks and  
calibration, basic, advanced and remote operation, advanced calibration, diagnostics,  
testing, and ends with specifics of calibrating for use in EPA monitoring.  
Part III provides detailed technical information, starting with maintenance,  
troubleshooting and service, followed by principles of operation, Frequently Asked  
Questions (FAQs) and a glossary. It also contains a special section dedicated to  
providing information about electro-static discharge and protecting against its  
consequences.  
The appendices at the end of this manual provide support information such as, version-  
specific software documentation, lists of spare parts and recommended stocking levels,  
and schematics.  
CONVENTIONS USED  
In addition to the safety symbols as presented in the Important Safety Information page,  
this manual provides special notices related to the safety and effective use of the  
analyzer and other pertinent information.  
Special Notices appear as follows:  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
This special notice provides information to avoid damage to your  
instrument and possibly invalidate the warranty.  
IMPORTANT  
Note  
IMPACT ON READINGS OR DATA  
Could either affect accuracy of instrument readings or cause loss of data.  
Pertinent information associated with the proper care, operation or  
maintenance of the analyzer or its parts.  
viii  
06807C DCN6650  
REVISION HISTORY  
This section provides information regarding the history of changes to this manual.  
T100 Manual, PN06807  
Date  
Rev DCN  
Change Summary  
2013 Apr 22  
2011 Aug 22  
C
B
6650 Administrative corrections; technical corrections  
6192 Administrative change: reorganized structure.  
Technical Updates: added MODBUS Quick Setup (Section 6.6.1), update Appendices A  
and D with latest revisions.  
2010 Sep 7  
A
5834 Initial release  
ix  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
x
06807C DCN6650  
TABLE OF CONTENTS  
About Teledyne Advanced Pollution Instrumentation (TAPI) ..........................................................................i  
Important Safety Information.............................................................................................................................iii  
CONSIGNES DE SÉCURITÉ ...............................................................................................................................iv  
Warranty................................................................................................................................................................v  
About This Manual.............................................................................................................................................vii  
Revision History..................................................................................................................................................ix  
TABLE OF CONTENTS...........................................................................................................XI  
List of Figures....................................................................................................................................................xvi  
List of Tables .....................................................................................................................................................xix  
PART I GENERAL INFORMATION ........................................................................................ 21  
1. INTRODUCTION, FEATURES AND OPTIONS ................................................................. 23  
1.1. T100 Overview.............................................................................................................................................23  
1.2. Features .......................................................................................................................................................23  
1.3. T100 Documentation...................................................................................................................................24  
1.4. Options.........................................................................................................................................................24  
2. SPECIFICATIONS, APPROVALS & COMPLIANCE......................................................... 29  
2.1. Specifications and Approvals....................................................................................................................29  
2.2. EPA Equivalency Designation...................................................................................................................31  
2.3. Approvals and Certifications.....................................................................................................................32  
2.3.1. EmC .......................................................................................................................................................32  
2.3.2. Safety.....................................................................................................................................................32  
2.3.3. Other Type Certifications .......................................................................................................................32  
3. GETTING STARTED.......................................................................................................... 33  
3.1. Unpacking the T100 Analyzer....................................................................................................................33  
3.1.1. Ventilation Clearance.............................................................................................................................34  
3.2. Instrument Layout.......................................................................................................................................35  
3.2.1. Front Panel ............................................................................................................................................35  
3.2.2. Rear Panel.............................................................................................................................................39  
3.2.3. Internal Chassis Layout .........................................................................................................................41  
3.3. Connections and Setup..............................................................................................................................42  
3.3.1. Electrical Connections ...........................................................................................................................42  
3.3.2. Pneumatic Connections.........................................................................................................................57  
3.4. Startup, Functional Checks, and Initial Calibration.................................................................................67  
3.4.1. Startup....................................................................................................................................................68  
3.4.2. Warning Messages ................................................................................................................................68  
3.4.3. Functional Checks .................................................................................................................................70  
3.4.4. Initial Calibration ....................................................................................................................................72  
PART II OPERATING INSTRUCTIONS.................................................................................. 79  
4. OVERVIEW OF OPERATING MODES .............................................................................. 81  
4.1. Sample Mode...............................................................................................................................................82  
4.1.1. Test Functions .......................................................................................................................................82  
4.1.2. Warning Messages ................................................................................................................................85  
4.2. Calibration Mode.........................................................................................................................................86  
4.3. Setup Mode..................................................................................................................................................86  
4.3.1. Password Security .................................................................................................................................86  
4.3.2. Primary Setup Menu ..............................................................................................................................87  
4.3.3. Secondary Setup Menu (SETUP>MORE).............................................................................................87  
5. SETUP MENU .................................................................................................................... 89  
5.1. SETUP – CFG: Configuration Information................................................................................................89  
xi  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.2. SETUP – ACAL: Automatic Calibration Option........................................................................................89  
5.3. SETUP – DAS: Internal Data Acquisition System....................................................................................90  
5.4. SETUP – RNGE: Analog Output Reporting Range Configuration..........................................................90  
5.4.1. Available Analog Output Signals ...........................................................................................................90  
5.4.2. Physical Range versus Analog Output Reporting Ranges....................................................................91  
5.4.3. Reporting Range Modes: Single, Dual, Auto Ranges ...........................................................................92  
5.4.4. Range Units ...........................................................................................................................................96  
5.4.5. Dilution Ratio (Option)............................................................................................................................98  
5.5. SETUP – PASS: Password Protection ......................................................................................................99  
5.6. SETUP – CLK: Setting the Internal Time-of-Day Clock........................................................................ 102  
5.7. SETUP – COMM: Communications Ports.............................................................................................. 104  
5.7.1. ID (Instrument Identification)............................................................................................................... 104  
5.7.2. INET (Ethernet)................................................................................................................................... 105  
5.7.3. COM1 and COM2 (Mode, Baud Rate and Test Port)......................................................................... 105  
5.8. SETUP – VARS: Variables Setup and Definition................................................................................... 106  
5.9. SETUP – DIAG: Diagnostics Functions ................................................................................................. 108  
5.9.1. Signal I/O ............................................................................................................................................ 110  
5.9.2. Analog Output Step Test..................................................................................................................... 111  
5.9.3. Analog I/O Configuration..................................................................................................................... 112  
5.9.4. Optic Test............................................................................................................................................ 125  
5.9.5. Electrical Test ..................................................................................................................................... 126  
5.9.6. Lamp Calibration................................................................................................................................. 127  
5.9.7. Pressure Calibration ........................................................................................................................... 128  
5.9.8. Flow Calibration .................................................................................................................................. 129  
5.9.9. Test Channel Output........................................................................................................................... 130  
6. COMMUNICATIONS SETUP AND OPERATION ............................................................ 133  
6.1. Data Terminal / Communication Equipment (DTE DCE)...................................................................... 133  
6.2. Communication Modes, Baud Rate and Port testing........................................................................... 133  
6.2.1. Communication Modes ....................................................................................................................... 134  
6.2.2. COMM Port Baud Rate....................................................................................................................... 136  
6.2.3. COMM Port Testing ............................................................................................................................ 137  
6.3. RS-232 ....................................................................................................................................................... 137  
6.4. RS-485 (Option)........................................................................................................................................ 138  
6.5. Ethernet..................................................................................................................................................... 138  
6.5.1. Configuring Ethernet Communication Manually (Static IP Address).................................................. 139  
6.5.2. Configuring Ethernet Communication Using Dynamic Host Configuration Protocol (DHCP) ............ 141  
6.5.3. USB Port for Remote access.............................................................................................................. 143  
6.6. Communications Protocols .................................................................................................................... 145  
6.6.1. MODBUS ............................................................................................................................................ 145  
6.6.2. HESSEN ............................................................................................................................................. 147  
7. DATA ACQUISITION SYSTEM (DAS) AND APICOM..................................................... 153  
7.1. DAS Structure........................................................................................................................................... 154  
7.1.1. DAS Channels .................................................................................................................................... 154  
7.1.2. DAS Parameters................................................................................................................................. 155  
7.1.3. DAS Triggering Events ....................................................................................................................... 156  
7.2. Default DAS Channels ............................................................................................................................. 156  
7.2.1. Viewing DAS Data and Settings ......................................................................................................... 159  
7.2.2. Editing DAS Data Channels................................................................................................................ 160  
7.2.3. Trigger Events..................................................................................................................................... 162  
7.2.4. Editing DAS Parameters..................................................................................................................... 163  
7.2.5. Sample Period and Report Period...................................................................................................... 165  
7.2.6. Number of Records............................................................................................................................. 166  
7.2.7. RS-232 Report Function ..................................................................................................................... 168  
7.2.8. Compact Report.................................................................................................................................. 168  
7.2.9. Starting Date....................................................................................................................................... 168  
7.2.10. Disabling/Enabling Data Channels ................................................................................................... 168  
7.2.11. HOLDOFF Feature ........................................................................................................................... 170  
xii  
06807C DCN6650  
Teledyne API – T100 UV Fluorescence SO2 Analyzer  
Table of Contents  
7.3. APICOM Remote Control Program......................................................................................................... 170  
7.4. Remote DAS Configuration via APICOM ............................................................................................... 172  
8. REMOTE OPERATION OF THE ANALYZER.................................................................. 175  
8.1. Remote Operation Using the External Digital I/O ................................................................................. 175  
8.1.1. Status Outputs .................................................................................................................................... 175  
8.1.2. Control Inputs...................................................................................................................................... 176  
8.2. Remote Operation Using the External Serial I/O .................................................................................. 178  
8.2.1. Terminal Operating Modes ................................................................................................................. 178  
8.2.2. Help Commands in Terminal Mode .................................................................................................... 178  
8.2.3. Command Syntax ............................................................................................................................... 179  
8.2.4. Data Types.......................................................................................................................................... 179  
8.2.5. Status Reporting ................................................................................................................................. 180  
8.3. Remote Access by Modem...................................................................................................................... 181  
8.4. COM Port Password Security ................................................................................................................. 183  
8.5. Additional Communications Documentation........................................................................................ 184  
9. CALIBRATION PROCEDURES....................................................................................... 185  
9.1. Calibration Preparations ......................................................................................................................... 185  
9.1.1. Required Equipment, Supplies, and Expendables ............................................................................. 185  
9.1.2. Data Recording Devices ..................................................................................................................... 187  
9.2. Manual Calibration................................................................................................................................... 187  
9.3. Manual Calibration Checks..................................................................................................................... 191  
9.4. Manual Calibration with Zero/Span Valves............................................................................................ 192  
9.5. Manual Calibration with IZS Option ....................................................................................................... 195  
9.6. Manual Calibration Checks with IZS or Zero/Span Valves .................................................................. 195  
9.7. Manual Calibration in DUAL or AUTO Reporting Range Modes ......................................................... 198  
9.7.1. Calibration With Remote Contact Closures ........................................................................................ 198  
9.8. Automatic Calibration (AutoCal) ............................................................................................................ 199  
9.9. Calibration Quality ................................................................................................................................... 202  
9.10. Calibration of Optional Sensors........................................................................................................... 203  
9.10.1. O2 Sensor Calibration ....................................................................................................................... 203  
9.10.2. CO2 Sensor Calibration..................................................................................................................... 207  
10. EPA PROTOCOL CALIBRATION................................................................................. 211  
10.1. Calibration Requirements ..................................................................................................................... 211  
10.1.1. Calibration of Equipment................................................................................................................... 211  
10.1.2. Data Recording Device..................................................................................................................... 213  
10.1.3. Recommended Standards for Establishing Traceability................................................................... 213  
10.1.4. EPA Calibration Using Permeation Tubes........................................................................................ 213  
10.1.5. Calibration Frequency....................................................................................................................... 214  
10.1.6. Record Keeping ................................................................................................................................ 214  
10.1.7. Summary of Quality Assurance Checks ........................................................................................... 215  
10.2. Level 1 Calibrations versus Level 2 Checks ....................................................................................... 215  
10.3. ZERO and SPAN Checks....................................................................................................................... 217  
10.3.1. Zero/Span Check Procedures .......................................................................................................... 217  
10.4. Precision Calibration Procedures and Checks................................................................................... 217  
10.4.1. Precision Calibration......................................................................................................................... 218  
10.4.2. Precision Check................................................................................................................................ 218  
10.5. Dynamic Multipoint Span Calibration .................................................................................................. 219  
10.6. Special Calibration Requirements for Dual Range or Auto Range................................................... 220  
10.7. References.............................................................................................................................................. 220  
PART III MAINTENANCE AND SERVICE ........................................................................... 221  
11. INSTRUMENT MAINTENANCE .................................................................................... 223  
11.1. Maintenance Schedule .......................................................................................................................... 225  
11.2. Predictive Diagnostics........................................................................................................................... 227  
11.3. Maintenance Procedures....................................................................................................................... 228  
11.3.1. Changing the Sample Particulate Filter ............................................................................................ 228  
11.3.2. Changing the IZS Permeation Tube ................................................................................................. 229  
xiii  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
11.3.3. Changing the External Zero Air Scrubber......................................................................................... 229  
11.3.4. Changing the Critical Flow Orifice .................................................................................................... 230  
11.3.5. Checking for Light Leaks .................................................................................................................. 231  
11.3.6. Detailed Pressure Leak Check ......................................................................................................... 232  
11.3.7. Performing a Sample Flow Check .................................................................................................... 233  
11.3.8. Hydrocarbon Scrubber (Kicker) ........................................................................................................ 233  
12. TROUBLESHOOTING & SERVICE............................................................................... 235  
12.1. General Troubleshooting ...................................................................................................................... 236  
12.1.1. Fault Diagnostics with Warning Messages....................................................................................... 236  
12.1.2. Fault Diagnosis with Test Functions................................................................................................. 239  
12.1.3. Using the Diagnostic Signal I/O Functions ....................................................................................... 241  
12.2. Status LEDs............................................................................................................................................ 243  
12.2.1. Motherboard Status Indicator (Watchdog)........................................................................................ 243  
12.2.2. CPU Status Indicators....................................................................................................................... 243  
12.2.3. Relay Board Status LEDs ................................................................................................................. 244  
12.3. Gas Flow Problems................................................................................................................................ 244  
12.3.1. Zero or Low Sample Flow................................................................................................................. 244  
12.3.2. High Flow.......................................................................................................................................... 245  
12.4. Calibration Problems............................................................................................................................. 245  
12.4.1. Negative Concentrations................................................................................................................... 245  
12.4.2. No Response .................................................................................................................................... 245  
12.4.3. Unstable Zero and Span................................................................................................................... 246  
12.4.4. Inability to Span - No SPAN Button .................................................................................................. 246  
12.4.5. Inability to Zero - No ZERO Button................................................................................................... 247  
12.4.6. Non-Linear Response....................................................................................................................... 247  
12.4.7. Discrepancy Between Analog Output and Display........................................................................... 248  
12.5. Other Performance Problems............................................................................................................... 248  
12.5.1. Excessive noise ................................................................................................................................ 248  
12.5.2. Slow Response................................................................................................................................. 248  
12.5.3. The Analyzer Doesn’t Appear on the LAN or Internet ...................................................................... 248  
12.6. Subsystem Checkout............................................................................................................................. 249  
12.6.1. AC Power Configuration ................................................................................................................... 249  
12.6.2. DC Power Supply.............................................................................................................................. 250  
12.6.3. I2C Bus.............................................................................................................................................. 251  
12.6.4. Touch-screen Interface..................................................................................................................... 251  
12.6.5. LCD Display Module ......................................................................................................................... 251  
12.6.6. Relay Board ...................................................................................................................................... 252  
12.6.7. Motherboard...................................................................................................................................... 252  
12.6.8. CPU................................................................................................................................................... 254  
12.6.9. RS-232 Communication.................................................................................................................... 254  
12.6.10. Shutter System ............................................................................................................................... 255  
12.6.11. PMT Sensor.................................................................................................................................... 256  
12.6.12. PMT Preamplifier Board.................................................................................................................. 256  
12.6.13. PMT Temperature Control PCA...................................................................................................... 256  
12.6.14. High Voltage Power Supply............................................................................................................ 256  
12.6.15. Pneumatic Sensor Assembly.......................................................................................................... 257  
12.6.16. Sample Pressure ............................................................................................................................ 258  
12.6.17. IZS Option....................................................................................................................................... 258  
12.6.18. Box Temperature ............................................................................................................................ 258  
12.6.19. PMT Temperature........................................................................................................................... 258  
12.7. Service Procedures................................................................................................................................ 259  
12.7.1. Disk-on-Module Replacement .......................................................................................................... 259  
12.7.2. Sensor Module Repair & Cleaning ................................................................................................... 260  
12.8. Frequently Asked Questions (FAQs) ................................................................................................... 276  
12.9. Technical Assistance............................................................................................................................. 277  
13. PRINCIPLES OF OPERATION...................................................................................... 279  
13.1. Sulfur Dioxide (SO2) Sensor Principles of operation ......................................................................... 279  
xiv  
06807C DCN6650  
Teledyne API – T100 UV Fluorescence SO2 Analyzer  
Table of Contents  
13.1.1. SO2 Ultraviolet Fluorescence Measurement Principle...................................................................... 279  
13.1.2. The UV Light Path............................................................................................................................. 282  
13.1.3. UV Source Lamp............................................................................................................................... 283  
13.1.4. The Reference Detector.................................................................................................................... 284  
13.1.5. The PMT ........................................................................................................................................... 284  
13.1.6. UV Lamp Shutter & PMT Offset........................................................................................................ 284  
13.1.7. Optical Filters.................................................................................................................................... 285  
13.1.8. Optical Lenses .................................................................................................................................. 287  
13.1.9. Measurement Interferences.............................................................................................................. 288  
13.2. Oxygen (O2) Sensor Principles of Operation ...................................................................................... 289  
13.2.1. Paramagnetic Measurement of O2.................................................................................................... 289  
13.2.2. O2 Sensor Operation within the T100 Analyzer................................................................................ 290  
13.3. Carbon Dioxide (CO2) Sensor Principles of Operation ...................................................................... 291  
13.3.1. NDIR Measurement of CO2 .............................................................................................................. 291  
13.3.2. CO2 Operation within the T100 Analyzer.......................................................................................... 292  
13.3.3. Electronic Operation of the CO2 Sensor........................................................................................... 292  
13.4. Pneumatic Operation............................................................................................................................. 293  
13.4.1. Sample Gas Flow.............................................................................................................................. 293  
13.4.2. Flow Rate Control ............................................................................................................................. 294  
13.4.3. Hydrocarbon Scrubber (Kicker) ........................................................................................................ 295  
13.4.4. Pneumatic Sensors........................................................................................................................... 296  
13.5. Electronic Operation.............................................................................................................................. 297  
13.5.1. CPU................................................................................................................................................... 299  
13.5.2. Sensor Module.................................................................................................................................. 300  
13.5.3. Photo Multiplier Tube (PMT)............................................................................................................. 302  
13.5.4. PMT Cooling System ........................................................................................................................ 304  
13.5.5. PMT Preamplifier .............................................................................................................................. 305  
13.5.6. Pneumatic Sensor Board.................................................................................................................. 307  
13.5.7. Relay Board ...................................................................................................................................... 307  
13.5.8. Motherboard...................................................................................................................................... 309  
13.5.9. Analog Outputs ................................................................................................................................. 310  
13.5.10. External Digital I/O.......................................................................................................................... 311  
13.5.11. I2C Data Bus ................................................................................................................................... 311  
13.5.12. Power up Circuit.............................................................................................................................. 311  
13.5.13. Power Supply/ Circuit Breaker........................................................................................................ 311  
13.6. Front Panel/Display Interface ............................................................................................................... 313  
13.6.1. LVDS Transmitter Board................................................................................................................... 313  
13.6.2. Front Panel Interface PCA................................................................................................................ 313  
13.7. Software Operation................................................................................................................................ 314  
13.7.1. Adaptive Filter................................................................................................................................... 314  
13.7.2. Calibration - Slope and Offset........................................................................................................... 315  
13.7.3. Temperature and Pressure Compensation (TPC) Feature .............................................................. 315  
13.7.4. Internal Data Acquisition System (DAS)........................................................................................... 316  
14. A PRIMER ON ELECTRO-STATIC DISCHARGE......................................................... 317  
14.1. How Static Charges are Created .......................................................................................................... 317  
14.2. How Electro-Static Charges Cause Damage....................................................................................... 318  
14.3. Common Myths About ESD Damage ................................................................................................... 319  
14.4. Basic Principles of Static Control ........................................................................................................ 320  
14.4.1. General Rules................................................................................................................................... 321  
14.5. Basic Anti-ESD Procedures for Analyzer Repair and Maintenance ................................................. 322  
14.5.1. Working at the Instrument Rack ....................................................................................................... 322  
14.5.2. Working at an Anti-ESD Work Bench ............................................................................................... 322  
14.5.3. Transferring Components Between Rack and Bench ...................................................................... 323  
14.5.4. Opening Shipments from Teledyne ................................................................................................... 324  
14.5.5. Packing Components for Return to Teledyne API............................................................................ 324  
GLOSSARY........................................................................................................................... 326  
INDEX.................................................................................................................................... 331  
xv  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
APPENDIX A - VERSION SPECIFIC SOFTWARE DOCUMENTATION  
APPENDIX B - SPARE PARTS, T100  
APPENDIX C - REPAIR QUESTIONNAIRE, T100  
APPENDIX D - ELECTRONIC SCHEMATICS, T100  
LIST OF FIGURES  
Figure 3-1:  
Figure 3-2:  
Figure 3-3:  
Figure 3-4:  
Figure 3-5:  
Figure 3-6:  
Figure 3-7:  
Figure 3-8:  
Figure 3-9:  
Figure 3-10:  
Figure 3-11:  
Figure 3-12:  
Figure 3-13:  
Figure 3-14:  
Figure 3-15:  
Figure 3-16:  
Figure 3-17:  
Figure 3-18:  
Figure 3-19:  
Figure 3-20:  
Figure 3-21:  
Figure 3-22:  
Figure 3-23:  
Figure 3-24:  
Figure 3-25:  
Figure 3-26:  
Figure 3-27:  
Figure 3-28:  
Figure 4-1:  
Figure 4-2:  
Figure 4-3:  
Figure 5-1:  
Figure 5-2:  
Figure 5-3:  
Figure 5-4:  
Figure 5-5:  
Figure 5-6:  
Figure 5-7:  
Figure 5-8:  
Figure 5-9:  
Figure 5-10:  
Figure 5-11:  
Figure 5-12:  
Figure 5-13:  
Figure 5-14:  
Figure 5-15:  
Front Panel Layout.......................................................................................................................35  
Display/Touch Control Screen Mapped to Menu Charts ............................................................38  
Rear Panel Layout .......................................................................................................................39  
Internal Layout, Basic (no Valve or Second Gas Options) ..........................................................41  
Analog In Connector ....................................................................................................................43  
Analog Output Connector ............................................................................................................44  
Status Output Connector .............................................................................................................47  
Control Input Connector...............................................................................................................49  
Concentration Alarm Relay..........................................................................................................50  
Default Pin Assignments for CPU Com Port Connector (RS-232)..............................................54  
RS-232-Multidrop PCA Host/Analyzer Interconnect Diagram .....................................................57  
Pneumatic Connections–Basic Configuration–Using Bottled Span Gas.....................................60  
Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator.............................60  
Warning Messages ......................................................................................................................68  
Functional Check .........................................................................................................................71  
Reporting Range Verification.......................................................................................................73  
Dilution Ratio Setup .....................................................................................................................74  
SO2 Span Gas Setting .................................................................................................................75  
Front Panel Display......................................................................................................................81  
SETUP – Enable Password Security........................................................................................ 100  
SETUP – Enter Calibration Mode Using Password.................................................................. 101  
SETUP – Clock......................................................................................................................... 102  
SETUP – Clock Speed Variable ............................................................................................... 103  
SETUP – COMM Menu............................................................................................................. 104  
COMM – Machine ID ............................................................................................................... 105  
SETUP – VARS Menu .............................................................................................................. 107  
xvi  
06807C DCN6650  
 
Teledyne API – T100 UV Fluorescence SO2 Analyzer  
Table of Contents  
Figure 5-16:  
Figure 5-17:  
Figure 5-18:  
Figure 5-19:  
Figure 5-20:  
Figure 5-21:  
Figure 5-22:  
Figure 5-23:  
Figure 5-24:  
Figure 5-25:  
Figure 5-26:  
Figure 5-27:  
Figure 5-28:  
Figure 5-29.  
Figure 5-30:  
Figure 5-31:  
Figure 5-32:  
Figure 5-33:  
Figure 5-34:  
Figure 5-35:  
Figure 6-1:  
Figure 6-2:  
Figure 6-3:  
Figure 6-4:  
Figure 6-5:  
Figure 6-6:  
Figure 6-7:  
Figure 6-8:  
Figure 6-9:  
Figure 6-10:  
Figure 7-1:  
Figure 7-2:  
Figure 7-3:  
Figure 7-4:  
Figure 7-5:  
Figure 7-6:  
Figure 7-7:  
Figure 7-8:  
Figure 7-9:  
Figure 7-10:  
Figure 7-11:  
Figure 7-12:  
Figure 7-13:  
Figure 7-14:  
Figure 7-15:  
Figure 8-1:  
Figure 8-2:  
Figure 8-3:  
Figure 8-4:  
Figure 8-5:  
Figure 9-1:  
Figure 9-2:  
Figure 9-3:  
Figure 9-4:  
Figure 9-5:  
Figure 9-6:  
Figure 9-7:  
Figure 9-8:  
DIAG Menu ............................................................................................................................... 109  
DIAG – Signal I/O Menu ........................................................................................................... 110  
DIAG – Analog Output Menu.................................................................................................... 111  
DIAG – Analog I/O Configuration Menu.................................................................................... 114  
DIAG – Analog Output Calibration Mode.................................................................................. 115  
DIAG – Analog Output Calibration Mode – Single Analog Channel......................................... 116  
DIAG – Analog Output – Auto Cal or Manual Cal Selection for Channels ............................... 117  
Setup for Calibrating Analog Outputs ....................................................................................... 118  
Analog Output – Voltage Adjustment........................................................................................ 119  
Analog Output – Offset Adjustment .......................................................................................... 120  
Setup for Calibrating Current Outputs ...................................................................................... 121  
Analog Output – Zero and Span Value Adjustment for Current Outputs.................................. 122  
DIAG – Analog Output – AIN Calibration.................................................................................. 123  
DIAG – Analog Inputs (Option) Configuration Menu ................................................................ 124  
DIAG – Optic Test..................................................................................................................... 125  
DIAG – Electrical Test............................................................................................................... 126  
DIAG – Lamp Calibration.......................................................................................................... 127  
DIAG – Pressure Calibration .................................................................................................... 128  
DIAG – Flow Calibration ........................................................................................................... 129  
DIAG – Test Channel Output.................................................................................................... 130  
COMM – Communication Modes Setup ................................................................................... 135  
COMM – COMM Port Baud Rate ............................................................................................. 136  
COMM – COM1 Test Port......................................................................................................... 137  
COMM – LAN / Internet Manual Configuration......................................................................... 140  
COMM – LAN / Internet Automatic Configuration..................................................................... 141  
COMM – Change Hostname ................................................................................................... 142  
COMM – Activating Hessen Protocol ....................................................................................... 148  
COMM – Select Hessen Protocol Type.................................................................................... 149  
COMM – Select Hessen Protocol Response Mode.................................................................. 150  
COMM – Status Flag Bit Assignment ....................................................................................... 152  
Default DAS Channels Setup ................................................................................................... 158  
DAS – Data Acquisition Menu .................................................................................................. 159  
DAS – Editing DAS Data Channels .......................................................................................... 160  
DAS – Editing Data Channel Name.......................................................................................... 161  
DAS – Trigger Events ............................................................................................................... 162  
DAS – Editing DAS Parameters ............................................................................................... 163  
DAS – Configuring Parameters for a Specific Data Parameter................................................ 164  
DAS – Define the Report Period............................................................................................... 166  
DAS – Edit Number of Records................................................................................................ 167  
DAS – RS-232 Report Function................................................................................................ 168  
DAS – Disabling / Enabling Data Channels.............................................................................. 169  
DAS – Holdoff Feature.............................................................................................................. 170  
APICOM Remote Control Program Interface............................................................................ 171  
Sample APICOM User Interface for Configuring the DAS........................................................ 172  
DAS Configuration Through a Terminal Emulation Program.................................................... 173  
Status Output Connector .......................................................................................................... 176  
Control Inputs with Local 5 V Power Supply............................................................................. 177  
Control Inputs with External 5 V Power Supply........................................................................ 178  
COMM – Remote Access by Modem ....................................................................................... 182  
COMM – Initialize the Modem .................................................................................................. 183  
Setup for Manual Calibration without Z/S valve or IZS Option (Step 1) ................................... 188  
Setup for Manual Calibration without Z/S valve or IZS Option (Step 2) ................................... 189  
Setup for Manual Calibration without Z/S valve or IZS Option (Step 3) ................................... 190  
Setup for Manual Calibration Checks ....................................................................................... 191  
Setup for Manual Calibration with Z/S Valve Option Installed (Step 1).................................... 192  
Setup for Manual Calibration with Z/S Valve Option Installed (Step 2).................................... 193  
Setup for Manual Calibration with Z/S Valve Option Installed (Step 3).................................... 194  
Manual Calibration with IZS Option .......................................................................................... 195  
xvii  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 9-9:  
Setup for Manual Calibration Check with Z/S Valve or IZS Option (Step 1) ............................ 196  
Setup for Manual Calibration Check with Z/S Valve or IZS Option (Step 2) ............................ 197  
Manual Calibration in Dual/Auto Reporting Range Modes....................................................... 198  
AUTO CAL – User Defined Sequence...................................................................................... 201  
O2 Sensor Calibration Set Up ................................................................................................... 203  
O2 Span Gas Concentration Set Up ......................................................................................... 204  
Activate O2 Sensor Stability Function....................................................................................... 205  
O2 Zero/Span Calibration.......................................................................................................... 206  
CO2 Sensor Calibration Set Up................................................................................................. 207  
CO2 Span Gas Concentration Setup ........................................................................................ 208  
Activate CO2 Sensor Stability Function .................................................................................... 209  
CO2 Zero/Span Calibration ....................................................................................................... 210  
Dynamic Multipoint Span Calibration........................................................................................ 219  
Sample Particulate Filter Assembly.......................................................................................... 228  
Critical Flow Orifice Assembly .................................................................................................. 230  
Simple Leak Check Fixture....................................................................................................... 233  
Hydrocarbon Scrubber Leak Check Setup ............................................................................... 234  
Viewing and Clearing Warning Messages................................................................................ 237  
Example of Signal I/O Function ................................................................................................ 242  
CPU Status Indicator ................................................................................................................ 243  
Location of Relay Board Power Configuration Jumper............................................................. 250  
Manual Activation of the UV Light Shutter................................................................................ 256  
Sensor Module Wiring and Pneumatic Fittings......................................................................... 260  
Sensor Module Mounting Screws............................................................................................. 262  
Sample Chamber Mounting Bracket......................................................................................... 263  
Hex Screw Between Lens Housing and Sample Chamber ...................................................... 264  
UV Lens Housing / Filter Housing............................................................................................. 265  
PMT UV Filter Housing Disassembled ..................................................................................... 265  
Disassembling the Shutter Assembly ....................................................................................... 267  
Shutter Assembly...................................................................................................................... 268  
UV Lamp Adjustment................................................................................................................ 269  
Location of UV Reference Detector Potentiometer .................................................................. 270  
PMT Assembly - Exploded View............................................................................................... 272  
Pre-Amplifier Board (Preamp PCA) Layout .............................................................................. 274  
UV Absorption........................................................................................................................... 280  
UV Light Path............................................................................................................................ 283  
Source UV Lamp Construction ................................................................................................. 284  
Excitation Lamp UV Spectrum Before/After Filtration............................................................... 285  
PMT Optical Filter Bandwidth ................................................................................................... 286  
Effects of Focusing Source UV in Sample Chamber................................................................ 287  
Oxygen Sensor - Principles of Operation ................................................................................. 290  
CO2 Sensor Principles of Operation ......................................................................................... 291  
CO2 Sensor Option PCA Layout and Electronic Connections ................................................. 292  
Gas Flow and Location of Critical Flow Orifice......................................................................... 293  
Flow Control Assembly & Critical Flow Orifice.......................................................................... 294  
T100 Hydrocarbon Scrubber (Kicker)....................................................................................... 295  
T100 Electronic Block Diagram ................................................................................................ 297  
CPU Board Annotated .............................................................................................................. 299  
T100 Sensor Module................................................................................................................. 300  
T100 Sample Chamber............................................................................................................. 301  
PMT Housing Assembly............................................................................................................ 302  
Basic PMT Design .................................................................................................................... 303  
PMT Cooling System ................................................................................................................ 304  
PMT Preamp Block Diagram .................................................................................................... 306  
Relay Board Status LED Locations .......................................................................................... 308  
Power Distribution Block Diagram ............................................................................................ 312  
Front Panel and Display Interface Block Diagram.................................................................... 313  
Basic Software Operation......................................................................................................... 314  
Figure 9-10:  
Figure 9-11:  
Figure 9-12:  
Figure 9-13:  
Figure 9-14:  
Figure 9-15:  
Figure 9-16:  
Figure 9-17:  
Figure 9-18:  
Figure 9-19:  
Figure 9-20:  
Figure 10-1:  
Figure 11-1:  
Figure 11-2:  
Figure 11-3:  
Figure 11-4:  
Figure 12-1:  
Figure 12-2:  
Figure 12-3:  
Figure 12-4:  
Figure 12-5:  
Figure 12-6:  
Figure 12-7:  
Figure 12-8:  
Figure 12-9:  
Figure 12-10:  
Figure 12-11:  
Figure 12-12:  
Figure 12-13:  
Figure 12-14.  
Figure 12-15:  
Figure 12-16:  
Figure 12-17:  
Figure 13-1:  
Figure 13-2:  
Figure 13-3:  
Figure 13-4:  
Figure 13-5:  
Figure 13-6:  
Figure 13-7:  
Figure 13-8:  
Figure 13-9:  
Figure 13-10:  
Figure 13-11:  
Figure 13-12:  
Figure 13-13:  
Figure 13-14:  
Figure 13-15:  
Figure 13-16:  
Figure 13-17:  
Figure 13-18:  
Figure 13-19:  
Figure 13-20:  
Figure 13-21:  
Figure 13-22:  
Figure 13-23:  
Figure 13-24:  
xviii  
06807C DCN6650  
Teledyne API – T100 UV Fluorescence SO2 Analyzer  
Table of Contents  
Figure 13-25:  
Figure 14-1:  
Figure 14-2:  
Calibration Slope and Offset..................................................................................................... 315  
Triboelectric Charging............................................................................................................... 318  
Basic anti-ESD Work Station.................................................................................................... 321  
LIST OF TABLES  
Table 1-1:  
Table 2-1  
Table 2-2:  
Table 2-3:  
Table 3-1:  
Table 3-2:  
Table 3-3:  
Table 3-4:  
Table 3-5:  
Table 3-6:  
Table 3-7:  
Table 3-8:  
Table 3-9:  
Table 3-10:  
Table 3-11:  
Table 3-12:  
Table 3-13:  
Table 3-14:  
Table 4-1:  
Table 4-2:  
Table 4-3:  
Table 4-4:  
Table 4-5:  
Table 5-1:  
Table 5-2:  
Table 5-3:  
Table 5-4:  
Table 5-5:  
Table 5-6:  
Table 5-7:  
Table 5-8:  
Table 5-9:  
Table 6-1:  
Table 6-2:  
Table 6-3:  
Table 6-4:  
Table 6-5:  
Table 6-6:  
Table 6-7:  
Table 7-1:  
Table 7-2:  
Table 7-3:  
Table 8-1:  
Table 8-2:  
Table 8-3:  
Table 8-4:  
Table 8-5:  
Table 9-1:  
Table 9-2:  
Table 9-3:  
Analyzer Options..........................................................................................................................25  
T100 Basic Unit Specifications ....................................................................................................29  
Ventilation Clearance...................................................................................................................34  
Rear Panel Description................................................................................................................40  
Analog Input Pin Assignments.....................................................................................................44  
Status Output Signals ..................................................................................................................48  
Control Input Signals....................................................................................................................49  
Pneumatic Layout Reference ......................................................................................................59  
Zero/Span and Sample/Cal Valve Operating States ...................................................................62  
IZS Valve Operating States .........................................................................................................64  
NIST-SRM's Available for Traceability of SO2 Calibration Gases ...............................................67  
Possible Startup Warning Messages – T100 Analyzers w/o Options .........................................69  
Possible Startup Warning Messages – T100 Analyzers with Options.........................................70  
Analyzer Operating Modes ..........................................................................................................82  
Test Functions Defined................................................................................................................83  
List of Warning Messages............................................................................................................85  
Password Levels..........................................................................................................................99  
Variable Names (VARS) Revision 1.0.3 ................................................................................... 106  
T100 Diagnostic (DIAG) Functions........................................................................................... 108  
DIAG - Analog I/O Functions .................................................................................................... 112  
Analog Output Voltage Ranges ................................................................................................ 112  
Analog Output Current Loop Range ......................................................................................... 113  
Voltage Tolerances for Analog Output Calibration ................................................................... 118  
Current Loop Output Calibration with Resistor......................................................................... 122  
Test Parameters Available for Analog Output A3 (standard configuration).............................. 131  
COMM Port Communication Modes......................................................................................... 134  
Ethernet Status Indicators......................................................................................................... 138  
LAN/Internet Default Configuration Properties ......................................................................... 139  
Hostname Editing Button Functions ......................................................................................... 142  
RS-232 Communication Parameters for Hessen Protocol ....................................................... 147  
T100 Hessen Protocol Response Modes ................................................................................. 150  
Default Hessen Status Bit Assignments ................................................................................... 151  
Front Panel LED Status Indicators for DAS.............................................................................. 154  
DAS Data Channel Properties.................................................................................................. 155  
DAS Data Parameter Functions ............................................................................................... 156  
Status Output Pin Assignments................................................................................................ 176  
Control Input Pin Assignments ................................................................................................. 177  
Terminal Mode Software Commands ....................................................................................... 178  
Command Types....................................................................................................................... 179  
Serial Interface Documents....................................................................................................... 184  
NIST-SRM's Available for Traceability of SO2 Calibration Gases ............................................ 186  
AutoCal Modes ......................................................................................................................... 199  
AutoCal Attribute Setup Parameters......................................................................................... 199  
xix  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 9-4:  
Table 9-5:  
Example Auto-Cal Sequence.................................................................................................... 200  
Calibration Data Quality Evaluation.......................................................................................... 202  
Activity Matrix for Calibration Equipment & Supplies................................................................ 212  
Activity Matrix for Calibration Procedure................................................................................... 213  
Activity Matrix for Quality Assurance Checks ........................................................................... 215  
Definition of Level 1 and Level 2 Zero and Span Checks......................................................... 216  
T100 Preventive Maintenance Schedule.................................................................................. 225  
Predictive Uses for Test Functions........................................................................................... 227  
Warning Messages - Indicated Failures ................................................................................... 238  
Test Functions - Possible Causes for Out-Of-Range Values ................................................... 240  
Relay Board Status LEDs ......................................................................................................... 244  
DC Power Test Point and Wiring Color Code........................................................................... 250  
DC Power Supply Acceptable Levels ....................................................................................... 251  
Relay Board Control Devices.................................................................................................... 252  
Analog Output Test Function - Nominal Values ....................................................................... 253  
Status Outputs Check Pin Out.................................................................................................. 253  
Example of HVPS Power Supply Outputs ................................................................................ 257  
UV Lamp Signal Troubleshooting............................................................................................. 269  
Relay Board Status LED’s ........................................................................................................ 308  
Static Generation Voltages for Typical Activities ...................................................................... 318  
Sensitivity of Electronic Devices to Damage by ESD............................................................... 319  
Table 10-1:  
Table 10-2:  
Table 10-3:  
Table 10-4:  
Table 11-1:  
Table 11-2:  
Table 12-1:  
Table 12-2:  
Table 12-3:  
Table 12-4:  
Table 12-5:  
Table 12-6:  
Table 12-7:  
Table 12-8:  
Table 12-9:  
Table 12-10:  
Table 13-1:  
Table 14-1:  
Table 14-2:  
xx  
06807C DCN6650  
PART I  
GENERAL INFORMATION  
21  
06807C DCN6650  
 
22  
06807C DCN6650  
1. INTRODUCTION, FEATURES AND OPTIONS  
This section provides an overview of the Model T100 Analyzer, its features and its  
options, followed by a description of how this user manual is arranged.  
1.1. T100 OVERVIEW  
The Model T100 (also referred to as T100) UV Fluorescence SO2 Analyzer is a  
microprocessor controlled analyzer that determines the concentration of sulfur dioxide  
(SO2), in a sample gas drawn through the instrument’s sample chamber where it is  
exposed to ultraviolet light, which causes any SO2 present to fluoresce. The instrument  
measures the amount of fluorescence to determine the amount of SO2 present in the  
sample gas.  
The T100’s exceptional stability is achieved with the use of an optical shutter to  
compensate for sensor drift and a reference detector to correct for changes in UV lamp  
intensity. Additionally an advanced optical design combined with a special scrubber,  
called a "kicker" that removes hydrocarbons (which fluoresces similarly to SO2)  
prevents inaccuracies due to interferents.  
Calibration of the instrument is performed in software which stores SO2 concentration  
measurements made gas with when specific, known concentrations of SO2 are supplied  
to the analyzer. The microprocessor uses these calibration values along with other  
performance parameters such as the sensor offset, UV lamp intensity and the amount of  
stray light present and measurements of the temperature and pressure of the sample gas  
to compute the final SO2 concentration.  
Built-in data acquisition capability, using the analyzer's internal memory, allows the  
logging of multiple parameters including averaged or instantaneous concentration  
values, calibration data, and operating parameters such as pressure and flow rate. Stored  
data are easily retrieved through the serial port or optional Ethernet port via our  
APICOM software or from the front panel, allowing operators to perform predictive  
diagnostics and enhanced data analysis by tracking parameter trends. Multiple  
averaging periods of one minute to 365 days are available for over a period of one year.  
1.2. FEATURES  
The features of your T100 UV Fluorescence Sulfur Dioxide Analyzer include:  
LCD Graphical User Interface with capacitive touch screen  
Ranges, 0-50 ppb to 0-20,000 ppb, user selectable  
Dual ranges and auto ranging  
Microprocessor control for versatility  
23  
06807C DCN6650  
     
Introduction, Features and Options  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Multi-tasking software to allow viewing test variables while operating  
Continuous self checking with alarms  
Bi-directional USB, RS-232, and 10/100Base-T Ethernet ports for remote operation  
(optional RS-485)  
Front panel USB ports for peripheral devices  
Digital status outputs to indicate instrument operating condition  
Adaptive signal filtering to optimize response time  
Temperature and Pressure compensation  
Internal Zero and Span check (optional)  
Internal data logging with 1 min to 365 day multiple averages  
Critical flow orifices to provide flow stability  
1.3. T100 DOCUMENTATION  
In addition to this operation manual (part number 06807), the APICOM and DAS  
manual (PN 07463) is available for download from Teledyne API’s website at  
http://www.teledyne-api.com/manuals/, to support the operation of this instrument.  
1.4. OPTIONS  
The options available for your analyzer are presented in Table 1-1 with name, option  
number, a description and/or comments, and if applicable, cross-references to technical  
details in this manual, such as setup and calibration. To order these options or to learn  
more about them, please contact the Sales department of Teledyne - Advanced Pollution  
Instruments at:  
TOLL-FREE:  
TEL:  
800-324-5190  
+1 858-657-9800  
FAX:  
+1 858-657-9816  
E-MAIL:  
WEB SITE:  
http://www.teledyne-api.com/  
24  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Introduction, Features and Options  
Table 1-1:Analyzer Options  
OPTION  
OPTION  
DESCRIPTION/NOTES  
REFERENCE  
NUMBER  
Pumps meet all typical AC power supply standards while exhibiting same pneumatic  
performance.  
Pumps  
10A  
10B  
10C  
10D  
10E  
11B  
13  
External Pump 100V - 120V @ 60 Hz  
External Pump 220V - 240V @ 50 Hz  
External Pump 220V - 240V @ 60 Hz  
External Pump 100V - 120V @ 50 Hz  
External Pump 100V @ 60 Hz  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Pumpless, internal or external Pump Pack  
High Voltage Internal Pump 240V @ 50Hz  
Rack Mount  
Kits  
Options for mounting the analyzer in standard 19” racks  
20A  
20B  
21  
Rack mount brackets with 26 in. chassis slides  
N/A  
N/A  
N/A  
N/A  
Rack mount brackets with 24 in. chassis slides  
Rack mount brackets only (compatible with carrying strap, Option 29)  
Rack mount for external pump pack (no slides)  
23  
Carrying Strap/Handle  
Side-mounted strap for hand-carrying analyzer  
Extends from “flat” position to accommodate hand for carrying.  
Recesses to 9mm (3/8”) dimension for storage.  
Can be used with rack mount brackets, Option 21.  
Cannot be used with rack mount slides.  
29  
N/A  
CAUTION  
GENERAL SAFETY HAZARD  
A FULLY LOADED T100 WITH VALVE OPTIONS WEIGHS ABOUT 18 KG (40 POUNDS).  
To avoid personal injury we recommend that two persons lift and carry the analyzer. Disconnect all  
cables and tubing from the analyzer before moving it.  
Used for connecting external voltage signals from other instrumentation (such as  
meteorological instruments).  
Analog Inputs  
Also can be used for logging these signals in the analyzer’s internal  
DAS  
Sections 3.3.1.2  
and 0  
64  
Current Loop Analog  
Outputs  
Adds isolated, voltage-to-current conversion circuitry to the analyzer’s analog  
outputs.  
Can be configured for any output range between 0 and 20 mA.  
May be ordered separately for any of the analog outputs.  
Can be installed at the factory or retrofitted in the field.  
Sections 3.3.1.4,  
41  
Parts Kits  
Spare parts and expendables  
Expendables Kit includes a recommended set of expendables for  
42A  
one year of operation of this instrument including replacement sample Appendix B  
particulate filters.  
Expendables Kit with IZS includes the items needed to refurbish the  
Appendix B  
43  
internal zero air scrubber (IZS) that is included.  
45  
NO Optical Filter  
47  
Spare Parts Kit includes spares parts for one unit.  
Recommended for high NOX backgrounds.  
Required for EN Certification.  
Appendix B  
N/A  
25  
06807C DCN6650  
 
Introduction, Features and Options  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
OPTION  
OPTION  
DESCRIPTION/NOTES  
REFERENCE  
NUMBER  
Used to control the flow of calibration gases generated from external sources, rather  
than manually switching the rear panel pneumatic connections.  
Calibration Valves  
Two Teflon® solenoid valve sets located inside the analyzer:  
Zero/Span valve switches between zero air and span gas;  
Sample/Cal valve switches between sample gas and calibration gas.  
Sections 3.3.2.3,  
and 9.6  
50A  
Internal Zero/Span (IZS)  
Gas Generator  
Generates internal zero air and span gas.  
Includes heated enclosure for a permeation tube (tube not included –  
see SO2 IZS Permeation Tubes options), an external scrubber for  
producing zero air and a set of valves for switching between the  
sample gas inlet and the output of the zero/span subsystem,  
functionally very similar to the valves included in the zero/span valve  
option.  
Sections 3.3.2.4,  
51A  
SO2 IZS Permeation Tubes Replacement tubes for the IZS option; identical size/shape; different effusion rates.  
Approximate  
Concentration  
Specified Flow Rate (of  
indicated perm tube rate)  
Effusion Rate (@ 50°C)  
52C  
52H  
52M  
796 ng/min  
1592 ng/min  
220 ng/min  
0.3-0.5 ppm  
0.8 ppm  
0.76 ± 5% lpm  
0.76 ± 50% lpm  
0.56 ± 25% lpm  
N/A  
N/A  
N/A  
150 ppb  
Each tube comes with a calibration certificate, traceable to a NIST  
standard, specifying its actual effusion rate of that tube to within ± 5%  
Sections 3.3.2.4,  
when immersed in a gas stream moving at the specified flow rate. This 9.1.1.3 and 10.1.4  
calibration is performed at a tube temperature of 50°C.  
Communication Cables  
For remote serial, network and Internet communication with the analyzer.  
Type  
Description  
Shielded, straight-through DB-9F to DB-25M cable, about  
1.8 m long. Used to interface with older computers or code  
activated switches with DB-25 serial connectors.  
Section 3.3.1.8  
and 6.3  
60A  
RS-232  
Shielded, straight-through DB-9F to DB-9F cable of about  
1.8 m length.  
Sections 3.3.1.8,  
60B  
60C  
60D  
RS-232  
Ethernet  
USB  
Patch cable, 2 meters long, used for Internet and LAN  
communications.  
Sections 3.3.1.8  
and 6.5  
Cable for direct connection between instrument (rear panel Sections3.3.1.8  
USB port) and personal computer.  
Concentration Alarm  
Relay  
Issues warning when gas concentration exceeds limits set by user.  
Sections 3.3.1.7  
Four (4) “dry contact” relays on the rear panel of the instrument. This  
relay option is different from and in addition to the “Contact Closures”  
that come standard on all TAPI instruments.  
61  
RS-232 Multidrop  
62  
Enables communications between host computer and up to eight analyzers.  
Multidrop card seated on the analyzer’s CPU card.  
Each instrument in the multidrop network requires this card and a  
communications cable (Option 60B).  
Section 3.3.1.8  
26  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Introduction, Features and Options  
OPTION  
NUMBER  
OPTION  
DESCRIPTION/NOTES  
REFERENCE  
Second Gas Sensors  
Choice of one additional gas sensor.  
• Section 2.1 (specs)  
• Section 3.3.2.8,  
(pneumatic layout)  
• Section 9.10.1  
(calibration)  
65A  
Oxygen (O2) Sensor  
• Section 13.2 for  
principles of  
operation  
• Section 2.1 (specs)  
• Section 3.3.2.9  
(pneumatic layout)  
• Section 9.10.2  
(calibration)  
67A  
Carbon Dioxide (CO2) Sensor  
• Section 13.3  
(principles of  
operation)  
Special Features  
Built in features, software activated  
Maintenance Mode Switch, located inside the instrument, places the  
analyzer in maintenance mode where it can continue sampling, yet  
ignore calibration, diagnostic, and reset instrument commands. This  
feature is of particular use for instruments connected to Multidrop or  
Hessen protocol networks.  
N/A  
N/A  
N/A  
Call Technical Support for activation.  
Second Language Switch activates an alternate set of display  
messages in a language other than the instrument’s default language.  
Call Technical Support for a specially programmed Disk on Module containing  
the second language.  
N/A  
N/A  
Dilution Ratio Option allows the user to compensate for diluted  
sample gas, such as in continuous emission monitoring (CEM) where  
the quality of gas in a smoke stack is being tested and the sampling  
method used to remove the gas from the stack dilutes the gas.  
Call Technical Support for activation.  
Section 3.4.4.1,  
27  
06807C DCN6650  
Introduction, Features and Options  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
28  
06807C DCN6650  
2. SPECIFICATIONS, APPROVALS & COMPLIANCE  
This section presents specifications for the T100 analyzer and the O2 and CO2 sensor  
options, Agency approvals, EPA equivalency designation, and CE mark compliance.  
2.1. SPECIFICATIONS AND APPROVALS  
Table 2-1 T100 Basic Unit Specifications  
Parameter  
Description  
Ranges  
Min: 0-50 ppb Full Scale  
(Physical Analog Output)  
Measurement Units  
Zero Noise1  
Max: 0-20,000 ppb Full Scale (selectable, dual ranges and auto ranging supported)  
ppb, ppm, µg/m3, mg/m3 (selectable)  
< 0.2 ppb (RMS)  
Span Noise1  
< 0.5% of reading, above 50 ppb  
0.4 ppb  
Lower Detectable Limit2  
Zero Drift  
< 0.5 ppb/24 hours  
Span Drift  
< 0.5% of full scale/24 hours  
20 seconds  
Lag Time1  
Rise/Fall Time1  
Linearity  
Precision1  
<100 sec to 95%  
1% of full scale  
0.5% of reading above 50 ppb  
650 cm3/min. ±10%  
Sample Flow Rate  
Power Requirements  
Analog Output Ranges  
Recorder Offset  
Standard I/O  
100V-120V, 60Hz (165W); 220V-240V, 50 Hz (140W)  
10 V, 5 V, 1 V, 0.1 V (selectable)  
± 10 %  
1 Ethernet: 10/100Base-T  
2 RS-232 (300 – 115,200 baud)  
2 USB device ports  
8 opto-isolated digital outputs  
6 opto-isolated digital inputs  
4 analog outputs  
Optional I/O  
1 USB com port  
1 RS485  
8 analog inputs (0-10V, 12-bit)  
4 digital alarm outputs  
Multidrop RS232  
3 4-20mA current outputs  
29  
06807C DCN6650  
     
Specifications, Approvals & Compliance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Parameter  
Description  
Environmental  
Installation category (over-voltage category) II; Pollution degree 2  
5 - 40 oC (with EPA Equivalency)  
Operating Temperature  
Humidity Range  
0 - 95% RH, non-condensing  
Dimensions HxWxD  
Weight  
1 As defined by the USEPA.  
7" x 17" x 23.5" (178 mm x 432 mm x 597 mm)  
31 lbs (14 kg); 35.7 lbs (16 kg) with internal pump  
2 Defined as twice the zero noise level by the USEPA.  
Table 2-2:O2 Sensor Option Specifications  
Parameter  
Description  
Ranges  
0-1% to 0-100% user selectable. Dual ranges and auto-ranging supported.  
Zero Noise1  
<0.02% O2  
Lower Detectable Limit2  
Zero Drift (24 hours) 3  
Zero Drift (7 days)  
Span Noise1  
<0.04% O2  
<± 0.02% O2  
<±- 0.05% O2  
<± 0.05% O2  
Span Drift (7 days)  
Accuracy  
<± 0.1% O2  
(intrinsic error) <± 0.1% O2  
<± 0.1 % O2  
Linearity  
Temp Coefficient  
Rise and Fall Time  
<± 0.05% O2 /°C,  
<60 seconds to 95%  
1 As defined by the USEPA  
2 Defined as twice the zero noise level by the USEPA  
3 Note: zero drift is typically <± 0.1% O2 during the first 24 hrs of operation  
Table 2-3:CO2 Sensor Option Specifications  
Parameter  
Description  
Ranges  
0-1% to 0-20% user selectable. Dual ranges and auto-ranging supported.  
Zero Noise1  
<0.02% CO2  
Zero Drift (24 hours)  
Zero Drift (7 days)  
Span Noise1  
<± 0.02% CO2  
<± 0.05% CO2  
<± 0.1% CO2  
Span Drift (7 days)  
Lower Detectable Limit2  
Accuracy  
<± 0.1% CO2  
<0.04% CO2  
<± (0.02% CO2 + 2% of reading)  
<± 0.1% CO2  
Linearity  
Temperature Coefficient  
Rise and Fall Time  
<± 0.01% CO2 /°C  
<60 seconds to 95%  
1 As defined by the USEPA  
2 Defined as twice the zero noise level by the USEPA  
30  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Specifications, Approvals & Compliance  
2.2. EPA EQUIVALENCY DESIGNATION  
The T100 Analyzer is designated as Reference Method Number EQSA-0495-100 as per  
40 CFR Part 53 when operated under the following conditions:  
Range: Any range from 50 parts per billion (ppb) to 10 parts per million (ppm)  
Ambient temperature range of 5 oC to 40 oC  
Line voltage range of 100-120 VAC or 220-240 VAC, at 50 or 60 Hz  
Sample filter: Equipped with PTFE filter element in the internal filter assembly  
Sample flow of 650 +/- 65 cm3/min  
Vacuum pump (internal) capable of 14"Hg Absolute pressure @ 1 slpm or better  
Software settings:  
Dynamic span  
Dynamic zero  
OFF  
OFF  
Dilution factor  
OFF  
AutoCal  
ON or OFF  
ON or OFF  
ON or OFF  
ON  
Dual range  
Auto-range  
Temp/Pressure compensation  
Under this designation, the analyzer may be operated with or without the following  
optional equipment:  
Rack mount with chassis slides  
Rack mount without slides, ears only  
Zero/span valve options.  
Internal zero/span (IZS) option with either:  
SO2 permeation tube - 0.4ppm at 0.7 liter per minute; certified/uncertified,  
or  
SO2 permeation tube - 0.8 ppm at 0.7 liter per minute; certified/uncertified.  
Under the designation, the IZS option cannot be used as the source of  
calibration  
4-20mA isolated analog outputs  
Status outputs  
Control inputs  
RS-232 output  
Ethernet output  
Zero air scrubber  
4-20mA, isolated output  
31  
06807C DCN6650  
 
Specifications, Approvals & Compliance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
2.3. APPROVALS AND CERTIFICATIONS  
The Teledyne API Model T100 analyzer was tested and certified for Safety and  
Electromagnetic Compatibility (EMC). This section presents the compliance statements  
for those requirements and directives..  
2.3.1. EMC  
EN 61326-1 (IEC 61326-1), Class A Emissions/Industrial Immunity  
EN 55011 (CISPR 11), Group 1, Class A Emissions  
FCC 47 CFR Part 15B, Class A Emissions  
CE: 2004/108/EC, Electromagnetic Compatibility Directive  
2.3.2. SAFETY  
IEC 61010-1:2001, Safety requirements for electrical equipment for measurement,  
control, and laboratory use.  
CE: 2006/95/EC, Low-Voltage Directive  
North American:  
cNEMKO (Canada): CAN/CSA-C22.2 No. 61010-1-04  
NEMKO-CCL (US): UL No. 61010-1 (2nd Edition)  
2.3.3. OTHER TYPE CERTIFICATIONS  
MCERTS: Sira MC 050067/04  
For additional certifications, please contact Technical Support:  
Toll-free Phone: 800-324-5190  
Phone: 858-657-9800  
Fax: 858-657-9816  
32  
06807C DCN6650  
       
3. GETTING STARTED  
This section addresses the procedures for unpacking the instrument and inspecting for  
damage, presents clearance specifications for proper ventilation, introduces the  
instrument layout, then presents the procedures for getting started: making electrical and  
pneumatic connections, and conducting an initial calibration check.  
3.1. UNPACKING THE T100 ANALYZER  
CAUTION  
GENERAL SAFETY HAZARD  
To avoid personal injury, always use two persons to lift and carry the  
T100.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Printed Circuit Assemblies (PCAs) are sensitive to electro-static  
discharges too small to be felt by the human nervous system. Failure to  
use ESD protection when working with electronic assemblies will void  
the instrument warranty. Refer to Section 13 for more information on  
preventing ESD damage.  
CAUTION  
Do not operate this instrument until you’ve removed dust plugs from  
SAMPLE and EXHAUST ports on the rear panel!  
Note  
Teledyne API recommends that you store shipping containers/materials  
for future use if/when the instrument should be returned to the factory for  
repair and/or calibration service. See Warranty section in this manual and  
shipping procedures on our Website at http://www.teledyne-api.com  
under Customer Support > Return Authorization.  
33  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Verify that there is no apparent external shipping damage. If damage has occurred,  
please advise the shipper first, then Teledyne API.  
Included with your analyzer is a printed record of the final performance characterization  
performed on your instrument at the factory. It is titled Final Test and Validation Data  
Sheet (P/N 04551). This record is an important quality assurance and calibration record  
for this instrument. It should be placed in the quality records file for this instrument.  
With no power to the unit, carefully remove the top cover of the analyzer and check for  
internal shipping damage by carrying out the following steps:  
1. Remove the locking screw located in the top, center of the Front panel;  
2. Remove the two flat head, Phillips screws on the sides of the instrument;  
3. Slide the cover backwards until it clears the analyzer’s front bezel, and;  
4. Lift the cover straight up.  
5. Inspect the interior of the instrument to ensure that all circuit boards and other  
components are in good shape and properly seated.  
6. Check the connectors of the various internal wiring harnesses and pneumatic  
hoses to ensure that they are firmly and properly seated.  
7. Verify that all of the optional hardware ordered with the unit has been installed.  
These are listed on the paperwork accompanying the analyzer.  
WARNING  
ELECTRICAL SHOCK HAZARD  
Never disconnect PCAs, wiring harnesses or electronic subassemblies  
while under power.  
3.1.1. VENTILATION CLEARANCE  
Whether the analyzer is set up on a bench or installed into an instrument rack, be sure to  
leave sufficient ventilation clearance.  
Table 3-1: Ventilation Clearance  
MINIMUM REQUIRED  
AREA  
CLEARANCE  
Back of the instrument  
Sides of the instrument  
4 in.  
1 in.  
Above and below the  
instrument  
1 in.  
Various rack mount kits are available for this analyzer. Refer to Section 1.4 of this  
manual for more information.  
34  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
3.2. INSTRUMENT LAYOUT  
Instrument layout includes front panel and display, rear panel connectors, and internal  
chassis layout.  
3.2.1. FRONT PANEL  
Figure 3-1 shows the analyzer’s front panel layout, followed by a close-up of the  
display screen in Figure 3-2, which is described in Table 3-2. The two USB ports on the  
front panel are provided for the connection of peripheral devices:  
plug-in mouse (not included) to be used as an alternative to the touchscreen  
interface  
thumb drive (not included) to download updates to instruction software (contact  
TAPI Technical Support for information).  
Figure 3-1: Front Panel Layout  
35  
06807C DCN6650  
     
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 3-2: Display Screen and Touch Control  
The front panel liquid crystal display screen includes touch control. Upon analyzer start-  
up, the screen shows a splash screen and other initialization indicators before the main  
display appears, similar to Figure 3-2 above (may or may not display a Fault alarm).  
The LEDs on the display screen indicate the Sample, Calibration and Fault states; also  
on the screen is the gas concentration field (Conc), which displays real-time readouts for  
the primary gas and for the secondary gas if installed. The display screen also shows  
what mode the analyzer is currently in, as well as messages and data (Param). Along the  
bottom of the screen is a row of touch control buttons; only those that are currently  
component of the screen.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Do not use hard-surfaced instruments such as pens to touch the control  
buttons.  
36  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
Table 3-2:Display Screen and Touch Control Description  
Field  
Description/Function  
Status  
LEDs indicating the states of Sample, Calibration and Fault, as follows:  
Name  
Color  
State  
Off  
Definition  
Unit is not operating in sample mode, DAS is disabled.  
On  
Sample Mode active; Front Panel Display being updated; DAS data  
being stored.  
SAMPLE Green  
Unit is operating in sample mode, front panel display being updated,  
DAS hold-off mode is ON, DAS disabled  
Blinking  
Off  
Auto Cal disabled  
CAL  
Yellow  
Red  
On  
Auto Cal enabled  
Blinking  
Unit is in calibration mode  
Off  
Blinking  
No warnings exist  
Warnings exist  
FAULT  
Displays the actual concentration of the sample gas currently being measured by the analyzer in the  
currently selected units of measure  
Conc  
Mode  
Param  
Displays the name of the analyzer’s current operating mode  
Displays a variety of informational messages such as warning messages, operational data, test function  
values and response messages during interactive tasks.  
Control Buttons Displays dynamic, context sensitive labels on each button, which is blank when inactive until applicable.  
Figure 3-3 shows how the front panel display is mapped to the menu charts illustrated in  
this manual. The Mode, Param (parameters), and Conc (gas concentration) fields in the  
display screen are represented across the top row of each menu chart. The eight touch  
control buttons along the bottom of the display screen are represented in the bottom  
row of each menu chart.  
37  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 3-3:  
Display/Touch Control Screen Mapped to Menu Charts  
Note  
The menu charts in this manual contain condensed representations of the  
analyzer’s display during the various operations being described. These  
menu charts are not intended to be exact visual representations of the  
actual display.  
38  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
3.2.2. REAR PANEL  
Figure 3-4: Rear Panel Layout  
Table 3-3 provides a description of each component on the rear panel.  
39  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 3-3:Rear Panel Description  
Component  
Function  
Pulls ambient air into chassis through side vents and exhausts through rear.  
cooling fan  
Connector for three-prong cord to apply AC power to the analyzer.  
CAUTION! The cord’s power specifications (specs) MUST comply with the power  
specs on the analyzer’s rear panel Model number label  
AC power  
connector  
Identifies the analyzer model number and provides power specs  
(not used in this model)  
Model/specs label  
TO CONV  
(not used in this model)  
FROM CONV  
Connect a gas line from the source of sample gas here.  
SAMPLE  
Calibration gases are also inlet here on units without zero/span/shutoff valve options  
installed.  
Connect an exhaust gas line of not more than 10 meters long here that leads outside  
the shelter or immediate area surrounding the instrument.  
EXHAUST  
SPAN 1  
On units with zero/span/shutoff valve options installed, connect a gas line to the source  
of calibrated span gas here.  
Used as a second cal gas input line when instrument is configured with zero/span  
valves and a dual gas option, or as a cal gas vent line when instrument is configured  
with a pressurized span option (Call factory for details).  
SPAN2/VENT  
Internal Zero Air: On units with zero/span/shutoff valve options installed but no internal  
zero air scrubber attach a gas line to the source of zero air here.  
ZERO AIR  
LEDs indicate receive (RX) and transmit (TX) activity on the when blinking.  
Serial communications port for RS-232 or RS-485.  
RX TX  
COM 2  
RS-232  
Serial communications port for RS-232 only.  
Switch to select either data terminal equipment or data communication equipment  
during RS-232 communication. (Section 6.1).  
DCE DTE  
For outputs to devices such as Programmable Logic Controllers (PLCs).  
For voltage or current loop outputs to a strip chart recorder and/or a data logger.  
For remotely activating the zero and span calibration modes.  
STATUS  
ANALOG OUT  
CONTROL IN  
ALARM  
Option for concentration alarms and system warnings.  
Connector for network or Internet remote communication, using Ethernet cable  
ETHERNET  
Option for external voltage signals from other instrumentation and for logging these  
signals  
ANALOG IN  
Connector for direct connection to personal computer, using USB cable.  
Includes voltage and frequency specifications  
USB  
Information Label  
40  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
3.2.3. INTERNAL CHASSIS LAYOUT  
Figure 3-5 illustrates the internal layout of the chassis without options. Section 3.3.2  
shows pneumatic diagrams for the basic configuration and for options.  
Figure 3-5: Internal Layout, Basic (no Valve or Second Gas Options)  
41  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
3.3. CONNECTIONS AND SETUP  
This section presents the electrical (Section 3.3.1) and pneumatic (Section 3.3.2)  
connections for setup and preparing for instrument operation.  
3.3.1. ELECTRICAL CONNECTIONS  
Note  
To maintain compliance with EMC standards, it is required that the cable  
length be no greater than 3 meters for all I/O connections, which include  
Analog In, Analog Out, Status Out, Control In, Ethernet/LAN, USB, RS-232,  
and RS-485.  
This section provides instructions for basic connections and for options. Table 3-4  
provides a direct link to the instructions for the subsections that apply to your analyzer’s  
configuration.  
Table 3-4: Electrical Connections References  
Connection  
Section  
Power  
Analog Inputs (Option)  
Analog Outputs  
Current Loop Analog Outputs (Option),  
and converting current to voltage output  
Status Outputs  
Control Inputs  
Concentration Alarm Relay (Option)  
Communications (Ethernet, USB,  
RS-232, Multidrop, RS-485)*  
* USB is an option with exceptions.  
* RS-485 is an option and requires special setup (contact the Factory).  
Either USB or RS-485 can be used; not both.  
42  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
3.3.1.1. CONNECTING POWER  
Attach the power cord to the analyzer and plug it into a power outlet capable of carrying  
at least 10 Amps of current at your AC voltage and that it is equipped with a functioning  
earth ground.  
WARNING  
ELECTRICAL SHOCK HAZARD  
High Voltages are present inside the analyzers case.  
Power connection must have functioning ground connection.  
Do not defeat the ground wire on power plug.  
Power off analyzer before disconnecting or connecting electrical  
subassemblies.  
Do not operate analyzer with the cover off.  
CAUTION  
GENERAL SAFETY HAZARD  
The T100 analyzer can be configured for both 100-120 V and 220-240 V at  
either 50 or 60 Hz.  
To avoid damage to your analyzer, ensure that the AC power voltage  
matches the voltage indicated on the Analyzer’s model identification label  
3.3.1.2. CONNECTING ANALOG INPUTS (OPTION)  
The Analog In connector is used for connecting external voltage signals from other  
instrumentation (such as meteorological instruments) and for logging these signals in the  
analyzer’s internal DAS. The input voltage range for each analog input is 1-10 VDC,  
and input impedance is nominally 20kin parallel with 0.1µF.  
Figure 3-6: Analog In Connector  
Pin assignments for the Analog In connector are presented in Table 3-5 .  
43  
06807C DCN6650  
     
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 3-5: Analog Input Pin Assignments  
DAS  
PIN  
DESCRIPTION  
PARAMETER1  
1
Analog input # 1  
Analog input # 2  
Analog input # 3  
Analog input # 4  
Analog input # 5  
Analog input # 6  
Analog input # 7  
Analog input # 8  
Analog input Ground  
AIN 1  
AIN 2  
AIN 3  
AIN 4  
AIN 5  
AIN 6  
AIN 7  
AIN 8  
N/A  
2
3
4
5
6
7
8
GND  
1 See Section 0 for details on setting up the DAS.  
3.3.1.3. CONNECTING ANALOG OUTPUTS  
The T100 is equipped with several analog output channels accessible through a  
connector on the rear panel of the instrument. The standard configuration for these  
outputs is mVDC. An optional current loop output is available for each. (Section  
When the instrument is in its default configuration, channels A1 and A2 output a signal  
that is proportional to the SO2 concentration of the sample gas. Either can be used for  
connecting the analog output signal to a chart recorder or for interfacing with a  
datalogger.  
Output A3 is only used on the T100 if the optional O2 or CO2 sensor is installed.  
Channel A4 is special. It can be set by the user (refer to Section 5.9.9) to output any  
one of the parameters accessible through the <TST TST> buttons of the unit’s sample  
display.  
To access these signals attach a strip chart recorder and/or data-logger to the appropriate  
analog output connections on the rear panel of the analyzer.  
ANALOG OUT  
A1  
A2  
A3  
A4  
+
-
+
-
+
-
+
-
Figure 3-7: Analog Output Connector  
44  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
Table 3-6: Analog Output Pin Assignments  
PIN  
ANALOG OUTPUT  
VOLTAGE SIGNAL  
CURRENT SIGNAL  
1
2
3
4
5
V Out  
Ground  
V Out  
I Out +  
I Out -  
I Out +  
I Out -  
I Out +  
A1  
A2  
Ground  
V Out  
A3  
(Only used if an  
optional O2 or CO2  
sensor is installed)  
6
Ground  
I Out -  
7
8
V Out  
I Out +  
I Out -  
A4  
Ground  
3.3.1.4. CURRENT LOOP ANALOG OUTPUTS (OPTION 41) SETUP  
If your analyzer had this option installed at the factory, there are no further connections  
to be made. The current loop option can be configured for any output range between 0  
and 20 mA. Section 5.9.3.5 provides information on calibrating or adjusting these  
outputs.  
This section provides instructions for setting up the analog outputs for voltage and/or  
combination of one current output and two voltage outputs configuration.  
For current output install the Current Loop option PCA on J19, on J21 or on J23 of  
the motherboard.  
For voltage output, install jumpers on J19, J21 and/or J23.  
Following Figure 3-8 are instructions for converting current loop analog outputs to  
standard 0-to-5 VDC outputs.  
CAUTION – AVOID INVALIDATING WARRANTY  
Servicing or handling of circuit components requires electrostatic  
discharge protection, i.e. ESD grounding straps, mats and containers.  
Failure to use ESD protection when working with electronic assemblies will  
void the instrument warranty. Refer to Section 13 for more information on  
preventing ESD damage.  
45  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 3-8: Current Loop Option Installed on the Motherboard  
CONVERTING CURRENT LOOP ANALOG OUTPUTS TO STANDARD  
VOLTAGE OUTPUTS  
To convert an output configured for current loop operation to the standard 0 to 5 VDC  
output operation:  
1. Turn off power to the analyzer.  
2. If a recording device was connected to the output being modified, disconnect it.  
3. Remove the top cover  
Remove the set screw located in the top, center of the rear panel  
Remove the screws fastening the top cover to the unit (four per side).  
Lift the cover straight up.  
4. Disconnect the current loop option PCA from the appropriate connector on the  
motherboard (refer to Figure 3-8).  
5. Each connector, J19 and J23, requires two shunts. Place one shunt on the  
two left most pins and the second shunt on the two pins next to it (refer to  
6. Reattach the top case to the analyzer.  
The analyzer is now ready to have a voltage-sensing, recording device attached to that  
output.  
46  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
Calibrate the analog output as described in Section 5.9.3  
3.3.1.5. CONNECTING THE STATUS OUTPUTS  
The status outputs report analyzer conditions via optically isolated NPN transistors,  
which sink up to 50 mA of DC current. These outputs can be used interface with  
devices that accept logic-level digital inputs, such as Programmable Logic Controllers  
(PLCs). Each status bit is an open collector output that can withstand up to 40 VDC.  
All of the emitters of these transistors are tied together and available at the “D”  
connector pin.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Most PLC’s have internal provisions for limiting the current that the input  
will draw from an external device. When connecting to a unit that does  
not have this feature, an external dropping resistor must be used to limit  
the current through the transistor output to less than 50 mA. At 50 mA,  
the transistor will drop approximately 1.2V from its collector to emitter.  
The status outputs are accessed via a 12-pin connector on the analyzer’s rear panel  
labeled STATUS (Figure 3-9). Pin-outs for this connector are presented in Table 3-7.  
STATUS  
1
2
3
4
5
6
7
8
D
+
Figure 3-9: Status Output Connector  
47  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 3-7:Status Output Signals  
REAR PANEL  
LABEL  
STATUS  
DEFINITION  
CONDITION  
SYSTEM OK  
CONC VALID  
ON if no faults are present.  
1
2
OFF any time the HOLD OFF feature is active, such as during calibration or when  
other faults exist possibly invalidating the current concentration measurement  
(example: sample flow rate is outside of acceptable limits).  
ON if concentration measurement is valid.  
HIGH RANGE  
ZERO CAL  
SPAN CAL  
DIAG MODE  
ON if unit is in high range of either the DUAL or Auto range modes.  
ON whenever the instrument’s ZERO point is being calibrated.  
ON whenever the instrument’s SPAN point is being calibrated.  
ON whenever the instrument is in DIAGNOSTIC mode  
SPARE  
3
4
5
6
7&8  
D
EMITTER BUS  
The emitters of the transistors on pins 1-8 are bussed together.  
SPARE  
DC POWER  
+ 5 VDC, 300 mA source (combined rating with Control Output, if used).  
+
Digital Ground  
The ground level from the analyzer’s internal DC power supplies  
3.3.1.6. CONNECTING THE CONTROL INPUTS  
If you wish to use the analyzer to remotely activate the zero and span calibration modes,  
several digital control inputs are provided through a 10-pin connector labeled  
CONTROL IN on the analyzer’s rear panel.  
There are two methods for energizing the control inputs. The internal +5V available  
from the pin labeled “+” is the most convenient method. However, if full isolation is  
required, an external 5 VDC power supply should be used.  
48  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
CONTROL IN  
CONTROL IN  
A
B
C
D
E
F
U
+
A
B
C
D
E
F
U
+
5 VDC Power  
Supply  
-
+
External Power Connections  
Local Power Connections  
Figure 3-10:  
Control Input Connector  
Table 3-8:Control Input Signals  
Input #  
Status Definition  
ON Condition  
The analyzer is placed in Zero Calibration mode. The mode field of the  
display will read ZERO CAL R.  
A
REMOTE ZERO CAL  
The analyzer is placed in span calibration mode as part of performing a low  
B
REMOTE SPAN CAL  
span (midpoint) calibration. The mode field of the display will read LO CAL  
R.  
C, D, E & F SPARE  
The ground level from the analyzer’s internal DC power supplies (same as  
chassis ground)  
Digital Ground  
U
+
External Power input  
5 VDC output  
Input pin for +5 VDC is required to activate pins A – F.  
Internally generated 5V DC power. To activate inputs A – F, place a jumper  
between this pin and the “U” pin. The maximum amperage through this port  
is 300 mA (combined with the analog output supply, if used).  
49  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
3.3.1.7. CONNECTING THE CONCENTRATION ALARM RELAY (OPTION 61)  
The concentration alarm option is comprised of four (4) “dry contact” relays on the rear  
panel of the instrument. This relay option is different from and in addition to the  
“Contact Closures” that come standard on all Teledyne API instruments. Each relay has  
3 pins: Normally Open (NO), Common (C) and Normally Closed (NC).  
Figure 3-11:  
Alarm 1 “System OK 2”  
Concentration Alarm Relay  
Alarm 2 “Conc 1”  
Alarm 3 “Conc 2”  
Alarm 4 “Range Bit”  
“ALARM 1” RELAY  
Alarm 1, which is “System OK 2” (system OK 1 is the status bit), is in the energized  
state when the instrument is “OK” and there are no warnings. If there is a warning  
active or if the instrument is put into the “DIAG” mode, Alarm 1 will change states.  
This alarm has “reverse logic” meaning that if you put a meter across the Common and  
Normally Closed pins on the connector you will find that it is OPEN when the  
instrument is OK. This is so that if the instrument should turn off or lose power, it will  
change states and you can record this with a data logger or other recording device.  
“ALARM 2” RELAY & “ALARM 3” RELAY  
Alarm 2 relay is associated with the “Concentration Alarm 1” set point in the software;  
Alarm 3 relay is associated with the “Concentration Alarm 2” set point in the software.  
Alarm 2 Relay  
Alarm 3 Relay  
Alarm 2 Relay  
Alarm 3 Relay  
SO2 Alarm 1 = xxx PPM  
SO2 Alarm 2 = xxx PPM  
SO2 Alarm 1 = xxx PPM  
SO2 Alarm 2 = xxx PPM  
Alarm 2 relay will be turned on any time the concentration value exceeds the set-point,  
and will return to its normal state when the concentration value returns below the  
concentration set-point.  
Even though the relay on the rear panel is a NON-Latching alarm and resets when the  
concentration goes back below the alarm set point, the warning on the front panel of the  
instrument will remain latched until it is cleared. You can clear the warning on the front  
panel either manually by pressing the CLR button on the front panel touch-screen or  
remotely through the serial port.  
50  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
The software for this instrument is flexible enough to allow you to configure the alarms  
so that you can have two alarm levels for each concentration.  
SO2 Alarm 1 = 20 PPM  
SO2 Alarm 2 = 100 PPM  
SO2 Alarm 1 = 20 PPM  
SO2 Alarm 2 = 100 PPM  
In this example, SO2 Alarm 1 and SO2 Alarm 1 will both be associated with the “Alarm  
2” relay on the rear panel. This allows you to have multiple alarm levels for individual  
concentrations.  
A more likely configuration for this would be to put one concentration on the “Alarm 1”  
relay and the other concentration on the “Alarm 2” relay.  
SO2 Alarm 1 = 20 PPM  
SO2 Alarm 2 = Disabled  
SO2 Alarm 1 = Disabled  
SO2 Alarm 2 = 100 PPM  
“ALARM 4” RELAY  
This relay is connected to the “range bit”. If the instrument is configured for “Auto  
Range” and the reading goes up into the high range, it will turn this relay on.  
3.3.1.8. CONNECTING THE COMMUNICATIONS INTERFACES  
The T-Series analyzers are equipped with connectors for remote communications  
interfaces: Ethernet, USB, RS-232, RS-232 Multidrop and RS-485. In addition to  
using the appropriate cables, each type of communication method, must be configured  
using the SETUP>COMM menu, Section 6. Although Ethernet is DHCP-enabled by  
default, it can also be configured manually (Section 6.5.1) to set up a static IP address,  
which is the recommended setting when operating the instrument via Ethernet.  
ETHERNET CONNECTION  
For network or Internet communication with the analyzer, connect an Ethernet cable  
from the analyzer’s rear panel Ethernet interface connector to an Ethernet port. Please  
refer to Section 6.5 for a description of the default configuration and setup instructions.  
Configuration: Section 6.5  
manual configuration: Section 6.5.1  
automatic configuration (default): Section 6.5.2  
51  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
USB CONNECTION  
For direct communication between the analyzer and a PC, connect a USB cable between  
the analyzer and desktop or laptop USB ports, and ensure that their baud rates match  
(Section 6.2.2).  
Note  
If this option is installed, the COM2 port cannot be used for anything  
other than Multidrop communication.  
Configuration: Section 6.5.3  
RS-232 CONNECTION  
For RS-232 communications with data terminal equipment (DTE) or with data  
communication equipment (DCE) connect either a DB9-female-to-DB9-female cable  
(Teledyne API part number WR000077) or a DB9-female-to-DB25-male cable (Option  
60A, Section 1.4), as applicable, from the analyzer’s rear panel RS-232 port to the  
device. Adjust the DCE-DTE switch (Figure 3-4) to select DTE or DCE as appropriate.  
Configuration: Sections 5.7 and 6.3  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Cables that appear to be compatible because of matching connectors  
may incorporate internal wiring that makes the link inoperable. Check  
cables acquired from sources other than Teledyne API for pin  
52  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
RS-232 COM PORT CONNECTOR PIN-OUTS  
Figure 3-12:  
Rear Panel Connector Pin-Outs for RS-232 Mode  
The signals from these two connectors are routed from the motherboard via a wiring  
harness to two 10-pin connectors on the CPU card, J11 and J12 (Figure 3-13).  
53  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 3-13:  
Default Pin Assignments for CPU Com Port Connector (RS-232)  
RS-232 COM PORT DEFAULT SETTINGS  
As received from the factory, the analyzer is set up to emulate a DCE (Section 6.1) or  
modem, with Pin 3 of the DB-9 connector designated for receiving data and Pin 2  
designated for sending data.  
RS-232: RS-232 (fixed) DB-9 male connector  
Baud rate: 115200 bits per second (baud)  
Data Bits: 8 data bits with 1 stop bit  
Parity: None  
COM2: RS-232 (configurable to RS 485), DB-9 female connector.  
Baud rate:19200 bits per second (baud).  
Data Bits: 8 data bits with 1 stop bit.  
Parity: None.  
Configuration: Section 6.3  
54  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
RS-232 MULTIDROP (OPTION 62) CONNECTION  
When the RS-232 Multidrop option is installed, the instrument designated as last in the  
chain must be terminated. This requires installing a shunt between two pins on the  
multidrop printed circuit assembly (PCA) inside the instrument. Step-by-step  
instructions for installation follow.  
Note  
Because the RS-232 Multidrop option uses both the RS232 and COM2  
DB9 connectors on the analyzer’s rear panel to connect the chain of  
instruments, COM2 port is no longer available for separate RS-232 or  
RS-485 operation.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Printed Circuit Assemblies (PCAs) are sensitive to electro-static  
discharges too small to be felt by the human nervous system. Failure to  
use ESD protection when working with electronic assemblies will void  
the instrument warranty. Refer to Section 13 for more information on  
preventing ESD damage.  
To install shunt in the last analyzer:  
1. With NO power to the instrument, remove its top cover and lay the rear panel open  
for access to the multidrop PCA, which is seated on the CPU.  
2. On the multidrop PCA’s JP2 connector, use the shunt provided to jumper Pins  
21 22 as indicated in (Figure 3-14).  
55  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 3-14:  
JP2 Pins 21-22 on RS-232-Multidrop PCA  
Note: If you are adding an instrument to the end of a previously configured chain,  
remove the shunt between Pins 21 22 of JP2 on the Multidrop/LVDS PCA in the  
instrument that was previously the last instrument in the chain.  
3. Close the instrument.  
4. Referring to Figure 3-15 use straight-through DB9 male DB9 female cables to  
interconnect the host RS232 port to the first analyzer’s RS232 port; then from the  
first analyzer’s COM2 port to the second analyzer’s RS232 port; from the second  
analyzer’s COM2 port to the third analyzer’s RS232 port, etc., connecting in this  
fashion up to eight analyzers, subject to the distance limitations of the RS-232  
standard.  
5. BEFORE communicating from the host, power on the instruments and check that  
the Machine ID code is unique for each (Section 5.7.1). On the front panel menu,  
use SETUP>MORE>COMM>ID. Note that the default ID is typically the model  
number; to change the 4-digit identification number, press the button of the digit to  
be changed).  
Note  
Teledyne API recommends setting up the first link, between the Host and  
the first analyzer, and testing it before setting up the rest of the chain.  
56  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
Female DB9  
Male DB9  
Host  
RS-232 port  
Analyzer  
Analyzer  
Analyzer  
Last Analyzer  
COM2  
COM2  
COM2  
COM2  
RS-232  
RS-232  
RS-232  
RS-232  
Ensure jumper is  
installed between  
JP2 pins 21  
in last instrument  
of multidrop chain.  
22  
Figure 3-15:  
RS-232-Multidrop PCA Host/Analyzer Interconnect Diagram  
RS-485 CONNECTION  
As delivered from the factory, COM2 is configured for RS-232 communications. This  
port can be reconfigured for operation as a non-isolated, half-duplex RS-485 port. Using  
COM2 for RS-485 communication disables the USB port. To reconfigure this port for  
RS-485 communication, please contact the factory.  
3.3.2. PNEUMATIC CONNECTIONS  
This section provides not only pneumatic connection information, but also important  
information about the gases required for accurate calibration (Section 3.3.2.10); it also  
illustrates the pneumatic layouts for the analyzer in its basic configuration and with  
options.  
Before making the pneumatic connections, carefully note the following cautionary and  
additional messages:  
CAUTION  
GENERAL SAFETY HAZARD  
SULFUR DIOXIDE (SO2) IS A TOXIC GAS.  
DO NOT vent calibration gas and sample gas into enclosed areas. Obtain  
a Material Safety Data Sheet (MSDS) for this material. Read and  
rigorously follow the safety guidelines described there.  
57  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
CAUTION  
GENERAL SAFETY HAZARD  
Sample and calibration gases should only come into contact with PTFE  
(Teflon) or glass tubes and fixtures.  
They SHOULD NOT come in contact with brass or stainless steel fittings  
prior to the reaction cell.  
The exhaust from the analyzer’s internal pump MUST be vented outside  
the immediate area or shelter surrounding the instrument.  
It is important to conform to all safety requirements regarding exposure  
to SO2.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Maximum Pressure:  
Ideally the maximum pressure of any gas at the sample inlet should  
equal ambient atmospheric pressure and should NEVER exceed 1.5 in-  
hg above ambient pressure.  
Venting Pressurized Gas:  
In applications where any gas (span gas, zero air supply, sample gas  
is) received from a pressurized manifold, a vent must be provided to  
equalize the gas with ambient atmospheric pressure before it enters  
the analyzer to ensure that the gases input do not exceed the  
maximum inlet pressure of the analyzer, as well as to prevent back  
diffusion and pressure effects. These vents should be:  
• at least 0.2m long  
• no more than 2m long  
• vented outside the shelter or immediate area surrounding the  
instrument.  
Dust Plugs:  
Remove dust plugs from rear panel exhaust and supply line fittings  
before powering on/operating instrument. These plugs should be kept  
for reuse in the event of future storage or shipping to prevent debris  
from entering the pneumatics.  
EPA Requirements:  
IMPORTANT  
US EPA requirements state that zero air and span gases must be  
supplied at twice the instrument’s specified gas flow rate. Therefore,  
the T100 zero and span gases should be supplied to their respective  
inlets in excess of 1300 cc3/min (650 cc3/min. x 2).  
58  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
Leak Check:  
IMPORTANT  
Run a leak check once the appropriate pneumatic connections have  
been made; check all pneumatic fittings for leaks using the  
procedures defined in Section 11.3.6.  
CAUTION – GENERAL SAFETY HAZARD  
Gas flow though the analyzer must be maintained at all time for units with  
a permeation tube installed. Insufficient gas flow allows gas to build up  
to levels that will contaminate the instrument or present a safety hazard  
to personnel.  
Section 3.3.2.1 provides external pneumatic connection instructions, and Table 3-9  
provides links to the location of various internal pneumatic layout illustrations.  
Table 3-9: Pneumatic Layout Reference  
Pneumatic Layout  
Basic  
Section  
Zero/Span Valves  
Internal Zero/Span (IZS)  
Basic with O2 Sensor  
Basic with CO2 Sensor  
3.3.2.1. BASIC CONNECTIONS INCLUDING W/SPAN GAS AND W/GAS DILUTION CALIBRATOR  
Refer to Figure 3-4 and Table 3-3 while making the pneumatic connections as follows:  
SAMPLE inlet  
Connect ¼” gas line not more than 2 m long, from sample gas  
source to this inlet.  
When no zero/span/shutoff valve options, also connect line from  
calibration gas source to this inlet, but only when a calibration  
operation is actually being performed.  
EXHAUST outlet  
Connect exhaust line made of PTEF tubing; minimum O.D ¼”, to  
this fitting. The exhaust line should be no longer than 10 meters,  
and should lead outside the shelter or immediate area surrounding  
the instrument.  
Figure 3-16 and Figure 3-17 illustrate pneumatic connections for two of the possible  
basic configurations.  
59  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 3-16:  
Pneumatic Connections–Basic Configuration–Using Bottled Span Gas  
Figure 3-17:  
Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator  
60  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
3.3.2.2. PNEUMATIC LAYOUT FOR BASIC CONFIGURATION  
Chassis  
HYDROCARBON  
SCRUBBER  
(Kicker)  
SAMPLE  
gas inlet  
EXHAUST  
gas outlet  
PMT  
UV  
PUMP  
LAMP  
REACTION  
CELL  
FLOW  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
FLOW PRESSURE  
SENSOR PCA  
Figure 3-18:  
T100 Gas Flow, Basic Configuration  
61  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
3.3.2.3. PNEUMATIC LAYOUT FOR ZERO/SPAN VALVES OPTION  
Figure 3-19 shows the internal, pneumatic connections for a T100 with the zero/span  
valve option installed.  
EXHAUST GAS  
OUTLET  
Chassis  
KICKER EXHAUST  
TO PUMP  
PUMP  
HYDROCARBON  
SCRUBBER  
(KICKER)  
SAMPLE/CAL  
VALVE  
SAMPLE  
SAMPLE GAS  
INLET  
CHAMBER  
COM  
NO  
NC  
UV  
LAMP  
SAMPLE FILTER  
PMT  
ZERO/SPAN  
VALVE  
COM  
NO  
SPAN 1 INLET  
EXHAUST TO OUTER  
LAYER OF KICKER  
NC  
ZERO AIR INLET  
FLOW  
FLOW  
CONTROL  
ASSY  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
FLOW / PRESSURE  
SENSOR PCA  
Figure 3-19:  
Pneumatic Layout with Zero/Span Valves Option  
Table 3-10 describes the state of each valve during the analyzer’s various operational  
modes.  
Table 3-10: Zero/Span and Sample/Cal Valve Operating States  
MODE  
VALVE  
CONDITION  
Sample/Cal  
Zero/Span  
Sample/Cal  
Zero/Span  
Sample/Cal  
Zero/Span  
Open to SAMPLE inlet  
Open to ZERO AIR inlet  
Open to zero/span inlet  
Open to ZERO AIR inlet  
Open to zero/span inlet  
Open to SPAN GAS inlet  
SAMPLE  
ZERO CAL  
SPAN CAL  
The state of the zero/span valves can also be controlled by any of the following means:  
manually from the analyzer’s front panel by using the SIGNAL I/O controls  
located within the DIAG Menu (refer to Section 5.9.1)  
by activating the instrument’s AutoCal feature (refer to Section 9.8)  
62  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
remotely by using the external digital control inputs (refer to Section 8.1.2 and  
Section 9.7.1)  
remotely through the RS-232/485 serial I/O ports (refer to Appendix A-6 for the  
appropriate commands)  
Sources of zero and span gas must be capable of supplying at least 1.55 L/min.  
(maximum 2.5L/min). Both supply lines should be vented outside of the analyzer’s  
enclosure. In order to prevent back-diffusion and pressure effects, these vent lines  
should be between 2 and 10 meters in length.  
3.3.2.4. PNEUMATIC LAYOUT FOR INTERNAL ZERO/SPAN (IZS) GAS GENERATOR OPTION  
Figure 3-20 shows the internal, pneumatic connections for the analyzer with the IZS  
option installed.  
EXHAUST GAS  
Chassis  
KICKER EXHAUST  
OUTLET  
TO PUMP  
PUMP  
HYDROCARBON  
SCRUBBER  
(KICKER)  
SAMPLE/CAL  
VALVE  
SAMPLE  
SAMPLE GAS  
INLET  
CHAMBER  
COM  
NO  
NC  
UV  
LAMP  
PMT  
ZERO/SPAN  
VALVE  
COM  
NO  
EXHAUST TO OUTER LAYER  
OF KICKER  
NC  
IZS  
Permeation  
Tube  
CRITICAL  
FLOW  
ORIFICE  
FLOW  
SENSOR  
SO2 Source  
SAMPLE  
PRESSURE  
SENSOR  
CRITICAL  
FLOW  
ORIFICE  
FLOW / PRESSURE  
SENSOR PCA  
ZERO AIR INLET  
Figure 3-20:  
Pneumatic Layout with IZS Options  
The internal zero air and span gas generator (IZS) option includes a heated enclosure  
(Section 3.3.2.5) for a permeation tube (permeation tube must be purchased separately;  
see Section 1.4, in SO2 IZS Permeation Tubes option), an external scrubber (Section  
3.3.2.7) for producing zero air and a set of valves for switching between the sample gas  
inlet and the output of the zero/span subsystem, functionally very similar to the valves  
included in the zero/span valve option.  
Table 3-11 describes the operational state of the valves associated with the IZS option  
during the analyzer’s various operating modes.  
63  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 3-11: IZS Valve Operating States  
MODE  
VALVE  
CONDITION  
Sample/Cal  
Zero/Span  
Sample/Cal  
Zero/Span  
Sample/Cal  
Zero/Span  
Open to SAMPLE inlet  
Open to ZERO AIR inlet  
Open to zero/span valve  
Open to ZERO AIR inlet  
Open to zero/span valve  
Open to SPAN GAS inlet  
SAMPLE  
ZERO CAL  
SPAN CAL  
The state of the IZS valves can also be controlled by any of the following means:  
Manually from the analyzer’s front panel by using the SIGNAL I/O controls under  
the DIAG Menu (refer to Section 5.9.1),  
By activating the instrument’s AutoCal feature (refer to Section 9.8),  
Remotely by using the external digital control inputs (refer to Section 8.1.2 and  
Section 9.7.1),  
Remotely through the RS-232/485 serial I/O ports (refer to Appendix A-6 for the  
applicable commands), or  
Remotely via Ethernet  
Note  
The permeation tube is not included in the IZS Option and must be  
3.3.2.5. PERMEATION TUBE HEATER  
In order to keep the permeation rate constant, the IZS enclosure is heated to a constant  
50 C (10° above the maximum operating temperature of the instrument). The IZS heater  
is controlled by a precise PID (Proportional/Integral/Derivative) temperature control  
loop. A thermistor measures the actual temperature and reports it to the CPU for control  
feedback.  
The IZS option includes an external zero air scrubber assembly that removes all SO2 the  
zero air source. The scrubber is filled with activated charcoal.  
3.3.2.6. SPAN GAS CONCENTRATION VARIATION  
Span gas is created when zero air passes over a permeation tube containing liquid SO2  
under high pressure, which slowly permeates through a PTFE membrane into the  
surrounding air. The speed at which the SO2 permeates the membrane is called the  
effusion rate. The concentration of the span gas is determined by three factors:  
Size of the membrane: The larger the area of the membrane, the more permeation  
occurs.  
Temperature of the SO2: Increasing the temperature of the increases the pressure  
inside the tube and therefore increases the effusion rate.  
Flow rate of the zero air: If the previous two variables are constant, the permeation  
rate of air into the zero air stream will be constant. Therefore, a lower flow rate of  
64  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
zero air produces higher concentrations of SO2. The T100 usually has a constant  
flow rate and a constant permeation rate; hence, variations in concentration can be  
achieved by changing the IZS temperature.  
3.3.2.7. EXTERNAL ZERO AIR SCRUBBER  
The IZS option includes an external zero air scrubber assembly that removes all SO2  
from the zero air source. The scrubber is filled with activated charcoal.  
3.3.2.8. PNEUMATIC LAYOUT WITH O2 SENSOR OPTION  
Figure 3-21 shows the internal, pneumatic connections for the analyzer with the oxygen  
(O2) sensor option installed. Pneumatically, the O2 sensor draws a flow of 80 cm³/min in  
addition to the normal sample flow rate. It is separately controlled with its own critical  
flow orifice.  
HYDROCARBON  
SCRUBBER  
(Kicker)  
Chassis  
with O2 Sensor Option  
SAMPLE  
GAS INLET  
O2  
Sensor  
O2 Sensor  
Flow Control  
PMT  
UV  
LAMP  
EXHAUST  
GAS OUTLET  
REACTION  
CELL  
PUMP  
FLOW  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
FLOW PRESSURE  
SENSOR PCA  
Figure 3-21:  
Pneumatic Layout with O2 Sensor  
65  
06807C DCN6650  
     
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
3.3.2.9. PNEUMATIC LAYOUT WITH CO2 SENSOR OPTION  
Figure 3-22 shows the internal, pneumatic connections for the analyzer with the carbon  
dioxide (CO2) sensor option installed. Pneumatically, the CO2 sensor is placed in line  
with the sample gas line between the particulate filter and the analyzer’s sample  
chamber. It does not alter the gas flow rate of the sample through the analyzer.  
HYDROCARBON  
SCRUBBER  
(Kicker)  
Chassis  
with CO2 Sensor Option  
CO2  
Probe  
SAMPLE  
GAS INLET  
PMT  
UV  
LAMP  
EXHAUST  
GAS OUTLET  
REACTION  
CELL  
PUMP  
FLOW  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
FLOW PRESSURE  
SENSOR PCA  
Figure 3-22:  
Pneumatic Layout with CO2 Sensor  
3.3.2.10. ABOUT ZERO AIR AND CALIBRATION (SPAN) GASES  
Zero air and span gas are required for accurate calibration.  
ZERO AIR  
A gas that is similar in chemical composition to the earth’s atmosphere but without the  
gas being measured by the analyzer, in this case SO2. If your analyzer is equipped with  
an Internal Zero Span (IZS) or an external zero air scrubber option, it is capable of  
creating zero air.  
For analyzers without an IZS or external zero air scrubber option, a zero air generator  
such as the Teledyne API Model 701 can be used (Figure 3-16).  
66  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
CALIBRATION (SPAN) GAS  
Calibration gas is a gas specifically mixed to match the chemical composition of the  
type of gas being measured at near full scale of the desired measurement range. In this  
case, SO2 measurements made with the Teledyne API T100 UV Fluorescence SO2  
Analyzer, it is recommended that you use a span gas with a SO2 concentration equal to  
80% of the measurement range for your application.  
EXAMPLE: If the application is to measure between 0 ppm and 500 ppb, an appropriate  
span gas concentration would be 450 ppb SO2.  
Cylinders of calibrated SO2 gas traceable to NIST-Standard Reference Material  
specifications (also referred to as SRM’s or EPA protocol calibration gases) are  
commercially available. Table 3-12 lists specific NIST-SRM reference numbers for  
various concentrations of SO2.  
Table 3-12: NIST-SRM's Available for Traceability of SO2 Calibration Gases  
NIST-SRM  
1693a  
Type  
Nominal Concentration  
50 ppm  
Sulfur dioxide in N2  
Sulfur dioxide in N2  
Sulfur dioxide in N2  
O2 in N2  
1694a  
100 pp  
1661a  
2659a1  
500 ppm  
21% by weight  
4% by weight  
16% by weight  
2626a  
27452  
CO2 in N2  
CO2 in N2  
1 Used to calibrate optional O2 sensor.  
2 Used to calibrate optional CO2 sensor.  
SPAN GAS FOR MULTIPOINT CALIBRATION  
Some applications, such as EPA monitoring, require a multipoint calibration procedure  
where span gases of different concentrations are needed. We recommend using a bottle  
of calibrated SO2 gas of higher concentration in conjunction with a gas dilution  
calibrator such as a Teledyne API Model T700 (Figure 3-17) This type of calibrator  
precisely mixes a high concentration gas with zero air (both supplied externally) to  
accurately produce span gas of the correct concentration. Linearity profiles can be  
automated with this model and run unattended over night.  
3.4. STARTUP, FUNCTIONAL CHECKS, AND INITIAL  
CALIBRATION  
If you are unfamiliar with the T100 principles of operation, we recommend that you  
read Section 13. For information on navigating the analyzer’s software menus, refer to  
the menu trees provided in Appendix A.  
67  
06807C DCN6650  
   
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
CAUTION - GENERAL SAFETY HAZARD  
Do not look at the UV lamp while the unit is operating. UV light can  
cause eye damage. Always use safety glasses made from UV blocking  
material whenever working with the UV Lamp. (Generic plastic glasses  
are not adequate).  
3.4.1. STARTUP  
After the electrical and pneumatic connections are made, an initial functional check is in  
order. Turn on the instrument. The pump and exhaust fan should start immediately.  
The display will show a momentary splash screen of the Teledyne API logo and other  
information during the initialization process while the CPU loads the operating system,  
the firmware and the configuration data.  
The analyzer should automatically switch to Sample Mode after completing the boot-up  
sequence and start monitoring the gas. However, there is an approximately one hour  
warm-up period before reliable gas measurements can be taken. During the warm-up  
period, the front panel display may show messages in the Parameters field.  
3.4.2. WARNING MESSAGES  
Because internal temperatures and other conditions may be outside the specified limits  
during the analyzer’s warm-up period, the software will suppress most warning  
conditions for 30 minutes after power up. If warning messages persist after the 60  
minutes warm up period is over, investigate their cause using the troubleshooting  
guidelines in Section 12.1.1.  
To view and clear warning messages, press:  
Figure 3-23:  
Warning Messages  
68  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
Table 3-13 lists brief descriptions of the warning messages that may occur during start  
up for T100 analyzers with no options installed.  
Table 3-13: Possible Startup Warning Messages – T100 Analyzers w/o Options  
Message  
Meaning  
ANALOG CAL WARNING  
The instrument's A/D circuitry or one of its analog outputs is not calibrated.  
BOX TEMP WARNING  
CANNOT DYN SPAN2  
The temperature inside the T100 chassis is outside the specified limits.  
Remote span calibration failed while the dynamic span feature was set to  
turned on.  
Remote zero calibration failed while the dynamic zero feature was set to turned  
on.  
CANNOT DYN ZERO3  
CONFIG INITIALIZED  
DARK CAL WARNING  
Configuration was reset to factory defaults or was erased.  
Dark offset above limit specified indicating that too much stray light is present in  
the sample chamber.  
DATA INITIALIZED  
HVPS WARNING  
DAS data storage was erased.  
High voltage power supply for the PMT is outside of specified limits.  
PMT detector output is outside of operational limits.  
PMT temperature is outside of specified limits.  
PMT DET WARNING  
PMT TEMP WARNING  
RCELL TEMP WARNING  
REAR BOARD NOT DET  
RELAY BOARD WARN  
SAMPLE FLOW WARN  
SAMPLE PRESS WARN  
SYSTEM RESET1  
Sample chamber temperature is outside of specified limits.  
CPU unable to communicate with motherboard.  
CPU is unable to communicate with the relay PCA.  
The flow rate of the sample gas is outside the specified limits.  
Sample gas pressure outside of operational parameters.  
The computer was rebooted.  
The UV lamp intensity measured by the reference detector reading too low or  
too high.  
UV LAMP WARNING  
1
2
3
Clears 45 minutes after power up.  
Clears the next time successful zero calibration is performed.  
Clears the next time successful span calibration is performed.  
Table 3-14 lists brief descriptions of the warning messages that may occur during start  
up for T100 analyzers with optional second gas options or alarms installed.  
69  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 3-14: Possible Startup Warning Messages – T100 Analyzers with Options  
Message  
Meaning  
O2 sensor cell temperature outside of warning limits specified by  
O2_CELL_SET variable.  
O2 CELL TEMP WARN1  
On units with IZS options installed: The permeation tube temperature is outside  
of specified limits.  
IZS TEMP WARNING2  
O2 ALARM 1 WARN1, 4  
O2 ALARM 2 WARN1, 4  
CO2 ALARM 1 WARN3, 4  
O2 Alarm limit #1 has been triggered.4  
O2 Alarm limit #2 has been triggered.4  
CO2 Alarm limit #1 has been triggered.4  
CO2 Alarm limit #2 has been triggered.4  
SO2 Alarm limit #1 has been triggered.4  
SO2 Alarm limit #2 has been triggered.4  
CO2 ALARM 2 WARN3, 4  
SO2 ALARM1 WARN4  
SO2 ALARM2 WARN4  
`
1
2
3
4
Only appears when the optional O2 sensor is installed.  
Only appears when the optional internal zero span (IZS) option is installed.  
Only appears when the optional CO2 sensor is installed.  
Only Appears when the optional gas concentration alarms are installed  
3.4.3. FUNCTIONAL CHECKS  
After the analyzer’s components have warmed up for at least 60 minutes, verify that the  
software properly supports any hardware options that were installed.  
For information on navigating through the analyzer’s software menus, refer to the menu  
trees described in Appendix A.1.  
Check to ensure that the analyzer is functioning within allowable operating parameters.  
Appendix C includes a list of test functions viewable from the analyzer’s front panel  
as well as their expected values.  
These functions are also useful tools for diagnosing performance problems with  
your analyzer (refer to Section 12.1.2).  
The enclosed Final Test and Validation Data Sheet (P/N 04551) lists these values  
before the instrument left the factory.  
70  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
To view the current values of these parameters press the following control button  
sequence on the analyzer’s front panel. Remember until the unit has completed its  
warm up these parameters may not have stabilized.  
Figure 3-24:  
Functional Check  
71  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
3.4.4. INITIAL CALIBRATION  
To perform the following calibration you must have sources for zero air and span gas  
available for input into the sample port on the back of the analyzer. Refer to Section  
The initial calibration should be carried out using the same reporting range set up as  
used during the analyzer’s factory calibration. This will allow you to compare your  
calibration results to the factory calibration as listed on the Final Test and Validation  
Data Sheet, P/N 04551.  
If both available DAS parameters for a specific gas type are being reported via the  
instruments analog outputs (e.g. CONC1 and CONC2 when the DUAL range mode is  
activated), separate calibrations should be carried out for each parameter.  
Use the LOW button when calibrating for CONC1 (equivalent to RANGE1).  
Use the HIGH button when calibrating for CONC2 (equivalent to RANGE2).  
Refer to the Configurable Analog Output Addendum, P/N 06270 for more information  
on the configurable analog output reporting ranges.  
Note  
Note  
The following procedure assumes that the instrument does not have any  
of the available Valve Options installed. Refer to Section 9.4 for  
instructions for calibrating instruments possessing valve options  
The T100 analyzer has been tested for its ability to reject interference for  
3.4.4.1. INITIAL CALIBRATION PROCEDURE FOR BASIC ANALYZERS (NO 2ND GAS OPTION)  
The following procedure assumes that:  
The instrument DOES NOT have any of the available calibration valve or gas inlet  
options installed;  
Cal gas will be supplied through the SAMPLE gas inlet on the back of the analyzer  
The pneumatic setup matches that described in Section 3.3.2.  
VERIFYING THE REPORTING RANGE SETTINGS  
While it is possible to perform the following procedure with any range setting we  
recommend that you perform this initial checkout using following reporting range  
settings:  
Unit of Measure: PPB  
Analog Output Reporting Range: 500.0 ppb  
Mode Setting: SNGL  
72  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
While these are the default settings for the T100 analyzer, it is recommended that you  
verify them before proceeding with the calibration procedure, by pressing:  
Figure 3-25:  
Reporting Range Verification  
73  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
DILUTION RATIO SETUP  
If the dilution ratio option is enabled on your T100 and your application involves  
diluting the sample gas before it enters the analyzer, set the dilution ration as follows:  
Figure 3-26:  
Dilution Ratio Setup  
74  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
SET SO2 SPAN GAS CONCENTRATION  
Set the expected SO2 span gas concentration. This should be 80% of the concentration  
range for which the analyzer’s analog output range is set.  
Figure 3-27:  
SO2 Span Gas Setting  
75  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
ZERO/SPAN CALIBRATION  
To perform the zero/span calibration procedure, press:  
SAMPLE  
RANGE=500.0 PPB  
CAL  
SO2= XXXX  
SETUP  
Set the Display to show  
the STABIL test function.  
This function calculates  
the stability of the SO2  
measurement.  
< TST TST >  
Toggle TST> button until ...  
SAMPLE  
STABIL= XXXX PPB  
SO2=XXX.X  
SETUP  
< TST TST >  
CAL  
Allow zero gas to enter the sample port  
at the rear of the analyzer.  
Wait until STABIL  
falls below 0.5 ppb.  
This may take several  
minutes.  
SAMPLE  
STABIL= XXXX PPB  
CAL  
SO2=XXX.X  
< TST TST >  
SETUP  
Press ENTR to changes  
the OFFSET & SLOPE  
values for the SO2  
M-P CAL  
STABIL= XXXX PPB  
SO2=XXX.X  
<TST TST> ZERO CONC  
EXIT  
measurements.  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
M-P CAL  
STABIL= XXXX PPB  
CONC  
SO2=XXX.X  
EXIT  
<TST TST> ENTR  
Allow span gas to enter the sample port  
at the rear of the analyzer.  
Wait until STABIL  
falls below 0.5 ppb.  
This may take several  
minutes.  
SAMPLE  
STABIL= XXXX PPB  
CAL  
SO2=XXX.X  
< TST TST >  
SETUP  
The SPAN button now  
appears during the transition  
from zero to span.  
Press ENTR to changes  
the OFFSET & SLOPE  
values for the SO2  
M-P CAL  
STABIL= XXXX PPB  
SO2=XXX.X  
EXIT  
You may see both buttons.  
If either the ZERO or SPAN  
buttons fail to appear see the  
Troubleshooting section for  
tips.  
<TST TST> ZERO SPAN CONC  
measurements.  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
M-P CAL  
STABIL= XXXX PPB  
CONC  
SO2=XXX.X  
EXIT  
<TST TST> ENTR  
M-P CAL  
STABIL= XXXX PPB  
CONC  
SO2=XXX.X  
EXIT at this point  
returns to the  
SAMPLE menu.  
<TST TST> ENTR  
EXIT  
Figure 3-28:  
Zero/Span Calibration Procedure  
76  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Getting Started  
3.4.4.2. CALIBRATION PROCEDURE FOR THE O2 OPTION  
If your analyzer is equipped with the optional O2 sensor, this sensor should be calibrated  
during installation of the instrument. Refer to Section 9.10.1 for instructions.  
3.4.4.3. CALIBRATION PROCEDURE FOR THE CO2 OPTION  
If your analyzer is equipped with the optional CO2 sensor, this sensor should be  
calibrated during installation of the instrument. Refer to Section 9.10.2 for instructions.  
Note  
Once you have completed the above set-up procedures, please fill out  
the Quality Questionnaire that was shipped with your unit and return it  
to Teledyne API. This information is vital to our efforts in continuously  
improving our service and our products. THANK YOU.  
77  
06807C DCN6650  
 
Getting Started  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
78  
06807C DCN6650  
PART II  
OPERATING INSTRUCTIONS  
79  
06807C DCN6650  
 
80  
06807C DCN6650  
4. OVERVIEW OF OPERATING MODES  
To assist in navigating the analyzer’s software, a series of menu trees can be found in  
Appendix A of this manual.  
Note  
Some control buttons on the touch screen do not appear if they are not  
applicable to the menu that you’re in, the task that you are performing, the  
command you are attempting to send, or to incorrect settings input by the  
user. For example, the ENTR button may disappear if you input a setting  
that is invalid or out of the allowable range for that parameter, such as  
trying to set the 24-hour clock to 25:00:00. Once you adjust the setting to  
an allowable value, the ENTR button will re-appear.  
The T100 software has a variety of operating modes. Most commonly, the analyzer will  
be operating in SAMPLE mode. In this mode, a continuous read-out of the SO2  
concentration can be viewed on the front panel and output as an analog voltage from  
rear panel terminals, calibrations can be performed, and TEST functions and  
WARNING messages can be examined.  
The second most important operating mode is SETUP mode. This mode is used for  
performing certain configuration operations, such as for the DAS system, the reporting  
ranges, or the serial (RS-232 / RS-485 / Ethernet) communication channels. The SET  
UP mode is also used for performing various diagnostic tests during troubleshooting.  
Figure 4-1: Front Panel Display  
81  
06807C DCN6650  
   
Overview of Operating Modes  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
The Mode field of the front panel display indicates to the user which operating mode the  
unit is currently running.  
In addition to SAMPLE and SETUP, other modes available are presented in Table 4-1.  
Table 4-1:Analyzer Operating Modes  
MODE  
DIAG  
EXPLANATION  
One of the analyzer’s diagnostic modes is active (refer to Section 5.9).  
LO CAL A1  
Unit is performing LOW SPAN (midpoint) calibration initiated automatically by the analyzer’s  
AUTOCAL feature  
LO CAL R1  
Unit is performing LOW SPAN (midpoint) calibration initiated remotely through the COM ports or  
digital control inputs.  
M-P CAL1  
SAMPLE  
SAMPLE A  
SETUP  
This is the basic calibration mode of the instrument and is activated by pressing the CAL button.  
Sampling normally, flashing text indicates adaptive filter is on.  
Indicates that unit is in SAMPLE mode and AUTOCAL feature is activated.  
SETUP mode is being used to configure the analyzer. The gas measurement will continue during  
this process.  
SPAN CAL A2  
SPAN CAL M2  
SPAN CAL R2  
Unit is performing SPAN calibration initiated automatically by the analyzer’s AUTOCAL feature  
Unit is performing SPAN calibration initiated manually by the user.  
Unit is performing SPAN calibration initiated remotely through the COM ports or digital control  
inputs.  
ZERO CAL A2  
ZERO CAL M2  
ZERO CAL R2  
Unit is performing ZERO calibration procedure initiated automatically by the AUTOCAL feature  
Unit is performing ZERO calibration procedure initiated manually by the user.  
Unit is performing ZERO calibration procedure initiated remotely through the COM ports or digital  
control inputs.  
1 Other calibration procedures under CAL mode are described separately in Section 9.  
2 Only Appears on units with Z/S valve or IZS options..  
4.1. SAMPLE MODE  
This is the analyzer’s standard operating mode. In this mode, the instrument is analyzing  
SO2 and calculating concentrations.  
4.1.1. TEST FUNCTIONS  
A series of test functions is available at the front panel while the analyzer is in  
SAMPLE mode. These parameters provide information about the present operating  
status of the instrument and are useful during troubleshooting (refer to Section 12.1.2).  
They can also be recorded in one of the DAS channels (refer to Section 0) for data  
analysis. To view the test functions, press one of the <TST TST> buttons repeatedly in  
either direction.  
82  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Overview of Operating Modes  
Table 4-2:Test Functions Defined  
DISPLAY  
RANGE  
PARAMETER  
UNITS  
DESCRIPTION  
The Full Scale limit at which the reporting range of the analyzer’s  
RANGE  
- -  
PPB, PPM,  
UGM & MGM ANALOG OUTPUTS is currently set.  
RANGE1  
RANGE2  
THIS IS NOT the Physical Range of the instrument. Refer to Section  
5.4 for more information.  
If DUAL or AUTO Range modes have been selected, two RANGE  
functions will appear, one for each range.  
STABIL  
PRES  
STABILITY  
mV  
Standard deviation of SO2 Concentration readings. Data points are  
recorded every ten seconds. The calculation uses the last 25 data  
points.  
SAMPLE  
PRESSURE  
The current pressure of the sample gas as it enters the sample  
chamber, measured between the SO2 and Auto-Zero valves.  
in-Hg-A  
cm³/min  
(cc/m)  
The flow rate of the sample gas through the sample chamber. This  
value is not measured but calculated from the sample pressure.  
SAMP FL  
PMT  
SAMPLE FLOW  
PMT Signal  
mV  
The raw output voltage of the PMT.  
NORMALIZED  
PMT Signal  
The output voltage of the PMT after normalization for offset and  
temperature/pressure compensation (if activated).  
NORM PMT  
mV  
Source UV Lamp  
Intensity  
UV LAMP  
mV  
%
The output voltage of the UV reference detector.  
The current output of the UV reference detector divided by the reading  
stored in the CPU’s memory from the last time a UV Lamp calibration  
was performed.  
LAMP  
RATIO  
UV Source lamp  
ratio  
The offset due to stray light recorded by the CPU during the last zero-  
point calibration performed.  
STR. LGT  
DRK PMT  
Stray Light  
Dark PMT  
ppb  
mV  
The PMT output reading recorded the last time the UV source lamp  
shutter was closed.  
Dark UV Source  
Lamp  
The UV reference detector output reading recorded the last time the  
UV source lamp shutter was closed.  
DRK LMP  
SLOPE  
mV  
-
SO2  
measurement  
Slope  
The sensitivity of the instrument as calculated during the last  
calibration activity. The slope parameter is used to set the span  
calibration point of the analyzer.  
OFFSET  
SO2  
measurement  
Offset  
mV  
The overall offset of the instrument as calculated during the last  
calibration activity. The offset parameter is used to set the zero point  
of the analyzer response.  
HVPS  
HVPS  
V
The PMT high voltage power supply.  
RCELL  
TEMP  
SAMPLE  
CHAMBER TEMP  
°C  
The current temperature of the sample chamber.  
BOX  
TEMPERATURE  
BOX TEMP  
PMT TEMP  
IZS TEMP1  
°C  
°C  
°C  
The ambient temperature of the inside of the analyzer case.  
The current temperature of the PMT.  
PMT  
TEMPERATURE  
IZS  
The current temperature of the internal zero/span option. Only  
appears when IZS option is enabled.  
TEMPERATURE1  
TEST2  
TIME  
TEST SIGNAL2  
mV  
Signal of a user-defined test function on output channel A4.  
The current day time for DAS records and calibration events.  
CLOCK TIME  
hh:mm:ss  
1
Only appears if Internal Gas Span Generator option is installed.  
2 Only appears if analog output A3 is actively reporting a test function.  
83  
06807C DCN6650  
 
Overview of Operating Modes  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To view the TEST Functions press the following button sequence:  
Figure 4-2: Viewing T100 TEST Functions  
IMPORTANT  
IMPACT ON READINGS OR DATA  
A value of “XXXX” displayed for any of the TEST functions indicates an  
out-of-range reading or the analyzer’s inability to calculate it. All  
pressure measurements are represented in terms of absolute pressure.  
Absolute, atmospheric pressure is 29.92 in-Hg-A at sea level. It  
decreases about 1 in-Hg per 300 m gain in altitude. A variety of factors  
such as air conditioning and passing storms can cause changes in the  
absolute atmospheric pressure.  
84  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Overview of Operating Modes  
4.1.2. WARNING MESSAGES  
The most common instrument failures will be reported as a warning on the analyzer’s  
front panel and through the COMM ports. Section 12.1.1 explains how to use these  
messages to troubleshoot problems. Section 12.1.3 shows how to view and clear  
warning messages. Table 4-3 lists all warning messages for the current version of  
software.  
Table 4-3:List of Warning Messages  
MESSAGE  
MEANING  
ANALOG CAL WARNING  
BOX TEMP WARNING  
CANNOT DYN SPAN  
CANNOT DYN ZERO  
CONFIG INITIALIZED  
DARK CAL WARNING  
The instrument's A/D circuitry or one of its analog outputs is not calibrated.  
The temperature inside the T100 chassis is outside the specified limits.  
Remote span calibration failed while the dynamic span feature was set to turned on  
Remote zero calibration failed while the dynamic zero feature was set to turned on  
Configuration was reset to factory defaults or was erased.  
Dark offset above limit specified indicating that too much stray light is present in the  
sample chamber.  
DATA INITIALIZED  
HVPS WARNING  
IZS TEMP WARNING  
DAS data storage was erased.  
High voltage power supply for the PMT is outside of specified limits.  
On units with IZS options installed: The permeation tube temperature is outside of  
specified limits.  
PMT DET WARNING  
PMT detector output outside of operational limits.  
PMT TEMP WARNING  
RCELL TEMP WARNING  
REAR BOARD NOT DET  
RELAY BOARD WARN  
SAMPLE FLOW WARN  
SAMPLE PRESS WARN  
SYSTEM RESET  
PMT temperature is outside of specified limits.  
Sample chamber temperature is outside of specified limits.  
The CPU is unable to communicate with the motherboard.  
The firmware is unable to communicate with the relay board.  
The flow rate of the sample gas is outside the specified limits.  
Sample pressure outside of operational parameters.  
The computer was rebooted.  
UV LAMP WARNING  
The UV lamp intensity measured by the reference detector reading too low or too  
high  
To view and clear warning messages, press:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
TEST ignores warning messages  
TEST  
CAL  
MSG  
CLR SETUP  
MSG activates warning  
SAMPLE  
RANGE=500.000 PPM  
MSG  
SO2=XXX.X  
messages.  
<TST TST> buttons replaced with  
< TST TST > CAL  
CLR SETUP  
TEST button  
SAMPLE  
HVPS WARNING  
SO2=XXX.X  
Press CLR to clear the current  
message.  
TEST  
CAL  
MSG  
CLR SETUP  
NOTE:  
If more than one warning is active, the  
next message will take its place  
If the warning message persists  
after several attempts to clear it,  
the message may indicate a real  
problem and not an artifact of the  
warm-up period.  
Once the last warning has been  
cleared, the analyzer returns to  
SAMPLE mode.  
Make sure warning messages are  
not due to real problems.  
Figure 4-3: Viewing and Clearing T100 WARNING Messages  
85  
06807C DCN6650  
     
Overview of Operating Modes  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
4.2. CALIBRATION MODE  
Pressing the CAL button switches the analyzer into calibration mode. In this mode, the  
user can calibrate the instrument with the use of calibrated zero or span gases.  
If the instrument includes either the zero/span valve option or IZS option, the display  
will also include CALZ and CALS buttons. Pressing either of these buttons also puts  
the instrument into multipoint calibration mode.  
The CALZ button is used to initiate a calibration of the zero point.  
The CALS button is used to calibrate the span point of the analyzer. It is  
recommended that this span calibration is performed at 80% of full scale of the  
analyzer’s currently selected reporting range.  
Because of their critical importance and complexity, calibration operations are described  
in detail in other sections of the manual:  
Section 9 details basic calibration and calibration check operations.  
Section 10 describes how to perform an EPA protocol calibration.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
To avoid inadvertent adjustments to critical settings, activate calibration  
security by enabling password protection in the SETUP – PASS menu  
4.3. SETUP MODE  
The SETUP mode contains a variety of choices that are used to configure the analyzer’s  
hardware and software features, perform diagnostic procedures, gather information on  
the instrument’s performance and configure or access data from the internal data  
acquisition system (DAS). For a visual representation of the software menu trees, refer  
to Appendix A-1. Setup Mode is divided between Primary and Secondary Setup menus  
and can be protected through password security.  
4.3.1. PASSWORD SECURITY  
Setup Mode can be protected by password security through the SETUP>PASS menu  
(Section 5.5) to prevent unauthorized or inadvertent configuration adjustments.  
86  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Overview of Operating Modes  
4.3.2. PRIMARY SETUP MENU  
Table 4-4:Primary Setup Mode Features and Functions  
CONTROL  
MODE OR FEATURE  
BUTTON  
MANUAL  
SECTION  
DESCRIPTION  
Analyzer Configuration  
CFG  
Lists key hardware and software configuration information.  
Used to set up and operate the AutoCal feature.  
Auto Cal Feature  
ACAL  
Only appears if the analyzer has one of the internal valve  
options installed.  
Internal Data Acquisition  
(DAS)  
DAS  
Used to set up the DAS system and view recorded data.  
Analog Output Reporting  
Range Configuration  
Used to configure the output signals generated by the  
instrument’s Analog outputs.  
RNGE  
Calibration Password Security  
Internal Clock Configuration  
PASS  
CLK  
Turns the calibration password protection feature ON/OFF.  
Used to Set or adjust the instrument’s internal clock.  
See  
Advanced SETUP features  
MORE  
This button accesses the instruments secondary setup menu.  
4.3.3. SECONDARY SETUP MENU (SETUP>MORE)  
Table 4-5:Secondary Setup Mode Features and Functions  
MENU  
MANUAL  
SECTION  
MODE OR FEATURE  
DESCRIPTION  
ITEM  
Used to set up and operate the analyzer’s various external I/O  
channels including RS-232; RS 485, modem communication  
and/or Ethernet access.  
External Communication  
Channel Configuration  
COMM  
Used to view various variables related to the instrument’s current  
operational status  
System Status Variables  
VARS  
DIAG  
Used to access a variety of functions that are used to configure,  
test or diagnose problems with a variety of the analyzer’s basic  
systems  
System Diagnostic Features  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Any changes made to a variable during the SETUP procedures are not  
acknowledged by the instrument until the ENTR button is pressed. If the  
EXIT button is pressed before the ENTR button, the analyzer will beep,  
alerting the user that the newly entered value has not been accepted.  
87  
06807C DCN6650  
       
Overview of Operating Modes  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
88  
06807C DCN6650  
5. SETUP MENU  
The SETUP menu is used to set instrument parameters for performing configuration,  
calibration, reporting and diagnostics operations according to user needs.  
5.1. SETUP – CFG: CONFIGURATION INFORMATION  
Pressing the CFG button displays the instrument configuration information. This display  
lists the analyzer model, serial number, firmware revision, software library revision,  
CPU type and other information. Use this information to identify the software and  
hardware when contacting Technical Support. Special instrument or software features or  
installed options may also be listed here.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
Press NEXT of PREV to move back  
and forth through the following list  
of Configuration information:  
MODEL NAME  
SAMPLE  
PRIMARY SETUP MENU  
Press EXIT at  
any time to  
return to the  
SERIAL NUMBER  
SOFTWARE REVISION  
LIBRARY REVISION  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SAMPLE display  
iCHIP SOFTWARE REVISION1  
HESSEN PROTOCOL REVISION1  
ACTIVE SPECIAL SOFTWARE  
OPTIONS1  
SAMPLE  
T100 SO2 ANALYZER  
Press EXIT at  
any time to  
return to  
CPU TYPE  
DATE FACTORY CONFIGURATION  
SAVED  
NEXT PREV  
EXIT  
SETUP menu  
1Only appears if relevant option of Feature is active.  
Figure 5-1: SETUP – Configuration Information  
5.2. SETUP – ACAL: AUTOMATIC CALIBRATION OPTION  
The menu button for this option appears only when the instrument has the zero span  
and/or IZS options. See Section 9.8 for details.  
89  
06807C DCN6650  
       
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.3. SETUP – DAS: INTERNAL DATA ACQUISITION SYSTEM  
Use the SETUP>DAS menu to capture and record data. Refer to Section 0 for  
configuration and operation details.  
5.4. SETUP – RNGE: ANALOG OUTPUT REPORTING RANGE  
CONFIGURATION  
Use the SETUP>RNGE menu to configure output reporting ranges, including scaled  
reporting ranges to handle data resolution challenges. This section describes  
configuration for Single, Dual, and Auto Range modes.  
5.4.1. AVAILABLE ANALOG OUTPUT SIGNALS  
The analyzer has three active analog output signals, accessible through a connector on  
the rear panel.  
ANALOG OUT  
SO2 concentration  
Test output  
outputs  
(not used in  
standard  
configuration)  
A1  
A2  
A3  
A4  
+
-
+
-
+
-
+
-
LOW range when  
DUAL mode is selected  
HIGH range when  
DUAL mode is selected  
Figure 5-2: SETUP – Analog Output Connector  
All three outputs can be configured either at the factory or by the user for full scale  
outputs of 0.1 VDC, 1VDC, 5VDC or 10VDC. Additionally A1 and A2 may be  
equipped with optional 0-20 mA DC current loop drivers and configured for any current  
output within that range (e.g. 0-20, 2-20, 4-20, etc.). The user may also adjust the signal  
level and scaling of the actual output voltage or current to match the input requirements  
of the recorder or data logger (Refer to Section 6.9.4.3 and 6.9.4.5).  
In its basic configuration, the A1 and A2 channels of the T100 output a signal that is  
proportional to the SO2 concentration of the sample gas. Several operating modes are  
available which allow:  
Single range mode (SNGL Mode, refer to Section 6.7.4): Both outputs are slaved  
together and will represent the same concentration span (e.g. 0-50 ppm); however  
their electronic signal levels may be configured for different ranges (e.g. 0-10 VDC  
vs. 0-.1 VDC – Refer to Section 6.9.4).  
Dual range mode(DUAL mode, refer to Section 6.7.5): The two outputs can to  
configured for separate and independent units of measure and measurement spans as  
well as separate electronic signal levels.  
90  
06807C DCN6650  
       
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
Auto range mode (AUTO mode, refer to Section 6.7.6) gives the analyzer the ability  
to automatically switch the A1 and A2 analog outputs between two ranges (low and  
high) dynamically as the concentration value fluctuates.  
EXAMPLE:  
A1 OUTPUT: Output Signal = 0-5 VDC representing 0-1000 ppm concentration values  
A2 OUTPUT: Output Signal = 0 – 10 VDC representing 0-500 ppm concentration values.  
A3 OUTPUT: Test channel; e.g., PMT signal = 0-5V  
Output A4 is not available on the T100 Analyzer in standard configuration.  
5.4.2. PHYSICAL RANGE VERSUS ANALOG OUTPUT REPORTING  
RANGES  
The entire measurement range of the T100 is 0 – 20,000 ppb, but many applications use  
only a small part of the analyzer’s full measurement range. This creates two  
performance challenges:  
The width of the T100’s physical range can create data resolution problems for most  
analog recording devices. For example, in an application where the expected  
concentration of SO2 is typically less than 500 ppb, the full scale of expected values is  
only 0.25% of the instrument’s full 20,000 ppb measurement range. Unmodified, the  
corresponding output signal would also be recorded across only 0.25% of the range of  
the recording device.  
The T100 solves this problem by allowing the user to select a scaled reporting range for  
the analog outputs that only includes that portion of the physical range relevant to the  
specific application. Only the reporting range of the analog outputs is scaled, the  
physical range of the analyzer and the readings displayed on the front panel remain  
unaltered.  
Applications where low concentrations of SO2 are measured require greater sensitivity  
and resolution than typically necessary for measurements of higher concentrations.  
The T100 solves this issue by using two hardware physical ranges that cover the  
instrument’s entire 0 and 20,000 ppb measurement range: a 0 to 2,000 ppb physical  
range for increased sensitivity and resolution when measuring very low SO2  
concentrations, and a 0 to 20,000 ppb physical range for measuring higher SO2  
concentrations. The analyzer’s software automatically selects which physical range is in  
effect based on the analog output reporting range selected by the user.  
If the high end of the selected reporting range is 2,000 ppb. The low physical range is  
selected.  
If the high end of the selected reporting range is 2,001 ppb. The high physical range  
is selected.  
Once properly calibrated, the analyzer’s front panel display will accurately report  
concentrations along the entire span of its 0 and 20,000 ppb physical range regardless of  
which reporting range has been selected for the analog outputs and which physical range  
is being used by the instrument’s software.  
91  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.4.3. REPORTING RANGE MODES: SINGLE, DUAL, AUTO RANGES  
The T100 provides three analog output range modes to choose from:  
Single range (SNGL) mode sets a single maximum range for the analog output. If  
single range is selected (refer to Section 5.4.3.1) both outputs are slaved together  
and will represent the same measurement span (e.g. 0-50 ppm), however their  
electronic signal levels may be configured for different ranges (e.g. 0-10 VDC vs. 0-  
.1 VDC – Refer to Section 5.9.3.1).  
Dual range (DUAL) allows the A1 and A2 outputs to be configured with different  
measurement spans (refer to Section 5.4.3.2).  
Auto range (AUTO) mode gives the analyzer to ability to output data via a low  
range and high range. When this mode is selected (refer to Section 5.4.3.3) the T100  
will automatically switch between the two ranges dynamically as the concentration  
value fluctuates.  
Also, in this mode the RANGE Test function displayed on the front panel during  
SAMPLE mode will be replaced by two separate functions, Range1 and Range2.  
Range status is also output via the External Digital I/O Status Bits (refer to Section  
To select the Analog Output Range Type press:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
RANGE CONTROL MENU  
SETUP X.X  
CFG DAS RNGE PASS CLK MORE  
MODE SET UNIT  
EXIT  
EXIT  
SETUP X.X  
RANGE MODE: SNGL  
EXIT Returns  
to the Main  
SAMPLE Display  
SNGL DUAL AUTO  
ENTR EXIT  
Only one of the  
range modes may  
be active at any  
time.  
Go To  
Section  
6.7.4  
Go To  
Section  
6.7.5  
Go To  
Section  
6.7.6  
Figure 5-3: SETUP RNGE – Reporting Range Mode  
92  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.4.3.1. SINGLE RANGE MODE (SNGL)  
The default range mode for the analyzer is single range, in which all analog  
concentration outputs are set to the same reporting range. This reporting range can be set  
to any value between 0.1 ppb and 20,000 ppb.  
While the two outputs always have the same reporting range, the span and scaling of  
their electronic signals may also be configured for different differently (e.g., A1 = 0-10  
V; A2 = 0-0.1 V).  
To select SNGLE range mode and to set the upper limit of the range, press:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
RANGE MODE: SNGL  
SAMPLE  
ENTER SETUP PASS : 818  
SNGL IND AUTO  
ENTR EXIT  
8
1
8
ENTR EXIT  
SETUP X.X  
RANGE CONTROL MENU  
SETUP X.X  
PRIMARY SETUP MENU  
MODE SET UNIT  
EXIT  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
RANGE CONTROL MENU  
SETUP X.X  
RANGE: 500.0 Conc  
MODE SET UNIT  
EXIT  
0
0
5
0
0
.0  
ENTR EXIT  
SETUP X.X  
RANGE MODE: SNGL  
SETUP X.X  
MODE SET UNIT  
RANGE CONTROL MENU  
EXIT x 2 returns  
to the main  
SAMPLE display  
SNGL IND AUTO  
ENTR EXIT  
EXIT  
Figure 5-4: SETUP RNGE – Single Range Mode  
93  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.4.3.2. DUAL RANGE MODE (DUAL)  
Selecting Dual Range mode allows the A1 and A2 outputs to be configured with  
different reporting ranges. The analyzer software calls these two ranges low and high.  
The Low range setting corresponds with the analog output labeled A1 on the rear panel  
of the instrument. The high range setting corresponds with the A2 output. While the  
software names these two ranges low and high, they do not have to be configured that  
way. For example: the low range can be set for a span of 0-150 ppb while the high range  
is set for 0-50 ppb.  
In DUAL range mode the RANGE test function displayed on the front panel will be  
replaced by two separate functions:  
range1: The range setting for the A1 output.  
range2: The range setting for the A2 output.  
To set the ranges press following control button sequence  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP X.X  
RANGE MODE: DUAL  
< TST TST > CAL  
SETUP  
SNGL DUAL AUTO  
ENTR EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
SETUP X.X  
RANGE CONTROL MENU  
8
1
8
ENTR EXIT  
MODE SET UNIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
SETUP X.X  
LOW RANGE: 500.0 Conc  
.0 ENTR EXIT  
Toggle the  
numeral buttons  
to set the upper  
limit of each  
range.  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
0
0
1
0
0
SETUP X.X  
RANGE CONTROL MENU  
SETUP X.X  
HIGH RANGE: 500.0 Conc  
.0 ENTR EXIT  
MODE SET UNIT  
0
0
5
0
0
SETUP X.X  
RANGE MODE: SNGL  
SETUP X.X  
RANGE CONTROL MENU  
EXIT Returns  
to the Main  
SNGL DUAL AUTO  
ENTR EXIT  
MODE SET UNIT  
EXIT  
SAMPLE Display  
.
Figure 5-5: SETUP RNGE – Dual Range Mode  
IMPORTANT  
IMPACT ON READINGS OR DATA  
In DUAL range mode the LOW and HIGH ranges have separate slopes  
and offsets for computing SO2 concentration. The two ranges must be  
independently calibrated.  
94  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.4.3.3. AUTO RANGE MODE (AUTO)  
In AUTO range mode, the analyzer automatically switches the reporting range between  
two user-defined ranges (low and high). The unit will switch from low range to high  
range when either the SO2 concentration exceeds 98% of the low range span. The unit  
will return from high range back to low range once both the SO2 concentration falls  
below 75% of the low range span.  
In AUTO Range mode the instrument reports the same data in the same range on both  
the A1 and A2 outputs and automatically switches both outputs between ranges as  
described above. Also, the RANGE test function displayed on the front panel will be  
replaced by two separate functions:  
RANGE1: The LOW range setting for all analog outputs.  
RANGE2: The HIGH range setting for all analog outputs.  
The high/low range status is also reported through the external, digital status bits (refer  
to Section 8.1.1).  
To set individual ranges press the following control button sequence.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP X.X  
RANGE MODE: AUTO  
< TST TST > CAL  
SETUP  
SNGL IND AUTO  
ENTR EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
RANGE CONTROL MENU  
EXIT x 2 returns  
to the main  
SAMPLE display  
MODE SET UNIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
LOW RANGE: 500.0 Conc  
Toggle the numeral  
buttons to set the  
LOW and HIGH  
range value.  
ENTR accepts the  
new setting, EXIT  
ignores the new  
setting.  
SETUP X.X  
RANGE CONTROL MENU  
0
0
5
5
0
0
.0  
ENTR EXIT  
MODE SET UNIT  
SETUP X.X  
RANGE MODE: SNGL  
SETUP X.X  
HIGH RANGE: 500.0 Conc  
.0 ENTR EXIT  
SNGL IND AUTO  
ENTR EXIT  
0
0
0
0
Figure 5-6: SETUP RNGE – Auto Range Mode  
IMPORTANT  
IMPACT ON READINGS OR DATA  
In AUTO range mode, the LOW and HIGH ranges have separate slopes  
and offsets for computing SO2 concentration. The two ranges must be  
independently calibrated.  
95  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.4.4. RANGE UNITS  
The T100 can display concentrations in parts per billion (109 mols per mol, PPB), parts  
per million (106 mols per mol, PPM), micrograms per cubic meter (µg/m3, UGM) or  
milligrams per cubic meter (mg/m3, MGM). Changing units affects all of the display,  
analog outputs, COM port and DAS values for all reporting ranges regardless of the  
analyzer’s range mode.  
To change the concentration units:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
EXIT returns  
to the main menu.  
SETUP X.X  
RANGE CONTROL MENU  
MODE SET UNIT  
SETUP X.X  
CONC UNITS: PPB  
Select the preferred  
concentration unit.  
PPM PPB UGM MGM  
ENTER EXIT  
ENTR accepts  
the new unit,  
EXIT returns  
to the SETUP  
menu.  
SETUP X.X  
CONC UNITS: PPM  
PPM PPB UGM MGM  
ENTER EXIT  
Figure 5-7: SETUP RNGE – Concentration Units Selection  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Concentrations displayed in mg/m3 and µg/m3 use 0°C and 760 Torr as  
standard temperature and pressure (STP). Consult your local regulations  
for the STP used by your agency. See Section 5.4.4.1 for converting  
volumetric to mass units  
96  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.4.4.1. CONVERTING MICROGRAMS PER CUBIC METER TO PARTS PER MILLION  
The conversion between micrograms per cubic meter and parts per million is based on  
standard conditions (0oC and 101.325 kPa) where one mole of an ideal gas occupies  
22.414 L. Thus, converting the mass of the pollutant Mp in grams to its equivalent  
volume Vp in liters at standard temperature and pressure (STP) takes the following  
equation:  
Vp = [(Mp)/(MW)] x 22.414 L.mol-1  
Where MW is the molecular weight of the pollutant in units of grams per mole. For  
readings made at temperatures and pressures other than standard conditions, the standard  
volume, 22.414 L.mol-1, must be corrected. The ideal gas law to make the correction can  
be used:  
(22.414 L.mol-1) x [(T2)/(273 K)] x [(101.325 kPa)/(P2)]  
Where T2 and P2 are the absolute temperature (in Kelvin) and absolute pressure (in  
kilopascals) at which the readings were made. Because parts per million is a volume  
ratio, it can be written as:  
ppm = (Vp)/(Va + Vp)  
where Va is the volume of the air in cubic meters at the temperature and pressure at  
which the measurement was taken. Then combine equations to yield:  
ppm = {[(Mp)/(MW)] x (22.414 L.mol-1) x [(T2)/(273 K)] x [(101.325 kPa)/(P2)]}  
-------------------------------------------------------------------------------------------  
(Va) x (1000 L.m-3)  
where Mp is the mass of the pollutant of interest in micrograms. The factors converting  
micrograms to grams and liters to millions of liters cancel one another. Unless  
otherwise stated, it is assumed that Va = 1.00 m3  
Example:  
A 1-m3 sample of air was found to contain 80 µg.m-3 of SO2. The temperature and  
o
pressure were 25.0 C and 103.193 kPa when the air sample was taken. What was the  
SO2 concentration in parts per million?  
Solution:  
First, determine the MW of SO2:  
MW of SO2 = 32.06 + 2(15.9994) = 64.06 g.mol-1  
Next, convert the temperature from Celsius to Kelvin:  
25oC + 273 K = 298 K  
Using the equation derived above, Concentration is:  
{[(80 µg)/(64.06 g.mol-1)] x (22.414 L.mol-1) x [(298 K)/(273 K)] x [(101.325 kPa)/(103.193 kPa)]} / [(1 m3) x (1000 L.m3)]  
= 0.030 ppm of SO2  
97  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.4.5. DILUTION RATIO (OPTION)  
The dilution ratio is a software option that allows the user to compensate for any dilution  
of the sample gas before it enters the sample inlet. Once the degree of dilution is known,  
add an appropriate scaling factor to the analyzer’s SO2 concentration calculation so that  
the measurement range and concentration values reflect the undiluted values when  
shown on the instrument’s front panel display screen and reported via the analog and  
serial outputs.  
Using the dilution ratio option is a 4-step process:  
1. Select reporting range units: Follow the procedure in Section 5.4.4  
2. Select the range: Use the procedures in Section 5.4. Ensure that the SPAN value  
entered is the maximum expected concentration of the undiluted calibration gas and  
that the span gas is either supplied through the same dilution inlet system as the  
sample gas or has an appropriately lower actual concentration. For example, with a  
dilution set to 100, a 1 ppm gas can be used to calibrate a 100 ppm sample gas if  
the span gas is not routed through the dilution system. On the other hand, if a 100  
ppm span gas is used, it needs to pass through the same dilution steps as the  
sample gas.  
3. Set the dilution factor as a gain (e.g., a value of 20 means 20 parts diluent and 1  
part of sample gas):  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP  
RANGE CONTROL MENU  
DIL only appears  
if the dilution ratio  
option has been  
installed  
MODE SET UNIT DIL  
EXIT  
EXIT ignores the  
new setting.  
SETUP  
DIL FACTOR: 1.0 GAIN  
.0 ENTR  
ENTR accepts the  
Toggle to set the dilution factor.  
new setting.  
0
0
0
1
EXIT  
This is the number by which the  
analyzer will multiply the SO2  
concentrations of the gas passing  
through the reaction cell.  
SETUP  
DIL FACTOR: 20.0 GAIN  
.0 ENTR  
0
0
2
0
EXIT  
Figure 5-8: SETUP RNGE – Dilution Ratio  
98  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
The analyzer multiplies the measured gas concentrations with this dilution factor and  
displays the result.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Once the above settings have been entered, the instrument needs to be  
recalibrated using one of the methods discussed in Section 9.  
5.5. SETUP – PASS: PASSWORD PROTECTION  
The menu system provides password protection of the calibration and setup functions to  
prevent unauthorized adjustments. When the passwords have been enabled in the PASS  
menu item, the system will prompt the user for a password anytime a password-  
protected function (e.g., SETUP) is selected. This allows normal operation of the  
instrument, but requires the password (101) to access to the menus under SETUP. When  
PASSWORD is disabled (SETUP>OFF), any operator can enter the Primary Setup  
(SETUP) and Secondary Setup (SETUP>MORE) menus. Whether PASSWORD is  
enabled or disabled, a password (default 818) is required to enter the VARS or DIAG  
menus in the SETUP>MORE menu.  
Table 5-1:Password Levels  
PASSWORD  
LEVEL  
MENU ACCESS ALLOWED  
Null (000)  
Operation  
All functions of the main menu (top level, or Primary, menu)  
Access to Primary and Secondary SETUP Menus when PASSWORD is  
enabled  
Configuration/Maintenance  
101  
818  
Configuration/Maintenance Access to Secondary SETUP Submenus VARS and DIAG whether  
PASSWORD is enabled or disabled.  
99  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To enable or disable passwords, press:  
SAMPLE  
RANGE = 500.0 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
ENTR accepts  
displayed  
SAMPLE  
ENTER SETUP PASS : 818  
password value  
8
1
8
ENTR EXIT  
EXIT returns to  
SAMPLE display  
SETUP  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP  
PASSWORD ENABLE: OFF  
ENTR EXIT  
PASSWORD  
default state is  
OFF  
Toggles  
password  
status On/Off  
OFF  
SETUP  
PASSWORD ENABLE: ON  
ON  
ENTR EXIT  
EXIT ignores the  
change.  
ENTR accepts the  
SETUP  
ON  
PASSWORD ENABLE: ON  
change.  
Once Password is  
enabled, exit back  
out to the main  
menu for this feature  
to take effect.  
ENTR EXIT  
Figure 5-9: SETUP – Enable Password Security  
If the password feature is enabled, then when entering either Calibration or Setup Mode,  
the default password displayed will be 000, and the new password must be input.  
Example follows for Calibration Mode:  
100  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
SAMPLE  
RANGE = 500.0 PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
SAMPLE  
ENTER SETUP PASS : 0  
0
Prompts  
password  
number  
0
0
0
ENTR EXIT  
ENTR EXIT  
SAMPLE  
ENTER SETUP PASS : 0  
1
Press  
individual  
buttons to set  
1
101  
M-P CAL  
RANGE = 500.0 PPB  
SO2 =XXX.X  
EXIT  
< TST TST > ZERO  
CONC  
Continue calibration process …  
Figure 5-10:  
SETUP – Enter Calibration Mode Using Password  
101  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.6. SETUP – CLK: SETTING THE INTERNAL TIME-OF-DAY  
CLOCK  
The T100 has a built-in clock for the AutoCal timer, Time TEST functions, and time  
stamps on COM port messages and DAS data entries. To set the time-of-day, press:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
TIME-OF-DAY CLOCK  
Enter Current  
Time-of-Day  
Enter Current  
Date-of-Year  
TIME DATE  
EXIT  
SETUP X.X  
DATE: 01-JAN-02  
SETUP X.X  
TIME: 12:00  
0
1
JAN  
0
2
ENTR EXIT  
1
2
: 0  
0
ENTR EXIT  
SETUP X.X  
JAN  
DATE: 01-JAN-02  
SETUP X.X3  
TIME: 12:00  
0
1
0
2
ENTR EXIT  
1
2
: 0  
0
ENTR EXIT  
SETUP X.X  
TIME-OF-DAY CLOCK  
TIME DATE  
SETUP X.X  
EXIT  
EXIT returns  
to the main  
SAMPLE display  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
Figure 5-11:  
SETUP – Clock  
In order to compensate for CPU clocks, which may run fast or slow, there is a variable  
to speed up or slow down the clock by a fixed amount every day. To change this  
variable, press:  
102  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUPX.X  
0 ) DAS_HOLD_OFF=15.0 Minutes  
EDIT PRNT EXIT  
< TST TST > CAL  
SETUP  
PREV NEXT JUMP  
SAMPLE  
ENTER SETUP PASS: 818  
Continue to press NEXT until …  
8
1
8
ENTR EXIT  
SETUP X.X  
7) CLOCK_ADJ=0 Sec/Day  
JUMP EDIT PRNT EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
PREV  
SETUP X.X  
CLOCK_ADJ:0 Sec/Day  
ENTR EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
+
0
0
COMM VARS DIAG  
EXIT  
Enter sign and number of seconds per  
day the clock gains (-) or loses (+).  
SAMPLE  
ENTER SETUP PASS: 818  
SETUP X.X  
8) CLOCK_ADJ=0 Sec/Day  
EDIT PRNT EXIT  
8
1
8
ENTR EXIT  
PREV NEXT JUMP  
3x EXIT returns  
to the main SAMPLE display  
Figure 5-12:  
SETUP – Clock Speed Variable  
103  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.7. SETUP – COMM: COMMUNICATIONS PORTS  
This section introduces the communications setup menu; Section 6 provides the setup  
instructions and operation information. Press SETUP>ENTR>MORE>COMM to arrive  
at the communications menu.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
If the default password 818  
is replaced by 000, then  
Password Protection has  
been enabled. Refer to  
SETUP: PASS.  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
COM1 COM2  
Figure 5-13:  
SETUP – COMM Menu  
5.7.1. ID (INSTRUMENT IDENTIFICATION)  
Press ID to display and/or change the Machine ID, which must be changed to a unique  
identifier (number) when more than one instrument of the same model is used in a  
multidrop configuration (0) or when applying MODBUS protocol (Section 6.6.1). The  
default ID is the same as the model number; for the Model T100, the ID is 0100. Press  
any button(s) in the MACHINE ID menu (Figure 5-14) until the Machine ID Parameter  
field displays the desired identifier.  
104  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
SETUP X.X  
COMMUNICATIONS MENU  
ID INET COM1 COM2  
Toggle to cycle  
through the available  
character set: 0-9  
ENTR accepts the new  
SETUP X.  
MACHINE ID: 100 ID  
settings  
EXIT ignores the new  
0
1
0
0
ENTR EXIT  
settings  
Figure 5-14:  
COMM – Machine ID  
The ID can be any 4-digit number and can also be used to identify analyzers in any  
number of ways (e.g. location numbers, company asset number, etc.)  
5.7.2. INET (ETHERNET)  
Use SETUP>COMM>INET to configure Ethernet communications, whether manually  
or via DHCP. Please see Section 6.5 for configuration details.  
5.7.3. COM1 AND COM2 (MODE, BAUD RATE AND TEST PORT)  
Use the SETUP>COMM>COM1[COM2] menus to:  
configure communication modes (Section 6.2.1)  
view/set the baud rate (Section 6.2.2)  
test the connections of the com ports (Section 6.2.3).  
Configuring COM1 or COM2 requires setting the DCE DTE switch on the rear panel.  
Section 6.1 provides DCE DTE information.  
105  
06807C DCN6650  
     
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.8. SETUP – VARS: VARIABLES SETUP AND DEFINITION  
Through the SETUP>MORE>VARS menu there are several-user adjustable software  
variables that define certain operational parameters. Usually, these variables are  
automatically set by the instrument’s firmware, but can be manually re-defined using the  
VARS menu. Table 5-2 lists all variables that are available within the 818 password  
protected level.  
Table 5-2:Variable Names (VARS) Revision 1.0.3  
DESCRIPTION  
ALLOWED VALUES  
VARIABLE  
NO.  
Changes the internal data acquisition system (DAS) hold-off time,  
which is the duration when data are not stored in the DAS because  
the software considers the data to be questionable. That is the  
case during warm-up or just after the instrument returns from one  
of its calibration modes to SAMPLE mode. DAS_HOLD_OFF can  
be disabled entirely in each DAS channel.  
Can be between 0.5  
and 20 minutes  
DAS_HOLD_OFF  
0
Default=15 min.  
Enables or disables the temperature and pressure compensation  
(TPC) feature (refer to Section 13.7.3).  
ON/OFF  
TPC_ENABLE  
RCELL_SET  
1
2
Sets the sample chamber temperature. Increasing or decreasing  
this temperature will increase or decrease the rate at which SO2*  
decays into SO2 (refer to Section 13.1.1).  
30º C - 70º C  
Default= 50º C  
Do not adjust this setting unless under the direction of Teledyne  
API Technical Support personnel.  
Sets the IZS option temperature. Increasing or decreasing this  
temperature will increase or decrease the permeation rate of the  
IZS source (refer to Sections 3.3.2.4, 9.5, 9.6).  
30º C - 70º C  
Default= 50º C  
IZS_SET  
3
4
Dynamic zero automatically adjusts offset and slope of the SO2  
response when performing a zero point calibration during an  
AutoCal (refer to Section 9).  
ON/OFF  
ON/OFF  
DYN_ZERO  
Dynamic span automatically adjusts slope and slope of the SO2  
response when performing a zero point calibration during an  
AutoCal (refer to Section 9).  
DYN_SPAN  
5
Note that the DYN_ZERO and DYN_SPAN features are not  
allowed for applications requiring EPA equivalency.  
Allows the user to set the number of significant digits to the right of  
the decimal point display of concentration and stability values.  
AUTO, 1, 2, 3, 4  
Default=AUTO  
CONC_PRECISION  
CLOCK_ADJ  
6
7
Adjusts the speed of the analyzer’s clock. Choose the + sign if the  
clock is too slow, choose the - sign if the clock is too fast.  
-60 to +60 s/day  
ON resets the service interval timer. Returns to OFF upon reset.  
Number of hours since last service.  
ON/OFF  
0-500000  
0-100000  
SERVICE_CLEAR  
TIME_SINCE_SVC  
SVC_INTERVAL  
8
9
Sets the intval between service reminders.  
10  
IMPORTANT  
IMPACT ON READINGS OR DATA  
There are more VARS available when using the password, 929, for  
configuration. Use caution when pressing any buttons while in this setup.  
Any changes made may alter the performance of the instrument or cause  
the instrument to not function properly. Note that if there is an accidental  
change to a setup parameter, press EXIT to discard the changes.  
106  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
To access and navigate the VARS menu, use the following button sequence.  
SAMPLE*  
RANGE = 500.000 PPB  
SO2 =X.XXX  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
EXIT ignores the new setting.  
SETUP X.X  
ENTER VARS PASS: 818  
ENTR accepts the new setting.  
8
1
8
ENTR EXIT  
SETUP X.X  
0 ) DAS_HOLD_OFF=15.0 Minutes  
SETUP X.X  
.0  
DAS_HOLD_OFF=15.0 Minutes  
ENTR EXIT  
Toggle to change setting  
NEXT JUMP  
EDIT PRNT EXIT  
1
5
SETUP X.X  
1 ) TPC_ENABLE=ON  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
TPC_ENABLE=ON  
ON  
ENTR EXIT  
Toggle to change setting  
SETUP X.X  
2)RCELL_SET=50.0 DegC  
PREV NEXT JUMP  
EDIT PRNT EXIT  
DO NOT change  
theses set-points  
unless  
specifically  
SETUP X.X  
3) IZS_SET=50.0 DegC  
instructed to by  
TAPI Customer  
Service.  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
4 ) DYN_ZERO=ON  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
DYN_ZERO=ON  
ON  
ENTR EXIT  
ENTR EXIT  
SETUP X.X  
5) DYN_SPAN=ON  
Toggle to change setting  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
DYN_SPAN=ON  
ON  
Toggle to change setting  
SETUP X.X  
6) CONC_PRECISION : 3  
SETUP X.X  
CONC_PRECUISION : 3  
ENTR EXIT  
PREV NEXT JUMP  
EDIT PRNT EXIT  
AUTO  
0
1
2
3
4
Toggle to change setting  
SETUP X.X  
7) CLOCK_ADJ=0 Sec/Day  
SETUP X.X  
CLOCK_ADJ=0 Sec/Day  
ENTR EXIT  
PREV NEXT JUMP  
EDIT PRNT EXIT  
+
0
0
Toggle to change setting  
Figure 5-15:  
SETUP – VARS Menu  
107  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9. SETUP – DIAG: DIAGNOSTICS FUNCTIONS  
The SETUP>MORE>DIAG menu provides a series of diagnostic functions whose  
parameters are dependent on firmware revision (refer to Menu Tree, A-5, in Appendix  
A). Table 5-3 describes the functions and provides a cross-reference to the details for  
each in the remainder of this section. These functions can be used as tools in a variety of  
troubleshooting and diagnostic procedures.  
Table 5-3: T100 Diagnostic (DIAG) Functions  
FRONT  
PANEL  
MODE  
DIAGNOSTIC FUNCTION AND MEANING  
SECTION  
INDICATOR  
SIGNAL I/O: Allows observation of all digital and analog  
signals in the instrument. Allows certain digital signals such as  
valves and heaters to be toggled ON and OFF.  
DIAG I/O  
ANALOG OUTPUT: When entered, the analyzer performs an  
analog output step test. This can be used to calibrate a chart  
recorder or to test the analog output accuracy.  
DIAG AOUT  
DIAG AIO  
ANALOG I/O CONFIGURATION: Analog input/output  
parameters are available for viewing and configuration.  
OPTIC TEST: When activated, the analyzer performs an optic  
test, which turns on an LED located inside the sensor module  
near the PMT (Fig. 10-15). This diagnostic tests the response  
of the PMT without having to supply span gas.  
DIAG OPTIC  
DIAG ELEC  
DIAG LAMP  
DIAG PCAL  
ELECTRICAL TEST: When activated, the analyzer performs  
an electric test, which generates a current intended to simulate  
the PMT output to verify the signal handling and conditioning of  
the PMT preamp board.  
LAMP CALIBRATION: The analyzer records the current  
voltage output of the UV source reference detector. This value  
is used by the CPU to calculate the lamp ration used in  
determining the SO2 concentration  
PRESSURE CALIBRATION: The analyzer records the current  
output of the sample gas pressure sensor. This value is used  
by the CPU to compensate the SO2 concentration when the  
TPC feature is enabled.  
FLOW CALIBRATION: This function is used to calibrate the  
gas flow output signals of sample gas and ozone supply.  
These settings are retained when exiting DIAG.  
DIAG FCAL  
DIAG TCHN  
TEST CHAN OUTPUT: Configures the A4 analog output  
channel.  
108  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
To access the DIAG functions press the following buttons:  
DIAG  
ANALOG I / O CONFIGURATION  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
PREV  
NEXT  
ENTR  
EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
DIAG  
OPTIC TEST  
EXIT returns  
to the main  
SAMPLE  
display  
8
1
8
ENTR EXIT  
PREV  
NEXT  
NEXT  
ENTR  
EXIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
EXIT returns  
to the PRIMARY  
SETUP MENU  
DIAG  
ELECTRICAL TEST  
ENTR  
CFG DAS RNGE PASS CLK MORE  
EXIT  
PREV  
From this point  
forward, EXIT returns  
to the  
SECONDARY  
SETUP MENU  
SETUP X.X  
SECONDARY SETUP MENU  
DIAG  
LAMP CALIBRATION  
ENTR  
COMM VARS DIAG  
EXIT  
PREV  
NEXT  
NEXT  
NEXT  
EXIT  
EXIT  
EXIT  
DIAG  
PRESSURE CALIBRATION  
SAMPLE  
ENTER SETUP PASS : 818  
If password  
protection is  
enabled, see  
PREV  
ENTR  
8
1
8
ENTR EXIT  
SETUP – PASS.  
DIAG  
FLOW CALIBRATION  
DIAG  
SIGNAL I / O  
PREV  
ENTR  
NEXT  
ENTR  
EXIT  
DIAG  
ANALOG OUTPUT  
DIAG  
TEST CHAN OUTPUT  
PREV  
NEXT  
ENTR  
EXIT  
PREV  
ENTR  
EXIT  
Figure 5-16:  
DIAG Menu  
109  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.1. SIGNAL I/O  
The signal I/O diagnostic mode allows a user to review and change the digital and  
analog input/output functions of the analyzer. Refer to Appendix A-4 for a complete list  
of the parameters available for review under this menu.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Any changes of signal I/O settings will remain in effect only until the  
signal I/O menu is exited. Exceptions are the ozone generator override  
and the flow sensor calibration, which remain as entered when exiting.  
Access the signal I/O test mode from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
Press NEXT & PREV to  
move between signal  
types.  
PREV NEXT JUMP  
ENTR EXIT  
Press JUMP to go  
directly to a specific  
signal  
DIAG I / O  
0) EXT_ZERO_CAL=OFF  
PREV NEXT JUMP  
PRNT EXIT  
See Appendix A-4 for  
a complete list of  
available SIGNALS  
EXAMPLE  
DIAG I / O  
JUMP TO: 12  
EXAMPLE:  
1
2
ENTR EXIT  
Enter 12 to Jump to  
12) ST_SYSTEM_OK=ON  
DIAG I / O  
12) ST_SYSTEM_OK = ON  
Exit to return  
to the  
DIAG menu  
PREV NEXT JUMP  
ON PRNT EXIT  
Pressing the PRNT button will send a formatted  
printout to the serial port and can be captured  
with a computer or other output device.  
Toggle ON/(OFF) button to  
change status.  
Figure 5-17:  
DIAG – Signal I/O Menu  
110  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.2. ANALOG OUTPUT STEP TEST  
Analog Output is used as a step test to check the accuracy and proper operation of the  
analog outputs. The test forces all four analog output channels to produce signals  
ranging from 0% to 100% of the full scale range in 20% increments. This test is useful  
to verify the operation of the data logging/recording devices attached to the analyzer.  
Access the Analog Output Step Test from the DIAG Menu (refer to Figure 5-16), then  
press:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
DIAG  
SIGNAL I / O  
< TST TST > CAL  
SETUP  
NEXT  
ENTR EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
DIAG  
ANALOG OUTPUT  
8
1
8
ENTR EXIT  
PREV  
NEXT  
ENTR EXIT  
Performs  
analog output  
step test.  
DIAG AOUT  
0%  
ANALOG OUTPUT  
ANALOG OUTPUT  
SETUP X.X  
PRIMARY SETUP MENU  
0% - 100%  
EXIT  
CFG DAS RNGE PASS CLK MORE  
EXIT  
Exit-Exit  
returns to the  
DIAG AOUT  
SETUP X.X  
SECONDARY SETUP MENU  
DIAG menu  
[0%]  
EXIT  
COMM VARS DIAG  
EXIT  
Pressing the “0%” button while performing the test will  
pause the test at that level. Brackets will appear around  
the value: example: [20%] Pressing the same key again  
will resume the test.  
Figure 5-18:  
DIAG – Analog Output Menu  
111  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.3. ANALOG I/O CONFIGURATION  
Table 6-8 lists the analog I/O functions that are available in the T100.  
Table 5-4:DIAG - Analog I/O Functions  
SUB MENU  
FUNCTION  
AOUTS CALIBRATED: Shows the status of the analog output calibration (YES/NO) and initiates a calibration of all  
analog output channels.  
CONC_OUT_1  
Sets the basic electronic configuration of the A1 analog output (SO2). There are three options:  
RANGE: Selects the signal type (voltage or current loop) and full scale level of the  
output.  
REC_OFS: Allows setting a voltage offset (not available when RANGE is set to Current  
Loop (CURR).  
AUTO_CAL: Performs the same calibration as AOUT CALIBRATED, but on this one  
channel only.  
NOTE: Any change to RANGE or REC_OFS requires recalibration of this output.  
CONC_OUT_2  
TEST OUTPUT  
CONC_OUT_3  
Same as for CONC_OUT_1 but for analog channel 2 (SO2)  
Same as for CONC_OUT_1 but for analog channel 3 (TEST)  
(Not available in the analyzer’s standard configuration; applies when optional sensor installed).  
Shows the calibration status (YES/NO) and initiates a calibration of the analog input channels.  
AIN CALIBRATED  
XIN1  
.
For each of 8 external analog inputs channels, shows the gain, offset, engineering units, and  
whether the channel is to show up as a Test function.  
.
.
XIN8  
Table 5-5: Analog Output Voltage Ranges  
RANGE  
0-0.1 V  
0-1 V  
MINIMUM OUTPUT  
-5 mV  
MAXIMUM OUTPUT  
+105 mV  
-0.05 V  
+1.05 V  
0-5 V  
-0.25 V  
+5.25 V  
0-10 V  
-0.5 V  
+10.5 V  
The default offset for all ranges is 0 VDC.  
112  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
The following DC current output limits apply to the current loop modules:  
Table 5-6:Analog Output Current Loop Range  
RANGE  
MINIMUM OUTPUT  
0 mA  
MAXIMUM OUTPUT  
0-20 mA  
20 mA  
These are the physical limits of the current loop modules, typical applications use 2-20 or 4-20 mA for the lower  
and upper limits. Please specify desired range when ordering this option.  
The default offset for all ranges is 0 mA.  
ANALOG OUT  
A1  
A2  
A3  
A4  
+
-
+
-
+
-
+
-
Refer to Figure 3-4 for the location of the analog output connector on the instrument’s  
113  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.3.1. ANALOG OUTPUT SIGNAL TYPE AND RANGE SPAN SELECTION  
To select an output signal type (DC Voltage or current) and level for one output channel,  
activate the ANALOG I/O CONFIGURATION MENU from the DIAG Menu (refer  
to Figure 5-16), then press:  
DIAG  
ANALOG I / O CONFIGURATION  
PREV  
NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
Press SET> to select the  
analog output channel to be  
configured. Press EDIT to  
continue  
< SET SET> CAL  
DIAG AIO  
CONC_OUT_1:5V,OVR,CAL  
< SET SET> EDIT  
EXIT  
EXIT  
DIAG AIO  
CONC_OUT_1 RANGE: 5V  
SET> EDIT  
DIAG AIO  
CONC_OUT_1 RANGE: 5V  
These buttons set  
the signal level  
and type for the  
selected channel  
0.1V 1V 5V 10V CURR  
ENTR EXIT  
Pressing ENTR records the new setting  
and returns to the previous menu.  
Pressing EXIT ignores the new setting and  
returns to the previous menu.  
DIAG AIO  
CONC_OUT_1 RANGE: 10V  
0.1V 1V 5V 10V CURR  
ENTR EXIT  
Figure 5-19:  
DIAG – Analog I/O Configuration Menu  
114  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.3.2. ANALOG OUTPUT CALIBRATION MODE  
Analog output calibration should to be carried out on first startup of the analyzer  
(performed in the factory as part of the configuration process) or whenever recalibration  
is required. The analog outputs can be calibrated automatically, either as a group or  
individually, or adjusted manually.  
In its default mode, the instrument is configured for automatic calibration of all  
channels, which is useful for clearing any analog calibration warnings associated with  
channels that will not be used or connected to any input or recording device, e.g.,  
datalogger.  
Manual calibration should be used for the 0.1V range or in cases where the outputs must  
be closely matched to the characteristics of the recording device. Manual calibration  
requires the AUTOCAL feature to be disabled.  
To calibrate the outputs as a group, activate the ANALOG I/O CONFIGURATION  
MENU from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
ANALOG I / O CONFIGURATION  
Exit at any time  
to return to the  
main DIAG  
menu  
PREV  
NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
If AutoCal has been  
turned off for any  
channel, the message  
for that channel will be  
similar to:  
< SET SET> CAL  
DIAG AIO AUTO CALIBRATING CONC_OUT_1  
(continues for any active channels)  
NOT AUTO CAL  
CONC_OUT_1  
AUTO CALIBRATING TEST_OUTPUT  
If any of the channels have  
not been calibrated this  
message will read NO.  
Exit to return to  
the I/O  
configuration  
menu  
DIAG AIO  
AOUTS CALIBRATED:  
YES  
< SET SET> CAL  
EXIT  
Figure 5-20:  
DIAG – Analog Output Calibration Mode  
115  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To automatically calibrate a single analog channel from the DIAG Menu (refer to Figure  
DIAG  
ANALOG I / O CONFIGURATION  
EXIT to Return  
to the main  
Sample Display  
PREV  
NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
<
SET> CAL  
Press SET> to select the  
Analog Output channel to  
be configured. Then Press  
EDIT to continue  
DIAG AIO  
CONC_OUT_2:5V, CAL  
< SET SET> EDIT  
EXIT  
EXIT  
DIAG AIO  
CONC_OUT_2 RANGE: 5V  
DIAG AIO  
CONC_OUT_2 CALIBRATED: NO  
SET> EDIT  
<SET  
CAL  
EXIT  
DIAG AIO  
CONC_OUT_2 REC OFS: 0 mV  
DIAG AIO  
AUTO CALIBRATING CONC_OUT_2  
< SET SET> EDIT  
EXIT  
DIAG AIO  
CONC_OUT_2 AUTO CAL: ON  
DIAG AIO  
<SET  
CONC_OUT_2 CALIBRATED: YES  
< SET SET> EDIT  
EXIT  
CAL  
EXIT  
Figure 5-21:  
DIAG – Analog Output Calibration Mode – Single Analog Channel  
116  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
To select manual output calibration for a particular channel, access the Analog I/O  
Configuration from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
ANALOG I / O CONFIGURATION  
DIAG AIO  
CONC_OUT_2 REC OFS: 0 mV  
EXIT  
Exit to return to  
the main  
sample display  
PREV  
NEXT  
ENTR  
EXIT  
< SET SET> EDIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
DIAG AIO  
CONC_OUT_2 AUTO CAL: ON  
< SET SET> CAL  
EXIT  
< SET SET> EDIT  
EXIT  
Press SET> to select the analog output channel to  
be configured. Then press EDIT to continue  
DIAG AIO  
CONC_OUT_2 AUTO CAL: ON  
DIAG AIO  
CONC_OUT_2:5V, CAL  
ON  
ENTR EXIT  
< SET SET> EDIT  
EXIT  
EXIT  
Toggle to OFF to enable manual  
cal adjustments to the selected  
output channel only.  
DIAG AIO  
CONC_OUT_2 RANGE: 5V  
DIAG AIO  
CONC_OUT_2 AUTO CAL: OFF  
SET> EDIT  
OFF  
ENTR EXIT  
ENTR accepts the new setting  
and returns to the previous menu.  
EXIT ignores the new setting and  
returns to the previous menu.  
Figure 5-22:  
DIAG – Analog Output – Auto Cal or Manual Cal Selection for Channels  
Now the analog output channels should either be automatically calibrated or they should  
be set to manual calibration, which is described next.  
117  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.3.3. MANUAL ANALOG OUTPUT CALIBRATION AND VOLTAGE ADJUSTMENT  
For highest accuracy, the voltages of the analog outputs can be manually calibrated.  
Calibration is done through the instrument software with a voltmeter connected across  
the output terminals (refer to Figure 5-23). Adjustments are made using the control  
buttons by setting the zero-point first and then the span-point (refer to Table 5-7).  
The software allows this adjustment to be made in 100, 10 or 1 count increments.  
Table 5-7: Voltage Tolerances for Analog Output Calibration  
FULL SCALE  
ZERO TOLERANCE  
SPAN VOLTAGE  
SPAN TOLERANCE  
0.1 VDC  
1 VDC  
±0.0005V  
±0.001V  
±0.002V  
±0.004V  
90 mV  
900 mV  
4500 mV  
4500 mV  
±0.001V  
±0.001V  
±0.003V  
±0.006V  
5 VDC  
10 VDC  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Outputs configured for 0.1V full scale should always be calibrated  
manually.  
See Table 3-1 for  
pin assignments  
V
of Analog Out  
connector on the  
rear panel  
+DC Gnd  
V OUT +  
V OUT -  
V IN +  
V IN -  
Recording  
Device  
ANALYZER  
Figure 5-23:  
Setup for Calibrating Analog Outputs  
118  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
To make these manual adjustments, the AOUT auto-calibration feature must be turned  
OFF (refer to Section 5.9.3.2). Activate the ANALOG I/O  
CONFIGURATION MENU from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
ANALOG I / O CONFIGURATION  
DIAG AIO  
CONC_OUT_1 OVERRANGE: ON  
PREV  
NEXT  
ENTR  
EXIT  
SET> EDIT  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
< SET SET> CAL  
EXIT  
DIAG AIO  
CONC_OUT_1 REC OFS: 0 mV  
< SET SET> EDIT  
EXIT  
If AutoCal is ON, go to  
Section 6.7.3  
Press SET> to select the analog output channel to be configured:  
DISPLAYED AS=  
CONC_OUT_1 =  
CONC_OUT_2 =  
TEST OUTPUT =  
CHANNEL  
A1  
A2  
A4  
DIAG AIO  
CONC_OUT_1 AUTO CAL: OFF  
< SET SET> EDIT  
EXIT  
DIAG AIO  
< SET  
CONC_OUT_1 CALIBRATED: NO  
CAL  
DIAG AIO  
CONC_OUT_1 :5V, NO CAL  
EXIT  
< SET SET> EDIT  
EXIT  
DIAG AIO  
CONC_OUT_1 RANGE: 5V  
DIAG AIO CONC_OUT_1 VOLT–Z : 0 mV  
SET> EDIT  
EXIT  
U100 UP10 UP DOWN DN10 D100 ENTR EXIT  
These control buttons increase / decrease the  
analog output by 100, 10 or 1 counts.  
EXIT ignores the  
new setting.  
ENTR accepts the  
DIAG AIO CONC_OUT_1 VOLT–S : 4500 mV  
Continue adjustments until the voltage measured  
at the output of the analyzer and/or the input of  
the recording device matches the value in the  
upper right hand corner of the display to the  
tolerance listed in Table 6-10.  
U100 UP10 UP DOWN DN10 D100 ENTR EXIT  
new setting.  
The concentration display will not change. Only  
the voltage reading of your voltmeter will change.  
DIAG AIO  
< SET  
CONC_OUT_1 CALIBRATED: YES  
CAL EXIT  
Figure 5-24:  
Analog Output – Voltage Adjustment  
119  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.3.4. ANALOG OUTPUT OFFSET ADJUSTMENT  
Some analog signal recorders require that the zero signal to be significantly different  
from the baseline of the recorder in order to record slightly negative readings from noise  
around the zero point. This can be achieved in the T100 by defining a zero offset, a  
small voltage (e.g., 10% of span), which can be added to the signal of individual output  
channels by activating the ANALOG I/O CONFIGURATION MENU from the DIAG  
DIAG  
ANALOG I / O CONFIGURATION  
PREV  
NEXT  
ENTR  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
< SET SET> CAL  
EXIT  
Press SET> to select the  
analog output channel to  
be configured. Then press  
EDIT to continue  
DIAG AIO  
CONC_OUT_2:5V, CAL  
< SET SET> EDIT  
EXIT  
EXIT  
DIAG AIO  
DIAG AIO  
DIAG AIO  
CONC_OUT_2 RANGE: 5V  
SET> EDIT  
CONC_OUT_2 OVERRANGE: ON  
SET> EDIT  
EXIT  
CONC_OUT_2 REC OFS: 0 mV  
Pressing ENTR accepts the  
new setting and returns to the  
previous menu.  
Pressing EXIT ignores the new  
setting and returns to the  
previous menu.  
< SET SET> EDIT  
EXIT  
Set the recorder  
offset (in mV) of  
the selected  
channel  
DIAG AIO  
RECORD OFFSET: 0 MV  
+
0
0
0
0
ENTR EXIT  
Figure 5-25:  
Analog Output – Offset Adjustment  
120  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.3.5. CURRENT LOOP OUTPUT ADJUSTMENT  
A current loop option is available and can be installed as a retrofit for each of the analog  
outputs of the analyzer (refer to Section 3.3.1.4). This option converts the DC voltage  
analog output to a current signal with 0-20 mA output current. The outputs can be scaled  
to any set of limits within that 0-20 mA range. However, most current loop applications  
call for either 2-20 mA or 4-20 mA range. All current loop outputs have a +5% over-  
range. Ranges with the lower limit set to more than 1 mA (e.g., 2-20 or 4-20 mA) also  
have a -5% under-range.  
To switch an analog output from voltage to current loop after installing the current  
output printed circuit assembly, follow the instructions in Section 6.9.4.1 and select  
CURR from the list of options on the “Output Range” menu.  
Adjusting the signal zero and span values of the current loop output is done by raising or  
lowering the voltage of the respective analog output. This proportionally raises or lowers  
the current produced by the current loop option.  
Similar to the voltage calibration, the software allows this current adjustment to be made  
in 100, 10 or 1 count increments. Since the exact current increment per voltage count  
varies from output to output and from instrument to instrument, you will need to  
measure the change in the current with a current meter placed in series with the output  
circuit (refer to Figure 5-26).  
Figure 5-26:  
Setup for Calibrating Current Outputs  
WARNING  
Do not exceed 60 V between current loop outputs and instrument ground.  
121  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To adjust the zero and span values of the current outputs, activate the ANALOG I/O  
CONFIGURATION MENU from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG AIO  
< SET  
CONC_OUT_2 CALIBRATED: NO  
CAL EXIT  
DIAG  
ANALOG I / O CONFIGURATION  
PREV  
NEXT  
ENTR  
EXIT  
DIAG AIO CONC_OUT_2 ZERO: 0 mV  
Increase or decrease the current  
output by 100, 10 or 1 counts. The  
resulting change in output voltage is  
displayed in the upper line.  
Continue adjustments until the correct  
current is measured with the current  
meter.  
DIAG AIO  
AIN A/C FREQUENCY: 60 HZ  
U100 UP10 UP DOWN DN10 D100 ENTR EXIT  
SET> EDIT  
EXIT  
EXIT  
EXIT  
EXAMPLE  
DIAG AIO CONC_OUT_2 ZERO: 27 mV  
DIAG AIO  
AIN CALIBRATED: NO  
U100 UP10 UP DOWN DN10 D100 ENTR EXIT  
SET> EDIT  
DIAG AIO  
AOUT CALIBRATED: NO  
DIAG AIO CONC_OUT_2 SPAN: 10000 mV  
ENTR returns  
to the previous  
menu.  
< SET SET> CAL  
U100 UP10 UP DOWN DN10 D100 ENTR EXIT  
Press SET> to select the analog output channel  
to be configured:. Then press EDIT to continue  
EXAMPLE  
EXIT ignores the  
new setting, ENTR  
accepts the new  
setting.  
DIAG AIO CONC_OUT_2 ZERO: 9731 mV  
DIAG AIO  
CONC_OUT_CURR, NO CAL  
U100 UP10 UP DOWN DN10 D100 ENTR EXIT  
< SET SET> EDIT  
EXIT  
DIAG AIO  
< SET  
CONC_OUT_2 CALIBRATED: YES  
CAL EXIT  
DIAG AIO  
CONC_OUT_2 RANGE: CURR  
EXIT  
<SET SET> EDIT  
Figure 5-27:  
Analog Output – Zero and Span Value Adjustment for Current Outputs  
If a current meter is not available, an alternative method for calibrating the current loop outputs is to connect a  
250  1% resistor across the current loop output. Using a voltmeter, connected across the resistor, follow the  
procedure above but adjust the output to the following values:  
Table 5-8: Current Loop Output Calibration with Resistor  
VOLTAGE FOR 2-20 MA  
VOLTAGE FOR 4-20 MA  
FULL SCALE  
(MEASURED ACROSS  
RESISTOR)  
(MEASURED ACROSS RESISTOR)  
0%  
0.5 V  
5.0 V  
1.0 V  
5.0 V  
100%  
122  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.3.6. AIN CALIBRATION  
This is the sub-menu to conduct the analog input calibration. This calibration should  
only be necessary after major repair such as a replacement of CPU, motherboard or  
power supplies. Navigate to the ANALOG I/O CONFIGURATION MENU from the  
DIAG Menu (refer to Figure 5-16), then press:  
Exit at any time to  
return to the main  
DIAG menu  
DIAG  
ANALOG I / O CONFIGURATION  
ENTR EXIT  
PREV  
NEXT  
Continue pressing SET> until …  
DIAG AIO  
AIN CALIBRATED: NO  
< SET SET> CAL  
EXIT  
DIAG AIO  
DIAG AIO  
CALIBRATING A/D ZERO  
Instrument  
calibrates  
automatically  
CALIBRATING A/D SPAN  
Exit to return to the  
ANALOG I/O  
CONFIGURATION  
MENU  
AIN CALIBRATED: YES  
< SET SET> CAL  
EXIT  
Figure 5-28:  
DIAG – Analog Output – AIN Calibration  
5.9.3.7. ANALOG INPUTS (XIN1…XIN8) OPTION CONFIGURATION  
To configure the analyzer’ optional analog inputs define for each channel:  
gain (number of units represented by 1 volt)  
offset (volts)  
engineering units to be represented in volts (each press of the touchscreen button  
scrolls the list of alphanumeric characters from A-Z and 0-9)  
whether to display the channel in the Test functions  
123  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To adjust settings for the Analog Inputs option parameters press:  
DIAG  
ANALOG I / O CONFIGURATION  
PREV  
NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
Press SET> to scroll to the first  
channel. Continue pressing SET>  
to view each of 8 channels.  
< SET SET> CAL  
DIAG AIO  
XIN1:1.00,0.00,V,OFF  
Press EDIT at any channel  
< SET SET> EDIT  
EXIT  
to to change Gain, Offset,  
Units and whether to display  
the channel in the Test  
functions (OFF/ON).  
DIAG AIO  
XIN1 GAIN:1.00V/V  
SET> EDIT  
EXIT  
DIAG AIO  
XIN1 OFFSET:0.00V  
DIAG AIO  
XIN1 GAIN:1.00V/V  
< SET SET> EDIT  
EXIT  
+
0
0
1
.0  
0
ENTR EXIT  
DIAG AIO  
XIN1 UNITS:V  
Press to change  
Gain value  
< SET SET> EDIT  
EXIT  
DIAG AIO  
< SET  
XIN1 DISPLAY:OFF  
EDIT  
Pressing ENTR records the new setting  
and returns to the previous menu.  
Pressing EXIT ignores the new setting and  
returns to the previous menu.  
EXIT  
Figure 5-29.  
DIAG – Analog Inputs (Option) Configuration Menu  
124  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.4. OPTIC TEST  
The optic test function tests the response of the PMT sensor by turning on an LED  
located in the cooling block of the PMT (refer to Figure 13-18). The analyzer uses the  
light emitted from the LED to test its photo-electronic subsystem, including the PMT  
and the current to voltage converter on the pre-amplifier board. To ensure that the  
analyzer measures only the light coming from the LED, the analyzer should be supplied  
with zero air. The optic test should produce a PMT signal of about 2000±1000 mV.  
Access the Optic Test from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
PREV NEXT JUMP  
ENTR  
EXIT  
Press NEXT until…  
DIAG  
OPTIC TEST  
PREV NEXT  
ENTR EXIT  
DIAG OPTIC  
<TST TST>  
RANGE = 500.000 PPB  
SO2=XXX.X  
EXIT  
Press TST until…  
While the optic test is  
activated, PMT should be  
2000 mV ± 1000 mV  
DIAG ELEC  
PMT = 2751 MV  
SO2=XXX.X  
<TST TST>  
EXIT  
Figure 5-30:  
DIAG – Optic Test  
IMPORTANT  
IMPACT ON READINGS OR DATA  
This is a coarse test for functionality and not an accurate calibration tool.  
The resulting PMT signal can vary significantly over time and also  
changes with low-level calibration.  
125  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.5. ELECTRICAL TEST  
The electrical test function creates a current, which substitutes the PMT signal, and  
feeds it into the preamplifier board. This signal is generated by circuitry on the pre-  
amplifier board itself and tests the filtering and amplification functions of that assembly  
along with the A/D converter on the motherboard. It does not test the PMT itself. The  
electrical test should produce a PMT signal of about 2000 ±1000 mV.  
Access the Electrical Test from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
PREV NEXT JUMP  
ENTR  
EXIT  
Press NEXT until…  
DIAG  
ELECTRICAL TEST  
PREV NEXT  
ENTR EXIT  
DIAG ELEC  
<TST TST>  
RANGE = 500.0 PPB  
SO2 =XXX.X  
EXIT  
Press TST until…  
While the electrical test is  
activated, PMT should equal:  
DIAG ELEC  
PMT = 1732 MV  
SO2=X.XXX  
2000 mV ± 1000 mV  
<TST TST>  
EXIT  
Figure 5-31:  
DIAG – Electrical Test  
126  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.6. LAMP CALIBRATION  
An important factor in accurately determining SO2 concentration is the amount of UV  
light available to transform the SO2 into SO2* (refer to Section 13.1.1). The T100  
compensates for variations in the intensity of the available UV light by adjusting the SO2  
concentration calculation using a ratio (LAMP RATIO)that results from dividing the  
current UV lamp (UV LAMP) intensity by a value stored in the CPU’s memory  
(LAMP_CAL). Both LAMP Ration and UV Lamp are test functions viewable from the  
instruments front panel.  
To cause the analyzer to measure and record a value for LAMP_CAL, access the Signal  
I/O from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
NEXT  
ENTR  
EXIT  
Repeat Pressing NEXT until . .  
.
DIAG  
PREV NEXT  
LAMP CALIBRATION  
ENTR EXIT  
DIAG FCAL LAMP CAL VALUE:4262.4 mV  
4
2
6
2
.4  
ENTR EXIT  
The value displayed is the  
current output of the UV  
source reference detector  
ENTR accepts the  
new value  
EXIT ignores the new  
value  
Figure 5-32:  
DIAG – Lamp Calibration  
127  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.7. PRESSURE CALIBRATION  
A sensor at the exit of the sample chamber continuously measures the pressure of the  
sample gas. This data is used to compensate the final SO2 concentration calculation for  
changes in atmospheric pressure when the instrument’s TPC feature is turned on (refer  
to Section 10.7.3) and is stored in the CPU’s memory as the test function PRES (also  
viewable via the front panel).  
Ensure to use a barometer that measures actual barometric pressure.  
To cause the analyzer to measure and record a value for PRES, access the Signal I/O  
from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
NEXT  
ENTR  
EXIT  
Repeat Pressing NEXT until . .  
.
DIAG  
PRESSURE CALIBRATION  
ENTR EXIT  
PREV NEXT  
DIAG PCAL ACTUAL PRES :27.20 IN-HG-A  
2
7
.2  
0
ENTR EXIT  
Adjust these values until the  
displayed pressure equals the  
pressure measured by the  
independent pressure meter.  
ENTR accepts the  
new value  
EXIT ignores the new  
value  
Figure 5-33:  
DIAG – Pressure Calibration  
128  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
5.9.8. FLOW CALIBRATION  
The flow calibration allows the user to adjust the values of the sample flow rates as they  
are displayed on the front panel and reported through COM ports to match the actual  
flow rate measured at the sample inlet. This does not change the hardware measurement  
of the flow sensors, only the software calculated values.  
To carry out this adjustment, connect an external, sufficiently accurate flow meter to the  
SAMPLE inlet (refer to Section 11 for more details).  
Once the flow meter is attached and is measuring actual gas flow, access the Signal I/O  
from the DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
NEXT  
ENTR  
EXIT  
Repeat Pressing NEXT until . .  
.
DIAG  
FLOW CALIBRATION  
PREV NEXT  
ENTR EXIT  
DIAG FCAL  
ACTUAL FLOW: 607 CC / M  
0
6
0
7
ENTR EXIT  
Adjust these values until the  
displayed flow rate equals the  
flow rate being measured by the  
independent flow meter.  
ENTR accepts the  
new value  
EXIT ignores the new  
value  
Figure 5-34:  
DIAG – Flow Calibration  
129  
06807C DCN6650  
   
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5.9.9. TEST CHANNEL OUTPUT  
When activated, output channel A3 can be used in the standard configuration to report  
one of the test functions viewable from the SAMPLE mode display.  
To activate the A3 channel and select a test function, access the Signal I/O from the  
DIAG Menu (refer to Figure 5-16), then press:  
DIAG  
SIGNAL I / O  
PREV NEXT  
ENTR EXIT  
Continue to press NEXT until …  
DIAG  
TEST CHAN OUTPUT  
ENTR  
PREV  
NEXT  
EXIT  
DIAG TCHN  
TEST CHANNEL: NONE  
NEXT  
ENTR  
EXIT  
DIAG TCHN TEST CHANNEL: PMT READING  
PREV NEXT ENTR  
EXIT  
Press PREV or NEXT  
to move through the  
list of available  
parameters  
Press ENTR to  
Press EXIT to  
return to the  
DIAG menu  
select the displayed  
parameter and to  
activate the test  
channel.  
(Table 6-9)  
Figure 5-35:  
DIAG – Test Channel Output  
130  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SETUP Menu  
Table 5-9: Test Parameters Available for Analog Output A3 (standard  
configuration)  
Test Channel  
Test parameter range  
Test channel is turned off  
0-5000 mV  
NONE  
PMT READING  
UV READING  
SAMPLE PRESSURE  
SAMPLE FLOW  
RCELL TEMP  
CHASSIS TEMP  
IZS TEMP  
0-5000 mV  
0-40 in-Hg-A  
0-1000 cm³/min  
0-70° C  
0-70° C  
0-70° C  
PMT TEMP  
0-50° C  
HVPS VOLTAGE  
0-5000 V  
Once a TEST function is selected, the instrument begins to report a signal on the A3  
output and adds TEST to the list of test functions viewable on the display (just before  
the TIME test function).  
131  
06807C DCN6650  
 
SETUP Menu  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
132  
06807C DCN6650  
6. COMMUNICATIONS SETUP AND OPERATION  
This instrument rear panel connections include an Ethernet port, a USB port (option) and  
two serial communications ports (labeled RS232, which is the COM1 port, and COM2)  
located on the rear panel (refer to Figure 3-4). These ports give the user the ability to  
communicate with, issue commands to, and receive data from the analyzer through an  
external computer system or terminal.  
This section provides pertinent information regarding communication equipment,  
describes the instrument’s communications modes, presents configuration instructions  
for the communications ports, and provides instructions for their use, including  
communications protocol. Data acquisition is presented in Section .  
6.1. DATA TERMINAL / COMMUNICATION EQUIPMENT (DTE DCE)  
RS-232 was developed for allowing communications between data terminal equipment  
(DTE) and data communication equipment (DCE). Basic terminals always fall into the  
DTE category whereas modems are always considered DCE devices. The difference  
between the two is the pin assignment of the Data Receive and Data Transmit functions.  
DTE devices receive data on pin 2 and transmit data on pin 3.  
DCE devices receive data on pin 3 and transmit data on pin 2.  
To allow the analyzer to be used with terminals (DTE), modems (DCE) and computers  
(which can be either), a switch mounted below the serial ports on the rear panel allows  
the user to set the RS-232 configuration for one of these two data devices. This switch  
exchanges the Receive and Transmit lines on RS-232 emulating a cross-over or null-  
modem cable. The switch has no effect on COM2.  
6.2. COMMUNICATION MODES, BAUD RATE AND PORT TESTING  
Use the SETUP>MORE>COMM menu to configure COM1 (labeled RS232 on  
instrument rear panel) and/or COM2 (labeled COM2 on instrument rear panel) for  
communication modes, baud rate and/or port testing for correct connection. If using a  
USB option communication connection, setup requires configuring the COM2 baud rate  
(Section 6.2.2).  
133  
06807C DCN6650  
     
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
6.2.1. COMMUNICATION MODES  
Either of the analyzer’s serial ports (RS232 or COM2 on rear panel) can be configured  
to operate in a number of different modes, which are described in .  
Table 6-1:COMM Port Communication Modes  
MODE1  
QUIET  
ID  
DESCRIPTION  
Quiet mode suppresses any feedback from the analyzer (DAS reports, and warning  
messages) to the remote device and is typically used when the port is communicating with  
a computer program such as APICOM. Such feedback is still available but a command  
must be issued to receive them.  
1
COMPUTER  
Computer mode inhibits echoing of typed characters and is used when the port is  
communicating with a computer program, such as APICOM.  
2
HESSEN  
PROTOCOL  
The Hessen communications protocol is used in some European countries. Teledyne  
API’s part number 02252 contains more information on this protocol.  
16  
E, 7, 1  
Allows the COMM port settings to be set between either  
No parity; 8 data bits; 1 stop bit (ON/OFF)  
to  
2048  
1024  
Even parity; 7 data bits; 1 stop bit (ON/OFF)  
RS-485  
Configures the COM2 Port for RS-485 communication. RS-485 mode has precedence  
over Multidrop mode if both are enabled. When the COM2 port is configured for RS-485  
communication, the rear panel USB port is disabled.  
SECURITY  
When enabled, the serial port requires a password before it will respond. The only  
command that is active is the help screen (? CR).  
4
MULTIDROP  
PROTOCOL  
Multidrop protocol allows a multi-instrument configuration on a single communications  
channel. Multidrop requires the use of instrument IDs.  
32  
ENABLE  
MODEM  
Enables sending a modem initialization string at power-up. Asserts certain lines in the RS-  
232 port to enable the modem to communicate.  
64  
ERROR  
Fixes certain types of parity errors at certain Hessen protocol installations.  
CHECKING2  
128  
256  
XON/XOFF  
Disables XON/XOFF data flow control also known as software handshaking.  
HANDSHAKE2  
HARDWARE  
HANDSHAKE  
Enables CTS/RTS style hardwired transmission handshaking. This style of data  
transmission handshaking is commonly used with modems or terminal emulation protocols  
as well as by Teledyne Instrument’s APICOM software.  
8
HARDWARE  
FIFO2  
Improves data transfer rate when one of the COMM ports.  
512  
COMMAND  
PROMPT  
Enables a command prompt when in terminal mode.  
4096  
1 Modes are listed in the order in which they appear in the  
SETUP MORE COMM COM[1 OR 2] MODE menu  
2 The default setting for this feature is ON. Do not disable unless instructed to by Teledyne API’s Technical Support personnel.  
134  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
To turn on or off the communication modes for either COM1 or COM2, access the  
SETUP>MORE>[COM1 or COM2] menu and at the COM1[2] Mode menu press  
EDIT.  
SETUP X.X  
COMMUNICATIONS MENU  
Select which COM  
port to configure  
ID INET COM1 COM2  
EXIT  
The sum of the mode  
IDs of the selected  
modes is displayed  
here  
SETUP X.X  
SET> EDIT  
COM1 MODE: 32  
EXIT  
SETUP X.X  
COM1 QUIET MODE: OFF  
ENTR EXIT  
NEXT OFF  
Continue pressing NEXT to scroll through the  
available Modes and press the ON or OFF button  
to enable or disable each mode.  
Figure 6-1: COMM – Communication Modes Setup  
135  
06807C DCN6650  
 
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
6.2.2. COMM PORT BAUD RATE  
To select the baud rate of either COMM Port, go to SETUP>MORE>COMM and select  
either COM1 or COM2 as follows (use COM2 to view/match your personal computer  
baud rate when using the USB port, Section 6.5.3):  
SETUP X.X  
COMMUNICATIONS MENU  
Select which COM  
port to configure.  
(COM1 for example).  
ID INET COM1 COM2  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
Press SET> until you  
reach the COM1  
BAUD RATE  
EXIT  
EXIT  
EXIT  
EXIT  
EXAMPLE  
SETUP X.X  
COM1 BAUD RATE:19200  
Use PREV and NEXT  
to move between  
available baud rates.  
EXIT  
ignores  
the new  
setting  
<SET SET> EDIT  
300  
1200  
4800  
SETUP X.X  
COM1 BAUD RATE:19200  
ENTR  
9600  
ENTR  
accepts  
the new  
setting  
19200  
38400  
57600  
115200  
PREV NEXT  
SETUP X.X  
COM1 BAUD RATE:9600  
ENTR  
NEXT ON  
Figure 6-2: COMM – COMM Port Baud Rate  
136  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.2.3. COMM PORT TESTING  
The serial ports can be tested for correct connection and output in the COMM menu.  
This test sends a string of 256 ‘w’ characters to the selected COM port. While the test is  
running, the red LED on the rear panel of the analyzer should flicker.  
To initiate the test press, access the COMMUNICATIONS Menu (refer to Figure 5-13),  
then press:  
SETUP X.X  
COMMUNICATIONS MENU  
Select which  
COMM port to  
test.  
ID INET COM1 COM2  
EXIT  
EXIT  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
SETUP X.X  
COM1 BAUD RATE:19200  
<SET SET> EDIT  
EXIT  
SETUP X.X  
<SET  
COM1 : TEST PORT  
TEST  
EXIT  
SETUP X.X  
<SET  
TRANSMITTING TO COM1  
TEST  
Test runs  
automatically  
EXIT returns to  
COMM menu  
EXIT  
Figure 6-3: COMM – COM1 Test Port  
6.3. RS-232  
The RS232 and COM2 communications (COMM) ports operate on the RS-232 protocol  
(default configuration). Possible configurations for these two COMM ports are  
summarized as follows:  
RS232 port can also be configured to operate in single or RS-232 Multidrop mode  
(Option 62); refer to Section 3.3.1.8.  
COM2 port can be left in its default configuration for standard RS-232 operation  
including multidrop, or it can be reconfigured for half-duplex RS-485 operation  
(please contact the factory for this configuration).  
Note that when the rear panel COM2 port is in use, except for multidrop  
communication, the rear panel USB port cannot be used. (Alternatively, when the USB  
port is enabled, COM2 port cannot be used except for multidrop)  
137  
06807C DCN6650  
     
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
A code-activated switch (CAS), can also be used on either port to connect typically  
between 2 and 16 send/receive instruments (host computer(s) printers, data loggers,  
analyzers, monitors, calibrators, etc.) into one communications hub. Contact Teledyne  
API Sales for more information on CAS systems.  
To configure the analyzer’s communication ports, use the SETUP>MORE>COMM  
menu. Refer to Section 5.7 for initial setup, and to Section 6.2 for additional  
configuration information.  
6.4. RS-485 (OPTION)  
The COM2 port of the instrument’s rear panel is set up for RS-232 communication but  
can be reconfigured for RS-485 communication. Contact Technical Support. If this  
option was elected at the time of purchase, the rear panel was preconfigured at the  
factory.  
6.5. ETHERNET  
When using the Ethernet interface, the analyzer can be connected to any standard  
10BaseT or 100BaseT Ethernet network via low-cost network hubs, switches or routers.  
The interface operates as a standard TCP/IP device on port 3000. This allows a remote  
computer to connect through the network to the analyzer using APICOM, terminal  
emulators or other programs.  
The Ethernet cable connector on the rear panel has two LEDs indicating the Ethernet’s  
current operating status.  
Table 6-2: Ethernet Status Indicators  
LED  
FUNCTION  
amber (link)  
On when connection to the LAN is valid.  
green (activity Flickers during any activity on the LAN.  
The analyzer is shipped with DHCP enabled by default. This allows the instrument to be  
connected to a network or router with a DHCP server. The instrument will automatically  
be assigned an IP address by the DHCP server (Section 6.5.2). This configuration is  
useful for quickly getting an instrument up and running on a network. However, for  
permanent Ethernet connections, a static IP address should be used. Section 6.5.1 below  
details how to configure the instrument with a static IP address.  
138  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.5.1. CONFIGURING ETHERNET COMMUNICATION MANUALLY (STATIC  
IP ADDRESS)  
1. Connect a cable from the analyzer’s Ethernet port to a Local Area Network (LAN) or  
Internet port.  
2. From the analyzer’s front panel touchscreen, access the Communications Menu  
(SETUP>MORE>COMM as shown in Figure 5-13.  
3. Follow the setup sequence as shown in Figure 6-4, and edit the Instrument and  
Gateway IP addresses and Subnet Mask to the desired settings.  
4. From the computer, enter the same information through an application such as  
HyperTerminal.  
Table 6-3 shows the default Ethernet configuration settings.  
Table 6-3:LAN/Internet Default Configuration Properties  
PROPERTY  
DHCP  
DEFAULT STATE  
DESCRIPTION  
This displays whether the DHCP is turned ON or OFF. Press  
EDIT and toggle ON for automatic configuration after first  
consulting network administrator. (  
ON  
INSTRUMENT IP  
ADDRESS  
This string of four packets of 1 to 3 numbers each (e.g.  
192.168.76.55.) is the address of the analyzer itself.  
Can only be edited when DHCP is set to OFF.  
0.0.0.0  
0.0.0.0  
GATEWAY IP  
ADDRESS  
A string of numbers very similar to the Instrument IP address  
(e.g. 192.168.76.1.) that is the address of the computer used  
by your LAN to access the Internet.  
Can only be edited when DHCP is set to OFF.  
Also a string of four packets of 1 to 3 numbers each (e.g.  
255.255.252.0) that identifies the LAN to which the device is  
connected.  
All addressable devices and computers on a LAN must have  
the same subnet mask. Any transmissions sent to devices  
with different subnets are assumed to be outside of the LAN  
and are routed through the gateway computer onto the  
Internet.  
SUBNET MASK  
This number defines the terminal control port by which the  
instrument is addressed by terminal emulation software, such  
as Internet or Teledyne API’s APICOM.  
3000  
T100  
TCP PORT1  
The name by which your analyzer will appear when  
addressed from other computers on the LAN or via the  
Internet. To change, see Section 6.5.2.1.  
HOST NAME  
1 Do not change the setting for this property unless instructed to by Teledyne API’s Technical Support  
personnel.  
139  
06807C DCN6650  
   
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Internet Configuration Button Functions  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
BUTTON  
[0]  
FUNCTION  
COM1 COM2  
EXIT  
ENTR EXIT  
EXIT  
Location of cursor. Press to cycle through the range of  
numerals and available characters (“0 – 9” & “ . ”)  
<CH CH> Moves the cursor one character left or right.  
SAMPLE  
ENTER SETUP PASS : 818  
8
DEL  
Deletes a character at the cursor location.  
Accepts the new setting and returns to the previous  
menu.  
8
1
ENTR  
Ignores the new setting and returns to the previous  
menu.  
EXIT  
DHCP: ON is  
default setting.  
Skip this step  
if it has been  
set to OFF.  
SETUP X.X  
DHCP: ON  
Some buttons appear only when relevant.  
SET> EDIT  
SETUP X.X  
DHCP: OFF  
SET> EDIT  
EXIT  
SETUP X.X INST IP: 000.000.000.000  
<SET SET> EDIT  
EXIT  
Cursor  
location is  
indicated by  
brackets  
SETUP X.X INST IP: [0] 00.000.000  
<CH CH>  
DEL [0]  
ENTR EXIT  
SETUP X.X GATEWAY IP: 000.000.000.000  
<SET SET> EDIT  
EXIT  
SETUP X.X GATEWAY IP: [0] 00.000.000  
<CH CH> DEL [?] ENTR EXIT  
SETUP X.X SUBNET MASK:255.255.255.0  
<SET SET> EDIT  
EXIT  
SETUP X.X SUBNET MASK:[2]55.255.255.0  
<CH CH> DEL [?] ENTR EXIT  
SETUP X.X TCP PORT 3000  
<SET  
EDIT  
EXIT  
The PORT number must remain at 3000.  
Do not change this setting unless instructed to by  
Teledyne Instruments Customer Service personnel.  
Pressing EXIT from  
any of the above  
display menus  
causes the Ethernet  
option to reinitialize  
its internal interface  
firmware  
SETUP X.X  
INITIALIZING INET 0%  
INITIALIZING INET 100%  
SETUP X.X  
INITIALIZATI0N SUCCEEDED  
SETUP X.X  
INITIALIZATION FAILED  
Contact your IT  
Network Administrator  
SETUP X.X  
COMMUNICATIONS MENU  
COM1 COM2  
ID  
INET  
EXIT  
Figure 6-4: COMM – LAN / Internet Manual Configuration  
140  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.5.2. CONFIGURING ETHERNET COMMUNICATION USING DYNAMIC  
HOST CONFIGURATION PROTOCOL (DHCP)  
1. Consult with your network administrator to affirm that your network server is running  
DHCP.  
2. Access the Communications Menu as shown in Figure 5-13.  
3. Follow the setup sequence as shown in Figure 6-5.  
SETUP X.X  
COMMUNICATIONS MENU  
ID INET COM1 COM2  
EXIT  
From this point on,  
EXIT returns to  
COMMUNICATIONS  
MENU  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
DHCP: ON is  
default setting.  
If it has been  
set to OFF,  
press EDIT  
and set to ON.  
SETUP X.X  
DHCP: OFF  
DHCP: ON  
SETUP X.X  
DHCP: ON  
OFF  
ENTR EXIT  
SET> EDIT  
EXIT  
EXIT  
EXIT  
SETUP X.X  
ON  
ENTR EXIT  
SETUP X.X  
<SET SET>  
INST IP: 0.0.0.0  
SETUP X.X GATEWAY IP: 0.0.0.0  
EDIT button  
disabled  
<SET SET>  
SETUP X.X SUBNET MASK: 0.0.0.0  
<SET SET>  
EXIT  
Do not alter unless  
SETUP X.X  
TCP PORT: 3000  
directed to by Teledyne  
Instruments Customer  
Service personnel  
<SET SET> EDIT  
EXIT  
EXIT  
EXIT  
SETUP X.X  
TCP PORT2: 502  
<SET SET> EDIT  
SETUP X.X HOSTNAME:  
<SET  
EDIT  
Figure 6-5: COMM – LAN / Internet Automatic Configuration  
141  
06807C DCN6650  
   
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
6.5.2.1. CHANGING THE ANALYZER’S HOSTNAME  
The HOSTNAME is the name by which the analyzer appears on your network. The  
default name for all Teledyne API’s T100 analyzers is T100. To change this name  
(particularly if you have more than one T100 analyzer on your network), access the  
COMMUNICATIONS Menu (refer to Figure 5-13), then press:  
SETUP X.X HOSTNAME: T100  
<SET  
EDIT  
EXIT  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
COM1 COM2  
SETUP X.X HOSTNAME: T100  
EXIT  
<CH CH> INS DEL [?]  
ENTR EXIT  
Use these buttons (See  
Table 5-3) to edit HOSTNAME  
SAMPLE  
ENTER SETUP PASS : 818  
8
8
1
ENTR EXIT  
SETUP X.X HOSTNAME: T100-FIELD1  
<SET  
EDIT  
EXIT  
Continue pressing SET> UNTIL …  
SETUP X.X  
INITIALIZING INET 0%  
INITIALIZING INET 100%  
SETUP X.X  
INITIALIZATI0N SUCCEEDED  
SETUP X.X  
INITIALIZATION FAILED  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
COM1 COM2  
Contact your IT Network  
Administrator  
EXIT  
Figure 6-6: COMM – Change Hostname  
Table 6-4:Hostname Editing Button Functions  
Button  
Function  
<CH  
CH>  
INS  
DEL  
[?]  
Moves the cursor one character to the left.  
Moves the cursor one character to the right.  
Inserts a character before the cursor location.  
Deletes a character at the cursor location.  
Press this button to cycle through the range of numerals and characters  
available for insertion.:  
0-9, A-Z, space ’ ~ ! # $ % ^ & * ( ) - _ = +[ ] { } < >\ | ; : , . / ?  
Accepts the new setting and returns to the previous menu.  
Ignores the new setting and returns to the previous menu.  
ENTR  
EXIT  
Buttons only appear when applicable.  
142  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.5.3. USB PORT FOR REMOTE ACCESS  
The analyzer can be operated through a personal computer by downloading the TAPI  
USB driver and directly connecting their respective USB ports.  
1. Install the Teledyne T-Series USB driver on your computer, downloadable from the  
Teledyne API website under Help Center>Software Downloads (www.teledyne-  
api.com/software).  
2. Run the installer file: “TAPIVCPInstaller.exe”  
3. Connect the USB cable between the USB ports on your personal computer and your  
analyzer. The USB cable should be a Type A – Type B cable, commonly used as a  
USB printer cable.  
4. Determine the Windows XP Com Port number that was automatically assigned to  
the USB connection. (Start Control Panel System Hardware Device  
Manager). This is the com port that should be set in the communications software,  
such as APIcom or Hyperterminal.  
Refer to the Quick Start (Direct Cable Connection) section of the Teledyne APIcom  
Manual, PN 07463.  
5. In the instrument’s SETUP>MORE>COMM>COM2 menu, make the following settings:  
143  
06807C DCN6650  
 
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Baud Rate: 115200  
COM2 Mode Settings:  
Quiet Mode  
ON  
ON  
SECURITY MODE  
MULTIDROP MODE  
ENABLE MODEM  
ERROR CHECKING  
XON/XOFF HANDSHAKE  
HARDWARE HANDSHAKE OFF  
OFF  
OFF  
OFF  
ON  
Computer Mode  
MODBUS RTU  
MODBUS ASCII  
E,8,1 MODE  
E,7,1 MODE  
RS-485 MODE  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
HARDWARE FIFO  
ON  
COMMAND PROMPT  
OFF  
6. Next, configure your communications software, such as APIcom. Use the COM port  
determined in Step 4 and the baud rate set in Step 5. The figures below show how  
these parameters would be configured in the Instrument Properties window in  
APIcom when configuring a new instrument. See the APIcom manual (PN 07463)  
for more details.  
USB configuration requires that the baud rates of the instrument and  
the PC match; check the PC baud rate and change if needed.  
Note  
Using the USB port disallows use of the rear panel COM2 port except  
for multidrop communication.  
144  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.6. COMMUNICATIONS PROTOCOLS  
6.6.1. MODBUS  
The following set of instructions assumes that the user is familiar with MODBUS  
communications, and provides minimal information to get started. For additional  
instruction, please refer to the Teledyne API MODBUS manual, PN 06276. Also refer to  
www.modbus.org for MODBUS communication protocols.  
Minimum Requirements  
Instrument firmware with MODBUS capabilities installed.  
MODBUS-compatible software (TAPI uses MODBUS Poll for testing; see  
www.modbustools.com)  
Personal computer  
Communications cable (Ethernet or USB or RS232)  
Possibly a null modem adapter or cable  
MODBUS Setup:  
Set Com Mode parameters  
Comm  
Ethernet:  
Using the front panel menu, go to SETUP – MORE – COMM – INET; scroll through the INET  
submenu until you reach TCP PORT 2 (the standard setting is 502), then continue to TCP  
PORT 2 MODBUS TCP/IP; press EDIT and toggle the menu button to change the setting  
to ON, then press ENTR. (Change Machine ID if needed: see “Slave ID”).  
USB/RS232: Using the front panel menu, go to SETUP – MORE – COMM – COM2 – EDIT; scroll through  
the COM2 EDIT submenu until the display shows COM2 MODBUS RTU: OFF (press  
OFF to change the setting to ON. Scroll NEXT to COM2 MODBUS ASCII and ensure it is  
set to OFF. Press ENTR to keep the new settings. (If RTU is not available with your  
communications equipment, set the COM2 MODBUS ASCII setting to ON and ensure that  
COM2 MODBUS RTU is set to OFF. Press ENTR to keep the new settings).  
Slave ID  
A MODBUS slave ID must be set for each instrument. Valid slave ID’s are in the range of 1 to 247. If  
your analyzer is connected to a serial network (i.e., RS-485), a unique Slave ID must be assigned to each  
instrument. To set the slave ID for the instrument, go to SETUP – MORE – COMM – ID. The default  
MACHINE ID is the same as the model number. Toggle the menu buttons to change the ID.  
Reboot analyzer  
For the settings to take effect, power down the analyzer, wait 5 seconds, and power up the analyzer.  
Connect your analyzer either:  
Make appropriate cable  
connections  
via its Ethernet or USB port to a PC (this may require a USB-to-RS232 adapter for your PC; if so, also  
install the software driver from the CD supplied with the adapter, and reboot the computer if required), or  
via its COM2 port to a null modem (this may require a null modem adapter or cable).  
Specify MODBUS software  
settings  
1. Click Setup / [Read / Write Definition] /.  
a. In the Read/Write Definition window (see example that follows) select a Function (what you wish  
(examples used here are for  
MODBUS Poll software)  
to read from the analyzer).  
b. Input Quantity (based on your firmware’s register map).  
c. In the View section of the Read/Write Definition window select a Display (typically Float Inverse).  
d. Click OK.  
2. Next, click Connection/Connect.  
a. In the Connection Setup window (see example that follows), select the options based on your  
computer.  
b. Press OK.  
Read the Modbus Poll Register Use the Register Map to find the test parameter names for the values displayed (see example that follows  
If desired, assign an alias for each.  
Example Read/Write Definition window:  
145  
06807C DCN6650  
   
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Example Connection Setup window:  
Example MODBUS Poll window:  
146  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.6.2. HESSEN  
The Hessen protocol is a Multidrop protocol, in which several remote instruments are  
connected via a common communications channel to a host computer. The remote  
instruments are regarded as slaves of the host computer. The remote instruments are  
unaware that they are connected to a Multidrop bus and never initiate Hessen protocol  
messages. They only respond to commands from the host computer and only when they  
receive a command containing their own unique ID number.  
The Hessen protocol is designed to accomplish two things: to obtain the status of remote  
instruments, including the concentrations of all the gases measured; and to place remote  
instruments into zero or span calibration or measure mode. API’s implementation  
supports both of these principal features.  
The Hessen protocol is not well defined; therefore while API’s application is completely  
compatible with the protocol itself, it may be different from implementations by other  
companies.  
The following subsections describe the basics for setting up your instrument to operate  
over a Hessen Protocol network. For more detailed information as well as a list of host  
computer commands and examples of command and response message syntax,  
download the Manual Addendum for Hessen Protocol from the Teledyne API’s website:  
http://www.teledyne-api.com/manuals/index.asp.  
6.6.2.1. HESSEN COMM PORT CONFIGURATION  
Hessen protocol requires the communication parameters of the T100’s COMM ports to  
be set differently than the standard configuration as shown in the table below.  
Table 6-5: RS-232 Communication Parameters for Hessen Protocol  
Parameter  
Data Bits  
Stop Bits  
Parity  
Standard  
Hessen  
7
8
1
2
None  
Full  
Even  
Half  
Duplex  
To change the rest of the COMM port parameters and modes, refer to Section 6.  
To change the baud rate of the T100’s COMM ports, refer to Section 6.2.2.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Ensure that the communication parameters of the host computer are also  
properly set.  
Note  
The instrument software has a 200 ms latency before it responds to  
commands issued by the host computer. This latency should present no  
problems, but you should be aware of it and not issue commands to the  
instrument too quickly.  
147  
06807C DCN6650  
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
6.6.2.2. ACTIVATING HESSEN PROTOCOL  
The first step in configuring the T100 to operate over a Hessen protocol network is to  
activate the Hessen mode for COMM ports and configure the communication  
parameters for the port(s) appropriately. Access the COMMUNICATIONS Menu (refer  
to Figure 5-13), then press:  
SETUP X.X COM1 HESSEN PROTOCOL: OFF  
SETUP X.X  
COMMUNICATIONS MENU  
Select which COMM  
port to configure  
PREV NEXT OFF  
ENTR EXIT  
ID INET COM1 COM2  
EXIT  
EXIT  
The sum of the mode  
IDs of the selected  
modes is displayed  
here  
Press OFF/ON to  
change  
activate/deactivate  
SETUP X.X  
SET> EDIT  
COM1 MODE: 0  
SETUP X.X COM1 HESSEN PROTOCOL: ON  
PREV NEXT ON ENTR EXIT  
selected mode.  
SETUP X.X  
COM1 QUIET MODE: OFF  
SETUP X.X  
COM1 E,8,1 MODE: OFF  
NEXT OFF  
ENTR EXIT  
PREV NEXT OFF  
ENTR EXIT  
ENTR EXIT  
ENTR EXIT  
ENTR EXIT  
Repeat the  
entire process to  
set up the  
Continue pressing next until …  
SETUP X.X  
COM1 E,8,1 MODE: ON  
PREV NEXT ON  
COM2 port  
SETUP X.X  
COM1 E,7,1 MODE: OFF  
PREV NEXT OFF  
SETUP X.X  
COM1 E,7,1 MODE: ON  
ENTR accepts the new  
settings  
PREV NEXT ON  
EXIT ignores the new  
settings  
Figure 6-7: COMM – Activating Hessen Protocol  
148  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
6.6.2.3. SELECTING A HESSEN PROTOCOL TYPE  
Currently there are two version of Hessen Protocol in use. The original implementation,  
referred to as TYPE 1, and a more recently released version, TYPE 2 that has more  
flexibility when operating with instruments that can measure more than one type of gas.  
For more specific information about the difference between TYPE 1 and TYPE 2  
download the Manual Addendum for Hessen Protocol from Teledyne API’s web site:  
http://www.teledyne-api.com/manuals/index.asp.  
To select a Hessen Protocol Type, access the COMMUNICATIONS Menu (refer to  
Figure 5-13), then press:  
SETUP X.X  
COMMUNICATIONS MENU  
ID INET HESN COM1 COM2  
EXIT  
EXIT  
SETUP X.  
HESSEN VARIATION: TYPE 1  
SET> EDIT  
ENTR accepts the new  
settings  
SETUP X.X HESSEN VARIATION: TYPE 1  
TYPE1 TYPE 2 ENTR EXIT  
EXIT ignores the new  
settings  
SETUP X.X HESSEN VARIATION: TYPE 2  
PREV NEXT OFF ENTR EXIT  
Press to change  
protocol type.  
Figure 6-8: COMM – Select Hessen Protocol Type  
Note  
While Hessen Protocol Mode can be activated independently for RS-232  
and COM2, the TYPE selection affects both Ports.  
149  
06807C DCN6650  
 
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
6.6.2.4. SETTING THE HESSEN PROTOCOL RESPONSE MODE  
Teledyne API’s implementation of Hessen Protocol allows the user to choose one of  
several different modes of response for the analyzer.  
Table 6-6:T100 Hessen Protocol Response Modes  
MODE ID  
CMD  
MODE DESCRIPTION  
This is the Default Setting. Reponses from the instrument are encoded as the traditional command format.  
Style and format of responses depend on exact coding of the initiating command.  
Responses from the instrument are always delimited with <STX> (at the beginning of the response, <ETX>  
(at the end of the response followed by a 2 digit Block Check Code (checksum), regardless of the command  
encoding.  
BCC  
Responses from the instrument are always delimited with <CR> at the beginning and the end of the string,  
regardless of the command encoding.  
TEXT  
To Select a Hessen response mode, access the COMMUNICATIONS Menu (refer to  
Figure 5-13), then press:  
SETUP X.X  
COMMUNICATIONS MENU  
ID INET HESN COM1 COM2  
EXIT  
EXIT  
SETUP X.X  
HESSEN VARIATION: TYPE 1  
SET> EDIT  
ENTR accepts the new  
settings  
EXIT ignores the new  
SETUP X.X  
HESSEN RESPONSE MODE :CMD  
settings  
<SET SET> EDIT  
EXIT  
Press to  
change  
response  
mode.  
SETUP X.X  
HESSEN RESPONSE MODE :CMD  
BCC TEXT CMD  
ENTR EXIT  
Figure 6-9: COMM – Select Hessen Protocol Response Mode  
6.6.2.5. HESSEN PROTOCOL GAS ID  
The T100 analyzer is a single gas instrument that measures SO2. As such, its default gas  
ID has already been set to 110. There is no need to change this setting.  
6.6.2.6. SETTING HESSEN PROTOCOL STATUS FLAGS  
Teledyne API’s implementation of Hessen protocols includes a set of status bits that the  
instrument includes in responses to inform the host computer of its condition. Each bit  
can be assigned to one operational and warning message flag. The default settings for  
these bit/flags are listed in Table 6-7:  
150  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Communications Setup and Operation  
Table 6-7: Default Hessen Status Bit Assignments  
STATUS FLAG NAME  
WARNING FLAGS  
DEFAULT BIT ASSIGNMENT  
SAMPLE FLOW WARNING  
PMT DET WARNING  
UV LAMP WARNING  
HVPS WARNING  
0001  
0002  
0002  
0004  
0008  
0010  
0020  
0040  
0080  
DARK CAL WARNING  
RCELL TEMP WARNING  
IZS TEMP WARNING  
PMT TEMP WARNING  
INVALID CONC  
OPERATIONAL FLAGS  
In Manual Calibration Mode  
In Zero Calibration Mode  
In Span Calibration Mode  
UNITS OF MEASURE FLAGS  
UGM  
0200  
0400  
0800  
0000  
2000  
MGM  
PPB  
4000  
PPM  
6000  
SPARE/UNUSED BITS  
UNASSIGNED FLAGS  
Box Temp Warning  
Sample Press Warning  
System Reset  
100. 8000  
MP Calibration  
Analog Cal Warning  
Cannot Dyn Zero  
Cannot Dyn Span  
Instrument Off  
Rear Board Not Detected  
Relay Board Warning  
IMPORTANT  
IMPACT ON READINGS OR DATA  
It is possible to assign more than one flag to the same Hessen status bit.  
This allows the grouping of similar flags, such as all temperature  
warnings, under the same status bit. Be careful not to assign conflicting  
flags to the same bit as each status bit will be triggered if any of the  
assigned flags are active.  
151  
06807C DCN6650  
 
Communications Setup and Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To assign or reset the status flag bit assignments, access the COMMUNICATIONS  
SETUP X.X  
COMMUNICATIONS MENU  
ID INET HESN COM1 COM2  
EXIT  
Repeat pressing SET> until …  
SETUP X.  
HESSEN STATUS FLAGS  
<SET SET> EDIT  
EXIT  
SETUP X.  
PMT DET WARNING: 0002  
PREV NEXT  
EDIT PRNT EXIT  
Repeat pressing NEXT or PREV until the desired  
message flag is displayed. Refer to Table 7-15.  
For Example …  
SETUP X.  
SYSTEM RESET: 0000  
EDIT PRNT EXIT  
PREV NEXT  
Press <CH and  
CH> to move the  
[ ] cursor left  
and right along  
the bit string.  
SETUP X.  
SYSTEM RESET: [0]000  
[0]  
ENTR accepts the new  
settings  
<CH CH>  
ENTR EXIT  
EXIT ignores the new  
settings  
Press [?]repeatedly to cycle through the available character set: 0-9  
Note: Values of A-F can also be set but are meaningless.  
Figure 6-10:  
COMM – Status Flag Bit Assignment  
6.6.2.7. INSTRUMENT ID  
Each instrument on a Hessen Protocol network must have a unique identifier (ID  
number). Refer to Section 5.7.1 for information and to customize the ID of each.  
152  
06807C DCN6650  
 
7. DATA ACQUISITION SYSTEM (DAS) AND APICOM  
The T100 analyzer contains a flexible and powerful, internal data acquisition system  
(DAS) that enables the analyzer to store concentration and calibration data as well as a  
host of diagnostic parameters. The DAS of the T100 can store up to about one million  
data points, which can, depending on individual configurations, cover days, weeks or  
months of valuable measurements. The data are stored in non-volatile memory and are  
retained even when the instrument is powered off. Data are stored in plain text format  
for easy retrieval and use in common data analysis programs (such as spreadsheet-type  
programs).  
The DAS is designed to be flexible, users have full control over the type, length and  
reporting time of the data. The DAS permits users to access stored data through the  
instrument’s front panel or its communication ports. Using APICOM, data can even be  
retrieved automatically to a remote computer for further processing.  
The principal use of the DAS is logging data for trend analysis and predictive  
diagnostics, which can assist in identifying possible problems before they affect the  
functionality of the analyzer. The secondary use is for data analysis, documentation and  
archival in electronic format.  
To support the DAS functionality, Teledyne API offers APICOM, a program that  
provides a visual interface for remote or local setup, configuration and data retrieval of  
the DAS. The APICOM manual, which is included with the program, contains a more  
detailed description of the DAS structure and configuration, which is briefly described  
in this section.  
The T100 is configured with a basic DAS configuration, which is enabled by default.  
New data channels are also enabled by default but each channel may be turned off for  
later or occasional use. Note that DAS operation is suspended while its configuration is  
edited through the front panel. To prevent such data loss, it is recommended to use the  
APICOM graphical user interface for DAS changes.  
The green SAMPLE LED on the instrument front panel, which indicates the analyzer  
status, also indicates certain aspects of the DAS status, as described in Table 7-1  
153  
06807C DCN6650  
   
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 7-1:Front Panel LED Status Indicators for DAS  
LED STATE  
DAS STATUS  
Off  
Blinking  
On  
System is in calibration mode. Data logging can be enabled or disabled for this mode.  
Calibration data are typically stored at the end of calibration periods, concentration data are  
typically not sampled, diagnostic data should be collected.  
Instrument is in hold-off mode, a short period after the system exits calibrations. DAS  
channels can be enabled or disabled for this period. Concentration data are typically disabled  
whereas diagnostic should be collected.  
Sampling normally.  
Note  
The DAS can be disabled only by disabling or deleting its individual data  
channels.  
7.1. DAS STRUCTURE  
The DAS is designed around the feature of a “record”. A record is a single data point of  
one parameter, stored in one (or more) data channels and generated by one of several  
triggering event. The entire DAS configuration is stored in a script, which can be edited  
from the front panel or downloaded, edited and uploaded to the instrument in form of a  
string of plain-text lines through the communication ports.  
DAS data are defined by the PARAMETER type and are stored through different  
triggering EVENTS in data CHANNELS, which relate triggering events to data  
parameters and define certain operational functions related to the recording and  
reporting of the data.  
7.1.1. DAS CHANNELS  
The key to the flexibility of the DAS is its ability to store a large number of  
combinations of triggering events and data parameters in the form of data channels.  
Users may create up to 20 data channels and each channel can contain one or more  
parameters. For each channel one triggering event is selected and up to 50 data  
parameters, which can be the same or different between channels. Each data channel has  
several properties that define the structure of the channel and allow the user to make  
operational decisions regarding the channel (refer to Table 7-2).  
154  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
Table 7-2:DAS Data Channel Properties  
Property  
NAME  
Description  
Default  
Setting Range  
The name of the data channel.  
“NONE”  
Up to 6 letters and digits  
(more with APICOM, but only  
the first six are displayed on  
the front panel).  
The event that triggers the data channel to measure  
and store its data parameters. Refer to APPENDIX  
A-5 for a list of available triggering events.  
A User-configurable list of data types to be  
recorded in any given channel. Refer to APPENDIX  
A-5 for a list of available parameters  
ATIMER  
Any allowed event.  
TRIGGERING  
EVENT  
1 - PMTDET Any available concentration,  
temperature, pneumatic or  
NUMBER AND  
LIST OF  
PARAMETERS  
diagnostic parameter.  
The amount of time between each channel data  
point.  
000:01:00  
100  
000:00:01 to  
366:23:59  
(Days:Hours:Minutes)  
1 to 1 million, limited by  
available storage space.  
REPORT PERIOD  
The number of reports that will be stored in the data  
file. Once the specified limit has been exceeded,  
the oldest data are over-written to make space for  
new data.  
NUMBER OF  
RECORDS  
Enables the analyzer to automatically report  
channel values to the RS-232 ports.  
Enables or disables the channel. Provides a  
convenient means to temporarily disable a data  
channel.  
OFF  
ON  
OFF or ON  
OFF or ON  
RS-232 REPORT  
CHANNEL  
ENABLED  
Disables sampling of data parameters while  
instrument is in calibration mode.  
OFF  
OFF or ON  
CAL HOLD OFF  
Note that - when enabled here - there is also a  
length of the DAS HOLD OFF after calibration  
mode, which is set in the VARS menu (refer to  
Section 7.2.11).  
7.1.2. DAS PARAMETERS  
Data parameters are types of data that may be measured and stored by the DAS. For  
each Teledyne API’s analyzer model, the list of available data parameters is different,  
fully defined and not customizable. Appendix A-5 lists firmware specific data  
parameters for the T100. The most common parameters are concentrations of the  
measured gas (SO2), temperatures of heated zones (converter, sample chamber, box  
temperature…), pressures and flows of the pneumatic subsystem and other diagnostic  
measurements as well as calibration data (slope and offset) for each gas.  
Most data parameters have associated measurement units, such as mV, ppb, cm³/min,  
etc., although some parameters have no units. The only units that can be changed are  
those of the concentration readings according to the SETUP-RANGE settings. Note that  
the DAS does not keep track of the unit of each concentration value and DAS data files  
may contain concentrations in multiple units if the unit was changed during data  
acquisition.  
Each data parameter has user-configurable functions that define how the data are  
recorded (refer to Table 7-3).  
155  
06807C DCN6650  
   
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 7-3:DAS Data Parameter Functions  
FUNCTION  
EFFECT  
PARAMETER  
Instrument-specific parameter name.  
INST: Records instantaneous reading.  
SAMPLE MODE  
AVG: Records average reading during reporting interval.  
MIN: Records minimum (instantaneous) reading during reporting interval.  
MAX: Records maximum (instantaneous) reading during reporting interval.  
PRECISION  
Decimal precision of parameter value (0-4).  
STORE NUM. SAMPLES OFF: stores only the average (default).  
ON: stores the average and the number of samples in each average for a parameter. This  
property is only useful when the AVG sample mode is used. Note that the number of  
samples is the same for all parameters in one channel and needs to be specified only for  
one of the parameters in that channel.  
Users can specify up to 50 parameters per data channel (the T100 provides about 30  
parameters). However, the number of parameters and channels is ultimately limited by  
available memory.  
7.1.3. DAS TRIGGERING EVENTS  
Triggering events define when and how the DAS records a measurement of any given  
data channel. Triggering events are firmware-specific and are listed in Appendix A-5.  
The most common triggering events are:  
ATIMER: Sampling at regular intervals specified by an automatic timer. Most  
trending information is usually stored at such regular intervals, which can be  
instantaneous or averaged.  
EXITZR, EXITSP, SLPCHG (exit zero, exit span, slope change): Sampling at the  
end of (irregularly occurring) calibrations or when the response slope changes.  
These triggering events create instantaneous data points, e.g., for the new slope and  
offset (concentration response) values at the end of a calibration. Zero and slope  
values are valuable to monitor response drift and to document when the instrument  
was calibrated.  
WARNINGS: Some data may be useful when stored if one of several warning  
messages appears. This is helpful for trouble-shooting by monitoring when a  
particular warning occurred.  
7.2. DEFAULT DAS CHANNELS  
A set of default Data Channels has been included in the analyzer’s software for logging  
SO2 concentration and certain predictive diagnostic data. These default channels include  
but are not limited to:  
CONC: Samples SO2 concentration at one minute intervals and stores an average every  
five minutes with a time and date stamp. Readings during calibration and calibration  
hold off are not included in the data. By default, the last 4032 hourly averages are  
stored.  
PNUMTC: Collects sample flow and sample pressure data at five minute intervals and  
stores an average once a day with a time and date stamp. This data is useful for  
monitoring the condition of the pump and critical flow orifice (sample flow) and the  
156  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
sample filter (clogging indicated by a drop in sample pressure) over time to predict when  
maintenance will be required. The last 360 daily averages (about 1 year) are stored.  
CALDAT: Logs new slope and offset every time a zero or span calibration is  
performed. This Data Channel also records the instrument reading just prior to  
performing a calibration. Note: this Data Channel collects data based on an event (a  
calibration) rather than a timer. This Data Channel will store data from the last 200  
calibrations. This does not represent any specific length of time since it is dependent on  
how often calibrations are performed. As with all Data Channels, a time and date stamp  
is recorded for every data point logged.  
DETAIL: Samples fourteen different parameters related to the operating status of the  
analyzers optical sensors and PMT. For each parameter:  
A value is logged once every minute;  
An average of the last 60 readings is calculated once every.  
The last 480 averages are stored (20 days).  
This channel is useful for diagnosing problems that cause the instruments measurements  
to drift slowly over time  
FAST: Almost identical to DETAIL except that for each parameter:  
Samples are taken once per minute and reported once per minute, in effect causing  
the instrument to record an instantaneous reading of each parameter every minute.  
The last 360 readings for each parameter are recorded/reported.  
This channel is useful for diagnosing transients; spikes and noise problems.  
These default Data Channels can be used as they are, or they can be customized to fit a  
specific application. They can also be deleted to make room for custom user-  
programmed Data Channels. This can be done via the instrument’s front panel or  
downloaded via the analyzer’s COM ports using a program such as APICOM (Section  
7.3) or other terminal emulation program.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Sending a DAS configuration to the analyzer through its COM ports will  
replace the existing configuration and will delete all stored data. Back up  
any existing data and the DAS configuration before uploading new  
settings  
157  
06807C DCN6650  
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
The Channel Properties, Triggering Events and Data Parameters/Functions for these  
default channels are:  
PARAMETER: PMTDET  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
LIST OF CHANNELS  
PARAMETER: UVDET  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
PARAMETER: CONC1  
MODE: AVG  
NAME: CONC  
PRECISION: 1  
STORE NUM SAMPLES OFF  
EVENT: ATIMER  
PARAMETERS: 2  
PARAMETER: LAMPR  
MODE: AVG  
PRECISION: 4  
STARTING DATE: 01-JAN-07  
SAMPLE PERIOD: 000:00:01  
REPORT PERIOD: 000:00:05  
NO. OF RECORDS: 4032  
RS-232 REPORT: ON  
STORE NUM SAMPLES OFF  
PARAMETER: STABIL  
MODE: AVG  
PRECISION: 2  
COMPACT REPORT: OFF  
CHANNEL ENABLED: ON  
STORE NUM SAMPLES OFF  
PARAMETER: DRKPMT  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
PARAMETER: SMPFLW  
MODE: AVG  
NAME: PNUMTC  
EVENT: ATIMER  
PARAMETERS: 2  
PRECISION: 1  
STORE NUM SAMPLES OFF  
PARAMETER: DARKUV  
MODE: AVG  
PRECISION: 4  
STARTING DATE: 01-JAN-07  
SAMPLE PERIOD: 000:00:05  
REPORT PERIOD: 001:00:00  
NO. OF RECORDS: 360  
RS-232 REPORT: OFF  
COMPACT REPORT: OFF  
CHANNEL ENABLED: ON  
PARAMETER: SMPPRS  
MODE: AVG  
PRECISION: 1  
STORE NUM SAMPLES OFF  
STORE NUM SAMPLES OFF  
PARAMETER: CONC1  
MODE: AVG  
PRECISION: 3  
STORE NUM SAMPLES OFF  
PARAMETER: SLOPE1  
MODE: INST  
PRECISION:3  
STORE NUM SAMPLES OFF  
PARAMETER: STABIL  
MODE: AVG  
NAME: CALDAT  
PRECISION: 4  
EVENT: SLPCHG  
PARAMETER: OFSET1  
MODE: INST  
PRECISION: 1  
STORE NUM SAMPLES OFF  
PARAMETERS: 3  
NO. OF RECORDS:200  
RS-232 REPORT: OFF  
COMPACT REPORT: OFF  
CHANNEL ENABLED: ON  
CAL HOLD OFF: OFF  
NAME: DETAIL  
EVENT: ATIMER  
PARAMETERS: 14  
STARTING DATE: 01-JAN-07  
SAMPLE PERIOD: 000:00:01  
REPORT PERIOD: 000:01:00  
NO. OF RECORDS:480  
RS-232 REPORT: OFF  
COMPACT REPORT: OFF  
CHANNEL ENABLED: ON  
STORE NUM SAMPLES OFF  
PARAMETER: STRLGT  
MODE: AVG  
PRECISION: 4  
PARAMETER: ZSCNC1  
MODE: INST  
PRECISION: 1  
STORE NUM SAMPLES OFF  
STORE NUM SAMPLES OFF  
PARAMETER: RCTEMP  
MODE: AVG  
PRECISION: 2  
STORE NUM SAMPLES OFF  
NAME: FAST  
EVENT: ATIMER  
PARAMETERS: 14  
STARTING DATE: 01-JAN-07  
SAMPLE PERIOD: 000:00:01  
REPORT PERIOD: 000:00:01  
NO. OF RECORDS:360  
RS-232 REPORT: OFF  
COMPACT REPORT: OFF  
CHANNEL ENABLED: ON  
Same parameters &  
PARAMETER: SMPPRS  
MODE: AVG  
PRECISION: 4  
settings as DETAIL  
STORE NUM SAMPLES OFF  
PARAMETER: BOXTEMP  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
PARAMETER: HVPS  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
PARAMETER: REFGND  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
PARAMETER: REF4096  
MODE: AVG  
PRECISION: 4  
STORE NUM SAMPLES OFF  
Figure 7-1: Default DAS Channels Setup  
158  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
7.2.1. VIEWING DAS DATA AND SETTINGS  
DAS data and settings can be viewed on the front panel through the following control  
button sequence.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
MENU BUTTON FUNCTIONS  
< TST TST > CAL  
SETUP  
BUTTON  
FUNCTION  
SAMPLE  
ENTER SETUP PASS : 818  
<PRM  
PRM>  
Moves to the next Parameter  
Moves to the previous  
Parameter  
8
1
8
ENTR EXIT  
NX10  
NEXT  
PREV  
PV10  
Moves the view forward 10  
data points/channels  
EXIT will return to the  
main SAMPLE Display.  
SETUP X.X  
PRIMARY SETUP MENU  
Moves to the next data  
point/channel  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
EXIT  
Moves to the previous data  
point/channel  
Moves the view back 10 data  
points/channels  
SETUP X.X  
DATA ACQUISITION  
VIEW EDIT  
Buttons only appear as needed  
SETUP X.X  
CONC : DATA AVAILABLE  
NEXT VIEW  
SETUP X.X  
00:00:00 CONC1 =XXXX PPB  
PV10 PREV NEXT NX10 <PRM PRM>  
EXIT  
SETUP X.X  
PNUMTC: DATA AVAILABLE  
PREV NEXT VIEW  
EXIT  
SETUP X.X  
00:00:00 SMPFLW=000.0 cc / m  
<PRM  
PRM>  
EXIT  
SETUP X.X  
CALDAT: DATA AVAILABLE  
PREV NEXT VIEW  
EXIT  
SETUP X.X  
00:00:00 SLOPE1=0.000  
<PRM PRM>  
PV10 PREV  
EXIT  
SETUP X.X  
DETAILED: DATA AVAILABLE  
PREV NEXT VIEW  
EXIT  
SETUP X.X  
00:00::00 PMTDET=0000.0000 m  
<PRM PRM> EXIT  
PV10 PREV  
SETUP X.X  
PREV  
FAST: DATA AVAILABLE  
VIEW  
EXIT  
SETUP X.X  
00:00::00 PMTDET=0000.0000 m  
<PRM PRM> EXIT  
PV10 PREV  
Figure 7-2: DAS – Data Acquisition Menu  
159  
06807C DCN6650  
   
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
7.2.2. EDITING DAS DATA CHANNELS  
Although DAS configuration is most conveniently done through the APICOM remote  
control program (refer to Section 6.12.2.8), the following illustrations shows how to edit  
DAS channels using the analyzer’s front panel control buttons.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
EXIT will return to the  
previous SAMPLE  
display.  
8
1
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
Main Data Acquisition Menu  
SETUP X.X  
DATA ACQUISITION  
VIEW EDIT  
EXIT  
Edit Data Channel Menu  
Moves the  
display up &  
down the list of  
Data Channels  
SETUP X.X  
0) CONC1: ATIMER, 2, 4032, RS-232  
Exits to the Main  
Data Acquisition  
Menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
Exports the  
Inserts a new Data  
Channel into the list  
BEFORE the Channel  
currently being displayed  
configuration of all  
data channels to  
RS-232 interface.  
Deletes the Data  
Channel currently  
being displayed  
Moves the display  
between the  
SETUP X.X  
NAME:CONC1  
Exits returns to the  
previous Menu  
PROPERTIES for this  
data channel.  
<SET SET> EDIT PRNT  
EXIT  
Reports the configuration of current  
data channels to the RS-232 ports.  
Allows to edit the channel name, see next menu button.  
Figure 7-3: DAS – Editing DAS Data Channels  
160  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
When editing the data channels, the top line of the display indicates some of the  
configuration parameters. For example, the display line:  
0) CONC: ATIMER, 4, 800  
represents to the following configuration:  
CHANNEL NUMBER.: 0  
NAME: CONC  
TRIGGER EVENT: ATIMER  
PARAMETERS: Four parameters are included in this channel  
EVENT: This channel is set up to record 800 data points.  
To edit the name of a data channel, refer to Figure 7-3, then press:  
SETUP X.X  
NAME:CONC1  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new string  
and returns to the previous  
menu.  
SETUP X.X  
NAME:CONC  
C
O
N
C
1
-
ENTR  
EXIT  
EXIT ignores the new string  
and returns to the previous  
menu.  
Press each as many times as needed to cycle through the  
character set until desired character appears:  
0-9, A-Z, space ’ ~ ! # $ % ^ & * ( ) - _ = +[ ] { } < >\ | ; : , . / ?  
Figure 7-4: DAS – Editing Data Channel Name  
161  
06807C DCN6650  
 
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
7.2.3. TRIGGER EVENTS  
To edit the list of data parameters associated with a specific data channel, refer to the  
DATA Acquisition Menu (refer to Figure 7-2), then press:  
Edit Data Channel Menu  
SETUP X.X  
0) CONC1: ATIMER, 2,  
4032,R  
Exits to the Main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC1  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
EVENT:ATIMER  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new string  
and returns to the previous  
menu.  
EXIT ignores the new string  
and returns to the previous  
menu.  
SETUP X.X  
EVENT:ATIMER  
<PREV NEXT>  
ENTR  
EXIT  
Press each button repeatedly to cycle through  
the list of available trigger events.  
Figure 7-5: DAS – Trigger Events  
162  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
7.2.4. EDITING DAS PARAMETERS  
Data channels can be edited individually from the front panel without affecting other  
data channels. However, when editing a data channel, such as during adding, deleting or  
editing parameters, all data for that particular channel will be lost, because the DAS can  
store only data of one format (number of parameter columns etc.) for any given channel.  
In addition, a DAS configuration can only be uploaded remotely as an entire set of  
channels. Hence, remote update of the DAS will always delete all current channels and  
stored data.  
To modify, add or delete a parameter, follow the instruction shown in Figure 7-3, then  
press:  
Edit Data Channel Menu  
SETUP X.X  
0) CONC1: ATIMER, 2,  
4032, R  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC1  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until…  
SETUP X.X  
PARAMETERS : 2  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
EDIT PARAMS (DELETE DATA)  
YES will delete  
all data in that  
entire channel.  
NO returns to  
the previous  
menu and  
YES NO  
retains all data.  
Edit Data Parameter Menu  
Moves the  
display between  
available  
SETUP X.X 0) PARAM=CONC1, MODE=AVG  
PREV NEXT INS DEL EDIT  
Exits to the main  
Data Acquisition  
menu  
EXIT  
Parameters  
Inserts a new Parameter  
before the currently  
displayed Parameter  
Use to configure  
the functions for  
this Parameter.  
Deletes the Parameter  
currently displayed.  
Figure 7-6: DAS – Editing DAS Parameters  
163  
06807C DCN6650  
   
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To configure the parameters for a specific data parameter, follow the instructions as  
shown in Figure 7-6, then press:  
SETUP X.X 0) PARAM=CONC1, MODE=AVG  
PREV NEXT INS DEL EDIT  
EXIT  
SETUP X.X PARAMETERS:CONC1  
SET> EDIT  
EXIT  
SETUP X.X PARAMETERS: CONC1  
PREV NEXT  
ENTR  
EXIT  
Cycle through list of available  
Parameters.  
SETUP X.X SAMPLE MODE:AVG  
<SET SET> EDIT  
EXIT  
SETUP X.X SAMPLE MODE: AVG  
INST AVG SDEV MIN MAX  
ENTR EXIT  
Press any button for the desired mode  
ENTR accepts the new  
setting and returns to the  
previous menu.  
SETUP X.X PRECISION: 1  
EXIT ignores the new setting  
and returns to the previous  
<SET SET> EDIT  
EXIT  
SETUP X.X PRECISION: 1  
1
ENTR EXIT  
Set for 0-4  
<SET Returns to  
previous  
SETUP X.X STORE NUM. SAMPLES: OFF  
Functions  
<SET  
EDIT  
EXIT  
SETUP X.X STORE NUM. SAMPLES: OFF  
OFF  
ENTR EXIT  
Turn ON or OFF  
Figure 7-7: DAS – Configuring Parameters for a Specific Data Parameter  
164  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
7.2.5. SAMPLE PERIOD AND REPORT PERIOD  
The DAS defines two principal time periods by which sample readings are taken and  
permanently recorded:  
SAMPLE PERIOD: Determines how often DAS temporarily records a sample reading  
of the parameter in volatile memory. The SAMPLE PERIOD is set to one minute by  
default and generally cannot be accessed from the standard DAS front panel menu, but  
is available via the instruments communication ports by using APICOM or the  
analyzer’s standard serial data protocol. SAMPLE PERIOD is only used when the  
DAS parameter’s sample mode is set for AVG, MIN or MAX.  
REPORT PERIOD: Sets how often the sample readings stored in volatile memory are  
processed, (e.g. average, minimum or maximum are calculated) and the results stored  
permanently in the instrument’s Disk-on-Module as well as transmitted via the  
analyzer’s communication ports. The REPORT PERIOD may be set from the front  
panel.  
If the INST sample mode is selected the instrument stores and reports an instantaneous  
reading of the selected parameter at the end of the chosen REPORT PERIOD  
In AVG, MIN or MAX sample modes, the settings for the SAMPLE PERIOD and the  
REPORT PERIOD determine the number of data points used each time the average,  
minimum or maximum is calculated, stored and reported to the COMM ports. The actual  
sample readings are not stored past the end of the of the chosen REPORT PERIOD.  
Also, the SAMPLE PERIOD and REPORT PERIOD intervals are synchronized to  
the beginning and end of the appropriate interval of the instruments internal clock.  
If SAMPLE PERIOD were set for one minute the first reading would occur at the  
beginning of the next full minute according to the instrument’s internal clock.  
If the REPORT PERIOD were set for of one hour the first report activity would occur  
at the beginning of the next full hour according to the instrument’s internal clock.  
EXAMPLE: Given the above settings, if DAS were activated at 7:57:35 the first sample  
would occur at 7:58 and the first report would be calculated at 8:00 consisting of data  
points for 7:58. 7:59 and 8:00.  
During the next hour (from 8:01 to 9:00) the instrument will take a sample reading every  
minute and include 60 sample readings.  
When the STORE NUM. SAMPLES feature is turned on the instrument will also store  
how many sample readings were used for the AVG, MIN or MAX calculation but not  
the readings themselves.  
REPORT PERIODS IN PROGRESS WHEN INSTRUMENT IS POWERED OFF  
If the instrument is powered off in the middle of a REPORT PERIOD, the samples  
accumulated so far during that period are lost. Once the instrument is turned back on,  
the DAS restarts taking samples and temporarily them in volatile memory as part of the  
REPORT PERIOD currently active at the time of restart. At the end of this REPORT  
PERIOD only the sample readings taken since the instrument was turned back on will  
be included in any AVG, MIN or MAX calculation. Also, the STORE NUM.  
SAMPLES feature will report the number of sample readings taken since the instrument  
was restarted.  
165  
06807C DCN6650  
 
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To define the REPORT PERIOD, follow the instruction shown in Figure 7-3, then  
press:  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 2,  
4032, R  
Use PREV and NEXT to  
scroll to the data channel  
to be edited.  
Exits to the main  
Data Acquisition  
menu.  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until you reach REPORT PERIOD …  
SETUP X.X  
REPORT PERIOD:000:00:05  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
REPORT PERIODD:DAYS:0  
Set the number of days  
between reports (0-365).  
0
0
0
ENTR EXIT  
Press buttons to set amount of  
time between reports, in hours  
(HH) and/or minutes (MM)  
(max: 23:59). 01:00 sets a  
report to be made every hour.  
SETUP X.X  
REPORT PERIODD:TIME:01:00  
ENTR EXIT  
ENTR accepts the new string and  
returns to the previous menu.  
EXIT ignores the new string and  
returns to the previous menu.  
0
1
0
0
IIf at any time an invalidl entry is selected (e.g., days > 366)  
the ENTR button will disappear from the display.  
Figure 7-8: DAS – Define the Report Period  
7.2.6. NUMBER OF RECORDS  
Although the DAS is capable of capturing several months worth of data,, the actual  
number of records is also limited by the total number of parameters and channels and  
other settings in the DAS configuration. Every additional data channel, parameter,  
number of samples setting etc. will reduce the maximum amount of data points  
somewhat. In general, however, the maximum data capacity is divided amongst all  
channels (max: 20) and parameters (max: 50 per channel).  
The DAS will check the amount of available data space and prevent the user from  
specifying too many records at any given point. If, for example, the DAS memory space  
can accommodate 375 more data records, the ENTR button will disappear when trying  
to specify more than that number of records. This check for memory space may also  
make an upload of a DAS configuration with APICOM or a Terminal program fail, if  
the combined number of records would be exceeded. In this case, it is suggested to  
either try from the front panel what the maximum number of records can be or use trial-  
and-error in designing the DAS script or calculate the number of records using the DAS  
or APICOM manuals. To set the number of records for one channel from the front panel,  
press SETUP-DAS-EDIT-ENTR and the following control button sequence.  
166  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 2,  
900  
Exits to the main  
Data Acquisition  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
menu  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until…  
SETUP X.X  
NUMBER OF RECORDS:4032  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
EDIT RECORDS (DELETEs DATA)?  
NO returns to the  
previous menu.  
YES will delete all data  
in this channel.  
YES  
NO  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
Toggle buttons to set  
number of records  
(1-99999)  
SETUP X.X  
NUMBER OF RECORDS:4032  
ENTR EXIT  
0
4
0
3
2
Figure 7-9: DAS – Edit Number of Records  
167  
06807C DCN6650  
 
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
7.2.7. RS-232 REPORT FUNCTION  
The M DAS can automatically report data to the communications ports, where they can  
be captured with a terminal emulation program or simply viewed by the user.  
To enable automatic COMM port reporting, follow the instruction shown in Figure 7-3,  
then press:  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 2,  
4032, R  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until…  
SETUP X.X  
RS-232 REPORT: OFF  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
SETUP X.X  
RS-232 REPORT: OFF  
Toggle to turn  
reporting ON or OFF  
OFF  
ENTR EXIT  
Figure 7-10:  
DAS – RS-232 Report Function  
7.2.8. COMPACT REPORT  
When enabled, this option avoids unnecessary line breaks on all RS-232 reports. Instead  
of reporting each parameter in one channel on a separate line, up to five parameters are  
reported in one line, instead.  
7.2.9. STARTING DATE  
This option allows a user to specify a starting date for any given channel in case the user  
wants to start data acquisition only after a certain time and date. If the Starting Date is  
in the past, the DAS ignores this setting.  
7.2.10. DISABLING/ENABLING DATA CHANNELS  
Data channels can be temporarily disabled, which can reduce the read/write wear on the  
disk-on-module. The ALL_01 channel of the T100, for example, is disabled by default.  
168  
06807C DCN6650  
         
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
To disable a data channel, follow the instruction shown in Figure 7-3, then press:  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 2,  
4032, R  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until…  
SETUP X.X  
CHANNEL ENABLE:ON  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
SETUP X.X  
CHANNEL ENABLE:ON  
Toggle to turn  
channel ON or OFF  
OFF  
ENTR EXIT  
Figure 7-11:  
DAS – Disabling / Enabling Data Channels  
169  
06807C DCN6650  
 
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
7.2.11. HOLDOFF FEATURE  
The DAS HOLDOFF feature allows to prevent data collection during calibrations and  
during the DAS_HOLDOFF period enabled and specified in the VARS (refer to Section  
6.8).  
To enable or disable the HOLDOFF, follow the instruction shown in Figure 7-3, then  
press:  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 2,  
4032, R  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until…  
SETUP X.X  
CAL HOLD OFF:ON  
SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
SETUP X.X  
CAL HOLD OFF:ON  
Toggle to turn HOLDOFF  
ON or OFF  
ON  
ENTR EXIT  
Figure 7-12:  
DAS – Holdoff Feature  
The DAS can be configured and operated remotely via the APICOM program. Section  
introduces APICOM and then describes how to  
7.3. APICOM REMOTE CONTROL PROGRAM  
APICOM is an easy-to-use, yet powerful interface program that allows a user to access  
and control any of Teledyne API’s main line of ambient and stack-gas instruments from  
a remote connection through direct cable, modem or Ethernet. Running APICOM, a user  
can:  
Establish a link from a remote location to the T100 through direct cable connection  
via RS-232 modem or Ethernet.  
View the instrument’s front panel and remotely access all functions that could be  
accessed when standing in front of the instrument.  
Remotely edit system parameters and set points.  
170  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
Download, view, graph and save data for predictive diagnostics or data analysis.  
Retrieve, view, edit, save and upload DAS configurations (Section 7.4).  
Check on system parameters for trouble-shooting and quality control.  
APICOM is very helpful for initial setup, data analysis, maintenance and  
troubleshooting. Figure 7-15 shows an example of APICOM being used to remotely  
configuration the DAS feature. Figure 7-13 shows examples of APICOM’s main  
interface, which emulates the look and functionality of the instruments actual front  
panel:  
Figure 7-13:  
APICOM Remote Control Program Interface  
APICOM is included free of cost with the analyzer and the latest versions can also be  
downloaded for free at http://www.teledyne-api.com/software/apicom/.  
171  
06807C DCN6650  
 
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
7.4. REMOTE DAS CONFIGURATION VIA APICOM  
Editing channels, parameters and triggering events as described in this section is  
performed via the APICOM remote control program using the graphic interface similar  
to the example shown in Figure 7-14. Refer to Section 8 for details on remote access to  
the T100 analyzer.  
Figure 7-14:  
Sample APICOM User Interface for Configuring the DAS  
Once a DAS configuration is edited (which can be done offline and without interrupting  
DAS data collection), it is conveniently uploaded to the instrument and can be stored on  
a computer for later review, alteration or documentation and archival. Refer to the  
APICOM manual for details on these procedures. The APICOM user manual (Teledyne  
API’s P/N 039450000) is included in the APICOM installation file, which can be  
downloaded at http://www.teledyne-api.com/software/apicom/.  
Although Teledyne API recommends the use of APICOM, the DAS can also be  
accessed and configured through a terminal emulation program such as HyperTerminal  
(refer to Figure 7-15). However, all configuration commands must be created following  
a strict syntax or be pasted in from of a text file, which was edited offline and then  
uploaded through a specific transfer procedure.  
172  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Data Acquisition System (DAS) and APICOM  
Figure 7-15:  
DAS Configuration Through a Terminal Emulation Program  
Both procedures are best started by downloading the default DAS configuration, getting  
familiar with its command structure and syntax conventions, and then altering a copy of  
the original file offline before uploading the new configuration.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Whereas the editing, adding and deleting of DAS channels and  
parameters of one channel through the front-panel control buttons can  
be done without affecting the other channels, uploading a DAS  
configuration script to the analyzer through its communication ports will  
erase all data, parameters and channels by replacing them with the new  
DAS configuration. Backup of data and the original DAS configuration is  
advised before attempting any DAS changes.  
173  
06807C DCN6650  
 
Data Acquisition System (DAS) and APICOM  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
174  
06807C DCN6650  
8. REMOTE OPERATION OF THE ANALYZER  
This section provides information needed when using external digital and serial I/O and  
when using Hessen protocol for remote operation. It also provides references to  
communications-related manuals.  
8.1. REMOTE OPERATION USING THE EXTERNAL DIGITAL I/O  
8.1.1. STATUS OUTPUTS  
The status outputs report analyzer conditions via optically isolated NPN transistors,  
which sink up to 50 mA of DC current. These outputs can be used interface with  
devices that accept logic-level digital inputs, such as programmable logic controllers  
(PLC’s). Each Status bit is an open collector output that can withstand up to 40 VDC.  
All of the emitters of these transistors are tied together and available at D.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Most PLC’s have internal provisions for limiting the current that the  
input will draw from an external device. When connecting to a unit that  
does not have this feature, an external dropping resistor must be used  
to limit the current through the transistor output to less than 50 mA. At  
50 mA, the transistor will drop approximately 1.2V from its collector to  
emitter.  
The status outputs are accessed through a 12 pin connector on the analyzer’s rear panel  
labeled STATUS (refer to Figure 3-4). The function of each pin is defined in Table 8-1.  
175  
06807C DCN6650  
     
Remote Operation of the Analyzer  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
STATUS  
1
2
3
4
5
6
7
8
D
+
Figure 8-1: Status Output Connector  
Table 8-1:Status Output Pin Assignments  
CONNECTOR PIN  
STATUS  
CONDITION (ON=CONDUCTING)  
System Ok  
Conc Valid  
High Range  
Zero Cal  
ON if no faults are present.  
1
2
ON if concentration measurement is valid, OFF when invalid.  
ON if unit is in high range of any AUTO range mode.  
ON whenever the instrument is in ZERO calibration mode.  
ON whenever the instrument is in SPAN calibration mode.  
ON whenever the instrument is in DIAGNOSTIC mode.  
Unused  
3
4
Span Cal  
5
Diag Mode  
6
7-8  
The emitters of the transistors on pins 1-8 are bussed together. For most  
applications, this pin should be connected to the circuit ground of the  
receiving device.  
Emitter Bus  
Dc Power  
D
+
+ 5 VDC source, 30 mA maximum (combined rating with Control Inputs)  
The ground from the analyzer’s internal, 5/±15 VDC power supply.  
Digital Ground  
8.1.2. CONTROL INPUTS  
Control inputs allow the user to remotely initiate ZERO and SPAN calibration modes  
are provided through a 10-pin connector labeled CONTROL IN on the analyzer’s rear  
panel. These are opto-isolated, digital inputs that are activated when a 5 VDC signal  
from the “U” pin is connected to the respective input pin.  
176  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Remote Operation of the Analyzer  
Table 8-2:Control Input Pin Assignments  
INPUT  
STATUS  
CONDITION WHEN ENABLED  
Zero calibration mode is activated. The mode field of the display will read  
ZERO CAL R.  
A
External Zero Cal  
Span calibration mode is activated. The mode field of the display will read  
SPAN CAL R.  
B
External Span Cal  
C
D
E
F
Unused  
Unused  
Unused  
Unused  
Digital Ground  
Provided to ground an external device (e.g., recorder).  
DC Power For Input Input for +5 VDC required to activate inputs A - F. This voltage can be taken  
U
+
Pull Ups  
from an external source or from the “+” pin.  
Internal source of +5V which can be used to activate inputs when connected  
to pin U.  
Internal +5v Supply  
There are two methods to activate control inputs. The internal +5V available from the  
“+” pin is the most convenient method (Figure 8-2). However, to ensure that these  
inputs are truly isolated, a separate, external 5 VDC power supply should be used  
CONTROL IN  
A
B
C
D
E
F
U
+
Figure 8-2: Control Inputs with Local 5 V Power Supply  
177  
06807C DCN6650  
   
Remote Operation of the Analyzer  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
CONTROL IN  
A
B
C
D
E
F
U
+
+
5 VDC Power  
Supply  
-
Figure 8-3: Control Inputs with External 5 V Power Supply  
8.2. REMOTE OPERATION USING THE EXTERNAL SERIAL I/O  
8.2.1. TERMINAL OPERATING MODES  
The T100 can be remotely configured, calibrated or queried for stored data through the  
serial ports. As terminals and computers use different communication schemes, the  
analyzer supports two communication modes specifically designed to interface with  
these two types of devices.  
Computer mode is used when the analyzer is connected to a computer with a dedicated  
interface program such as APICOM. More information regarding APICOM can be  
found in later in this section or on the Teledyne API’s website at http://www.teledyne-  
api.com/software/apicom/.  
Interactive mode is used with a terminal emulation programs such as HyperTerminal or  
a “dumb” computer terminal. The commands that are used to operate the analyzer in this  
mode are listed in Table 8-3 and in Appendix A-6.  
8.2.2. HELP COMMANDS IN TERMINAL MODE  
Table 8-3:Terminal Mode Software Commands  
Command  
Function  
Control-T  
Switches the analyzer to terminal mode (echo, edit). If mode flags 1 & 2 are OFF, the interface can be  
used in interactive mode with a terminal emulation program.  
Control-C  
CR  
Switches the analyzer to computer mode (no echo, no edit).  
A carriage return is required after each command line is typed into the terminal/computer. The command  
(carriage return) will not be sent to the analyzer to be executed until this is done. On personal computers, this is achieved  
by pressing the ENTER button.  
BS  
Erases one character to the left of the cursor location.  
(backspace)  
ESC  
Erases the entire command line.  
(escape)  
? [ID] CR  
This command prints a complete list of available commands along with the definitions of their functionality  
to the display device of the terminal or computer being used. The ID number of the analyzer is only  
necessary if multiple analyzers are on the same communications line, such as the multi-drop setup.  
Control-C  
Control-P  
Pauses the listing of commands.  
Restarts the listing of commands.  
178  
06807C DCN6650  
         
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Remote Operation of the Analyzer  
8.2.3. COMMAND SYNTAX  
Commands are not case-sensitive and all arguments within one command (i.e. ID  
numbers, keywords, data values, etc.) must be separated with a space character.  
All Commands follow the syntax:  
X [ID] COMMAND <CR>  
Where:  
X
is the command type (one letter) that defines the type of command. Allowed  
designators are listed in Table 6-25 and Appendix A-6.  
[ID]  
is the analyzer identification number (refer to Section 6.10.1.). Example: the  
Command “? 200” followed by a carriage return would print the list of  
available commands for the revision of software currently installed in the  
instrument assigned ID Number 200.  
COMMANDis the command designator: This string is the name of the command being  
issued (LIST, ABORT, NAME, EXIT, etc.). Some commands may have  
additional arguments that define how the command is to be executed.  
Press? <CR> or refer to Appendix A-6 for a list of available command  
designators.  
<CR>  
is a carriage return. All commands must be terminated by a carriage return  
(usually achieved by pressing the ENTER button on a computer).  
Table 8-4: Command Types  
COMMAND  
COMMAND TYPE  
C
D
L
Calibration  
Diagnostic  
Logon  
T
Test measurement  
Variable  
V
W
Warning  
8.2.4. DATA TYPES  
Data types consist of integers, hexadecimal integers, floating-point numbers, Boolean  
expressions and text strings.  
Integer data are used to indicate integral quantities such as a number of records, a filter  
length, etc. They consist of an optional plus or minus sign, followed by one or more  
digits. For example, +1, -12, 123 are all valid integers.  
Hexadecimal integer data are used for the same purposes as integers. They consist of  
the two characters “0x,” followed by one or more hexadecimal digits (0-9, A-F, a-f),  
which is the ‘C’ programming language convention. No plus or minus sign is permitted.  
For example, 0x1, 0x12, 0x1234abcd are all valid hexadecimal integers.  
Floating-point numbers are used to specify continuously variable values such as  
temperature set points, time intervals, warning limits, voltages, etc. They consist of an  
optional plus or minus sign, followed by zero or more digits, an optional decimal point,  
and zero or more digits. (At least one digit must appear before or after the decimal  
179  
06807C DCN6650  
     
Remote Operation of the Analyzer  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
point.) Scientific notation is not permitted. For example, +1.0, 1234.5678, -0.1, 1 are all  
valid floating-point numbers.  
Boolean expressions are used to specify the value of variables or I/O signals that may  
assume only two values. They are denoted by the keywords ON and OFF.  
Text strings are used to represent data that cannot be easily represented by other data  
types, such as data channel names, which may contain letters and numbers. They consist  
of a quotation mark, followed by one or more printable characters, including spaces,  
letters, numbers, and symbols, and a final quotation mark. For example, “a”, “1”,  
“123abc”, and “()[]<>” are all valid text strings. It is not possible to include a  
quotation mark character within a text string.  
Some commands allow you to access variables, messages, and other items, such as DAS  
data channels, by name. When using these commands, you must type the entire name of  
the item; you cannot abbreviate any names.  
8.2.5. STATUS REPORTING  
Reporting of status messages as an audit trail is one of the three principal uses for the  
RS-232 interface (the other two being the command line interface for controlling the  
instrument and the download of data in electronic format). You can effectively disable  
the reporting feature by setting the interface to quiet mode (refer to Section 6.2.1 and  
Status reports include DAS data (when reporting is enabled), warning messages,  
calibration and diagnostic status messages. Refer to Appendix A-3 for a list of the  
possible messages, and this section for information on controlling the instrument  
through the RS-232 interface.  
8.2.5.1. GENERAL MESSAGE FORMAT  
All messages from the instrument (including those in response to a command line  
request) are in the format:  
X DDD:HH:MM [Id] MESSAGE<CRLF>  
Where:  
X
is a command type designator, a single character indicating the  
message type, as shown in the Table 6-25.  
DDD:HH:MM is the time stamp, the date and time when the message was issued. It  
consists of the Day-of-year (DDD) as a number from 1 to 366, the hour  
of the day (HH) as a number from 00 to 23, and the minute (MM) as a  
number from 00 to 59.  
[ID]  
is the analyzer ID, a number with 1 to 4 digits.  
MESSAGE  
is the message content that may contain warning messages, test  
measurements, DAS reports, variable values, etc.  
<CRLF>  
is a carriage return / line feed pair, which terminates the message.  
The uniform nature of the output messages makes it easy for a host computer to parse  
them into an easy structure. Keep in mind that the front panel display does not give any  
information on the time a message was issued, hence it is useful to log such messages  
180  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Remote Operation of the Analyzer  
for trouble-shooting and reference purposes. Terminal emulation programs such as  
HyperTerminal can capture these messages to text files for later review.  
8.3. REMOTE ACCESS BY MODEM  
The T100 can be connected to a modem for remote access. This requires a cable  
between the analyzer’s COM port and the modem, typically a DB-9F to DB-25M cable  
(available from Teledyne API with P/N WR0000024).  
Once the cable has been connected, check to ensure that the DTE-DCE is in the correct  
position (refer to Section 6.1). Also ensure that the T100 COM port is set for a baud rate  
that is compatible with the modem, which needs to operate with an 8-bit word length  
with one stop bit.  
The first step is to turn on the MODEM ENABLE communication mode (Mode 64,  
Section 6.2.1). Once this is completed, the appropriate setup command line for your  
modem can be entered into the analyzer. The default setting for this feature is:  
AT Y0 &D0 &H0 &I0 S0=2 &B0 &N6 &M0 E0 Q1 &W0  
This string can be altered to match your modem’s initialization and can be up to 100  
characters long.  
181  
06807C DCN6650  
 
Remote Operation of the Analyzer  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To change this setting, access the COMMUNICATIONS Menu (refer to Figure 5-13),  
then press:  
SETUP X.X  
COMMUNICATIONS MENU  
Select which  
COM Port is  
tested  
ID INET COM1 COM2  
EXIT  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
EXIT  
EXIT  
SETUP X.X  
COM1 BAUD RATE:19200  
<SET SET> EDIT  
SETUP X.X  
COM1 MODEM INIT:AT Y&D&H  
EXIT  
<SET SET> EDIT  
ENTR accepts the  
new string and returns  
to the previous menu.  
EXIT ignores the new  
string and returns to  
the previous menu.  
SETUP X.X  
COM1 MODEM INIT:[A]T Y&D&H  
ENTR EXIT  
<CH CH> INS DEL [A]  
Press the [?]  
button repeatedly to cycle through  
the available character set:  
0-9  
INS inserts a  
character before  
the cursor location.  
DEL deletes a  
character at the  
cursor location.  
A-Z  
<CH and CH> move the [ ]  
cursor left and right along the  
text string  
space ’ ~ ! # $ % ^ & * ( ) - _ =  
+[ ] { } < >\ | ; : , . / ?  
Figure 8-4: COMM – Remote Access by Modem  
182  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Remote Operation of the Analyzer  
To initialize the modem, access the COMMUNICATIONS Menu (refer to Figure 5-13),  
then press:  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
COM1 COM2  
Select which  
COM Port is  
tested  
EXIT  
SETUP X.X  
COM1 MODE:0  
SET> EDIT  
EXIT  
SETUP X.X  
COM1 BAUD RATE:19200  
<SET SET> EDIT  
EXIT  
SETUP X.X  
COM1 MODEM INIT:AT Y&D&H  
<SET SET> EDIT  
EXIT  
SETUP X.X  
COM1 INITIALIZE MODEM  
EXIT  
<SET SET> INIT  
SETUP X.X  
INITIALIZING MODEM  
<SET SET> INIT  
EXIT  
EXIT returns to the  
Communications Menu.  
Figure 8-5: COMM – Initialize the Modem  
8.4. COM PORT PASSWORD SECURITY  
In order to provide security for remote access of the T100, a LOGON feature can be  
enabled to require a password before the instrument will accept commands. This is done  
by turning on the SECURITY MODE (refer to Section 5.5). Once the SECURITY  
MODE is enabled, the following items apply.  
A password is required before the port will respond or pass on commands.  
If the port is inactive for one hour, it will automatically logoff, which can also be  
achieved with the LOGOFF command.  
Three unsuccessful attempts to log on with an incorrect password will cause  
subsequent logins to be disabled for 1 hour, even if the correct password is used.  
If not logged on, the only active command is the '?' request for the help screen.  
The following messages will be returned at logon:  
183  
06807C DCN6650  
   
Remote Operation of the Analyzer  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
LOGON SUCCESSFUL - Correct password given  
LOGON FAILED - Password not given or incorrect  
LOGOFF SUCCESSFUL - Connection terminated successfully  
To log on to the T100 analyzer with SECURITY MODE feature enabled, type:  
LOGON 940331  
940331 is the default password. To change the default password, use the variable RS-  
232_PASS issued as follows:  
V RS-232_PASS=NNNNNN  
Where N is any numeral between 0 and 9.  
8.5. ADDITIONAL COMMUNICATIONS DOCUMENTATION  
Table 8-5:Serial Interface Documents  
Interface / Tool  
APICOM  
Document Title  
Part Number  
058130000  
028370000  
Available Online*  
APICOM User Manual  
Detailed description of the DAS  
YES  
YES  
DAS Manual  
* These documents can be downloaded at http://www.teledyne-api.com/manuals/.  
184  
06807C DCN6650  
   
9. CALIBRATION PROCEDURES  
This section describes the calibration procedures for the T100. All of the methods  
described in this section can be initiated and controlled through the COM ports.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
If you are using the T100 for US-EPA controlled monitoring, refer to  
Section 10 for information on the EPA calibration protocol.  
9.1. CALIBRATION PREPARATIONS  
The calibration procedures in this section assume that the analog range and units of  
measure, range mode, and reporting range have already been selected for the analyzer. If  
this has not been done, please do so before continuing (refer to Sections 3.4.4.1 and 5 for  
instructions).  
IMPORTANT  
IMPACT ON READINGS OR DATA  
It is recommended that the LAMP CAL routine (refer to Section 5.9.6) be  
performed prior to all calibration operations.  
This will allow the  
instrument to account for minor changes due to aging of the UV lamp.  
9.1.1. REQUIRED EQUIPMENT, SUPPLIES, AND EXPENDABLES  
Calibration of the T100 analyzer requires a certain amount of equipment and supplies.  
These include, but are not limited to, the following:  
Zero-air source  
Sulfur dioxide span gas source  
Gas lines - all gas line materials should be Teflon-type or glass.  
A recording device such as a strip-chart recorder and/or data logger (optional).  
Traceability Standards  
185  
06807C DCN6650  
     
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
9.1.1.1. ZERO AIR  
Zero air is similar in chemical composition to the Earth’s atmosphere but scrubbed of all  
components that might affect the analyzer’s readings. For SO2 measuring devices, zero  
air should be similar in composition to the sample gas but devoid of SO2 and large  
amounts of hydrocarbons, nitrogen oxide (NO) and with a water vapor dew point  
-15° C.  
Devices such as the API Model 701 zero air generator that condition ambient air by  
drying and removal of pollutants are available. We recommend this type of device for  
generating zero air.  
9.1.1.2. SPAN GAS  
Span gas is specifically mixed to match the chemical composition of the gas being  
measured at about 80% of the desired full measurement range. For example, if the  
measurement range is 500 ppb, the span gas should have an SO2 concentration of about  
400 ppb.  
Span gases should be certified to a specific accuracy to ensure accurate calibration of the  
analyzer. Typical gas accuracy for SO2 gases is 1 or 2 %.  
If using a secondary dilution source with zero air through a calibrator, then use a  
bottle of SO2 balanced nitrogen.  
If calibrator and zero air source are not available, then use a bottle of SO2 balanced  
air.  
Teledyne API offers an IZS option operating with permeation devices. The accuracy of  
these devices is about ±5%. Whereas this may be sufficient for quick, daily calibration  
checks, we strongly recommend using certified SO2 span gases for accurate calibration.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Applications requiring US-EPA equivalency do not allow permeation  
devices to be used as sources of span gas for calibration of the analyzer.  
9.1.1.3. CALIBRATION GAS STANDARDS AND TRACEABILITY  
All equipment used to produce calibration gases should be verified against standards of  
the National Institute for Standards and Technology (NIST). To ensure NIST  
traceability, we recommend acquiring cylinders of working gas that are certified to be  
traceable to NIST Standard Reference Materials (SRM). These are available from a variety  
of commercial sources.  
Table 9-1: NIST-SRM's Available for Traceability of SO2 Calibration Gases  
NOMINAL  
NIST-SRM4  
TYPE  
CONCENTRATION  
1693a  
1694a  
1661a  
Sulfur dioxide in N2  
Sulfur dioxide in N2  
Sulfur dioxide in N2  
50 ppm  
100 ppm  
500 ppm  
186  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
9.1.2. DATA RECORDING DEVICES  
A strip chart recorder, data acquisition system or digital data acquisition system should  
be used to record data from the T100’s serial or analog outputs. If analog readings are  
used, the response of the recording system should be checked against a NIST traceable  
voltage source or meter. Data recording device should be capable of bi-polar operation  
so that negative readings can be recorded. For electronic data recording, the T100  
provides an internal data acquisition system (DAS), which is described in detail in  
Section 0.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Be aware of the difference between Calibration and Calibration Check:  
Pressing the ENTR button during the following procedure re-calculates  
the stored values for OFFSET and SLOPE and alters the instrument’s  
calibration. If you wish to perform a calibration CHECK, do not press  
ENTR and refer to Section 9.3.  
9.2. MANUAL CALIBRATION  
The following section describes the basic method for manually calibrating the T100 SO2  
analyzer.  
STEP ONE: Connect the sources of zero air and span gas as shown below.  
187  
06807C DCN6650  
   
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
MODEL 701  
Zero Air  
Generator  
Source of  
SAMPLE Gas  
MODEL 700  
Gas Dilution  
Calibrator  
(with Ozone  
(Remove  
during  
calibration)  
Bench Option)  
Calibrated  
SO2 GAS  
(At high  
Chassis  
SAMPLE  
EXHAUST  
concentration)  
OR  
MODEL 701  
Zero Air  
Generator  
Source of  
SAMPLE Gas  
(Remove  
during  
calibration)  
3-way  
Valve  
Needle valve  
to control  
flow  
Calibrated  
Chassis  
SAMPLE  
SO2 GAS  
(At high  
EXHAUST  
concentration)  
Figure 9-1: Setup for Manual Calibration without Z/S valve or IZS Option (Step 1)  
STEP TWO: Set the expected SO2 span gas concentrations. In this example the  
instrument is set for single (SNGL) range mode with a reporting range span of 500 ppb.  
188  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
This sequence causes the  
analyzer to prompt for the  
expected SO2 span  
concentration.  
The SO2 span concentration  
values automatically default  
to 450.0 Conc.  
M-P CAL  
RANGE = 500.000 PPB  
SO2 =XXX.X  
EXIT  
To change this value to the  
actual concentration of the  
span gas, enter the number  
by pressing the each digit  
until the expected value  
appears.  
< TST TST > ZERO  
CONC  
EXIT ignores the new setting  
and returns to the previous  
display.  
M-P CAL  
SO2 SPAN CONC: 450.0 Conc  
.0 ENTR EXIT  
The span gas concentration  
should always be 90% of the  
selected reporting range  
ENTR accepts the new setting  
0
0
0
4
5
and returns to the  
previous display..  
EXAMPLE  
Reporting range = 800 ppb  
Span gas conc.= 720 ppb  
Figure 9-2: Setup for Manual Calibration without Z/S valve or IZS Option (Step 2)  
STEP THREE: Perform the zero/span calibration:  
189  
06807C DCN6650  
 
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SAMPLE  
RANGE = 500.0 PPB  
SO2 =XXX.X  
SETUP  
Set the Display to show the  
SO2 STB test function.  
This function calculates the  
stability of the SO2  
< TST TST > CAL  
measurement  
SAMPLE  
RANGE = 500.0 PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
ACTION:  
Allow zero gas to enter the sample port at the  
rear of the instrument.  
Wait until SO2 STB  
falls below 0.5 ppb.  
This may take several  
minutes.  
M-P CAL  
SO2 STB=X.XXX PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
M-P CAL  
SO2 STB=X.XXX PPB  
CONC  
SO2 =XXX.X  
EXIT  
< TST TST > ZERO  
Press ENTR to changes the  
OFFSET & SLOPE values for the  
SO2 measurements.  
M-P CAL  
SO2 STB=X.XXX PPB SO2 =XXX.X  
< TST TST > ENTR  
CONC  
EXIT  
Press EXIT to leave the calibration  
unchanged and return to the  
previous menu.  
ACTION:  
Allow span gas to enter the sample port at the  
rear of the instrument.  
The value of  
SO2 STB may jump  
significantly.  
Wait until it falls back  
below 0.5 ppb.  
This may take several  
minutes.  
M-P CAL  
SO2 STB=X.XXX PPB  
SO2 =XXX.X  
The SPAN button now  
appears during the  
transition from zero to span.  
< TST TST >  
M-P CAL  
SPAN CONC  
EXIT  
You may see both the  
SPAN and the ZERO  
buttons.  
Press ENTR to change the  
OFFSET & SLOPE values for the  
SO2 measurements.  
RANGE = 500.0 PPB  
SO2 =XXX.X  
Press EXIT to leave the calibration  
unchanged and return to the  
previous menu.  
< TST TST > ENTR SPAN CONC  
EXIT  
M-P CAL  
RANGE = 500.0 PPB  
CONC  
SO2 =XXX.X  
EXIT returns to the main  
SAMPLE display  
< TST TST > ENTR  
EXIT  
Figure 9-3: Setup for Manual Calibration without Z/S valve or IZS Option (Step 3)  
190  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
IMPORTANT  
IMPACT ON READINGS OR DATA  
If the ZERO or SPAN buttons are not displayed during zero or span  
calibration, the measured concentration value is too different from the  
expected value and the analyzer does not allow zeroing or spanning the  
instrument. Refer to Section 12.4 for more information on calibration  
problems.  
9.3. MANUAL CALIBRATION CHECKS  
Informal calibration checks will only evaluate the analyzer’s response curve, but do not  
alter it. It is recommended as a regular maintenance item, to perform calibration checks  
in order to monitor the analyzer’s performance. To carry out a calibration check rather  
than a full calibration, perform the following procedures:  
STEP ONE: Connect the sources of zero air and span gas as shown in Figure 9-1.  
STEP TWO: Perform the zero/span calibration check procedure:  
ACTION:  
Supply the instrument with zero gas.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
Scroll the display to the  
STABIL test function.  
< TST TST > CAL  
SAMPLE  
STABIL=XXX.X PPB  
SO2=XXX.X  
SETUP  
< TST TST > CAL  
Wait until  
STABIL is  
below 0.5 ppb.  
This may take  
several minutes.  
ACTION:  
Record the SO2  
concentration  
reading.  
SAMPLE  
STABIL=XXX.X PPB  
SO2=XXX.X  
< TST TST > CAL  
SETUP  
The value of  
STABIL may jump  
significantly.  
ACTION:  
Supply span gas to the instrument  
Wait until it falls  
below 0.5 ppb. This  
may take several  
minutes.  
ACTION:  
Record the SO2  
concentration  
reading.  
SAMPLE  
STABIL=XXX.X PPB  
SO2=XXX.X  
SETUP  
< TST TST > CAL  
The SPAN button appears during the transition from zero to  
span. You may see both the SPAN and the ZERO buttons.  
Figure 9-4: Setup for Manual Calibration Checks  
191  
06807C DCN6650  
   
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
9.4. MANUAL CALIBRATION WITH ZERO/SPAN VALVES  
Zero and Span calibrations using the Zero/Span Valve option are similar to that  
described in Section 7.2, except that:  
Zero air and span gas are supplied to the analyzer through the zero gas and span gas  
inlets rather than through the sample inlet.  
The zero and cal operations are initiated directly and independently with dedicated  
buttons (CALZ and CALS)  
STEP ONE: Connect the sources of zero air and span gas to the respective ports on the  
rear panel (refer to Figure 3-1) as shown below.  
Source of  
SAMPLE Gas  
MODEL 700  
Gas Dilution Calibrator  
(with O3 generator option)  
VENT if input is pressurized  
Chassis  
SAMPLE  
EXHAUST  
SPAN 1  
External Zero  
Air Scrubber  
ZERO AIR  
MODEL 701  
Zero Air  
Generator  
Calibrated  
SO2 Gas  
(At high  
Filter  
concentration)  
VENT  
Needle valve  
to control flow  
Figure 9-5: Setup for Manual Calibration with Z/S Valve Option Installed (Step 1)  
192  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
STEP TWO: Set the expected SO2 span gas value:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
This sequence causes the  
analyzer to prompt for the  
expected SO2 span  
The SO2 span concentration  
values automatically default  
to 450.0 Conc.  
concentration.  
M-P CAL  
RANGE = 500.000 PPB  
SO2 =XXX.X  
EXIT  
To change this value to the  
actual concentration of the  
span gas, enter the number  
by pressing each digit until  
the expected value appears.  
< TST TST > ZERO  
CONC  
The span gas concentration  
should always be 90% of the  
selected reporting range  
EXIT ignores the new setting  
and returns to the previous  
display.  
M-P CAL  
SO2 SPAN CONC: 450.0 Conc  
.0 ENTR EXIT  
ENTR accepts the new setting  
0
0
0
4
5
EXAMPLE  
Reporting range = 800 ppb  
Span gas conc.= 720 ppb  
and returns to the  
previous display..  
Figure 9-6: Setup for Manual Calibration with Z/S Valve Option Installed (Step 2)  
193  
06807C DCN6650  
 
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Step Three: Perform the calibration or calibration check according to the following  
flow chart:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
Scroll the display to the  
STABIL test function. This  
function calculates the stability  
of the SO2 measurements.  
SAMPLE  
STABIL=XXX.X PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
ACTION:  
Allow zero gas to enter the sample port at the  
rear of the instrument.  
Wait until STABIL  
falls below 0.05  
ppb. This may  
take several  
Analyzer enters ZERO  
CAL mode.  
ZERO CAL M  
STABIL=XXX.X PPB  
SO2 =XXX.X  
minutes.  
< TST TST > ZERO  
CONC  
ZERO CAL M  
STABIL=XXX.X PPB  
SO2 =XXX.X  
EXIT  
EXIT returns the unit to  
SAMPLE mode without  
changing the calibration  
values.  
< TST TST > ENTR  
CONC  
Pressing ENTR changes the calibration of the instrument.  
ZERO CAL M  
STABIL=XXX.X PPB  
CONC  
SO2 =XXX.X  
< TST TST > ZERO  
EXIT  
ZERO CAL M  
STABIL=XXX.X PPB  
SO2=X.XX X  
SETUP  
< TST TST > CAL CALZ CALS  
The value of STABIL  
may jump  
significantly. Wait  
until it falls below 0.5  
ppb. This may take  
several minutes.  
Analyzer enters SPAN  
CAL Mode.  
SPAN CAL M  
STABIL=XXX.X PPB  
CONC  
SO2 =XXX.X  
EXIT  
< TST TST > SPAN  
SPAN CAL M  
STABIL=XXX.X PPB  
CONC  
SO2 =XXX.X  
EXIT returns to the  
SAMPLE mode without  
changing the calibration  
values.  
< TST TST > ENTR  
EXIT  
Pressing ENTR changes the calibration of the instrument.  
If either the ZERO or  
SPAN button fails to  
appear, see Chapter 11  
for troubleshooting tips.  
EXIT returns to the  
main SAMPLE  
display  
SPAN CAL M  
STABIL=XXX.X PPB  
CONC  
SO2 =XXX.X  
EXIT  
< TST TST > SPAN  
Figure 9-7: Setup for Manual Calibration with Z/S Valve Option Installed (Step 3)  
194  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
9.5. MANUAL CALIBRATION WITH IZS OPTION  
Under the best conditions, the accuracy off the SO2 effusion rate of the IZS option’s  
permeation tube is about ±5%. This can be subject to significant amounts of drift as the  
tube ages and the amount of SO2 contained in the tube is depleted. Whereas this may be  
sufficient for informal calibration checks, it is not adequate for formal calibrations and is  
not approved for use by the US EPA as a calibration source.  
Therefore, for formal calibrations of an instrument with an IZS option installed the  
following provisions must be followed.  
Zero air and span gas must be supplied to the analyzer through the sample gas inlet  
as depicted in Figure 9-1 of Section 9.2.  
The calibration procedure must be initiated using the CAL button, not the CALZ or  
CALS buttons, using the procedure defined in Section 9.2.  
Using the CAL button does not activate the zero/span or sample/cal valves of the  
IZS option, thus allowing the introduction of zero air and sample gas through the  
sample port from more accurate, external sources such as a calibrated bottle of SO2  
or a Model T700 Dilution Calibrator.  
SAMPLE  
RANGE = 500.000 PPB  
CALZ CALS  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
Use for formal  
calibration  
operations.  
Use only for  
informal calibration  
checks.  
Figure 9-8: Manual Calibration with IZS Option  
9.6. MANUAL CALIBRATION CHECKS WITH IZS OR ZERO/SPAN  
VALVES  
Zero and span checks using the zero/span valve or IZS option are similar to that  
described in Section 9.3, with the following exceptions:  
On units with an IZS option installed, zero air and span gas are supplied to the  
analyzer through the zero gas inlet and from ambient air.  
On units with a zero/span valve option installed, zero air and span gas are supplied  
to the analyzer through the zero gas and span gas inlets from two different sources.  
The zero and calibration operations are initiated directly and independently with  
dedicated buttons CALZ and CALS.  
195  
06807C DCN6650  
     
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To perform a manual calibration check of an analyzer with a zero/span valve or IZS  
Option installed, use the following method:  
STEP ONE: Connect the sources of Zero Air and Span Gas as shown below.  
Source of  
SAMPLE Gas  
MODEL 700  
Gas Dilution Calibrator  
(with O3 generator option)  
VENT if input is pressurized  
Chassis  
SAMPLE  
EXHAUST  
SPAN 1  
Filter  
External Zero  
Air Scrubber  
ZERO AIR  
MODEL 701  
Zero Air  
Generator  
Calibrated  
SO2 gas  
(At high  
concentration)  
VENT  
Needle valve  
to control flow  
Internal Zero/Span Option (IZS) – Option 51A  
Source of  
SAMPLE Gas  
VENT if input is pressurized  
Chassis  
SAMPLE  
EXHAUST  
Ambient  
Air  
ZERO AIR  
Figure 9-9: Setup for Manual Calibration Check with Z/S Valve or IZS Option (Step 1)  
196  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
STEP TWO: Perform the zero/span check.  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
Scroll to the STABIL test  
< TST TST > CAL CALZ CALS  
function.  
SAMPLE  
STABIL=XXX.X PPB  
SO2 =XXX.X  
SETUP  
Wait until STABIL  
falls below 0.5  
ppb. This may  
take several  
< TST TST > CAL CALZ CALS  
ACTION:  
Record the  
SO2 readings  
presented in the  
upper right corner of  
the display.  
minutes.  
ZERO CAL M  
STABIL=XXX.X PPB SO2 =XXX.X  
CONC EXIT  
< TST TST > ZERO  
SAMPLE  
STABIL=XXX.X PPB SO2 =XXX.X  
ACTION:  
Record the  
SO2 readings  
presented in the  
upper right corner of  
the display.  
The value of STABIL  
may jump  
< TST TST > CAL CALZ CALS  
SETUP  
significantly. Wait  
until STABIL falls  
below 0.5 ppb. This  
may take several  
minutes.  
SPAN CAL M  
STABIL=XXX.X PPB  
SO2 =XXX.X  
EXIT  
EXIT returns to the main  
< TST TST > ZERO SPAN CONC  
SAMPLE display  
Figure 9-10:  
Setup for Manual Calibration Check with Z/S Valve or IZS Option (Step 2)  
197  
06807C DCN6650  
 
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
9.7. MANUAL CALIBRATION IN DUAL OR AUTO REPORTING  
RANGE MODES  
When the analyzer is in either Dual or Auto Range modes the user must run a separate  
calibration procedure for each range. After pressing the CAL, CALZ or CALS buttons  
the user is prompted for the range that is to be calibrated as seen in the CALZ example  
below:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
SAMPLE  
RANGE TO CAL: LOW  
ENTR  
LOW HIGH  
SETUP  
SETUP  
SAMPLE  
RANGE TO CAL: HIGH  
ENTR  
WAIT 10  
MINUTES  
Or until the  
reading  
LOW HIGH  
Analyzer enters  
ZERO CAL Mode  
stabilizes and  
the ZERO button  
is displayed  
Refer to Table 6-1 for  
Z/S Valve States  
during this operating  
mode.  
ZERO CAL M  
RANGE = 500.000 PPB SO2 =XXX.X  
CONC EXIT  
< TST TST > ZERO  
Continue Calibration as per  
Standard Procedure  
Figure 9-11:  
Manual Calibration in Dual/Auto Reporting Range Modes  
Once this selection is made, the calibration procedure continues as previously described  
in Sections 7.2 through 7.6. The other range may be calibrated by starting over from the  
main SAMPLE display.  
9.7.1. CALIBRATION WITH REMOTE CONTACT CLOSURES  
Contact closures for controlling calibration and calibration checks are located on the rear  
panel CONTROL IN connector. Instructions for setup and use of these contacts can be  
found in Section 8.1.2.  
When the appropriate contacts are closed for at least 5 seconds, the instrument switches  
into zero, low span or high span mode and the internal zero/span valves will be  
automatically switched to the appropriate configuration. The remote calibration contact  
closures may be activated in any order. It is recommended that contact closures remain  
closed for at least 10 minutes to establish a reliable reading; the instrument will stay in  
the selected mode for as long as the contacts remain closed.  
198  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
If contact closures are used in conjunction with the analyzer’s AutoCal (refer to Section  
9.8) feature and the AutoCal attribute CALIBRATE is enabled, the T100 will not re-  
calibrate the analyzer until the contact is opened. At this point, the new calibration  
values will be recorded before the instrument returns to SAMPLE mode.  
If the AutoCal attribute CALIBRATE is disabled, the instrument will return to  
SAMPLE mode, leaving the instrument’s internal calibration variables unchanged.  
9.8. AUTOMATIC CALIBRATION (AUTOCAL)  
The AutoCal system allows unattended, periodic operation of the zero/span valve  
options by using the analyzer’s internal time of day clock. AutoCal operates by  
executing user-defined sequences to initiate the various calibration modes of the  
analyzer and to open and close valves appropriately. It is possible to program and run up  
to three separate sequences (SEQ1, SEQ2 and SEQ3). Each sequence can operate in  
one of three modes or be disabled.  
Table 9-2: AutoCal Modes  
MODE  
DISABLED  
ZERO  
ACTION  
Disables the sequence  
Causes the sequence to perform a zero calibration or check  
ZERO-SPAN  
Causes the sequence to perform a zero and span concentration calibration or  
check  
SPAN  
Causes the sequence to perform a span concentration calibration or check  
Each mode has seven setup parameters (Table 9-3) that control operational details of the  
sequence.  
Table 9-3: AutoCal Attribute Setup Parameters  
PARAMETER  
Timer Enabled  
Starting Date  
Starting Time  
Delta Days  
ACTION  
Turns on the Sequence timer  
Sequence will operate on Starting Date  
Sequence will operate at Starting Time1, 2  
Number of days to skip between each sequence  
Incremental delay on each Delta Day that the sequence starts.  
Duration of the sequence in minutes  
Delta Time  
Duration  
Enable to do dynamic zero/span calibration, disable to do a cal check  
only. This must be set to OFF for units used in US EPA applications  
and with IZS option installed.  
Calibrate  
1 The programmed STARTING_TIME must be a minimum of 5 minutes later than the real  
time clock (refer to Section 6.6 for setting real time clock).  
2 Avoid setting two or more sequences at the same time of the day. Any new sequence  
which is initiated whether from a timer, the COMM ports, or the contact closure inputs will  
override any sequence which is in progress.  
Note  
If at any time an inapplicable entry is selected (Example: Delta Days > 367)  
the ENTR button will disappear from the display.  
199  
06807C DCN6650  
     
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
The CALIBRATE attribute must always be set to OFF for analyzers used in  
US EPA controlled applications that have IZS option installed.  
Note  
Calibration of instruments used in US EPA related applications should  
only be performed using external sources of zero air and span gas with an  
accuracy traceable to EPA or NIST standards and supplied through the  
analyzer’s sample port (refer to Section 9.2).  
The following example sets Sequence 2 to carry out a zero-span calibration every other  
day starting at 01:00 on September 4, 2002, lasting 15 minutes. This sequence will start  
0.5 hours later each day.  
Table 9-4: Example Auto-Cal Sequence  
MODE / ATTRIBUTE  
SEQUENCE  
VALUE  
COMMENT  
2
ZERO-SPAN  
ON  
Define Sequence #2  
MODE  
Select Zero and Span Mode  
Enable the timer  
TIMER ENABLE  
STARTING DATE  
STARTING TIME  
DELTA DAYS  
DELTA TIME  
DURATION  
Sept. 4, 2002  
01:00  
Start after Sept 4, 2002  
First Span starts at 01:00  
Do Sequence #2 every other day  
Do Sequence #2 0.5 h later each day  
Operate Span valve for 15 min  
2
00:30  
15.0  
CALIBRATE  
ON  
The instrument will re-set the slope and offset  
values for the SO2 channel at the end of the AutoCal  
sequence  
200  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
To program the sample sequence shown in Table 9-4:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
SETUP C.4 STARTING TIME:14:15  
<SET SET> EDIT  
< TST TST > CAL CALZ CZLS  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
SETUP C.4  
DELTA DAYS: 1  
CFG ACAL DAS RNGE PASS CLK MORE EXIT  
<SET SET> EDIT  
EXIT  
Press  
number  
buttons to  
set  
number of  
days  
between  
procedures  
(1-367)  
SETUP X.X SEQ 1) DISABLED  
SETUP C.4 DELTA DAYS: 1  
NEXT MODE  
EXIT  
EXIT  
0
0
2
ENTR EXIT  
SETUP X.X SEQ 2) DISABLED  
SETUP C.4 DELTA DAYS:2  
PREV NEXT MODE  
<SET SET> EDIT  
EXIT  
SETUP X.X MODE: DISABLED  
SETUP C.4 DELTA TIME00:00  
NEXT  
ENTR EXIT  
ENTR EXIT  
ENTR EXIT  
<SET SET> EDIT  
EXIT  
ENTR EXIT  
EXIT  
Press  
number  
buttons to set  
delay time for  
each iteration  
of the  
sequence:  
HH:MM  
(0 – 24:00)  
SETUP X.X MODE: ZERO  
SETUP C.4 DELTA TIME: 00:00  
PREV NEXT  
0
0
:3  
0
SETUP X.X MODE: ZERO–SPAN  
SETUP C.4 DELTA TIEM:00:30  
PREV NEXT  
<SET SET> EDIT  
SETUP X.X SEQ 2) ZERO–SPAN, 1:00:00  
SETUP C.4 DURATION:15.0 MINUTES  
PREV NEXT MODE SET  
EXIT  
EXIT  
Press  
number  
buttons to  
set  
duration for  
each  
iteration of  
the  
sequence:  
Set in  
<SET SET> EDIT  
EXIT  
ENTR EXIT  
EXIT  
Default  
value is  
ON  
SETUP X.X TIMER ENABLE: ON  
SETUP C.4 DURATION 15.0MINUTES  
SET> EDIT  
3
0
.0  
Decimal  
minutes  
from  
SETUP X.X STARTING DATE: 01–JAN–02  
SETUP C.4 DURATION:30.0 MINUTES  
<SET SET> EDIT  
EXIT  
0.1 – 60.0  
<SET SET> EDIT  
Press number  
buttons to set  
day, month &  
year:  
SETUP X.X STARTING DATE: 01–JAN–02  
SETUP C.4  
CALIBRATE: OFF  
0
4
SEP  
0
3
ENTR EXIT  
<SET SET> EDIT  
EXIT  
ENTR EXIT  
EXIT  
Format :  
DD-MON-Y  
Y
SETUP X.X STARTING DATE: 04–SEP–03  
Toggle  
between  
Off and  
ON  
SETUP C.4  
ON  
CALIBRATE: OFF  
<SET SET> EDIT  
EXIT  
EXIT  
EXIT  
SETUP C.4 STARTING DATE: 04–SEP–03  
SETUP C.4  
CALIBRATE: ON  
<SET SET> EDIT  
<SET SET> EDIT  
SETUP C.4 STARTING TIME:00:00  
Press number  
buttons to set  
time:  
SETUP C.4 SEQ 2) ZERO–SPAN, 2:00:30  
EXIT returns  
to the SETUP  
Menu  
<SET SET> EDIT  
PREV NEXT MODE SET  
EXIT  
Format : HH:MM  
Figure 9-12:  
AUTO CAL – User Defined Sequence  
201  
06807C DCN6650  
 
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
With dynamic calibration turned on, the state of the internal setup variables  
DYN_SPAN and DYN_ZERO is set to ON and the instrument will reset the slope and  
offset values for the SO2 response each time the AutoCal program runs. This continuous  
re-adjustment of calibration parameters can often mask subtle fault conditions in the  
analyzer. It is recommended that, if dynamic calibration is enabled, the analyzer’s test  
functions, slope and offset values be checked frequently to assure high quality and  
accurate data from the instrument.  
9.9. CALIBRATION QUALITY  
After completing one of the calibration procedures described above, it is important to  
evaluate the analyzer’s calibration SLOPE and OFFSET parameters. These values  
describe the linear response curve of the analyzer. The values for these terms, both  
individually and relative to each other, indicate the quality of the calibration. To perform  
this quality evaluation, you will need to record the values of both test functions (refer to  
Section 4.1.1 or Appendix A-3), all of which are automatically stored in the DAS  
channel CALDAT for data analysis, documentation and archival.  
Ensure that these parameters are within the limits listed in the following Table.  
Table 9-5: Calibration Data Quality Evaluation  
FUNCTION  
SLOPE  
MINIMUM VALUE  
-0.700  
OPTIMUM VALUE  
MAXIMUM VALUE  
1.300  
1.000  
n/a  
OFFS  
50.0 mV  
250.0 mV  
These values should not be significantly different from the values recorded on the  
Teledyne API Final Test and Validation Data sheet that was shipped with your  
instrument. If they are, refer to troubleshooting in Section 12.  
202  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
9.10. CALIBRATION OF OPTIONAL SENSORS  
This section presents calibration procedures for the O2 sensor option and for the CO2  
sensor option.  
9.10.1. O2 SENSOR CALIBRATION  
Calibration begins with connecting the zero and span gases, then setting the  
concentration values.  
9.10.1.1. O2 CALIBRATION SETUP  
Bottled gases are connected as follows:  
Figure 9-13:  
O2 Sensor Calibration Set Up  
O2 SENSOR ZERO GAS: Teledyne API recommends using pure N2 when calibrating  
the zero point of your O2 sensor option.  
O2 SENSOR SPAN GAS: Teledyne API recommends using 20.9% O2 in N2 when  
calibration the span point of your O2 sensor.  
9.10.1.2. SET O2 SPAN GAS CONCENTRATION  
Set the expected O2 span gas concentration.  
This should be equal to the percent concentration of the O2 span gas of the selected  
reporting range (default factory setting = 20.9%; the approximate O2 content of ambient  
air).  
203  
06807C DCN6650  
     
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 9-14:  
O2 Span Gas Concentration Set Up  
204  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
9.10.1.3. ACTIVATE O2 SENSOR STABILITY FUNCTION  
To change the stability test function from SO2 concentration to the O2 sensor output,  
press:  
Figure 9-15:  
Activate O2 Sensor Stability Function  
IMPACT ON READINGS OR DATA  
IMPORTANT  
Use the same procedure to reset the STB test function to SO2 when the  
O2 calibration procedure is complete.  
205  
06807C DCN6650  
   
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
9.10.1.4. O2 ZERO/SPAN CALIBRATION  
To perform the zero/span calibration procedure:  
Figure 9-16:  
O2 Zero/Span Calibration  
206  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
9.10.2. CO2 SENSOR CALIBRATION  
Calibration begins with connecting the zero and span gases, then setting the  
concentration values.  
9.10.2.1. CO2 CALIBRATION SETUP  
Bottled gases are connected as follows:  
Source of  
(Remove during  
calibration)  
NO  
NC  
COM  
3-way  
Chassis  
Valve  
Manual  
Control Valve  
Figure 9-17:  
CO2 Sensor Calibration Set Up  
CO2 SENSOR ZERO GAS: Teledyne API recommends using pure N2 when calibration  
the zero point of your CO2 sensor option.  
CO2 SENSOR SPAN GAS: Teledyne API recommends using 16% CO2 in N2 when  
calibration the span point of your CO2 sensor is 20%.  
207  
06807C DCN6650  
   
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
9.10.2.2. SET CO2 SPAN GAS CONCENTRATION  
Set the expected CO2 span gas concentration.  
This should be equal to the percent concentration of the CO2 span gas of the selected  
reporting range (default factory setting = 12%).  
Figure 9-18:  
CO2 Span Gas Concentration Setup  
208  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibration Procedures  
9.10.2.3. ACTIVATE CO2 SENSOR STABILITY FUNCTION  
To change the stability test function from SO2 concentration to the CO2 sensor output,  
press:  
Figure 9-19:  
Activate CO2 Sensor Stability Function  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Use the same procedure to reset the STB test function to SO2 when the  
CO2 calibration procedure is complete.  
209  
06807C DCN6650  
   
Calibration Procedures  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
9.10.2.4. CO2 ZERO/SPAN CALIBRATION  
To perform the zero/span calibration procedure:  
Figure 9-20:  
CO2 Zero/Span Calibration  
210  
06807C DCN6650  
 
10. EPA PROTOCOL CALIBRATION  
10.1. CALIBRATION REQUIREMENTS  
If the T100 is to be used for EPA SLAMS monitoring, it must be calibrated in  
accordance with the instructions in this section.  
In order to insure that high quality, accurate measurements are obtained at all times, the  
T100 must be calibrated prior to use. A quality assurance program centered on this  
aspect and including attention to the built-in warning features of the T100 , periodic  
inspection, regular zero/span checks and routine maintenance is paramount to achieving  
this.  
The US EPA strongly recommends obtaining a copy of the Quality Assurance  
Handbook for Air Pollution Measurement Systems, Volume II, Part I (abbreviated Q.A.  
Handbook Volume II).  
Special attention should be paid to Section 2.9 of the EPA handbook which deals with  
fluorescence based SO2 analyzers and upon which most of this section is based. Specific  
regulations regarding the use and operation of ambient sulfur dioxide analyzers can be  
found in 40 CFR 50 and 40 CFR 58.  
10.1.1. CALIBRATION OF EQUIPMENT  
In general, calibration is the process of adjusting the gain and offset of the T100 against  
some recognized standard. The reliability and usefulness of all data derived from any  
analyzer depends primarily upon its state of calibration. In this section the term dynamic  
calibration is used to express a multipoint check against known standards and involves  
introducing gas samples of known concentration into the instrument in order to adjust  
the instrument to a predetermined sensitivity and to produce a calibration relationship.  
This relationship is derived from the instrumental response to successive samples of  
different known concentrations. As a minimum, three reference points and a zero point  
are recommended to define this relationship. The true values of the calibration gas must  
be traceable to NIST-SRM (refer to Table 9-1).  
All monitoring instrument systems are subject to some drift and variation in internal  
parameters and cannot be expected to maintain accurate calibration over long periods of  
time. Therefore, it is necessary to dynamically check the calibration relationship on a  
predetermined schedule. Zero and span checks must be used to document that the data  
remains within control limits. These checks are also used in data reduction and  
validation. Table 10-1 summarizes the initial quality assurance activities for calibrating  
equipment. Table 10-2 is a matrix for the actual dynamic calibration procedure.  
211  
06807C DCN6650  
     
EPA Protocol Calibration  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Calibrations should be carried out at the field monitoring site. The Analyzer should be in  
operation for at least several hours (preferably overnight) before calibration so that it is  
fully warmed up and its operation has stabilized. During the calibration, the T100 should  
be in the CAL mode, and therefore sample the test atmosphere through all components  
used during normal ambient sampling and through as much of the ambient air inlet  
system as is practicable. If the instrument will be used in more than one range (i.e.  
DUAL OR AUTO ranges), it should be calibrated separately on each applicable range.  
Calibration documentation should be maintained with each analyzer and also in a central  
backup file.  
Table 10-1: Activity Matrix for Calibration Equipment & Supplies  
ACTION IF  
REQUIREMENTS ARE NOT  
MET  
EQUIPMENT &  
SUPPLIES  
FREQUENCY AND METHOD  
OF MEASUREMENT  
ACCEPTANCE LIMITS  
Recorder  
Compatible with output  
signal of analyzer; min.  
chart width of 150 mm (6 in)  
is recommended  
Check upon receipt  
Return equipment to supplier  
Sample line and  
manifold  
Constructed of PTFE or  
glass  
Check upon receipt  
Return equipment to supplier  
Calibration equipment Meets guidelines of  
reference 1 and Section  
Refer to Section 2.3.9 (Q.A.  
Handbook)  
Return equipment/ supplies  
to supplier or take corrective  
action  
2.3.2 (Q.A. Handbook)  
Working standard SO2 Traceable to NIST-SRM  
Analyzed against NIST-SRM; Obtain new working  
cylinder gas or SO2  
permeation tube  
meets limits in traceability  
protocol for accuracy and  
stability (refer to Section  
2.0.7, Q.A. Handbook)  
refer to protocol in Section  
2.0.7, Q.A. Handbook  
standard and check for  
traceability  
Zero air  
Clean dry ambient air, free Refer to Section 2.9.2 (Q.A.  
of contaminants that cause Handbook)  
detectable response with  
Obtain air from another  
source or regenerate.  
the SO2 analyzer.  
Record form  
Develop standard forms  
N/A  
Revise forms as appropriate  
Audit equipment  
Must not be the same as  
used for calibration  
System must be checked out Locate problem and correct  
against known standards or return to supplier  
212  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
EPA Protocol Calibration  
Table 10-2: Activity Matrix for Calibration Procedure  
ACTION IF  
REQUIREMENTS ARE NOT  
MET  
EQUIPMENT &  
SUPPLIES  
FREQUENCY AND METHOD  
ACCEPTANCE LIMITS  
OF MEASUREMENT  
Calibration gases  
NIST traceable  
Assayed against an NIST-  
SRM semi-annually, Sec.  
2.0.7, (Q.A. Handbook)  
Working gas standard is  
unstable, and/or  
measurement method is out  
of control; take corrective  
action such as obtaining new  
calibration gas.  
Dilution gas  
Zero air, free of  
contaminants  
Refer to Section 2.9.2 (Q.A.  
Manual)  
Return to supplier or take  
appropriate action with  
generation system  
Multi-point calibration  
Use calibration  
Perform at least once every  
Repeat the calibration  
procedure in Subsec. 2.2 quarter or anytime a level  
(Q.A. Handbook); also  
Federal Register  
span check indicates a  
discrepancy, or after  
maintenance which may  
affect the calibration; Subsec  
2.5 (Q.A. Manual)  
10.1.2. DATA RECORDING DEVICE  
Either a strip chart recorder, data acquisition system, digital data acquisition system  
should be used to record the data from the Mode; T100 RS-232 port or analog outputs. If  
analog readings are being used, the response of that system should be checked against a  
NIST referenced voltage source or meter. Data recording device should be capable of bi-  
polar operation so that negative readings can be recorded.  
10.1.3. RECOMMENDED STANDARDS FOR ESTABLISHING TRACEABILITY  
To assure data of desired quality, two considerations are essential: (1) the measurement  
process must be in statistical control at the time of the measurement and (2) the  
systematic errors, when combined with the random variation in the measurement  
process, must result in a suitably small uncertainty.  
Evidence of good quality data includes documentation of the quality control checks and  
the independent audits of the measurement process by recording data on specific forms  
or on a quality control chart and by using materials, instruments, and measurement  
procedures that can be traced to appropriate standards of reference. To establish  
traceability, data must be obtained routinely by repeat measurements of standard  
reference samples (primary, secondary, and/or working standards). More specifically,  
working calibration standards must be traceable to standards of higher accuracy, such as  
those listed in Table 9-1.  
Cylinders of working gas traceable to NIST-SRM's (called EPA Protocol Calibration  
Gas) are also commercially available (from sources such as Scott Specialty Gases, etc.).  
10.1.4. EPA CALIBRATION USING PERMEATION TUBES  
Teledyne API does not recommend the use of permeation tubes as a source of span gas  
for EPA protocol calibration operations.  
213  
06807C DCN6650  
       
EPA Protocol Calibration  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
10.1.5. CALIBRATION FREQUENCY  
To ensure accurate measurements of the SO2 concentrations, calibrate the analyzer at the  
time of installation, and re-calibrate it:  
No later than three months after the most recent calibration or performance audit to  
indicate an acceptable analyzer calibration.  
An interruption of more than a few days in analyzer operation.  
Any repairs which might affect its calibration.  
Physical relocation of the analyzer.  
Any other indication (including excessive zero or span drift) of possible significant  
inaccuracy of the analyzer.  
Following any of the activities listed above, the zero and span should be checked to  
determine if a calibration is necessary. If the analyzer zero and span drifts exceed locally  
established calibration units or the calibration limits in Section 2.0.9, Subsection 9.1.3  
(Q.A. Handbook), a calibration should be performed.  
10.1.6. RECORD KEEPING  
Record keeping is a critical part of all quality assurance programs. Standard forms  
similar to those that appear in this manual should be developed for individual programs.  
Three things to consider in the development of record forms are:  
Does the form serve a necessary function?  
Is the documentation complete?  
Will the forms be filed in such a manner that they can easily be retrieved when  
needed?  
214  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
EPA Protocol Calibration  
10.1.7. SUMMARY OF QUALITY ASSURANCE CHECKS  
The following items should be checked on a regularly scheduled basis to assure high  
quality data from the T100. Refer to Table 10-3 for a summary of activities. Also the  
QA Handbook should be checked for specific procedures.  
Table 10-3: Activity Matrix for Quality Assurance Checks  
FREQUENCY AND METHOD OF ACTION IF REQUIREMENTS ARE  
CHARACTERISTIC  
ACCEPTANCE LIMITS  
MEASUREMENT  
NOT MET  
Shelter temperature Mean temperature between Check thermograph chart  
Mark strip chart for the affected  
weekly for variations greater time period  
22oC and 28oC (72o and  
82oF), daily fluctuations not  
greater than ±2oC  
than ±2oC (4oF)  
Repair or adjust temperature  
control  
Sample introduction No moisture, foreign  
Weekly visual inspection  
Clean, repair, or replace as  
needed  
system  
material, leaks, obstructions;  
sample line connected to  
manifold  
Recorder  
Adequate ink & paper  
Legible ink traces  
Weekly visual inspection  
Replenish ink and paper supply  
Adjust time to agree with clock;  
note on chart  
Correct chart speed and  
range  
Correct time  
Analyzer operational TEST measurements at  
Weekly visual inspection  
Level 1 zero/span every 2  
Adjust or repair as needed  
settings  
nominal values  
2. T100 in SAMPLE mode  
Analyzer operational Zero and span within  
Find source of error and repair  
check  
tolerance limits as described weeks; Level 2 between Level  
After corrective action, re-  
calibrate analyzer  
in Subsec. 9.1.3 of Sec.  
2.0.9 (Q.A. Handbook)  
1 checks at frequency desired  
analyzer by user  
Precision check  
Assess precision as  
described in Sec. 2.0.8 and  
Subsec. 3.4.3 (Ibid.)  
Every 2 weeks, Subsec. 3.4.3 Calc, report precision, Sec. 2.0.8  
(Ibid.) (Ibid.)  
10.2. LEVEL 1 CALIBRATIONS VERSUS LEVEL 2 CHECKS  
Essential to quality assurance are scheduled checks for verifying the operational status  
of the monitoring system. The operator should visit the site at least once each week. It is  
recommended Level 1 zero and span check conducted on the analyzer every two weeks.  
Level 2 zero and span checks should be conducted at a frequency desired by the user.  
Definitions of these terms are given in Table 10-4.  
In addition, an independent precision check between 0.08 and 0.10 ppm must be carried  
out at least once every two weeks. Table 10-3 summarizes the quality assurance  
activities for routine operations. A discussion of each activity appears in the following  
sections.  
To provide for documentation and accountability of activities, a checklist should be  
compiled and then filled out by the field operator as each activity is completed.  
215  
06807C DCN6650  
     
EPA Protocol Calibration  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 10-4: Definition of Level 1 and Level 2 Zero and Span Checks  
(Refer to Section 2.0.9 of Q.A. Handbook for Air Pollution Measurement Systems)  
LEVEL 1 ZERO AND SPAN CALIBRATION  
LEVEL 2 ZERO AND SPAN CHECK  
A Level 1 zero and span calibration is a simplified, two-  
point analyzer calibration used when analyzer linearity  
does not need to be checked or verified. (Sometimes  
when no adjustments are made to the analyzer, the  
Level 1 calibration may be called a zero/span check, in  
which case it must not be confused with a Level 2  
zero/span check.) Since most analyzers have a reliably  
linear or near-linear output response with concentration,  
they can be adequately calibrated with only two  
concentration standards (two-point concentration).  
Furthermore, one of the standards may be zero  
concentration, which is relatively easily obtained and  
need not be certified. Hence, only one certified  
concentration standard is needed for the two-point (Level  
1) zero and span calibration. Although lacking the  
advantages of the multipoint calibration, the two-point  
zero and span calibration--because of its simplicity--can  
be (and should be) carried out much more frequently.  
Also, two-point calibrations are easily automated.  
Frequency checks or updating of the calibration  
relationship with a two-point zero and span calibration  
improves the quality of the monitoring data by helping to  
keep the calibration relationship more closely matched to  
any changes (drifts) in the analyzer response.  
A Level 2 zero and span check is an "unofficial" check of an  
analyzer's response. It may include dynamic checks made  
with uncertified test concentrations, artificial stimulation of the  
analyzer's detector, electronic or other types of checks of a  
portion of the analyzer, etc.  
Level 2 zero and span checks are not to be used as a basis  
for analyzer zero or span adjustments, calibration updates, or  
adjustment of ambient data. They are intended as quick,  
convenient checks to be used between zero and span  
calibrations to check for possible analyzer malfunction or  
calibration drift. Whenever a Level 2 zero or span check  
indicates a possible calibration problem, a Level 1 zero and  
span (or multipoint) calibration should be carried out before  
any corrective action is taken.  
If a Level 2 zero and span check is to be used in the quality  
control program, a "reference response" for the check should  
be obtained immediately following a zero and span (or  
multipoint) calibration while the analyzer's calibration is  
accurately known. Subsequent Level 2 check responses  
should then be compared to the most recent reference  
response to determine if a change in response has occurred.  
For automatic Level 2 zero and span checks, the first  
scheduled check following the calibration should be used for  
the reference response. It should be kept in mind that any  
Level 2 check that involves only part of the analyzer's system  
cannot provide information about the portions of the system  
not checked and therefore cannot be used as a verification of  
the overall analyzer calibration.  
216  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
EPA Protocol Calibration  
10.3. ZERO AND SPAN CHECKS  
A system of Level 1 and Level 2 zero span checks (refer to Table 10-4) is  
recommended. These checks must be conducted in accordance with the specific  
guidance given in the Q.A. Handbook Subsection 9.1 of Section 2.0.9. It is  
recommended Level 1 zero and span checks conducted every two weeks. Level 2 checks  
should be conducted in between the Level 1 checks at a frequency desired by the user.  
Span concentrations for both levels should be between 70 and 90% of the measurement  
range.  
Zero and span data are to be used to:  
Provide data to allow analyzer adjustment for zero and span drift;  
Provide a decision point on when to calibrate the analyzer;  
Provide a decision point on invalidation of monitoring data.  
Items 1 and 2 are described in detail in Subsection 9.1.3 of Section 2.0.9 (Q.A.  
Handbook). Item 3 is described in Subsection 9.1.4 of the same section.  
Refer to troubleshooting in Section 12 of this manual if the instrument is not within the  
allowed variations.  
10.3.1. ZERO/SPAN CHECK PROCEDURES  
The Zero and Span calibration can be checked a variety of ways. They include:  
Manual Zero/Span Check - Zero and Span can be checked via the front panel  
control buttons. Please refer to Sections 9.3 and 9.6 of this manual.  
Automatic Zero/Span Checks - After the appropriate setup, Z/S checks can be  
performed automatically every night. Refer to Section 9.8 of this manual for setup  
and operation procedures.  
Zero/Span checks via remote contact closure - Zero/Span checks can be initiated  
via remote contact closures on the rear panel. Refer to Section 9.7.1 of this manual.  
Zero/Span via RS-232 port - Z/S checks can be controlled via the RS-232 port.  
Refer to Section 8 and Appendix A-6 of this manual for more details.  
10.4. PRECISION CALIBRATION PROCEDURES AND CHECKS  
Calibration must be performed with a calibrator that meets all conditions specified in  
Subsection 2.9.2 (Q.A. Handbook). The user should be sure that all flow meters are  
calibrated under the conditions of use against a reliable standard. All volumetric flow  
rates should be corrected to 25oC (77oF) and 760mm (29.92in) Hg. Ensure that the  
calibration system can supply the range of the concentration at a sufficient flow over the  
whole range of concentration that will be encountered during calibration.  
All operational adjustments to the T100 should be completed prior to calibration. The  
following software features must be set to the desired state before calibration.  
217  
06807C DCN6650  
     
EPA Protocol Calibration  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Single range selection. Refer to Section 5.4.3.1 of this manual. If the instrument will  
be used on more than one range, it should be calibrated separately on each  
applicable range.  
Automatic temperature/pressure compensation should be enabled. Refer to Section  
Alternate units: ensure that the ppb units are selected for EPA monitoring. Refer to  
Section 5.4.4.  
The analyzer should be calibrated on the same range used for monitoring. If the AUTO  
range mode is selected, the highest of the ranges will result in the most accurate  
calibration, and should be used.  
10.4.1. PRECISION CALIBRATION  
To perform a precision calibration, the instrument set up; input sources of zero air and  
sample gas and; procedures should conform to those described in Section 9.2 for  
analyzers with no valve options or IZS valve option installed and Section 9.5 for  
analyzers with IZS options installed with the following exception:  
10.4.2. PRECISION CHECK  
A periodic check is used to assess the data for precision. A one-point precision check  
must be carried out at least once every 2 weeks on each analyzer at an SO2 concentration  
between 0.08 and 0.10 ppm. The analyzer must be operated in its normal sampling  
mode, and the precision test gas must pass through all filters, scrubbers, conditioners,  
and other components used during normal ambient sampling. The standards from which  
precision check test concentrations are obtained must be traceable to NIST-SRM. Those  
standards used for calibration or auditing may be used.  
To perform a precision check, the instrument setup; sources of zero air and sample gas  
and procedures should conform to those described in Section 9.1.1 for analyzers with no  
valve options or IZS valve option installed and Section 9.6 for analyzers with Z/S or IZS  
options installed with the following exception:  
Connect the analyzer to a precision gas that has an SO2 concentration between 0.08 and  
0.10 ppm. If a precision check is made in conjunction with a zero/span check, it must be  
made prior to any zero or span adjustments.  
Record this value. Information from the check procedure is used to assess the precision  
of the monitoring data; refer to 40 CFR 58 for procedures for calculating and reporting  
precision.  
218  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
EPA Protocol Calibration  
10.5. DYNAMIC MULTIPOINT SPAN CALIBRATION  
Dynamic calibration involves introducing gas samples of known concentrations to an  
instrument in order to record the instruments performance at a predetermined sensitivity  
and to derive a calibration relationship. A minimum of three reference points and one  
zero point uniformly spaced covering 0 to 90 percent of the operating range are  
recommended to define this relationship.  
The analyzer's recorded response is compared with the known concentration to derive  
the calibration relationship.  
To perform a precision check, the instrument set up, sources of zero air and sample gas  
should conform to those described in Section 9.2.  
Follow the procedures described in Section 9.2 for calibrating the zero points.  
For each mid point:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
Set the Display to show the  
STABIL test function.  
This function calculates the  
stability of the SO2  
< TST TST > CAL  
measurement  
SAMPLE  
STABIL=X.XXX PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
ACTION:  
Allow calibration gas diluted to proper concentration for  
Midpoint N to enter the sample port  
SAMPLE  
STABIL=X.XXX PPB  
SO2 =XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
Wait until  
STABIL falls  
below 0.5 ppb.  
This may take  
several minutes.  
Record the SO2  
reading as  
displayed on the  
instrument’s front  
panel  
SPAN CAL M  
RANGE = 500.0 PPB  
SO2 XXX.X  
EXIT  
< TST TST > ZERO SPAN CONC  
Press EXIT to  
Return to the  
Main SAMPLE  
Display  
ACTION:  
Allow Calibration Gas diluted to  
proper concentration for  
Midpoint N+1 to enter the sample  
port  
Figure 10-1:  
Dynamic Multipoint Span Calibration  
219  
06807C DCN6650  
   
EPA Protocol Calibration  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
10.6. SPECIAL CALIBRATION REQUIREMENTS FOR DUAL  
RANGE OR AUTO RANGE  
If Dual Range or Auto Range is selected, then calibration for Range1 and Range2  
should be performed separately.  
For zero and span point calibration, follow the procedure described in Section 9.2.  
Repeat the procedure for both the HIGH and LOW Ranges.  
10.7. REFERENCES  
1. Environmental Protection Agency, Title 40, Code of Federal Regulations, Part 50,  
Appendix A, Section 10.3.  
2. Quality Assurance Handbook for Air Pollution Measurement Systems - Volume II,  
Ambient Air Specific Methods, EPA-600/4-77-027a, 1977.  
3. Catalog of NBS Standard Reference Materials. NBS Special Publication 260, 1975-  
76 Edition. U.S. Department of Commerce, NBS. Washington, D.C. June 1975. (Tel:  
301-975-6776 for ordering the catalog).  
4. Quality Assurance Handbook for Air Pollution Measurement Systems - Volume I,  
Principles. EPA-600/9-76-005. March 1976.  
.
220  
06807C DCN6650  
   
PART III  
MAINTENANCE AND SERVICE  
221  
06807C DCN6650  
 
222  
06807C DCN6650  
11. INSTRUMENT MAINTENANCE  
Predictive diagnostic functions including data acquisition, failure warnings and alarms  
built into the analyzer allow the user to determine when repairs are necessary. However,  
preventive maintenance procedures that, when performed regularly, will help to ensure  
that the analyzer continues to operate accurately and reliably over its lifetime.  
Maintenance procedures are covered in this section, followed by troubleshooting and  
service procedures in Section 12 of this manual.  
Note:  
To support your understanding of the technical details of maintenance,  
Section 13, Principles of Operation, provides information about how the  
instrument works.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
A span and zero calibration check must be performed following some of  
the maintenance procedures listed below. Refer to Section 9.  
WARNING!  
RISK OF ELECTRICAL SHOCK  
Disconnect power before performing any operations that require entry  
into the interior of the analyzer.  
CAUTION  
The operations outlined in this section must be performed by qualified  
maintenance personnel only.  
Note  
The front panel of the analyzer is hinged at the bottom and may be  
opened by two fasteners located in the upper right and left corners to  
gain access to various components that are either mounted on the panel  
itself or located near the front of the instrument (such as the particulate  
filter).  
223  
06807C DCN6650  
 
This page intentionally left blank.  
224  
06807C DCN6650  
Teledyne API – T100 UV Fluorescence SO2 Analyzer  
Instrument Maintenance  
11.1. MAINTENANCE SCHEDULE  
Table 11-1 is the recommended maintenance schedule for the T100. Please note that in certain environments with high levels of  
dust, humidity or pollutant levels some maintenance procedures may need to be performed more often than shown.  
Table 11-1: T100 Preventive Maintenance Schedule  
CAL  
CHECK  
MANUAL  
SECTION  
ITEM  
ACTION  
FREQUENCY  
Weekly  
DATE PERFORMED  
Change particle  
filter  
1Particulate filter  
Verify test functions  
Zero/span check  
1Zero/span calibration  
No  
No  
11.3.1  
Review and  
evaluate  
11.2;  
Appendix C  
Weekly  
Evaluate offset  
and slope  
Weekly  
9.3, 9.6, 9.9  
Zero and span  
calibration  
9.2, 9.4, 9.5,  
9.7, 9.8  
Every 3 months  
Every 6 Months  
Annually  
--  
1External zero air  
scrubber (optional)  
Exchange  
chemical  
No  
No  
YES  
Yes  
Yes  
--  
11.3.3  
11.3.7  
11.3.2  
11.3.6  
1Perform flow check  
Check Flow  
Replace  
Internal IZS  
Permeation Tube  
Perform pneumatic  
leak check  
Verify Leak  
Tight  
Annually or after repairs  
involving pneumatics  
Refer to  
diaphragm kit  
instructions  
2Pump diaphragm  
Replace  
Annually  
Prior to zero/span  
calibration or PMT  
hardware calibration  
On PMT/ preamp  
changes if  
Calibrate UV Lamp  
Output  
Perform LAMP  
5.9.6 &  
12.7.2.5  
CAL  
Low-level  
hardware  
calibration  
3PMT sensor  
hardware calibration  
Yes  
12.7.2.8  
0.7 < SLOPE or  
SLOPE >1.3  
Clean  
chamber,  
windows and  
filters  
1Sample chamber  
optics  
12.7.2.2 &  
12.7.2.3  
As necessary  
Yes  
Yes  
1Critical flow orifice &  
sintered filters  
Replace  
As necessary  
11.3.4  
1 These Items are required to maintain full warranty; all other items are strongly recommended.  
2 A pump rebuild kit is available from Teledyne API’s Technical Support including all instructions and required parts (refer to Appendix B for part numbers).  
3 Replace desiccant bags each time the inspection plate for the sensor assembly is removed.  
06807C DCN6650  
225  
   
Instrument Maintenance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
06807C DCN6650  
226  
Teledyne API – T100 UV Fluorescence SO2 Analyzer  
Instrument Maintenance  
11.2. PREDICTIVE DIAGNOSTICS  
The analyzer’s test functions can be used to predict failures by looking at trends in their  
values (refer to Table 11-2) and by comparing them values recorded for them at the  
factory and recorded on the T100 Final Test and Validation Data Form (Teledyne API  
P/N 04551) that was shipped with your analyzer.  
A convenient way to record and track changes to these parameters is the internal data  
acquisition system (DAS). Also, APICOM control software can be used to download  
and record these data for review even from remote locations (Section 7.3 discusses  
APICOM).  
Table 11-2: Predictive Uses for Test Functions  
DAS  
FUNCTION  
CONDITION  
BEHAVIOR  
TEST FUNCTION  
INTERPRETATION  
EXPECTED  
ACTUAL  
Fluctuating  
Developing leak in pneumatic system  
Flow path is clogging up.  
- Check critical flow orifice & sintered filter.  
- Replace particulate filter  
Constant within  
atmospheric  
changes  
Slowly  
increasing  
PRES  
SMPPRS  
DRKPMT  
CONC1  
sample gas  
Slowly  
decreasing  
Developing leak in pneumatic system to  
vacuum (developing valve failure)  
PMT output  
when UV Lamp  
shutter closed  
Constant within  
±20 of check-  
out value  
Significantly  
increasing  
PMT cooler failure  
Shutter Failure  
DRK PMT  
At span with  
IZS option  
installed  
Constant  
response from  
day to day  
Change in instrument response  
Decreasing  
over time  
Degradation of IZS permeation tube  
SO2  
Concentration  
Standard  
configuration at  
span  
stable for  
constant  
concentration  
Decreasing  
over time  
Drift of instrument response; UV Lamp  
output is excessively low.  
Flow path is clogging up.  
- Check critical flow orifice & sintered filter.  
- Replace particulate filter  
Slowly  
Decreasing  
Standard  
Operation  
SAMP FL  
SMPFLW  
LAMPR  
Stable  
Fluctuating  
Leak in gas flow path.  
Fluctuating or  
Slowly  
increasing  
UV detector wearing out  
UV source Filter developing pin holes  
Standard  
Operation  
Stable and near  
100%  
LAMP RATIO  
UV detector wearing out  
Opaque oxides building up on UV source  
Filter  
Slowly  
decreasing  
UV lamp aging  
227  
06807C DCN6650  
   
Instrument Maintenance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
11.3. MAINTENANCE PROCEDURES  
The following procedures need to be performed regularly as part of the standard  
maintenance of the T100.  
11.3.1. CHANGING THE SAMPLE PARTICULATE FILTER  
The particulate filter should be inspected often for signs of plugging or excess dirt. It  
should be replaced according to the service interval in Table 11-1 even without obvious  
signs of dirt. Filters with 1 and 5 µm pore size can clog up while retaining a clean look.  
We recommend handling the filter and the wetted surfaces of the filter housing with  
gloves and tweezers.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Do not touch any part of the housing, filter element, PTFE retaining ring,  
glass cover and the O-ring with bare hands, as contamination can  
negatively impact accuracy of readings..  
To change the filter according to the service interval in Table 11-1:  
1. Turn OFF the analyzer to prevent drawing debris into the sample line.  
2. Open the analyzer’s hinged front panel and unscrew the knurled retaining ring of the  
filter assembly.  
Figure 11-1:  
Sample Particulate Filter Assembly  
228  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Instrument Maintenance  
3. Carefully remove the retaining ring, glass window, PTFE O-ring and filter element.  
4. Replace the filter element, carefully centering it in the bottom of the holder.  
5. Re-install the PTFE O-ring with the notches facing up, the glass cover, then screw  
on the hold-down ring and hand-tighten the assembly. Inspect the (visible) seal  
between the edge of the glass window and the O-ring to assure proper gas  
tightness.  
6. Re-start the analyzer.  
11.3.2. CHANGING THE IZS PERMEATION TUBE  
1. Turn off the analyzer, unplug the power cord and remove the cover.  
2. Locate the IZS oven in the rear left of the analyzer.  
3. Remove the top layer of insulation if necessary.  
4. Unscrew the black aluminum cover of the IZS oven (3 screws) using a medium  
Phillips-head screw driver. Leave the fittings and tubing connected to the cover.  
5. Remove the old permeation tube if necessary and replace it with the new tube.  
Ensure that the tube is placed into the larger of two holes and that the open  
permeation end of the tube (Teflon) is facing up.  
6. Re-attach the cover with three screws and ensure that the sealing O-ring is properly  
in place and that the three screws are tightened evenly.  
7. Replace the analyzer cover, plug the power cord back in and turn on the analyzer.  
8. Carry out an IZS span check to see if the new permeation device works properly.  
The permeation rate may need several days to stabilize.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Do not leave instrument turned off for more than 8 hours without removing  
the permeation tube. Do not ship the instrument without removing the  
permeation tube. The tube continues to emit gas, even at room  
temperature and will contaminate the entire instrument.  
11.3.3. CHANGING THE EXTERNAL ZERO AIR SCRUBBER  
The chemicals in the external scrubber need to be replaced periodically according to  
Table 11-1 or as needed. This procedure can be carried out while the instrument is  
running. Ensure that the analyzer is not in either the ZERO or SPAN calibration modes.  
1. Locate the scrubber on the outside rear panel.  
2. Remove the old scrubber by disconnecting the 1/4” plastic tubing from the particle  
filter using 9/16” and 1/2" wrenches.  
3. Remove the particle filter from the cartridge using 9/16” wrenches.  
4. Unscrew the top of the scrubber canister and discard charcoal contents. Ensure to  
abide by local laws for discarding these chemicals. The rebuild kit (listed in  
229  
06807C DCN6650  
   
Instrument Maintenance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Appendix B) comes with a Material and Safety Data Sheet, which contains more  
information on these chemicals.  
5. Refill the scrubber with charcoal at the bottom.  
6. Tighten the cap on the scrubber - hand-tight only.  
7. Replace the DFU filter, if required, with a new unit and discard the old.  
8. Replace the scrubber assembly into its clips on the rear panel.  
9. Reconnect the plastic tubing to the fitting of the particle filter.  
10. Adjust the scrubber cartridge such that it does not protrude above or below the  
analyzer in case the instrument is mounted in a rack. If necessary, squeeze the clips  
for a tighter grip on the cartridge.  
11.3.4. CHANGING THE CRITICAL FLOW ORIFICE  
A critical flow orifice, located on the exhaust manifold maintains the proper flow rate of  
gas through the T100 analyzer. Refer to section 10.3.2.1 for a detailed description of its  
functionality and location. Despite the fact this device is protected by sintered stainless  
steel filters, it can, on occasion, clog, particularly if the instrument is operated without a  
sample filter or in an environment with very fine, sub-micron particle-size dust.  
1. Turn off power to the instrument and vacuum pump.  
2. Locate the critical flow orifice on the pressure sensor assembly (called out in  
3. Disconnect the pneumatic line.  
4. Unscrew the NPT fitting.  
Gas Line fitting  
Spring  
Sintered Filter  
O-Ring  
Critical Flow Orifice  
O-Ring  
Vacuum Manifold  
Figure 11-2:  
Critical Flow Orifice Assembly  
230  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Instrument Maintenance  
5. Take out the components of the assembly: a spring, a sintered filter, two O-rings  
and the critical flow orifice.  
You may need to use a scribe or pressure from the vacuum port to get the parts out  
of the manifold.  
6. Discard the two O-rings and the sintered filter.  
7. Replace the critical flow orifice.  
8. Let the part dry.  
9. Re-assemble the parts as shown in Figure 11-2 using a new filter and o-rings.  
10. Reinstall the NPT fitting and connect all tubing.  
11. Power up the analyzer and allow it to warm up for 60 minutes.  
12. Perform a leak check (refer to Section 11.3.6).  
11.3.5. CHECKING FOR LIGHT LEAKS  
When re-assembled after maintenance, repair or improper operation, the T100 can  
develop small leaks around the PMT, allowing stray light from the analyzer  
surroundings into the PMT housing. To find light leaks, follow the below procedures:  
CAUTION  
This procedure must be carried out by qualified personnel, as it must be  
performed while the analyzer is powered up and running and its cover  
removed.  
WARNING  
RISK OF ELECTRICAL SHOCK  
Some operations need to be carried out with the analyzer open and  
running. Exercise caution to avoid electrical shocks and electrostatic or  
mechanical damage to the analyzer. Do not drop tools into the analyzer  
or leave those after your procedures. Do not shorten or touch electric  
connections with metallic tools while operating inside the analyzer. Use  
common sense when operating inside a running analyzer.  
1. Scroll the TEST functions to PMT.  
2. Supply zero gas to the analyzer.  
3. With the instrument still running, carefully remove the analyzer cover. Take extra  
care not to touch any of the inside wiring with the metal cover or your body. Do not  
drop screws or tools into a running analyzer!  
4. Shine a powerful flashlight or portable incandescent light at the inlet and outlet fitting  
and at all of the joints of the sample chamber as well as around the PMT housing.  
The PMT value should not respond to the light, the PMT signal should remain  
steady within its usual noise performance.  
231  
06807C DCN6650  
 
Instrument Maintenance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
5. If there is a PMT response to the external light, symmetrically tighten the sample  
chamber mounting screws or replace the 1/4” vacuum tubing with new, black PTFE  
tubing (this tubing will fade with time and become transparent). Often, light leaks are  
also caused by O-rings being left out of the assembly.  
6. Carefully replace the analyzer cover.  
7. If tubing was changed, carry out a leak check (refer to Section 11.3.6).  
11.3.6. DETAILED PRESSURE LEAK CHECK  
Obtain a leak checker similar to Teledyne API P/N 01960, which contains a small pump,  
shut-off valve, and pressure gauge to create both over-pressure and vacuum.  
Alternatively, a tank of pressurized gas, with the two stage regulator adjusted to 15  
psi, a shutoff valve and pressure gauge may be used.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Once tube fittings have been wetted with soap solution under a  
pressurized system, do not apply or re-apply vacuum as this will cause  
soap solution to be sucked into the instrument, contaminating inside  
surfaces.  
Do not exceed 15 psi when pressurizing the system.  
1. Turn OFF power to the instrument and remove the instrument cover.  
2. Install a leak checker or a tank of gas (compressed, oil-free air or nitrogen) as  
described above on the sample inlet at the rear panel.  
3. Pressurize the instrument with the leak checker or tank gas, allowing enough time to  
fully pressurize the instrument through the critical flow orifice.  
4. Check each tube connection (fittings, hose clamps) with soap bubble solution,  
looking for fine bubbles.  
5. Once the fittings have been wetted with soap solution, do not re-apply vacuum as it  
will draw soap solution into the instrument and contaminate it.  
6. Do not exceed 15 psi pressure.  
7. If the instrument has the zero and span valve option, the normally closed ports on  
each valve should also be separately checked. Connect the leak checker to the  
normally closed ports and check with soap bubble solution.  
8. If the analyzer is equipped with an IZS Option, connect the leak checker to the Dry  
Air inlet and check with soap bubble solution.  
9. Once the leak has been located and repaired, the leak-down rate of the indicated  
pressure should be less than 1 in-Hg-A (0.4 psi) in 5 minutes after the pressure is  
turned off.  
10. Clean soap solution from all surfaces, re-connect the sample and exhaust lines and  
replace the instrument cover. Restart the analyzer.  
232  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Instrument Maintenance  
11.3.7. PERFORMING A SAMPLE FLOW CHECK  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Use a separate, calibrated flow meter capable of measuring flows  
between 0 and 1000 cm³/min to measure the gas flow rate though the  
analyzer. For this procedure, do not refer to the built in flow  
measurement shown in the front panel display screen.  
Sample flow checks are useful for monitoring the actual flow of the instrument, to  
monitor drift of the internal flow measurement. A decreasing, actual sample flow may  
point to slowly clogging pneumatic paths, most likely critical flow orifices or sintered  
filters. To perform a sample flow check:  
1. Disconnect the sample inlet tubing from the rear panel SAMPLE port (Figure 3-4).  
2. Attach the outlet port of a flow meter to the sample inlet port on the rear panel.  
Ensure that the inlet to the flow meter is at atmospheric pressure.  
3. The sample flow measured with the external flow meter should be 650 cm³/min  
10%.  
4. Low flows indicate blockage somewhere in the pneumatic pathway. Refer to  
11.3.8. HYDROCARBON SCRUBBER (KICKER)  
There are two possible types of problems that can occur with the scrubber: pneumatic  
leaks and contamination that ruins the inner tube’s ability to absorb hydrocarbons.  
11.3.8.1. CHECKING THE SCRUBBER FOR LEAKS  
Leaks in the outer tubing of the scrubber can be found using the procedure described in  
Section 11.3.6. Use the following method to determine if a leak exists in the inner  
tubing of the scrubber.  
This procedure requires a pressurized source of air (chemical composition is  
unimportant) capable of supplying up to 15 psiA and a leak checking fixture such as the  
one illustrated in Figure 11-3.  
Vacuum/Pressure  
Gauge  
Needle Valve  
TO SCRUBBER  
FROM PUMP or  
PRESSURIZED  
AIR SOURCE  
Manual Shut-Off  
Valve  
Figure 11-3:  
Simple Leak Check Fixture  
233  
06807C DCN6650  
     
Instrument Maintenance  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
1. Turn off the analyzer.  
2. Disconnect the pneumatic tubing attached to both ends of the scrubber’s inner  
tubing.  
3. One end is connected to the sample particulate filter assembly and the other end is  
connected to the reaction cell assembly.  
4. Both ends are made of the 1/8" black Teflon tubing.  
5. Cap one end of the hydrocarbon scrubber.  
6. Attach the pressurized air source to the other end of the scrubber inner tubing with  
the leak check fixture in line.  
Scrubber  
Leak Check  
Fixture  
Pump  
or  
Cap  
Pressurized Air  
Source  
Figure 11-4:  
Hydrocarbon Scrubber Leak Check Setup  
7. Use the needle valve to adjust the air input until the gauge reads 15 psiA.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
Do not exceed a pressure of more than 15 psia.  
ATTENTION  
Do not pull the vacuum through the scrubber.  
8. Close the shut-off valve.  
9. Wait 5 minutes.  
If the gauge pressure drops >1 psi within 5 minutes, then the hydrocarbon scrubber has  
an internal leak and must be replaced. Contact Teledyne API’s Technical Support.  
234  
06807C DCN6650  
 
12. TROUBLESHOOTING & SERVICE  
This section contains a variety of methods for identifying and solving performance  
problems with the analyzer.  
Note:  
To support your understanding of the technical details of maintenance,  
Section 13, Principles of Operation, provides information about how the  
instrument works.  
CAUTION  
THE OPERATIONS OUTLINED IN THIS SECTION MUST BE PERFORMED BY  
QUALIFIED MAINTENANCE PERSONNEL ONLY.  
WARNING  
RISK OF ELECTRICAL SHOCK  
SOME OPERATIONS NEED TO BE CARRIED OUT WITH THE ANALYZER OPEN  
AND RUNNING. EXERCISE CAUTION TO AVOID ELECTRICAL SHOCKS AND  
ELECTROSTATIC OR MECHANICAL DAMAGE TO THE ANALYZER. DO NOT  
DROP TOOLS INTO THE ANALYZER OR LEAVE THOSE AFTER YOUR  
PROCEDURES. DO NOT SHORTEN OR TOUCH ELECTRIC CONNECTIONS WITH  
METALLIC TOOLS WHILE OPERATING INSIDE THE ANALYZER. USE COMMON  
SENSE WHEN OPERATING INSIDE A RUNNING ANALYZER.  
The front panel of the analyzer is hinged at the bottom and may be  
opened to gain access to various components mounted on the panel  
itself or located near the front of the instrument (such as the particulate  
filter).  
Note  
Remove the locking screw located at the right-hand side of the front  
panel.  
06807C DCN6650  
235  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.1. GENERAL TROUBLESHOOTING  
The T100 has been designed so that problems can be rapidly detected, evaluated and  
repaired. During operation, it continuously performs diagnostic tests and provides the  
ability to evaluate its key operating parameters without disturbing monitoring  
operations.  
A systematic approach to troubleshooting will generally consist of the following five  
steps:  
1. Note any WARNING MESSAGES and take corrective action as necessary.  
2. Examine the values of all TEST functions and compare them to factory values. Note  
any major deviations from the factory values and take corrective action.  
3. Use the internal electronic status LEDs to determine whether the electronic  
communication channels are operating properly.  
Verify that the DC power supplies are operating properly by checking the voltage  
test points on the relay PCA.  
Note that the analyzer’s DC power wiring is color-coded and these colors match the  
color of the corresponding test points on the relay PCA.  
4. Suspect a leak first!  
Technical Support data indicate that the majority of all problems are eventually  
traced to leaks in the internal pneumatics of the analyzer or the diluent gas and  
source gases delivery systems.  
Check for gas flow problems such as clogged or blocked internal/external gas lines,  
damaged seals, punctured gas lines, a damaged / malfunctioning pumps, etc.  
5. Follow the procedures defined in Section 12.6 to confirm that the analyzer’s vital  
functions are working (power supplies, CPU, relay PCA, touch-screen display, PMT  
cooler, etc.).  
Refer to Figure 3-5 for the general layout of components and sub-assemblies in the  
analyzer.  
Refer to the wiring interconnect diagram and interconnect list in Appendix D.  
12.1.1. FAULT DIAGNOSTICS WITH WARNING MESSAGES  
The most common and/or serious instrument failures will result in a warning message  
displayed on the front panel. Table 12-1 contains a list of warning messages, along with  
their meaning and recommended corrective action.  
It should be noted that if more than two or three warning messages occur at the same  
time, it is often an indication that some fundamental analyzer sub-system (power supply,  
relay board, motherboard) has failed rather than an indication of the specific failures  
referenced by the warnings. In this case, a combined-error analysis needs to be  
performed.  
The analyzer will alert the user that a Warning message is active by flashing the FAULT  
LED and displaying the Warning message in the Param field along with the CLR button  
(press to clear Warning message). The MSG button displays if there is more than one  
warning in queue or if you are in the TEST menu and have not yet cleared the message.  
The following display/touchscreen examples provide an illustration of each:  
06807C DCN6650  
236  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
The analyzer also issues a message via the serial port(s).  
To view or clear a warning message press:  
SAMPLE  
RANGE = 500.0 PPB  
SO2 =XXX.X  
In WARNING mode, <TST TST>  
buttons replaced with TEST  
button. Pressing TEST switches to  
SAMPLE mode and hides warning  
messages until new warning(s)  
are activated.  
TEST  
CAL  
MSG  
CLR SETUP  
MSG indicates that one or more  
warning message are active but  
hidden. Pressing MSG cycles  
through warnings  
SAMPLE  
RANGE = 500.0 PPB  
SO2 =XXX.X  
In SAMPLE mode, all warning  
messages are hidden, but MSG  
button appears  
< TST TST > CAL  
MSG  
CLR SETUP  
SAMPLE  
SYSTEM RESET  
SO2= X.XXX  
Press CLR to clear the current  
warning message.  
If more than one warning is  
active, the next message will  
take its place.  
Once the last warning has been  
cleared, the analyzer returns to  
SAMPLE Mode.  
< TST TST > CAL  
MSG  
CLR SETUP  
If warning messages reappear,  
the cause needs to be found. Do  
not repeatedly clear warnings  
without corrective action.  
Figure 12-1:  
Viewing and Clearing Warning Messages  
06807C DCN6650  
237  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Table 12-1: Warning Messages - Indicated Failures  
Warning Message  
Fault Condition  
Possible Causes  
A parameter for one of the analog outputs, even one not currently being used,  
has been changed and the analog output calibration routine was not re-run  
A/D circuitry failure on motherboard  
ANALOG CAL  
WARNING  
The instruments A/D  
circuitry or one of its analog  
outputs is not calibrated  
Other motherboard electronic failure  
Box Temp is < 5°C or >  
48°C.  
NOTE: Box temperature typically runs ~7oc warmer than ambient temperature.  
Poor/blocked ventilation to the analyzer.  
BOX TEMP WARNING  
Stopped exhaust-fan  
Ambient temperature outside of specified range  
Measured concentration value is too high or low.  
Concentration slope value too high or too low  
Measured concentration value is too high.  
Concentration offset value too high.  
Dynamic Span operation  
failed  
Dynamic Zero operation  
failed  
Configuration and  
Calibration data reset to  
original Factory state.  
CANNOT DYN SPAN  
CANNOT DYN ZERO  
CONFIG INITIALIZED  
Failed disk on module  
User erased data  
Light leak in reaction cell  
DARK CAL WARNING  
The Dark Cal signal is  
higher than 200 mV.  
Shutter solenoid is not functioning  
Failed relay board  
I2C bus failure  
Loose connector/wiring  
PMT preamp board bad or out of cal  
DATA INITIALIZED  
HVPS WARNING  
Data Storage in DAS was  
erased  
Failed disk on module  
User cleared data  
High voltage power supply is bad  
High voltage power supply is out of cal  
A/D converter circuitry is bad  
Bad IZS heater  
Bad IZS temperature sensor  
Bad relay controlling the IZS heater  
Entire relay board is malfunctioning  
I2C bus malfunction  
High voltage power supply  
output is <400 V or >900 V  
IZS TEMP WARNING  
On units with IZS options  
installed: The permeation  
tube temperature is Sample  
chamber temperature is  
< 45°C or > 55°C  
Failure of thermistor interface circuitry on motherboard  
Failed PMT  
Malfunctioning PMR preamp board  
A/D converter circuitry failure  
Bad PMT thermo-electric cooler  
Failed PMT TEC driver circuit  
PMT DET WARNING  
PMT TEMP WARNING  
PMT detector output is >  
4995 mV  
PMT temperature is  
< 2°C or > 12°C  
Bad PMT preamp board  
Failed PMT temperature sensor  
Loose wiring between PMT temperature sensor and PMT Preamp board  
Malfunction of analog sensor input circuitry on motherboard  
Bad reaction cell heater  
RCELL TEMP  
WARNING  
Sample chamber  
temperature is  
< 45°C or > 55°C  
Bad reaction cell temperature sensor  
Bad relay controlling the reaction cell heater  
Entire relay board is malfunctioning  
I2C bus malfunction  
Mother Board not detected  
on power up.  
Warning only appears on serial I/O COMM port(s)  
Front panel display will be frozen, blank or will not respond.  
Massive failure of mother board.  
REAR BOARD NOT  
DET  
Sample flow rate is < 500  
cc/min or > 1000 cc/min.  
Failed sample pump  
Blocked sample inlet/gas line  
Dirty particulate filter  
SAMPLE FLOW WARN  
Leak downstream of critical flow orifice  
Failed flow sensor/circuitry  
Sample Pressure is <10 in- If sample pressure is < 10 in-hg:  
SAMPLE PRES WARN  
Hg or  
o Blocked particulate filter  
> 35 in-Hg1  
o Blocked sample inlet/gas line  
o Failed pressure sensor/circuitry  
If sample pressure is > 35 in-hg:  
o Blocked vent line on pressurized sample/zero/span gas supply  
o Bad pressure sensor/circuitry  
06807C DCN6650  
238  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
Warning Message  
Fault Condition  
Possible Causes  
Sample Pressure is <10 in- If sample pressure is < 10 in-hg:  
SAMPLE PRES WARN  
Hg or  
o Blocked particulate filter  
> 35 in-Hg1  
o Blocked sample inlet/gas line  
o Failed pressure sensor/circuitry  
If sample pressure is > 35 in-hg:  
o Blocked vent line on pressurized sample/zero/span gas supply  
o Bad pressure sensor/circuitry  
The computer has  
rebooted.  
This message occurs at power on.  
If it is confirmed that power has not been interrupted:  
Failed +5 VDC power,  
SYSTEM RESET  
Fatal error caused software to restart  
Loose connector/wiring  
UV lamp is bad  
UV LAMP WARNING  
The UV lamp intensity is <  
600mV or > 4995 mV  
Reference detector is bad or out of adjustment.  
Mother board analog sensor input circuitry has failed.  
Fogged or damaged lenses/filters in UV light path  
A/D converter circuitry failure  
Light leak in reaction cell  
Shutter solenoid stuck closed  
1 Normally 29.92 in-Hg at sea level decreasing at 1 in-Hg per 1000 ft of altitude  
(with no flow – pump disconnected).  
IMPORTANT  
IMPACT ON READINGS OR DATA  
A failure of the analyzer’s CPU, motherboard or power supplies can  
result in any or ALL of the above messages.  
12.1.2. FAULT DIAGNOSIS WITH TEST FUNCTIONS  
Besides being useful as predictive diagnostic tools, the TEST functions, viewable from  
the front panel, can be used to isolate and identify many operational problems when  
combined with a thorough understanding of the analyzer’s principles of operation (refer  
to Section 13. We recommend use of the APICOM remote control program (Section 7)  
to download, graph and archive TEST data for analysis, and long-term monitoring of  
diagnostic data.  
The acceptable ranges for these test functions are listed in Table A-3 in Appendix A-3.  
The actual values for these test functions on checkout at the factory were also listed in  
the Final Test and Validation Data Sheet, which was shipped with the instrument.  
Values outside the acceptable ranges indicate a failure of one or more of the analyzer’s  
subsystems. Functions with values that are within the acceptable range but have  
significantly changed from the measurements recorded on the factory data sheet may  
also indicate a failure or a maintenance item.  
A problem report worksheet has been provided in Appendix C to assist in recording the  
value of these test functions. Table 12-2 contains some of the more common causes for  
these values to be out of range.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
A value of “XXXX” displayed for any of these TEST functions indicates an  
OUT OF RANGE reading.  
06807C DCN6650  
239  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Sample Pressure measurements are represented in terms of absolute  
pressure because this is the least ambiguous method reporting gas pressure.  
Note  
Absolute atmospheric pressure is about 29.92 in-Hg-A at sea level. It  
decreases about 1 in-Hg per 1000 ft gain in altitude. A variety of factors  
such as air conditioning systems, passing storms, and air temperature, can  
also cause changes in the absolute atmospheric pressure.  
Table 12-2: Test Functions - Possible Causes for Out-Of-Range Values  
TEST FUNCTION NOMINAL VALUE(S)  
POSSIBLE CAUSE(S)  
Faults that cause high stability values are: pneumatic leak; low or very unstable UV lamp  
output; light leak; faulty HVPS; defective preamp board; aging detectors; PMT recently  
exposed to room light; dirty/contaminated reaction cell.  
1 ppb with Zero Air  
STABIL  
Faults are caused due to: clogged critical flow orifice; pneumatic leak; faulty flow sensor;  
sample line flow restriction.  
650 cm3/min ± 10%  
SAMPLE FL  
High or noisy readings could be due to: calibration error; pneumatic leak; excessive  
background light; aging UV filter; low UV lamp output; PMT recently exposed to room  
light; light leak in reaction cell; reaction cell contaminated HVPS problem.  
-20 TO 150 mV with  
Zero Air  
PMT  
It takes 24-48 hours for the PMT exposed to ambient light levels to adapt to dim light.  
0-5000 mV, 0-20,000 ppb Noisy Norm PMT value (assuming unchanging SO2 concentration of sample gas):  
NORM PMT  
Calibration error; HVPS problem; PMT problem.  
@ Span Gas Concentration  
This is the instantaneous reading of the UV lamp intensity. Low UV lamp intensity could  
be due to: aging UV lamp; UV lamp position out of alignment; faulty lamp transformer;  
UV LAMP SIGNAL  
aging or faulty UV detector; UV detector needs adjusting; dirty optical components.  
2000 - 4000 mV  
30 TO 120%  
Intensity lower than 600 mV will cause UV LAMP WARNING. Most likely cause is a UV  
lamp in need of replacement.  
The current output of the UV reference detector divided by the reading stored in the  
CPU’s memory from the last time a UV Lamp calibration was performed. Out of range  
lamp ratio could be due to: malfunctioning UV lamp; UV lamp position out of alignment;  
faulty lamp transformer; aging or faulty UV detector; dirty optical components; pin holes or  
scratches in the UV optical filters; light leaks.  
LAMP RATIO  
High stray light could be caused by: aging UV filter; contaminated reaction cell; light leak;  
pneumatic leak.  
STR LGT  
DRK PMT  
DRK LMP  
100 ppb / Zero Air  
-50 to +200 mV  
-50 to +200 mV  
400 V to 900 V  
50ºC ± 1ºC  
High dark PMT reading could be due to: light leak; shutter not closing completely; high  
pmt temperature; high electronic offset.  
High dark UV detector could be caused by: light leak; shutter not closing completely; high  
electronic offset.  
Incorrect HVPS reading could be caused by; HVPS broken; preamp board circuit  
problems.  
HVPS  
Incorrect temperature reading could be caused by: malfunctioning heater; relay board  
communication (I2C bus); relay burnt out  
RCELL TEMP  
BOX TEMP  
Ambient  
+ 5ºC  
Incorrect temperature reading could be caused by: Environment out of temperature  
operating range; broken thermistor; runaway heater  
Incorrect temperature reading could be caused by: TEC cooling circuit broken; High  
chassis temperature; 12V power supply  
Malfunctioning heater; relay board communication (I2C bus); relay burnt out  
7ºC ± 2ºC Constant  
50ºC ± 1ºC  
PMT TEMP  
IZS TEMP (option)  
PRESS  
Ambient  
± 2 IN-HG-A  
Incorrect sample gas pressure could be due to: pneumatic leak; malfunctioning valve;  
malfunctioning pump; clogged flow orifices; sample inlet overpressure; faulty pressure sensor  
Slope out of range could be due to: poor calibration quality; span gas concentration  
incorrect; leaks; UV Lamp output decay.  
1.0 ± 0.3  
< 250 mV  
SLOPE  
OFFSET  
High offset could be due to: incorrect span gas concentration/contaminated zero air/leak; low-  
level calibration off; light leak; aging UV filter; contaminated reaction cell; pneumatic leak.  
Incorrect Time could be caused by: Internal clock drifting; move across time zones;  
daylight savings time?  
Current Time  
TIME OF DAY  
06807C DCN6650  
240  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
12.1.3. USING THE DIAGNOSTIC SIGNAL I/O FUNCTIONS  
The signal I/O parameters found under the diagnostics (DIAG) menu combined with a  
thorough understanding of the instrument’s principles of operation (refer to Section 13)  
are useful for troubleshooting in three ways:  
The technician can view the raw, unprocessed signal level of the analyzer’s critical  
inputs and outputs.  
All of the components and functions that are normally under instrument control can  
be manually changed.  
Analog and digital output signals can be manually controlled.  
This allows a user to systematically observe the effect of these functions on the  
operation of the analyzer. Figure 12-2 shows an example of how to use the signal I/O  
menu to view the raw voltage of an input signal or to control the state of an output  
voltage or control signal. The specific parameter will vary depending on the situation.  
Please note that the analyzer will freeze its concentration output while in the diagnostic  
signal I/O menu. This is because manually changing I/O outputs can invalidate the  
instrument reading.  
06807C DCN6650  
241  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
DIAG  
SIGNAL I/O  
PREV NEXT  
ENTR  
DIAG I/O  
0 ) EXT_ZERO_CAL=ON  
PREV NEXT JUMP  
PRNT EXIT  
If parameter is an  
input signal  
If parameter is an output  
signal or control  
DIAG I/O  
29) PMT_TEMP=378.3 MV  
DIAG I/O  
19 ) REACTION CELL_HEATER=ON  
ON PRNT EXIT  
PREV NEXT JUMP  
PRNT EXIT  
PREV NEXT JUMP  
Toggles parameter  
ON/OFF  
DIAG I/O  
19 ) REACTION CELL_HEATER=OFF  
OFF PRNT EXIT  
PREV NEXT JUMP  
Exit returns to  
DIAG display & all values  
return to software control  
Figure 12-2:  
Example of Signal I/O Function  
06807C DCN6650  
242  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
12.2. STATUS LEDS  
Several color-coded, light-emitting diodes (LEDs) are located inside the instrument to  
determine if the analyzer’s CPU, I2C communications bus and relay board are  
functioning properly.  
12.2.1. MOTHERBOARD STATUS INDICATOR (WATCHDOG)  
DS5, a red LED on the upper portion of the motherboard, just to the right of the CPU  
board, flashes when the CPU is running the main program. After power-up, DS5 should  
flash on and off about once per second. If characters are written to the front panel  
display but DS5 does not flash then the program files have become corrupted. Contact  
Teledyne API’s Technical Support department.  
If DS5 is not flashing 30 - 60 seconds after a restart and no characters have been written  
to the front panel display, the firmware may be corrupted or the CPU may be defective.  
If DS5 is permanently off or permanently on, the CPU board is likely locked up and  
should the analyzer not respond (either with locked-up or dark front panel), then replace  
the CPU.  
Motherboard  
CPU Status LED  
Figure 12-3:  
CPU Status Indicator  
12.2.2. CPU STATUS INDICATORS  
The LEDs on the CPU card (Figure 13-14) are described as follows:  
Power LED  
IDE LED  
Red  
normally lit  
Green  
lit when active (read or write)  
06807C DCN6650  
243  
       
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.2.3. RELAY BOARD STATUS LEDS  
The most important status LED on the relay board is the red I2C Bus watch-dog LED,  
labeled D1 (or W/D), which indicates the health of the I2C communications bus. This  
LED is located in the upper left-hand corner of the relay board when looking at the  
electronic components. If D1 is blinking, then the other LEDs can be used in  
conjunction with the DIAG menu I/O functions to test hardware functionality by  
switching devices on and off and watching the corresponding LED turn on or off. The  
LED only indicates that the logic signal for an output has been activated. If the output  
driver (i.e. the relay or valve driver IC) is defective, then the LED will light up, but the  
attached peripheral device will not turn on.  
Table 12-3: Relay Board Status LEDs  
FAULT  
STATUS  
LED  
COLOR  
FUNCTION  
INDICATED FAILURE(S)  
Failed/Halted CPU  
Faulty Mother Board, Valve Driver board or  
Relay PCA  
Watchdog Circuit; I2C Continuously  
bus operation. ON or OFF  
D1  
red  
Faulty Connectors/Wiring between Motherboard,  
Valve Driver board or Relay PCA  
Failed/Faulty +5 VDC Power Supply (PS1)  
12.3. GAS FLOW PROBLEMS  
The standard analyzer has one main flow path. With the IZS option installed, there is a  
second flow path through the IZS oven that runs whenever the IZS is on standby to  
purge SO2 from the oven chamber. The IZS flow is not measured so there is no reading  
for it on the front panel display. The full flow diagrams of the standard configuration  
(refer to Figure 3-18) and with options installed (refer to Figure 3-19 and Figure 3-20)  
help in troubleshooting flow problems. In general, flow problems can be divided into  
three categories:  
Flow is too high  
Flow is greater than zero, but is too low, and/or unstable  
Flow is zero (no flow)  
When troubleshooting flow problems, it is essential to confirm the actual flow rate  
without relying on the analyzer’s flow display. The use of an independent, external flow  
meter to perform a flow check as described in Section 12.5.2 is essential.  
12.3.1. ZERO OR LOW SAMPLE FLOW  
If the pump is operating but the unit reports a XXXX gas flow, do the following three  
steps:  
Check for actual sample flow  
Check pressures  
Carry out a leak check  
To check the actual sample flow, disconnect the sample tube from the sample inlet on  
the rear panel of the instrument. Ensure that the unit is in basic SAMPLE mode. Place a  
06807C DCN6650  
244  
       
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
finger over the inlet and see if it gets sucked in by the vacuum or, more properly, use a  
flow meter to measure the actual flow. If a proper flow of approximately 650 cm³/min  
exists, contact Technical Support. If there is no flow or low flow, continue with the next  
step.  
Check that the sample pressure is at or around 28 (or about1 in-Hg-A below ambient  
atmospheric pressure).  
12.3.2. HIGH FLOW  
Flows that are significantly higher than the allowed operating range (typically ±10-11%  
of the nominal flow) should not occur in the M unless a pressurized sample, zero or span  
gas is supplied to the inlet ports. Be sure to vent excess pressure and flow just before the  
analyzer inlet ports.  
When supplying sample, zero or span gas at ambient pressure, a high flow would  
indicate that one or more of the critical flow orifices are physically broken (very  
unlikely case), allowing more than nominal flow, or were replaced with an orifice of  
wrong specifications. If the flows are more than 15% higher than normal, we  
recommend that the technician find and correct the cause of the flow problem,  
12.4. CALIBRATION PROBLEMS  
This section provides information regarding possible causes of various calibration  
problems.  
12.4.1. NEGATIVE CONCENTRATIONS  
Negative concentration values may be caused due to the following:  
A slight, negative signal is normal when the analyzer is operating under zero gas and  
the signal is drifting around the zero calibration point. This is caused by the  
analyzer’s zero noise and may cause reported concentrations to be negative for a few  
seconds at a time down to -5 ppb, but should alternate with similarly high, positive  
values.  
Mis-calibration is the most likely explanation for negative concentration values. If  
the zero air contained some SO2 gas (contaminated zero air or a worn-out zero air  
scrubber) and the analyzer was calibrated to that concentration as “zero”, the  
analyzer may report negative values when measuring air that contains little or no  
SO2. The same problem occurs, if the analyzer was zero-calibrated using ambient air  
or span gas.  
If the response offset test function for SO2 (OFFSET) are greater than 150 mV, a  
failed PMT or high voltage supply, or sample chamber contamination, could be the  
cause.  
12.4.2. NO RESPONSE  
If the instrument shows no response (display value is near zero) even though sample gas  
is supplied properly and the instrument seems to perform correctly,  
Confirm response by supplying SO2 span gas of about 80% of the range value to the  
analyzer.  
Check the sample flow rate for proper value.  
06807C DCN6650  
245  
       
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Check for disconnected cables to the sensor module.  
Carry out an electrical test with the ELECTRICAL TEST (ETEST) procedure in  
the diagnostics menu, refer to Section 5.9.5. If this test produces a concentration  
reading, the analyzer’s electronic signal path is working.  
Carry out an optical test using the OPTIC TEST (OTEST) procedure in the  
then the PMT sensor and the electronic signal path are operating properly. If the M  
passes both ETEST and OTEST, the instrument is capable of detecting light and  
processing the signal to produce a reading. Therefore, the problem must be in the  
pneumatics, optics or the UV lamp/lamp driver.  
12.4.3. UNSTABLE ZERO AND SPAN  
Leaks in the T100 or in the external gas supply and vacuum systems are the most  
common source of unstable and non-repeatable concentration readings.  
Check for leaks in the pneumatic systems as described in Section 11.3.6. Consider  
pneumatic components in the gas delivery system outside the T100 such as a change  
in zero air source (ambient air leaking into zero air line or a worn-out zero air  
scrubber) or a change in the span gas concentration due to zero air or ambient air  
leaking into the span gas line.  
Once the instrument passes a leak check, perform a flow check (refer to Section  
11.3.7) to ensure that the instrument is supplied with adequate sample gas.  
Confirm the UV lamp, sample pressure and sample temperature readings are correct  
and steady.  
Verify that the sample filter element is clean and does not need to be replaced.  
12.4.4. INABILITY TO SPAN - NO SPAN BUTTON  
In general, the T100 will not display certain control buttons whenever the actual value of  
a parameter is outside of the expected range for that parameter. If the calibration menu  
does not show a SPAN button when carrying out a span calibration, the actual  
concentration must be outside of the range of the expected span gas concentration,  
which can have several reasons.  
Verify that the expected concentration is set properly to the actual span gas  
concentration in the CONC sub-menu.  
Confirm that the SO2 span gas source is accurate.  
If you are using bottle calibration gas and have recently changed bottles, bottle to  
bottle variation may be the cause.  
Check for leaks in the pneumatic systems as described in Section 12.6.1. Leaks can  
dilute the span gas and, hence, the concentration that the analyzer measures may fall  
short of the expected concentration defined in the CONC sub-menu.  
If the physical, low-level calibration has drifted (changed PMT response) or was  
accidentally altered by the user, a low-level calibration may be necessary to get the  
analyzer back into its proper range of expected values. One possible indicator of this  
scenario is a slope or offset value that is outside of its allowed range (0.7-1.3 for  
slope, -20 to 150 for offsets). Refer to Section 12.7.2.8 on how to carry out a low-  
level hardware calibration.  
06807C DCN6650  
246  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
12.4.5. INABILITY TO ZERO - NO ZERO BUTTON  
In general, the T100 will not display certain control buttons whenever the actual value of  
a parameter is outside of the expected range for that parameter. If the calibration menu  
does not show a ZERO button when carrying out a zero calibration, the actual gas  
concentration must be significantly different from the actual zero point (as per last  
calibration), which can have several reasons.  
Confirm that there is a good source of zero air. If the IZS option is installed,  
compare the zero reading from the IZS zero air source to an external zero air source  
using SO2-free air. Check any zero air scrubber for performance and replacement  
(refer to Section 11.3.3).  
Check to ensure that there is no ambient air leaking into the zero air line. Check for  
leaks in the pneumatic systems as described in Section 11.3.6.  
12.4.6. NON-LINEAR RESPONSE  
The T100 was factory calibrated and should be linear to within 1% of full scale.  
Common causes for non-linearity are:  
Leaks in the pneumatic system. Leaks can add a constant of ambient air, zero air or  
span gas to the current sample gas stream, which may be changing in concentrations  
as the linearity test is performed. Check for leaks as described in Section 12.6.  
The calibration device is in error. Check flow rates and concentrations, particularly  
when using low concentrations. If a mass flow calibrator is used and the flow is less  
than 10% of the full scale flow on either flow controller, you may need to purchase  
lower concentration standards.  
The standard gases may be mislabeled as to type or concentration. Labeled  
concentrations may be outside the certified tolerance.  
The sample delivery system may be contaminated. Check for dirt in the sample lines  
or sample chamber.  
Calibration gas source may be contaminated.  
Dilution air contains sample or span gas.  
Sample inlet may be contaminated with SO2 exhaust from this or other analyzers.  
Verify proper venting of the analyzer’s exhaust.  
Span gas overflow is not properly vented and creates a back-pressure on the sample  
inlet port. Also, if the span gas is not vented at all and does not supply enough  
sample gas, the analyzer may be evacuating the sample line. Ensure to create and  
properly vent excess span gas.  
If the instrument is equipped with an internal IZS valve option and the SO2 span  
value is continuously trending downward, the IZS permeation tube may require  
replacement.  
06807C DCN6650  
247  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.4.7. DISCREPANCY BETWEEN ANALOG OUTPUT AND DISPLAY  
If the concentration reported through the analog outputs does not agree with the value  
reported on the front panel, you may need to re-calibrate the analog outputs. This  
becomes more likely when using a low concentration or low analog output range.  
Analog outputs running at 0.1 V full scale should always be calibrated manually. Refer  
12.5. OTHER PERFORMANCE PROBLEMS  
Dynamic problems (i.e. problems which only manifest themselves when the analyzer is  
monitoring sample gas) can be the most difficult and time consuming to isolate and  
resolve. The following section provides an itemized list of the most common dynamic  
problems with recommended troubleshooting checks and corrective actions.  
12.5.1. EXCESSIVE NOISE  
Excessive noise levels under normal operation usually indicate leaks in the sample  
supply or the analyzer itself. Ensure that the sample or span gas supply is leak-free and  
carry out a detailed leak check as described earlier in this section.  
Another possibility of excessive signal noise may be the preamplifier board, the high  
voltage power supply and/or the PMT detector itself. Contact the factory on trouble-  
shooting these components.  
12.5.2. SLOW RESPONSE  
If the analyzer starts responding too slowly to any changes in sample, zero or span gas,  
check for the following:  
Dirty or plugged sample filter or sample lines.  
Sample inlet line is too long.  
Dirty or plugged critical flow orifices. Check flows, pressures and, if necessary,  
change orifices (refer to Section 11.3.4).  
Wrong materials in contact with sample - use Teflon materials only.  
Sample vent line is located too far from the instrument sample inlet causing a long  
mixing and purge time. Locate sample inlet (overflow) vent as close as possible to  
the analyzer’s sample inlet port.  
Dirty sample chamber.  
Insufficient time allowed for purging of lines upstream of the analyzer.  
Insufficient time allowed for SO2 calibration gas source to become stable.  
12.5.3. THE ANALYZER DOESN’T APPEAR ON THE LAN OR INTERNET  
Most problems related to Internet communications via the Ethernet card will be due to  
problems external to the analyzer (e.g. bad network wiring or connections, failed routers,  
malfunctioning servers, etc.) However, there are several symptoms that indicate the  
problem may be with the Ethernet card itself.  
06807C DCN6650  
248  
         
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
If neither of the Ethernet cable’s two status LED’s (located on the back of the cable  
connector) is lit while the instrument is connected to a network:  
Verify that the instrument is being connected to an active network jack.  
Check the internal cable connection between the Ethernet card and the CPU board.  
12.6. SUBSYSTEM CHECKOUT  
The preceding sections of this manual discussed a variety of methods for identifying  
possible sources of failures or performance problems within the analyzer. In most cases  
this included a list of possible causes and, in some cases, quick solutions or at least a  
pointer to the appropriate sections describing them. This section describes how to  
determine if a certain component or subsystem is actually the cause of the problem being  
investigated.  
12.6.1. AC POWER CONFIGURATION  
The T100 digital electronic systems will operate with any of the specified power  
regimes. As long as instrument is connected to 100-120 VAC or 220-240 VAC at either  
50 or 60 Hz it will turn on and after about 30 seconds show a front panel display.  
Internally, the status LEDs located on the Motherboard, the Relay PCA and the CPU  
should turn on as soon as the power is supplied.  
On the other hand, the analyzer’s various non-digital components, such as the pump and  
the AC powered heaters, require that the relay board be properly configured for the type  
of power being supplied to the instrument.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Plugging the analyzer into a power supply that is too high a voltage or  
frequency can damage the pump and the AC Heaters.  
Plugging the analyzer into a power supply that is too low a voltage or  
frequency will cause these components to not operate properly.  
If the pump and the heaters are not working correctly and incorrect power configuration  
is suspected, check the serial number label located on the instrument’s rear panel (refer  
to Figure 3-4) to ensure that the instrument was configured for the same voltage and  
frequency being supplied.  
If the information included on the label matches the line voltage, but you still suspect an  
AC power configuration problem:  
For the heaters, check the power configuration jumpers located on the relay board (refer  
If the Jumper block is WHITE the heaters are configured for 115 VAC at 60 Hz.  
If the Jumper block is BLUE the heaters are configured for 220, 240 VAC at 50 Hz.  
06807C DCN6650  
249  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
J2: Power  
Configuration  
Jumper  
Figure 12-4:  
Location of Relay Board Power Configuration Jumper  
AC Configuration of the pump is accomplished via an in-line, hard wired, set of  
connections. Call Teledyne API’s Technical Support Department for more information.  
12.6.2. DC POWER SUPPLY  
If you have determined that the analyzer’s AC main power is working, but the unit is  
still not operating properly, there may be a problem with one of the instrument’s  
switching power supplies, which convert AC power to 5 and ±15 V (PS1) as well as +12  
V DC power (PS2). The supplies can either have DC output at all or a noisy output  
(fluctuating).  
To assist tracing DC Power Supply problems, the wiring used to connect the various  
printed circuit assemblies and DC powered components and the associated test points on  
the relay board follow a standard color-coding scheme as defined in Table 12-4.  
Table 12-4: DC Power Test Point and Wiring Color Code  
NAME  
DGND  
+5V  
TEST POINT#  
COLOR  
Black  
DEFINITION  
1
2
3
4
5
6
7
Digital ground  
Red  
AGND  
+15V  
-15V  
Green  
Blue  
Analog ground  
Yellow  
Purple  
Orange  
+12V  
+12R  
12 V return (ground) line  
A voltmeter should be used to verify that the DC voltages are correct as listed in Table  
12-4. An oscilloscope, in AC mode and with band limiting turned on, can be used to  
evaluate if the supplies are excessively noisy (>100 mV peak-to-peak).  
06807C DCN6650  
250  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
Table 12-5: DC Power Supply Acceptable Levels  
CHECK RELAY BOARD TEST POINTS  
VOLTAGE FROM TEST POINT  
TO TEST POINT  
POWER  
SUPPLY  
MIN V  
MAX V  
NAME  
DGND  
#
1
3
3
3
1
6
6
NAME  
+5  
#
PS1  
PS1  
PS1  
PS1  
PS1  
PS2  
PS2  
+5  
+15  
2
4
+4.80  
+13.5  
-14.0  
-0.05  
-0.05  
+11.8  
-0.05  
+5.25  
+16.0  
-16.0  
+0.05  
+0.05  
+12.5  
+0.05  
AGND  
+15  
-15  
AGND  
-15V  
5
AGND  
Chassis  
+12  
AGND  
DGND  
Chassis  
+12V  
DGND  
1
DGND  
N/A  
7
+12V Ret  
+12V Ret  
DGND  
1
12.6.3. I2C BUS  
Operation of the I2C bus can be verified by observing the behavior of D1 on the relay  
PCA & D2 on the Valve Driver PCA . Assuming that the DC power supplies are  
operating properly, the I2C bus is operating properly if: D1 on the relay PCA and D2 of  
the Valve Driver PCA are flashing  
There is a problem with the I2C bus if both D1 on the relay PCA and D2 of the Valve  
Driver PCA are ON/OFF constantly.  
12.6.4. TOUCH-SCREEN INTERFACE  
Verify the functioning of the touch screen by observing the display when pressing a  
touch-screen control button. Assuming that there are no wiring problems and that the  
DC power supplies are operating properly, but pressing a control button on the touch  
screen does not change the display, any of the following may be the problem:  
The touch-screen controller may be malfunctioning.  
The internal USB bus may be malfunctioning.  
You can verify this failure by logging on to the instrument using APICOM or a terminal  
program. If the analyzer responds to remote commands and the display changes  
accordingly, the touch-screen interface may be faulty.  
12.6.5. LCD DISPLAY MODULE  
Verify the functioning of the front panel display by observing it when power is applied  
to the instrument. Assuming that there are no wiring problems and that the DC power  
supplies are operating properly, the display screen should light and show the splash  
screen and other indications of its state as the CPU goes through its initialization  
process.  
06807C DCN6650  
251  
       
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.6.6. RELAY BOARD  
The relay board circuit can most easily be checked by observing the condition of its  
status LEDs as described in Section 12.2, and the associated output when toggled on and  
off through the SIGNAL I/O function in the DIAG menu, refer to Section 5.9.1.  
If the front panel display responds to button presses and D1 on the relay board is not  
flashing, then either the I2C connection between the motherboard and the relay  
board is bad, or the relay board itself is bad.  
If D1 on the relay board is flashing, but toggling an output in the Signal I/O  
function menu does not toggle the output’s status LED, the there is a circuit  
problem, or possibly a blown driver chip, on the relay board.  
If D1 on the Relay board is flashing and the status indicator for the output in  
question (heater, valve, etc.) toggles properly using the Signal I/O function, but the  
output device does not turn on/off, then the associated device (valve or heater) or its  
control device (valve driver, heater relay) is malfunctioning.  
Several of the control devices are in sockets and can easily be replaced. The table below  
lists the control device associated with a particular function:  
Table 12-6: Relay Board Control Devices  
FUNCTION  
Valve0 – Valve3  
Valve4 – Valve7  
All heaters  
CONTROL DEVICE  
SOCKETED  
Yes  
U5  
U6  
Yes  
K1-K5  
Yes  
12.6.7. MOTHERBOARD  
12.6.7.1. A/D FUNCTIONS  
A basic check of the analog to digital (A/D) converter operation on the motherboard is  
to use the Signal I/O function under the DIAG menu. Check the following two A/D  
reference voltages and input signals that can be easily measured with a voltmeter. Using  
the Signal I/O function (refer to Section 5.9.1 and Appendix D), view the value of  
REF_4096_MV and REF_GND.  
The nominal value for REF_4096_MV is 4096 mV 10 mV.  
The nominal value for REF_GND is 0 mV 3 mV, respectively, of their nominal  
values (4096 and 0) and are  
If these signals are stable to within ±0.5 mV, the basic A/D converter is functioning  
properly.  
If these values fluctuate largely or are off by more than specified above, one or more  
of the analog circuits may be overloaded or the motherboard may be faulty.  
Choose one parameter in the Signal I/O function such as SAMPLE_PRESSURE  
(refer to previous section on how to measure it). Compare its actual voltage with the  
voltage displayed through the SIGNAL I/O function. If the wiring is intact but there  
is a difference of more than ±10 mV between the measured and displayed voltage,  
the motherboard may be faulty.  
06807C DCN6650  
252  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
12.6.7.2. ANALOG OUTPUT VOLTAGES  
To verify that the analog outputs are working properly, connect a voltmeter to the output  
in question and perform an analog output step test as described in Section 5.9.2.  
For each of the steps, taking into account any offset that may have been programmed  
into the channel (refer to Section 5.9.3.4), the output should be within 1% of the nominal  
value listed in the Table 11-7 except for the 0% step, which should be within 2-3 mV. If  
one or more of the steps is outside of this range, a failure of one or both D/A converters  
and their associated circuitry on the motherboard is likely.  
Table 12-7: Analog Output Test Function - Nominal Values  
FULL SCALE OUTPUT VOLTAGE  
100MV  
1V  
5V  
10V*  
STEP  
%
0
NOMINAL OUTPUT VOLTAGE  
1
2
3
4
5
6
0 mV  
20 mV  
40 mV  
60 mV  
80 mV  
100 mV  
0
0
1
2
3
4
5
0
2
20  
40  
60  
80  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
4
6
8
10  
* Increase the Analog Out (AOUT) Cal Limits in the DIAG>Analog I/O Config menu.  
12.6.7.3. STATUS OUTPUTS  
The procedure below can be used to test the Status outputs.  
1. Connect a cable jumper between the “-“ pin and the “” pin on the status output  
connector.  
2. Connect a 1000 resistor between the +5 V and the pin for the status output that is  
being tested.  
Table 12-8: Status Outputs Check Pin Out  
PIN  
STATUS  
(left to right)  
1
2
3
4
5
6
7
8
System Ok  
Conc Valid  
High Range  
Zero Cal  
Span Cal  
Diag Mode  
Spare  
Spare  
3. Connect a voltmeter between the “-“ pin and the pin of the output being tested (refer  
to Table 12-8).  
4. Under the DIAG SIGNAL I/O menu (refer to Section 5.9.1), scroll through the  
inputs and outputs until you get to the output in question. Alternately turn on and off  
the output noting the voltage on the voltmeter, it should vary between 0 volts for ON  
and 5 volts for OFF.  
06807C DCN6650  
253  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.6.7.4. CONTROL INPUTS  
The control input bits can be tested by the following procedure:  
1. Connect a jumper from the +5 V pin on the STATUS connector to the U on the  
CONTROL IN connector.  
2. Connect a second jumper from the  
pin on the STATUS connector to the A pin on  
the CONTROL IN connector. The instrument should switch from SAMPLE mode to  
ZERO CAL R mode.  
3. Connect a second jumper from the  
pin on the STATUS connector to the B pin on  
the CONTROL IN connector. The instrument should switch from SAMPLE mode to  
SPAN CAL R mode.  
In each case, the T100 should return to SAMPLE mode when the jumper is removed.  
12.6.8. CPU  
There are two major types of CPU board failures, a complete failure and a failure  
associated with the Disk-On-Module (DOM). If either of these failures occurs, contact  
the factory.  
For complete failures, assuming that the power supplies are operating properly and the  
wiring is intact, the CPU is faulty if on power-on, the watchdog LED on the  
motherboard is not flashing.  
In some rare circumstances, this failure may be caused by a bad IC on the motherboard,  
specifically U57, the large, 44 pin device on the lower right hand side of the board. If  
this is true, removing U57 from its socket will allow the instrument to start up but the  
measurements will be invalid.  
If the analyzer stops during initialization (the front panel display shows a fault or  
warning message), it is likely that the DOM, the firmware or the configuration and data  
files have been corrupted.  
12.6.9. RS-232 COMMUNICATION  
This section provides general RS-232 communication information.  
12.6.9.1. GENERAL RS-232 TROUBLESHOOTING  
Teledyne API’s analyzers use the RS-232 protocol as the standard, serial  
communications protocol. RS-232 is a versatile standard, which has been used for many  
years but, at times, is difficult to configure. Teledyne API conforms to the standard pin  
assignments in the implementation of RS-232. Problems with RS-232 connections  
usually center around 4 general areas:  
Incorrect cabling and connectors. This is the most common problem. Refer to  
Section 3.3.1.8 for connector, pin-out and setup information.  
The communications (baud) rate and protocol parameters are incorrectly configured.  
Refer to 3.3.1.8 and 6.2 for baud rate information.  
The COMM port communications mode is set incorrectly (refer to Section 6.2.1).  
If a modem is used, additional configuration and wiring rules must be observed.  
Refer to Section 8.3.  
Incorrect setting of the DTE - DCE Switch. Refer to Section 6.1.  
06807C DCN6650  
254  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
12.6.9.2. MODEM OR TERMINAL OPERATION  
These are the general steps for troubleshooting problems with a modem connected to a  
Teledyne API analyzer.  
Check cables for proper connection to the modem, terminal or computer.  
Check the correct position of the DTE/DCE switch as described in Section 6.1.  
Check the correct setup command (refer to Section 8.3).  
Verify that the Ready to Send (RTS) signal is at logic high. The T100 sets Pin 7  
(RTS) to greater than 3 volts to enable modem transmission.  
Ensure that the baud rate, word length, and stop bit settings between modem and  
analyzer match (refer to Sections 6.2.2 and 8.3).  
Use the RS-232 test function to send “w” characters to the modem, terminal or  
computer. Refer to Section 6.2.3.  
Get your terminal, modem or computer to transmit data to the analyzer (holding  
down the space bar is one way). The green LED on the rear panel should flicker as  
the instrument is receiving data.  
Ensure that the communications software is functioning properly.  
Further help with serial communications is available in a separate manual “RS-232  
Manual”, Teledyne API’s P/N 013500000, available online at http://www.Teledyne-  
api.com/manuals/.  
12.6.10. SHUTTER SYSTEM  
To check the functionality of the UV light Shutter by manually activating it:  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
DIAG I / O  
JUMP TO: 01  
< TST TST > CAL  
SETUP  
0
1
ENTR EXIT  
Press these buttons  
until 32 is displayed  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
DIAG I / O  
32) DARK_SHUTTER=OFF  
EXIT returns  
to the main  
SAMPLE display  
Activate the  
Dark Shutter  
PREV NEXT JUMP  
OFF PRNT EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
DIAG I / O  
32) DARK_SHUTTER=ON  
PREV NEXT JUMP  
ON PRNT EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
DIAG I / O  
JUMP TO: 32  
COMM VARS DIAG  
EXIT  
ENTR EXIT  
PRNT EXIT  
3
2
ENTR EXIT  
DIAG  
SIGNAL I / O  
Press these buttons  
until 36 is displayed  
PREV NEXT JUMP  
DIAG I / O  
36) UVLAMP_SIGNAL= 3.4 MV  
PRNT EXIT  
EXIT 4x’s to return  
to the  
SAMPLE display  
PREV NEXT JUMP  
DIAG I / O  
0) EXT_ZERO_CAL=OFF  
PREV NEXT JUMP  
UV LAMP_SIGNAL  
should be  
<20 mV  
06807C DCN6650  
255  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 12-5:  
Manual Activation of the UV Light Shutter  
12.6.11. PMT SENSOR  
The photo multiplier tube detects the light emitted by the UV excited fluorescence of  
SO2. It has a gain of about 500000 to 1000000. It is not possible to test the detector  
outside of the instrument in the field. The best way to determine if the PMT is working  
properly is by using the optical test (OTEST), which is described in Section 5.9.4. The  
basic method to diagnose a PMT fault is to eliminate the other components using  
ETEST, OTEST and specific tests for other sub-assemblies.  
12.6.12. PMT PREAMPLIFIER BOARD  
To check the correct operation of the preamplifier board, we suggest the technician carry  
out the electrical and optical tests described in 5.9.4 and 5.9.5.  
If the ETEST fails, the preamplifier board may be faulty.  
12.6.13. PMT TEMPERATURE CONTROL PCA  
The TEC control printed circuit assembly is located on the sensor housing assembly,  
under the slanted shroud, next to the cooling fins and directly above the cooling fan.  
If the red LED located on the top edge of this assembly is not glowing the control  
circuit is not receiving power.  
Check the analyzer's power supply, the relay board’s power distribution circuitry  
and the wiring connecting them to the PMT temperature control PCA.  
12.6.13.1. TEC CONTROL TEST POINTS  
Four test points are also located at the top of this assembly they are numbered left to  
right start with the T1 point immediately to the right of the power status LED. These  
test points provide information regarding the functioning of the control circuit.  
To determine the current running through the control circuit, measure the voltage  
between T1 and T2. Multiply that voltage by 10.  
To determine the drive voltage being supplied by the control circuit to the TEC, measure  
the voltage between T2 and T3.  
If this voltage is zero, the TEC circuitry is most likely open.  
If the voltage between T2 and T3 = 0 VDC and the voltage measured between T1  
and T2 = 0 VDC there is most likely an open circuit or failed op amp on control  
PCA itself  
If the voltage between T2 and T3 = 0 VDC and the voltage measured between T1 to  
T2 is some voltage other than 0 VDC, the TEC is most likely shorted  
T4 is tied directly to ground. To determine the absolute voltage on any one of the other  
test points make a measurement between that test point and T4.  
12.6.14. HIGH VOLTAGE POWER SUPPLY  
The HVPS is located in the interior of the sensor module and is plugged into the PMT  
tube (refer to Figure 13-17). It requires 2 voltage inputs. The first is +15 which powers  
06807C DCN6650  
256  
         
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
the supply. The second is the programming voltage which is generated on the Preamp  
Board. This power supply is unlike a traditional PMT HVPS. It is like having 10  
independent power supplies, one to each pin of the PMT. The test procedure below  
allows you to test each supply.  
1. Check the HVPS test function via the front panel and record the reading level.  
Adjustment of the HVPS output level is covered in the hardware calibration  
procedure in Section 12.7.2.8.  
2. Turn off the instrument.  
3. Remove the cover and disconnect the 2 connectors at the front of the PMT housing.  
4. Remove the end plate from the PMT housing.  
5. Remove the HVPS/PMT assembly from the cold block inside the sensor. Un-plug  
the PMT.  
6. Re-connect the 7 pin connector to the Sensor end cap, and power-up the  
instrument.  
7. Check the voltages between the pairs of pins listed in Table 12-9. The result for  
each pair should be equal and approximately 10% of the reading level recorded in  
Step 1.  
Table 12-9: Example of HVPS Power Supply Outputs  
If HVPS reading = 700 VDC  
PIN PAIR  
1 2  
NOMINAL READING  
70 VDC  
6
2 3  
3 4  
4 5  
5 6  
6 7  
7 8  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
7
5
8
4
3
9
2
10  
11  
1
KEY  
8. Turn off the instrument power, and re-connect the PMT tube, and then re-assemble  
the sensor.  
If any faults are found in the test, the HVPS must be replaced. There are no user  
serviceable parts inside the HVPS.  
12.6.15. PNEUMATIC SENSOR ASSEMBLY  
The pressure/flow sensor circuit board, located behind the sensor assembly, can be  
checked with a voltmeter using the following procedure, which assumes that the wiring  
is intact and that the motherboard and the power supplies are operating properly.  
Measure the voltage across TP1 and TP2, it should be 10.0 0.25 V. If not, the  
board may be faulty.  
Measure the voltage across capacitor C2; it should be 5.0 ± 0.25 V. If not, the board  
may be faulty.  
06807C DCN6650  
257  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.6.16. SAMPLE PRESSURE  
Measure the voltage across test points TP1 and TP4. With the sample pump  
disconnected or turned off, this voltage should be 4500 250 mV. With the pump  
running, it should be about 0.2 V less as the sample pressure drops by about 1 in-Hg-A  
from ambient pressure. If this voltage is significantly different, the pressure transducer  
S2 or the board may be faulty. A leak in the sample system to vacuum may also cause  
this voltage to be between about 0.6 and 4.5. Ensure that the front panel reading of the  
sample pressure is at about 1 in-Hg-A less than ambient pressure.  
12.6.17. IZS OPTION  
The zero/span valves and IZS options need to be enabled in the software (contact the  
factory on how to do this). Refer to Figure 3-19 and Figure 3-20 for a flow diagram with  
zero/span valve or IZS option.  
Check for the physical presence of the valves or the IZS option.  
Check that a working perm-tube is installed in the IZS oven assembly.  
Check front panel for correct software configuration. When the instrument is in  
SAMPLE mode, the front panel display should show CALS and CALZ buttons in  
the second line of the display. The presence of the buttons indicates that the option  
has been enabled in software. In addition, the IZS option is enabled if the TEST  
functions show a parameter named IZS TEMP.  
The IZS option is heated with a proportional heater circuit and the temperature is  
maintained at 50° C ±1°. Check the IZS TEMP function via front panel display (refer to  
Section 4.1.1) and the IZS_TEMP signal voltage using the SIGNAL I/O function  
under the DIAG Menu (refer to Section 5.9.1).  
At 50° C, the temperature signal from the IZS thermistor should be around 2500 mV.  
12.6.18. BOX TEMPERATURE  
The box temperature sensor (thermistor) is mounted on the motherboard at the bottom,  
right corner of the CPU board when looking at it from the front. It cannot be  
disconnected to check its resistance. Box temperature will vary with, but will always  
read about 5° C higher than, ambient (room) temperature because of the internal heating  
zones sample chamber and other devices.  
To check the box temperature functionality, we recommend checking the BOX_TEMP  
signal voltage using the SIGNAL I/O function under the DIAG Menu (refer to Section  
At about 30° C (5above typical room temperature), the signal should be around 1500  
mV. We recommend using a certified or calibrated external thermometer / temperature  
sensor to verify the accuracy of the box temperature.  
12.6.19. PMT TEMPERATURE  
PMT temperature should be low and constant. It is more important that this temperature  
is maintained constant than it is to maintain it low. The PMT cooler uses a Peltier,  
thermo-electric element powered by 12 VDC from the switching power supply PS2. The  
temperature is controlled by a proportional temperature controller located on the  
preamplifier board. Voltages applied to the cooler element vary from +/- 0.1 to +/- 12  
06807C DCN6650  
258  
       
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
VDC. The temperature set point (hard-wired into the preamplifier board) will vary by  
about ±1C due to component tolerances. The actual temperature will be maintained to  
within 0.1C around that set point.  
On power-up of the analyzer, the front panel enables the user to watch that temperature  
drop from about ambient temperature down to its set point of 6-8° C.  
If the temperature fails to drop after 20 minutes, there is a problem in the cooler  
circuit.  
If the control circuit on the preamplifier board is faulty, a temperature of -1C is  
reported.  
12.7. SERVICE PROCEDURES  
This section contains some procedures that may need to be performed when a major  
component of the analyzer requires repair or replacement.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Servicing of circuit components requires electrostatic discharge  
protection, i.e. ESD grounding straps, mats and containers. Failure to  
use ESD protection when working with electronic assemblies will void  
the instrument warranty.  
12.7.1. DISK-ON-MODULE REPLACEMENT  
Replacing the Disk-on-Module (DOM) will cause loss of all DAS data; it also may  
cause loss of some instrument configuration parameters unless the replacement DOM  
carries the exact same firmware version. Whenever changing the version of installed  
software, the memory must be reset. Failure to ensure that memory is reset can cause the  
analyzer to malfunction, and invalidate measurements. After the memory is reset, the  
A/D converter must be re-calibrated, and all information collected in Step 1 below must  
be re-entered before the instrument will function correctly. Also, zero and span  
calibration should be performed.  
1. Document all analyzer parameters that may have been changed, such as range,  
auto-cal, analog output, serial port and other settings before replacing the DOM  
2. Turn off power to the instrument, fold down the rear panel by loosening the  
mounting screws.  
3. When looking at the electronic circuits from the back of the analyzer, locate the  
Disk-on-Module in the right-most socket of the CPU board.  
4. The DOM should carry a label with firmware revision, date and initials of the  
programmer.  
5. Remove the nylon fastener that mounts the DOM over the CPU board, and lift the  
DOM off the CPU. Do not bend the connector pins.  
6. Install the new Disk-on-Module, making sure the notch at the end of the chip  
matches the notch in the socket.  
06807C DCN6650  
259  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
7. It may be necessary to straighten the pins somewhat to fit them into the socket.  
Press the DOM all the way in and reinsert the offset clip.  
8. Close the rear panel and turn on power to the machine.  
9. If the replacement DOM carries a firmware revision, re-enter all of the setup  
information.  
12.7.2. SENSOR MODULE REPAIR & CLEANING  
CAUTION - GENERAL SAFETY HAZARD  
Do not look at the UV lamp while the unit is operating. UV light can cause  
eye damage. Always use safety glasses made from UV blocking material  
when working with the UV Lamp Assembly. (Generic plastic glasses are  
not adequate).  
Figure 12-6:  
Sensor Module Wiring and Pneumatic Fittings  
06807C DCN6650  
260  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
IMPORTANT  
IMPACT ON READINGS OR DATA  
After any repair or service has been performed on the sensor module, the  
T100 should be allowed to warm up for 60 minutes.  
Always perform a leak check (refer to Section 11.3.6) and calibrate the  
analyzer (refer to Section 9) before placing it back in service.  
12.7.2.1. REMOVING AND REINSTALLING THE SENSOR MODULE  
Several of the procedures in this section either require the sensor module to be removed  
from the instrument or are easier to perform if it has been removed.  
To remove the Sensor Module:  
1. Turn off the instrument power.  
2. Open the top cover of the instrument:  
Remove the set screw located in the top, center of the rear panel.  
Remove the screws fastening the top cover to the unit (four per side).  
Lift the cover straight up.  
3. Disconnect the sensor module pneumatic lines (refer to Figure 12-6  
Gas inlet line: 1/8” black Teflonline with stainless steel fitting.  
Gas outlet line: 1/4” black Teflonline with brass fitting.  
4. Disconnect all electrical wiring to the Sensor Module:  
UV lamp power supply wiring  
Shutter cabling  
Reaction cell thermistor wiring (yellow)  
Reaction cell heater wiring (red)  
UV detector wiring  
TEC power cable  
PMT wiring (connectors J5 & J6 on the PMT preamplifier PCA)  
5. Remove the three sensor module mounting screws.  
06807C DCN6650  
261  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Mounting  
Screw  
PMT  
Housing  
Sample  
Chamber  
Mounting  
Screw  
Mounting  
Screw  
Figure 12-7:  
Follow the above steps in reverse order to reinstall the sensor module.  
12.7.2.2. CLEANING THE SAMPLE CHAMBER  
Sensor Module Mounting Screws  
IMPORTANT  
IMPACT ON READINGS OR DATA  
The sample chamber should only be opened or cleaned on instructions  
from the Teledyne API Technical Support department.  
Be careful not to leave thumbprints on the interior of the sample  
chamber. The various oils that make up fingerprints fluoresce brightly  
under UV light and will significantly affect the accuracy of the analyzer’s  
SO2 measurement)  
06807C DCN6650  
262  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
To clean the sample chamber:  
1. Remove the sensor module as described in Section 12.7.2.1.  
2. Remove the sample chamber mounting bracket by unscrewing the four bracket  
screws.  
Figure 12-8:  
Sample Chamber Mounting Bracket  
3. Unscrew the 4 hexagonal standoffs.  
4. Gently remove the chamber cover.  
5. Using a lint-free cloth dampened with distilled water, wipe the inside surface of the  
chamber and the chamber cover.  
6. Dry the chamber surfaces with a 2nd lint-free cloth.  
7. Re-assemble the chamber and re-install the sensor module.  
12.7.2.3. CLEANING THE PMT LENS AND PMT FILTER  
IMPORTANT  
IMPACT ON READINGS OR DATA  
The sample chamber should only be opened or cleaned on instructions  
from the Teledyne API Technical Support Department.  
Be careful not to leave thumbprints on the interior of the sample  
chamber. The various oils that make up fingerprints fluoresce brightly  
under UV light and will significantly affect the accuracy of the  
analyzer’s SO2 measurement).  
06807C DCN6650  
263  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
To clean the PMT Lens and filter:  
1. Remove the sensor module as described in Section 12.7.2.1.  
Figure 12-9:  
Hex Screw Between Lens Housing and Sample Chamber  
2. Remove the sample chamber from the PMT lens and filter housing by unscrewing  
the 4 hex screws that fasten the chamber to the housing.  
3. Remove the four lens cover screws.  
06807C DCN6650  
264  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
Figure 12-10: UV Lens Housing / Filter Housing  
4. Remove the lens/filter cover.  
5. Carefully remove the PMT lens and set it aside on soft, lint-free cloth.  
6. Remove the 3-piece, lens/filter spacer.  
7. Carefully remove the PMT filter and set it aside on soft, lint-free cloth.  
Figure 12-11: PMT UV Filter Housing Disassembled  
8. Using a lint-free cloth dampened with distilled water, clean the lens, the filter and all  
of the housing assembly mechanical parts.  
9. Dry everything with a 2nd lint-free cloth.  
10. Reassemble the lens/filter housing (refer to Figure 12-11 and Figure 12-10).  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Use gloves and a clean plastic covered surface during assembly.  
Cleanliness of the inside of the light shield, the UV lens filter housing and  
the PMT lens is especially important.  
Note  
Ensure to apply Loctite to the four lens holder screws and the two light  
shield screws.  
06807C DCN6650  
265  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
11. Reattach the lens / filter housing to the sample chamber.  
12. Reattach the sample chamber to the PMT housing.  
13. Reinstall the sensor module into the T100.  
14. Close the instrument.  
15. Turn the T100 on and let it warm up for 60 minutes.  
16. Perform a leak check (refer to Section 11.3.6).  
17. Calibrate the analyzer (refer to Section 9).  
12.7.2.4. REPLACING THE UV FILTER/LENS  
IMPORTANT  
IMPACT ON READINGS OR DATA  
Be careful not to leave thumbprints on the interior of the sample chamber.  
The various oils that make up fingerprints fluoresce brightly under UV  
light and will significantly affect the accuracy of the analyzer’s SO2  
measurement).  
CAUTION - GENERAL SAFETY HAZARD  
Do not look at the UV lamp while the unit is operating. UV light can cause  
eye damage. Always use safety glasses made from UV blocking material  
when working with the UV Lamp Assembly. (Generic plastic glasses are  
not adequate).  
To replace the UV filter lens:  
1. Turn off the instrument’s power and remove the power cord from the instrument.  
2. Unplug J4 connector from the motherboard to allow tool access.  
3. Alternatively, remove the sensor module as described in Section 12.7.2.1.  
4. Remove 4 screws from the shutter cover (refer to Figure 12-13) and remove the  
cover.  
5. Remove 4 screws from the UV filter retainer.  
06807C DCN6650  
266  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
Figure 12-12: Disassembling the Shutter Assembly  
6. Carefully remove the UV filter.  
7. Install the UV filter.  
8. Handle carefully and never touch the filter’s surface.  
9. UV filter’s wider ring side should be facing out.  
10. Install UV filter retainer and tighten screws.  
11. Install the shutter cover and minifit connector. Tighten 4 shutter cover screws.  
12. Reinstall the sensor module and Plug J4 connector into the motherboard.  
12.7.2.5. ADJUSTING THE UV LAMP (PEAKING THE LAMP)  
There are three ways in which ambient conditions can affect the UV Lamp output and  
therefore the accuracy of the SO2 concentration measurement. These are:  
Line Voltage Change: UV lamp energy is directly proportional to the line voltage.  
This can be avoided by installing adequate AC Line conditioning equipment such as a  
UPS/surge suppressor.  
Lamp Aging - Over a period of months, the UV energy will show a downward trend  
and can be up to 50% in the first 90 days, and then a slower rate, until the end of useful  
life of the lamp. Periodically running the UV lamp calibration routine (refer to Section  
5.9.6) will compensate for this until the lamp output becomes too low to function at all.  
Note  
As the lamp degrades over time, the software for the CPU compensates  
for the loss of UV output.  
06807C DCN6650  
267  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Lamp Positioning – The UV output level of the lamp is not even across the entire  
length of the lamp. Some portions of the lamp shine slightly more brightly than others.  
At the factory the position of the UV lamp is adjusted to optimize the amount of UV  
light shining through the UV filter/lens and into the reaction cell. Changes to the  
physical alignment of the lamp can affect the analyzers ability to accurately measure  
SO2.  
Figure 12-13: Shutter Assembly  
CAUTION - GENERAL SAFETY HAZARD  
Do not look at the UV lamp while the unit is operating. UV light can cause  
eye damage. Always use safety glasses made from UV blocking material  
when working with the UV Lamp Assembly. (Generic plastic glasses are  
not adequate).  
06807C DCN6650  
268  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
1. Set the analyzer display to show the signal I/O function, UVLAMP_SIGNAL (refer to  
Section 12.1.3). UVLAMP_SIGNAL is function 33.  
2. Slightly loosen the large brass thumbscrew located on the shutter housing (refer to  
Figure 12-14) so that the lamp can be moved.  
Figure 12-14. UV Lamp Adjustment  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
DO NOT grasp the UV lamp by its cap when changing its position -  
always grasp the main body of the lamp (refer to Figure 12-13).  
Inattention to this detail could twist and potentially disconnect the lamp’s  
power supply wires.  
3. While watching the UVLAMP_SIGNAL reading, slowly rotate the lamp or move it  
back and forth vertically until the UVLAMP_SIGNAL reading is at its maximum.  
4. Compare the UVLAMP_SIGNAL reading to the information in Table 12-10 and  
follow the instructions there.  
Table 12-10: UV Lamp Signal Troubleshooting  
ACTION TO BE TAKEN  
UVLAMP_SIGNAL  
3500mV±200mV.  
No Action Required  
Adjust the UV reference detector potentiometer (Figure 12-15) until  
> 4900mV at any time.  
UVLAMP_SIGNAL reads approximately 3600mV before continuing to adjust the  
lamp position.  
Adjust the UV reference detector potentiometer (Figure 12-15) until  
UVLAMP_SIGNAL reads as close to 3500mV as possible.  
>3700mV or < 3300mV  
.< 600mV  
Replace the lamp (Section 12.7.2.6.  
06807C DCN6650  
269  
   
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 12-15: Location of UV Reference Detector Potentiometer  
5. Finger tighten the thumbscrew.  
CAUTION - GENERAL SAFETY HAZARD  
DO NOT over tighten the thumbscrew, as over-tightening can cause  
breakage to the lamp and consequently release mercury into the area.  
12.7.2.6. REPLACING THE UV LAMP  
CAUTION - GENERAL SAFETY HAZARD  
Do not look at the UV lamp while the unit is operating. UV light can cause  
eye damage. Always use safety glasses made from UV blocking material  
when working with the UV Lamp Assembly. (Generic plastic glasses are  
not adequate).  
1. Turn off the analyzer.  
2. Disconnect the UV lamp from its power supply.  
3. You can find the power supply connector by following the two, white UV Lamp  
power supply wires from the lamp to the power supply.  
4. Loosen, but do not remove the two UV lamp bracket screws and the large brass  
thumbscrew located (refer to Figure 12-13 and Figure 12-14) on the shutter housing  
so that the lamp can be moved.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
DO NOT grasp the UV lamp by its cap when changing its position -  
always grasp the main body of the lamp (refer to Figure 12-13) Inattention  
to this detail could twist and potentially disconnect the lamp’s power  
supply wires.  
5. Remove the UV Lamp by pulling it straight up.  
06807C DCN6650  
270  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
6. Insert the new UV lamp into the bracket.  
7. Tighten the two UV lamp bracket screws, but leave the brass thumb screw un-  
tightened.  
8. Connect the new UV lamp to the power supply.  
9. Turn the instrument on and perform the UV adjustment procedure as defined in  
section 12.7.2.5.  
10. Finger tighten the thumbscrew.  
CAUTION - GENERAL SAFETY HAZARD  
DO NOT over tighten the thumbscrew, as over-tightening can cause  
breakage to the lamp and consequently release mercury into the area.  
11. Perform a lamp calibration procedure (refer to Section 5.9.6) and a zero point and  
span point calibration (refer to Section 9).  
12.7.2.7. REPLACING THE PMT, HVPS OR TEC  
The PMT should last for the lifetime of the analyzer. However, in some cases, the high  
voltage power supply (HVPS) or the thermo-electric cooler (TEC) may fail.  
When removing the PMT housing end plate cover for the Sensor  
Assembly, ensure to replace the 5 desiccant bags inside the housing.  
IMPORTANT  
06807C DCN6650  
271  
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
PMT Housing End Plate  
This is the entry to the PMT Exchange  
PMT Output  
Connector  
PMT Preamp PCA  
PMT Power Supply  
& Aux. Signal  
Connector  
High voltage Power Supply  
(HVPS)  
PMT  
O-Test LED  
PMT Cold Block  
Connector to PMT  
Pre Amp PCA  
12V Power  
Connector  
Insulation Gasket  
Light from Reaction  
Chamber shines  
through hole in side  
of Cold Block  
PMT Temperature  
Sensor  
Thermo-Electric Cooler  
(TEC)  
PMT Heat Exchange Fins  
TEC Driver PCA  
Cooling Fan  
Housing  
Figure 12-16: PMT Assembly - Exploded View  
To replace the PMT, the HVPS or the TEC:  
1. Remove the sensor module as described in Section 12.7.2.1.  
2. Remove the entire sensor module assembly from the.  
3. Remove the reaction cell assembly.  
4. Remove the two connectors on the PMT housing end plate facing towards the front  
panel.  
5. Remove the end plate itself (4 screws with plastic washers).  
6. Remove the desiccant bags inside the PMT housing.  
7. Along with the plate, slide out the OPTIC TEST LED and the thermistor that  
measures the PMT temperature.  
Both may be coated with a white, thermal conducting paste. Do not contaminate the  
inside of the housing or the PMT tube with this grease.  
8. Unscrew the PMT assembly. It is held to the cold block by two plastic screws.  
Because the threads of the plastic screws are easily damaged it is highly  
recommended to use new screws when reassembling the unit.  
9. Carefully take out the assembly consisting of the HVPS, the gasket and the PMT.  
06807C DCN6650  
272  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
10. Change the PMT or the HVPS or both, clean the PMT glass tube with a clean, anti-  
static wipe and DO NOT TOUCH it after cleaning.  
11. If the cold block or TEC is to be changed disconnect the TEC driver board from the  
preamplifier board.  
Remove the cooler fan duct (4 screws on its side) including the driver board.  
Disconnect the driver board from the TEC and set the sub-assembly aside.  
Remove the end plate with the cooling fins (4 screws) and slide out the PMT cold  
block assembly, which contains the TEC.  
Unscrew the TEC from the cooling fins and the cold block and replace it with a new  
unit.  
12. Re-assemble the TEC subassembly in reverse order.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
The thermo-electric cooler needs to be mounted flat to the heat sink. If  
there is any significant gap, the TEC might burn out. Ensure to apply heat  
sink paste before mounting it and tighten the screws evenly and cross-  
wise.  
Ensure to use thermal grease between TEC and cooling fins as well as between TEC  
and cold block.  
Align the side opening in the cold block with the hole in the PMT housing where the  
sample Chamber attaches.  
Evenly tighten the long mounting screws for good thermal conductivity.  
13. Re-insert the TEC subassembly. Ensure that the O-ring is placed properly and the  
assembly is tightened evenly.  
14. Re-insert the PMT/HVPS subassembly.  
Don’t forget the gasket between HVPS and PMT.  
Use new plastic screws to mount the PMT assembly on the PMT cold block.  
15. Insert the LED and thermistor into the cold block.  
16. Replace the desiccant bags with five new desiccant bags.  
17. Carefully replace the end plate.  
Ensure that the O-ring is properly in place. Improperly placed O-rings will cause  
leaks, which – in turn – cause moisture to condense on the inside of the cooler  
causing the HVPS to short out.  
18. Reconnect the cables and the reaction cell  
Be sure to tighten these screws evenly.  
19. Replace the sensor assembly into the chassis and fasten with four screws and  
washers.  
20. Perform a leak check the system.  
06807C DCN6650  
273  
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
21. Power up the analyzer and verify the basic operation of the analyzer using the  
ETEST and OTEST features (refer to Section 6.9.5 and 6.9.6) or by measuring  
calibrated zero and span gases.  
22. Allow the instrument to warm up for 60 minutes.  
23. Perform a PMT Hardware calibration (refer to Section 12.7.2.8).  
24. Perform a zero point and span calibration (refer to Section 9).  
12.7.2.8. PMT HARDWARE CALIBRATION (FACTORY CAL)  
The sensor module hardware calibration adjusts the slope of the PMT output when the  
instrument’s slope and offset values are outside of the acceptable range and all other  
more obvious causes for this problem have been eliminated.  
Figure 12-17: Pre-Amplifier Board (Preamp PCA) Layout  
1. Set the instrument reporting range type to SNGL (refer to Section 5.4.3.1).  
2. Perform a zero–point calibration using zero air (refer to Section 9).  
3. Let the instrument stabilize by allowing it to run for one hour.  
4. Adjust the UV Lamp (refer to Section 12.7.2.5).  
5. Perform a LAMP CALIBRATION procedure (refer to Section 5.9.6).  
6. Locate the Preamp PCA (refer to Figure 12-16).  
7. Locate the Following Components On the Preamp PCA (Figure 12-17):  
8. HVPS coarse adjustment switch (Range 0-9, then A-F).  
9. HVPS fine adjustment switch (Range 0-9, then A-F).  
10. Gain adjustment potentiometer (Full scale is 10 to 12 turns).  
11. Set the HVPS coarse adjustment to its minimum setting (0).  
12. Set the HVPS fine adjustment switch to its maximum setting (F).  
06807C DCN6650  
274  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
13. Turn the gain adjustment potentiometer clockwise to its maximum setting.  
14. Set the front panel display to show STABIL (refer to Section 4.1.1).  
15. Feed span gas into the analyzer.  
16. Wait until the STABIL value is below 0.5 ppb.  
IMPORTANT  
IMPACT ON READINGS OR DATA  
span gas equal to 80% of the reporting range.  
Use  
a
Example: for a reporting range of 500 ppb, use a span gas of 400 ppb.  
17. Scroll to the OFFSET function and record the value.  
18. Scroll to the NORM PMT value.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
ATTENTION  
Do not overload the PMT by accidentally setting both adjustment  
switches to their maximum setting. This can cause permanent damage  
to the PMT.  
19. Determine the target NORM PMT value according to the following formulas.  
If the reporting range is set for 2,000 ppb (the instrument will be using the 2,000  
ppb physical range):  
Target NORM PMT = (2 x span gas concentration) + OFFSET  
If the reporting range is set for 2,001 ppb(the instrument will be using the 20,000  
ppb physical range):  
Target NORM PMT = (0.181 x span gas concentration) + OFFSET  
EXAMPLE: If the OFFSET IS 33 mV, the Reporting Range is 500 ppb, the  
span gas should be 400 ppb and the calculation would be:  
Target NORM PMT = (2 x 400) + 33 mV  
Target NORM PMT = 833 mV  
20. Set the HVPS coarse adjustment switch to the lowest setting that will give you more  
than the target NORM PMT signal from Step 16.  
The coarse adjustment typically increments the NORM PMT signal in 100-300 mV  
steps.  
21. Adjust the HVPS fine adjustment such that the NORM PMT value is at or just above  
the target NORM PMT signal from Step 16.  
22. Continue adjusting the both the coarse and fine switches until norm PMT is as close  
to (but not below) the target NORM PMT signal from Step 16.  
23. Adjust gain adjustment potentiometer until the NORM PMT value is ±10 mV of the  
target level from Step 16.  
24. Perform span and zero-point calibrations (refer to Section 9) to normalize the sensor  
response to its new PMT sensitivity.  
25. Review the slope and offset values, and compare them to the values in Table 9-5.  
06807C DCN6650  
275  
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
12.8. FREQUENTLY ASKED QUESTIONS (FAQS)  
The following list contains some of the most commonly asked questions relating to the  
T100 SO2 Analyzer.  
QUESTION  
ANSWER  
Why is the ZERO or SPAN button not The T100 disables these buttons when the expected span or zero value entered by  
displayed during calibration?  
the users is too different from the gas concentration actually measured value at the  
time. This is to prevent the accidental recalibration of the analyzer to an out-of-  
range response curve.-EXAMPLE: The span set point is 400 ppb but gas  
concentration being measured is only 50 ppb.-For more information, refer to Section  
Why does the ENTR button  
sometimes disappear on the Front  
Panel Display?  
During certain types of adjustments or configuration operations, the ENTR button  
will disappear if you select a setting that is nonsensical (such as trying to set the 24-  
hour clock to 25:00:00) or out of the allowable range for that parameter (such as  
selecting a DAS hold off period of more than 20 minutes).-Once you adjust the  
setting in question to an allowable value, the ENTR button will re-appear.  
How do I enter or change the value of Press the CONC button found under the CAL or CALS menus of the main SAMPLE  
my Span Gas?  
menu to enter the expected SO2 span concentration.-Refer to Section 3.4.4.1 or for  
more information.  
Why does the analyzer not respond to Section 12.4.4 has some possible answers to this question.  
span gas?  
Can I automate the calibration of my  
analyzer?  
Any analyzer with zero/span valve or IZS option can be automatically calibrated  
using the instrument’s AutoCal feature.-However, the accuracy of the IZS option’s  
permeation tube is ±5%. While this may be acceptable for basic calibration checks,  
the IZS option is not permitted as a calibration source in applications following US  
EPA protocols. -To achieve highest accuracy, it is recommended to use cylinders of  
calibrated span gases in combination with a zero air source. Teledyne API offers a  
zero air generator Model 701 and a gas dilution calibrator Model T700 for this  
purpose.  
What do I do if the concentration on  
the instrument's front panel display  
does not match the value recorded or  
displayed on my data logger even if  
both instruments are properly  
calibrated?  
This most commonly occurs for one of the following reasons: -A difference in circuit  
ground between the analyzer and the data logger or a wiring problem;-A scale  
problem with the input to the data logger. -The analog outputs of the T100 can be  
manually adjusted to compensate for either or both of these effects, refer to 5.9.3.4;  
-The analog outputs are not calibrated, which can happen after a firmware upgrade.  
-Both the electronic scale and offset of the analog outputs can be adjusted (refer to  
Section 5.9.3.2). Alternately, use the data logger itself as the metering device during  
calibrations procedures.  
How do I perform a leak check?  
Refer to Section 11.3.6.  
How do I measure the sample flow?  
Sample flow is measured by attaching a calibrated flow meter to the sample inlet  
port when the instrument is operating. The sample flow should be 650 cm³/min  
10%. Section 11.3.6 includes detailed instructions on performing a check of the  
sample gas flow.  
How often do I need to change the  
particulate filter?  
Once per week. Table 11-1 contains a maintenance schedule listing the most  
important, regular maintenance tasks.  
What is the averaging time for an  
T100?  
The default averaging time, optimized for ambient pollution monitoring, is 240  
seconds for stable concentrations and 20 seconds for rapidly changing  
concentrations; Refer to 13.7.1 for more information.  
My analyzer has the optional, user -  
configurable analog output channels.  
Instructions for this can be found in the Manual Addendum for Configurable Analog  
Output, PN 06270.  
06807C DCN6650  
276  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Troubleshooting & Service  
QUESTION  
ANSWER  
How do I program and use them?  
How long does the sample pump last? The sample pump should last about one year and the pump diaphragms should to  
be replaced annually or when necessary. Use the PRES test function displayed via  
the front panel to see if the diaphragm needs replacement (refer to Section 12.1.2).  
Do I need a strip chart recorder or  
external data logger?  
No, the T100 is equipped with a very powerful internal data acquisition system.  
Section 0 describes the setup and operation in detail.  
12.9. TECHNICAL ASSISTANCE  
If this manual and its troubleshooting / repair sections do not solve your problems,  
technical assistance may be obtained from:  
Teledyne API, Technical Support ,  
9480 Carroll Park Drive  
San Diego, California 92121-5201USA  
Toll-free Phone: 800-324-5190  
Phone: 858-657-9800  
Fax: 858-657-9816  
Website: http://www.teledyne-api.com/  
Before you contact Teledyne API’ Technical Support, fill out the problem report form in  
Appendix C, which is also available online for electronic submission at  
http://www.teledyne-api.com/forms/.  
06807C DCN6650  
277  
 
Troubleshooting & Service  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
06807C DCN6650  
278  
13. PRINCIPLES OF OPERATION  
This section describes the principles of operation for the T100 SO2 analyzer (Section  
13.1), for the optional O2 sensor (Section 13.2) and for the optional CO2 sensor (Section  
13.3). It also describes the principles of operation for pneumatics (Section 13.4),  
electronics (Section 13.5), communication interfaces (13.6) and software (13.7).  
13.1. SULFUR DIOXIDE (SO2) SENSOR PRINCIPLES OF  
OPERATION  
The T100 UV Fluorescence SO2 Analyzer is a microprocessor controlled analyzer that  
determines the concentration of sulfur dioxide (SO2), in a sample gas drawn through the  
instrument. It requires that sample and calibration gases be supplied at ambient  
atmospheric pressure in order to establish a constant gas flow through the sample  
chamber where the sample gas is exposed to ultraviolet light; this exposure causes the  
SO2 molecules to change to an excited state (SO2*). As these SO2* molecules decay into  
SO2 they fluoresce. The instrument measures the amount of fluorescence to determine  
the amount of SO2 present in the sample gas.  
Calibration of the instrument is performed in software and usually does not require  
physical adjustments to the instrument. During calibration, the microprocessor measures  
the sensor output signal when gases with known amounts of SO2 at various  
concentrations are supplied and stores these measurements in memory. The  
microprocessor uses these calibration values along with other performance parameters  
such as the PMT dark offset, UV lamp ratio and the amount of stray light present and  
measurements of the temperature and pressure of the sample gas to compute the final  
SO2 concentration.  
This concentration value and the original information from which it was calculated are  
stored in the unit’s internal data acquisition system and reported to the user through a  
vacuum fluorescent display or as electronic data via several communication ports.  
This concentration value and the original information from which it was calculated are  
stored in the unit’s internal data acquisition system (refer to Section 0) and reported to  
the user through a vacuum fluorescent display or several communication ports.  
13.1.1. SO2 ULTRAVIOLET FLUORESCENCE MEASUREMENT PRINCIPLE  
The physical principle upon which the T100’s measurement method is based is the  
fluorescence that occurs when sulfur dioxide (SO2) is changed to excited state (SO2*) by  
ultraviolet light with wavelengths in the range of 190 nm-230 nm. This reaction is a two-  
step process.  
279  
06807C DCN6650  
     
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
The first stage (Equation 13-1) occurs when SO2 molecules are struck by photons of the  
appropriate ultraviolet wavelength. In the case of the T100, a band pass filter between the  
source of the UV light and the affected gas limits the wavelength of the light to  
approximately 214 nm. The SO2 absorbs some of energy from the UV light causing one  
of the electrons of the SO2 molecule to move to a higher energy orbital state.  
Ia  
SO2 hv214nm SO2 *  
(Equation 13-1)  
The amount SO2 converted to SO2* in the sample chamber is dependent on the average  
intensity of the UV light (Ia) and not its peak intensity because the intensity of UV light  
is not constant in every part of the sample chamber. Some of the photons are absorbed  
by the SO2 as the light travels through the sample gas.  
214nm  
Filter  
Darkened  
REACTION CELL  
filled with SO2  
UV  
SOURCE  
Figure 13-1:  
UV Absorption  
The equation for defining the average intensity of the UV light (Ia) is:  
Ia I0  
1exp  
ax  
SO2   
(Equation 13-2)  
Where:  
I0 = Intensity of the excitation UV light.  
a = The absorption coefficient of SO2 (a constant).  
= Concentration of SO2 in the sample chamber.  
SO2  
280  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
x = The distance between the UV source and the SO2 molecule(s) being affected  
(path length).  
The second stage of this reaction occurs after the SO2 reaches its excited state (SO2*).  
Because the system will seek the lowest available stable energy state, the SO2* molecule  
quickly returns to its ground state (Equation 10-3) by giving off the excess energy in the  
form of a photon (h). The wavelength of this fluoresced light is also in the ultraviolet  
band but at a longer (lower energy) wavelength centered at 330nm.  
SO2 *  SO2 hv330nm  
(Equation 13-3)  
The amount of detectable UV given off by the decay of the SO2* is affected by the rate  
at which this reaction occurs (k).  
F k SO2 *  
(Equation 13-4)  
Where:  
F
= the amount of fluorescent light given off.  
k
= The rate at which the SO2* decays into SO2.  
*
SO2 = Amount of excited-state SO2 in the sample chamber.  
Therefore:  
kF  
SO2 *  SO2 hv330nm  
(Equation 13-5)  
Finally, the function (k) is affected by the temperature of the gas. The warmer the gas,  
the faster the individual molecules decay back into their ground state and the more  
photons of UV light are given off per unit of time.  
Given that the absorption rate of SO2 (a) is constant, the amount of fluorescence (F) is a  
result of:  
The amount of SO2* created which is affected by the variable factors from  
(Equation 13-2) above: concentration of SO2; intensity of UV light (I0); path length  
of the UV light(x) and;  
The amount of fluorescent light created which is affected by the variable factors  
from (Equation 13-5): the amount of SO2* present and the rate of decay (k) which  
changes based on the temperature of the gas.  
When and the intensity of the light (I0) is known; path length of excited light is short (x);  
the temperature of the gas is known and compensated for so that the rate of SO2*decay  
is constant (k). and; no interfering conditions are present (such as interfering gases or  
stray light); the amount of fluorescent light emitted (F) is directly related to the  
concentration of the SO2 in the Sample Chamber.  
281  
06807C DCN6650  
 
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
The Model 100 E UV Fluorescence SO2 Analyzer is specifically designed to create these  
circumstances.  
The light path is very short (x).  
A reference detector measures the intensity of the available excitation UV light and  
is used to remove effects of lamp drift (I0).  
The temperature of the sample gas is measured and controlled via heaters attached to  
the sample chamber so that the rate of decay (k) is constant.  
A special hydrocarbon scrubber removes the most common interfering gases from  
the sample gas.  
And finally, the design of the sample chamber reduces the effects of stray light via  
its optical geometry and spectral filtering.  
The net result is that any variation in UV fluorescence can be directly attributed to  
changes in the concentration of SO2 in the sample gas.  
13.1.2. THE UV LIGHT PATH  
The optical design of the T100’s sample chamber optimizes the fluorescent reaction  
between SO2 and UV Light (refer to Figure 13-2) and assure that only UV light resulting  
from the decay of SO2* into SO2 is sensed by the instruments fluorescence detector.  
UV radiation is generated by a lamp specifically designed to produce a maximum  
amount of light of the wavelength needed to excite SO2 into SO2* (214 nm) and a  
special reference detector circuit constantly measures lamp intensity (refer to (Equation  
13-2)). A Photo Multiplier Tube (PMT) detects the UV given off by the SO2* decay  
(330 nm) and outputs an analog signal. Several focusing lenses and optical filters ensure  
that both detectors are exposed to an optimum amount of only the right wavelengths of  
UV. To further assure that the PMT only detects light given off by decaying SO2* the  
pathway of the excitation UV and field of view of the PMT are perpendicular to each  
other and the inside surfaces of the sample chamber are coated with a layer of black  
Teflon® that absorbs stray light.  
282  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
Figure 13-2:  
UV Light Path  
13.1.3. UV SOURCE LAMP  
The source of excitation UV light for the T100 is a low pressure zinc-vapor lamp. An  
AC voltage heats up and vaporizes zinc contained in the lamp element creating a light-  
producing plasma arc. Zinc-vapor lamps are preferred over the more common mercury-  
vapor lamps for this application because they produce very strong emission levels at the  
wavelength required to convert SO2 to SO2*, 213.9 nm (refer to Figure 13-4).  
The lamp used in the T100 is constructed with a vacuum jacket surrounding a double-  
bore lamp element (refer to Figure 13-3). The vacuum jacket isolates the plasma arc  
from most external temperature fluctuations. The jacket also contains thermal energy  
created by the lamp’s operation therefore helping the lamp to heat up and maintain  
proper vaporization temperature. Light is emitted through a 20 mm x 5 mm portal.  
283  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Vacuum  
Jacket  
Light Output  
Portal  
Zinc-Vapor  
Plasma Arc  
Dual Bore  
Figure 13-3: Source UV Lamp Construction  
13.1.4. THE REFERENCE DETECTOR  
A vacuum diode, UV detector that converts UV light to a DC current is used to measure  
the intensity of the excitation UV source lamp. It is located directly across from the  
source lamp at the back of a narrow tube-shaped light trap, which places it directly in the  
path of the excitation UV light. A window transparent to UV light provides an air-proof  
seal that prevents ambient gas from contaminating the sample chamber. The shape of the  
light trap and the fact that the detector is blind to wavelengths other than UV no extra  
optical filtering is needed.  
13.1.5. THE PMT  
The amount of fluoresced UV produced in the sample chamber is much less than the  
intensity of excitation UV source lamp (refer to Figure 13-4). Therefore a much more  
sensitive device is needed to detect this light with enough resolution to be meaningful.  
The T100 uses a Photo Multiplier Tube or PMT for this purpose.  
A PMT is typically a vacuum tube containing a variety of specially designed electrodes.  
Photons enter the PMT and strike a negatively charged photo cathode causing it to emit  
electrons. These electrons are accelerated by a high voltage applied across a series of  
special electrodes called dynodes that multiply the amount of electrons until a useable  
current signal is generated. This current increases or decreases with the amount of  
detected light (refer to Section 13.5.3 for more details regarding the electronic operation  
of the PMT).  
13.1.6. UV LAMP SHUTTER & PMT OFFSET  
Inherent in the operation of both the reference detector and the PMT are a minor  
electronic offsets. The degree of offset differs from detector to detector and from PMT  
to PMT and can change over time as these components age.  
To account for these offsets the T100 includes a shutter, located between the UV Lamp  
and the source filter that periodically cuts off the UV light from the sample chamber.  
This happens every 30 minutes. The analyzer records the outputs of both the reference  
detector and the PMT during this dark period and factors them into the SO2  
concentration calculation.  
284  
06807C DCN6650  
       
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
The reference detector offset is stored as and viewable via the front panel as the test  
function DRK LMP.  
The PMT offset is stored as and viewable via the front panel as the test function  
DRK PMT.  
13.1.7. OPTICAL FILTERS  
The T100 analyzer uses two stages of optical filters to enhance performance. The first  
stage conditions the UV light used to excite the SO2 by removing frequencies of light  
that are not needed to produce SO2*. The second stage protects the PMT detector from  
reacting to light not produced by the SO2* returning to its ground state.  
13.1.7.1. UV SOURCE OPTICAL FILTER  
Zinc-vapor lamps output light at other wavelengths beside the 214nm required for the  
SO2 SO2* transformation including a relatively bright light of the same wavelength at  
which SO2* fluoresces as it returns to its SO2 ground state (330 nm). In fact, the  
intensity of light emitted by the UV lamp at 330nm is so bright, nearly five orders of  
magnitude brighter than that resulting from the SO2* decay, it would drown out the  
SO2* fluorescence.  
BEFORE  
AFTER  
UV SOURCE OPTICAL FILTER  
BANDWIDTH  
105  
104  
103  
102  
101  
1
105  
104  
103  
102  
101  
1
SO2*  
Fluorescent  
Spectrum  
SO2* FLUORESCENT  
SPECTRUM  
0
0
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
WAVELENGTH (nm)  
WAVELENGTH (nm)  
Figure 13-4:  
Excitation Lamp UV Spectrum Before/After Filtration  
To solve this problem, the light emitted by the excitation UV lamp passes through a  
band pass filter that screens out photons with wavelengths outside the spectrum required  
to excite SO2 into SO2* (refer to Figure 13-4).  
285  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.1.7.2. PMT OPTICAL FILTER  
The PMT used in the T100 reacts to a wide spectrum of light which includes much of  
the visible spectrum and most of the UV spectrum. Even though the 214 nm light used  
to excite the SO2 is focused away from the PMT, some of it scatters in the direction of  
the PMT as it interacts with the sample gas. A second optical band pass filter placed  
between the sample chamber (refer to Figure 13-2) and the PMT strips away light  
outside of the fluorescence spectrum of decaying SO2* (refer to Figure 13-5) including  
reflected UV form the source lamp and other stray light.  
PMT OPTICAL FILTER  
BANDWIDTH  
105  
104  
103  
102  
101  
SO2* FLUORESCENT  
SPECTRUM  
1
0
100  
200  
300  
400  
500  
WAVELENGTH (nm)  
Figure 13-5: PMT Optical Filter Bandwidth  
286  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.1.8. OPTICAL LENSES  
Two optical lenses are used to focus and optimize the path of light through the sample  
chamber.  
If source UV is unfocused, PMT  
receives fluorescence from area  
outside Reference Detector’s view  
When source UV is focused, PMT  
and Reference Detector view  
similar volume of SO2*  
Reference  
Detector  
When source UV is focused,  
Reference Detector most of  
the emitted light  
UV Source  
214 nm  
Filter  
If source UV is unfocused,  
Reference Detector only sees a  
small portion of emitted light  
Lens  
330 nm  
Filter  
PMT Lens  
PMT  
Figure 13-6:  
Effects of Focusing Source UV in Sample Chamber  
A lens located between PMT and the sample chamber collects as much of the fluoresced  
UV created there as possible and focuses it on the most sensitive part of the PMT’s  
photo cathode.  
Another lens located between the excitation UV source lamp and the sample chamber  
collimates the light emitted by the lamp into a steady, circular beam and focuses that  
beam directly onto the reference detector. This allows the reference detector to  
accurately measure the effective intensity of the excitation UV by eliminating the effect  
of flickering inherent in the plasma arc that generates the light.  
Ensure that all of the light emitted by the source lamp, passes though the 214 nm filter  
and not absorbed by the SO2 reaches the reference detector. Conversely, this also makes  
sure that the volume of sample gas affected by the excitation beam is similar to the  
volume of fluorescing SO2* being measured by the PMT, eliminating a possible source  
of measurement offset.  
287  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.1.9. MEASUREMENT INTERFERENCES  
It should be noted that the fluorescence method for detecting SO2 is subject to  
interference from a number of sources. The T100 has been successfully tested for its  
ability to reject interference from most of these sources.  
13.1.9.1. DIRECT INTERFERENCE  
The most common source of interference is from other gases that fluoresce in a similar  
fashion to SO2 when exposed to UV Light. The most significant of these is a class of  
hydrocarbons called poly-nuclear aromatics (PNA) of which xylene and naphthalene are  
two prominent examples. Nitrogen oxide fluoresces in a spectral range near to SO2. For  
critical applications where high levels of NO are expected an optional optical filter is  
available that improves the rejection of NO (contact Technical Support for more  
information).  
The T100 Analyzer has several methods for rejecting interference from these gases:  
A special scrubber (kicker) mechanism removes any PNA chemicals present in the  
sample gas before it the reach the sample chamber.  
The exact wavelength of light needed to excite a specific non-SO2 fluorescing gas is  
removed by the source UV optical filter.  
The light given off by Nitrogen Oxide and many of the other fluorescing gases is  
outside of the bandwidth passed by the PMT optical filter.  
13.1.9.2. UV ABSORPTION BY OZONE  
Because ozone absorbs UV Light over a relatively broad spectrum it could cause a  
measurement offset by absorbing some of the UV given off by the decaying SO2* in the  
sample chamber. The T100 prevents this from occurring by having a very short light  
path between the area where the SO2* fluorescence occurs and the PMT detector.  
Because the light path is so short, the amount of O3 needed to cause a noticeable effect  
would be much higher than could be reasonably expected in any application for which  
this instrument is intended.  
13.1.9.3. DILUTION  
Certain gases with higher viscosities can lower the flow rate though the critical flow  
orifice that controls the movement of sample gas though the analyzer reducing the  
amount of sample gas in the sample chamber and thus the amount of SO2 available to  
react with the to the UV light. While this can be a significant problem for some  
analyzers, the design of the T100 is very tolerant of variations in sample gas flow rate  
and therefore does not suffer from this type of interference.  
13.1.9.4. THIRD BODY QUENCHING  
While the decay of SO2* to SO2 happens quickly, it is not instantaneous. Because it is  
not instantaneous it is possible for the extra energy possessed by the excited electron of  
the SO2* molecule to be given off as kinetic energy during a collision with another  
molecule. This in effect heats the other molecule slightly and allows the excited electron  
to move into a lower energy orbit without emitting a photon.  
The most significant interferents in this regard are nitrogen oxide (NO), carbon dioxide  
(CO2), water vapor (H2O) and molecular oxygen (O2). In ambient applications the  
quenching effect of these gases is negligible. For stack applications where the  
288  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
concentrations of some or all of these may be very high, specific steps MUST be taken  
to remove them from the sample gas before it enters the analyzer.  
13.1.9.5. LIGHT POLLUTION  
Because T100 measures light as a means of calculating the amount of SO2 present,  
obviously stray light can be a significant interfering factor. The T100 removes this  
interference source in several ways.  
The sample chamber is designed to be completely light tight to light from sources  
other than the excitation UV source lamp.  
All pneumatic tubing leading into the sample chamber is completely opaque in order  
to prevent light from being piped into the chamber by the tubing walls.  
The optical filters discussed in Section 13.1.7; remove UV with wavelengths  
extraneous to the excitation and decay of SO2/SO2*.  
Most importantly, during instrument calibration the difference between the value of  
the most recently recorded PMT offset (refer to Section 13.1.6) and the PMT output  
while measuring zero gas (calibration gas devoid of SO2) is recorded as the test  
function OFFSET. This OFFSET value is used during the calculation of the SO2  
concentration.  
Since this offset is assumed to be due to stray light present in the sample chamber is also  
multiplied by the SLOPE and recorded as the function STR. LGT. Both OFFSET  
& STR. LGT are viewable via the front panel (refer to Section 4.1.1).  
13.2. OXYGEN (O2) SENSOR PRINCIPLES OF OPERATION  
The O2 sensor applies paramagnetics to determine the concentration of oxygen in a  
sample gas drawn through the instrument.  
13.2.1. PARAMAGNETIC MEASUREMENT OF O2  
The oxygen sensor used in the T100 utilizes the fact that oxygen is attracted into strong  
magnetic field while most other gases are not, to obtain fast, accurate oxygen  
measurements.  
The sensor’s core is made up of two nitrogen filled glass spheres, which are mounted on  
a rotating suspension within a magnetic field (refer to Figure 13-7). A mirror is  
mounted centrally on the suspension and light is shone onto the mirror that reflects the  
light onto a pair of photocells. The signal generated by the photocells is passed to a  
feedback loop, which outputs a current to a wire winding (in effect, a small DC electric  
motor) mounted on the suspended mirror.  
Oxygen from the sample stream is attracted into the magnetic field displacing the  
nitrogen filled spheres and causing the suspended mirror to rotate. Therefore, the  
amount of light reflected onto the photocells and therefore the output levels of the  
photocells. The feedback loop increases the amount of current fed into the winding in  
order to move the mirror back into its original position. The more O2 present, the more  
the mirror moves and the more current is fed into the winding by the feedback control  
loop.  
A sensor measures the amount of current generated by the feedback control loop which  
is directly proportional to the concentration of oxygen within the sample gas mixture.  
289  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Figure 13-7:  
Oxygen Sensor - Principles of Operation  
13.2.2. O2 SENSOR OPERATION WITHIN THE T100 ANALYZER  
The oxygen sensor option is transparently integrated into the core analyzer operation.  
All functions can be viewed or accessed through the front panel display, just like the  
functions for SO2.  
The O2 concentration is displayed below the SO2 concentration.  
Test functions for O2 slope and offset are viewable from the front panel along with  
the other test functions of the analyzer.  
O2 sensor calibration is performed via the front panel CAL function and is  
performed in a nearly identical manner as the standard SO2 calibration. Refer to  
Section 9.10.1 for more details.  
Stability of the O2 sensor can be viewed via the front panel (refer to Section  
The O2 concentration range is 0-100% (user selectable) with 0.1% precision and  
accuracy.  
The temperature of the O2 sensor is maintained at a constant 50°C by means of a PID  
loop and can be viewed on the front panel as test function O2 TEMP.  
The O2 sensor assembly itself does not have any serviceable parts and is enclosed in an  
insulated canister.  
290  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.3. CARBON DIOXIDE (CO2) SENSOR PRINCIPLES OF  
OPERATION  
The CO2 sensor probe measures the concentration of carbon dioxde in the sample gas; a  
Logic PCA conditions the probe output and issues a 0-5 VDC signal to the analyzer’s  
CPU, which computes the CO2 concentration by scaling the values of the CO2_SLOPE  
and CO2_OFFSET recorded during calibration  
The CO2 sensor assembly itself does not have any serviceable parts and is enclosed in an  
insulated canister.  
13.3.1. NDIR MEASUREMENT OF CO2  
The optional CO2 sensor is a silicon based Non-Dispersive Infrared (NDIR) sensor. It  
uses a single-beam, dual wavelength measurement method.  
An infrared source at one end of the measurement chamber emits IR radiation into the  
sensor’s measurement chamber where light at the 4.3 μm wavelength is partially  
absorbed by any CO2 present. A special light filter called a Fabry-Perot Interferometer  
(FPI) is electronically tuned so that only light at the absorption wavelength of CO2 is  
allowed to pass and be detected by the sensor’s IR detector.  
A reference measurement is made by electronically shifting the filter band pass  
wavelength so that no IR at the CO2 absorption wavelength is let through.  
Figure 13-8: CO2 Sensor Principles of Operation  
The sensor computes the ratio between the reference signal and the measurement signal  
to determine the degree of light absorbed by CO2 present in the sensor chamber. This  
dual wavelength method the CO2 measurement allows the instrument to compensate for  
ancillary effects like sensor aging and contamination.  
291  
06807C DCN6650  
     
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.3.2. CO2 OPERATION WITHIN THE T100 ANALYZER  
The CO2 sensor option is transparently integrated into the core analyzer operation. All  
functions can be viewed or accessed through the front panel display, just like the  
functions for SO2.  
The CO2 concentration is displayed below the SO2 concentration.  
Test functions for CO2 slope and offset are viewable from the front panel along with  
the other test functions of the analyzer.  
CO2 sensor calibration is performed via the front panel CAL function and is  
performed in a nearly identical manner as the standard SO2 calibration.  
Stability of the CO2 sensor can be viewed via the front panel (refer to Section  
Refer to Section 3.4.4.3 for information on calibrating the CO2.  
13.3.3. ELECTRONIC OPERATION OF THE CO2 SENSOR  
The CO2 PCA, which is mounted to the rear side of the Relay Board Mounting Bracket,  
controls the CO2 sensor. It converts the sensor’s digital output to an analog voltage that  
is measured with the motherboard and draws 12 VDC from the analyzer via the relay  
card from which converts to fit the power needs of the probe and its own onboard logic.  
It outputs a 0-5 VDC analog signal to the analyzer’s CPU via the motherboard that  
corresponds to the concentration of CO2 measured by the probe.  
LED V8  
LED V9  
Serial I/O  
(Not Used)  
J12  
Pin 7  
Purple wire  
22 awg  
To CO2  
Probe  
Pin 8  
Orange wire  
22 awg  
CPU  
Analog OVDC 5VDC  
Output  
Relay PCA  
Black wire  
22 awg  
Grey wire  
22 awg  
P110  
Motherboard  
Figure 13-9:  
CO2 Sensor Option PCA Layout and Electronic Connections  
292  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.4. PNEUMATIC OPERATION  
IMPORTANT  
IMPACT ON READINGS OR DATA  
It is important that the sample airflow system is leak-tight and not  
pressurized over ambient pressure. Regular leak checks should be  
performed on the analyzer as described in the maintenance schedule,  
Table 11-1. Procedures for correctly performing leak checks can be found  
in Section 11.3.6.  
Relative Pressure versus Absolute Pressure  
IMPORTANT  
In this manual vacuum readings are given in inches of mercury absolute  
pressure (in-Hg-A), i.e. indicate an absolute pressure referenced against  
zero (a perfect vacuum).  
13.4.1. SAMPLE GAS FLOW  
The Flow of gas through the T100 UV Fluorescence SO2 Analyzer is created by a small  
internal pump that pulls air though the instrument.  
EXHAUST  
gas outlet  
KICKER EXHAUST  
TO PUMP  
Chassis  
PUMP  
HYDROCARBON  
SCRUBBER  
(KICKER)  
SAMPLE  
CHAMBER  
SAMPLE  
gas inlet  
UV  
LAMP  
SAMPLE FILTER  
PMT  
CRITICAL  
FLOW  
EXHAUST TO OUTER  
LAYER OF KICKER  
ORIFICE  
FLOW  
FLOW  
CONTROL  
ASSY  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
FLOW / PRESSURE  
SENSOR PCA  
Figure 13-10: Gas Flow and Location of Critical Flow Orifice  
293  
06807C DCN6650  
     
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.4.2. FLOW RATE CONTROL  
The T100 uses a special flow control assembly located in the exhaust vacuum manifold  
(refer to Figure 13-10) to maintain a constant flow rate of the sample gas through the  
instrument. This assembly consists of:  
A critical flow orifice.  
Two o-rings: Located just before and after the critical flow orifice, the o-rings seal  
the gap between the walls of assembly housing and the critical flow orifice.  
A spring: Applies mechanical force needed to form the seal between the o-rings, the  
critical flow orifice and the assembly housing.  
13.4.2.1. CRITICAL FLOW ORIFICE  
The most important component of this flow control assembly is the critical flow orifice.  
Critical flow orifices are a simple way to regulate stable gas flow rates. They operate  
without moving parts by taking advantage of the laws of fluid dynamics. Restricting the  
flow of gas though the orifice creates a pressure differential. This pressure differential  
combined with the action of the analyzer’s pump draws the gas through the orifice.  
As the pressure on the downstream side of the orifice (the pump side) continues to drop,  
the speed that the gas flows though the orifice continues to rise. Once the ratio of  
upstream pressure to downstream pressure is greater than 2:1, the velocity of the gas  
through the orifice reaches the speed of sound. As long as that ratio stays at least 2:1 the  
gas flow rate is unaffected by any fluctuations, surges, or changes in downstream  
pressure because such variations only travel at the speed of sound themselves and are  
therefore cancelled out by the sonic shockwave at the downstream exit of the critical  
flow orifice.  
CRITICAL  
FLOW  
ORIFICE  
AREA OF  
LOW  
AREA OF  
HIGH  
PRESSURE  
PRESSURE  
Sonic  
Shockwave  
O-RINGS  
SPRING  
FILTER  
Figure 13-11: Flow Control Assembly & Critical Flow Orifice  
294  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
The actual flow rate of gas through the orifice (volume of gas per unit of time), depends  
on the size and shape of the aperture in the orifice. The larger the hole, the more gas  
molecules, moving at the speed of sound, pass through the orifice. Because the flow rate  
of gas through the orifice is only related to the minimum 2:1 pressure differential and  
not absolute pressure the flow rate of the gas is also unaffected by degradations in pump  
efficiency due to age.  
The critical flow orifice used in the T100 is designed to provide a flow rate of 650  
cm3/min.  
13.4.2.2. SAMPLE PARTICULATE FILTER  
To remove particles in the sample gas, the analyzer is equipped with a Teflon membrane  
filter of 47 mm diameter (also referred to as the sample filter) with a 1 µm pore size. The  
filter is accessible through the front panel, which folds down, and should be changed  
according to the suggested maintenance schedule listed in Table 11-1.  
13.4.3. HYDROCARBON SCRUBBER (KICKER)  
It is very important to ensure that the air supplied sample chamber is clear of  
hydrocarbons. To accomplish this task the T100 uses a single tube permeation scrubber.  
The scrubber consists of a single tube of a specialized plastic that absorbs hydrocarbons  
very well. This tube is located within outer flexible plastic tube shell. As gas flows  
through the inner tube, hydrocarbons are absorbed into the membrane walls and  
transported through the membrane wall and into the hydrocarbon free, purge gas flowing  
through the outer tube. This process is driven by the hydrocarbon concentration gradient  
between the inner and outer of the tubes.  
CLEAN  
PURGE AIR  
FROM  
VACUUM MANIFOLD  
OUTER TUBE  
(Clean Air)  
USED PURGE AIR  
TO  
PUMP  
AND  
CLEANED  
SAMPLE AIR  
TO  
EXHAUST PORT  
SAMPLE  
CHAMBER  
SAMPLE AIR  
FROM  
PARTICULATE FILTER  
INNER  
TUBE  
(Ambient Air)  
Figure 13-12: T100 Hydrocarbon Scrubber (Kicker)  
In the T100 some of the cleaned air from the inner tube is returned to be used as the  
purge gas in the outer tube (refer to Figure 13-12). This means that when the analyzer is  
first started, the concentration gradient between the inner and outer tubes is not very  
large and the scrubber’s efficiency is relatively low. When the instrument is turned on  
after having been off for more than 30 minutes, it takes a certain amount of time for the  
gradient to become large enough for the scrubber to adequately remove hydrocarbons  
from the sample air.  
295  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.4.4. PNEUMATIC SENSORS  
The T100 uses two pneumatic sensors to verify gas streams. These sensors are located  
on a printed circuit assembly, called the pneumatic pressure/flow sensor board. The flow  
simultaneously enters the sample pressure sensor and the flow sensor from the outlet of  
the reaction cell.  
13.4.4.1. SAMPLE PRESSURE SENSOR  
An absolute pressure transducer plumbed to the input of the analyzer’s sample chamber  
is used to measure the pressure of the sample gas before it enters the chamber. This  
upstream used to validate the critical flow condition (2:1 pressure ratio) through the  
instrument’s critical flow orifice (refer to Section 13.4.2). Also, if the  
Temperature/Pressure Compensation (TPC) feature is turned on (refer to Section  
13.7.3), the output of this sensor is also used to supply pressure data for that calculation.  
The actual pressure measurement is viewable through the analyzer’s front panel display  
as the test function PRESS.  
13.4.4.2. SAMPLE FLOW SENSOR  
A thermal-mass flow sensor is used to measure the sample flow through the analyzer.  
This sensor is also mounted on the pneumatic pressure/flow sensor board upstream of  
the sample chamber. The flow rate is monitored by the CRT which issues a warning  
message (SAMP FLOW WARN) if the flow rate is too high or too low.  
The flow rate of the sample gas is viewable via the front panel as the SAMP FL test  
function.  
296  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.5. ELECTRONIC OPERATION  
RS232  
Male  
COM2  
Female  
USB COM  
port  
Ethernet  
Analog Outputs  
A1  
COM1  
(RS–232 ONLY)  
Optional  
Analog In  
A2  
A3  
A4  
4-20 mA  
Control Inputs:  
Touchscreen  
Display  
1 – 6  
Status Outputs:  
1 – 8  
USB  
LVDS  
transmitter board  
(I2C Bus)  
Analog  
Outputs  
(D/A)  
External  
Digital I/O)  
MOTHERBOARD  
PC 104  
CPU Card  
A/D  
Converter  
(V/F)  
Power-Up  
Circuit  
Disk On  
Module  
CPU  
STATUS  
Box  
Temp  
LED  
Flash Chip  
PC 104  
Bus  
Analog  
Sensor Inputs  
Thermistor  
Interface  
Internal  
Digital I/O  
PUMP  
I2C Bus  
Pneumatic  
Sensor  
SAMPLE  
CHAMBER  
TEMPERATURE  
I2C Status  
LED  
Board  
Sample  
Pressure  
Sensor  
RELAY  
BOARD  
IZS PERM-TUBE  
TEMPERATURE  
Sample Flow  
Sensor  
Shutter  
control  
Reaction Cell  
Heater  
UV Reference  
Detector  
Sample Cal  
Valve  
Option  
IZS Option  
Permeation  
Tube Heater  
PMT  
Temperature  
Sensor  
PMT  
PREAMP PCA  
IZS Valve  
Option  
TEC Drive  
PCA  
PMT TEC  
PMT  
Figure 13-13: T100 Electronic Block Diagram  
The core of the analyzer is a microcomputer that controls various internal processes,  
interprets data, makes calculations, and reports results using specialized firmware  
developed by Teledyne API. It communicates with the user as well as receives data from  
and issues commands to a variety of peripheral devices through a separate printed circuit  
assembly to which the CPU is mounted: the motherboard.  
297  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
The motherboard is directly mounted to the rear panel and collects data, performs signal  
conditioning duties and routes incoming and outgoing signals between the CPU and the  
analyzer’s other major components.  
Concentration data of the T100 are generated by the Photo Multiplier Tube (PMT),  
which produces an analog current signal corresponding to the brightness of the  
fluorescence reaction in the sample chamber. This current signal is amplified to a DC  
voltage signal (front panel test parameter PMT) by a PMT preamplifier printed circuit  
assembly (located on top of the sensor housing). PMT is converted to digital data by a  
bi-polar, analog-to-digital converter, located on the motherboard.  
In addition to the PMT signal, a variety of sensors report the physical and operational  
status of the analyzer’s major components, again through the signal processing  
capabilities of the motherboard. These status reports are used as data for the SO2  
concentration calculation (e.g. pressure and temperature reading used by the  
temperature/pressure compensation feature) and as trigger events for certain warning  
messages and control commands issued by the CPU. They are stored in the CPU’s  
memory and, in most cases, can be viewed through the front panel display.  
The CPU communicates with the user and the outside world in a variety of ways:  
Through the analyzer’s front panel LCD touch-screen interface  
RS-232 and RS-485 serial I/O channels  
Various analog voltage and current outputs  
Several digital I/O channels  
Ethernet  
Finally, the CPU issues commands (also over the I2C bus) to a series of relays and  
switches located on a separate printed circuit assembly, the relay board (located in the  
rear of the chassis on its own mounting bracket) to control the function of key  
electromechanical devices such as valves and heaters.  
298  
06807C DCN6650  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.5.1. CPU  
The unit’s CPU card, installed on the motherboard located inside the rear panel, is a low  
power (5 VDC, 720mA max), high performance, Vortex 86SX-based microcomputer  
running Windows CE. Its operation and assembly conform to the PC 104 specification..  
Figure 13-14: CPU Board Annotated  
The CPU includes two types of non-volatile data storage: a Disk on Module (DOM) and  
an embedded flash chip.  
13.5.1.1. DISK ON MODULE (DOM)  
The DOM is a 44-pin IDE flash chip with storage capacity to 256 MB. It is used to store  
the computer’s operating system, the Teledyne API firmware, and most of the  
operational data generated by the analyzer’s internal data acquisition system (DAS).  
Embedded in the DOM is a flash chip.  
13.5.1.2. FLASH CHIP  
This non-volatile, embedded flash chip includes 2MB of storage for calibration data as  
well as a backup of the analyzer configuration. Storing these key data onto a less heavily  
accessed chip significantly decreases the chance data corruption.  
In the unlikely event that the flash chip should fail, the analyzer will continue to operate  
with just the DOM. However, all configuration information will be lost, requiring that  
the unit be recalibrated.  
299  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.5.2. SENSOR MODULE  
Electronically, the T100 sensor module is a group of components that: create the UV  
light that initiates the fluorescence reaction between SO2 and O3; sense the intensity of  
that fluorescence; generate various electronic signals needed by the analyzer to  
determine the SO2 concentration of the sample gas (refer to Section 13.1.1), and sense  
and control key environmental conditions such as the temperature of the sample gas and  
the PMT.  
Figure 13-15: T100 Sensor Module  
These components are divided into two significant subassemblies: the sample chamber  
and the PMT assembly.  
Figure 13-16 shows an exploded view of the sample chamber assembly  
Figure 13-17shows an exploded view of the PMT Assembly  
300  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.5.2.1. SAMPLE CHAMBER  
The main electronic components of the sample chamber are the reference detector (refer  
to Section 13.1.4); the UV Lamp (refer to Section 13.1.3) and its electronically operated  
shutter (refer to Section 13.1.6); and the sample chamber heating circuit.  
Figure 13-16: T100 Sample Chamber  
13.5.2.2. SAMPLE CHAMBER HEATING CIRCUIT  
In order to reduce temperature effects, the sample chamber is maintained at a constant  
50°C, just above the high end of the instrument’s operation temperature range. Two AC  
heaters, one embedded into the top of the sample chamber, the other embedded directly  
below the reference detector’s light trap, provide the heat source. These heaters operate  
off of the instrument’s main AC power and are controlled by the CPU through a power  
relay on the relay board. A thermistor, also embedded in the bottom of the sample  
chamber, reports the cell’s temperature to the CPU through the thermistor interface  
circuitry of the motherboard.  
301  
06807C DCN6650  
 
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.5.3. PHOTO MULTIPLIER TUBE (PMT)  
The T100 uses a photo multiplier tube (PMT) to detect the amount of fluorescence  
created by the SO2 and O3 reaction in the sample chamber.  
PMT Housing End Plate  
This is the entry to the PMT Exchange  
PMT Output  
Connector  
PMT Preamp PCA  
PMT Power Supply  
& Aux. Signal  
Connector  
High voltage Power Supply  
(HVPS)  
PMT  
O-Test LED  
PMT Cold Block  
Connector to PMT  
Pre Amp PCA  
12V Power  
Connector  
Insulation Gasket  
Light from Reaction  
Chamber shines  
through hole in side  
of Cold Block  
PMT Temperature  
Sensor  
Thermo-Electric Cooler  
(TEC)  
PMT Heat Exchange Fins  
TEC Driver PCA  
Cooling Fan  
Housing  
Figure 13-17: PMT Housing Assembly  
A typical PMT is a vacuum tube containing a variety of specially designed electrodes.  
Photons from the reaction are filtered by an optical high-pass filter, enter the PMT and  
strike a negatively charged photo cathode causing it to emit electrons. A high voltage  
potential across these focusing electrodes directs the electrons toward an array of high  
voltage dynodes. The dynodes in this electron multiplier array are designed so that each  
stage multiplies the number of emitted electrons by emitting multiple, new electrons.  
The greatly increased number of electrons emitted from one end of electron multiplier is  
collected by a positively charged anode at the other end, which creates a useable current  
signal. This current signal is amplified by the preamplifier board and then reported to the  
motherboard.  
302  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
Figure 13-18: Basic PMT Design  
A significant performance characteristic of the PMT is the voltage potential across the  
electron multiplier. The higher the voltage, the greater is the number of electrons emitted  
from each dynode of the electron multiplier, making the PMT more sensitive and  
responsive to small variations in light intensity but also more noisy (dark noise). The  
gain voltage of the PMT used in the T100 is usually set between 450 V and 800 V. This  
parameter is viewable through the front panel as test function HVPS (refer to Section  
4.1.1). For information on when and how to set this voltage, refer to Section 12.7.2.8.  
The PMT is housed inside the PMT module assembly (refer to Figure 13-15 and Figure  
13-17). This assembly also includes the high voltage power supply required to drive the  
PMT, an LED used by the instrument’s optical test function, a thermistor that measures  
the temperature of the PMT and various components of the PMT cooling system  
including the Thermo-Electric Cooler (TEC).  
303  
06807C DCN6650  
 
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.5.4. PMT COOLING SYSTEM  
The performance of the analyzer’s PMT is significantly affected by temperature.  
Variations in PMT temperature are directly reflected in the signal output of the PMT.  
Also the signal to noise ratio of the PMT output is radically influenced by temperature  
as well. The warmer The PMT is, the noisier its signal becomes until the noise renders  
the concentration signal useless. To alleviate this problem a special cooling system  
exists that maintains the PMT temperature at a stable, low level.  
Preamp PCA sends  
buffered and  
amplified thermistor  
signal to TEC PCA  
TEC PCA sets  
appropriate  
drive voltage  
for cooler  
TEC  
Control  
PCA  
PMT Preamp  
PCA  
ThermoElectric Cooler (TEC)  
Thermistor  
outputs temp of  
cold block to  
preamp PCA  
PMT  
Cold Block  
Heat form PMT is absorbed  
by the cold block and  
transferred to the heat sink  
via the TEC then bled off  
into the cool air stream.  
Cooling Fan  
Figure 13-19: PMT Cooling System  
13.5.4.1. THERMOELECTRIC COOLER (TEC)  
The core of the T100 PMT cooling system is a solid state heat pump called a  
thermoelectric cooler (TEC). Thermoelectric coolers transfer heat from a one side of a  
special set of semiconductor junctions to the other when a DC current is applied. The  
heat is pumped at a rate proportional to the amount of current applied. In the T100 the  
TEC is physically attached to a cold block that absorbs heat directly from the PMT and a  
heat sink that is cooled by moving air (refer to Figure 13-19). A Thermocouple  
embedded into the cold block generates an analog voltage corresponding to the current  
temperature of the PMT. The PMT Preamp PCA conditions and amplifies this signal  
then passes it on to the TEC Control PCA.  
304  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.5.4.2. TEC CONTROL BOARD  
The TEC control printed circuit assembly is located ion the sensor housing assembly,  
under the slanted shroud, next to the cooling fins and directly above the cooling fan.  
Using the amplified PMT temperature signal from the PMT preamplifier board (refer to  
Section 13.5.5), it sets the drive voltage for the thermoelectric cooler. The warmer the  
PMT gets, the more current is passed through the TEC causing it to pump more heat to  
the heat sink.  
A red LED located on the top edge of this circuit board indicates that the control circuit  
is receiving power. Four test points are also located at the top of this assembly. For the  
definitions and acceptable signal levels of these test points refer to Section 12.1.2.  
13.5.5. PMT PREAMPLIFIER  
The PMT preamplifier board amplifies the PMT signal into a useable analog voltage that  
can be processed by the motherboard into a digital signal to be used by the CPU to  
calculate the SO2 concentration of the gas in the sample chamber.  
The output signal of the PMT is controlled by two different adjustments. First, the  
voltage across the electron multiplier array of the PMT is adjusted with a set of two  
hexadecimal switches. Adjusting this voltage directly affects the HVPS voltage and,  
hence, the signal from the PMT. Secondly, the gain of the amplified signal can further  
be adjusted through a potentiometer. These adjustments should only be performed when  
encountering problems with the software calibration that cannot be rectified otherwise.  
Refer to Section 12.7.2.8 for this hardware calibration.  
305  
06807C DCN6650  
 
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
O Test Control  
From CPU  
PMT Preamp PCA  
O-Test  
Generator  
PMT  
Coarse  
Gain Set  
(Rotary  
PMT Fine  
Gain Set  
(Rotary  
Switch)  
O Test  
LED  
PMT HVPS  
To  
D-A  
Converter  
Drive Voltage  
Motherboard  
Amp to  
Voltage  
Converter/  
Amplifier  
PMT Output  
MUX  
Low Pass  
Noise  
E Test Control  
From CPU  
Filter  
E-Test  
Generator  
PMT  
Signal  
Offset  
PMT Temp Analog Signal  
to Motherboard  
PMT Temp  
Sensor  
PMT  
Temperature  
Feedback  
Circuit  
TEC Control  
PCA  
PMT Output Signal  
(PMT) to Motherboard  
Figure 13-20: PMT Preamp Block Diagram  
The PMT temperature control loop maintains the PMT temperature around 7° C and can  
be viewed as test function PMT TEMP on the front panel (refer to Section 4.1.1).  
The electrical test (ETEST) circuit generates a constant, electronic signal intended to  
simulate the output of the PMT (after conversion from current to voltage). By bypassing  
the detector’s actual signal, it is possible to test most of the signal handling and  
306  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
conditioning circuitry on the PMT preamplifier board. Refer to Section 5.9.5 for  
instructions on performing this test.  
The optical test (OTEST) feature causes an LED inside the PMT cold block to create a  
light signal that can be measured with the PMT. If zero air is supplied to the analyzer,  
the entire measurement capability of the sensor module can be tested including the PMT  
and the current to voltage conversion circuit on the PMT preamplifier board. Refer to  
Section 5.9.4 for instructions on performing this test.  
13.5.6. PNEUMATIC SENSOR BOARD  
The flow and pressure sensors of the T100 are located on a printed circuit assembly just  
behind the PMT sensor. Refer to Section 12.6.15 on how to test this assembly. The  
signals of this board are supplied to the motherboard for further signal processing. All  
sensors are linearized in the firmware and can be span calibrated from the front panel.  
Refer to Section 5.4.3.2 for instructions on performing this test.  
13.5.7. RELAY BOARD  
The relay board is the central switching unit of the analyzer. It contains power relays,  
status LEDs for all heated zones and valves, as well as valve drivers, thermocouple  
amplifiers, power distribution connectors and the two switching power supplies of the  
analyzer. The relay board communicates with the motherboard over the I2C bus and is  
the main board for trouble-shooting power problems of any kind.  
13.5.7.1. HEATER CONTROL  
The T100 uses a variety of heaters for its individual components. All heaters are AC  
powered and can be configured for 100/120 VAC or 220/230VAC at 50-60 Hz.  
The two sample chamber heaters are electronically connected in parallel for analyzers at  
100/120 VAC line power and in series for units configured for 220/230 VAC. One  
configuration plug on the relay board determines the power configuration for the entire  
analyzer.  
On units with IZS options installed, an additional set of AC heaters is attached to the  
IZS permeation tube. Some special T100 models may have other, non-standard heating  
zones installed, such as a dilution manifold.  
13.5.7.2. VALVE CONTROL  
The relay board also hosts two valve driver chips, each of which can drive up four  
valves. In its basic configuration the T100 requires no valve control to operate.  
However, on units with either the zero/span valve or the IZS option installed, the valve  
control is used. Manifold valves, which may also be present in certain special versions  
of the analyzer, would also use valve control.  
307  
06807C DCN6650  
   
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.5.7.3. STATUS LEDS & WATCH DOG CIRCUITRY  
IZS Option  
Permeation Tube Heater  
Dark Shutter  
Zero/Span and IZS Options  
Zero/Span Valve  
Zero/Span and IZS Options  
Sample/CAL Valve  
Sample Chamber Heater  
I2C W atchdog LED  
Figure 13-21: Relay Board Status LED Locations  
Thirteen LEDs are located on the analyzer’s relay board to indicate the status of the  
analyzer’s heating zones and valves as well as a general operating watchdog indicator.  
Table 13-1 shows the state of these LEDs and their respective functionality.  
Table 13-1: Relay Board Status LED’s  
LED  
COLOR  
FUNCTION  
STATUS WHEN LIT  
STATUS WHEN UNLIT  
Cycles On/Off every 3 seconds under control of the CPU.  
D1  
RED  
Watchdog circuit  
Sample chamber  
(RCELL) heater  
D2  
YELLOW  
HEATING  
NOT HEATING  
D3, D4  
YELLOW  
Unused  
N/A  
N/A  
D5  
YELLOW  
IZS heater (option)  
HEATING  
NOT HEATING  
D6  
YELLOW  
Unused  
N/A  
N/A  
Valve open to Zero Gas  
(normal state)  
D7  
GREEN  
Zero / Span Valve  
Valve open to Span Gas path  
Valve open to sample gas  
inlet on rear panel  
(normal state)  
Valve open to  
calibration gas path  
D8  
GREEN  
Sample / Cal Valve  
D9, D10  
GREEN  
Unused  
N/A  
N/A  
D11  
GREEN  
UV Lamp Shutter  
Shutter open  
Shutter closed  
D12-14  
GREEN  
Unused  
N/A  
N/A  
308  
06807C DCN6650  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
As a safety measure, special circuitry on the relay board watches the status of LED D1.  
Should this LED ever stay ON or OFF for 30 seconds, indicating that the CPU or I2C  
bus has stopped functioning, the Watchdog Circuit will automatically shut of all valves  
as well as turn off the UV Source(s) and all heaters. The Sample pump will still be  
running.  
13.5.8. MOTHERBOARD  
This printed circuit assembly provides a multitude of functions including A/D  
conversion, digital input/output, PC-104 to I2C translation, temperature sensor signal  
processing and is a pass through for the RS-232 and RS-485 signals.  
13.5.8.1. A TO D CONVERSION  
Analog signals, such as the voltages received from the analyzer’s various sensors, are  
converted into digital signals that the CPU can understand and manipulate by the Analog  
to Digital converter (A/D).Under the control of the CPU, this functional block selects a  
particular signal input and then coverts the selected voltage into a digital word.  
The A/D consists of a Voltage-to-Frequency (V-F) converter, a Programmable Logic  
Device (PLD), three multiplexers, several amplifiers and some other associated devices.  
The V-F converter produces a frequency proportional to its input voltage. The PLD  
counts the output of the V-F during a specified time period, and sends the result of that  
count, in the form of a binary number, to the CPU.  
The A/D can be configured for several different input modes and ranges but it is used in  
uni-polar mode with a +5V full scale. The converter includes a 1% over and under-  
range. This allows signals from -0.05V to +5.05V to be fully converted.  
For calibration purposes, two reference voltages are supplied to the A/D converter:  
Reference ground and +4.096 VDC. During calibration, the device measures these two  
voltages, outputs their digital equivalent to the CPU. The CPU uses these values to  
compute the converter’s offset and slope and uses these factors for subsequent  
conversions. Refer to Section 5.9.3.6 for instructions on performing this calibration.  
13.5.8.2. SENSOR INPUTS  
The key analog sensor signals are coupled to the A/D through the master multiplexer  
from two connectors on the motherboard. 100K terminating resistors on each of the  
inputs prevent cross talk from appearing on the sensor signals.  
PMT DETECTOR OUTPUT: This signal, output by the PMT preamp PCA, is used in  
the computation of the SO2, CO2 and O2 concentrations displayed in the front panel  
display screen and output through the instrument’s analog outputs and COMM ports.  
PMT HIGH VOLTAGE POWER SUPPLY LEVEL: This input is based on the drive  
voltage output by the PMT pram board to the PMT’s high voltage power supply  
(HVPS). It is digitized and sent to the CPU where it is used to calculate the voltage  
setting of the HVPS and stored in the instruments memory as the test function HVPS.  
HVPS is viewable as a test function (refer to Section 4.1.1) through the analyzer’s front  
panel.  
PMT TEMPERATURE: This signal is the output of the thermistor attached to the  
PMT cold block amplified by the PMT temperature feedback circuit on the PMT preamp  
board. It is digitized and sent to the CPU where it is used to calculate the current  
temperature of the PMT.  
309  
06807C DCN6650  
 
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This measurement is stored in the analyzer. Memory as the test function PMT TEMP  
and is viewable as a test function (refer to Section 4.1.1) through the analyzer’s front  
panel.  
SAMPLE GAS PRESSURE SENSOR: This sensor measures the gas pressure at the  
exit of the sample chamber.  
SAMPLE FLOW SENSOR: This sensor measure the flow rate of the sample gas as it  
exits the sample chamber.  
13.5.8.3. THERMISTOR INTERFACE  
This circuit provides excitation, termination and signal selection for several negative-  
coefficient, thermistor temperature sensors located inside the analyzer. They are as  
follows:  
SAMPLE CHAMBER TEMPERATURE SENSOR: The source of this signal is a  
thermistor imbedded in the of the sample chamber block. It measures the temperature of  
the sample gas in the chamber. The data are used by the CPU to control sample chamber  
the heating circuit and as part of the SO2, calculations when the instrument’s  
Temperature/Pressure Compensation feature is enabled.  
This measurement is stored in the analyzer. Memory as the Test Function RCEL TEMP  
and is viewable as a test function (refer to Section 4.1.1) in the analyzer’s front panel  
display.  
IZS OPTION PERMEATION TUBE TEMPERATURE SENSOR: This thermistor,  
attached to the permeation tube in the IZS option, reports the current temperature of that  
tube to the CPU as part of control loop that keeps the tube at a constant temperature.  
BOX TEMPERATURE SENSOR: A thermistor is attached to the motherboard. It  
measures the analyzer’s internal temperature. This information is stored by the CPU and  
can be viewed by the user for troubleshooting purposes through the front panel display.  
This measurement is stored in the analyzer‘s memory as the test function BOX TEMP  
and is viewable as a test function (refer to Section 4.1.1) in the analyzer’s front panel  
display.  
13.5.9. ANALOG OUTPUTS  
The analyzer comes equipped with four Analog Outputs: A1, A2, A3 and a fourth that is  
a spare.  
A1 and A2 Outputs: The first two, A1 and A2 are normally set up to operate in parallel  
so that the same data can be sent to two different recording devices. While the names  
imply that one should be used for sending data to a chart recorder and the other for  
interfacing with a data logger, either can be used for both applications.  
Both of these channels output a signal that is proportional to the SO2 concentration of  
the sample gas. The A1 and A2 outputs can be slaved together or set up to operated  
independently. A variety of scaling factors are available; refer to Section 5.4 for  
information on setting the range type and Section 5.9.3 for adjusting the electronic  
scaling factors of these output channels  
Test Output: The third analog output, labeled A3 is special. It can be set by the user  
(refer to Section 5.9.9) to carry the signal level of any one of the parameters accessible  
through the TEST menu of the unit’s software.  
310  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
In its standard configuration, the analyzer comes with all four of these channels set up to  
output a DC voltage. However, 4-20mA current loop drivers can be purchased for the  
first two of these outputs (A1 and A2). Refer to Sections 1.4 (Option 41), 3.3.1.3 and  
Output Loop-back: All three of the functioning analog outputs are connected back to  
the A/D converter through a Loop-back circuit. This permits the voltage outputs to be  
calibrated by the CPU without need for any additional tools or fixtures (refer to Section  
13.5.10. EXTERNAL DIGITAL I/O  
This External Digital I/O performs two functions.  
STATUS OUTPUTS: Logic-Level voltages are output through an optically isolated 8-  
pin connector located on the rear panel of the analyzer. These outputs convey good/bad  
and on/off information about certain analyzer conditions. They can be used to interface  
with certain types of programmable devices (refer to Section 8.1.1).  
CONTROL INPUTS: By applying +5VDC power supplied from an external source  
such as a PLC or Data logger (refer to Section 8.1.2), Zero and Span calibrations can be  
initiated by contact closures on the rear panel.  
13.5.11. I2C DATA BUS  
I2C is a two-wire, clocked, bi-directional, digital serial I/O bus that is used widely in  
commercial and consumer electronic systems. A transceiver on the Motherboard  
converts data and control signals from the PC-104 bus to I2C. The data is then fed to the  
relay board and optional analog input circuitry.  
13.5.12. POWER UP CIRCUIT  
This circuit monitors the +5V power supply during start-up and sets the Analog outputs,  
External Digital I/O ports, and I2C circuitry to specific values until the CPU boots and  
the instrument software can establish control.  
13.5.13. POWER SUPPLY/ CIRCUIT BREAKER  
The analyzer operates on 100 VAC, 115 VAC or 230 VAC power at either 50Hz or  
60Hz. Individual units are set up at the factory to accept any combination of these five  
attributes. As illustrated in Figure 13-22 below, power enters the analyzer through a  
standard IEC 320 power receptacle located on the rear panel of the instrument. From  
there it is routed through the ON/OFF switch located in the lower right corner of the  
front panel.  
AC line power is stepped down and converted to DC power by two DC power supplies.  
One supplies +12 VDC, for various valves and valve options, while a second supply  
provides +5 VDC and ±15 VDC for logic and analog circuitry as well as the TEC  
cooler. All AC and DC Voltages are distributed through the relay board.  
A 6.75 ampere circuit breaker is built into the ON/OFF switch. In case of a wiring fault  
or incorrect supply power, the circuit breaker will automatically turn off the analyzer.  
311  
06807C DCN6650  
       
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
WARNING  
Should the power circuit breaker trip, correct the condition causing this  
situation before turning the analyzer back on.  
ON/OFF  
SWITCH  
Touchscreen  
TEC  
Control  
PCA  
AC POWER  
ENTRANCE  
Chassis  
Cooling  
Fan  
PMT  
Cooling  
Fan  
PMT  
Preamp  
Display  
LVDS transmitter board  
CPU  
PS 1 (+5 VDC; ±15 VDC)  
In-Line AC  
Configuration  
Connector  
RELAY  
BOARD  
Mother  
Board  
Temperature  
Sensors  
PS 2 (+12 VDC)  
PMT High  
Voltage Supply  
PUMP  
Pressure  
Sensor  
Gas Flow  
Sensor  
KEY  
AC POWER  
DC POWER  
UV Source  
Lamp  
Shutter  
UV Source  
Lamp  
Power  
Sample  
Chamber  
Heaters  
Sample/Cal  
for Z/S and  
IZS Valve  
Options  
IZS Option  
Permeation  
Tube  
Supply  
Heater  
Figure 13-22: Power Distribution Block Diagram  
312  
06807C DCN6650  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
13.6. FRONT PANEL/DISPLAY INTERFACE  
Users can input data and receive information directly through the front panel touch-  
screen display. The LCD display is controlled directly by the CPU board. The  
touchscreen is interfaced to the CPU by means of a touchscreen controller that connects  
to the CPU via the internal USB bus and emulates a computer mouse.  
LCD Display  
and  
Touchscreen  
Back-Light  
+5V  
Supply  
TFT BIAS  
Supply  
PWM  
10.4, -7.0, 16, 4V  
3.3V  
LVDS  
Transmitter  
Board  
Touch Screen Controller  
LVDS  
Receiver  
CPU  
18 Bit TTL Data  
Remote  
Local  
USB & 5V  
LAN COM4  
USB4  
Utility  
Controller  
Lang.  
USB Master  
USB2 HUB  
Ethernet  
Front Panel Interface PCA  
Powered  
Powered  
Ethernet Port  
USB-1  
USB-2  
USB  
Type B Port  
USB Slave  
Analog Input  
Terminal Block  
Aux I/O PCA  
Figure 13-23: Front Panel and Display Interface Block Diagram  
13.6.1. LVDS TRANSMITTER BOARD  
The LVDS (low voltage differential signaling) transmitter board converts the parallel  
display bus to a serialized, low voltage, differential signal bus in order to transmit the  
video signal to the LCD interface PCA.  
13.6.2. FRONT PANEL INTERFACE PCA  
The front panel interface PCA controls the various functions of the display and  
touchscreen. For driving the display it provides connection between the CPU video  
controller and the LCD display module. This PCA also contains:  
power supply circuitry for the LCD display module  
a USB hub that is used for communications with the touchscreen controller and the  
two front panel USB device ports  
the circuitry for powering the display backlight  
313  
06807C DCN6650  
       
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
13.7. SOFTWARE OPERATION  
The instrument’s core module is a high performance, X86-based microcomputer running  
Windows CE. Inside Windows CE, special software developed by Teledyne API  
interprets user commands from the various interfaces, performs procedures and tasks,  
stores data in the CPU’s various memory devices and calculates the concentration of the  
gas being sampled.  
Windows CE  
API FIRMWARE  
Instrument Operations  
Memory Handling  
Calibration Procedures  
PC/104 BUS  
DAS Records  
Calibration Data  
Configuration Procedures  
Autonomic Systems  
System Status Data  
Diagnostic Routines  
INSTRUMENT  
HARDWARE  
Interface Handling  
Sensor input data  
Display Messages  
Touchscreen  
Measurement  
Algorithms  
PC/104 BUS  
Analog output data  
RS232 & RS485  
External Digital I/O  
Figure 13-24: Basic Software Operation  
13.7.1. ADAPTIVE FILTER  
The T100 SO2 analyzer software processes sample gas measurement and reference data  
through an adaptive filter built into the software. Unlike other analyzers that average the  
sensor output signal over a fixed time period, the T100 calculates averages over a set  
number of samples where each sample is 1 second. During operation, the software  
automatically switches between two filters of different lengths based on the conditions at  
hand.  
During conditions of constant or nearly constant concentration the software computes an  
average of the last 240 samples or 240 seconds. This provides the calculation portion of  
the software with smooth, stable readings. If a rapid change in concentration is detected,  
the adaptive filter switches modes and only averages the last 20 samples or 20 seconds.  
This allows the analyzer to respond to the rapidly changing concentration more quickly.  
Once triggered, the short filter remains engaged for a fixed time period to prevent  
chattering.  
Two conditions must be simultaneously met to switch to the short filter. First the  
instantaneous concentration must exceed the average in the long filter by a fixed  
314  
06807C DCN6650  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Principles of Operation  
amount. Second, the instantaneous concentration must exceed the average in the long  
filter by a portion, or percentage, of the average in the long filter.  
If necessary, these filter lengths of these two modes may be changed to any value  
between 1 and 1000 samples. Long sample lengths provide better signal to noise  
rejection, but poor response times. Conversely shorter filter lengths result in poor signal  
to noise rejection, but quicker response times.  
13.7.2. CALIBRATION - SLOPE AND OFFSET  
Calibration of the analyzer is performed exclusively in software. During instrument  
calibration (refer to Sections 9 and 10) the user enters expected values for zero and span  
through the front panel touch-screen control buttons and commands the instrument to  
make readings of sample gases with known concentrations of SO2. The readings taken  
are adjusted, linearized, and compared to the expected values as input. With this  
information the software computes values for instrument both slope and offset and stores  
these values in memory for use in calculating the SO2 concentration of the sample gas.  
Instrument slope and offset values recorded during the last calibration can be viewed by  
pressing the following control buttons sequence  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
SETUP  
SAMPLE  
RCELL TEMP=0.0C  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
< TST TST > CAL  
SAMPLE  
TIME = HH:MM:SS  
SO2 =XXX.X  
SETUP  
SAMPLE  
HVPS 553 VOLTS  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
< TST TST > CAL  
SAMPLE  
PMT TEMP=0.0C  
SO2 =XXX.X  
SETUP  
SAMPLE  
OFFSET=XX.X MV  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
< TST TST > CAL  
SAMPLE  
BOX TEMP=0.0C  
SO2 =XXX.X  
SETUP  
SAMPLE  
SLOPE=XXX  
SO2 =XXX.X  
SETUP  
< TST TST > CAL  
< TST TST > CAL  
Figure 13-25: Calibration Slope and Offset  
13.7.3. TEMPERATURE AND PRESSURE COMPENSATION (TPC) FEATURE  
As explained in the principles of operation, changes in temperature can significantly  
affect the amount of fluoresced UV light generated in the instruments sample chamber.  
To negate this effect the T100 maintains the sample gas at a stable, raised temperature.  
Pressure changes can also have a noticeable, if more subtle, effect on the SO2  
concentration calculation. To account for this, the T100 software includes a feature  
which allows the instrument to compensation of the SO2 calculations based on changes  
in ambient pressure.  
315  
06807C DCN6650  
     
Principles of Operation  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
When the TPC feature is enabled, the analyzer’s SO2 concentration divided by a factor  
call PRESSCO which is based on the difference between the ambient pressure of the  
sample gas normalized to standard atmospheric pressure (Equation 13-6). As ambient  
pressure increases, the compensated SO2 concentration is decreased.  
SAMPLE_PRESSURE (" HG - A) SAMP_PRESS_SLOPE  
PRESSCO   
29.92 (" HG - A)  
(Equation 13-6)  
SAMPLE-PRESSURE: The ambient pressure of the sample gas as measured by the  
instrument’s sample pressure sensor in “Hg-A.  
SAMP_PRESS_SLOPE: Sample pressure slope correction factor. The default setting  
for Section 6.8 describes the method for enabling/disabling the TPC feature.  
13.7.4. INTERNAL DATA ACQUISITION SYSTEM (DAS)  
The DAS is designed to implement predictive diagnostics that stores trending data for  
users to anticipate when an instrument will require service. Large amounts of data can  
be stored in non-volatile memory and retrieved in plain text format for further  
processing with common data analysis programs. The DAS has a consistent user  
interface in all Teledyne API instruments. New data parameters and triggering events  
can be added to the instrument as needed.  
Depending on the sampling frequency and the number of data parameters the DAS can  
store several months of data, which are retained even when the instrument is powered  
off or a new firmware is installed. The DAS permits users to access the data through the  
instrument’s front panel or the remote interface. The latter can automatically download  
stored data for further processing. For information on using the DAS, refer to Section 0.  
316  
06807C DCN6650  
   
14. A PRIMER ON ELECTRO-STATIC DISCHARGE  
Teledyne API considers the prevention of damage caused by the discharge of static  
electricity to be extremely important part of making sure that your analyzer continues to  
provide reliable service for a long time. This section describes how static electricity  
occurs, why it is so dangerous to electronic components and assemblies as well as how to  
prevent that damage from occurring.  
COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
Read this chapter completely and follow instructions carefully.  
ATTENTION  
14.1. HOW STATIC CHARGES ARE CREATED  
Modern electronic devices such as the types used in the various electronic assemblies of  
your analyzer, are very small, require very little power and operate very quickly.  
Unfortunately, the same characteristics that allow them to do these things also make them  
very susceptible to damage from the discharge of static electricity. Controlling  
electrostatic discharge begins with understanding how electro-static charges occur in the  
first place.  
Static electricity is the result of something called triboelectric charging which happens  
whenever the atoms of the surface layers of two materials rub against each other. As the  
atoms of the two surfaces move together and separate, some electrons from one surface  
are retained by the other.  
06807C DCN6650  
317  
     
A Primer on Electro-Static Discharge  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Materials  
Makes  
Contact  
Materials  
Separate  
+
+
+
+
PROTONS = 3  
ELECTRONS = 2  
PROTONS = 3  
ELECTRONS = 4  
PROTONS = 3  
ELECTRONS = 3  
PROTONS = 3  
ELECTRONS = 3  
NET CHARGE = -1  
NET CHARGE = +1  
NET CHARGE = 0  
NET CHARGE = 0  
Figure 14-1:  
Triboelectric Charging  
If one of the surfaces is a poor conductor or even a good conductor that is not grounded,  
the resulting positive or negative charge cannot bleed off and becomes trapped in place,  
or static. The most common example of triboelectric charging happens when someone  
wearing leather or rubber soled shoes walks across a nylon carpet or linoleum tiled floor.  
With each step, electrons change places and the resulting electro-static charge builds up,  
quickly reaching significant levels. Pushing an epoxy printed circuit board across a  
workbench, using a plastic handled screwdriver or even the constant jostling of  
StyrofoamTM pellets during shipment can also build hefty static charges  
Table 14-1: Static Generation Voltages for Typical Activities  
MEANS OF GENERATION  
Walking across nylon carpet  
65-90% RH  
1,500V  
250V  
10-25% RH  
35,000V  
12,000V  
6,000V  
Walking across vinyl tile  
Worker at bench  
100V  
Poly bag picked up from bench  
Moving around in a chair padded with urethane foam  
1,200V  
1,500V  
20,000V  
18,000V  
14.2. HOW ELECTRO-STATIC CHARGES CAUSE DAMAGE  
Damage to components occurs when these static charges come into contact with an  
electronic device. Current flows as the charge moves along the conductive circuitry of  
the device and the typically very high voltage levels of the charge overheat the delicate  
traces of the integrated circuits, melting them or even vaporizing parts of them. When  
examined by microscope the damage caused by electro-static discharge looks a lot like  
tiny bomb craters littered across the landscape of the component’s circuitry.  
A quick comparison of the values in Table 14-1 with the those shown in the Table 14-2,  
listing device susceptibility levels, shows why Semiconductor Reliability News estimates  
that approximately 60% of device failures are the result of damage due to electro-static  
discharge.  
06807C DCN6650  
318  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
A Primer on Electro-Static Discharge  
Table 14-2: Sensitivity of Electronic Devices to Damage by ESD  
DAMAGE SUSCEPTIBILITY VOLTAGE RANGE  
DEVICE  
DAMAGE BEGINS OCCURRING AT  
CATASTROPHIC DAMAGE AT  
MOSFET  
VMOS  
10  
100  
30  
1800  
100  
NMOS  
60  
GaAsFET  
EPROM  
60  
2000  
100  
100  
140  
150  
190  
200  
300  
300  
300  
500  
500  
500  
JFET  
7000  
500  
SAW  
Op-AMP  
CMOS  
2500  
3000  
2500  
3000  
7000  
500  
Schottky Diodes  
Film Resistors  
This Film Resistors  
ECL  
SCR  
1000  
2500  
Schottky TTL  
Potentially damaging electro-static discharges can occur:  
Any time a charged surface (including the human body) discharges to a device. Even  
simple contact of a finger to the leads of a sensitive device or assembly can allow  
enough discharge to cause damage. A similar discharge can occur from a charged  
conductive object, such as a metallic tool or fixture.  
When static charges accumulated on a sensitive device discharges from the device to  
another surface such as packaging materials, work surfaces, machine surfaces or other  
device. In some cases, charged device discharges can be the most destructive.  
A typical example of this is the simple act of installing an electronic assembly  
into the connector or wiring harness of the equipment in which it is to function.  
If the assembly is carrying a static charge, as it is connected to ground a discharge  
will occur.  
Whenever a sensitive device is moved into the field of an existing electro-static field,  
a charge may be induced on the device in effect discharging the field onto the device.  
If the device is then momentarily grounded while within the electrostatic field or  
removed from the region of the electrostatic field and grounded somewhere else, a  
second discharge will occur as the charge is transferred from the device to ground.  
14.3. COMMON MYTHS ABOUT ESD DAMAGE  
I didn’t feel a shock so there was no electro-static discharge: The human nervous  
system isn’t able to feel a static discharge of less than 3500 volts. Most devices are  
damaged by discharge levels much lower than that.  
I didn’t touch it so there was no electro-static discharge: Electro-static charges  
are fields whose lines of force can extend several inches or sometimes even feet away  
from the surface bearing the charge.  
06807C DCN6650  
319  
   
A Primer on Electro-Static Discharge  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
It still works so there was no damage: Sometimes the damaged caused by electro-  
static discharge can completely sever a circuit trace causing the device to fail  
immediately. More likely, the trace will be only partially occluded by the damage  
causing degraded performance of the device or worse, weakening the trace. This  
weakened circuit may seem to function fine for a short time, but even the very low  
voltage and current levels of the device’s normal operating levels will eat away at the  
defect over time causing the device to fail well before its designed lifetime is reached.  
These latent failures are often the most costly since the failure of the equipment  
in which the damaged device is installed causes down time, lost data, lost  
productivity, as well as possible failure and damage to other pieces of equipment  
or property.  
Static Charges can’t build up on a conductive surface: There are two errors in this  
statement.  
Conductive devices can build static charges if they are not grounded. The charge  
will be equalized across the entire device, but without access to earth ground,  
they are still trapped and can still build to high enough levels to cause damage  
when they are discharged.  
A charge can be induced onto the conductive surface and/or discharge triggered  
in the presence of a charged field such as a large static charge clinging to the  
surface of a nylon jacket of someone walking up to a workbench.  
As long as my analyzer is properly installed, it is safe from damage caused by  
static discharges: It is true that when properly installed the chassis ground of your  
analyzer is tied to earth ground and its electronic components are prevented from  
building static electric charges themselves. This does not prevent discharges from  
static fields built up on other things, like you and your clothing, from discharging  
through the instrument and damaging it.  
14.4. BASIC PRINCIPLES OF STATIC CONTROL  
It is impossible to stop the creation of instantaneous static electric charges. It is not,  
however difficult to prevent those charges from building to dangerous levels or prevent  
damage due to electro-static discharge from occurring.  
06807C DCN6650  
320  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
A Primer on Electro-Static Discharge  
14.4.1. GENERAL RULES  
Only handle or work on all electronic assemblies at a properly set up ESD station. Setting  
up an ESD safe workstation need not be complicated. A protective mat properly tied to  
ground and a wrist strap are all that is needed to create a basic anti-ESD workstation  
(refer to figure 12-2).  
W ris t S tra p  
P ro te c tiv e M a t  
G ro u n d P o in t  
Figure 14-2:  
Basic anti-ESD Work Station  
For technicians that work in the field, special lightweight and portable anti-ESD kits are  
available from most suppliers of ESD protection gear. These include everything needed  
to create a temporary anti-ESD work area anywhere.  
Always wear an Anti-ESD wrist strap when working on the electronic assemblies  
of your analyzer. An anti-ESD wrist strap keeps the person wearing it at or near the  
same potential as other grounded objects in the work area and allows static charges to  
dissipate before they can build to dangerous levels. Anti-ESD wrist straps terminated  
with alligator clips are available for use in work areas where there is no available  
grounded plug.  
Also, anti-ESD wrist straps include a current limiting resistor (usually around one  
meg-ohm) that protects you should you accidentally short yourself to the  
instrument’s power supply.  
Simply touching a grounded piece of metal is insufficient. While this may  
temporarily bleed off static charges present at the time, once you stop touching the  
grounded metal new static charges will immediately begin to re-build. In some  
conditions, a charge large enough to damage a component can rebuild in just a few  
seconds.  
Always store sensitive components and assemblies in anti-ESD storage bags or  
bins: Even when you are not working on them, store all devices and assemblies in a  
closed anti-Static bag or bin. This will prevent induced charges from building up on  
the device or assembly and nearby static fields from discharging through it.  
Use metallic anti-ESD bags for storing and shipping ESD sensitive components  
and assemblies rather than pink-poly bags. The famous, “pink-poly” bags are  
made of a plastic that is impregnated with a liquid (similar to liquid laundry  
detergent) which very slowly sweats onto the surface of the plastic creating a slightly  
conductive layer over the surface of the bag.  
While this layer may equalizes any charges that occur across the whole bag, it  
does not prevent the build up of static charges. If laying on a conductive,  
grounded surface, these bags will allow charges to bleed away but the very  
charges that build up on the surface of the bag itself can be transferred through  
the bag by induction onto the circuits of your ESD sensitive device. Also, the  
06807C DCN6650  
321  
   
A Primer on Electro-Static Discharge  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
liquid impregnating the plastic is eventually used up after which the bag is as  
useless for preventing damage from ESD as any ordinary plastic bag.  
Anti-Static bags made of plastic impregnated with metal (usually silvery in color)  
provide all of the charge equalizing abilities of the pink-poly bags but also, when  
properly sealed, create a Faraday cage that completely isolates the contents from  
discharges and the inductive transfer of static charges.  
Storage bins made of plastic impregnated with carbon (usually black in color) are  
also excellent at dissipating static charges and isolating their contents from field  
effects and discharges.  
Never use ordinary plastic adhesive tape near an ESD sensitive device or close to  
an anti-ESD bag. The act of pulling a piece of standard plastic adhesive tape, such  
as Scotch® tape, from its roll will generate a static charge of several thousand or even  
tens of thousands of volts on the tape itself and an associated field effect that can  
discharge through or be induced upon items up to a foot away.  
14.5. BASIC ANTI-ESD PROCEDURES FOR ANALYZER REPAIR  
AND MAINTENANCE  
This section provides guidance for working properly at either the instrument rack or the  
bench, including transferring components back and forth between the two. Also presented  
are instructions for properly opening shipments and unpacking, and for packing and  
sealing components for shipping  
14.5.1. WORKING AT THE INSTRUMENT RACK  
When working on the analyzer while it is in the instrument rack and plugged into a  
properly grounded power supply.  
1. Attach your anti-ESD wrist strap to ground before doing anything else.  
Use a wrist strap terminated with an alligator clip and attach it to a bare metal portion  
of the instrument chassis. This will safely connect you to the same ground level to  
which the instrument and all of its components are connected.  
2. Pause for a second or two to allow any static charges to bleed away.  
3. Open the casing of the analyzer and begin work. Up to this point, the closed metal  
casing of your analyzer has isolated the components and assemblies inside from any  
conducted or induced static charges.  
4. If you must remove a component from the instrument, do not lay it down on a non-  
ESD preventative surface where static charges may lie in wait.  
5. Only disconnect your wrist strap after you have finished work and closed the case of  
the analyzer.  
14.5.2. WORKING AT AN ANTI-ESD WORK BENCH  
When working on an instrument of an electronic assembly while it is resting on an anti-  
ESD work bench:  
06807C DCN6650  
322  
     
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
A Primer on Electro-Static Discharge  
1. Plug your anti-ESD wrist strap into the grounded receptacle of the work station before  
touching any items on the work station and while standing at least a foot or so away.  
This will allow any charges you are carrying to bleed away through the ground  
connection of the workstation and prevent discharges due to field effects and  
induction from occurring.  
2. Pause for a second or two to allow any static charges to bleed away.  
3. Only after you have plugged your wrist strap into the workstation and allowed static  
charges to bleed away, open any anti-ESD storage bins or bags containing sensitive  
devices or assemblies, as follows:  
Lay the bag or bin on the workbench surface.  
Before opening the container, wait several seconds for any static charges on the  
outside surface of the container to be bled away by the workstation’s grounded  
protective mat.  
4. Do not pick up tools that may be carrying static charges while also touching or  
holding an ESD Sensitive Device.  
Only lay tools or ESD-sensitive devices and assemblies on the conductive surface of  
your workstation. Never lay them down on any non-ESD preventative surface.  
5. Before unplugging your wrist strap, place any static sensitive devices or assemblies  
in anti-static storage bags or bins and close the bag or bin.  
6. Disconnecting your wrist strap is always the last action taken before leaving the  
workbench.  
14.5.3. TRANSFERRING COMPONENTS BETWEEN RACK AND BENCH  
When transferring a sensitive device from an installed Teledyne API analyzer to an Anti-  
ESD workbench or back:  
1. Follow the instructions listed above for working at the instrument rack and  
workstation.  
2. Never carry the component or assembly without placing it in an anti-ESD bag or bin.  
3. Before using the bag or container allow any surface charges on it to dissipate:  
If you are at the instrument rack, hold the bag in one hand while your wrist strap is  
connected to a ground point.  
If you are at an anti-ESD workbench, lay the container down on the conductive work  
surface while your wrist strap is connected to a ground point.  
In either case wait several seconds.  
4. Place the item in the container.  
5. Seal the container. If using a bag, fold the end over and fasten it with anti-ESD tape.  
Folding the open end over isolates the component(s) inside from the effects of static  
fields.  
Leaving the bag open or simply stapling it shut without folding it closed prevents the  
bag from forming a complete protective envelope around the device.  
6. Once you have arrived at your destination, allow any surface charges that may have  
built up on the bag or bin during travel to dissipate:  
06807C DCN6650  
323  
 
A Primer on Electro-Static Discharge  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Connect your wrist strap to ground.  
If you are at the instrument rack, hold the bag in one hand while your wrist strap is  
connected to a ground point.  
If you are at a anti-ESD work bench, lay the container down on the conductive work  
surface  
In either case wait several seconds  
7. Open the container.  
14.5.4. OPENING SHIPMENTS FROM TELEDYNE  
Packing materials such as bubble pack and Styrofoam pellets are extremely efficient  
generators of static electric charges. To prevent damage from ESD, Teledyne API ships  
all electronic components and assemblies in properly sealed anti-ESD containers.  
Static charges will build up on the outer surface of the anti-ESD container during  
shipping as the packing materials vibrate and rub against each other. To prevent these  
static charges from damaging the components or assemblies being shipped ensure that  
you always unpack shipments from Teledyne API by:  
1. Opening the outer shipping box away from the anti-ESD work area.  
2. Carry the still sealed ant-ESD bag, tube or bin to the anti-ESD work area.  
3. Follow steps 6 and 7 of Section 14.5.3 above when opening the anti-ESD container at  
the work station.  
4. Reserve the anti-ESD container or bag to use when packing electronic components  
or assemblies to be returned to Teledyne API.  
14.5.5. PACKING COMPONENTS FOR RETURN TO TELEDYNE API  
ATTENTION – COULD DAMAGE INSTRUMENT AND VOID WARRANTY  
Always pack electronic components and assemblies to be sent to Teledyne  
API’s Technical Support in anti-ESD bins, tubes or bags. DO NOT use pink-  
poly bags.  
NEVER allow any standard plastic packaging materials to touch the electronic  
component/assembly directly.  
This includes, but is not limited to, plastic bubble-pack, Styrofoam peanuts, open  
cell foam, closed cell foam, and adhesive tape.  
DO NOT use standard adhesive tape as a sealer. Use ONLY anti-ESD tape.  
1. Open the outer shipping box away from the anti-ESD work area.  
2. Carry the still sealed anti-ESD bag, tube or bin to the anti-ESD work area.  
3. Follow steps 6 and 7 of Section 14.5.3 above when opening the anti-ESD container at  
the work station.  
4. Reserve the anti-ESD container or bag to use when packing electronic components  
or assemblies to be returned to Teledyne API.  
5. Never carry any component or assembly without placing it in an anti-ESD bag or bin.  
6. Before using the bag or container, allow any surface charges on it to dissipate:  
06807C DCN6650  
324  
   
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
A Primer on Electro-Static Discharge  
If you are at the instrument rack, hold the bag in one hand while your wrist strap is  
connected to a ground point.  
If you are at an anti-ESD workbench, lay the container down on the conductive work  
surface.  
In either case wait several seconds.  
7. Place the item in the container.  
8. Seal the container. If using a bag, fold the end over and fasten it with anti-ESD tape.  
Folding the open end over isolates the component(s) inside from the effects of static  
fields.  
Leaving the bag open or simply stapling it shut without folding it closed prevents the  
bag from forming a complete protective envelope around the device.  
If you do not already have an adequate supply of anti-ESD bags or  
containers available, Teledyne API’s Technical Support department will  
supply them. Follow the instructions listed above for working at the  
instrument rack and workstation.  
IMPORTANT  
06807C DCN6650  
325  
GLOSSARY  
Note: Some terms in this glossary may not occur elsewhere in this manual.  
Term  
10Base-T  
Description/Definition  
an Ethernet standard that uses twisted (“T”) pairs of copper wires to transmit at 10  
megabits per second (Mbps)  
100Base-T  
APICOM  
ASSY  
same as 10BaseT except ten times faster (100 Mbps)  
name of a remote control program offered by Teledyne-API to its customers  
Assembly  
CAS  
Code-Activated Switch  
CD  
Corona Discharge, a frequently luminous discharge, at the surface of a conductor or  
between two conductors of the same transmission line, accompanied by ionization of the  
surrounding atmosphere and often by a power loss  
CE  
Converter Efficiency, the percentage of light energy that is actually converted into  
electricity  
CEM  
Continuous Emission Monitoring  
Chemical formulas that may be included in this document:  
CO2  
C3H8  
CH4  
H2O  
HC  
carbon dioxide  
propane  
methane  
water vapor  
general abbreviation for hydrocarbon  
HNO3  
H2S  
NO  
nitric acid  
hydrogen sulfide  
nitric oxide  
NO2  
NOX  
NOy  
nitrogen dioxide  
nitrogen oxides, here defined as the sum of NO and NO2  
nitrogen oxides, often called odd nitrogen: the sum of NOX plus other compounds such as  
HNO3 (definitions vary widely and may include nitrate (NO3), PAN, N2O and other  
compounds as well)  
NH3  
O2  
ammonia  
molecular oxygen  
ozone  
O3  
SO2  
sulfur dioxide  
cm3  
metric abbreviation for cubic centimeter (replaces the obsolete abbreviation “cc”)  
Central Processing Unit  
CPU  
DAC  
DAS  
Digital-to-Analog Converter  
Data Acquisition System  
06807C DCN6650  
326  
 
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Glossary  
Term  
Description/Definition  
DCE  
Data Communication Equipment  
Dry Filter Unit  
DFU  
DHCP  
Dynamic Host Configuration Protocol. A protocol used by LAN or Internet servers to  
automatically set up the interface protocols between themselves and any other  
addressable device connected to the network  
DIAG  
DOM  
Diagnostics, the diagnostic settings of the analyzer.  
Disk On Module, a 44-pin IDE flash drive with up to 128MB storage capacity for  
instrument’s firmware, configuration settings and data  
DOS  
Disk Operating System  
DRAM  
Dynamic Random Access Memory  
Digital Research DOS  
DR-DOS  
DTE  
Data Terminal Equipment  
EEPROM  
Electrically Erasable Programmable Read-Only Memory also referred to as a FLASH chip  
or drive  
ESD  
Electro-Static Discharge  
Electrical Test  
ETEST  
Ethernet  
a standardized (IEEE 802.3) computer networking technology for local area networks  
(LANs), facilitating communication and sharing resources  
FEP  
Fluorinated Ethylene Propylene polymer, one of the polymers that Du Pont markets as  
Teflon®  
Flash  
FPI  
non-volatile, solid-state memory  
Fabry-Perot Interface: a special light filter typically made of a transparent plate with two  
reflecting surfaces or two parallel, highly reflective mirrors  
GFC  
Gas Filter Correlation  
I2C bus  
a clocked, bi-directional, serial bus for communication between individual analyzer  
components  
IC  
Integrated Circuit, a modern, semi-conductor circuit that can contain many basic  
components such as resistors, transistors, capacitors etc in a miniaturized package used  
in electronic assemblies  
IP  
Internet Protocol  
IZS  
LAN  
Internal Zero Span  
Local Area Network  
06807C DCN6650  
327  
Glossary  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Term  
Description/Definition  
LCD  
Liquid Crystal Display  
Light Emitting Diode  
Liters Per Minute  
LED  
LPM  
MFC  
Mass Flow Controller  
Measure/Reference  
M/R  
MOLAR MASS  
the mass, expressed in grams, of 1 mole of a specific substance. Conversely, one mole is  
the amount of the substance needed for the molar mass to be the same number in grams  
as the atomic mass of that substance.  
EXAMPLE: The atomic weight of Carbon is 12 therefore the molar mass of Carbon is 12  
grams. Conversely, one mole of carbon equals the amount of carbon atoms that weighs  
12 grams.  
Atomic weights can be found on any Periodic Table of Elements.  
Non-Dispersive Infrared  
NDIR  
NIST-SRM  
National Institute of Standards and Technology - Standard Reference Material  
PC  
Personal Computer  
PCA  
PC/AT  
PCB  
PFA  
PLC  
Printed Circuit Assembly, the PCB with electronic components, ready to use  
Personal Computer / Advanced Technology  
Printed Circuit Board, the bare board without electronic component  
Perfluoroalkoxy, an inert polymer; one of the polymers that Du Pont markets as Teflon®  
Programmable Logic Controller, a device that is used to control instruments based on a  
logic level signal coming from the analyzer  
PLD  
PLL  
Programmable Logic Device  
Phase Lock Loop  
PMT  
Photo Multiplier Tube, a vacuum tube of electrodes that multiply electrons collected and  
charged to create a detectable current signal  
P/N (or PN)  
PSD  
Part Number  
Prevention of Significant Deterioration  
PTFE  
Polytetrafluoroethylene, a very inert polymer material used to handle gases that may react  
on other surfaces; one of the polymers that Du Pont markets as Teflon®  
PVC  
Poly Vinyl Chloride, a polymer used for downstream tubing  
Rdg  
Reading  
RS-232  
specification and standard describing a serial communication method between DTE (Data  
Terminal Equipment) and DCE (Data Circuit-terminating Equipment) devices, using a  
maximum cable-length of 50 feet  
RS-485  
specification and standard describing a binary serial communication method among  
multiple devices at a data rate faster than RS-232 with a much longer distance between  
06807C DCN6650  
328  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Glossary  
Term  
SAROAD  
Description/Definition  
the host and the furthest device  
Storage and Retrieval of Aerometric Data  
SLAMS  
SLPM  
STP  
State and Local Air Monitoring Network Plan  
Standard Liters Per Minute of a gas at standard temperature and pressure  
Standard Temperature and Pressure  
TCP/IP  
Transfer Control Protocol / Internet Protocol, the standard communications protocol for  
Ethernet devices  
TEC  
TPC  
USB  
Thermal Electric Cooler  
Temperature/Pressure Compensation  
Universal Serial Bus: a standard connection method to establish communication between  
peripheral devices and a host controller, such as a mouse and/or keyboard and a  
personal computer or laptop  
VARS  
V-F  
Variables, the variable settings of the instrument  
Voltage-to-Frequency  
Z/S  
Zero / Span  
06807C DCN6650  
329  
Glossary  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
This page intentionally left blank.  
06807C DCN6650  
330  
INDEX  
Analog to Digital Converter .......................................69  
Critical Flow Orifice.........................................24, 65, 294  
A
AC Power 60 Hz............................................................ 43  
ANALOG CAL WARNING ....................................... 69  
Analog Outputs.............................................................. 44  
CONC1...................................................................... 72  
CONC2...................................................................... 72  
Configuration & Calibration  
Automatic............................................................... 37  
Electrical Connections ............................................... 44  
Pin Assignments ........................................................ 45  
Reporting Range ........................................................ 72  
User Configurable.................................................... 276  
APICOM........................................................................ 23  
D
DARK CAL...................................................................69  
DAS System .......................................................37, 69, 72  
Holdoff Period ..........................................................276  
data acquisition....................................... See DAS System  
DATA INITIALIZED...................................................69  
DB-25M..........................................................................26  
DB-9F.............................................................................26  
DC Power .......................................................................49  
Diagnostic Menu (DIAG)...............................................99  
E
B
Electrical Connections  
BOX TEMP .................................................................. 69  
BOX TEMP WARNING............................................. 69  
brass............................................................................... 58  
AC Power ...................................................................43  
Analog Outputs...........................................................44  
Control InputS ............................................................48  
Ethernet.......................................................................23  
Electro-Static Discharge ...........................................33, 55  
Ethernet...................23, 24, 31, 81, 87, 138, 170, 248, 249  
Exhaust Gas ....................................................................40  
Exhaust Gas Outlet.......................................................40  
External Pump ................................................................25  
C
CAL Key...................................................................... 276  
Calibration  
Analog Ouputs........................................................... 37  
Initial Calibration  
Basic Configuration ............................................... 72  
Calibration Gases  
F
Span Gas .................................................................. 276  
Zero Air ..................................................................... 40  
CALS Key ................................................................... 276  
CANNOT DYN SPAN................................................. 69  
CANNOT DYN ZERO ................................................ 69  
CO2 .....................66, 67, 77, 207, 208, 209, 210, 291, 292  
CO2 ALARM1 WARN................................................ 70  
CO2 ALARM2 WARN................................................ 70  
CO2 Sensor..........................66, 67, 77, 207, 209, 291, 292  
Calibration  
FEP .................................................................................58  
Final Test and Validation Data Sheet .......................70, 72  
Front Panel......................................................................35  
Concentration Field ....................................................37  
Control Button Definition Field..................................37  
Message Field.............................................................37  
Mode Field..................................................................37  
Status LED’s...............................................................37  
G
Procedure ............................................................. 210  
Span Gas Concentration....................................... 208  
CO2 Sensor Option  
Pneumatic Set Up for Calibration ............................ 207  
COMM Ports  
Gas Inlets  
Sample ........................................................................40  
Span............................................................................40  
ZERO AIR.................................................................40  
Gas Outlets  
COM2 ........................................................................ 55  
Machine ID ................................................................ 56  
CONC Key................................................................... 276  
CONC VALID.............................................................. 48  
CONC1.......................................................................... 72  
CONC2.......................................................................... 72  
Concentration Field........................................................ 37  
CONFIG INITIALIZED............................................. 69  
Control Button Definition Field..................................... 37  
Control Inputs ................................................................ 48  
Pin Assignments ........................................................ 49  
Control InputS  
Exhaust .......................................................................40  
H
Hold Off Period ............................................................276  
HVPS WARNING ........................................................69  
hydrocarbons...................................23, 186, 233, 288, 295  
I
Infrared Radiation (IR) .................................................291  
Internal Pneumatics  
T100  
Basic Configuration................................................61  
Internal Pump............................................................58, 68  
Internal Span Gas Generator  
Electrical Connections ............................................... 48  
CPU...........................................68, 69, 236, 239, 291, 292  
06807C DCN6650  
331  
 
INDEX  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
Warning Messages................................................69, 70  
PTFE...............................................................................58  
Internal Zero Air (IZS) ...................................................40  
IZS..................................................................................66  
IZS TEMP WARNING................................................70  
R
RCELL TEMP WARNING.........................................69  
REAR BOARD NOT DET ..........................................69  
RELAY BOARD WARN.............................................69  
relay PCA ...............................................................69, 236  
Reporting Range.............................................................72  
RJ45................................................................................26  
RS-232..... 24, 31, 53, 54, 55, 57, 63, 64, 81, 87, 134, 137,  
147, 155, 168, 170, 180, 213, 217, 254, 255, 309  
K
kicker......................................................................23, 288  
M
Machine ID.....................................................................56  
Menu Keys  
RS-485........................................ 24, 57, 81, 134, 137, 309  
CAL..........................................................................276  
CALS........................................................................276  
CONC.......................................................................276  
MENUS  
SNGL..........................................................................72  
Message Field.................................................................37  
Mode Field .....................................................................37  
Motherboard .................................................................239  
multipoint calibration .....................................................67  
S
Safety Messages ..............................................................iii  
SAMPLE FLOW WARN.............................................69  
Sample Inlet ..................................................................40  
Sample Mode............................................................37, 68  
SAMPLE PRESS WARN ............................................69  
Serial I/O Ports  
RS-232........................................................................55  
SNGL .............................................................................72  
SO2 ...23, 31, 44, 57, 58, 64, 65, 66, 67, 70, 81, 82, 83, 90,  
91, 94, 95, 106, 108, 112, 127, 128, 150, 155, 156, 186,  
187, 188, 193, 195, 200, 202, 211, 212, 214, 218, 227,  
240, 244, 245, 246, 247, 248, 256, 262, 263, 266, 267,  
268, 276, 279, 280, 281, 282, 283, 284, 285, 286, 287,  
288, 289, 293, 298, 300, 302, 305, 309, 310, 314, 315,  
316  
SO2 ALARM1 WARN..................................................70  
SO2 ALARM2 WARN..................................................70  
SPAN CAL....................................................................48  
Remote .......................................................................49  
Span Gas.. 40, 63, 64, 67, 72, 98, 108, 185, 186, 187, 188,  
191, 192, 193, 195, 200, 203, 208, 213, 238, 239, 240,  
245, 246, 247, 248, 275, 276  
N
naphthalene...................................................................288  
National Institute of Standards and Technology (NIST)  
Standard Reference Materials (SRM).........................67  
SO2..........................................................................67  
O
O2............ 44, 45, 65, 67, 77, 203, 205, 209, 289, 290, 292  
O2 ALARM1 WARN ...................................................70  
O2 ALARM2 WARN ...................................................70  
O2 sensor......................... 44, 45, 65, 67, 77, 203, 205, 290  
O2 Sensor......................................................................205  
Calibration  
Procedure..............................................................206  
Setup.....................................................................203  
Span Gas Concentration .......................................203  
O2 Sensor Option  
Span Inlet ......................................................................40  
Status Outputs  
Pin Assignments.........................................................48  
SYSTEM OK ................................................................48  
SYSTEM RESET .........................................................69  
Pneumatic Set Up for Calibration....203, 204, 205, 206,  
208, 210, 219  
OC CELL TEMP WARN ............................................70  
Operating Modes  
T
Sample Mode..............................................................37  
Teledyne Contact Information  
P
Email Address...................................................32, 277  
Fax .....................................................................32, 277  
Phone .................................................................32, 277  
Technical Assistance ...........................................iii, 277  
Website....................................................................277  
TEST FUNCTIONS  
Particulate Filter .............................................................66  
PMT  
(TEC)........................................................................236  
PMT DET WARNING.................................................69  
PMT TEMP WARNING..............................................69  
Pneumatic Set Up  
BOX TEMP...............................................................69  
Basic Model T100  
U
Bottled Gas.............................................................60  
Gas Dilution Calibrator ..........................................60  
Calibration  
Units of Measurement ....................................................72  
UV......23, 83, 85, 108, 127, 131, 151, 185, 225, 227, 239,  
240, 246, 255, 256, 260, 261, 262, 263, 266, 267, 268,  
269, 270, 271, 274, 279, 280, 281, 282, 283, 284, 285,  
286, 287, 288, 289, 293, 300, 301, 308, 309, 315  
optional O2 Sensor................................................205  
T100 with CO2 Sensor..........................................208  
T100 with CO2 Sensor..........................................207  
with O2 Sensor...................... 203, 204, 206, 210, 219  
Calibration Gases........................................................66  
UV fluorescence...........................................................282  
UV Fluorescence.................................... 23, 279, 282, 293  
06807C DCN6650  
332  
Teledyne API - T100 UV Fluorescence SO2 Analyzer  
INDEX  
UV Lamp ..............................................127, 240, 267, 268  
UV Lamp ........................................68, 260, 266, 268, 270  
UV LAMP WARNING................................................ 69  
uv Light...68, 127, 260, 266, 268, 270, 280, 281, 282, 284  
IZS TEMP WARNING ............................................70  
O2 ALRM1 WARN ..................................................70  
O2 ALRM2 WARN ..................................................70  
O2 CELL TEMP WARN .........................................70  
PMT DET WARNING.............................................69  
PMT TEMP WARNING..........................................69  
RCELL TEMP WARNING.....................................69  
REAR BOARD NOT DET.......................................69  
RELAY BOARD WARN .........................................69  
SAMPLE FLOW WARN.........................................69  
SAMPLE PRESS WARN.........................................69  
SO2 ALRM1 WARN.................................................70  
SO2 ALRM2 WARN.................................................70  
SYSTEM RESET......................................................69  
UV LAMP WARNING.............................................69  
V
Valve Options ................................................................ 40  
Internal Span Gas Generator  
Warning Messages........................................... 69, 70  
VARS Menu .................................................................. 99  
Ventilation Clearance..................................................... 34  
W
Warm-up Period............................................................. 68  
Warnings........................................................................ 68  
ANALOG CAL WARNING ................................... 69  
BOX TEMP WARNING ......................................... 69  
CANNOT DYN SPAN............................................. 69  
CANNOT DYN ZERO ............................................ 69  
CO2 ALRM1 WARN............................................... 70  
CO2 ALRM2 WARN............................................... 70  
CONFIG INITIALIZED......................................... 69  
DARK CAL .............................................................. 69  
DATA INITIALIZED.............................................. 69  
HVPS WARNING.................................................... 69  
Z
Zero Air ..... 40, 63, 64, 65, 66, 67, 72, 125, 186, 187, 191,  
192, 195, 200, 218, 219, 225, 240, 245, 246, 247, 274,  
276, 307  
ZERO AIR Inlet............................................................40  
ZERO CAL .............................................................48, 49  
Remote........................................................................49  
06807C DCN6650  
333  
This page intentionally left blank.  
06807C DCN6650  
334  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A-1: SOFTWARE MENU TREES ........................................................................ 3  
APPENDIX A-2: SETUP VARIABLES FOR SERIAL I/O ...................................................... 11  
APPENDIX A-3: WARNINGS AND TEST FUNCTIONS........................................................ 21  
APPENDIX A-4: SIGNAL I/O DEFINITIONS .................................................................... 25  
APPENDIX A-5: DAS FUNCTIONS.................................................................................... 31  
APPENDIX A-6: TERMINAL COMMAND DESIGNATORS................................................... 35  
APPENDIX A-7: MODBUS REGISTER MAP....................................................................... 37  
05036 Rev D  
A-1  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
This page intentionally left blank.  
A-2  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-1: Software Menu Trees  
SAMPLE  
TEST1  
CAL  
MSG1,2  
CLR1,3  
SETUP  
Only appear if  
reporting range  
is set for  
AUTO range  
mode.  
ENTER SETUP PASS: 818  
LOW  
HIGH  
<TST TST>  
(Primary Setup Menu)  
CFG  
DAS  
RANG PASS  
CLK  
MORE  
RANGE  
ZERO SPAN CONC  
STABIL  
STABIL24  
RSP  
(Secondary Setup Menu)  
PRES  
SAMP FL  
PMT  
NORM PMT  
UV LAMP  
UV STB  
COMM VARS  
DIAG  
LAMP RATIO  
STR. LGT  
DARK PMT  
DARK LMP  
SLOPE  
1 Only appears when warning messages are activated  
(see section on Warning Messages in manual).  
2 Press this key to cycle through list of active warning  
messages.  
TEST FUNCTIONS  
Viewable by user while  
instrument is in SAMPLE  
Mode (see Test Functions  
section in manual).  
OFFSET  
HVPS  
RCELL ON  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
IZS TEMP5  
TEST6  
3 Press to clear/erase the warning message currently  
displayed  
4 T100U/M100EU  
5 Only appears if the IZS valve option is installed.  
6 Only appears if the TEST analog output channel is  
activated.  
TIME  
Figure A-1:  
Basic Sample Display Menu  
05036 Rev D  
A-3  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SAMPLE  
TEST1  
CAL  
CALS  
MSG1,2  
CLR1,3  
CALZ  
SETUP  
Only appears if  
reporting range  
is set for  
AUTO range  
mode.  
<TST TST>  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
RANGE  
STABIL  
STABIL24  
RSP6  
ZERO SPAN CONC  
ZERO  
SPAN CONC  
ENTER SETUP PASS: 818  
VAC7  
PRES  
SAMP FL  
PMT  
(Primary Setup Menu)  
NORM PMT  
UV LAMP  
UV STB4  
LAMP RATIO  
STR. LGT  
DARK PMT  
DARK LMP  
SLOPE  
CFG  
DAS  
RANG PASS  
CLK  
MORE  
OFFSET  
HVPS  
(Secondary Setup Menu)  
RCELL ON  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
IZS TEMP5  
TEST6  
1 Only appears when warning messages are activated.  
2 Press to cycle through list of active warning messages.  
3 Press to clear/erase the warning message currently  
displayed.  
COMM VARS  
DIAG  
4 T100U/M100EU  
5 Only appears if the IZS valve option is installed.  
6 Only appears if the TEST analog output channel is activated.  
6 Not in T100H/M100EH  
TEST FUNCTIONS  
TIME  
Viewable by user while instrument is  
in SAMPLE Mode (see Test Functions  
section in manual).  
7 T100H/M100EH  
Figure A-2:  
Sample Display Menu - Units with Z/S Valve or IZS Option installed  
A-4  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
SETUP  
ENTER SETUP PASS: 818  
ACAL1  
CFG  
DAS  
RNGE  
PASS  
CLK  
MORE  
ON  
PREV  
NEXT  
Go To iDAS  
MENU TREE  
(Fig. A-8)  
PREV  
NEXT  
MODE  
SET2  
OFF  
 MODEL NAME  
 SERIAL NUMBER  
 SOFTWARE  
REVISION  
TIME  
DATE  
SEQ 1)  
SEQ 2)  
SEQ 3)  
 LIBRARY REVISION  
iCHIP SOFTWARE  
MODE  
IND  
SET  
UNIT  
REVISION1  
HESSEN PROTOCOL  
REVISION1  
 ACTIVE SPECIAL  
SOFTWARE  
PREV  
NEXT  
OPTIONS1  
 CPU TYPE  
SNGL  
AUTO  
 DATE FACTORY  
CONFIGURATION  
SAVED  
DISABLED  
ZERO  
PPB  
PPM  
UGM  
MGM  
ZERO/SPAN  
SPAN  
ENTR  
ENTR  
TIMER ENABLE  
STARTING DATE  
STARTING TIME  
DELTA DAYS  
DELTA TIME  
Go To  
1
2
3
Only appears if a applicable  
option/feature is installed and  
activated.  
Only appears whenever the  
currently displayed sequence  
is not set for DISABLED.  
Only appears when reporting  
range is set to AUTO range  
mode.  
SECONDARY SETUP MENU  
<SET SET>  
LOW3 HIGH3  
EDIT  
(Fig. A-5)  
DURATION  
CALIBRATE  
RANGE TO CAL3  
Figure A-3:  
Primary Setup Menu (Except DAS)  
05036 Rev D  
A-5  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SAMPLE  
ENTER SETUP PASS: 818  
ACAL1  
CFG  
DAS  
RNGE  
PASS  
CLK  
MORE  
VIEW  
PREV NEXT  
EDIT  
CONC  
OPTICS2  
PNUMTC  
CALDAT  
DETAILED  
FAST  
PREV NEXT  
INS  
DEL  
EDIT  
PRNT  
YES  
NO  
CONC  
PNUMTC  
CALDAT  
DETAILED  
FAST  
VIEW  
NEXT  
<SET  
SET>  
EDIT  
PRNT  
<PRM PRM> PV10  
PREV  
NX10  
Selects data point to view.  
Creates/changes name  
Cycles through  
list of  
parameters  
chosen for this  
DAS channel  
NAME  
EVENT  
PARAMETERS  
REPORT PERIOD  
NUMBER OF RECORDS  
RS-232 REPORT  
(see Editing DAS Data Channels  
section in manual).  
Sets the  
amount of time  
between each  
report.  
YES  
NO  
CHANNEL ENABLE  
CAL. HOLD  
PREV NEXT  
PREV NEXT  
INS  
DEL  
YES  
EDIT  
PRNT  
Cycles through  
available trigger  
events.  
NO  
ON  
OFF  
YES  
NO  
<SET  
SET>  
EDIT  
PRNT  
Cycles through  
already active  
parameters.  
Selects max  
no. of records  
for this channel  
PARAMETER  
PREV NEXT  
SAMPLE MODE  
PRECISION  
1
2
Only appears if Z/S valve or IZS option is installed.  
T100H, M100EH  
INST  
AVG  
MIN  
MAX  
Cycles through available/active parameters  
(see Editing DAS Parameters section in manual).  
Figure A-4:  
Primary Setup Menu (DAS)  
A-6  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
SAMPLE  
ENTER SETUP PASS: 818  
ACAL1  
CFG  
DAS  
RNGE  
PASS  
VARS  
CLK  
MORE  
COMM  
INET2  
DIAG  
Password required  
ID  
COM1 COM23  
Go To INET MENU TREE (Fig A-6)  
PREV NEXT JUMP  
EDIT PRINT  
DAS_HOLD_OFF  
TPC_ENABLE  
RCELL_SET  
<SET  
SET>  
EDIT  
IZS_SET  
DYN_ZERO  
DYN_SPAN  
CONC_PRECISION  
MODE  
BAUD RATE TEST PORT  
CLOCK_ADJ  
SERVICE_CLEAR  
TIME_SINCE_SVC  
SVC_INTERVAL  
PREV NEXT  
PREV NEXT  
TEST  
Go To  
DIAG MENU TREE  
QUIET  
300  
1200  
2400  
COMPUTER  
HESSEN PROTOCOL  
E, 8, 1  
E, 7, 1  
(Fig A-8)  
4800  
RS-485  
SECURITY  
9600  
19200  
38400  
57600  
MULTIDROP PROTOCOL  
ENABLE MODEM  
ERROR CHECKING  
XON/XOFF HANDSHAKE  
HARDWARE HANDSHAKE  
HARDWARE FIFO  
COMMAND PROMPT  
1
2
Only appears if Z/S valve or IZS option is installed.  
M100E, M100EU, M100EH: Only appears when the  
ENABLE INTERNET mode is enabled.  
M100E, M100EU, M100EH: Disappears when INET option  
is enabled.  
115200  
ON  
3
OFF  
Figure A-5:  
Secondary Setup Menu (COMM & VARS)  
05036 Rev D  
A-7  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SETUP  
ENTER SETUP PASS: 818  
ACAL1  
CFG  
DAS  
RNGE  
PASS  
CLK  
MORE  
COMM  
<SET  
VARS  
DIAG  
Password required  
ID  
COM1  
PREV NEXT JUMP  
EDIT PRINT  
INET2  
COMM  
MENU TREE  
SET>  
EDIT  
(Fig A-5)  
VARS  
MENU TREE  
(Fig A-5)  
DHCP  
INSTRUMENT IP  
GATEWAY IP  
SUBNET MASK  
TCP PORT3  
HOSTNAME4  
Go To  
DIAG MENU TREE  
(Fig A-8)  
ON  
INSTRUMENT IP5  
GATEWAY IP5  
SUBNET MASK5  
TCP PORT3  
OFF  
EDIT  
1
Only appears if a valve option is installed.  
M100E, M100EU, M100EH: Only appears when the Ethernet card (option 63) is installed.  
M100E, M100EU, M100EH: Although TCP PORT is editable regardless of the DHCP state, do not change the  
setting for this property unless instructed to by Teledyne Instruments Customer Service personnel.  
HOST NAME is only editable when DHCP is ON.  
2
3
4
5
INSTRUMENT IP, GATEWAY IP & SUBNET MASK are only editable when DHCP is OFF.  
Figure A-6:  
Secondary Setup, COMM – INET (Ethernet) Menu  
A-8  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
.
SETUP  
ENTER SETUP PASS: 818  
ACAL1  
CFG  
DAS  
RNGE  
PASS  
CLK  
MORE  
COMM  
VARS  
DIAG  
ID  
HESN2  
COM1 COM2  
See  
See  
Fig A-5  
Fig A-8  
<SET  
SET> EDIT  
See  
Fig A-5  
PMT DET WARNING  
UV LAMP WARNING1  
DARK CAL WARNING  
IZS TEMP WARNING  
VARIATION RESPONSE MODE GAS LIST STATUS FLAGS  
BOX TEMP WARNING  
PMT TEMP WARNING  
TYPE 1  
TYPE 2  
RCELL TEMP WARNING  
SAMPLE FLOW WARNING  
SAMPLE PRESS WARNING  
BCC  
TEXT  
CMD  
VACUUM PRESS WARN4  
HVPS WARNING  
SYSTEM RESET  
REAR BOARD NOT DET  
RELAY BOARD WARN  
FRONT PANEL WARN  
ANALOG CAL WARNING  
CANNOT DYN ZERO  
CANNOT DYN SPAN  
INVALID CONC  
PREV NEXT  
INS  
DEL  
EDIT  
PRNT  
(see Hessen Protocol Gas ID section in manual)  
YES  
NO  
ZERO CAL  
LOW SPAN CAL4  
SPAN CAL  
MP CAL  
GAS TYPE  
GAS ID  
REPORTED  
SO2, 110, REPORTED  
MANUAL MODE  
INVALID  
PPB3  
1
2
3
PPM3  
Only appears if a valve option is installed.  
Only appears when the HESSEN mode is enabled.  
See Setting Hessen Protocol Status Flags section in  
manual for Flag Assignments.  
UGM3  
MGM3  
ON  
OFF  
SO2 ALARM 1  
SO@ ALARM 2  
4
T100H, M100EH  
Figure A-7:  
Secondary Setup Menu - HESSEN Submenu  
05036 Rev D  
A-9  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SAMPLE  
ENTER SETUP PASS: 818  
ACAL1  
DAS  
RNGE  
PASS  
CLK  
MORE  
CFG  
DIAG  
COMM  
VARS  
5
PMT  
PREV NEXT  
TEST  
CALIBRATION CALIBRATION CHANNEL  
OUTPUT  
CALIBRATION  
SIGNAL  
I/O  
ANALOG  
OUTPUT CONFIGURATION  
ANALOG I/O  
OPTIC  
TEST  
ELECTRICAL  
TEST  
LAMP  
PRESSURE  
FLOW  
CALIBRATION  
ENTR  
ENTR  
ENTR  
ENTR  
ENTR  
ENTR  
PREV NEXT  
Start step Test  
Starts Test  
Starts Test  
Starts Test  
Starts Test  
Starts Test  
0) EXT ZERO CAL  
1) EXT SPAN CAL  
EXT LOW SPAN  
3
2) MAINT MODE  
3) LANG2 SELECT  
NONE  
PMT READING  
UV READING  
<SET  
SET>  
4) SAMPLE LED  
5) CAL LED  
6) FAULT LED  
7) AUDIBLE BEEPER  
8) ELEC TEST  
SAMPLE PRESSURE  
SAMPLE FLOW  
RCELL TEMP  
AOUTS CALIBRATED  
CAL  
CHASSIS TEMP  
9) OPTIC TEST  
IZS TEMP2  
CONC OUT 1  
CONC OUT 2  
TEST OUTPUT  
10) DARK TEST 4  
PMT TEMP  
11) PREAMP RANGE HI  
12) ST SYSTEM OK  
13) ST CONC VALID  
14) ST HIGH RANGE  
15) ST ZERO CAL  
16) ST SPAN CAL  
17) ST DIAG MODE  
ST LOW SPAN CAL  
18) ST LAMP ALARM  
HVPS VOLTAGE  
EDIT  
<SET SET>  
3
19) ST DARK CAL ALARM  
20) ST FLOW ALARM  
21) ST PRESS ALARM  
22) SR TEMP ALARM  
23) ST HVPS ALARM  
24) ST SYSTEM OK2  
25) ST CONC ALARM 1  
26) ST CONC ALARM 2  
27) ST HIGH RANGE 2  
28) RELAY WATCHDOG  
29) RCELL HEATER  
RANGE  
REC OFFSET  
AUTO CAL  
CALIBRATED  
ON  
CAL  
ON  
OFF  
2
30) IZS HEATER  
31) CAL VALVE  
32) SPAN VALVE  
33) PMT SIGNAL  
LOW SPAN VALVE  
34) ZERO VALVE  
OFF  
0.1V 1V  
5V 10V CURR  
3
1
1
Only appears if valve option is installed.  
Only relevant to analyzers with IZS options installed.  
T100H, M100EH  
T100, T100U, M100E, M100EU  
T100U, M100EU  
2
3
4
35) DARK SHUTTER  
36  
INTERNAL ANALOG  
VOLTAGE SIGNALS  
(see Appendix A)  
5
54  
Figure A-8:  
Secondary Setup Menu (DIAG)  
A-10  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-2: Setup Variables For Serial I/O  
Table A-1:  
Setup Variables  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
Low Access Level Setup Variables (818 password)  
DAS_HOLD_OFF  
Minutes  
15  
0.5–20  
Duration of DAS hold off period.  
TPC_ENABLE  
ON  
OFF, ON  
ON enables temperature and pressure  
compensation; OFF disables it.  
RCELL_SET  
ºC  
50  
30–70  
30–70  
Reaction cell temperature set point and  
warning limits.  
Warnings:  
45–55  
50  
IZS_SET 1  
ºC  
IZS temperature set point and warning  
limits.  
Warnings:  
45–55  
OFF  
DYN_ZERO  
OFF, ON  
OFF, ON  
ON enables contact closure dynamic  
zero; OFF disables it.  
DYN_SPAN  
OFF  
3
ON enables contact closure dynamic  
span; OFF disables it.  
CONC_PRECISION  
AUTO,  
Number of digits to display to the right  
of the decimal point for concentrations  
on the display. Enclose value in double  
quotes (“) when setting from the RS-  
232 interface.  
0,  
1,  
2,  
3,  
4
REM_CAL_DURATION 17  
Minutes  
20  
1–120  
Duration of automatic calibration  
initiated from TAI protocol.  
CLOCK_ADJ  
Sec./Day  
0
-60–60  
OFF  
Time-of-day clock speed adjustment.  
SERVICE_CLEAR  
OFF  
ON resets the service interval  
timer.  
ON  
TIME_SINCE_SVC  
SVC_INTERVAL  
Hours  
Hours  
0
0
0–500000  
0–100000  
Time since last service.  
Sets the interval between service  
reminders.  
Medium Access Level Setup Variables (929 password)  
LANGUAGE_SELECT  
ENGL  
ENGL,  
SECD,  
EXTN  
Selects the language to use for the  
user interface. Enclose value in double  
quotes (“) when setting from the RS-  
232 interface.  
MAINT_TIMEOUT  
CONV_TIME  
Hours  
2
0.1–100  
Time until automatically switching out  
of software-controlled maintenance  
mode.  
33 MS  
33 MS,  
66 MS,  
133 MS,  
266 MS,  
533 MS,  
1 SEC,  
2 SEC  
Conversion time for PMT and UV  
detector channels. Enclose value in  
double quotes (“) when setting from the  
RS-232 interface.  
05036 Rev D  
A-11  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
DWELL_TIME  
Seconds  
Samples  
1
0.1–10  
Dwell time before taking each sample.  
Moving average filter size.  
FILT_SIZE  
240,  
30 3,  
480 12  
20,  
1–1000  
FILT_ASIZE  
FILT_DELTA  
Samples  
PPM  
1–100  
Moving average filter size in adaptive  
mode.  
6 3  
0.02,  
10 3,  
0.005 12  
5,  
10 2,  
1 12  
0.001–0.1,  
1–1003  
Absolute change to trigger adaptive  
filter.  
FILT_PCT  
%
1–100  
Percent change to trigger adaptive  
filter.  
FILT_DELAY  
Seconds  
180  
0–300  
Delay before leaving adaptive filter  
mode.  
FILT_ADAPT  
ON  
OFF, ON  
OFF, ON  
ON enables adaptive filter; OFF  
disables it.  
NEG_CONC_SUPPRESS  
OFF  
ON pegs negative concentrations at  
zero; OFF permits negative  
concentrations  
DIL_FACTOR  
1
0.1–1000  
Dilution factor if dilution enabled with  
FACTORY_OPT variable.  
18  
AGING_ENABLE  
OFF  
0
ON, OFF  
-1.0–1.0  
-0.01–0.01  
ON enables aging offset and slope  
compensation.  
18  
AGING_OFFSET_RATE  
mV/day  
Aging offset rate of change per  
day.  
18  
AGING_SLOPE_RATE  
Change/  
day  
0
Aging slope rate of change per  
day.  
CO2_DWELL 11  
CO2_FILT_ADAPT 11  
Seconds  
1
0.1–30  
Dwell time before taking each sample.  
ON  
ON, OFF  
ON enables CO2 adaptive filter; OFF  
disables it.  
CO2_FILT_SIZE 11  
CO2_FILT_ASIZE 11  
CO2_FILT_DELTA 11  
CO2_FILT_PCT 11  
Samples  
Samples  
%
48  
12  
2
1–300  
CO2 moving average filter size in  
normal mode.  
1–300  
CO2 moving average filter size in  
adaptive mode.  
0.1–10  
0.1–100  
0–300  
Absolute change in CO2 concentration  
to shorten filter.  
%
10  
90  
1
Relative change in CO2 concentration  
to shorten filter.  
CO2_FILT_DELAY 11  
CO2_DIL_FACTOR 11  
Seconds  
Delay before leaving CO2 adaptive filter  
mode.  
0.1–1000  
Dilution factor for CO2. Used only if is  
dilution enabled with FACTORY_OPT  
variable.  
CO2_STD_CELL_TEMP 11  
ºK  
323  
28.50  
1
1–500  
Standard CO2 cell temperature for  
temperature compensation.  
CO2_STD_CELL_PRESS  
"Hg  
1.00–50.00  
0.1–30  
Standard CO2 cell pressure for  
pressure compensation.  
11  
O2_DWELL 10  
Seconds  
Dwell time before taking each sample.  
A-12  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
O2_FILT_ADAPT 10  
ON  
ON, OFF  
ON enables O2 adaptive filter; OFF  
disables it.  
O2_FILT_SIZE 10  
O2_FILT_ASIZE 10  
O2_FILT_DELTA 10  
O2_FILT_PCT 10  
Samples  
Samples  
%
60  
10  
2
1–500  
O2 moving average filter size in normal  
mode.  
1–500  
O2 moving average filter size in  
adaptive mode.  
0.1–100  
0.1–100  
0–300  
Absolute change in O2 concentration to  
shorten filter.  
%
2
Relative change in O2 concentration to  
shorten filter.  
O2_FILT_DELAY 10  
O2_DIL_FACTOR 10  
Seconds  
20  
1
Delay before leaving O2 adaptive filter  
mode.  
0.1–1000  
Dilution factor for O2. Used only if is  
dilution enabled with FACTORY_OPT  
variable.  
O2_CELL_SET 10  
ºC  
50  
30–70  
O2 sensor cell temperature set point  
and warning limits.  
Warnings:  
45–55  
323  
O2_STD_CELL_TEMP 10  
O2_STD_CELL_PRESS 10  
USER_UNITS  
ºK  
1–500  
Standard O2 cell temperature for  
temperature compensation.  
"Hg  
28.50  
1.00–50.00  
Standard O2 cell pressure for pressure  
compensation.  
PPB,  
PPM 3  
PPB,  
Concentration units for user interface.  
Enclose value in double quotes (“)  
when setting from the RS-232  
interface.  
PPM,  
UGM,  
MGM,  
PPM 3,  
MGM 3  
0–5000  
1000–5000  
0.5–1.5  
LAMP_DRIVE 6  
LAMP_CAL  
mV  
mV  
5000  
3500  
0.95  
Lamp power setting.  
Last calibrated UV lamp reading.  
LAMP_GAIN  
UV lamp compensation attenuation  
factor.  
BXTEMP_TPC_GAIN  
1,  
0 12  
0–10  
Box temperature compensation  
attenuation factor.  
SPRESS_TPC_GAIN  
1
0–10  
Sample pressure compensation  
attenuation factor.  
PMT_TARG_CONC 12  
PMT_UPDATE_PERIOD 12  
PMT_CAL_TIMEOUT 12  
Conc  
400  
10  
0.01–9999.99  
1–100  
Target SO2 concentration during PMT  
calibration.  
Seconds  
Minutes  
Period between HVPS gain updates  
during PMT calibration.  
30  
1–100  
Maximum time for PMT calibration to  
succeed.  
HVPS_ADJUST 12  
HVPS_INTEG 12  
0
5
0–200  
0–500  
HVPS gain adjustment.  
Gain  
Integral coefficient for adjusting HVPS  
gain during PMT calibration.  
HVPS_STABIL 12  
PMT_ADJUST 12  
1
0
0.1–10  
HVPS gain must stabilize to within this  
limit for PMT calibration to succeed.  
0–65535  
PMT gain adjustment.  
05036 Rev D  
A-13  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
SLOPE_CONST  
8,  
6.25 3  
0.1–10  
Constant to make visible slope close to  
1.  
DARK_ENABLE  
DARK_FREQ  
ON,  
OFF, ON  
0.1–1440  
1–60  
ON enables PMT/UV dark calibration;  
OFF disables it.  
OFF 12  
30,  
720 3  
Minutes  
Seconds  
Dark calibration period.  
DARK_PRE_DWELL  
10  
Dwell time after closing dark shutter or  
turning off lamp or selecting preamp  
range.  
DARK_POST_DWELL  
Seconds  
10,  
30 3  
5
1–180  
Dwell time after opening dark shutter or  
turning on lamp.  
DARK_SAMPLES  
DARK_FSIZE  
DARK_LIMIT  
Samples  
Samples  
mV  
1–10  
Number of dark samples to average.  
Dark offset moving average filter size.  
Maximum dark offset allowed.  
2
1–100  
0–1000  
200,  
400 3  
0
SO2_TARG_ZERO1  
SO2_SPAN1  
Conc  
Conc  
-100–999.99  
0.01–9999.99  
Target SO2 concentration during zero  
calibration of range 1.  
400,  
4000 3  
1
Target SO2 concentration during span  
calibration of range 1.  
SO2_SLOPE1  
PPB/mV,  
PPM/mV 3  
mV  
0.25–4  
SO2 slope for range 1.  
SO2_OFFSET1  
SO2_BACKGROUND1 4  
0
0
-55000–55000  
-10000–10000  
SO2 offset for range 1.  
PPM  
SO2 background concentration for  
range 1.  
SO2_TARG_ZERO2  
SO2_SPAN2  
Conc  
Conc  
0
-100–999.99  
0.01–9999.99  
Target SO2 concentration during zero  
calibration of range 2.  
400,  
4000 3  
1
Target SO2 concentration during span  
calibration of range 2.  
SO2_SLOPE2  
PPB/mV,  
PPM/mV 3  
mV  
0.25–4  
SO2 slope for range 2.  
SO2_OFFSET2  
SO2_BACKGROUND2 4  
0
0
-55000–55000  
-10000–10000  
SO2 offset for range 2.  
PPM  
SO2 background concentration for  
range 2.  
CO2_TARG_SPAN_CONC 11  
%
12  
0.1–1000  
Target CO2 concentration during span  
calibration.  
CO2_SLOPE 11  
CO2_OFFSET 11  
O2_TARG_SPAN_CONC 10  
%
%
1
0.5–5  
CO2 slope.  
CO2 offset.  
0
-10–10  
0.1–100  
20.95  
Target O2 concentration during span  
calibration.  
O2_SLOPE 10  
O2_OFFSET 10  
RANGE_MODE  
%
1
0.5–2  
O2 slope.  
O2 offset.  
0
-10–10  
SNGL,  
DUAL,  
AUTO  
SNGL  
Range control mode. Enclose value in  
double quotes (“) when setting from the  
RS-232 interface.  
A-14  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
PHYS_RANGE1  
PPM  
PPM  
Conc  
Conc  
2,  
500 3  
0.1–2500,  
5–10000 3  
0.1–2500,  
5–10000 3  
0.1–50000  
Low pre-amp range.  
PHYS_RANGE2  
CONC_RANGE1  
CONC_RANGE2  
22,  
5500 3  
High pre-amp range.  
500,  
D/A concentration range 1.  
D/A concentration range 2.  
5000 3  
500,  
0.1–50000  
5000 3  
CO2_RANGE 11  
O2_RANGE 10  
%
15  
0.1–500  
0.1–500  
0–6000  
CO2 concentration range.  
O2 concentration range.  
%
100  
SAMP_FLOW_SET  
cc/m  
700,  
Sample flow set point for flow  
calculation and warning limits.  
250 1+9  
Warnings:  
350–1200,  
175–325 1+9  
1
SAMP_FLOW_SLOPE  
VAC_SAMP_RATIO 3  
SAMP_PRESS_SET  
0.5–1.5  
0.1–2  
Sample flow slope correction factor  
(adjusted flow = measured flow x  
slope).  
0.53  
Maximum vacuum pressure / sample  
pressure ratio for valid sample flow  
calculation.  
"Hg  
29.92  
Warnings:  
15–35  
6
0–100  
Sample pressure set point for pressure  
compensation and warning limits.  
VAC_PRESS_SET 3  
BOX_SET  
"Hg  
ºC  
0–100  
5–60  
0–40  
Vacuum pressure set point for  
pressure compensation and warning  
limits.  
Warnings:  
3–10  
30  
Box temperature warning limits. Set  
point is not used.  
Warnings:  
8–50  
PMT_SET  
ºC  
7,  
15 12  
PMT temperature set point and  
warning limits.  
Warnings:  
2–12,  
2–20 12  
05036 Rev D  
A-15  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
RS232_MODE  
BitFlag  
0
0–65535  
RS-232 COM1 mode flags. Add values  
to combine flags.  
1 = quiet mode  
2 = computer mode  
4 = enable security  
8 = enable hardware handshaking  
16 = enable Hessen protocol 8  
32 = enable multi-drop  
64 = enable modem  
128 = ignore RS-232 line errors  
256 = disable XON / XOFF support  
512 = disable hardware FIFOs  
1024 = enable RS-485 mode  
2048 = even parity, 7 data bits, 1 stop  
bit  
4096 = enable command prompt  
8192 = even parity, 8 data bits, 1 stop  
bit  
16384 = enable dedicated MODBUS  
ASCII protocol  
32678 = enable dedicated MODBUS  
RTU or TCP protocol  
16384 = enable TAI protocol 17  
BAUD_RATE  
115200  
300,  
RS-232 COM1 baud rate. Enclose  
value in double quotes (“) when setting  
from the RS-232 interface.  
1200,  
2400,  
4800,  
9600,  
19200,  
38400,  
57600,  
115200  
MODEM_INIT  
“AT Y0 &D0  
&H0 &I0  
Any character in  
the allowed  
RS-232 COM1 modem initialization  
string. Sent verbatim plus carriage  
S0=2 &B0  
&N6 &M0 E0  
Q1 &W0”  
character set. Up to return to modem on power up or  
100 characters  
long.  
manually. Enclose value in double  
quotes (“) when setting from the RS-  
232 interface.  
RS232_MODE2  
BitFlag  
0
0–65535  
RS-232 COM2 mode flags.  
(Same settings as RS232_MODE.)  
A-16  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
BAUD_RATE2  
19200  
300,  
RS-232 COM2 baud rate. Enclose  
value in double quotes (“) when setting  
from the RS-232 interface.  
1200,  
2400,  
4800,  
9600,  
19200,  
38400,  
57600,  
115200  
MODEM_INIT2  
“AT Y0 &D0  
&H0 &I0  
Any character in  
the allowed  
RS-232 COM2 modem initialization  
string. Sent verbatim plus carriage  
S0=2 &B0  
&N6 &M0 E0  
Q1 &W0”  
character set. Up to return to modem on power up or  
100 characters  
long.  
manually. Enclose value in double  
quotes (“) when setting from the RS-  
232 interface.  
RS232_PASS  
Password  
940331  
100  
0–999999  
0–9999  
RS-232 log on password.  
MACHINE_ID  
ID  
Unique ID number for instrument.  
COMMAND_PROMPT  
“Cmd> ”  
Any character in  
the allowed  
RS-232 interface command prompt.  
Displayed only if enabled with  
character set. Up to RS232_MODE variable. Enclose value  
100 characters  
long.  
in double quotes (“) when setting from  
the RS-232 interface.  
TEST_CHAN_ID  
NONE  
NONE,  
Diagnostic analog output ID. Enclose  
value in double quotes (“) when setting  
from the RS-232 interface.  
PMT READING,  
UV READING,  
VACUUM  
PRESSURE3,  
SAMPLE  
PRESSURE,  
SAMPLE FLOW,  
RCELL TEMP,  
O2 CELL TEMP 10  
CHASSIS TEMP,  
IZS TEMP 1,  
PMT TEMP,  
,
HVPS VOLTAGE  
LOW,  
REMOTE_CAL_MODE  
LOW  
Range to calibrate during contact-  
closure and Hessen calibration.  
Enclose value in double quotes (“)  
when setting from the RS-232  
interface.  
HIGH,  
CO2 11  
O2 10  
,
PASS_ENABLE  
RCELL_CYCLE  
RCELL_PROP  
OFF  
2
OFF, ON  
0.5–30  
0–10  
ON enables passwords; OFF disables  
them.  
Seconds  
1/ºC  
Reaction cell temperature control cycle  
period.  
0.3 (prop.  
band = 3.3  
ºC)  
Reaction cell temperature PID  
proportional coefficient.  
05036 Rev D  
A-17  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
RCELL_INTEG  
0.005  
0–10  
Reaction cell temperature PID integral  
coefficient.  
RCELL_DERIV  
0.5  
0–10  
0.5–30  
0–10  
0–10  
0–10  
Reaction cell temperature PID  
derivative coefficient.  
O2_CELL_CYCLE 10  
O2_CELL_PROP 10  
O2_CELL_INTEG 10  
O2_CELL_DERIV 10  
Seconds  
10  
O2 cell temperature control cycle  
period.  
1
O2 cell PID temperature control  
proportional coefficient.  
0.1  
O2 cell PID temperature control integral  
coefficient.  
0 (disabled)  
2
O2 cell PID temperature control  
derivative coefficient.  
IZS_CYCLE 1  
IZS_PROP 1  
Seconds  
1/ºC  
0.5–30  
0–10  
IZS temperature control cycle period.  
1 (prop. band  
= 1 ºC)  
IZS temperature PID proportional  
coefficient.  
IZS_INTEG 1  
IZS_DERIV 1  
HVPS_SET  
0.03  
0–10  
IZS temperature PID integral  
coefficient.  
0
0–10  
IZS temperature PID derivative  
coefficient.  
Volts  
650,  
550 3  
0–2000  
High voltage power supply warning  
limits. Set point is not used.  
Warnings:  
400–900,  
400–700 3  
4995  
MAX_PMT_DETECTOR  
PHOTO_ABS_LIMITS 1  
mV  
mV  
0–5000  
0–5000  
PMT detector maximum warning limit.  
450  
Pre-amplified UV lamp  
minimum/maximum warning limits. Set  
point is not used.  
Warnings:  
125–625  
3500  
UV_LAMP_LIMITS  
mV  
0–5000  
UV lamp minimum/maximum warning  
limits. Set point is not used.  
Warnings:  
1000–4995  
0
ELEC_TEST_LEVEL 12  
OPTIC_TEST_LEVEL 12  
CONC_LIN_ENABLE 3  
0–65535  
0–65535  
OFF, ON  
Electrical test level setting.  
Optical test level setting.  
0
ON  
ON enables concentration linearization;  
OFF disables it.  
STAT_REP_PERIOD 17  
SERIAL_NUMBER  
Seconds  
1
0.5–120  
TAI protocol status message report  
period.  
“00000000 ”  
Any character in  
the allowed  
Unique serial number for instrument.  
Enclose value in double quotes (“)  
character set. Up to when setting from the RS-232  
100 characters  
long.  
interface.  
DISP_INTENSITY  
HIGH  
ON  
HIGH,  
MED,  
LOW,  
DIM  
Front panel display intensity. Enclose  
value in double quotes (“) when setting  
from the RS-232 interface.  
I2C_RESET_ENABLE  
A-18  
OFF, ON  
I2C bus automatic reset enable.  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
CLOCK_FORMAT  
“TIME=%H:% Any character in  
M:%S” the allowed  
Time-of-day clock format flags.  
Enclose value in double quotes (“)  
character set. Up to when setting from the RS-232  
100 characters  
long.  
interface.  
“%a” = Abbreviated weekday name.  
“%b” = Abbreviated month name.  
“%d” = Day of month as decimal  
number (01 – 31).  
“%H” = Hour in 24-hour format (00 –  
23).  
“%I” = Hour in 12-hour format (01 –  
12).  
“%j” = Day of year as decimal number  
(001 – 366).  
“%m” = Month as decimal number (01  
– 12).  
“%M” = Minute as decimal number (00  
– 59).  
“%p” = A.M./P.M. indicator for 12-hour  
clock.  
“%S” = Second as decimal number (00  
– 59).  
“%w” = Weekday as decimal number (0  
– 6; Sunday is 0).  
“%y” = Year without century, as  
decimal number (00 – 99).  
“%Y” = Year with century, as decimal  
number.  
“%%” = Percent sign.  
ALARM_TRIGGER 13  
Cycles  
3
1–100  
Number of times concentration must  
exceed limit to trigger alarm.  
05036 Rev D  
A-19  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NUMERIC  
UNITS  
DEFAULT  
VALUE  
SETUP VARIABLE  
VALUE RANGE  
DESCRIPTION  
FACTORY_OPT  
BitFlag  
0
0–65535  
Factory option flags. Add values to  
combine flags.  
1 = enable dilution factor  
2 = zero/span valves installed  
4 = IZS installed (implies zero/span  
valves installed)  
8 = low span valve installed  
16 = display units in concentration field  
32 = enable software-controlled  
maintenance mode  
64 = enable lamp power analog output  
128 = enable switch-controlled  
maintenance mode  
256 = compute only offset during zero  
calibration  
1024 = enable high flow rate sensor  
2048 = enable Internet option  
4096 = enable pre-amplified UV lamp  
monitoring  
8192 = enable non-zero offset  
calibration  
16384 = enable pressurized zero  
calibration  
32768 = enable pressurized span  
calibration  
1
T100/M100E.  
M100ES.  
2
3
T100H/M100EH.  
4
Background concentration compensation option (6400E/6400EH).  
6
Engineering firmware only.  
7
iChip option.  
8
Must power-cycle instrument for these options to fully take effect.  
9
Low span option.  
O2 option.  
10  
11  
12  
13  
17  
18  
99  
CO2 option.  
T100U/M100EU.  
Concentration alarm option.  
TAI protocol  
Aging Compensation option.  
Obsolete.  
A-20  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-3: Warnings and Test Functions  
Table A-2:  
Warning Messages  
NAME  
MESSAGE TEXT  
DESCRIPTION  
Warnings  
WSYSRES  
SYSTEM RESET  
Instrument was power-cycled or the CPU was reset.  
Data storage was erased.  
WDATAINIT  
DATA INITIALIZED  
WCONFIGINIT  
CONFIG INITIALIZED  
Configuration storage was reset to factory configuration or  
erased.  
WSO2ALARM1 7  
WSO2ALARM2 7  
WO2ALARM1 10+7  
WO2ALARM2 10+7  
WCO2ALARM1 11+7  
WCO2ALARM2 11+7  
WPMT  
SO2 ALARM 1 WARN  
SO2 ALARM 2 WARN  
O2 ALARM 1 WARN  
O2 ALARM 2 WARN  
CO2 ALARM 1 WARN  
CO2 ALARM 2 WARN  
PMT DET WARNING  
SO2 concentration alarm limit #1 exceeded  
SO2 concentration alarm limit #2 exceeded  
O2 concentration alarm limit #1 exceeded  
O2 concentration alarm limit #2 exceeded  
CO2 concentration alarm limit #1 exceeded  
CO2 concentration alarm limit #2 exceeded  
PMT detector outside of warning limits specified by  
DETECTOR_LIMIT variable.  
WUVLAMP  
UV LAMP WARNING  
UV lamp reading outside of warning limits specified by  
DETECTOR_LIMIT variable.  
WSAMPFLOW  
WSAMPPRESS  
WVACPRESS 5  
WBOXTEMP  
SAMPLE FLOW WARN  
SAMPLE PRESS WARN  
VACUUM PRESS WARN  
BOX TEMP WARNING  
RCELL TEMP WARNING  
O2 CELL TEMP WARN  
IZS TEMP WARNING  
PMT TEMP WARNING  
Sample flow outside of warning limits specified by  
SAMP_FLOW_SET variable.  
Sample pressure outside of warning limits specified by  
SAMP_PRESS_SET variable.  
Vacuum pressure outside of warning limits specified by  
VAC_PRESS_SET variable.  
Chassis temperature outside of warning limits specified by  
BOX_SET variable.  
WRCELLTEMP  
WO2CELLTEMP 10  
WIZSTEMP  
Reaction cell temperature outside of warning limits specified by  
RCELL_SET variable.  
O2 sensor cell temperature outside of warning limits specified by  
O2_CELL_SET variable.  
IZS temperature outside of warning limits specified by IZS_SET  
variable.  
WPMTTEMP  
PMT temperature outside of warning limits specified by  
PMT_SET variable.  
WDARKCAL  
WHVPS  
DARK CAL WARNING  
HVPS WARNING  
Dark offset above limit specified by DARK_LIMIT variable.  
High voltage power supply output outside of warning limits  
specified by HVPS_SET variable.  
WDYNZERO  
WDYNSPAN  
CANNOT DYN ZERO  
CANNOT DYN SPAN  
Contact closure zero calibration failed while DYN_ZERO was set  
to ON.  
Contact closure span calibration failed while DYN_SPAN was set  
to ON.  
WREARBOARD  
WRELAYBOARD  
REAR BOARD NOT DET  
RELAY BOARD WARN  
Rear board was not detected during power up.  
Firmware is unable to communicate with the relay board.  
05036 Rev D  
A-21  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NAME  
WFRONTPANEL 12  
MESSAGE TEXT  
FRONT PANEL WARN  
ANALOG CAL WARNING  
DESCRIPTION  
Firmware is unable to communicate with the front panel.  
The A/D or at least one D/A channel has not been calibrated.  
WANALOGCAL  
1
The name is used to request a message via the RS-232 interface, as in “T BOXTEMP”.  
2
Engineering software.  
Current instrument units.  
T100/M100E.  
3
4
5
T100H/M100EH.  
T100U/M100EU.  
Concentration alarm option.  
O2 option.  
6
7
10  
11  
12  
CO2 option.  
Applies to E-Series.  
A-22  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
Table A-3:  
Test Functions  
TEST FUNCTION  
MESSAGE TEXT  
DESCRIPTION  
Test Measurements  
RANGE  
RANGE=500.0 PPB 3  
SO2 RNG=500.0 PPB 3, 10, 11  
RANGE1=500.0 PPB 3  
SO2 RN1=500.0 PPB 3, 10, 11  
RANGE2=500.0 PPB 3  
SO2 RN2=500.0 PPB 3, 10, 11  
CO2 RNG=100 PCT 11  
O2 RNG=100 PCT 10  
STABIL=0.0 PPB 3  
D/A range in single or auto-range modes.  
D/A #1 range in independent range mode.  
D/A #2 range in independent range mode.  
RANGE1  
RANGE2  
CO2RANGE  
O2RANGE  
STABILITY  
D/A range for CO2 concentration.  
D/A range for O2 concentration  
Concentration stability #1.  
SO2 STB=0.0 PPB 3, 10  
O2 STB=0.0 PCT 10  
CO2 STB=0.0 PCT 11  
STABILITY2 6  
RESPONSE 2  
STABIL2=0.0 PPB 3  
Concentration stability #2.  
SO2 STB2=0.0 PPB 3, 10  
O2 STB2=0.0 PCT 10  
CO2 STB2=0.0 PCT 11  
RSP=1.11(0.00) SEC  
Instrument response. Length of each signal processing loop.  
Time in parenthesis is standard deviation.  
VACUUM 5  
VAC=9.1 IN-HG-A  
PRES=29.9 IN-HG-A  
SAMP FL=700 CC/M  
PMT=762.5 MV  
Vacuum pressure.  
Sample pressure.  
Sample flow rate.  
Raw PMT reading.  
SAMPPRESS  
SAMPFLOW  
PMTDET  
NORMPMTDET  
NORM PMT=742.9 MV  
PMT reading normalized for temperature, pressure, auto-zero  
offset, but not range.  
UVDET  
UV LAMP=3457.6 MV  
UV STB=5.607 MV  
LAMP RATIO=100.0 %  
STR. LGT=0.1 PPB  
DRK PMT=19.6 MV  
DRK LMP=42.4 MV  
SLOPE=1.061  
UV lamp reading.  
STABILITYUV 6  
LAMPRATIO  
STRAYLIGHT  
DARKPMT  
UV lamp stability reading.  
UV lamp ratio of current reading divided by calibrated reading.  
Stray light offset.  
PMT dark offset.  
DARKLAMP  
SLOPE  
UV lamp dark offset.  
Slope for current range, computed during zero/span calibration.  
Offset for current range, computed during zero/span calibration.  
CO2 slope, computed during zero/span calibration.  
CO2 offset, computed during zero/span calibration.  
O2 slope, computed during zero/span calibration.  
O2 offset, computed during zero/span calibration.  
High voltage power supply output.  
OFFSET  
OFFSET=250.0 MV  
CO2 SLOPE=1.0000  
CO2 OFFSET=0.00 %  
O2 SLOPE=0.980  
CO2SLOPE 11  
CO2OFFSET 11  
O2SLOPE 10  
O2OFFSET 10  
HVPS  
O2 OFFSET=1.79 %  
HVPS=650 VOLTS  
RCELL ON=0.00 SEC  
RCELL TEMP=52.1 C  
O2 CELL TEMP=50.2 C  
BOX TEMP=35.5 C  
RCELLDUTY  
RCELLTEMP  
O2CELLTEMP 10  
BOXTEMP  
Reaction cell temperature control duty cycle.  
Reaction cell temperature.  
O2 sensor cell temperature.  
Internal chassis temperature.  
05036 Rev D  
A-23  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
TEST FUNCTION  
PMTTEMP  
IZSDUTY  
IZSTEMP  
SO2  
CO2 11  
O2 10  
MESSAGE TEXT  
PMT TEMP=7.0 C  
DESCRIPTION  
PMT temperature.  
IZS ON=0.00 SEC  
IZS TEMP=52.2 C  
SO2=261.4 PPB  
CO2=0.00 PCT  
O2=0.00 PCT  
IZS temperature control duty cycle.  
IZS temperature.  
SO2 concentration for current range.  
CO2 concentration.  
O2 concentration.  
TESTCHAN  
TEST=3721.1 MV  
Value output to TEST_OUTPUT analog output, selected with  
TEST_CHAN_ID variable.  
CLOCKTIME  
TIME=10:38:27  
Current instrument time of day clock.  
12  
XIN1  
AIN1=37.15 EU  
AIN2=37.15 EU  
AIN3=37.15 EU  
AIN4=37.15 EU  
AIN5=37.15 EU  
AIN6=37.15 EU  
AIN7=37.15 EU  
AIN8=37.15 EU  
External analog input 1 value in engineering units.  
External analog input 2 value in engineering units.  
External analog input 3 value in engineering units.  
External analog input 4 value in engineering units.  
External analog input 5 value in engineering units.  
External analog input 6 value in engineering units.  
External analog input 7 value in engineering units.  
External analog input 8 value in engineering units.  
12  
XIN2  
12  
XIN3  
12  
XIN4  
12  
XIN5  
12  
XIN6  
12  
XIN7  
12  
XIN8  
1
The name is used to request a message via the RS-232 interface, as in “T BOXTEMP”.  
2
Engineering software.  
Current instrument units.  
T100/M100E.  
3
4
5
T100H/M100EH.  
T100U/M100EU.  
Concentration alarm option.  
O2 option.  
6
7
10  
11  
CO2 option.  
A-24  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-4: Signal I/O Definitions  
Table A-4:  
T100/M100E Signal I/O Definitions  
SIGNAL NAME  
BIT OR CHANNEL  
NUMBER  
DESCRIPTION  
Internal inputs, U7, J108, pins 9–16 = bits 0–7, default I/O address 322 hex  
0–7 Spare  
AUX board digital outputs, default I2C address 30 hex  
ELEC_TEST 3  
0
1
2
3
1 = electrical test on  
0 = off  
OPTIC_TEST 3  
1 = optic test on  
0 = off  
DARK_TEST 3  
1 = dark test on  
0 = off  
PREAMP_RANGE_HI 3  
1 = select high preamp range  
0 = select low range  
Internal outputs, U8, J108, pins 18 = bits 07, default I/O address 322 hex  
ELEC_TEST  
0
1
2
1 = electrical test on  
0 = off  
OPTIC_TEST  
1 = optic test on  
0 = off  
PREAMP_RANGE_HI  
1 = select high preamp range  
0 = select low range  
Spare  
3–5  
6
I2C_RESET  
1 = reset I2C peripherals  
0 = normal  
I2C_DRV_RST  
7
0 = hardware reset 8584 chip  
1 = normal  
Control inputs, U11, J1004, pins 1–6 = bits 0–5, default I/O address 321 hex  
EXT_ZERO_CAL  
EXT_SPAN_CAL  
0
1
2
3
0 = go into zero calibration  
1 = exit zero calibration  
0 = go into span calibration  
1 = exit span calibration  
0 = go into low span calibration  
1 = exit low span calibration  
0 = go into background calibration  
1 = exit background calibration  
Spare  
EXT_LOW_SPAN 2, 6  
EXT_BKGND_CAL 4  
4–5  
6–7  
Always 1  
Control inputs, U14, J1006, pins 16 = bits 05, default I/O address 325 hex  
0–5  
6–7  
Spare  
Always 1  
05036 Rev D  
A-25  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SIGNAL NAME  
BIT OR CHANNEL  
NUMBER  
DESCRIPTION  
Control outputs, U17, J1008, pins 18 = bits 07, default I/O address 321 hex  
0–7 Spare  
Control outputs, U21, J1008, pins 912 = bits 03, default I/O address 325 hex  
0–3 Spare  
Alarm outputs, U21, J1009, pins 112 = bits 47, default I/O address 325 hex  
ST_SYSTEM_OK2,  
MB_RELAY_36 9  
4
5
6
7
1 = system OK  
0 = any alarm condition or in diagnostics mode  
Controlled by MODBUS coil register  
1 = conc. limit 1 exceeded  
ST_CONC_ALARM_1 12  
MB_RELAY_37 9  
,
,
0 = conc. OK  
Controlled by MODBUS coil register  
ST_CONC_ALARM_2 12  
MB_RELAY_38 9  
1 = conc. limit 2 exceeded  
0 = conc. OK  
Controlled by MODBUS coil register  
ST_HIGH_RANGE2 13  
MB_RELAY_39 9  
,
1 = high auto-range in use (mirrors ST_HIGH_RANGE  
status output)  
0 = low auto-range  
Controlled by MODBUS coil register  
A status outputs, U24, J1017, pins 18 = bits 07, default I/O address 323 hex  
ST_SYSTEM_OK  
ST_CONC_VALID  
0
0 = system OK  
1 = any alarm condition  
0 = conc. valid  
1
1 = warnings or other conditions that affect validity of  
concentration  
ST_HIGH_RANGE  
ST_ZERO_CAL  
ST_SPAN_CAL  
2
3
4
0 = high auto-range in use  
1 = low auto-range  
0 = in zero calibration  
1 = not in zero  
0 = in span calibration  
1 = not in span  
ST_DIAG_MODE  
5
6
0 = in diagnostic mode  
1 = not in diagnostic mode  
ST_LOW_SPAN_CAL 2, 6  
0 = in low span calibration  
1 = not in low span  
ST_BKGND_CAL 4  
7
0 = in background calibration  
1 = not in background calibration  
A-26  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
SIGNAL NAME  
BIT OR CHANNEL  
NUMBER  
DESCRIPTION  
B status outputs, U27, J1018, pins 18 = bits 07, default I/O address 324 hex  
ST_LAMP_ALARM  
ST_DARK_CAL_ALARM  
ST_FLOW_ALARM  
ST_PRESS_ALARM  
ST_TEMP_ALARM  
ST_HVPS_ALARM  
ST_CO2_CAL 11  
0
1
2
3
4
5
6
7
0 = lamp intensity low  
1 = lamp intensity OK  
0 = dark cal. warning  
1 = dark cal. OK  
0 = any flow alarm  
1 = all flows OK  
0 = any pressure alarm  
1 = all pressures OK  
0 = any temperature alarm  
1 = all temperatures OK  
0 = HVPS alarm  
1 = HVPS OK  
0 = in CO2 calibration  
1 = not in CO2 calibration  
0 = in O2 calibration  
1 = not in O2 calibration  
ST_O2_CAL 10  
Front panel I2C keyboard, default I2C address 4E hex  
MAINT_MODE  
LANG2_SELECT  
SAMPLE_LED  
CAL_LED  
5 (input)  
0 = maintenance mode  
1 = normal mode  
0 = select second language  
1 = select first language (English)  
0 = sample LED on  
1 = off  
6 (input)  
8 (output)  
9 (output)  
10 (output)  
14 (output)  
0 = cal. LED on  
1 = off  
FAULT_LED  
0 = fault LED on  
1 = off  
AUDIBLE_BEEPER  
0 = beeper on (for diagnostic testing only)  
1 = off  
05036 Rev D  
A-27  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SIGNAL NAME  
BIT OR CHANNEL  
NUMBER  
DESCRIPTION  
Relay board digital output (PCF8575), default I2C address 44 hex  
RELAY_WATCHDOG  
RCELL_HEATER  
0
Alternate between 0 and 1 at least every 5 seconds to keep  
relay board active  
0 = reaction cell heater on  
1 = off  
1
2–3  
4
Spare  
IZS_HEATER  
0 = IZS heater on  
1 = off  
O2_CELL_HEATER 10  
CAL_VALVE  
5
0 = O2 sensor cell heater on  
1 = off  
6
0 = let cal. gas in  
1 = let sample gas in  
0 = let span gas in  
1 = let zero gas in  
0 = let low span gas in  
1 = let sample gas in  
0 = open pressurized inlet valve  
1 = close valve  
SPAN_VALVE  
7
LOW_SPAN_VALVE 2, 6  
CYLINDER_VALVE 7  
ZERO_VALVE 2  
8
8
9
0 = let zero gas in  
1 = let sample gas in  
0 = close dark shutter  
1 = open  
DARK_SHUTTER  
10  
11–15  
Spare  
AUX board analog inputs, default I2C address 30 hex  
PMT_SIGNAL 3  
UVLAMP_SIGNAL 3  
NORM_PMT_SIGNAL 3  
PMT_TEMP 3  
HVPS_VOLTAGE 3  
PMT_DARK 3  
0 (register number)  
PMT detector  
1
2
3
4
5
6
7
8
9
10  
UV lamp intensity  
Normalized PMT detector  
PMT temperature  
HV power supply output  
PMT reading during dark cycles  
Lamp reading during dark cycles  
AGND reading during dark cycles  
AGND reading during light cycles  
VREF4096 reading during dark cycles  
VREF4096 reading during light cycles  
LAMP_DARK 3  
AGND_DARK 3  
AGND_LIGHT 3  
VREF_DARK 3  
VREF_LIGHT 3  
A-28  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
SIGNAL NAME  
BIT OR CHANNEL  
NUMBER  
DESCRIPTION  
Rear board primary MUX analog inputs  
PMT detector  
PMT_SIGNAL  
0
HVPS_VOLTAGE  
PMT_TEMP  
1
HV power supply output  
PMT temperature  
2
UVLAMP_SIGNAL  
3
UV lamp intensity  
4
Temperature MUX  
PHOTO_ABS 8  
O2_SENSOR 10  
5
Pre-amplified UV lamp intensity  
O2 concentration sensor  
Sample pressure  
6
SAMPLE_PRESSURE  
TEST_INPUT_8  
7
8
Diagnostic test input  
4.096V reference from MAX6241  
Sample flow rate  
REF_4096_MV  
9
SAMPLE_FLOW  
VACUUM_PRESSURE 2  
CO2_SENSOR 11  
10  
10  
11  
12–13  
14  
15  
Vacuum pressure  
CO2 concentration sensor  
Spare (thermocouple input?)  
DAC MUX  
REF_GND  
Ground reference  
Rear board temperature MUX analog inputs  
Internal box temperature  
Reaction cell temperature  
IZS temperature  
BOX_TEMP  
RCELL_TEMP  
IZS_TEMP  
0
1
2
3
4
5
6
7
Spare  
O2_CELL_TEMP 10  
TEMP_INPUT_5  
TEMP_INPUT_6  
O2 sensor cell temperature  
Diagnostic temperature input  
Diagnostic temperature input  
Spare  
Rear board DAC MUX analog inputs  
DAC channel 0 loopback  
DAC channel 1 loopback  
DAC channel 2 loopback  
DAC channel 3 loopback  
Rear board analog outputs  
DAC_CHAN_1  
DAC_CHAN_2  
DAC_CHAN_3  
DAC_CHAN_4  
0
1
2
3
CONC_OUT_1,  
DATA_OUT_1  
CONC_OUT_2,  
DATA_OUT_2  
CONC_OUT_3 10,  
DATA_OUT_3  
TEST_OUTPUT,  
DATA_OUT_4  
0
1
2
3
Concentration output #1 (SO2, range #1),  
Data output #1  
Concentration output #2 (SO2, range #2),  
Data output #2  
Concentration output #3 (CO2 or O2),  
Data output #3  
Test measurement output,  
Data output #4  
05036 Rev D  
A-29  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
SIGNAL NAME  
BIT OR CHANNEL  
NUMBER  
DESCRIPTION  
I2C analog output (AD5321), default I2C address 18 hex  
LAMP_POWER 5  
0
Lamp power (0–5V)  
1
Optional.  
2
T100H/M100EH.  
T100U/M100EU.  
3
4
Background concentration compensation option (6400E/6400EH).  
Engineering firmware only.  
Low span option.  
5
6
7
Pressurized IZS option.  
T100/M100E.  
8
9
MODBUS option.  
10  
11  
12  
13  
O2 option.  
CO2 option.  
Concentration alarm option.  
High auto range relay option  
A-30  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-5: DAS Functions  
Table A-5: DAS Trigger Events, Software Version G.4  
NAME  
DESCRIPTION  
ATIMER  
Automatic timer expired  
EXITZR  
EXITLS 2, 3  
Exit zero calibration mode  
Exit low span calibration mode  
Exit high span calibration mode  
Exit multi-point calibration mode  
Exit background calibration mode  
Exit O2 calibration mode  
EXITHS  
EXITMP  
EXITBK 5  
EXITO2 10  
SLPCHG  
CO2SLC 11  
O2SLPC 10  
EXITDG  
Slope and offset recalculated  
CO2 slope and offset recalculated  
O2 slope and offset recalculated  
Exit diagnostic mode  
PMTDTW  
UVLMPW  
DRKCLW  
PMT detector warning  
UV lamp warning  
Dark calibration warning  
CONCW1 4  
CONCW2 4  
RCTMPW  
O2TMPW 10  
IZTMPW 1  
PTEMPW  
SFLOWW  
SPRESW  
VPRESW 2  
BTEMPW  
Concentration limit 1 exceeded  
Concentration limit 2 exceeded  
Reaction cell temperature warning  
O2 sensor cell temperature warning  
IZS temperature warning  
PMT temperature warning  
Sample flow warning  
Sample pressure warning  
Vacuum pressure warning  
Box temperature warning  
HVPSW  
High voltage power supply warning  
1
T100/M100E.  
2
T100H/M100EH.  
3
Low span option.  
4
Concentration alarm option.  
5
Background concentration compensation option (6400E/6400EH).  
10  
11  
O2 option.  
CO2 option.  
A-31  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Table A-6: DAS Parameters  
NAME  
PMTDET  
PHABS 1  
DESCRIPTION  
UNITS  
PMT detector reading  
mV  
mV  
mV  
%
Pre-amplified UV lamp intensity reading  
UV lamp intensity reading  
UV lamp ratio of calibrated intensity  
PMT electrical offset  
UV lamp electrical offset  
SO2 slope for range #1  
SO2 slope for range #2  
SO2 offset for range #1  
SO2 offset for range #2  
CO2 slope  
UVDET  
LAMPR  
DRKPMT  
DARKUV  
SLOPE1  
SLOPE2  
OFSET1  
OFSET2  
CO2SLP 11  
CO2OFS 11  
O2SLPE 10  
O2OFST 10  
ZSCNC1  
mV  
mV  
mV  
mV  
CO2 offset  
%
O2 slope  
O2 offset  
%
SO2 concentration for range #1 during zero/span calibration, just before  
computing new slope and offset  
PPB,  
PPM 2  
PPB  
ZSCNC2  
SO2 concentration for range #2 during zero/span calibration, just before  
computing new slope and offset  
CO2ZSC 11  
O2ZSCN 10  
CO2 concentration during zero/span calibration, just before computing new  
slope and offset  
%
%
O2 concentration during zero/span calibration, just before computing new  
slope and offset  
CONC1  
SO2 concentration for range #1  
SO2 concentration for range #2  
SO2 concentration plus background concentration for range #1  
SO2 concentration plus background concentration for range #2  
Background concentration for range #1  
Background concentration for range #2  
SO2 concentration for range #1, with O2 correction  
SO2 concentration for range #2, with O2 correction  
CO2 concentration  
PPB  
PPB  
PPB  
PPB  
PPB  
PPB  
PPB  
PPB  
%
CONC2  
CNCBK1 4  
CNCBK2 4  
BKGND1 4  
BKGND2 4  
SO2CR1 12  
SO2CR2 12  
CO2CNC 11  
O2CONC 10  
STABIL  
O2 concentration  
%
Concentration stability #1  
PPB  
PPB  
mV  
STABL2 3  
STABUV 3  
STRLGT  
Concentration stability #2  
UV lamp stability  
Stray light reading  
PPB  
C  
RCTEMP  
O2TEMP 10  
IZSTMP 1  
PMTTMP  
SMPFLW  
SMPPRS  
Reaction cell temperature  
O2 sensor cell temperature  
C  
IZS temperature  
C  
PMT temperature  
C  
Sample flow  
cc/m  
“Hg  
Sample pressure  
A-32  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
NAME  
VACUUM 2  
DESCRIPTION  
UNITS  
Vacuum pressure  
“Hg  
C  
BOXTMP  
HVPS  
Internal box temperature  
High voltage power supply output  
Diagnostic test input (TEST_INPUT_8)  
Volts  
mV  
TEST8  
TEMP5  
Diagnostic temperature input (TEMP_INPUT_5)  
Diagnostic temperature input (TEMP_INPUT_6)  
Ground reference (REF_GND)  
4096 mV reference (REF_4096_MV)  
Channel 1 Analog In  
C  
TEMP6  
C  
REFGND  
RF4096  
XIN113  
mV  
mV  
XIN1SLPE13  
XIN1OFST13  
XIN213  
Channel 1 Analog In Slope  
Channel 1 Analog In Offset  
Channel 2 Analog In  
XIN2SLPE13  
XIN2OFST13  
XIN313  
Channel 2 Analog In Slope  
Channel 2 Analog In Offset  
Channel 3 Analog In  
XIN3SLPE13  
XIN3OFST13  
XIN413  
Channel 3 Analog In Slope  
Channel 3 Analog In Offset  
Channel 4 Analog In  
XIN4SLPE13  
XIN4OFST13  
XIN513  
Channel 4 Analog In Slope  
Channel 4 Analog In Offset  
Channel 5 Analog In  
XIN5SLPE13  
XIN5OFST13  
XIN613  
Channel 5 Analog In Slope  
Channel 5 Analog In Offset  
Channel 6 Analog In  
XIN6SLPE13  
XIN6OFST13  
XIN713  
Channel 6 Analog In Slope  
Channel 6 Analog In Offset  
Channel 7 Analog In  
XIN7SLPE13  
XIN7OFST13  
XIN813  
Channel 7 Analog In Slope  
Channel 7 Analog In Offset  
Channel 8 Analog In  
XIN8SLPE13  
XIN8OFST13  
AGNDDK 3  
AGNDLT 3  
RF4VDK 3  
RF4VLT 3  
Channel 8 Analog In Slope  
Channel 8 Analog In Offset  
AGND reading during dark cycles  
AGND reading during light cycles  
VREF4096 reading during dark cycles  
VREF4096 reading during light cycles  
mV  
mV  
mV  
mV  
A-33  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
NAME  
DESCRIPTION  
UNITS  
1
T100/M100E.  
2
T100H/M100EH.  
3
T100U/M100EU.  
4
Background concentration compensation option (6400E/6400EH).  
10  
11  
12  
13  
O2 option.  
CO2 option.  
SO2 with O2 correction option.  
Analog In option, T-Series only.  
A-34  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-6: Terminal Command Designators  
Table A-7:  
Terminal Command Designators  
COMMAND  
? [ID]  
ADDITIONAL COMMAND SYNTAX  
DESCRIPTION  
Display help screen and this list of commands  
Establish connection to instrument  
Terminate connection to instrument  
Display test(s)  
LOGON [ID]  
LOGOFF [ID]  
password  
SET ALL|name|hexmask  
LIST [ALL|name|hexmask] [NAMES|HEX]  
name  
Print test(s) to screen  
Print single test  
T [ID]  
CLEAR ALL|name|hexmask  
SET ALL|name|hexmask  
LIST [ALL|name|hexmask] [NAMES|HEX]  
name  
Disable test(s)  
Display warning(s)  
Print warning(s)  
W [ID]  
Clear single warning  
CLEAR ALL|name|hexmask  
ZERO|LOWSPAN|SPAN [1|2]  
ASEQ number  
Clear warning(s)  
Enter calibration mode  
Execute automatic sequence  
Compute new slope/offset  
Exit calibration mode  
C [ID]  
COMPUTE ZERO|SPAN  
EXIT  
ABORT  
Abort calibration sequence  
Print all I/O signals  
LIST  
name[=value]  
Examine or set I/O signal  
Print names of all diagnostic tests  
Execute diagnostic test  
Exit diagnostic test  
LIST NAMES  
ENTER name  
EXIT  
RESET [DATA] [CONFIG] [exitcode]  
PRINT ["name"] [SCRIPT]  
RECORDS ["name"]  
Reset instrument  
D [ID]  
Print DAS configuration  
Print number of DAS records  
REPORT ["name"] [RECORDS=number]  
[FROM=<start date>][TO=<end  
date>][VERBOSE|COMPACT|HEX] (Print  
DAS records)(date format:  
Print DAS records  
MM/DD/YYYY(or YY) [HH:MM:SS]  
CANCEL  
Halt printing DAS records  
Print setup variables  
LIST  
name[=value [warn_low [warn_high]]]  
Modify variable  
name="value"  
CONFIG  
Modify enumerated variable  
Print instrument configuration  
Enter/exit maintenance mode  
Print current instrument mode  
V [ID]  
MAINT ON|OFF  
MODE  
DASBEGIN [<data channel definitions>]  
DASEND  
Upload DAS configuration  
CHANNELBEGIN propertylist CHANNELEND Upload single DAS channel  
CHANNELDELETE ["name"] Delete DAS channels  
A-35  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
The command syntax follows the command type, separated by a space character. Strings in  
[brackets] are optional designators. The following key assignments also apply.  
TERMINAL KEY ASSIGNMENTS  
ESC  
CR (ENTER)  
Ctrl-C  
Abort line  
Execute command  
Switch to computer mode  
COMPUTER MODE KEY ASSIGNMENTS  
LF (line feed)  
Ctrl-T  
Execute command  
Switch to terminal mode  
A-36  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
APPENDIX A-7: MODBUS Register Map  
MODBUS  
Description  
Units  
Register Address  
(dec., 0-based)  
MODBUS Floating Point Input Registers  
(32-bit IEEE 754 format; read in high-word, low-word order; read-only)  
0
PMT detector reading  
mV  
mV  
%
2
UV lamp intensity reading  
UV lamp ratio of calibrated intensity  
PMT electrical offset  
4
6
mV  
mV  
8
UV lamp electrical offset  
SO2 slope for range #1  
SO2 slope for range #2  
SO2 offset for range #1  
SO2 offset for range #2  
10  
12  
14  
16  
18  
mV  
mV  
PPB,  
PPM 2  
PPB  
SO2 concentration for range #1 during zero/span  
calibration, just before computing new slope and offset  
20  
SO2 concentration for range #2 during zero/span  
calibration, just before computing new slope and offset  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
SO2 concentration for range #1  
SO2 concentration for range #2  
Concentration stability  
PPB  
PPB  
PPB  
PPB  
C  
Stray light reading  
Reaction cell temperature  
PMT temperature  
C  
Sample pressure  
“Hg  
C  
Internal box temperature  
High voltage power supply output  
Diagnostic test input (TEST_INPUT_8)  
Diagnostic temperature input (TEMP_INPUT_5)  
Diagnostic temperature input (TEMP_INPUT_6)  
Ground reference (REF_GND)  
4096 mV reference (REF_4096_MV)  
Sample flow  
Volts  
mV  
C  
C  
mV  
mV  
cc/m  
C  
1
2
1
IZS temperature  
Vacuum pressure  
“Hg  
mV  
%
Pre-amplified UV lamp intensity reading  
O2 concentration  
10  
10  
100  
102  
O2 concentration during zero/span calibration, just before  
computing new slope and offset  
%
10  
10  
10  
104  
106  
108  
O2 slope  
%
C  
O2 offset  
O2 sensor cell temperature  
A-37  
06807C DCN6650  
 
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
MODBUS  
Register Address  
(dec., 0-based)  
110 12  
Description  
Units  
SO2 concentration for range #1, with O2 correction  
PPB  
112 12  
130 14  
132 14  
134 14  
136 14  
138 14  
140 14  
142 14  
144 14  
146 14  
148 14  
150 14  
152 14  
154 14  
156 14  
158 14  
160 14  
162 14  
164 14  
166 14  
168 14  
170 14  
172 14  
174 14  
176 14  
SO2 concentration for range #2, with O2 correction  
External analog input 1 value  
External analog input 1 slope  
External analog input 1 offset  
External analog input 2 value  
External analog input 2 slope  
External analog input 2 offset  
External analog input 3 value  
External analog input 3 slope  
External analog input 3 offset  
External analog input 4 value  
External analog input 4 slope  
External analog input 4 offset  
External analog input 5 value  
External analog input 5 slope  
External analog input 5 offset  
External analog input 6 value  
External analog input 6 slope  
External analog input 6 offset  
External analog input 7 value  
External analog input 7 slope  
External analog input 7 offset  
External analog input 8 value  
External analog input 8 slope  
External analog input 8 offset  
CO2 concentration  
PPB  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
%
11  
200  
11  
202  
CO2 concentration during zero/span calibration, just before  
computing new slope and offset  
%
11  
204  
CO2 slope  
%
11  
206  
CO2 offset  
MODBUS Floating Point Holding Registers  
(32-bit IEEE 754 format; read/write in high-word, low-word order; read/write)  
0
Maps to SO2_SPAN1 variable; target conc. for range #1  
Maps to SO2_SPAN2 variable; target conc. for range #2  
Maps to O2_TARG_SPAN_CONC variable  
Conc. units  
2
Conc. units  
10  
11  
100  
200  
%
%
Maps to CO2_TARG_SPAN_CONC variable  
A-38  
05036 Rev D  
06807C DCN6650  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
APPENDIX A - Version Specific Software Documentation  
MODBUS  
Description  
Units  
Register Address  
(dec., 0-based)  
MODBUS Discrete Input Registers  
(single-bit; read-only)  
0
PMT detector warning  
1
UV detector warning  
2
Dark calibration warning  
3
Box temperature warning  
4
PMT temperature warning  
5
Reaction cell temperature warning  
Sample pressure warning  
6
7
HVPS warning  
8
System reset warning  
9
Rear board communication warning  
Relay board communication warning  
Front panel communication warning  
Analog calibration warning  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Dynamic zero warning  
Dynamic span warning  
Invalid concentration  
In zero calibration mode  
In span calibration mode  
In multi-point calibration mode  
System is OK (same meaning as SYSTEM_OK I/O signal)  
Sample flow warning  
1
2
2
3
3
IZS temperature warning  
In low span calibration mode  
Vacuum pressure warning  
SO2 concentration alarm limit #1 exceeded  
SO2 concentration alarm limit #2 exceeded  
In Hessen manual mode  
10  
100  
101  
102  
103  
200  
201  
202  
In O2 calibration mode  
10  
O2 cell temperature warning  
O2 concentration alarm limit #1 exceeded  
O2 concentration alarm limit #2 exceeded  
In CO2 calibration mode  
10+3  
10+3  
11  
11+3  
11+3  
CO2 concentration alarm limit #1 exceeded  
CO2 concentration alarm limit #2 exceeded  
A-39  
06807C DCN6650  
APPENDIX A - Version Specific Software Documentation  
Rev 1.0.3 (T-Series)/G6 (E-Series)  
Teledyne API - Models T100, 100E Series (05036F DCN6650)  
MODBUS  
Description  
Units  
Register Address  
(dec., 0-based)  
MODBUS Coil Registers  
(single-bit; read/write)  
0
Maps to relay output signal 36 (MB_RELAY_36 in signal I/O list)  
Maps to relay output signal 37 (MB_RELAY_37 in signal I/O list)  
Maps to relay output signal 38 (MB_RELAY_38 in signal I/O list)  
Maps to relay output signal 39 (MB_RELAY_39 in signal I/O list)  
Triggers zero calibration of range #1 (on enters cal.; off exits cal.)  
Triggers span calibration of range #1 (on enters cal.; off exits cal.)  
Triggers zero calibration of range #2 (on enters cal.; off exits cal.)  
Triggers span calibration of range #2 (on enters cal.; off exits cal.)  
1
2
3
13  
13  
13  
13  
20  
21  
22  
23  
1
M100E.  
M100EH.  
2
3
Concentration alarm option.  
O2 option.  
10  
11  
12  
13  
CO2 option.  
SO2 with O2 correction option.  
Set DYN_ZERO or DYN_SPAN variables to ON to enable calculating new slope or offset. Otherwise a  
calibration check is performed.  
14  
External analog input option.  
A-40  
05036 Rev D  
06807C DCN6650  
APPENDIX B - Spare Parts  
Use of replacement parts other than those supplied by API may result in non  
Note  
Note  
compliance with European standard EN 61010-1.  
Due to the dynamic nature of part numbers, please refer to the Website or call  
Sales for more recent updates to the Spare Parts list.  
06807C DCN6650  
B-1  
This page intentionally left blank.  
B-2  
06807C DCN6650  
T100 Spare Parts List  
PN 06845A DCN5809 08/18/2010  
1 of 3 page(s)  
Part Number  
000940100  
Description  
ORIFICE, 3 MIL, IZS  
000940400  
000940800  
002690000  
002700000  
002720000  
003290000  
005960000  
009690000  
009690100  
011630000  
012720100  
013140000  
013210000  
013390000  
013400000  
013420000  
013570000  
014080100  
014400100  
014750000  
016290000  
016300700  
037860000  
040010000  
040030100  
041620100  
041800400  
041920000  
042410200  
043420000  
043570000  
045230200  
046250000  
046260000  
048830000  
049310100  
050510200  
050610100  
050610200  
050610300  
050610400  
050630100  
051990000  
CD, ORIFICE, .004 BLUE  
ORIFICE, 012 MIL, RXCELL  
LENS, UV  
LENS, PMT  
FILTER, PMT OPTICAL, 330 NM  
ASSY, THERMISTOR  
AKIT, EXP, 6LBS ACT CHARCOAL (2 BT=1)  
AKIT, TFE FLTR ELEM (FL6 100=1) 47mm  
AKIT, TFE FLTR ELEM (FL6, 30=1) 47mm  
HVPS INSULATOR GASKET (KB)  
OPTION, NOx OPTICAL FILTER *  
ASSY, COOLER FAN (NOX/SOX)  
ASSY, VACUUM MANIFOLD  
ASSY, KICKER  
CD, PMT, SO2, (KB)  
ASSY, ROTARY SOLENOID  
ASSY, THERMISTOR (COOLER)  
ASSY, HVPS, SOX/NOX  
OPTION, ZERO AIR SCRUBBER  
AKIT, EXP KIT, IZS  
WINDOW, SAMPLE FILTER, 47MM (KB)  
ASSY, SAMPLE FILTER, 47MM, ANG BKT  
ORING, TFE RETAINER, SAMPLE FILTER  
ASSY, FAN REAR PANEL  
PCA, FLOW/PRESSURE  
ASSY, SO2 SENSOR (KB)  
PCA, PMT PREAMP, VR  
ASSY, THERMISTOR  
ASSY, PUMP, INT, E SERIES  
ASSY, HEATER/THERM, O2 SEN  
AKIT, EXPENDABLES  
PCA, RELAY CARD W/RELAYS, E SERIES, S/N'S >455  
ASSY, RXCELL HEATER/FUSE  
ASSY, THERMISTOR, RXCELL (KB)  
AKIT, EXP KIT, EXHAUST CLNSR, SILCA GEL  
PCA, TEC CONTROL, E SERIES  
PUMP, INT, 115/240V * (KB)  
CONFIGURATION PLUGS, 115V/60Hz  
CONFIGURATION PLUGS, 115V/50Hz  
CONFIGURATION PLUGS, 220-240V/50Hz  
CONFIGURATION PLUGS, 220-240V/60Hz  
PCA, M100E UV REF DETECTOR  
ASSY, SCRUBBER, INLINE EXHAUST, DISPOS  
06807C DCN6650  
B-3  
T100 Spare Parts List  
PN 06845A DCN5809 08/18/2010  
2 of 3 page(s)  
Part Number  
052660000  
Description  
ASSY, HEATER/THERMISTOR (IZS)  
055100200  
055560000  
055560100  
058021100  
061930000  
062420200  
066970000  
067240000  
067300000  
067300100  
ASSY, OPTION, PUMP, 240V *  
ASSY, VALVE, VA59 W/DIODE, 5" LEADS  
ASSY, VALVE, VA59 W/DIODE, 9" LEADS  
PCA,E-SERIES MOTHERBD, GEN 5 ICOP (ACCEPTS ACROSSER OR ICOP CPU)  
PCA, UV LAMP DRIVER, GEN-2 43mA *  
PCA, SER INTRFACE, ICOP CPU, E- (OPTION) (USE WITH ICOP CPU 062870000)  
PCA, INTRF. LCD TOUCH SCRN, F/P  
CPU, PC-104, VSX-6154E, ICOP *  
PCA, AUX-I/O BD, ETHERNET, ANALOG & USB  
PCA, AUX-I/O BOARD, ETHERNET  
067300200  
067900000  
068070000  
068220100  
068810000  
069500000  
072150000  
CN0000073  
CN0000458  
CN0000520  
FL0000001  
FL0000003  
FM0000004  
HW0000005  
HW0000020  
HW0000030  
HW0000031  
HW0000036  
HW0000101  
HW0000453  
HW0000685  
KIT000093  
KIT000095  
KIT000207  
KIT000219  
KIT000236  
KIT000253  
KIT000254  
OP0000030  
OP0000031  
OR0000001  
OR0000004  
OR0000006  
OR0000007  
OR0000015  
PCA, AUX-I/O BOARD, ETHERNET & USB  
LCD MODULE, W/TOUCHSCREEN  
MANUAL, OPERATORS, T100  
DOM, w/SOFTWARE, T100 *  
PCA, LVDS TRANSMITTER BOARD  
PCA, SERIAL & VIDEO INTERFACE BOARD  
ASSY. TOUCHSCREEN CONTROL MODULE  
POWER ENTRY, 120/60 (KB)  
CONNECTOR, REAR PANEL, 12 PIN  
CONNECTOR, REAR PANEL, 10 PIN  
FILTER, FLOW CONTROL  
FILTER, DFU (KB)  
FLOWMETER (KB)  
FOOT, CHASSIS  
SPRING, FLOW CONTROL  
ISOLATOR  
FERRULE, SHOCKMOUNT  
TFE TAPE, 1/4" (48 FT/ROLL)  
ISOLATOR  
SUPPORT, CIRCUIT BD, 3/16" ICOP  
LATCH, MAGNETIC, FRONT PANEL  
AKIT, REPLCMNT(3187)214NM FLTR (BF)  
AKIT, REPLACEMENT COOLER  
KIT, RELAY RETROFIT  
AKIT, 4-20MA CURRENT OUTPUT  
KIT, UV LAMP, w/ADAPTER (BIR)  
ASSY & TEST, SPARE PS37  
ASSY & TEST, SPARE PS38  
OXYGEN TRANSDUCER, PARAMAGNETIC  
WINDOW, QUARTZ, REF DETECTOR  
ORING, FLOW CONTROL/IZS  
ORING, OPTIC/CELL, CELL/TRAP  
ORING, CELL/PMT  
ORING, PMT/BARREL/CELL  
ORING, PMT FILTER  
B-4  
06807C DCN6650  
T100 Spare Parts List  
PN 06845A DCN5809 08/18/2010  
3 of 3 page(s)  
Part Number  
OR0000016  
Description  
ORING, UV LENS  
OR0000025  
OR0000027  
OR0000039  
OR0000046  
OR0000083  
OR0000084  
OR0000094  
PU0000022  
RL0000015  
SW0000006  
SW0000025  
SW0000059  
WR0000008  
ORING, ZERO AIR SCRUBBER  
ORING, COLD BLOCK/PMT HOUSING & HEATSINK  
ORING, QUARTZ WINDOW/REF DETECTOR  
ORING, PERMEATION OVEN  
ORING, PMT SIGNAL & OPTIC LED  
ORING, UV FILTER  
ORING, SAMPLE FILTER  
KIT, PUMP REBUILD  
RELAY, DPDT, (KB)  
SWITCH, THERMAL, 60 C  
SWITCH, POWER, CIRC BREAK, VDE/CE *  
PRESSURE SENSOR, 0-15 PSIA, ALL SEN  
POWER CORD, 10A(KB)  
06807C DCN6650  
B-5  
IZS, AKIT, EXPENDABLES  
T100/M100E  
(Reference 01475A)  
Part Number  
014750000  
Description  
AKIT, EXP KIT, M100A/M100E, IZS  
Part Number  
005960000  
Description  
AKIT, EXPEND, 6LBS ACT CHARCOAL  
006900000  
FL0000001  
FL0000003  
HW0000020  
OR0000001  
OR0000046  
RETAINER PAD CHARCOAL, SMALL, 1-3/4"  
FILTER, SS  
FILTER, DFU (KB)  
SPRING  
ORING, 2-006VT  
ORING, 2-019V  
B-6  
06807C DCN6650  
Appendix C  
Warranty/Repair  
Questionnaire  
T100, M100E  
(04796F DCN6611)  
CUSTOMER: _________________________________ PHONE: __________________________________________________  
CONTACT NAME: ____________________________ FAX NO. __________________________________________________  
SITE ADDRESS: _________________________________________________________________________________________  
MODEL SERIAL NO.: ______________________ FIRMWARE REVISION: ______________________________________  
1. ARE THERE ANY FAILURE MESSAGES? _______________________________________________________________  
________________________________________________________________________________________________________  
________________________________________________________________________________________________________  
2. PLEASE COMPLETE THE FOLLOWING TABLE: (NOTE: DEPENDING ON OPTIONS INSTALLED, NOT ALL TEST  
PARAMETERS BELOW WILL BE AVAILABLE IN YOUR INSTRUMENT)  
*IF OPTION IS INSTALLED  
Parameter  
RANGE  
Recorded Value  
PPB/PPM  
Acceptable Value  
50 PPB to 20 PPM  
1 PPB WITH ZERO AIR  
~ 2” < AMBIENT  
650 ± 10%  
STABIL  
PPB  
IN-HG-A  
cm3/MIN  
mV  
SAMP PRESS  
SAMPLE FLOW  
-20 TO 150 mV  
PMT SIGNAL WITH  
ZERO AIR  
mV  
PPB/PPM  
mV  
0-5000 mV  
0-20000 PPB  
0-5000 mV  
PMT SIGNAL AT  
SPAN GAS CONC  
NORM PMT AT  
SPAN GAS CONC  
PPB/PPM  
mV  
0-20000 PPB  
1000 TO 4800 mV  
30 TO 120%  
UV LAMP  
LAMP RATIO  
STR. LGT  
DARK PMT  
DARK LAMP  
SLOPE  
mV  
PPB  
100 PPB/ ZERO AIR  
-50 TO 200 mV  
-50 TO 200 mV  
1.0 ± 0.3  
mV  
mV  
OFFSET  
mV  
V
< 250 mV  
HVPS  
400 – 900  
50ºC ± 1  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
IZS TEMP*  
ETEST  
ºC  
ºC  
AMBIENT + ~ 5  
7ºC ± 2º CONSTANT  
50ºC ± 1  
ºC  
ºC  
mV  
mV  
2000 mV ± 1000  
2000 mV ± 1000  
OTEST  
Values are in the Signal I/O  
REF_4096_MV  
REF_GND  
mV  
mV  
4096mv±2mv and Must be Stable  
0± 0.5 and Must be Stable  
3. WHAT IS THE SAMPLE FLOW & SAMPLE PRESSURE W/SAMPLE INLET ON REAR OF MACHINE CAPPED?  
SAMPLE FLOW -  
CC  
SAMPLE PRESS -  
IN-HG-A  
TELEDYNE API CUSTOMER SERVICE  
PHONE: (858) 657-9800  
TOLL FREE: (800) 324-5190  
FAX: (858) 657-9816  
C-1  
06807C DCN6650  
Appendix C  
Warranty/Repair  
Questionnaire  
T100, M100E  
(04796F DCN6611)  
4. WHAT ARE THE FAILURE SYMPTOMS? ______________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
___________________________________________________________________________________________________  
5. IF POSSIBLE, PLEASE INCLUDE A PORTION OF A STRIP CHART PERTAINING TO THE PROBLEM. CIRCLE  
PERTINENT DATA.  
THANK YOU FOR PROVIDING THIS INFORMATION. YOUR ASSISTANCE ENABLES TELEDYNE API TO RESPOND  
FASTER TO THE PROBLEM THAT YOU ARE ENCOUNTERING.  
TELEDYNE API CUSTOMER SERVICE  
PHONE: (858) 657-9800  
TOLL FREE: (800) 324-5190  
FAX: (858) 657-9816  
C-2  
06807C DCN6650  
APPENDIX D – Wire List and Electronic Schematics  
06807C DCN6650  
D-1  
This page intentionally left blank.  
D-2  
06807C DCN6650  
Interconnect List, T100  
(Reference 0690801A)  
Revision Description  
Initial Release  
Checked  
KV  
Date  
9/3/10 5833  
DCN  
A
FROM  
TO  
Cable PN Signal  
0364901 CBL ASSY, AC POWER  
Assembly  
PN  
J/P Pin Assembly  
PN  
J/P  
Pin  
AC Line  
AC Neutral  
Power Grnd  
Power Grnd  
AC Line Switched  
AC Neu Switched  
Power Grnd  
AC Line Switched  
AC Neu Switched  
Power Grnd  
AC Line Switched  
AC Neu Switched  
Power Grnd  
Power Entry  
Power Entry  
Power Entry  
Power Entry  
Power Switch  
Power Switch  
Power Entry  
Power Switch  
Power Switch  
Power Entry  
Power Switch  
Power Switch  
Power Entry  
CN0000073  
CN0000073  
CN0000073  
CN0000073  
SW0000025  
SW0000025  
CN0000073  
SW0000051  
SW0000025  
CN0000073  
SW0000025  
SW0000025  
CN0000073  
L
N
Power Switch  
Power Switch  
Shield  
Chassis  
PS2 (+12)  
SW0000025  
SW0000025  
L
N
L
N
068020000  
068020000  
068020000  
068010000  
068010000  
068010000  
045230100  
045230100  
045230100  
SK2  
SK2  
SK2  
SK2  
SK2  
SK2  
J1  
1
3
2
1
3
2
1
3
2
PS2 (+12)  
PS2 (+12)  
L
N
PS1 (+5, ±15)  
PS1 (+5, ±15)  
PS1 (+5, ±15)  
Relay PCA  
Relay PCA  
Relay PCA  
L
N
J1  
J1  
03829  
CBL ASSY, DC POWER TO MOTHERBOARD  
DGND  
+5V  
AGND  
+15V  
AGND  
-15V  
+12V RET  
+12V  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
J7  
J7  
J7  
J7  
J7  
J7  
J7  
J7  
J7  
1
2
3
4
5
6
7
8
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
J15  
J15  
J15  
J15  
J15  
J15  
J15  
J15  
J15  
1
2
3
4
5
6
7
8
9
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Chassis Gnd  
10 Motherboard  
04023  
CBL, I2C, RELAY BOARD TO MOTHERBOARD  
058021100  
058021100  
058021100  
058021100  
045230100  
045230100  
045230100  
045230100  
I2C Serial Clock  
I2C Serial Data  
I2C Reset  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
P107  
P107  
P107  
P107  
3
5
2
6
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
P3  
P3  
P3  
P3  
1
2
4
5
I2C Shield  
0402602  
CBL, IZS HTR/TH, RXCELL & OB TH  
058021100  
058021100  
058021100  
058021100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
058021100  
058021100  
046260000  
046260000  
052660000  
052660000  
052660000  
052660000  
RTHA  
RTHB  
IZTA  
IZTB  
IZS-L  
IZS-N  
GND  
O2-L  
O2-N  
TS3  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Motherboard  
Motherboard  
P27  
P27  
P27  
P27  
P18  
P18  
P18  
P18  
P18  
P18  
P18  
P18  
P27  
P27  
7
RX Cell Thermistor  
2
1
2
3
4
1
14 RX Cell Thermistor  
IZS Therm/Htr  
13 IZS Therm/Htr  
6
1
2
IZS Therm/Htr  
IZS Therm/Htr  
11 Shield  
043420000  
043420000  
045230100  
045230100  
6
7
3
8
O2 Sensor Therm/Htr  
O2 Sensor Therm/Htr  
Relay PCA  
4
2
4
9
P18  
P18  
TS4  
N/C  
O2TA  
O2TB  
Relay PCA  
12 Shield  
4
11 O2 Sensor Therm/Htr  
043420000  
043420000  
O2 Sensor Therm/Htr  
3
1
0402701  
CBL, RX CELL HEATERS  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
046250000  
046250000  
046250000  
046250000  
046250000  
046250000  
045230100  
045230100  
RH1B  
RH2B  
RH1A  
RTS1  
RTS2  
RH2A  
Relay PCA  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
1
1
2
3
4
5
RX Cell Heaters  
RX Cell Heaters  
RX Cell Heaters  
RX Cell Heaters  
RX Cell Heaters  
RX Cell Heaters  
4
6
3
1
2
5
14  
9
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
13 Relay PCA  
8
P2  
P2  
Relay PCA  
04105  
CBL, KEYBD TO MTHBRD  
Kbd Interupt  
DGND  
SDA  
SCL  
Shld  
066970000  
066970000  
066970000  
066970000  
066970000  
7
2
5
6
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
J106  
J106  
J106  
J106  
J106  
1
8
2
6
5
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
J1  
J1  
J1  
J1  
J1  
10 Motherboard  
06807C DCN6650  
D-3  
Interconnect List, T100  
(Reference 0690801A)  
FROM  
TO  
Cable PN Signal  
Assembly  
PN  
J/P Pin Assembly  
PN  
J/P  
Pin  
04176 CBL, DC POWER TO RELAY BOARD  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
DGND  
+5V  
+15V  
AGND  
-15V  
+12V RET  
+12V  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
P8  
P8  
P8  
P8  
P8  
P8  
P8  
1
2
4
5
6
7
8
Power Supply Triple  
Power Supply Triple  
Power Supply Triple  
Power Supply Triple  
Power Supply Triple  
Power Supply Single  
Power Supply Single  
068010000  
068010000  
068010000  
068010000  
068010000  
068020000  
068020000  
J1  
J1  
J1  
J1  
J1  
J1  
J1  
3
1
6
4
5
3
1
04437  
CBL, PREAMPLIFIER TO TEC  
Preamp TEC drive VREF Preamp PCA  
Preamp TEC drive CTRL Preamp PCA  
Preamp TEC drive AGND Preamp PCA  
CBL, SHUTTER TO RELAY BOARD  
041800400  
041800400  
041800400  
J1  
J1  
J1  
1
2
3
TEC PCA  
TEC PCA  
TEC PCA  
049310100  
049310100  
049310100  
J3  
J3  
J3  
1
2
3
0448501  
04488  
+12V RET  
+12V  
013420000  
013420000  
045230100  
045230100  
Shutter  
Shutter  
1
2
Relay PCA  
Relay PCA  
P6  
P6  
1
2
CBL, MAIN HARNESS  
AGND  
-V15  
045230100  
045230100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
049210000  
049210000  
049210000  
049210000  
P1  
P1  
P1  
P1  
Relay PCA  
Relay PCA  
P5  
P5  
1
2
O2 Sensor  
O2 Sensor  
5
6
9
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Shield  
Lamp Driver PCA  
Lamp Driver PCA  
Lamp Driver PCA  
Lamp Driver PCA  
PMT Preamp PCA  
PMT Preamp PCA  
PMT Preamp PCA  
PMT Preamp PCA  
LCD Interface PCA  
LCD Interface PCA  
Fan  
P109 10 O2 Sensor  
O2 SIGNAL-  
O2 SIGNAL+  
PMT TEMP  
HVPS  
PMT SIGNAL+  
AGND  
AGND  
ETEST  
OTEST  
PHYSICAL RANGE  
AGND  
CH7  
CH2  
+15V  
-15V  
TEC +12V RET  
TEC +12V  
DISP RET  
+5 DISP  
EGND  
SDA  
SCL  
+12V  
+12RET  
DGND  
VCC  
+15V  
-15V  
DGND  
VCC  
+12RET  
+12V  
AGND  
P109  
P109  
P109  
P109  
P109  
7
1
4
5
6
O2 Sensor  
Shield  
PMT Preamp PCA  
PMT Preamp PCA  
PMT Preamp PCA  
10  
041800400  
041800400  
041800400  
041800400  
P6  
P6  
P6  
P6  
5
6
7
8
P109 12 PMT Preamp PCA  
P109 11 Shield  
P108  
041800400  
041800400  
041800400  
050630100  
050630100  
050630100  
050630100  
050630100  
049310100  
049310100  
066970000  
066970000  
066970000  
066970000  
066970000  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
P6  
P6  
P6  
P1  
P1  
P1  
P1  
P1  
8
PMT Preamp PCA  
1
2
4
4
1
5
2
3
2
1
8
1
4
5
6
8
7
1
2
4
6
1
2
7
8
3
4
6
5
4
3
12  
9
2
8
1
7
P108 16 PMT Preamp PCA  
P108  
P109  
P109  
P109  
P10  
P10  
P10  
P10  
P10  
7
9
3
2
4
6
7
8
1
2
PMT Preamp PCA  
UV Ref PCA  
UV Ref PCA  
UV Ref PCA  
UV Ref PCA  
UV Ref PCA  
TEC PCA  
TEC PCA  
P14  
P14  
P14  
P14  
P14  
P9  
P9  
P9  
P9  
P9  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
P10  
061930000  
061930000  
061930000  
061930000  
041800400  
041800400  
041800400  
041800400  
P1  
P1  
P1  
P1  
P5  
P5  
P5  
P5  
4
3
1
2
1
2
4
6
2
3
1
2
3
6
2
4
5
1
P9  
066970000 P14  
066970000 P14  
040010000  
P11  
P11  
P11  
P11  
P11  
P11  
P110  
P110  
P110  
P110  
P110  
P110  
P110  
P110  
P110  
P110  
040010000  
Fan  
040030100  
040030100  
040030100  
040030100  
040030100  
040030100  
P1  
P1  
P1  
P1  
P1  
P1  
Flow Module PCA  
Flow Module PCA  
Flow Module PCA  
Flow Module PCA  
Flow Module PCA  
Flow Module PCA  
Shield  
Shield  
Relay PCA  
Relay PCA  
Relay PCA  
+15V  
PRESS SIGNAL 1  
PRESS SIGNAL 2  
FLOW SIGNAL 1  
FLOW SIGNAL 2  
SHIELD  
SHIELD  
TC SIGNAL 1  
TC 1 SIGNAL DGND  
TC SIGNAL 2  
TC 2 SIGNAL DGND  
045230100  
045230100  
045230100  
045230100  
P17  
P17  
P17  
P17  
1
2
3
4
Relay PCA  
D-4  
06807C DCN6650  
Interconnect List, T100  
(Reference 0690801A)  
FROM  
TO  
Cable PN Signal  
04562 CBL, Z/S IZS VALVES  
Assembly  
PN  
J/P Pin Assembly  
PN  
J/P  
Pin  
Sample Valve +12V  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
055560000  
055560000  
055560100  
055560100  
055560100  
055560100  
055560000  
055560000  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
P4  
P4  
P4  
P4  
P4  
P4  
P4  
P4  
1
2
3
4
5
6
7
8
SMP/CAL  
SMP/CAL  
ZS/HI S  
ZS/HI S  
Lo Span  
Lo Span  
Zero  
1
2
1
2
1
2
1
2
Sample Valve +12V RET  
Zero/Span valve +12V  
Zero/Span valve +12V RE  
Low Span Valve +12V  
Low Span Valve +12V RE  
AutoZero Valve +12V  
AutoZero Valve +12V RET  
Zero  
04671  
CBL, MOTHERBOARD TO XMITTER BD (MULTIDROP OPTION  
GND  
RX0  
RTS0  
TX0  
CTS0  
RS-GND0  
RTS1  
CTS1/485-  
RX1  
TX1/485+  
RS-GND1  
RX1  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
2
Xmitter bd w/Multidrop 069500000  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
2
14  
13  
12  
11  
10  
8
6
9
7
5
14 Xmitter bd w/Multidrop 069500000  
13 Xmitter bd w/Multidrop 069500000  
12 Xmitter bd w/Multidrop 069500000  
11 Xmitter bd w/Multidrop 069500000  
10 Xmitter bd w/Multidrop 069500000  
8
6
9
7
5
9
7
5
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
9
7
5
TX1/485+  
RS-GND1  
06737  
CBL, I2C to AUX I/O (ANALOG IN OPTION  
ATX-  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100 J106  
058021100 J106  
058021100 J106  
058021100 J106  
058021100 J106  
058021100 J106  
058021100 J106  
1
2
3
4
5
6
8
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
067300000  
067300000  
067300000  
067300000  
067300000  
067300000  
067300000  
J2  
J2  
J2  
J2  
J2  
J2  
J2  
1
2
3
4
5
6
8
ATX+  
LED0  
ARX+  
ARX-  
LED0+  
LED1+  
06738  
CBL, CPU COM to AUX I/O (USB OPTION  
RXD  
DCD  
DTR  
TXD  
DSR  
GND  
CTS  
RTS  
RI  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
10  
COM1 10  
06738  
CBL, CPU COM to AUX I/O (MULTIDROP OPTION  
RXD  
DCD  
DTR  
TXD  
DSR  
GND  
CTS  
RTS  
RI  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
Xmitter bd w/Multidrop 069500000  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
10  
COM1 10  
06739  
CBL, CPU ETHERNET TO AUX I/O  
ATX-  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
067240000 LAN  
067240000 LAN  
067240000 LAN  
067240000 LAN  
067240000 LAN  
067240000 LAN  
067240000 LAN  
067240000 LAN  
1
2
3
4
5
6
7
8
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
Aux I/O PCA  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
J2  
J2  
J2  
J2  
J2  
J2  
J2  
J2  
1
2
3
4
5
6
7
8
ATX+  
LED0  
ARX+  
ARX-  
LED0+  
LED1  
LED1+  
06741  
CBL, CPU USB TO FRONT PANEL  
GND  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
067240000 USB  
067240000 USB  
067240000 USB  
067240000 USB  
8
6
4
2
066970000  
066970000  
066970000  
066970000  
J9  
J9  
J9  
J9  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LUSBD3+  
LUSBD3-  
VCC  
06807C DCN6650  
D-5  
Interconnect List, T100  
(Reference 0690801A)  
FROM  
TO  
Cable PN Signal  
Assembly  
PN  
J/P Pin Assembly  
Shield  
PN  
J/P  
Pin  
06746  
CBL, MB TO 06154 CPU  
GND  
RX0  
RTS0  
TX0  
CTS0  
RS-GND0  
RTS1  
CTS1/485-  
RX1  
TX1/485+  
RS-GND1  
RX1  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
058021100 P12  
2
14 CPU PCA  
13 CPU PCA  
12 CPU PCA  
11 CPU PCA  
10 CPU PCA  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
COM1  
COM1  
COM1  
COM1  
COM1  
COM2  
COM2  
COM2  
COM2  
COM2  
485  
1
8
4
7
6
8
7
1
4
6
1
2
3
8
6
9
7
5
9
7
5
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
TX1/485+  
RS-GND1  
CBL, COOLER FAN  
+12V RET  
+12V  
485  
485  
06910  
045230100 P12  
045230100 P12  
7
8
Cooler Fan  
Cooler Fan  
013140000  
013140000  
2
1
Relay PCA  
Relay PCA  
WR256  
CBL, XMITTER TO INTERFACE  
LCD Interface PCA 066970000  
J15  
Transmitter PCA  
068810000  
J1  
D-6  
06807C DCN6650  
06807C DCN6650  
D-7  
1
2
3
4
+15V  
R2  
1.1K  
S1  
D
C
B
A
VR2  
D
C
B
1
2
3
4
5
6
ASCX PRESSURE SENSOR  
2
3
C2  
1.0UF  
1
LM4040CIZ  
TP4 TP5  
S1/S4_OUT S2_OUT  
TP3  
S3_OUT  
TP2  
10V_REF  
TP1  
GND  
+15V  
J1  
3
2
1
6
5
4
S2  
1
2
3
4
5
6
ASCX PRESSURE SENSOR  
MINIFIT6  
+15V  
R1  
499  
S3  
VR1  
1
2
3
FLOW SENSOR  
FM_4  
2
3
C1  
1.0UF  
CN_647 X 3  
1
+15V  
LM4040CIZ  
S4  
C3  
1.0  
1
2
3
4
CON4  
SCH, PCA 04003, PRESS/FLOW, 'E' SERIES  
The information herein is the  
property of API and is  
APPROVALS  
DATE  
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
DRAWN  
A
CHECKED  
APPROVED  
SIZE DRAWING NO.  
REVISION  
B
04354  
D
LAST MOD.  
3-Dec-2007  
SHEET  
1
1
of  
1
2
3
4
D-8  
06807C DCN6650  
1
2
3
4
5
6
D
C
B
A
D
C
B
A
Name  
04524-p1.sch  
Name  
04524-p2.sch  
Name  
04524-p3.sch  
Title  
M100E/200E/400E RELAY PCA SCHEMATIC  
Size  
B
Number  
04522  
Revision  
D
0
0
Date:  
File:  
16-May-2007  
Sheet of  
N:\PCBMGR\04522cc\source\04522D.drdabwn By:  
6
1
2
3
4
5
Te  
Te  
06807C DCN6650  
D-9  
1
2
3
4
5
6
General Trace Width Requirements  
1. Vcc (+5V) and I2C VCC should be 15 mil  
2. Digitial grounds should be at least 20 mils  
3. +12V and +12V return should be 30 mils  
4. All AC lines (AC Line, AC Neutral, RELAY0 - 4, All signals on JP2) should be 30 mils wide, with 120 mil  
isolation/creepage distance around them  
5. Traces between J7 - J12 should be top and bottom and at least 140 mils.  
6. Traces to the test points can be as small as 10 mils.  
J1  
AC_Line  
AC_Neutral  
1
2
3
4
4 PIN  
RELAY0  
RELAY1  
D
C
B
A
D
C
B
A
VCC  
RN1  
330  
R1  
R2  
2.2K 2.2K  
RELAY0  
K1  
RELAY1  
K2  
RELAY2  
K3  
JP2  
Heater Config Jumper  
J2 16 PIN  
1
3
2
4
1
3
2
4
1
2
4
RELAY2  
COMMON0  
LOAD0  
TS0  
1
2
JP1  
I2C_Vcc  
RELAY0  
I2C_Vcc  
3
3
RELAY0  
1
3
5
7
2
4
6
8
+-  
+-  
+-  
SLD-RLY  
4
5
TS0  
TS1  
TS2  
COMMON1  
LOAD1  
TS1  
6
SLD-RLY  
SLD-RLY  
7
RELAY1  
RELAY2  
8
HEADER 4X2  
RELAY1  
9
10  
11  
12  
13  
14  
15  
16  
COMMON2  
LOAD2  
TS2  
D1  
WDOG  
I2C_Vcc  
D2  
D3  
D4  
D7  
D8  
D9  
D10  
AC_Neutral  
RED  
RELAY2  
U1  
YEL  
RL0  
YEL  
RL1  
YEL  
RL2  
GRN  
VA0  
GRN  
VA1  
GRN  
VA2  
GRN  
VA3  
C1  
0.1  
21  
2
4
A0  
P00  
P01  
P02  
5
A1  
A2  
3
6
+12V  
1
7
INT P03  
P04  
SCL P05  
SDA P06  
P07  
J3  
8
IO3  
IO4  
22  
23  
9
1
U2A  
10  
11  
13  
14  
2
3
4
5
F1  
F2  
1
2
4A PTC INTERRUPTOR  
4A PTC INTERRUPTOR  
P10  
P11  
15 IO10  
16 IO11  
17 IO12  
18 IO13  
19 IO14  
20 IO15  
P12  
CON5  
SN74HC04  
U2B  
P13  
DD4  
6A RECTIFIER  
DD1  
6A RECTIFIER  
P14  
VCC  
P15  
Q1  
VCC  
P16  
3
5
4
P17  
VALVE_POWER  
R3  
J4  
20K  
R5  
10K  
PCF8575  
VCC  
U5  
1
1
16  
15  
14  
10  
9
VALVE0  
2
IN 4  
IN 3  
OUT4  
U2C  
U4  
I2C_Vcc  
2
IRF7205  
JP4  
K
3
3
VALVE1  
4
ENABLE OUT 3  
6
6
IN 2  
IN 1  
OUT 2  
K
OUT 1  
5
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
7
VALVE2  
6
VBATT  
VOUT  
VCC  
RESET  
RESET'  
WDO'  
8
7
VALVE3  
8
U2D  
U2E  
GND  
CD IN'  
1
2
3
C3  
1
R6  
10K  
UDN2540B(16)  
BATT_ONCD OUT'  
LOW LINE' WDI  
OSC IN  
OSC SEL  
9
8
8 PIN  
VLV_ENAB  
PFO'  
PFI  
WTCDG OVR  
DD2  
+
C16  
+
+
15V TVS  
C5  
C6  
JP3  
R4  
1M  
D17  
DL4148  
C4  
10/16  
2000/25  
MAX693  
11  
10  
+
22 uF  
1 2  
10/16  
C2  
0.001  
find low ESR electroytic  
HEADER 1X2  
+12RET  
TP1 TP2 TP3 TP4 TP5 TP6 TP7  
+12V  
DGND +5V AGND +15V -15V +12RT  
DC PWR IN  
J5  
KEYBRD  
J7  
MTHR BRD  
SYNC DEMOD  
J10  
SPARE  
J11  
REV  
AUTH  
DATE  
J8  
J9  
J12  
J13  
B
CAC  
10/3/02  
CE MARK LINE VOLTAGE TRACE SPACING FIX  
Add alternate thermocouple connectors  
DGND  
VCC  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
1
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10  
1
1
1
2
2
2
2
3
4
5
6
7
8
9
D
RJ  
5/16/07  
AGND  
+15V  
3
3
3
4
4
4
AGND  
-15V  
5
5
5
6
6
6
+12RET  
+12V  
7
7
Title  
7
8
8
Schem, M100E/M200E/M400E Relay PCB  
8
EGND  
CHS_GND  
9
9
9
10  
10  
10  
10  
Size  
B
Number  
04524  
Revision  
10  
D
CON10THROUGH  
CON10THROUGH CON10THROUGH  
CON10THROUGH  
CON10THROUGH CON10THROUGH  
CON10THROUGH  
Printed documents are uncontrolled  
4
1
3
CON10THROUGH  
Date:  
File:  
16-May-2007  
Sheet of  
N:\PCBMGR\04522cc\source\04522D.drdabwn By:  
6
1
2
3
5
Te  
T
Te  
T
D-10  
06807C DCN6650  
1
2
3
4
5
6
Aux Relay Connector  
AC_Line  
JP6  
Heater Config Jumper  
J18 16 PIN  
1
COMMON3  
LOAD3  
TS3  
RELAY3  
RELAY4  
2
RELAY3  
3
RN2  
330  
RELAY4  
RELAY3  
D
C
B
A
D
C
B
A
4
5
6
TS3  
TS4  
COMMON4  
LOAD4  
TS4  
7
RELAY4  
8
RELAY3  
K4  
RELAY4  
9
10  
11  
12  
13  
14  
15  
16  
K5  
2
1
3
2
4
1
3
AC_Neutral  
I2C_Vcc  
4
I2C_Vcc  
+-  
+-  
JP7  
SLD-RLY  
SLD-RLY  
5
4
3
2
1
10  
9
8
JP7 Configuration  
7
6
D5  
D6  
D11  
D12  
GRN GRN  
D13  
D14  
D15  
D16  
GRN  
Standard Pumps  
60 Hz: 3-8  
50 Hz: 2-7, 5-10  
World Pumps  
PUMP  
J20  
YEL  
YEL  
GRN  
GRN  
GRN  
60Hz/100-115V: 3-8, 4-9, 2-7  
50Hz/100-115V: 3-8, 4-9, 2-7, 5-10  
60Hz/220-240V: 3-8, 1-6  
MINI-FIT 10  
1
2
3
4
VA5  
VA6  
VA7  
50Hz/220-240V: 3-8, 1-6, 5-10  
VA4  
TR0  
TR1  
RL3  
RL4  
AC_Neutral  
AC_Line  
IO3  
IO4  
IO10  
IO11  
IO12  
VCC  
U3A  
VALVE_POWER  
J6  
IO13  
1
2
U6  
1
1
16  
Valve4  
Valve5  
Valve6  
Valve7  
IN 4  
15  
OUT4  
2
2
3
6
7
8
IN 3  
K
3
14  
10  
9
SN74HC04  
U3D  
VLV_ENAB  
ENABLE OUT 3  
4
IN 2  
IN 1  
OUT 2  
K
5
6
OUT 1  
7
9
8
8
9
UDN2540B(16)  
10  
11  
12  
13  
14  
U3B  
U3F  
DD3  
15V TVS  
U3E  
U3C  
C17  
+
IO14  
3
4
11  
5
10  
6
22 uF  
CON14  
VCC  
+12RET  
IO15  
13  
12  
J19  
+12V  
+12V  
1
2
C13  
0.1  
VCC  
MINIFIT-2  
U2F  
Q2  
IRL3303  
13  
12  
J14  
1
2
MINIFIT-2  
Q4  
IRL3303  
Q3  
IRL3303  
Use 50 mil traces  
J21  
Title  
+12V  
1
2
Schem, M100E/M200E/M400E Relay PCB  
+12RET  
MINIFIT-2  
Size  
B
Number  
04524  
Revision  
D
Printed documents are uncontrolled  
2
3
Date:  
File:  
16-May-2007  
Sheet of  
N:\PCBMGR\04522cc\source\04522D.drdabwn By:  
6
1
2
3
4
5
Te  
T
Te  
T
06807C DCN6650  
D-11  
1
2
3
4
5
6
+15V  
R23  
C7  
TC1_KCOMPA  
TC1_JCOMPA  
D
C
B
A
D
C
B
A
6.81K  
0.1  
C12  
0.01  
-15V  
ZR3  
4.7V  
TC1_GND  
R21  
1k  
R19  
3M  
THERMOCOUPLE CONNECTOR  
U7A  
1
OMEGA  
J15  
3
J17  
F4  
1/8 AMP FUSE  
1
2
3
4
R13  
10K  
-
2
2
1
+
TC1_GNDTCA  
R25  
14K  
R7  
20K  
OPA2277  
F3  
1/8 AMP FUSE  
J15A  
C10  
0.1  
MICROFIT-4  
-15V  
ZR1  
3V  
-
R15  
10K  
2
1
TC1_JGAINA  
TC1_JGAINB  
TC1_GND  
ZR2  
3V  
+
0.01  
C8  
+15V  
THERMOCOUPLE CONNECTOR  
HAMITHERM  
R17  
5K  
1M  
R11  
U8  
TC1_5MVA  
TC1_5MVB  
3
1M  
TOUT  
R10  
TC1_JGAINA  
TC1_5MVA  
TC1_JCOMPA  
TC1_KCOMPA  
TC1_GNDTCA  
TC2_JGAINA  
TC2_5MVA  
TC2_JCOMPA  
TC2_KCOMPA  
TC2_GNDTCA  
TC1_JGAINB  
TC1_5MVB  
TC1_JCOMPB  
TC1_KCOMPB  
TC1_GNDTCB  
TC2_JGAINB  
TC2_5MVB  
JP5  
1
R9  
8
7
5
C9  
0.1  
MICROFIT-20  
J
K
2
3
10K  
4
TC PROGRAMMING SOCKET  
5
R-  
6
7
8
LT1025  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
* GROUNDED THERMOCOUPLES ARE EXPECTED BY DEFAULT  
No extra connections are necessary for grounded thermocouples  
* FOR UNGROUNDED THERMOCOUPLES  
short TCX_GNDTCA to TCX_GNDTCB  
* FOR K THERMOCOUPLE:  
1) Install CN0000156 for thermocouple connector  
2) Short only TCX_KCOMPA to TCX_KCOMPB on TC Programming Plug  
4) Leave TCX_JCOMPX pins of the plug unconnected  
* FOR J THERMOCOUPLE:  
1) Install CN0000155 for thermocouple connector  
2) Short TCX_JCOMPA to TCXJCOMPB on TC Programming Plug  
3) Short TCX_JGAINA to TCX_JGAINB on TC Programming Plug  
4) Leave TCX_KCOMPX pins of the plug unconnected  
* DEFAULT OUTPUT IS 10 mV PER DEG C  
-15V  
TC2_JCOMPB  
TC2_KCOMPB  
TC2_GNDTCB  
R20  
3M  
TC2_KCOMPA  
TC2_JCOMPA  
THERMOCOUPLE CONNECTOR  
OMEGA  
J16  
F6  
ZR4  
1/8 AMP FUSE  
-
2
U7B  
4.7V  
1
+
R24  
TC2_GNDTCA  
5
F5  
7
6.81K  
1/8 AMP FUSE  
R18  
6
ZR6  
3V  
R22  
ZR5  
R16  
TC2_GND  
10K  
J16A  
+15V  
10K  
R26  
14.3K  
R8  
20K  
OPA2277  
1k  
-
2
1
3V  
C15  
0.01  
+
C11  
0.01  
TC2_JGAINA  
TC2_JGAINB  
THERMOCOUPLE CONNECTOR  
HAMITHERM  
U10  
TC2_GND  
3
R28  
5K  
TOUT  
R14  
TC2_5MVA  
TC2_5MVB  
1M  
8
7
5
TC2_JCOMPB  
TC2_KCOMPB  
J
K
R12  
1M  
C14  
0.1  
R27  
10K  
R-  
LT1025  
Title  
Schem, M100E/M200E/M400E Relay PCB  
Size  
B
Number  
04524  
Revision  
D
Printed documents are uncontrolled  
3
3
Date:  
File:  
16-May-2007  
Sheet of  
N:\PCBMGR\04522cc\source\04522D.drdabwn By:  
6
1
2
3
4
5
Te  
Te  
D-12  
06807C DCN6650  
1
2
3
4
5
6
D
C
B
D
C
B
A
Interconnections  
04181H-1-m100e200e.sch  
preamp cktry  
04181H-2-m100e200e.SCH  
HVPS Cktry  
04181H-3-m100e200e.SCH  
A
Title  
M100E/200E PMT Preamp PCA  
Size  
B
Number  
04181  
Revision  
3
H
Date:  
File:  
10-May-2007  
Sheet 0 of  
N:\PCBMGR\04179cc\Source\RevG\04179.Dddrabwn By:  
1
2
3
4
5
6
06807C DCN6650  
D-13  
1
2
3
4
5
6
ON JP2:  
+15V  
PMT TEMPERATURE FEEDBACK  
FOR 100E/200E : SHORT PINS 2 &5 ONLY.  
FOR 200EU: SHORT PINS 3 & 6 and PINS 2 & 5.  
+12V_REF  
+15V  
JP2  
R28  
50K  
TH1  
FSV  
+15V  
1
D1  
R18  
SEE TABLE  
1
3
TJP1A  
2
3
4
5
6
6.2V ZENER  
6.2V  
2
OPTIC TEST  
TJP2A  
PMT TEMP CONFIG JUMPER  
D
C
B
A
R8  
150K  
D
C
B
U2A  
2
3
1
R27  
499  
LF353  
R6  
R35  
1.0K  
R15  
SEE TABLE  
+12V_REF  
TO TEC BOARD  
+
100K  
J2  
C23  
100 pF  
C26  
0.1 uF  
TP3  
S
*
C1  
+12V_REF  
1
2
3
VREF  
COOLER CONTROL  
AGND  
Q3  
J176  
N/I  
U3B  
G
R41  
300K  
D
R2  
51.1K  
R16  
100K  
6
5
3 PIN INLINE  
7
TP24  
*
TJP1A  
+15V  
THERMISTOR+  
RT1  
LF353  
R32  
499  
R7  
10K  
+5V_SYS  
TP23  
*
C6  
0.1 uF  
J3  
R1  
10K  
9
8
7
6
5
4
3
2
1
-15V  
COMP. 100E 200E 0200EU  
-----------------------------------------------  
PREAMP1  
LED+  
LED+  
D2  
11DQ05  
R18  
R15  
R10  
10K  
55K  
10K  
55K  
14K  
47K  
THERMISTOR+  
U3A  
2
R9  
U13  
8.09K 8.09K 10K  
HVPS  
1
PMT_TEMP  
3
R23  
+15V  
1
4
2
OPTIC_TEST  
2.0K  
b
LF353  
R10  
4.99K  
R37  
3.3K  
INLINE-9-RA  
SEE TABLE  
Q2  
74AHC1GU04  
PN2222  
TJP2A  
TP18 TP17  
TP25  
TP19 TP22 TP21  
*
TP20  
*
*
*
*
*
*
Signal Connector  
ELEC TEST  
J6  
ETEST  
1
OPTIC_TEST  
2
3
4
5
6
7
8
OPTIC TEST  
PREAMP RNG BIT2  
PREAMP RNG BIT1  
PMT TEMP  
HVPS VOLTAGE  
PMT SIGNAL  
HIGAIN  
PMT_TEMP  
HVPS VPMT  
MICROFIT-8  
J5  
T*P11  
1
2
3
4
5
6
7
8
L2  
+15V  
4.7 uH  
C21  
+
Power Connector  
C49  
0.68 uF  
100uF  
9
10  
TP15 TP14 TP13  
*
*
*
T*P16  
MINIFIT-10  
L1  
-15V  
4.7 uH  
+5V_SYS  
C16  
A
Printed documents are uncontrolled  
+
C46  
0.68 uF  
Title  
4.7uF, 16v  
100E/200E PMT PREAMP PCA Schematic  
Size  
B
Number  
04181  
Revision  
H
Date:  
File:  
10-May-2007  
Sheet 1 of  
3
N:\PCBMGR\04179cc\Source\RevG\04179.Dddrabwn By:  
1
2
3
4
5
6
D-14  
06807C DCN6650  
1
2
3
4
5
6
D
C
B
A
VPMT  
D
C
B
A
TP9  
*
U5  
U4  
8
7
9
10  
16  
15  
1
ETEST  
4
2
ETEST  
IN 4  
COM4  
IN 3  
COM3  
IN2  
COM2  
IN1  
COM1  
6
11  
14  
3
NC4  
NC3  
NC2  
NC1  
ETEST  
ETEST  
ETEST_SIGNAL  
PREAMP1  
74AHC1GU04  
U17  
PREAMP2  
HIGAIN  
+15V  
2
4
2
HIGAIN  
C31  
0.68 uF  
-15V  
HIGAIN  
1
DG444DY  
-15V  
74AHC1GU04  
+15V  
U9A  
+5V_SYS  
C29  
0.68 uF  
3
2
-15V  
LF353  
U16B  
R11  
C4  
100M  
6
5
+15V  
7
0.001 uF  
100  
R46  
TP1  
*
C2  
100 pF  
R48  
1K  
LF353, OPAMP  
R5  
R29  
1000M  
R12  
50k, POT  
N/I, SHORTED  
+15V  
TP8  
*
R50  
N/I  
R44  
SEE TABLE  
+15V  
10uF/25V  
PREAMP2  
C28  
C48  
GUARD RING  
PMTGND  
0.1 uF  
TP7  
*
0.68 uF  
6
J1  
1
C5  
U1  
R3  
2
3
SEE TABLE  
For 1.0 uF use C11.  
For 11 uF use C11A & C11B.  
U2B  
PMT Signal Connector  
PREAMP1  
6
5
2
4.99K  
7
R36  
250K  
COAX  
VREF  
R17  
OPA124  
SEE TABLE  
LF353, OPAMP  
C11A  
22uF/25V  
C11B  
22uF/25V  
+
+
TP2  
*
C3  
SEE TABLE  
1.0uF  
C11  
PMTGND  
1
U11  
C2710uF/25V  
-15V  
R43  
4.99K  
R4  
R13  
2
1
2
3
4
8
7
6
5
C47  
100  
FB  
AGND  
V-  
BUFOUT  
OUT  
N/I, POT  
0.68 uF  
-2.5V  
V+  
+12V_REF  
TP6  
0.68 uF  
C30  
*
3
DIV RATIO C OSC  
C36  
0.1 uF  
C9  
3900 pF, FILM  
-15V  
LTC1062CN8  
ETEST_SIGNAL  
R51  
SEE TABLE  
VERSION TABLE:  
0100 - M10XE  
0200 - M20XE  
R38  
N/I  
3
PMTGND  
R19  
2
NOTES:  
UNLESS OTHERWISE SPECIFIED  
CAPACITANCE IS IN MICROFARADS.  
RESISTORS ARE 1%, 1/4W.  
10K, POT  
COMP. 0100  
----------------------------------------------  
R17  
R44  
R51  
C3  
0200  
1.  
2.  
3.  
4.  
1
ELECT. TEST  
Printed documents are uncontrolled  
20.0K  
39.2K  
10K  
0.1 uF  
11.0  
10.0 ohms  
25.5K  
not installed  
0.012  
PMTGND  
Title  
M100E/200E PMT Preamp PCA Schematic  
RESISTANCE IS IN OHMS.  
Size  
B
Number  
04181  
Revision  
H
C11  
1.0  
THIS CIRCUIT MUST BE USED  
AS A MATCHED PAIR WITH THE  
TEC CONTROL CIRCUIT  
Sheet2 of  
3
Date:  
File:  
10-May-2007  
N:\PCBMGR\04179cc\Source\RevG\04179.Dddrabwn By:  
1
2
3
4
5
6
06807C DCN6650  
D-15  
1
2
3
4
5
6
HIGH VOLTAGE SUPPLY  
C45  
100pF  
TP4  
*
VREF  
D
C
B
A
+15V  
C51  
D
C
B
U22 LT1790AIS6-5  
R33  
C25  
4.99K  
6
4
OUT  
IN  
C7  
0.68 uF  
C32  
0.1uF/ 50V  
CA0000192  
+15V  
1.0uF/16V  
+5V_LOCAL  
CA0000199  
R42  
4.99K  
R20  
4.99K  
0.1 uF  
HVPS  
U16A  
2
U6  
8
3
2
4
5
7
Iout  
RN1  
C
R47  
1
9
9
8
7
6
4
3
2
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
3
10  
11  
12  
13  
14  
15  
16  
Vrf(-)  
Vrf(+)  
COMP  
TC  
3.92K  
LF353, OPAMP  
C20  
D7  
16V  
R49  
1.0K  
+
C22  
10uF/25V  
C33  
0.68 uF  
0.68 uF  
5
10  
+5V_LOCAL  
C24  
0.1 uF  
100Kx8  
Vee  
-15V  
DAC0802  
-15V  
U9B  
6
5
7
LF535  
1
2
4
8
1
2
4
8
S2  
S1  
+12V_REF  
+5V_LOCAL  
T*P10  
TP5  
*
U8  
U14  
IN  
ON/OFF NC  
3
1
1
3
5
4
+15V  
IN OUT  
OUT  
D6  
11DQ05  
LM78L12ACZ(3)  
+
+
LP2981IM5  
+
C50  
10uF/25V  
C34  
10uF/25V  
C15  
10uF/25V  
C14  
10uF/25V  
C42  
0.68 uF  
TP12  
*
1
3
-2.5V  
A
Printed documents are uncontrolled  
VR1  
LM336Z-2.5  
Title  
R24  
2k  
M100E/200E PMT PREAMP PCA Schematic  
Size  
B
Number  
04181  
Revision  
H
-15V  
Date:  
File:  
10-May-2007  
Sheet3 of  
3
N:\PCBMGR\04179cc\Source\RevG\04179.Dddrabwn By:  
1
2
3
4
5
6
D-16  
06807C DCN6650  
1
2
3
4
7
1
5
C
1
.
0
5
1
.
0
1
Note: Once detector is installed and calibrated, the board and  
detector are a matched set. Do not swap detectors.  
1
5
C
1
1
0
.
u
F
C
L
C
1
2
1
2
3
4
.
9
9
6
6
5
4
3
2
1
C
9
1K 2K 4K 8K 15.8K 34K  
1
2
4
0
.
2
u
F
1
5
C
5
1
0
1
0
0
C
0
3
.
1
u
C
7
1
CR1  
1
5
0
.
u
12V ZENER  
C
L
L
C
C
1
4
1
5
1
2
7
.
5
1
4
F
1
1
2
3
1
3
6
1
.
0
1
5
8
1
0
0
1
.
0
1
C
4
0
1
2
4
+
REF_OUT  
1
.
u
F
1
2
3
4
5
6
7
8
C
1
0
1
5
PHOTO_ABS  
1
5
8
1
u
1
5
1
5
C
F
3
2
9
100  
1
5
C
6
0
+
C
2
1
.
u
5
G
Rev A: Initial Release  
Rev B: 7/14/04 - Reversed adjust direction of pot  
Rev C: 3/15/05 - Adjusted noise filtering (C9, R10 & C5)  
M100E UV REF PCA, DUAL OUT  
The information herein is the  
property of API and is  
L
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
C
C
G
.
05064  
C
L
.
1
5
.
2
0
0
5
1
1
1
2
3
4
06807C DCN6650  
D-17  
1
2
3
4
5
6
2
2
L
G
1
1
2
3
4
5
6
7
8
1
2
6
2
.
1
1
2
3
4
0
4
6
6
9
9
3
3
2
2
5
L
6
1
9
6
2
0
4
0
4
.
.
L
G
2
.
7
2
5
VDRIVE  
1
2
4
C
4
3
4
4
2
7
+
C
2
4
.
1
0
0
0
.
1
u
F
C
3
1
4
1
4
8
F
0
.
0
1
u
F
1
1
4
1
4
8
8
7
2
2
0
5
6
VREF  
3
9
1
5
F
2
3
.
.
7
L
L
G
3
L
.
.
F
5
2
0
F
5
2
0
ACOMP  
3
.
9
C
4
1
4
1
4
1
4
8
2
3
VREF  
1
2
3
4
8
8
VLAMP  
G
6
5
7
6
5
C
u
0
1
u
7
1
4
2
3
C
L
1
F
2
1
5
3
2
1
8
G
2
1
R10  
75, 1/4W  
C
2
3
0
.
2
2
1
0
C
2
4
VDAC  
1
1
C
L
.
C
u
1
2
LAMP_FDBACK  
10k  
R8  
Q6  
NPN  
C
C
C
6
LAMP DRIVE POWER STAGE  
0
.
0
3
u
F
VCOMP  
LAMP POWER CONTROL DAC  
2
1
C
2
30K  
R22  
4
.
7
3
4
1
2
1
2
6
5
L
3
5
8
ACOMP  
1
2
7
4
.
7
VREF  
R25  
10K,1%  
R26  
50K  
1
0
4
R11  
47K  
CC STAGE AMPLIFIER FOR COMP  
1
1
2
D7  
7V  
C
5
0
F
0
.
1
u
F
PWM CONTROLLER  
3
1
2
5
7
6
1
9
6
C
F
1
2
R17  
47K  
1
1
4
8
1
0
4
.
LAMP CURRENT FEEDBACK AMPLIFIER  
2
4
9
1
3
1
C
G
C
2
C
2
4
9
1
5
0
1
F
.
C
R18  
40k  
0
0
1
0
1
1
1
1
1
8
1
1
1
1
9
2
3
2
C7  
0.01 uF  
0
1
1
C
C
1
1
C
1
2
F
1
2
1
6
C
9
u
G
3
.
9
0
.
1
F
0
.
0
0
4
7
u
F
0
.
1
u
F
C
.
C
Applies to PCAs: 04540 -01 and -02  
2
G
R27  
40K  
R28  
3
5
2
5
5.1K  
D1  
D2  
VCOMP  
1
2
2
9
3
7
0
1N914  
D9  
4
7v ZENER  
IPRIMARY  
1N914  
VREF  
1
0
0
4
R34  
40K  
.
C
G
C
L
6
5
HYSTERIESIS SET RESISTORS FOR PWM ERROR COMPARATOR  
3
8
7
1
3
C14  
1 uF  
5
6
9
1
1
1
3
0
0
0
3
3
3
C
C
C
C
C
C
C
C
C
2
3
4
.
7
.
.
.
.
u
5
3
1
.
C
C
C
1
3
7
1
C
C
1
4
.
u
C
4
3
9
L
3
5
8
R36  
20K  
ACOMP  
R35  
C16  
1
1
1
8
0
3
1
5
.
u
2
5
5
L
5
8
40K  
0.01 uF  
Error : LOGO.BMP file not found.  
R32  
40K  
The information herein is the  
property of API and is  
Sch, Burs ting UV Lamp Drv, M100E  
4
0
0
APPROVALS  
DRAWN  
DATE  
VSET  
3
C
0
4
6
9
2
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
R33  
40K  
C
C
5
1
0
3
CHECKED  
SIZE DRAWING NO.  
REVISION  
B
04693  
E
PRIMARY WINDING OVERCURRENT CUTOFF  
APPROVED  
LAST MOD.  
SHEET  
BLINK MULTIVIBRATOR  
2-J un-2004  
1
2
of  
1
2
3
4
5
6
D-18  
06807C DCN6650  
1
2
3
4
5
6
D
C
B
A
C18  
D10  
D
C
B
A
VDRIVE  
L1  
VDRIVE  
+12V  
+12V  
4.7 uF  
C21  
DIODE  
25 uH  
C20  
+
R47  
ACOMP_2  
C19  
N/I  
R42  
25.5K  
1000 uF  
100K  
R23  
R46  
50K  
4.7 uF  
5.1K  
100 uF  
C17  
+
U5  
VREF  
L2  
25 uH  
Q1  
R41  
1k  
PN3645_PNP  
R45  
5.1K  
4
2
1
VSWITCH  
SW  
FB  
C22  
N/I  
LAMP_FDBACK  
lamp_fdback  
1k  
R37  
VCOMP  
R43  
2k  
LT1268  
C15  
0.68 uF  
+12V  
+12V  
4
2
3
L
3
5
8
1
4
0
4
C
0
1
0
u
.
1
F
C
1
3
1
+12V  
0
.
u
F
C
8
0
.
1
u
F
Title  
u
L
.
1
0
0
Size  
B
Number  
Revision  
0
4
6
9
3
Date:  
File:  
2-Jun-2004  
Sheet of  
2
2
N:\PCBMGR\RELEASED\04691CC\source\D04ra6w93neB.dyd:b  
1
2
3
4
5
6
06807C DCN6650  
D-19  
1
2
3
4
5
6
+15  
+15  
+15  
+15  
+15  
+15  
+15  
D1  
R34 2.00K  
R3  
0.2  
R22  
49.9  
C12  
0.1uF  
J1  
C14  
C15  
R12  
49.9  
R17  
0.2  
R4  
0.2  
C4  
0.1uF  
C16  
C17  
+
+
1
2
0.1uF  
0.1uF  
D
C
B
A
U2V+  
D
C
B
A
R7 1.00K  
22uF  
22uF  
R18 1.00K  
R5 1.00K  
C2  
0.1uF  
R31 1.00K  
C9  
0.1uF  
R29 1.00K  
C8  
0.1uF  
R24 1.00K  
U1B  
6
5
R27  
7
U2B  
Q1  
MTB30P6V  
U2A  
U1V+  
6
5
2
7
1
6.04K  
Q3  
MTB30P6V  
Q2  
MTB30P6V  
3
LMC6464BIM  
LMC6464BIM  
LMC6464BIM  
U2V+  
Open for M200E  
Closed for M100A  
JUMPER  
JP1  
R13 20.0K  
R26 20.0K  
R25 20.0K  
+15  
C7  
0.1uF  
C13  
0.1uF  
C6  
TP4  
TP1  
TP2 TP3  
R16  
R15 2.00K  
20.0K  
0.1uF  
R35 0.2  
J3  
J2  
R1  
R2  
U2C  
10.0K  
10.0K  
3
2
1
1
2
U1A  
2
R14 10.0K  
1
9
R23 10.0K  
R36 0.2  
3
8
10  
LMC6464BIM  
LMC6464BIM  
U2V-  
U1V-  
U1C  
U1D  
U2D  
R28  
Q5  
NTB30N06L  
Q4  
NTB30N06L  
C18  
Q6  
NTB30N06L  
10  
9
12  
12  
13  
R33 1.00K  
R30 1.00K  
R32 1.00K  
8
14  
14  
13  
0.1uF  
6.04K  
LMC6464BIM  
LMC6464BIM  
LMC6464BIM  
C3  
0.1uF  
C1  
C10  
0.1uF  
0.1uF  
R10 1.00K  
R8 1.00K  
R20 1.00K  
R9  
0.2  
R6  
0.2  
R19  
0.2  
R21  
C11  
R11  
C5  
0.1uF  
49.9  
0.1uF  
49.9  
Title  
TEC Amplifier PCB  
Mounting Holes  
X1 X2 X3 X4 X5  
Size  
B
Number  
04932  
Revision  
C
Date:  
File:  
13-Jan-2005 Sheet1 of  
N:\PCBMGR\UNREL\04930PW\Protel\049D30r.aDwDnBBy: RJ  
1
1
2
3
4
5
6
D-20  
06807C DCN6650  
1
2
3
4
A
B
C
D
A
B
C
D
JP1  
1
2
3
4
5
6
7
8
R1  
Not Used  
R2  
22  
Title  
SCH, E-Series Analog Output Isolator, PCA 04467  
Size  
A
Number  
Revision  
B
04468  
Date:  
File:  
6/28/2004  
N:\PCBMGR\..\04468B.sch  
Sheet of  
Drawn By:  
1
2
3
4
06807C DCN6650  
D-21  
ꢈ6-ꢚ;ꢉꢁ  
ꢈ3&1145  
ꢘ8ꢈꢎ  
ꢈ6-6ꢚ&  
ꢘ8ꢈꢎ  
ꢈ6-6ꢚ&  
ꢈ3&1145  
6ꢚ7  
ꢈ6-6ꢚꢃ  
ꢈ3&1145  
6ꢚ7  
ꢈ6-6ꢚꢃ  
&ꢄ.&ꢀꢑ#,.1ꢕꢛ(  
ꢈ6-ꢚ;ꢉ  
ꢘ8ꢈꢎ  
ꢈ3&1145  
ꢘ8ꢈꢎ  
ꢈ3&1145  
6ꢚ7  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢂ  
6ꢚ7  
ꢈ3&1145  
ꢈ3&1145  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢂ  
&ꢄ.&ꢀꢑ#,41ꢕꢛ(  
ꢈ6-6ꢎ  
ꢈ3&1145  
ꢈ6-6ꢚꢃ  
ꢈ3&1145  
ꢈ6-6ꢚꢃ  
6ꢚꢓ  
ꢈ6-6ꢚ&  
6ꢚꢓ  
ꢈ6-6ꢚ&  
&ꢄ.&ꢀꢑ#,ꢅ1ꢕꢛ(  
ꢘ0ꢎꢘꢚꢓ6ꢎ  
ꢈ3&1145  
ꢉ0$,$;<  
ꢈꢆꢇ$;<  
ꢉ0$,  
ꢉ0$,$;<  
ꢈꢆꢇ$;<  
ꢉ0$,  
ꢈ3&1145  
ꢈꢆꢇ&9  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢁ9  
ꢘ8ꢈꢎ  
ꢈ3&1145  
ꢈꢆꢇ&9  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢁ9  
ꢘ8ꢈꢎ  
6ꢚ7  
6ꢚ7  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢂ  
ꢈꢆꢇꢂ  
&ꢄ.&ꢀꢑ#,ꢄ1ꢕꢛ(  
ꢆꢎꢆ6ꢎ  
6ꢚꢓ  
9*ꢓ0ꢆꢈ  
ꢈ3&1145  
9*,ꢓꢚ-  
ꢈꢆꢇ$;<  
ꢇ8-ꢆ6ꢎ  
6ꢚꢓ  
ꢉ0$,$;<  
6ꢚ7  
ꢉ0$,$;<  
6ꢚ7  
9*ꢓ0ꢆꢈ  
ꢈ3&1145  
ꢈ3&1145  
ꢘ8ꢈꢎ  
9ꢓ0*  
ꢉꢇꢅ  
ꢘ8ꢈꢎ  
9ꢓ0*  
ꢉꢇꢅ  
9*,ꢓꢚ-  
ꢈꢆꢇ$;<  
ꢇ8-ꢆ6ꢎ  
ꢉꢇ4  
ꢉꢇ.  
ꢉꢇ4  
ꢉꢇ.  
&ꢄ.&ꢀꢑ#,ꢃ1ꢕꢛ(  
ꢆꢎꢆꢚ;ꢉ  
6ꢚ7  
ꢈ3&1145  
ꢈꢆꢇ9  
ꢇꢘꢈꢆꢇꢆ  
ꢇꢘꢈꢆꢇ  
ꢈꢆꢇ&  
6ꢚ7  
ꢈꢆꢇ&9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢁ9  
7ꢓꢈꢆꢇ  
9ꢓ0*  
ꢈꢆꢇ&9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢁ9  
7ꢓꢈꢆꢇ  
9ꢓ0*  
ꢈ3&1145  
ꢈ3&1145  
ꢈꢆꢇ9  
ꢇꢘꢈꢆꢇꢆ  
ꢇꢘꢈꢆꢇ  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢀ  
ꢉꢇꢁ  
ꢉꢇꢁ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢂ  
ꢈꢆꢇꢂ  
ꢘ8ꢈꢆꢇ  
ꢘ8ꢈꢆꢇ  
&ꢄ.&ꢀꢑ#,ꢂ1ꢕꢛ(  
ꢕ(ꢍꢍꢋꢁ  
&ꢄ.&ꢀꢑ#,ꢁ1ꢕꢛ(  
,ꢇꢀ&ꢃ!6*  
ꢈ3&1145  
ꢈ3&1145  
6ꢚ7  
ꢈ3&1145  
6ꢚ7  
6ꢚꢓ  
ꢇ8-ꢆ6ꢎ  
9*ꢓ0ꢆꢈ  
ꢘ8ꢈꢎ  
ꢇ8-ꢆ6ꢎ  
9*ꢓ0ꢆꢈ  
ꢘ8ꢈꢎ  
6ꢚꢓ  
ꢘ8ꢈꢆꢇ  
ꢈ6-6ꢚꢂ  
ꢈ6-6ꢚꢃ  
ꢉ0$,  
ꢈꢆꢇ9  
7ꢓꢈꢆꢇ  
9*,ꢓꢚ-  
ꢘ8ꢈꢆꢇ  
ꢈ6-6ꢚꢂ  
ꢈ6-6ꢚꢃ  
ꢉ0$,  
ꢈꢆꢇ9  
7ꢓꢈꢆꢇ  
9*,ꢓꢚ-  
ꢈ6-6ꢚ&  
ꢈ6-6ꢚ&  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢁ  
ꢉꢇꢀ  
ꢉꢇꢀ  
ꢘ8ꢈꢎ  
ꢘ8ꢈꢎ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
&ꢄ.&ꢀꢑ#,ꢀ1ꢕꢛ(  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$ꢂ'"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-22  
06807C DCN6650  
/ꢀ&ꢀꢆ  
,ꢇꢀ&ꢃ  
;ꢁ  
4ꢃ8ꢇꢀꢄꢃ  
&  
 
ꢆꢁ  
&  
=&  
=ꢀ  
ꢈ6-6ꢚ&  
ꢈ6-6ꢚꢀ  
ꢚꢇ  
ꢂꢁ  
ꢂꢀ  
ꢂ&  
ꢁ'  
ꢁ.  
ꢁ4  
ꢁꢅ  
ꢁꢄ  
ꢁꢃ  
ꢁꢂ  
ꢁꢁ  
ꢁꢀ  
ꢁ&  
ꢀ'  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀ&  
'
ꢀꢀ  
-  
ꢆ&  
ꢇ>?  
;ꢅꢆ  
ꢆ&  
6ꢚ7  
=ꢁ  
ꢆꢀ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
'
.
4
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
ꢀ.  
ꢀ'  
ꢆꢀ  
=ꢂ  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢂ  
ꢈ6-6ꢚꢃ  
ꢉ0$,  
ꢈꢆꢇ9  
7ꢓꢈꢆꢇ  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
/ꢀ&.  
4ꢃ8ꢇꢂꢁ  
ꢆꢁ  
ꢆꢁ  
=ꢃ  
ꢈꢚ&  
ꢈꢚꢀ  
ꢈꢚꢁ  
ꢈꢚꢂ  
ꢈꢚꢃ  
ꢈꢚꢄ  
ꢈꢚꢅ  
ꢈꢚ4  
ꢈ6&  
ꢈ6ꢅ  
ꢆꢂ  
6ꢇ&&&&ꢀ'ꢀ  
ꢆꢂ  
=ꢄ  
ꢈ6ꢃ  
ꢆꢃ  
ꢆꢀ  
ꢆꢀ  
4
ꢉ,ꢁ  
ꢆꢃ  
=ꢅ  
;4  
4ꢃ8ꢇꢄꢃꢀ  
ꢀꢅ ꢃ4?A.  
ꢈ6ꢁ  
ꢈ6&  
ꢆꢄ  
'
.
;ꢄ&  
ꢆꢄ  
=4  
ꢆꢅ  
.
0  
'
;ꢄ&ꢇ  
ꢆꢅ  
=.  
ꢈꢚꢅ  
ꢈꢚꢃ  
ꢈꢚꢁ  
ꢈꢚ&  
ꢈ64  
ꢆ4  
ꢀ&  
ꢀ&  
ꢀꢀ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
-ꢀ  
-ꢁ  
4ꢃ8ꢇꢂꢁ  
ꢆ4  
='  
9*,ꢓꢚ-  
ꢇ8-ꢆ6ꢀ  
9*ꢓ0ꢆꢈ  
6ꢚꢓ ꢀ'  
ꢆ.  
ꢆ.  
=ꢀ&  
=ꢀꢀ  
=ꢀꢁ  
=ꢀꢂ  
=ꢀꢃ  
=ꢀꢄ  
4ꢃ8ꢇꢂꢁ  
ꢆ'  
4
ꢆ'  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
4
.
'
4ꢃ8ꢇꢂꢁ  
ꢆꢀ&  
ꢆꢀꢀ  
ꢆꢀꢁ  
ꢆꢀꢂ  
ꢆꢀꢃ  
ꢆꢀꢄ  
&<ꢂꢁꢇ  
&<ꢂꢁꢈ  
&<ꢂꢁ0  
&<ꢂꢁ*  
=ꢀ  
=ꢁ  
=ꢂ  
=ꢃ  
=ꢄ  
=ꢅ  
=4  
=.  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆ4  
ꢆ.  
4ꢃ8ꢇꢄ4ꢃ  
;.  
.
ꢆꢀ&  
ꢆꢀꢀ  
ꢆꢀꢁ  
ꢆꢀꢂ  
ꢆꢀꢃ  
ꢆꢀꢄ  
ꢆꢀꢅ  
ꢆꢀ4  
ꢆꢀ.  
ꢆꢀ'  
ꢆ0ꢀ  
 
 
'
ꢀꢀ  
ꢈ6ꢀ  
ꢈ6ꢄ  
;ꢄ&ꢈ  
ꢓꢁꢄ  
ꢀ.  
ꢀ'  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
-ꢀ  
-ꢁ  
ꢈ6ꢁ  
ꢈ6ꢂ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢈ6ꢂ  
ꢈ6ꢀ  
ꢈ6ꢃ  
ꢈꢚ4  
ꢈꢚꢄ  
ꢈꢚꢂ  
ꢈꢚꢀ  
9ꢇꢇ  
;ꢀ  
4ꢃ8ꢇꢅ..  
9ꢇꢇ  
9ꢇꢇ  
ꢈ6ꢄ  
ꢁ&  
ꢈ6ꢅ  
;ꢄ&ꢆ  
ꢀ.  
6ꢚ7   
ꢈ64  
&
4
ꢉ,ꢃꢃ  
ꢓꢄ'  
ꢃ4EF!ꢄG  
ꢉ,ꢄꢅ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢅ  
4ꢃ8ꢇꢂꢁ  
ꢆ0ꢀ  
ꢓꢁꢃ  
ꢀꢅ  
4
ꢀ'  
;ꢄꢀꢈ  
,H@  
ꢁ1ꢁ?F!ꢄG  
6ꢚꢇ8ꢓꢈ=  
ꢀꢁ  
ꢀꢂ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ&  
ꢀꢃ  
'
ꢀꢀ  
.
ꢉꢇꢀ  
/6ꢉꢚ#ꢁ#ꢈꢇꢄ*#ꢀ&ꢚ8$  
<ꢂ  
ꢈꢀ  
4
9ꢇꢇ  
ꢈꢁ  
ꢀꢁ  
699Sꢀꢀ2ꢀꢂ‘"%ꢂꢀꢃ9@A6VGUꢄ  
9ꢇꢇ  
ꢈꢘꢄ  
ꢈꢂ  
ꢆꢀ&  
699Sꢀꢀ2ꢀꢂ‘"!ꢂꢀꢃEQ ꢀDITU6GG@9ꢄ  
4ꢃ8ꢇ&.  
ꢆ&  
ꢆ4  
ꢆꢀ  
ꢆꢅ  
ꢆꢁ  
ꢆꢄ  
ꢆꢂ  
ꢆꢃ  
>0ꢈF!ꢓ0ꢈF!ꢕꢐꢋ!ꢀꢁ&ꢅ  
ꢈꢈ&&&&&ꢅꢀ  
ꢈꢃ  
ꢈꢄ  
ꢆꢀꢀ ꢀ4  
9ꢇꢇ  
,ꢊꢗꢕ!ꢀIꢁ!ꢕ(ꢖꢒꢋꢍ !ꢖꢗ!,ꢇ  
ꢆꢃ  
ꢆꢄ ꢀꢄ  
ꢆꢅ  
ꢆ4 ꢀꢂ  
ꢆ.  
ꢆ' ꢀꢀ  
/,4  
;ꢃ  
ꢀ&  
4ꢃ8ꢇ4ꢃ  
@
ꢈꢅ  
ꢆ0ꢀ  
'
.
,ꢓ0  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
ꢈ4  
ꢀꢀ  
ꢈ& ꢀꢁ  
ꢀꢂ  
0ꢀ  
ꢇ>?  
6ꢚꢇ80ꢇ?  
6ꢚ0ꢀ  
ꢓꢂ  
ꢁ1ꢁ?F!ꢄG  
ꢓꢃ  
@
9ꢇꢇ  
ꢉ,ꢅꢀꢉ,ꢅ&ꢉ,ꢄ'  
.
ꢇꢂ.  
ꢁ1ꢁ?F!ꢄG  
ꢇ>ꢓ  
/ꢀ&ꢀ  
,ꢇꢀ&ꢃ  
80ꢆꢈ0ꢓꢂ#ꢈ0*ꢆ;>ꢉ0ꢈ#ꢀ  
/ꢀ&4  
ꢀ&  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
-  
ꢈ-  
ꢘꢈꢆ  
9ꢇꢇ  
ꢘꢇ>  
ꢅꢃ  
ꢅꢂ  
ꢅꢁ  
ꢅꢀ  
ꢅ&  
ꢄ'  
ꢄ.  
ꢄ4  
ꢄꢅ  
ꢄꢄ  
ꢄꢃ  
ꢄꢂ  
ꢄꢁ  
ꢄꢀ  
ꢄ&  
ꢃ'  
ꢃ.  
ꢃ4  
ꢃꢅ  
ꢃꢄ  
ꢃꢃ  
ꢃꢂ  
ꢃꢁ  
ꢃꢀ  
ꢃ&  
ꢂ'  
ꢂ.  
ꢂ4  
ꢂꢅ  
ꢂꢄ  
ꢂꢃ  
ꢂꢂ  
ꢈ3&1145  
-  
-  
ꢚꢘꢇ  
Bꢄ9  
ꢆ>0  
ꢉꢇ  
/,ꢀ  
ꢓꢂ.  
;ꢃꢆ  
ꢘ=ꢘꢇ>?  
ꢁ1ꢁ?F!ꢄG  
;ꢂ'  
,ꢓ0  
ꢇ>?  
@
@
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
;ꢄꢀ  
;ꢀ&  
,ꢇ*.ꢄ.ꢃ  
9ꢇꢇ  
6ꢈꢇ#80ꢆꢈ0ꢓ  
9ꢇꢇ  
6  
ꢈꢀ  
ꢇ>?  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢆꢇ?  
ꢇ>ꢓ  
6  
ꢁ&  
6  
ꢈꢆꢇ?ꢁ  
6ꢓ@ꢂ  
ꢆ&  
6>60#ꢅ  
4ꢃ8ꢇ4ꢃ  
ꢆ&  
4ꢃꢆ8ꢇꢀ-;&ꢃ  
ꢀ'  
ꢉ,ꢅꢃ  
ꢉ,ꢅꢁ  
ꢓ0ꢘ0ꢉ  
ꢉ,ꢅꢂ  
/,ꢁ  
6ꢓ@ꢃ  
6ꢓ@ꢄ  
ꢀ4  
ꢀꢅ  
ꢀ.  
/ꢀ&ꢅ  
ꢇꢘ  
ꢓꢈ  
7ꢓ  
6ꢓ@ꢅ  
ꢕ(ꢖꢒꢋꢍ !#!ꢕꢌ ꢒ!ꢕꢊ ꢍ  
6ꢚꢓ  
6ꢚ7  
?
6  
ꢘꢈꢆ  
9ꢇꢇ  
4ꢃ8ꢇ&.  
ꢘꢇ>  
ꢘꢈꢆ  
4
.
6ꢓ@4  
ꢘ=ꢘꢇ>?  
ꢓ0*ꢓ0ꢘ8  
ꢈꢓ@ꢀ  
ꢈꢆꢇ?ꢀ  
ꢈꢓ@ꢂ  
ꢈꢆꢇ?ꢂ  
6ꢚꢓ  
9ꢇꢇ  
/,ꢂ 6ꢈꢇ#80ꢆꢈ0ꢓ  
/ꢀ&ꢁ  
ꢈ&  
4
.
'
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
&
4
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢘꢇ>  
ꢇꢂ'  
ꢓꢄ  
ꢃ4EF!ꢄG  
ꢈ-  
6ꢚꢓ  
6ꢚ7  
6ꢚꢓ  
6ꢚ7  
;ꢄꢆ 4ꢃ8ꢇ4ꢃ  
6ꢚ7  
ꢀ&  
ꢀ1ꢁ!ꢏ*F!ꢀ&9  
$6ꢇꢓꢚ*6ꢉ#.  
9ꢘꢘ  
/,ꢅ  
ꢘ$0$ꢓ  
ꢘ$0$7  
C?0=D  
Bꢀꢁ9  
,ꢓ0  
ꢇ>?  
@
6ꢈꢇ#80ꢆꢈ0ꢓ  
'
@
9ꢇꢇ  
.
;ꢄꢀꢆ  
Bꢀꢁ9  
ꢇ>ꢓ  
;ꢅꢇ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
ꢀ.  
ꢀ'  
ꢁ&  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢁ4  
ꢁ.  
ꢁ'  
ꢂ&  
ꢂꢀ  
ꢂꢁ  
ꢂꢂ  
ꢂꢃ  
ꢂꢄ  
ꢂꢅ  
ꢂ4  
ꢂ.  
ꢂ'  
ꢃ&  
ꢀ&  
0ꢈ<*ꢓ  
#ꢀꢁ9  
6ꢚ0ꢀ  
ꢓꢘ&&&&ꢄꢀꢃ  
ꢓꢂ'  
ꢃꢁꢁ!ꢀG  
4ꢃ8ꢇꢂꢁ  
ꢈꢓ@ꢁ  
#ꢄ9  
ꢘ8ꢈꢀ  
ꢓꢃ&  
ꢃꢁꢁ!ꢀG  
;ꢄ  
4ꢃ8ꢇ&.  
6ꢓ@'  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
'
.
,ꢓ0  
ꢇ>?  
@
@
ꢘ8ꢈꢀ  
Bꢄ9  
ꢓ0ꢘ0ꢉꢈꢓ9  
-  
ꢀꢁ  
ꢀꢂ  
ꢘ8ꢈꢆꢇ  
ꢘꢇ>  
ꢀꢀ  
ꢈꢘꢅ  
T8G ꢈꢘ4  
T96  
ꢇ>ꢓ  
;ꢅꢈ  
ꢈꢈ&&&&&.4  
4ꢃ8ꢇ4ꢃ  
7GV@  
4ꢃ8ꢇꢂꢁ  
7GV@  
6ꢇ&&&&ꢀ.ꢃ  
9ꢇꢇ  
/,ꢄ  
'
6ꢓ@ꢀ&  
6ꢓ@ꢀꢁ  
9ꢇꢇ  
.
;ꢄꢀꢇ  
6ꢈꢇ#80ꢆꢈ0ꢓ  
ꢀ&  
?
6  
;ꢂ  
/,ꢃ  
     !    !     !  #  (     
4ꢃ8ꢇ&.  
4ꢃ8ꢇꢂꢁ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢘꢈꢀꢁ  
ꢀꢂ  
ꢇꢂ  
4
ꢀꢀ  
7ꢈ6  
ꢓ0ꢘ0ꢉ  
;ꢁ&ꢈ  
ꢓꢅꢀ  
ꢃ4EF!ꢄG  
6ꢇ&&&&ꢀ'ꢀ  
>ꢉꢇꢅ''ꢇꢘ.  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
ꢖꢋꢍꢕ"  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
!ꢀD!ꢉ(ꢊꢕ!ꢕꢛ(ꢍꢐꢜꢋꢊꢛ!ꢊꢕ!)ꢖꢒ!,ꢇꢆ!&ꢄ.&ꢁ  
!ꢁD!ꢉ(ꢊꢕ!ꢕꢛ(ꢍꢐꢜꢋꢊꢛ!ꢊꢕ!)ꢖꢒ!,ꢇ !&ꢄ.&ꢀ  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
ꢂ$'ꢂ"  
7
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
 
!ꢖ)!  
'
,ꢇꢀ&ꢃꢇꢈ  
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
06807C DCN6650  
D-23  
/ꢀ&ꢀ&  
'!*0$ꢆ>0  
ꢓ<ꢀ  
ꢉ<ꢀ  
4
.
'
ꢓꢘ#-ꢈꢀ  
SYꢀs‚ꢁꢀ8‚€  
ꢓꢉꢘꢀ  
ꢇꢉꢘꢀ  
UYꢀs‚ꢁꢀ8‚€  
ꢈꢘꢁ  
ꢈꢘꢀ  
?
?
ꢉ9ꢀ  
ꢉ9!ꢆꢓꢓꢆ=  
ꢘ$ꢈꢆꢀꢄ>ꢇꢇ  
>0ꢈF!-ꢓF!ꢕꢐꢋ!ꢀꢁ&ꢅ  
>0ꢈF!ꢓ0ꢈ  
ꢓꢀꢀꢀ  
#ꢀꢄ9  
ꢓꢀꢀ  
ꢃ1'?F!ꢄG  
ꢓꢀꢁ  
ꢃ1'?F!ꢄG  
ꢀ&EF!ꢀG  
/ꢀ&ꢀꢂ  
/ꢀꢁ  
ꢈꢇ0 ꢕꢊ ꢍ ꢖ) ꢕ2ꢊꢋꢛ( ꢊꢕ ꢕꢊ ꢍ ꢋꢖ2ꢜꢒ ꢕ Jꢊꢗ ꢀF  
4
.
'
 
ꢓ<&  
ꢓ<ꢈ  
ꢉ<ꢈ  
 
ꢓꢉꢘ&  
ꢉ<&  
ꢇꢉꢘ&  
-  
 
ꢓꢘ#-ꢈ&  
ꢓ<ꢀ  
ꢓꢉꢘ  
ꢇꢉꢘ  
 
ꢓꢉꢘꢀ  
ꢉ<ꢀ  
4
4
.
ꢇꢉꢘꢀ  
.
ꢀꢀ  
'
ꢓꢘ#-ꢈꢀ  
'
'$  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
9U@  
ꢀ&  
ꢀꢁ  
9ꢇꢇ  
ꢓꢁ  
ꢓꢀꢂ  
ꢓꢀꢃ  
ꢓꢀ  
ꢁ1ꢁ?F!ꢄG  
6>60#ꢀꢁ  
ꢘ7ꢀ&&ꢀ  
ꢘ7!ꢘ>6ꢈ0#ꢃ,ꢈꢉ  
ꢉ9!ꢆꢓꢓꢆ=  
ꢁ1ꢁ?F!ꢄG  
9ꢇꢇ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢓꢀ&  
ꢉ9ꢁ  
ꢘ$ꢈꢆꢀꢄ>ꢇꢇ  
ꢈꢘꢃ  
ꢈꢘꢂ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
Lꢀ  
Lꢁ  
Lꢂ  
>0ꢈF!ꢓ0ꢈ  
UYꢀs‚ꢁꢀ8‚€!  
>0ꢈF!-ꢓꢀ  
$ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0  
SYꢀs‚ꢁꢀ8‚€!  
$ꢉꢅ  
$ꢉ4  
$ꢉ.  
$ꢉ'  
$ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0  
$ꢚ;ꢉ6-!8ꢚ>0  
ꢉ,ꢀꢂ ꢉ,ꢀꢃ  
ꢉ,ꢀꢄ ꢉ,ꢀꢅ ꢉ,ꢀ4 ꢉ,ꢀ.  
9ꢇꢇ  
Bꢀꢁ9 Bꢀꢁ9ꢓ0Bꢀꢄ9  
#ꢀꢄ9  
$ꢉꢀ  
$ꢉꢁ  
$ꢉꢂ  
$ꢉꢃ  
$ꢉꢄ  
$ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0  
$ꢚ;ꢉ6-!8ꢚ>0  
$ꢚ;ꢉ6-!8ꢚ>0  
/ꢀꢄ  
.
Bꢀꢁ9  
ꢉꢏꢐꢀꢑꢀꢄꢀꢒꢓꢔꢕꢆꢀꢖꢗ  
4
Bꢀꢁꢓ0ꢉ  
ꢈ-  
Bꢀꢄ9  
9ꢇꢇ  
#ꢀꢄ9  
ꢆ-  
Bꢄ9  
ꢆ-  
0-  
ꢇ8ꢆꢘ-  
'
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
ꢇꢁ  
ꢈꢀ  
ꢀ&  
ꢇꢀ  
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
B
B
ꢈꢈ4ꢀ  
$ꢚ>0<#ꢀ&  
$
ꢓꢘꢂꢃ&ꢇꢉ  
ꢈ'  
ꢈꢀF!ꢈ'!I!ꢓꢂꢄ!ꢐꢏꢕꢋ!ꢑꢍ  
!2ꢊꢋ(ꢊꢗ!ꢀK!ꢖ)!/ꢀꢄ  
$
ꢓꢘꢂꢃ&ꢇꢉ!  
ꢓꢂꢄ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
!
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-24  
06807C DCN6650  
 
!
"
#
$
%
6ꢘꢚ>ꢆꢉ0ꢈ!&#ꢁ&$ꢆ!ꢚ,ꢉ6ꢚꢆ>! ꢚꢆꢓꢈꢘ  
;ꢁ&  
ꢈꢆꢇ9  
6ꢚ7  
#
$
968W  
DPX  
%
ꢉ,ꢁꢅ  
W88  
!"  
U8!  
ꢈꢆꢇF!ꢀꢁ! 6ꢉ  
ꢇ $W  
4ꢃ8ꢇꢂꢁ  
;ꢁ&ꢇ  
;ꢂꢀ  
ꢇꢀ.  
#
"
!
 
$
9PVU WP6  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢇꢘꢈꢆꢇꢆ  
ꢈ&  
ꢇ>?  
%
&
'
8T  
9DI  
BI9  
W88  
ꢆ>ꢚ-!9ꢚ>ꢉꢆ-0!I!ꢇ;ꢓꢓ0ꢉ!ꢚ;ꢉ,;ꢉꢘ  
(
ꢈ;ꢆ>!ꢈꢆꢇ!ꢆꢀ  
/ꢀ&ꢁ&  
ꢇ>?  
'
ꢅ $W  
/ꢀ'  
!
ꢇ $W  
ꢚ,ꢆꢃꢁ44;ꢆ  
*0! 0ꢆꢈ  
8GF WP7  
>ꢀ  
>ꢁ  
>ꢂ  
>ꢃ  
>ꢄ  
>ꢅ  
>4  
>ꢀꢄ  
 ꢂ  
,ꢚꢉF!ꢈ6-6ꢉꢆ>  
ꢇꢀ&  
;ꢂꢄꢆ  
 
!
"
#
$
%
&
'
;ꢂꢁ  
6  
9
8
7
6
XS968  
9
8
7
6
!!  
!#  
!  
"
B
#
 
"
$
&
4ꢃ8ꢇꢂꢁ  
ꢘꢚꢇ?0ꢉ!;ꢂꢀ  
X  
7  
6BI9  
!
#
%
'
 
"
$
&
ꢂB  
 
ꢓꢅꢃ ꢁꢁ  
 
#
%
'
!
 B  
!
ꢓꢘ&&&&ꢃꢁꢀ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
!B  
"
    
 !  
 #  
 "  
6ꢈꢇ#.  
8T  
ꢈ&  
ꢇ>?  
;ꢂ&  
4ꢃ8ꢇꢄ4ꢃ  
T9D  
8GF  
T9P  
"B  
ꢉ9!ꢆꢓꢓꢆ=  
ꢉ9ꢃ  
 
ꢉ,ꢁ.  
ꢇꢀꢁ  
ꢅ $W  
*0! 0ꢆꢈ  
P8  
8GF  
    
/ꢁꢀ  
ꢉ0ꢓ$ >ꢚꢇ?#.  
!
#
%
'
 
"
$
&
!
#
%
'
 
ꢈ&  
!
"
#
$
%
&
'
(
 ( ꢇꢘꢈꢆꢇꢆ  
#
!
 
$
%
B
9  
9!  
9"  
9#  
9$  
9%  
9&  
9'  
R  
R!  
R"  
R#  
R$  
R%  
R&  
R'  
8T9686  
8T9687  
X!  
7!  
6BI9!  
"
$
&
ꢓꢀ'  
ꢓꢀ4  
ꢇꢁꢀ  
ꢀ&&&&!J*  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
 ' ꢇꢘꢓꢆ-0ꢀ  
&
;ꢂꢄ  
 & ꢇꢘꢈꢆꢇ  
W88  
"
#
ꢀ&EF!ꢀG  
ꢀ.14?  
6!  
 % ꢇꢘꢓꢆ-0ꢁ  
ꢚ,ꢆꢃꢁ44;ꢆ  
 $  
 #  
 "  
 !  
 $  
 ꢂ  
6ꢈꢇ#.  
ꢇ4  
968ꢂ  
968  
968!  
968"  
ST  
TC9I  
ꢉ9!ꢆꢓꢓꢆ=  
ꢉ9ꢂ  
ꢀ&&&&!J*  
/ꢁꢂ  
ꢇꢀꢄ  
ꢀ&&&&!J*  
 %  
(
!
#
%
'
 
"
$
&
W88  
W88  
!
#
%
'
 
ꢇꢀꢃ  
"
$
&
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
9bꢂꢆꢆ&d  
ꢇꢁ&  
ꢀ&&&&!J*  
9BI9  
ꢈꢆꢇ!ꢓꢆ-0!I!ꢚ**ꢘ0ꢉ!,ꢓꢚ-ꢓꢆ$  
6ꢈꢇ#.  
ꢇꢃ  
ꢀ&&&&!J*  
ꢈꢆꢇꢀ  
TC968  
 (  
 '  
!ꢂ  
 &  
 ꢂ  
(
B
;ꢂꢄꢇ  
/ꢁꢃ  
6"  
X"  
7"  
ꢓꢅꢄ ꢁꢁ  
ꢇꢄ  
ꢀ&&&&!J*  
'
!
#
%
'
 
"
$
&
!
#
%
'
 
#
6BI9"  
"
$
&
ꢇ $W  
ꢉ,ꢁꢀꢉ,ꢄ.  
ꢉ,ꢂꢁ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢚ,ꢆꢃꢁ44;ꢆ  
6ꢗꢕꢋꢜꢌꢌ!/ꢁꢃ!)ꢖꢒ  
!ꢃ#ꢁ&!ꢐꢆ!ꢖꢗ!ꢃꢋ(  
!ꢛ(ꢜꢗꢗꢍꢌ1  
ꢇꢀꢂ  
ꢀ&&&&!J*  
ꢚ,ꢆꢁꢁ44  
ꢓꢀꢄ ꢃ&?  
ꢇꢅ  
'
%
$
 !  
 "  
B
80ꢆꢈ0ꢓ#6ꢈꢇ.  
X#  
7#  
6BI9#  
ꢓꢁꢂ  
ꢓꢁꢁ  
ꢀ.14?  
ꢇꢀ'  
ꢀ&&&&!J*  
"
!
B
 #  
;ꢂꢄꢈ  
WS@A  
6ꢗꢕꢋꢜꢌꢌ!ꢓꢂꢅ!I  
!ꢓꢂ4!ꢊ)!ꢃ#ꢁ&!ꢐꢆ  
!ꢖꢗ!ꢃꢋ(!ꢛ(ꢜꢗꢗꢍꢌ  
!ꢗꢖꢋ!ꢏꢕꢍ 1  
ꢓꢂꢅ  
ꢓꢂ4  
&
&
 
&
#
ꢀ&EF!ꢀG  
;ꢁ'ꢆ  
6#  
#
ꢚ,ꢆꢃꢁ44;ꢆ  
ꢓꢘ&&&&ꢄꢀ&!  
ꢇꢄꢂ  
ꢓꢅꢂ  
ꢀ&EF!ꢀG  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢉ,ꢁ4  
W88  
/ꢁꢁ  
ꢇ.  
 
 
;ꢂꢂ  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢁ9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇ&9  
ꢅ $W  
ꢈꢆꢇF!ꢀꢁ! 6ꢉ  
ꢇ $W  
!
!
ꢇꢀ4  
#
"
!
 
$
%
&
'
"
9PVU WP6  
"
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢇꢘꢈꢆꢇ  
ꢈ&  
#
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
8T  
9DI  
BI9  
W88  
#
ꢈ;ꢆ>!ꢈꢆꢇ!ꢆꢁ  
$
$
ꢇ>?  
%
8GF WP7  
%
ꢚ,ꢆꢃꢁ44;ꢆ  
,ꢚꢉF!ꢈ6-6ꢉꢆ>  
ꢈꢆꢇ!ꢁ  
ꢇ'  
&
;ꢂꢃ  
6  
&
;ꢂꢅꢆ  
!"  
!!  
!#  
!  
"
B
#
'
ꢘꢚꢇ?0ꢉ!;ꢂꢂ  
X  
7  
6BI9  
'
ꢓꢅꢅ  
ꢁꢁ  
 
(
(
!
 ꢂ  
 ꢂ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
$6ꢇꢓꢚ*6ꢉ#ꢀ&  
    
 !  
 #  
 "  
8T  
ꢈ&  
ꢇ>?  
ꢇꢀꢀ  
T9D  
8GF  
T9P  
ꢉ,ꢁ'  
ꢅ $W  
ꢚ,ꢆꢃꢁ44;ꢆ  
968"W  
968!W  
968 W  
968ꢂW  
;ꢂꢅ  
W88  
#
!
 
$
%
B
#
X!  
7!  
6BI9!  
ꢓꢀꢅ  
ꢀ.14?  
ꢓꢀ.  
$
%
B
#
&
&
"
ꢀ&EF!ꢀG  
;ꢁ'  
6!  
ꢚ,ꢆꢁꢁ44  
 $  
 ꢂ  
ST  
TC9I  
ꢘ8ꢈꢆꢇ  
 %  
(
W88  
W88  
ꢇꢀꢅ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢈꢆꢇꢂ  
9BI9  
ꢈ4  
ꢚ,ꢆꢃꢁ44;ꢆ  
;ꢂꢅꢇ  
ꢈꢈ4ꢀ  
 (  
 '  
!ꢂ  
 &  
 ꢂ  
(
B
#
$
ꢓꢘꢂꢃ&ꢇꢉ  
ꢓꢘꢂꢃ&ꢇꢉ  
6"  
6#  
X"  
7"  
6BI9"  
ꢓꢅ4  
ꢁꢁ  
'
ꢈ.  
ꢉ,ꢂꢂ  
 !  
ꢚ,ꢆꢃꢁ44;ꢆ  
;ꢂꢅꢈ  
$
'
%
$
B
#
Uv‡yr  
Tv“r  
ꢀ.14?  
ꢓꢁ&  
X#  
7#  
6BI9#  
ꢓꢁꢀ  
ꢀ&EF!ꢀG  
 #  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢈ4!ꢜꢗ !ꢈ.  
&
 "  
$ꢏꢕꢋ!ꢑꢍ!ꢌꢖꢛꢜꢋꢍ  
2ꢊꢋ(ꢊꢗ!ꢀK!ꢖ)!;ꢂꢁ!I  
Iˆ€irꢁ  
ꢂ$'ꢂ"  
Sr‰v†v‚  
7
Pꢁphqꢀ7  
9h‡r)  
Avyr)  
  ꢅHh’ꢅ!ꢂꢂ(  
Turr‡ꢀ"ꢀꢀꢀ‚sꢀ  
'
I)cQ87HBScꢂ$'ꢂ SEꢅ@ꢅ†rꢁvr†ꢀH‚‡urꢁi9hhqBr7’r)ꢁh‡v‚ꢀ$cT‚ˆꢁprcꢂ$'ꢂ iꢆqqi  
%
 
!
"
#
$
06807C DCN6650  
D-25  
ꢇ84  
ꢇ8ꢅ  
ꢇ8ꢃ  
ꢇ8ꢂ  
ꢇ8ꢁ  
ꢇ8ꢀ  
ꢇ8ꢀꢃ  
ꢇ8ꢀꢂ  
ꢇ8ꢀꢁ  
ꢇ8ꢀꢀ  
ꢇ8'  
6ꢇ&&&&ꢀꢁ4  
ꢚ,ꢆꢁꢁ44;ꢆ  
ꢇ8.  
Bꢀꢄ9  
4
4
ꢓꢃꢂ  
ꢀ&&  
.
.
#ꢀꢄ9Bꢀꢄ9  
'
'
Bꢀꢄ9  
;ꢄꢂꢆ  
B
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢇꢃ&  
ꢇꢃꢀ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢉꢗꢉꢘꢓꢙꢄꢖꢗꢒꢏꢚ  
ꢇꢄꢄ  
ꢉ,ꢀ  
ꢉ,ꢂ  
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
9ꢓ0* ꢆ-  
/ꢀꢀ&  
/ꢀ&'  
ꢓꢘ&&&&ꢁ.ꢁ  
ꢀ1&?  
;ꢄꢁ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢁ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢁ  
ꢆꢈꢇ9ꢓ0*  
4
ꢓ4ꢅ  
ꢇ8ꢀ  
ꢇ8ꢁ  
ꢇ8ꢂ  
ꢇ8ꢃ  
ꢀ'  
ꢁ.  
B
#
6!ꢀ  
ꢚ;ꢉ  
B9ꢘꢘ  
#9ꢘꢘ  
-  
ꢓꢃꢄ!ꢊꢗ ꢏꢛꢍꢕ!ꢜꢗ  
!ꢖ))ꢕꢍꢋ!ꢊꢗ!ꢜꢗꢜꢌꢖM  
!ꢕꢊMꢗꢜꢌ!ꢋꢖ!Mꢊꢔꢍ!ꢜ  
!Nꢌꢊꢔꢍ!&N!)ꢖꢒ!ꢕꢍꢗꢕꢖꢒꢕ  
!2ꢊꢋ(!&!ꢖꢒ!ꢕꢌꢊM(ꢋꢌ%  
!ꢗꢍMꢜꢋꢊꢔꢍ!ꢖꢏꢋJꢏꢋ  
ꢁ&  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢀꢀ  
ꢀ&  
'
ꢀ$F!ꢀGF!ꢀꢁ&ꢅ!ꢇ86,  
ꢓꢃꢄ  
6!ꢁ  
ꢉꢇ4  
ꢇꢃꢁ &1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
6!ꢂ  
B
#
ꢚ,ꢆꢁꢁ44  
6!ꢃ  
;ꢄꢂ  
ꢁ4  
ꢀꢁ  
ꢉ0$,$;<  
6!ꢄ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢇꢃꢅ  
ꢇ8ꢅ  
ꢇ84  
ꢇ8.  
ꢇ8'  
ꢇꢃꢂ  
6!ꢅ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
9ꢇꢇ  
ꢚ,ꢆꢁꢁ44  
ꢇꢃꢃ  
;ꢄꢃ  
6!4  
9ꢇꢇ  
6!.  
Bꢀꢄ9  
ꢀꢂ  
ꢀ.  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
6!'  
9ꢓ0*  
 
 
0ꢀ  
ꢆꢂ  
#ꢀꢄ9  
;ꢄꢄ  
9ꢇꢇ  
1&ꢁꢁ!ꢏ*F!ꢄ&9  
ꢀ&&  
4
.
ꢀ.  
ꢇꢃꢄ  
B
6!ꢀ&  
6!ꢀꢀ  
6!ꢀꢁ  
6!ꢀꢂ  
6!ꢀꢃ  
6!ꢀꢄ  
6!ꢀꢅ  
ꢚ,!ꢚ;ꢉ  
ꢚ,#  
ꢇꢚ$,B  
ꢀ4  
ꢇ8ꢀꢀ  
ꢇ8ꢀꢁ  
ꢇ8ꢀꢂ  
ꢇ8ꢀꢃ  
ꢈ-ꢃꢃꢃꢈ=  
ꢓꢃꢅ  
ꢇꢚ$,#  
ꢀꢅ  
.
ꢀꢃ  
ꢀꢀ  
ꢘꢀ  
ꢘꢁ  
ꢘꢂ  
ꢘꢃ  
6  
6  
6  
6  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
9ꢇꢇ  
#9ꢘ  
-  
B9ꢘ  
ꢚ,B  
ꢆ-  
ꢀꢄ  
ꢀ1ꢀ?F!ꢄG  
ꢓꢃ4  
4
ꢀꢄ  
ꢀ&  
4
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
ꢄ96  
ꢀ&96  
-  
ꢀꢃ  
ꢆꢁ  
*ꢚ;ꢉ  
9ꢓ0*ꢇ>6,  
ꢓꢃ. ꢁ&&  
ꢈꢆꢇ$;<  
ꢆꢀ  
ꢀꢁ  
ꢆ&  
ꢀꢅ  
'
.
ꢇꢃ4  
9ꢇꢇ  
ꢀꢂ  
ꢆꢈꢅꢄꢁ?,  
ꢉ,ꢃ.  
Bꢀꢄ9  
ꢇꢄꢃ  
!$;<  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢀꢃ ꢀ&&?A.  
ꢀꢄ ꢀ&&?A.  
ꢓ44  
ꢓꢘ&&&&ꢁ.4  
#ꢀꢄ9  
ꢓꢃ4!ꢜꢗ !ꢓꢃ.!ꢒꢍ ꢏꢛꢍ!ꢋ(ꢍ!Mꢜꢊꢗ  
!)ꢖꢒ!ꢜꢗꢜꢌꢖM!ꢊꢗJꢏꢋꢕ!ꢑ%!ꢀGF!ꢕꢖ  
!ꢋ(ꢜꢋ!2ꢍ!ꢛꢜꢗ!ꢒꢍꢜ !ꢕꢌꢊM(ꢋꢌ%  
!ꢜꢑꢖꢔꢍ!)ꢏꢌꢌ!ꢕꢛꢜꢌꢍF!ꢋꢖ!Jꢒꢍꢔꢍꢗꢋ  
!ꢖꢔꢍꢒ)ꢌꢖ2!ꢖ)!ꢆꢈꢇ!ꢒꢍꢜ ꢊꢗM  
ꢀ1ꢁ!ꢏ*F!ꢅ1ꢂ9!ꢛꢍꢒꢜꢐꢊꢛ  
;ꢄꢅ  
#ꢀꢄ9  
B
ꢀ&1&?  
Bꢀꢄ9  
ꢇꢆꢀ.ꢄ  
ꢇꢃ.  
/6ꢉꢚ#ꢁ#ꢈꢇꢆꢄꢆ0#ꢃ1.$8L  
<ꢁ  
ꢓꢃ'  
ꢀ&&  
.
4
ꢇꢃ'  
 
 
 
96ꢀ  
,>ꢆꢇ0!ꢀ&&  
<ꢀ  
ꢓꢘ&&&&ꢃ&'  
!ꢚ8$  
Bꢀꢄ9  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢈꢀꢀ  
ꢆꢘ4&#&&  
9ꢓ0*  
9ꢚ;ꢉ   
ꢇꢀ&ꢃ  
ꢇꢄ&  
!ꢓ0ꢘ6ꢘꢉꢚꢓ!ꢆꢘ  
!ꢇ>ꢚꢘ0!ꢆꢘ  
!,ꢚꢘꢘ6 >0!ꢉꢚ  
!<ꢀ!ꢆꢈ!<ꢁ  
ꢀ1&!ꢏ*F!ꢁꢄ9  
$
ꢀ&&8#ꢃ1.$8L  
ꢓ4.  
&1ꢀꢄ!ꢏ*  
ꢉꢓ6$ -  
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
.ꢃ1ꢄ?  
9ꢇꢇ  
9ꢚ>ꢉꢆ-0!ꢓ0*  
6ꢇ&&&&ꢀꢄ.  
ꢈꢄ  
ꢈꢅ  
ꢈꢁ  
ꢓ4'  
B
ꢓ' ꢀ&&  
ꢁ&1&?  
;ꢅꢀꢆ  
#
ꢈꢈ&&&&&.ꢅ  
ꢓꢘ&&&&ꢁ4ꢄ  
ꢉ,ꢃ'  
>*ꢂꢄꢂ  
ꢇ8-ꢆ6ꢀ  
ꢉꢇꢅ  
ꢇꢀ&ꢄ  
ꢉ,ꢄ4  
;ꢄ'ꢆ  
4ꢃ8ꢇꢂꢁ  
6ꢚ7  
ꢈꢈ&&&&&.ꢄ!  
ꢈꢀ&  
&1ꢀꢄ!ꢏ*  
;ꢄ.  
4ꢃ8ꢇꢄ4ꢃ  
#ꢀꢄ9  
ꢆꢘ4&#&ꢃ  
ꢘ8ꢈꢀ  
ꢚ0  
ꢇ>?  
9ꢇꢇ  
ꢉꢇ.  
ꢓ.&  
ꢀꢀ  
ꢀ4  
ꢀ&&?A.  
ꢈꢃ  
ꢈꢂ  
ꢈ4  
4
.
'
ꢂ'  
ꢁ&1&?  
ꢉ60  
ꢂ.  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
@ꢀ  
4
.
ꢀ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
B
;ꢅꢀ  
#
ꢓꢈ$ =ꢉ0  
ꢉ60  
ꢂ4  
ꢀ.  
4
9ꢇꢇ  
ꢇꢄꢀ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
@ꢁ  
ꢉ60  
ꢂꢅ  
ꢓ.ꢀ  
ꢀ4  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
9ꢇꢇ  
@ꢂ  
-  
ꢉ60  
.ꢃ1ꢄ?  
ꢀꢅ  
;ꢄ4  
ꢂꢄ  
>*ꢂꢄꢂ  
ꢈꢀꢁ  
ꢆꢘ4&#&&  
@ꢃ  
4
*ꢓ0@  
ꢀꢄ  
ꢂꢃ  
ꢂꢂ  
ꢂꢁ  
ꢂꢀ  
ꢂ&  
ꢁ'  
@ꢄ  
ꢉ60  
ꢉ60  
ꢉ60  
ꢉ60  
ꢀꢃ  
@ꢅ  
ꢀꢂ  
ꢈ&  
ꢇꢄꢁ  
@4  
&
9ꢇꢇ6ꢚ  
-  
ꢓ.ꢁ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢀꢁ  
ꢘ0>ꢅ&  
'
<ꢊꢌꢊꢗA!ꢇ,>ꢈ  
@.  
ꢉꢈ6  
ꢉ$ꢘ  
ꢉꢇ?  
ꢀ&1&?  
ꢉꢈꢚ  
ꢘ0>ꢅ&  
ꢘ0>ꢅ&  
ꢈ3&1145  
#ꢀꢄ9  
ꢉ,ꢄ&  
;ꢅ&  
ꢉ,ꢄꢀ  
ꢉ,ꢄꢁ  
ꢉ,ꢄꢂ  
ꢉ,ꢄꢃ  
ꢉ,ꢄꢄ  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢀ  
9*,ꢓꢚ-  
6ꢚ7  
ꢚ0  
ꢇ>?  
ꢈꢀ  
;ꢄ'  
4ꢃ8ꢇꢂꢁ  
6ꢚꢓ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢘꢆ  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
9*ꢓ0ꢆꢈ  
ꢘꢇ  
ꢘꢉꢆꢓꢉ  
$ꢘ  
$6ꢈ  
>ꢘ  
ꢉꢊꢋꢌꢍ  
ꢘꢛ(ꢍꢐꢜꢋꢊꢛ!)ꢖꢒ!0!ꢘꢍꢒꢊꢍꢕ!-ꢄ!$ꢖꢋ(ꢍꢒꢑꢖꢜꢒ !,ꢇꢆ!,!&ꢄ.&ꢁ  
ꢘꢊꢙꢍ  
ꢎꢏꢐꢑꢍꢒ  
&ꢄ.&ꢂ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
.
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!#!!!ꢖ)!  
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-26  
06807C DCN6650  
Bꢀꢄ9  
Bꢄ9ꢆ  
;ꢁꢂ  
=,ꢆꢘꢘ!ꢇꢆ,ꢘ  
!$;ꢘꢉ! 0!76ꢉ86ꢁ  
!ꢀOꢁK!ꢚ*!ꢉ80  
!ꢓ0-;>ꢆꢉꢚꢓ  
!6,;ꢉOꢚ;ꢉ,;ꢉ  
!,6  
6ꢁ  
ꢚ;ꢉ  
Oꢚ**   
ꢇꢅ&  
B
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
>,ꢁ'.ꢀ6$ꢄ  
ꢇꢁ'  
ꢀ!ꢏ*  
ꢈ3&1145  
ꢉ80ꢓ$6ꢘꢉ0ꢓ  
<ꢉꢀ  
9ꢇꢇ Bꢀꢄ9  
6ꢗꢕꢋꢜꢌꢌ!<ꢉꢀ!Cꢋ(ꢒꢖꢏM(!(ꢖꢌꢍD  
;ꢃ.  
Bꢄ9ꢆ  
!ꢚꢓ!<ꢉꢁ!Cꢘ$ꢈDF!  
$ꢆ<ꢂ.ꢁꢇ7ꢁ  
ꢏꢋ!ꢗꢖꢋ!ꢖꢋ(1  
'
ꢀꢃ  
ꢀꢄ  
<ꢉꢁ  
ꢉ0$,$;<  
ꢚ;ꢉ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢀ  
/ꢁ4  
B9ꢘꢘ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢀ  
-  
9#  
6!ꢀ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢁ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢂ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢃ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢄ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢅ  
ꢉ80ꢓ$6ꢘꢉ0ꢓ4  
ꢉ80ꢓ$6ꢘꢉ0ꢓ.  
ꢉ80ꢓ$6ꢘꢉ0ꢓ  
6!ꢁ  
6!ꢂ  
6!ꢃ  
6!ꢄ  
6!ꢅ  
6!4  
6!.  
4
.
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀ&  
0ꢁ  
ꢆ&  
9ꢂ  
9  
9!  
ꢀ4  
ꢀꢅ  
ꢀ.  
ꢆꢀ  
ꢆꢁ  
ꢘ8ꢈꢁ  
ꢓꢘ  
4
7ꢓ  
.
ꢉ80ꢓ$6ꢘꢉ0ꢓ.  
'
ꢉ80ꢓ$6ꢘꢉ0ꢓ4  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢅ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢄ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢃ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢂ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢁ  
ꢀꢂ  
ꢉ0$,  
6ꢚ7  
ꢀꢀ  
;ꢄ'ꢈ  
ꢓ4ꢄ  
ꢓ4ꢃ  
ꢓ4ꢂ  
ꢓ4ꢁ  
ꢓ4ꢀ  
ꢓ4&  
ꢓꢅ'  
ꢓꢅ.  
ꢓꢘ&&&&ꢁ.4  
ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG  
4ꢃ8ꢇꢂꢁ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢃ  
Bꢀꢄ9#ꢀꢄ9  
;ꢃ'  
ꢀ. ꢀ?Aꢃ  
ꢀꢄ  
ꢀ&  
4
.
4
968ꢂW  
968 W  
968!W  
968"W  
ꢈꢆꢇ$;<  
ꢇꢂꢅ &1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢈꢀ  
ꢘꢀ  
ꢘꢁ  
ꢈꢆꢇ&9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢁ9  
ꢈꢆꢇꢂ9  
ꢀꢃ  
ꢀꢀ  
ꢈꢁ  
ꢈꢂ  
ꢘꢂ  
ꢀ&?  
ꢈꢃ  
ꢘꢃ  
ꢓꢂꢃ  
ꢀꢁ  
4
.
9ꢇꢇ  
9ꢇꢇ  
#9ꢘ  
-  
B9ꢘ  
6  
6  
6  
6  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢂ  
ꢀꢅ  
'
ꢀꢂ  
.
ꢇꢂ4  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢁꢀ ꢀ&?Aꢃ  
ꢈ-ꢃꢃꢃꢈ=  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
$
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
06807C DCN6650  
D-27  
ꢀꢓꢗꢚꢆꢓꢘꢄꢖꢗꢒꢏꢚ  
9ꢇꢇ  
 
ꢃ4&A.  
ꢉ,4  
 
ꢀꢄ?A.  
;ꢀꢀ  
;ꢀꢁ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀ'  
-ꢀ  
-ꢁ  
ꢈ6-6ꢚ&  
6ꢚꢓ  
/ꢀ&&ꢃ  
ꢀꢅ  
4
.
'
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆ4  
ꢆ.  
=ꢀ  
=ꢁ  
=ꢂ  
=ꢃ  
=ꢄ  
=ꢅ  
=4  
=.  
>ꢀ'  
>ꢁ&  
>ꢁꢀ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
@YU@SI6G  
8PIUSPG  
*0! 0ꢆꢈ  
>.  
>ꢁꢁ  
DI  
6
4
ꢀꢀ  
ꢀ&  
4
4ꢃ8ꢇꢄꢃꢀ  
.
ꢈ3&1145  
'
.
'
ꢀ&  
>'  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀ&  
ꢀ&&&&!J*  
0<ꢉBꢄ9ꢚ;ꢉ  
ꢀ&&&&!J*  
ꢓꢁ4 ꢓꢁ. ꢓꢁ'  
ꢀ&& ꢀ&& ꢀ&&  
ꢓꢂꢀ ꢓꢂꢁ ꢓꢂꢂ  
ꢀ&& ꢀ&& ꢀ&&  
ꢓꢁꢅ  
ꢓꢂ&  
ꢀ&&  
ꢀ&&  
ꢂꢂ&!J*F!ꢄ&9  
ꢂꢂ&!J*F!ꢄ&9  
ꢂꢂ&!J*F!ꢄ&9  
;ꢀꢂ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢂꢂ&!J*F!ꢄ&9  
ꢀꢅ  
>ꢁꢂ  
ꢀꢄ  
ꢀꢃ  
>ꢁꢃ  
>ꢁꢅ  
ꢀꢂ  
ꢀꢁ  
>ꢁꢄ  
*0! 0ꢆꢈ  
,ꢌꢜꢛꢍ!ꢋ(ꢍꢕꢍ!ꢋꢍꢒꢐꢊꢗꢜꢋꢊꢖꢗ!ꢒꢍꢕꢊꢕꢋꢖꢒꢕ!ꢜꢋ!ꢋ(ꢍ!ꢍꢗ !ꢖ)!ꢍꢜꢛ(! ꢜꢋꢜ  
!ꢌꢊꢗꢍ1!!0ꢜꢛ(! ꢜꢋꢜ!ꢌꢊꢗꢍ!  
ꢕ(ꢖꢏꢌ !ꢍ!ꢌꢜꢊ !ꢖꢏꢋ!ꢜꢕ!ꢜ! ꢜꢊꢕ%#ꢛ(ꢜꢊꢗF!ꢋ(ꢍ!ꢕꢊMꢗꢜꢌ!JꢜꢕꢕꢊꢗM  
!)ꢒꢖꢐ!ꢖꢗꢍ!6ꢇ!ꢋꢖ!ꢋ(ꢍ!ꢗꢍAꢋ1  
4
ꢀꢀ  
ꢀ&  
.
'
ꢀ&&&&!J*  
9ꢇꢇ  
ꢀ&&&&!J*  
 
ꢀꢄ?A.  
;ꢀꢃ  
 
ꢀ'  
-ꢀ  
-ꢁ  
ꢈ6-6ꢚꢃ  
6ꢚꢓ  
ꢂꢂ&Aꢃ  
4
.
'
ꢀ. ꢈ&  
ꢀ4 ꢈꢀ  
ꢀꢅ ꢈꢁ  
ꢀꢄ ꢈꢂ  
ꢀꢃ ꢈꢃ  
ꢀꢂ ꢈꢄ  
ꢀꢁ ꢈꢅ  
ꢀꢀ ꢈ4  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆ4  
ꢆ.  
=ꢀ  
=ꢁ  
=ꢂ  
=ꢃ  
=ꢄ  
=ꢅ  
=4  
=.  
;ꢀꢄ  
,ꢘꢁ4&ꢁ#ꢃ  
/ꢀ&&ꢅ  
ꢀꢅ  
@YU@SI6G  
>ꢁ.  
>ꢁ'  
>ꢂ&  
>ꢁ4  
ꢀꢄ  
ꢀꢃ  
8PIUSPG  
DI  
7
ꢈ3&1145  
ꢀꢂ  
ꢀꢁ  
4ꢃ8ꢇꢄꢃꢀ  
4
>ꢀꢀ  
*0! 0ꢆꢈ  
ꢀ&&&&!J*  
.
>ꢀ&  
4
ꢀꢀ  
ꢀ&  
'
ꢀ&  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀ&  
.
'
0<ꢉBꢄ9ꢚ;ꢉ  
ꢉꢊꢋꢌꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢘꢊꢙꢍ  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢀ&&&&!J*  
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
%
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-28  
06807C DCN6650  
9ꢇꢇ  
ꢑꢖꢙꢖꢚꢉꢘꢄꢄꢓꢏꢚꢒꢏꢚ  
ꢀ&  
ꢃ4&A.  
ꢇ.&  
;ꢁꢁ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢇ.ꢁ  
ꢀ&&&&!*  
ꢉ,ꢀ'  
ꢇ4'  
ꢇ.ꢀ  
TC9I  
ꢀꢄ  
ꢀꢃ  
ꢘ8ꢈꢀ  
;ꢁꢃ  
ꢀ&&&&!*  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢀ  
ꢀꢂ  
ꢀꢁ  
ꢈ6-6ꢚꢁ  
ꢚ0  
ꢇ>?  
>ꢃꢂ  
;ꢅ  
DPX  
>ꢃꢃ  
>ꢃꢄ  
9ꢂ  
9  
9!  
9"  
9#  
9$  
9%  
9&  
4
.
'
ꢀ'  
4
ꢀꢀ  
ꢀ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
4ꢃ8ꢇꢂꢁ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
*0! 0ꢆꢈ  
>ꢃꢅ  
.
'
/ꢀ&ꢀ4  
ꢉꢄ ꢚꢉꢚꢏ ꢄꢓꢏꢚꢒꢏꢚ  
;ꢁꢄ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
>ꢃ.  
>ꢃ'  
>ꢄ&  
ꢈ3&1145  
ꢀꢄ  
ꢀꢃ  
4
.
*0! 0ꢆꢈ  
'
>ꢃ4  
ꢀꢂ  
ꢀꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
4
ꢀꢀ  
ꢀ&  
ꢇ.ꢃ  
ꢇ.ꢅ  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀꢁ  
ꢀ&&&&!*  
>ꢀꢁ  
.
'
ꢇ.ꢂ  
ꢇ.ꢄ  
*0! 0ꢆꢈ  
ꢇꢁꢅ  
ꢇꢁ4  
ꢀ&&&&!*  
ꢓ0ꢘ0ꢉꢉꢆ >0!*;ꢘ0F!&1ꢂꢆF!ꢅ&9  
*ꢀ  
ꢈꢅ  
>ꢀꢂ  
*0! 0ꢆꢈ  
0<ꢉBꢄ9ꢚ;ꢉ  
9ꢇꢇ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢏꢐꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
&
!ꢖ)!  
'
"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀ1  ꢂ  
06807C DCN6650  
D-29  
9ꢇꢇ  
ꢑꢖꢙꢖꢚꢉꢘꢄꢄꢓꢏꢚꢒꢏꢚ  
4  
ꢄꢀ&A.  
;ꢀꢅ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢘ8ꢈꢀ  
ꢘ8ꢈꢀ  
;ꢀ4  
ꢀ&&&&!*  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢄ  
ꢀꢃ  
'
ꢈ6-6ꢚ&  
ꢚ0  
ꢇ>?  
.
ꢀꢀ  
;ꢄ'ꢇ  
ꢀ&&&&!*  
6ꢚ7  
ꢀ&  
ꢀꢂ  
ꢀꢁ  
>ꢂꢁ  
>ꢂꢂ  
>ꢂꢃ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
4ꢃ8ꢇꢂꢁ  
4
ꢀꢀ  
ꢀ&  
*0! 0ꢆꢈ  
>ꢂꢀ  
.
'
/ꢀ&&.  
;ꢀ.  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢈ3&1145  
>ꢂꢅ  
>ꢂ4  
>ꢂ.  
ꢀꢓꢗꢚꢆꢓꢘꢄꢓꢏꢚꢒꢏꢚ  
ꢀꢄ  
ꢀꢃ  
4
.
*0! 0ꢆꢈ  
'
>ꢂꢄ  
ꢀꢂ  
ꢀꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
4
ꢀꢀ  
ꢀ&  
ꢇꢚ0<ꢉꢓ0ꢉ  
.
'
ꢉ0ꢓ$ >ꢚꢇ?#ꢀꢃ  
*0! 0ꢆꢈ  
>ꢄ'  
9ꢇꢇ  
ꢕꢐꢚꢕꢆꢗꢉꢘꢄꢀꢓꢗꢗꢕꢀꢚꢓꢆ  
ꢓꢘꢑꢕꢆꢄ ꢖꢑꢕ  
ꢀ&&&&!*  
 
ꢄꢀ&A.  
ꢀ&&&&!*  
ꢀ&&&&!*  
;ꢀ'  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢘ8ꢈꢀ  
ꢀꢄ  
ꢀꢃ  
;ꢁꢀ  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢂ  
ꢀꢁ  
ꢈ6-6ꢚꢃ  
6ꢚ7  
ꢚ0  
ꢇ>?  
>ꢃ&  
>ꢃꢀ  
>ꢃꢁ  
ꢀꢀ  
;ꢁ&ꢆ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
4
ꢀꢀ  
ꢀ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
4ꢃ8ꢇꢂꢁ  
*0! 0ꢆꢈ  
>ꢂ'  
.
'
ꢀ&&&&!*  
Bꢀꢁ9  
ꢈꢁ  
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
?ꢀ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
ꢀ&&&&!*  
/ꢀ&&'  
@ꢀ  
ꢓꢄ.  
Bꢀꢁ9  
ꢈꢂ  
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
ꢁ1ꢁ?F!ꢄG  
?ꢁ  
@YU@SIG  
ꢘꢚꢁꢁꢁꢁ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
@ꢁ  
S@SꢀQI@G  
GSHꢀPVUQVUT  
4
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
.
?ꢂ  
'
ꢓꢅ  
Bꢀꢁ9  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢈꢃ  
ꢁ1ꢁ?F!ꢄG  
ꢘꢚꢁꢁꢁꢁ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
@ꢂ  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀꢁ  
Bꢀꢁ9  
ꢈꢄ  
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
?ꢃ  
ꢓ4  
ꢁ1ꢁ?F!ꢄG  
ꢘꢚꢁꢁꢁꢁ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
@ꢃ  
ꢓ.  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
ꢁ1ꢁ?F!ꢄG  
ꢘꢚꢁꢁꢁꢁ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢏꢐꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
Bꢀꢁ9ꢓ0ꢉ  
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
'
!ꢖ)!  
'
"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀ1  ꢃ  
D-30  
06807C DCN6650  
1
2
3
4
5
6
M
T
1
M
T
2
M
T
3
M
T
4
M
T
5
M
T
6
M
T
7
M
T
8
M
T
9
S
D
A
S
D
A
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
T
P
1
T
P
2
J
1
J
1
4
+
5
V
A
B
C
A
B
C
D
T
P
3
T
P
4
1
0
9
8
7
6
5
4
3
2
1
1
0
9
8
7
6
5
4
3
2
1
3
.
3
V
F
B
1
+
5
V
F
B
1
6
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
S
C
L
S
C
L
F
B
2
F
B
1
7
R
6
R
1
R
2
R
3
R
4
R
5
0
0
3
9
3
0
0
1
0
0
0
0
3
9
3
0
0
1
0
0
1
D
0
i
K
1
U
0
/
K
D
1
L
0
K
1
a
0
H
K
S
1
a
0
V
K
1
M
0
o
K
d
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
t
h
B
/
R
y
n
c
s
y
n
c
e
5
V
-
G
N
D
J
2
5
V
-
G
N
D
5
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
5
5
2
1
B
k
l
g
h
t
+
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
F
B
3
B
k
l
g
h
t
-
i
B
a
c
k
L
i
g
h
t
D
R
N
r
i
4
I
v
e
6
R
4
7
R
N
4
I
8
0
J
7
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
V
c
o
m
1
3
5
7
9
1
1
1
1
1
2
2
2
2
2
2
a
a
a
G
G
G
2
4
6
a
G
G
G
3
5
7
C
1
M
o
d
e
4
6
8
0
2
4
6
8
0
2
4
6
8
0
a
a
2
3
2
1
u
6
F
B
/
6
.
2
3
V
C
2
a
a
a
D
a
t
a
E
n
a
b
l
e
3
.
3
V
J
M
K
J
2
6
K
L
0
.
0
0
2
2
V
s
S
y
y
n
c
+
5
V
J
P
2
C
A
_
1
1
2
H
n
c
.
1
1
1
1
1
2
2
2
2
2
3
a R  
a R  
a R  
2
4
6
a R  
a R  
a R  
3
5
7
a
B
B
B
B
B
B
7
1
3
0
1
.
.
J
3
1
a B  
a B  
a B  
a B  
a B  
a B  
7
6
5
4
3
2
2
5
8
1
4
7
a
a
a
a
a
6
5
4
3
2
3
5
7
9
1
3
5
7
9
1
N
I
F
B
4
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
6
.
a B  
a B  
a B  
2
4
6
a B  
a B  
a B  
3
5
7
5
V
-
G
N
D
L
.
.
0
1
0
1
1
L
L
J
8
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
7
9
0
0
1
L
L
a
a
B
B
1
N
I
1
3
5
7
9
1
1
1
1
1
2
2
2
2
2
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
0
G
G
G
0
2
4
G
G
G
1
3
5
a
D
C
L
K
a
G
G
G
G
G
G
7
6
5
4
3
2
a G  
a G  
a G  
a G  
a G  
a G  
7
6
5
4
3
2
a
a
a
a
a
1
1
0
2
1
1
1
D
E
N
1
0
L
1
1
1
1
1
1
2
2
2
2
2
3
R
2
1
D
e
f
a
u
l
t
:
R
2
1
B
R 0  
R 2  
R 4  
R 1  
R 3  
R 5  
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
B
3
0
B
-
P
H
D
S
S
(
L
F
)
(
S
N
)
1
3
5
7
9
1
3
5
7
9
1
1
3
5
j
u
m
p
e
r
B 5  
B 4  
B 3  
a
a
G
G
1
M
o
d
e
1
1
6
8
0
B 0  
B 2  
B 4  
B 1  
B 3  
B 5  
B
A
C
K
L
a
R
R
R
R
R
R
7
6
5
4
3
2
b
D
C
L
K
a R  
a R  
a R  
a R  
a R  
a R  
7
6
5
4
3
2
C
3
a
a
a
a
a
2
1
2
u
F
B
/
6
.
3
V
C
4
B 2  
B 1  
B 0  
6
X
3
J
u
m
p
e
r
J
M
K
3
6
J
2
2
6
K
L
0
A
.
0
_
0
2
2
D
E
N
C
1
1
2
0
R
2
8
C
5
G
G
G
5
4
3
2
1
2
u
F
/
J
6
2
.
3
V
C
6
a
R
1
0
B
3
0
B
-
P
H
D
S
S
(
L
F
)
(
S
N
)
J
M
K
3
6
B
2
6
K
L
0
.
0
0
2
2
1
a
R
C
A
_
1
2
G
G
G
2
1
0
3
.
3
V
5
V
-
G
N
D
L
U
/
R
D
/
V
g
h
R 5  
R 4  
R 3  
R
7
V
g
d
l
1
0
0
K
A
V
d
J
P
3
a
R
e
s
e
t
1
3
C
7
V
c
o
m
2
R 2  
R 1  
R 0  
1
J
.
1
0
0
D
i
t
h
B
G
M
K
1
0
7
B
5
K
A
4
6
5
8
1
L
/
R
7
9
4
4
1
2
G
M
8
0
0
4
8
0
X
C
-
7
0
-
T
6
T
X
2
9
N
-
L
2
W
U
/
D
L
5
8
-
0
5
2
1
1
0
2
1
C
L
5
8
6
-
0
5
2
7
-
7
4
X
3
J
u
m
p
e
r
Make  
FEM A  
Model  
GM800480W  
FG0700A0DSWBG01 3-2, 6-5, 9-8, 12-11, 15-14, 18-17  
JP2  
JP3  
D
1-2, 4-5, 7-8, 10-11, 13-14, 16-17  
1-2, 4-5, 7-8, 10-11  
2-3, 5-6, 8-9, 11-12  
2-3, 5-6, 8-9, 11-12  
T
i
t
l
e
Dat a Image  
G
U
I
I
n
t
e
r
f
a
c
e
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
United Radiant Tech. UMSH-8173MD-1T  
2-3, 4/5/6 NC, 7/8/9 NC, 10-11, 13-14, 16/ 17/18 NC  
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
1
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
1
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
06807C DCN6650  
D-31  
1
2
3
4
5
6
A
B
C
D
A
B
C
T
P
5
A
V
d
d
:
+
1
0
.
4
V
R
8
R
9
T
P
6
3
0
9
K
C
8
0
.
0
0
1
4
8
7
K
C
D
2
1
4
A
-
B
1
4
0
L
F
D
1
+
5
V
A
V
d
d
D
2
L
1
3
.
3
V
L
2
B
k
l
g
h
h
t
t
+
-
2
1
2
2
u
H
K
A
C
1
1
3
.
9
u
H
C
9
C
1
u
0
F
R
8
1
1
T
P
7
2
2
6
u
F
/
6
.
3
V
M
B
R
M
1
2
0
L
T
1
G
R
1
K
0
C
1
2
4
.
7
u
F
/
1
6
V
T
P
8
4
.
7
/
1
6
V
C
1
4
G
M
K
1
0
7
B
J
1
0
5
K
A
J
M
K
3
1
B
J
2
2
6
K
L
0
6
K
C
1
3
T
M
K
3
2
5
B
J
2
2
6
M
M
V
g
l
:
-
7
V
U
1
1
0
1
.
0
2
4
p
f
2
2
u
f
/
2
5
V
5
4
1
3
G
M
K
1
0
7
B
J
1
0
5
K
A
C
1
5
V
i
n
S
W
1
.
0
R
1
2
V
g
l
S
H
D
N
F
B
B
k
l
g
D
B
3
A
1
K
R
6
1
3
R
2
1
4
T
5
4
S
9
C
1
6
9
.
7
.
0
S
U
P
R
1
5
1
2
2
1
8
1
0
9
7
8
3
2
5
V
-
G
N
D
D
R
V
N
1
0
0
K
1
1
1
1
1
1
2
0
.
3
3
F
B
F
B
N
D
4
C
1
7
R
1
4
6
K
7
C
A
T
4
1
3
9
T
D
-
G
T
3
U
2
D
R
V
P
B
A
T
5
4
S
F
D
V
3
0
5
N
C
1
8
4
6
0
.
3
3
1
R
E
F
0
.
3
3
G
Q
1
6
5
1
5
0
6
2
5
0
3
C
P
I
G
N
D
?
F
B
P
P
G
N
D
D
R
8
1
0
7
6
V
G
H
R
1
.
8
6
K
3
.
3
V
P
G
N
8
0
K
5
V
-
G
N
D
V
C
O
M
C
0
1
.
9
1
2
C
T
R
L
3
3
G
D
R
6
1
6
9
.
C
O
M
P
5
K
C
2
0
T
P
9
+
5
V
0
.
2
2
0
2
5
H
T
S
N
K
V
g
h
:
+
1
6
V
B
A
C
K
L
C
2
1
4
7
0
p
f
3
.
3
V
V
g
h
R
2
7
C
3
5
C
2
6
C
2
3
C
2
4
C
2
5
j
D
u
m
p
a
e
u
r
T
P
1
0
R
2
3
C
2
2
e
f
l
t
:
R
2
7
B
0
.
1
3
3
K
2
4
p
f
4
3
p
f
4
3
p
f
4
3
p
f
0
.
1
V
c
o
m
:
+
4
V
R
3
1
R
2
4
R
1
2
0
5
K
R
0
2
K
6
5
V
-
G
N
D
A
B
V
c
o
m
+
5
V
1
0
K
1
3
.
3
V
U
3
C
2
7
1
0
K
D
e
f
a
u
l
t
:
R
3
1
B
1
.
0
G
M
K
1
0
7
B
J
1
0
5
K
A
1
2
3
4
5
6
7
9
1
1
1
D
e
f
a
u
l
t
:
N
I
A
O
P
P
0
1
2
3
4
5
6
7
A
1
R
2
2
j
u
m
p
e
r
A
2
P
P
P
P
P
P
B
a
c
k
l
l
i
g
h
t
e
P
B
r
i
g
h
t
n
e
s
2
s
2
C
o
n
t
R
r
o
2
l
7
A
B
B
1
1
4
5
S
S
C
D
L
A
S
S
C
D
L
A
0
1
2
3
M
a
i
n
_
t
_
S
S
W
S
1
R
R
N
N
3
1
O
O
C
o
n
t
r
o
M
o
d
L
a
n
g
e
l
e
c
t
S
2
R
e
m
o
t
e
V
i
d
e
o
o
r
t
N
O
S
W
_
4
6
1
R
e
m
o
r
t
e
I
2
C
f
Y
E
S
O
p
t
.
M
a
i
n
S
w
I
N
T
S
W
_
4
6
P
C
F
8
5
7
4
O
p
t
.
L
a
n
g
.
S
w
.
F
i
x
e
d
B
i
g
h
t
(
d
e
a
u
l
t
)
N
O
B
5
V
-
G
N
D
5
V
-
G
N
D
D
T
i
t
l
e
G
U
I
I
n
t
e
r
f
a
c
e
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
2
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
2
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
D-32  
06807C DCN6650  
1
2
3
4
5
6
+
5
V
U
S
B
-
B
-
M
I
N
I
6
U
S
B
3
.
3
V
3
.
3
V
3
.
3
V
-
R
E
G
O
J
9
1
4
8
6
A
B
C
A
B
C
D
U
T
I
N
J
P
4
S
H
T
D
N
C
H
A
S
S
I
S
B
P
C
2
8
1
u
F
C
2
9
U
4
4
7
0
p
f
D
_
N
P
C
3
0
5
V
-
G
N
D
1
u
F
D
_
F
B
1
3
J
P
5
J
1
0
C
3
8
R
3
4
5
V
-
G
N
D
G
N
D
R
T
1
0
0
K
1
Y
E
L
U
S
B
3
.
3
V
1
u
F
R
L
2
3
4
5
S
D
C
3
7
0
.
0
1
u
F
1
K
D
S
1
L
L
5
V
-
G
N
D
L
T
R
2
9
R
3
5
U
5
R
3
0
1
0
0
K
T
o
n
e
w
T
S
c
r
e
e
n
1
0
0
K
4
1
S
C
L
+
V
E
7
0
5
5
3
-
0
0
4
S
C
L
2
4
M
H
Z
S
D
A
3
2
S
D
A
O
U
T
-
V
U
S
B
3
.
3
V
J
1
1
F
B
7
5
V
-
G
N
D
5
V
-
G
N
D
L
L
N
I
R
3
2
1
2
3
4
5
R
L
C
H
A
S
S
I
S
5
V
-
G
N
D
U
S
B
3
.
3
V
4
3
2
1
S
D
G
N
+
-
D
1
8
7
6
5
R
T
C
3
1
D
D
2
3
4
L
T
U
S
B
-
A
_
R
/
A
0
.
1
u
F
J
4
+
5
V
R
3
9
R
3
3
5
V
-
G
N
D
1
0
0
K
T
o
o
l
d
T
S
c
r
e
e
n
1
0
0
K
U
7
F
1
7
0
5
5
3
-
0
0
4
R
4
5
5
V
-
G
N
D
J
1
2
+
5
V
N
I
+
5
V
F
B
8
0
.
5
A
/
6
V
T
A
S
1
H
A
R
C
-
1
2
C
R
2
0
0
.
1
C
3
9
C
4
0
5
V
-
G
N
D
0
.
1
u
F
4
9
.
9
3
7
B
U
S
+
5
G
N
D
0
.
1
B
A
C
H
S
C
H
A
S
S
I
S
C
5
9
5
V
-
G
N
D
5
V
-
G
N
D
F
B
5
1
8
2
2
3
3
3
3
3
3
3
8
9
0
1
2
3
4
5
6
P
W
R
3
2
2
S
U
S
/
R
0
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
V
B
U
S
C
H
S
O
C
S
5
V
-
G
N
D
U
S
B
3
.
3
V
+
3
.
3
V
C
4
1
P
W
R
F
B
9
C
3
2
F
U
U
X
S
B
-
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
4
3
2
1
3
.
3
V
C
R
G
N
D
1
u
0
.
1
S
B
+
2
U
8
1
1
2
3
4
8
+
1
.
8
V
D
+
-
T
L
7
6
5
U
S
B
2
5
4
-
A
E
Z
G
O
C
S
1
D
U
J
S
B
-
A
_
V
E
R
T
C
L
K
-
I
N
U
S
B
3
.
3
V
P
W
R
1
+
5
V
5
C
H
A
S
S
I
S
1
.
8
V
P
L
L
R
3
6
T
E
S
3
T
R
B
I
3
A
S
U
9
+
3
.
V
C
6
0
u
1
2
K
+
3
.
P
L
L
F
2
0
.
1
F
C
3
3
C
3
4
+
5
V
+
5
V
0
.
1
u
F
0
.
1
F
B
1
0
0
.
5
A
/
6
V
5
V
-
G
N
D
5
V
-
G
N
D
C
4
2
5
V
-
G
N
D
0
.
1
u
F
D
D
1
_
N
P
C
H
A
S
S
I
S
1
_
D
D
D
D
D
D
4
_
_
_
_
_
_
P
4
3
3
2
2
N
P
5
V
-
G
N
D
1
K
5
V
-
G
N
D
F
B
1
1
N
P
4
3
2
1
C
4
3
C
4
F
4
G
N
D
R
3
8
1
2
3
4
8
7
6
5
D
S
2
0
.
1
u
F
D
+
-
1
u
N
D
G
R
N
U
S
B
-
A
_
V
E
R
T
R
3
7
5
V
-
G
N
D
+
5
V
J
6
1
0
0
K
U
S
B
3
.
3
V
5
V
-
G
N
D
U
1
1
C
3
6
5
V
-
G
N
D
0
.
1
u
F
F
3
+
5
V
5
V
-
G
N
D
F
B
1
2
0
.
5
A
/
6
V
5
V
-
G
N
D
5
V
-
G
N
D
C
4
5
0
.
1
u
F
5
V
-
G
N
D
C
o
d
n
e
u
f
i
g
u
r
a
t
i
o
n
3
S
e
l
e
c
t
M
o
a
R
2
A
B
R
4
5
D
e
f
l
t
A
B
B
D
M
B
U
1
S
T
i
t
l
e
G
U
I
I
n
t
e
r
f
a
c
e
I
n
s
t
a
l
l
0
0
K
f
o
r
A
,
O
0
h
m
f
o
r
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
3
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
3
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
06807C DCN6650  
D-33  
1
2
3
4
5
6
A
B
C
D
A
B
C
3
.
3
V
T
O
U
C
H
S
C
R
E
E
N
I
N
T
E
R
F
A
C
E
C
I
R
C
U
I
T
R
Y
(
T
B
D
)
F
B
1
1
N
5
T
C
6
1
F
B
M
H
3
2
1
6
H
M
5
0
0
.
1
J
1
3
J
1
5
0
0
0
R
R
R
4
5
5
9
0
1
M H 1  
M H 2  
M H 3  
M H 4  
7
2
9
4
5
6
3
8
1
1
1
1
1
1
1
1
1
1
1
Y
0
_
P
1
U
6
Y
0
_
_
N
P
1
Y
0
_
P
9
8
1
0
4
5
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
1
2
4
5
4
Y
1
1
Y
0
0
1
1
2
2
P
D
D
D
D
D
D
D
D
D
D
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
a
a
a
a
a
a
R
R
R
R
R
R
2
3
4
5
6
7
2
3
4
5
6
7
2
3
4
5
6
7
Y
0
_
N
6
Y
Y
Y
Y
Y
M
P
0
R
5
2
Y
1
_
P
1
1
1
1
7
9
0
1
3
4
5
7
9
0
1
3
5
6
7
Y
1
_
N
1
1
Y
1
_
N
Y
2
_
N
M
M
P
0
R
5
3
Y
2
_
N
P
0
R
5
4
Y
2
_
Y
2
_
P
1
L
C
H
A
S
S
I
S
0
0
R
5
5
2
1
0
3
4
5
6
7
8
9
C
K
O
U
T
_
N
1
a
a
a
a
a
a
a
a
a
a
a
a
G
G
G
G
G
G
B
B
B
B
B
B
2
1
1
3
6
7
b
D
C
L
K
C
C
C
L
L
L
K
O
U
T
M
P
R
5
6
C
L
K
O
U
T
_
N
C
L
K
O
U
T
_
P
1
K
I
N
C
L
K
O
U
T
_
P
K
I
N
D
1
1
1
1
1
1
1
1
1
1
2
2
2
6
H
E
A
D
E
R
-
7
X
2
S
H
T
D
N
D
D
D
D
D
D
D
D
D
D
N
C
2
3
4
4
8
6
2
8
V
V
V
V
C C  
C C  
C C  
C C  
R
4
0
R
4
3
R
4
1
R
1
4
2
R
4
4
3
.
3
V
1
0
0
0
0
1
0
0
1
0
0
G
3
1
6
8
-
0
5
0
0
0
2
0
2
-
0
0
1
0
K
F
B
1
8
1
2
2
0
L
P
V
D
S
/
V
C
C
B
D
A
a
C
K
L
3
.
3
V
L
L
V
C
C
a
t
a
E
n
a
b
l
e
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
7
3
8
L
V
D
D
D
S G  
S G  
S G  
ND  
ND  
ND  
3
2
3
3
4
1
1
G
N D  
N D  
N D  
N D  
N D  
C
6
2
.
C
C
.
L
C
.
.
L
V
5
2
8
4
G
G
G
G
u
00  
9
6
L
F
B
B
6
L
V
4
2
L
1
2
9
1
P
P
L
L
G
N
D
D
0
.
1
C
1
2
3
u
.
F
1
4
L
L
G
N
43.  
V
c
c
P
I
N
2
8
V
c
c
P
I
N
3
6
V
c
c
P
I
N
4
2
V
c
c
P
I
N
4
8
S
N
7
5
L
V
D
S
8
6
A
C
4
6
C
4
9
C
4
7
C
5
0
C
4
8
C
5
1
C
5
3
C
5
2
C
5
4
2
3
2
u
F
B
/
6
.
2
3
V
K
C
5
5
C
5
6
C
5
7
C
5
8
J
M
K
1
6
J
2
6
L
0
.
1
0
.
1
0
.
1
0
.
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
1
0
.
0
1
0
.
1
0
.
0
1
D
T
i
t
l
e
G
U
I
I
n
t
e
r
f
a
c
e
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
4
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
4
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
D-34  
06807C DCN6650  
1
2
3
4
M
T
1
M
T
2
A
B
C
D
A
B
C
D
T
o
L
C
D
D
i
s
p
l
a
y
F
r
o
m
I
C
O
P
C
P
U
C
H
A
S
S
I
S
-
0
C
H
A
S
S
I
S
U
1
+
3
.
3
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A
A
A
A
A
A
B
B
A
A
A
A
B
B
B
B
B
B
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
6
4
4
4
4
4
5
7
8
1
3
4
6
7
9
0
2
3
5
6
8
9
0
2
3
5
4
4
3
3
3
3
1
0
9
8
5
4
Y
Y
Y
Y
Y
Y
0
0
1
1
2
2
_
_
_
_
_
_
N
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
Y
0
M
7
8
9
1
1
P
Y
0
P
J
1
N
P
N
P
Y
1
M
Y
1
P
Y
2
_
P
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
M
M
M
M
H 1  
H 2  
H 3  
H 4  
H
e
a
d
e
r
2
2
X
2
0
J
2
Y
2
M
1
1
3
5
7
9
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4
2
Y
2
P
Y
2
_
_
N
P
V
A
D
0
V
A
D
1
3
1
0
1
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
2 6  
3 3  
3 2  
C
L
K
I
N
Y
1
V
A
D
2
V
A
D
1
C
L
K
I
N
C
C
L
K
O
O
U
T
T
_
N
P
0
1
2
3
2
3
4
5
6
7
C
L
K
O
U
T
M
L
K
U
_
Y
1
_
_
N
P
V A  
V A  
V A  
D
D
D
6
8
1
V A  
V A  
V A  
D
D
D
7
9
1
C
L
K
O
U
T
P
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4
4
Y
0
1
1
1
1
1
1
1
2
2
2
2
1
0
1
2
3
4
5
6
7
8
9
0
2
7
0
1
S
H
T
D
N
+
3
.
3
V
3
5
7
9
1
3
5
7
9
1
3
5
7
9
1
3
Y
0
_
O
N
U
C
H
A
S
S
I
S
1
4
3
N
N
C
C
C
L
K
T
_
P
1
1
4
2
8
2
C
L
K
O
U
T
_
N
1
1
1
1
1
1
1
1
V
C
C
C
C
C
C
V B  
V B  
V B  
D
D
D
2
4
6
V B  
V B  
V B  
D
D
D
3
5
7
V
1
V
3
7
9
B
V
A
B
C
D
K
L
L
V
P
D
L
S
V
C
C
C
C
2
V
B
D
1
0
V
B
D
1
1
E
L
V
+
3
.
3
V
2
2
.
1
4 2  
3 6  
3 1  
V
B
G
D
C
E
L
K
5
1
7
4
6
V
V
V
L
L
L
D S  
D S  
D S  
GN  
GN  
GN  
D
D
D
R
1
K
G
G
G
G
G
N
N
N
N
N
D
D
D
D
D
V
B
1
1
2
4
R
2
1
0
3
0
8
P
P
L
L
G
N
D
D
2
G
3
1
6
8
-
0
5
0
0
0
1
0
1
-
0
0
L
L
G
N
S
N
7
5
L
V
D
S
8
4
A
+
3
.
3
V
B
A
C
K
L
J
3
1
3
5
7
9
1
1
2
4
6
8
0
2
4
Y
0
_
P
Y
0
_
N
N
Y
1
_
P
Y
1
_
Y
2
U
_
N
T
Y
C
2
L
_
K
P
O
1
1
1
C
L
K
O
_
N
U
T
_
P
1
3
+
3
.
3
V
H
e
a
d
e
r
7
X
2
C
1
T
i
t
l
e
C
2
C
3
C
4
C
5
C
6
C
7
C
8
C
9
C
1
0
C
1
1
2
2
u
F
/
6
.
3
V
L
V
D
S
,
T
r
a
n
s
m
i
t
t
e
r
B
o
a
r
d
J
M
K
3
1
6
B
J
2
2
6
K
L
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
0
1
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
B
A
0
6
8
8
2
D
a
t
e
:
5
/
7
/
2
0
1
0
S
h
e
e
t
1
o
f
1
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
8
8
2
-
P
1
-
R
0
.
S
c
h
D
o
c
D
r
a
w
n
B
y
:
R
T
1
2
3
4
06807C DCN6650  
D-35  
1
2
3
4
U
6
1
2
6
5
R
1
9
A
B
C
D
A
B
C
.01/2KV  
C18  
R
1
3
7
5
R
2
0
C
H
A
S
S
I
S
0
7
5
3
4
J
1
S
P
3
0
5
0
1
2
1
1
2
3
4
5
6
7
8
9
1
J
2
A
A
A
T
T
R
X
+
-
2
1
4
3
6
5
8
7
X
1
6
5
X
D
+
1
L
E
0
-
L
E
D
0
+
1
4
A
R
X
-
1
3
L
E
D
1
+
-
L
E
D
1
1
0
S
T
R
A
I
G
H
T
T
H
R
O
U
G
H
E
T
H
E
R
N
E
T
D
F
1
1
-
8
D
P
-
2
D
S
(
2
4
)
C
H
A
S
S
I
S
C
O
N
N
_
R
J
4
5
_
L
E
D
T
P
1
+
5
V
+
5
V
-
I
S
O
T
P
2
S
D
A
P
2
P
3
U
8
L
1
1
2
3
4
5
6
7
8
1
S
D
A
4
2
1
1
5
1
1
7
+
5
V
-
O
U
T
2
3
4
5
6
7
8
V
D
D
1
V
D
D
2
1
1
4
3
4
7
u
H
L
M
E
0
5
0
5
S
C
L
G
N
D
1
G
N
D
2
R
1
6
C28  
4.7uF  
1
k
+
C17  
100uF  
R
1
0
H
e
a
d
e
r
8
S
C
L
H
e
a
d
e
r
8
2
.
2
k
T
P
3
I
S
O
-
G
N
D
D
S
3
G
R
N
G
N
D
G
N
D
T
i
t
l
e
D
A
u
x
i
l
i
a
r
y
I
/
O
B
o
a
r
d
(
P
W
R
-
E
T
H
E
R
N
E
T
)
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
B
D
C
N
:
6
0
9
2
0
6
7
3
1
A
D
a
t
e
:
5
/
6
/
2
0
1
1
S
h
e
e
t
1
o
f
3
P
R
I
N
T
E
D
D
O
C
U
M
E
N
T
S
A
R
E
U
N
C
O
N
T
R
O
L
L
E
D
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
7
3
1
-
1
_
E
T
H
E
R
N
E
T
.
S
c
h
D
o
D
c
r
a
w
n
B
y
:
R
T
D-36  
06807C DCN6650  
1
2
3
4
1
2
3
4
V
-
B
U
S
A
B
C
A
B
C
D
V
-
B
U
S
C19  
0.1uF  
C20  
0.1uF  
C21  
R
2
1
1
4.7uF  
C24  
0.1uF  
.
2
k
C22  
0.1uF  
3
.
3
V
G
N
D
U
9
C23  
2
8
2
2
3
2
6
D
S
4
0.1uF  
G
N
D
C
C
C
C
1
1
2
2
+
V
C
C
2
4
1
2
3
-
O
N
L
I
N
E
G
N
D
R
1
2
+
-
V
-
7
4
.
7
5
k
V
+
G
R
N
J
3
6
9
1
2
2
2
6
4
8
T
X
D
-
A
1
1
1
4
3
2
9
1
1
T
X
D
-
B
1
7
5
9
4
8
3
2
V
D
D
T
X
D
T
I
1
T
T
T
O
1
2
3
R
C
X
D
R
T
S
-
A
0
1
R
T
S
-
B
R
S
T
R
T
S
T
I
2
O
O
T
S
1
1
D
T
R
-
A
D
T
R
-
B
S
U
S
P
E
N
D
D
T
R
T
I
3
D
S
R
N
/
C
2
2 5  
2 3  
2 7  
1
2
3
R
X
D
-
A
1
1
1
1
1
9
8
7
6
5
4
5
6
7
8
R
X
D
-
B
S
U
S
P
E
N
D
R
X
D
R
R
R
R
R
O
O
O
O
O
1
2
3
4
5
R
R
R
R
R
I 1  
I 2  
I 3  
I 4  
I 5  
T
R
X
T
D
J
4
C
T
S
-
A
C
T
S
-
B
C
T
S
R
S
3
2
1
4
D
+
-
4
5
7
8
D
S
R
-
A
D
S
R
-
B
B
D
+
D
D
V
V
+
D
S
D
T
R
D
U
1
0
D
D
C
D
-
A
D
C
D
-
D
-
-
D
C
D
D
C
V
-
B
U
S
R
I
-
A
R
I
-
B
1
0
V
B
U
D
S
R
B
E
G
-
I
R
I
R
I
6
G
N
U
S
G
N
D
G
N
D
2
2
1
2
2
0
5
S
S
T
A
T
R
O
2
U
1
1
2
U
S
B
H
T
D
N
G
N
D
D
F
1
1
-
1
0
D
P
-
2
D
S
(
2
4
)
C
P
2
1
0
2
1
2
6
5
0
R
S
P
3
2
4
3
E
U
1
4
C
H
A
S
S
I
S
0
C25  
0.1uF  
C26  
1uF  
G
N
D
R
1
5
3
4
n
c
n
c
N
U
P
2
2
0
2
W
1
G
N
D
G
N
D
M
T
1
M
T
2
M
T
-
H
O
L
E
M
T
-
H
O
L
E
C
H
A
S
S
I
S
C
H
A
S
S
I
S
T
i
t
l
e
D
A
u
x
i
l
i
a
r
y
I
/
O
B
o
a
r
d
(
U
S
B
)
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
B
0
6
7
3
1
A
D
C
N
:
6
0
9
2
P
R
I
N
T
E
D
D
O
C
U
M
E
N
T
S
A
R
E
U
N
C
O
N
T
R
O
L
L
E
D
D
a
t
e
:
5
/
6
/
2
0
1
1
S
h
e
e
t
2
o
f
3
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
7
3
1
-
2
_
U
S
B
.
S
c
h
D
o
c
D
r
a
w
n
B
y
:
R
T
06807C DCN6650  
D-37  
1
2
3
4
1
2
3
4
+
5
V
-
I
S
O
R
9
9
4
.
9
A
B
C
D
A
B
C
+
5
V
-
A
D
C
A
G
N
D
C27  
C1  
0.1uF  
4.7uF  
C2  
C3  
C4  
C5  
C6  
C7  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
P
1
U
1
A
H
N
1
-
C
H
0
1
1
1
1
1
2
2
2
5
6
7
8
9
0
1
3
1
2
1
1
2
3
4
5
6
7
8
9
C H  
C H  
C H  
C H  
C H  
C H  
C H  
C H  
0
1
2
3
4
5
6
7
V
D
D
D
D
D
N
I
S
O
-
G
N
D
A
N
-
C
V
A
N
-
C
H
2
3
S
H
T
A
H
N
-
C
H
3
A
N
-
C
4
9
5
1
1
6
S
S
D
A
A
N
-
C
H
5
C
L
A
N
-
C
H
6
0
2
A
2
A
N
-
C
H
7
A
1
4
7
8
1
2
4
4
A
0
I
S
O
-
G
N
D
N
N
N
N
N
N
A
C
U
2
C
C
C
C
C
G
2
7
6
U
3
R
F
E
F
J
A
N
A
L
O
G
I
N
P
U
T
1
2
3
6
5
4
1
2
3
6
5
4
2
1
2
2
1
R
E
-
A
C8  
0.1uF  
C9  
2
2
3
8
C10  
4.7uF  
C11  
0.01uF  
N
N
D
C
C
0.1uF  
5
N
D
D
G
N
S
M
S
1
2
S
M
S
1
2
C30  
1nF  
C29  
1nF  
M
A
X
1
2
7
0
B
C
A
I
+
T
P
4
A
G
N
D
A
G
N
D
C15  
.01/2KV  
I
S
O
-
G
N
D
I
S
O
-
G
N
D
A
G
N
D
4
9
.
9
R
1
7
+
5
V
-
I
S
O
C
H
A
S
S
I
S
4
9
.
9
R
1
8
+
5
V
-
I
S
O
+
5
V
T
P
5
+
5
V
-
I
S
O
R
3
R
4
T
P
6
1
K
1
K
C12  
0.1uF  
N
C
7
6
W
Z
1
7
P
6
X
C13  
0.1uF  
C14  
0.1uF  
R
5
R
6
1
2
.
2
k
2
.
2
k
S
D
A
S
C
L
D
S
1
D
S
2
U
5
U
4
A
I
S
O
-
G
N
D
T
P
7
1
1
1
1
1
1
1
4
5
2
3
0
1
6
9
3
2
5
4
8
6
1
7
V
D
D
2
V
D
D
1
G
N
D
I
S
O
-
G
N
D
N
C
N
C
B
L
U
B
L
U
S
D
A
S
D
A
2
S
D
A
1
I
S
O
-
G
N
D
N
C
N
C
C
N
C
N
3
4
4
7
S
C
L
S
C
L
2
S
G
G
C
L
D
D
1
1
1
U
N
B
G
N
D
2
2
N
N
C
W
Z
1
7
P
6
X
G
N
D
T
P
8
A
D
u
M
2
2
5
0
T
i
t
l
e
D
G
N
D
A
u
x
i
l
i
a
r
y
I
/
O
B
o
a
r
d
(
A
D
C
)
I
S
O
-
G
N
D
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
B
0
6
7
3
1
A
D
C
N
:
6
0
9
2
D
a
t
e
:
5
/
6
/
2
0
1
1
S
h
e
e
t
3
o
f
3
P
R
I
N
T
E
D
D
O
C
U
M
E
N
T
S
A
R
E
U
N
C
O
N
T
R
O
L
L
E
D
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
7
3
1
-
3
_
A
D
C
.
S
c
h
D
o
c
D
r
a
w
n
B
y
:
R
T
D-38  
06807C DCN6650  
1
2
3
4

Vizio Car Satellite TV System E701i A3 User Manual
Transcend Information 2GSDM80 User Manual
Toshiba SATELLITE A10 User Manual
Sony CVX V18NSP User Manual
Sony Camcorder BRC 300 User Manual
Sony BDP SX910 User Manual
Sharp VX 1652H User Manual
Sears KENMORE 45521 User Manual
Sanyo LNS T31A User Manual
Samsung SMX F53BP User Manual