Furuno Car Amplifier MR J2S A User Manual

MELSERVO  
Servo Amplifiers and Motors  
Instruction Manual  
MR-J2S-A  
Art. no.: 138918  
2001 02 15  
Version C  
INDUSTRIAL AUTOMATION  
1. To prevent electric shock, note the following:  
WARNING  
Before wiring or inspection, switch power off and wait for more than 10 minutes. Then, confirm the voltage  
is safe with voltage tester. Otherwise, you may get an electric shock.  
Connect the servo amplifier and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you  
may get an electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.  
2. To prevent fire, note the following:  
CAUTION  
Do not install the servo amplifier, servo motor and regenerative brake resistor on or near combustibles.  
Otherwise a fire may cause.  
When the servo amplifier has become faulty, switch off the main servo amplifier power side. Continuous  
flow of a large current may cause a fire.  
When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a  
burst, damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
During power-on or for some time after power-off, do not touch or close a parts (cable etc.) to the servo  
amplifier heat sink, regenerative brake resistor, servo motor, etc. Their temperatures may be high and you  
may get burnt or a parts may damaged.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric  
shock, etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their weights.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the motor by the cables, shaft or encoder.  
Do not hold the front cover to transport the controller. The controller may drop.  
Install the servo amplifier in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The controller and servo motor must be installed in the specified direction.  
Leave specified clearances between the servo amplifier and control enclosure walls or other equipment.  
Do not install or operate the servo amplifier and servo motor which has been damaged or has any parts  
missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering the servo amplifier.  
Do not drop or strike servo amplifier or servo motor. Isolate from all impact loads.  
Use the servo amplifier and servo motor under the following environmental conditions:  
Conditions  
Environment  
Servo amplifier  
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
90%RH or less (non-condensing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
80%RH or less (non-condensing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
[
[
]
]
Ambient  
temperature  
Ambient humidity  
Storage  
temperature  
Storage humidity  
Ambience  
[
[
]
]
90%RH or less (non-condensing)  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
Altitude  
HC-KFS Series  
HC-MFS Series  
HC-UFS13 to 73  
HC-SFS81  
X
Y : 49  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202 to 502  
HC-SFS301  
HC-SFS502 702  
HC-KFS Series  
HC-MFS Series  
HC-UFS 13 to 73  
HC-SFS81  
X
Y : 24.5  
[m/s2]  
5.9 or less  
X : 24.5  
Y : 49  
X : 24.5  
Y : 29.4  
Vibration  
X
Y : 161  
HC-SFS52 to 152  
HC-SFS53 to 153  
HC-RFS Series  
HC-UFS 72 152  
HC-SFS121 201  
HC-SFS202 352  
HC-SFS203 353  
HC-UFS202 to 502  
X
Y : 80  
[ft/s2]  
19.4 or less  
X : 80  
Y : 161  
HC-SFS301  
HC-SFS502 702  
X : 80  
Y : 96  
A - 3  
CAUTION  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
For safety of personnel, always cover rotating and moving parts.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo  
motor and servo amplifier.  
Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.  
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay must be wired in the specified direction.  
Otherwise, the emergency stop and other protective circuits may not operate.  
Servo  
Servo  
Amplifier  
Amplifier  
COM  
COM  
(24VDC)  
(24VDC)  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
A - 4  
(4) Usage  
CAUTION  
Provide an external emergency stop circuit to ensure that operation can be stopped and power switched  
off immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal is off to prevent an accident. A sudden restart is  
made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near the servo amplifier.  
Use the servo amplifier with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals  
but also by an external emergency stop signal.  
Contacts must be open when  
servo-on signal is off, when an  
alarm (trouble) is present and when  
an electromagnetic brake signal.  
Circuit must be  
opened during  
emergency stop signal.  
Servo motor  
RA EMG  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
A - 5  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor will deteriorate. To prevent a secondary accident due to a fault, it is  
recommended to replace the electrolytic capacitor every 10 years when used in general environment.  
Please consult our sales representative.  
(7) Disposal  
CAUTION  
Dispose of the product as general industrial waste.  
(8) General instruction  
To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn  
without covers and safety guards. When the equipment is operated, the covers and safety guards must be  
installed as specified. Operation must be performed in accordance with this Instruction Manual.  
A - 6  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in  
January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,  
1997) of the EC directives require that products to be sold should meet their fundamental safety  
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment  
into which servo amplifiers have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and  
equipment. This requires the EMC filters to be used with the servo-incorporated machines and  
equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to  
the EMC Installation Guidelines (IB(NA)67310).  
This servo is certified by TUV, third-party assessment organization, to comply with the EMC directive  
in the conforming methods of the EMC Installation Guidelines.  
(2) Low voltage directive  
The low voltage directive applies also to servo units alone. Hence, they are designed to comply with  
the low voltage directive.  
This servo is certified by TUV, third-party assessment organization, to comply with the low voltage  
directive.  
(3) Machine directive  
Not being machines, the servo amplifiers need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier :MR-J2S-10A to MR-J2S-700A  
MR-J2S-10A1 to MR-J2S-40A1  
Servo motor  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
(2) Configuration  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
Reinforced  
insulating  
transformer  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
Servo  
amplifier  
SM  
MC  
NFB  
(3) Environment  
Operate the servo amplifier at or above the contamination level 2 set forth in IEC664. For this  
purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust,  
dirt, etc. (IP54).  
A - 7  
(4) Power supply  
(a) Operate the servo amplifier to meet the requirements of the overvoltage category II set forth in  
IEC664. For this purpose, a reinforced insulating transformer conforming to the IEC or EN  
Standard should be used in the power input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been  
insulation-reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
servo amplifier to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the  
cables to the terminals one-to-one.  
PE terminals  
PE terminals  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals  
of the servo amplifier must be connected to the corresponding earth terminals.  
(6) Wiring  
(a) The cables to be connected to the terminal block of the servo amplifier must have crimping  
terminals provided with insulating tubes to prevent contact with adjacent terminals.  
Crimping terminal  
Insulating tube  
Cable  
(b) When the servo motor has a power supply lead, use a fixed terminal block to connect it with the  
servo amplifier. Do not connect cables directly.  
Terminal block  
A - 8  
(7) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in Section 13.2.2.  
(b) The sizes of the cables described in Section 13.2.1 meet the following requirements. To meet the  
other requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [  
Sheath: PVC (polyvinyl chloride)  
(
)]  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction. The radio noise filter (FR-BIF) is not required.  
(8) Performing EMC tests  
When EMC tests are run on a machine/device into which the servo amplifier has been installed, it  
must conform to the electromagnetic compatibility (immunity/emission) standards after it has  
satisfied the operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on the servo amplifier, refer to the EMC Installation  
Guidelines(IB(NA)67310).  
A - 9  
CONFORMANCE WITH UL/C-UL STANDARD  
(1) Servo amplifiers and servo motors used  
Use the servo amplifiers and servo motors which comply with the standard model.  
Servo amplifier :MR-J2S-10A to MR-J2S-700A  
MR-J2S-10A1 to MR-J2S-40A1  
Servo motor  
:HC-KFS  
HC-MFS  
HC-SFS  
HC-RFS  
HC-UFS  
(2) Installation  
Install a fan of 100CFM air flow 10.16 cm (4 in) above the servo amplifier or provide cooling of at least  
equivalent capability.  
(3) Short circuit rating  
This servo amplifier conforms to the circuit whose peak current is limited to 5000A or less. Having  
been subjected to the short-circuit tests of the UL in the alternating-current circuit, the servo  
amplifier conforms to the above circuit.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for  
10 minutes after power-off.  
Discharge time  
Servo amplifier  
[min]  
MR-J2S-10A(1) 20A(1)  
MR-J2S-40A(1) 60A  
MR-J2S-70A to 350A  
MR-J2S-500A 700A  
1
2
3
5
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use  
the General-Purpose AC servo MR-J2S-A for the first time. Always purchase them and use the MR-  
J2S-A safely.  
Relevant manuals  
Manual name  
MELSERVO-J2-Super Series To Use the AC Servo Safely  
MELSERVO Servo Motor Instruction Manual  
EMC Installation Guidelines  
Manual No.  
IB(NA)0300010  
SH(NA)3181  
IB(NA)67310  
A - 10  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1- 1 to 1-18  
1.1 Introduction.............................................................................................................................................. 1- 1  
1.2 Function block diagram .......................................................................................................................... 1- 2  
1.3 Servo amplifier standard specifications................................................................................................ 1- 3  
1.4 Function list ............................................................................................................................................. 1- 4  
1.5 Model code definition .............................................................................................................................. 1- 5  
1.6 Combination with servo motor............................................................................................................... 1- 6  
1.7 Structure................................................................................................................................................... 1- 7  
1.7.1 Parts identification........................................................................................................................... 1- 7  
1.7.2 Removal and reinstallation of the front cover .............................................................................. 1-11  
1.8 Servo system with auxiliary equipment............................................................................................... 1-13  
2. INSTALLATION  
2- 1 to 2- 4  
2.1 Environmental conditions....................................................................................................................... 2- 1  
2.2 Installation direction and clearances .................................................................................................... 2- 2  
2.3 Keep out foreign materials ..................................................................................................................... 2- 3  
2.4 Cable stress.............................................................................................................................................. 2- 4  
3. SIGNALS AND WIRING  
3- 1 to 3- 58  
3.1 Standard connection example ................................................................................................................ 3- 2  
3.1.1 Position control mode ....................................................................................................................... 3- 2  
3.1.2 Speed control mode........................................................................................................................... 3- 6  
3.1.3 Torque control mode......................................................................................................................... 3- 8  
3.2 Internal connection diagram of servo amplifier .................................................................................. 3-10  
3.3 I/O signals................................................................................................................................................ 3-11  
3.3.1 Connectors and signal arrangements............................................................................................ 3-11  
3.3.2 Signal explanations ......................................................................................................................... 3-14  
3.4 Detailed description of the signals........................................................................................................ 3-23  
3.4.1 Position control mode ...................................................................................................................... 3-23  
3.4.2 Speed control mode.......................................................................................................................... 3-28  
3.4.3 Torque control mode........................................................................................................................ 3-30  
3.4.4 Position/speed control change mode .............................................................................................. 3-33  
3.4.5 Speed/torque control change mode................................................................................................. 3-35  
3.4.6 Torque/position control change mode ............................................................................................ 3-37  
3.5 Alarm occurrence timing chart ............................................................................................................. 3-38  
3.6 Interfaces................................................................................................................................................. 3-39  
3.6.1 Common line .................................................................................................................................... 3-39  
3.6.2 Detailed description of the interfaces............................................................................................ 3-40  
3.7 Input power supply circuit..................................................................................................................... 3-45  
3.7.1 Connection example......................................................................................................................... 3-45  
3.7.2 Terminals.......................................................................................................................................... 3-47  
3.7.3 Power-on sequence........................................................................................................................... 3-48  
3.8 Connection of servo amplifier and servo motor ................................................................................... 3-49  
3.8.1 Connection instructions .................................................................................................................. 3-49  
1
3.8.2 Connection diagram......................................................................................................................... 3-49  
3.8.3 I/O terminals .................................................................................................................................... 3-51  
3.9 Servo motor with electromagnetic brake ............................................................................................. 3-53  
3.10 Grounding ............................................................................................................................................. 3-56  
3.11 Servo amplifier terminal block (TE2) wiring method....................................................................... 3-57  
3.12 Instructions for the 3M connector....................................................................................................... 3-58  
4. OPERATION  
4- 1 to 4- 6  
4.1 When switching power on for the first time.......................................................................................... 4- 1  
4.2 Startup...................................................................................................................................................... 4- 2  
4.2.1 Selection of control mode.................................................................................................................. 4- 2  
4.2.2 Position control mode ....................................................................................................................... 4- 2  
4.2.3 Speed control mode........................................................................................................................... 4- 4  
4.2.4 Torque control mode......................................................................................................................... 4- 5  
4.3 Multidrop communication ...................................................................................................................... 4- 6  
5. PARAMETERS  
5- 1 to 5- 34  
5.1 Parameter list .......................................................................................................................................... 5- 1  
5.1.1 Parameter write inhibit ................................................................................................................... 5- 1  
5.1.2 Lists.................................................................................................................................................... 5- 2  
5.2 Detailed description ............................................................................................................................... 5 25  
5.2.1 Electronic gear ................................................................................................................................. 5-25  
5.2.2 Analog output................................................................................................................................... 5-29  
5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern.............................. 5-32  
5.2.4 Alarm history clear.......................................................................................................................... 5-32  
5.2.5 Position smoothing .......................................................................................................................... 5-33  
6. DISPLAY AND OPERATION  
6- 1 to 6-16  
6.1 Display flowchart..................................................................................................................................... 6- 1  
6.2 Status display .......................................................................................................................................... 6- 2  
6.2.1 Display examples.............................................................................................................................. 6- 2  
6.2.2 Status display list............................................................................................................................. 6- 3  
6.2.3 Changing the status display screen................................................................................................ 6- 4  
6.3 Diagnostic mode....................................................................................................................................... 6- 5  
6.4 Alarm mode.............................................................................................................................................. 6- 7  
6.5 Parameter mode ...................................................................................................................................... 6- 8  
6.6 External I/O signal display..................................................................................................................... 6- 9  
6.7 Output signal (DO) forced output ......................................................................................................... 6-12  
6.8 Test operation mode............................................................................................................................... 6-13  
6.8.1 Mode change..................................................................................................................................... 6-13  
6.8.2 Jog operation.................................................................................................................................... 6-14  
6.8.3 Positioning operation....................................................................................................................... 6-15  
6.8.4 Motor-less operation........................................................................................................................ 6-16  
2
7. GENERAL GAIN ADJUSTMENT  
7- 1 to 7-12  
7.1 Different adjustment methods ............................................................................................................... 7- 1  
7.1.1 Adjustment on a single servo amplifier.......................................................................................... 7- 1  
7.1.2 Adjustment using servo configuration software............................................................................ 7- 2  
7.2 Auto tuning .............................................................................................................................................. 7- 3  
7.2.1 Auto tuning mode ............................................................................................................................. 7- 3  
7.2.2 Auto tuning mode operation............................................................................................................ 7- 4  
7.2.3 Adjustment procedure by auto tuning............................................................................................ 7- 5  
7.2.4 Response level setting in auto tuning mode................................................................................... 7- 6  
7.3 Manual mode 1 (simple manual adjustment)....................................................................................... 7- 7  
7.3.1 Operation of manual mode 1 ........................................................................................................... 7- 7  
7.3.2 Adjustment by manual mode 1 ....................................................................................................... 7- 7  
7.4 Interpolation mode ................................................................................................................................. 7-10  
7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super.......................... 7-11  
7.5.1 Response level setting ..................................................................................................................... 7-11  
7.5.2 Auto tuning selection....................................................................................................................... 7-11  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8- 1 to 8-10  
8.1 Function block diagram .......................................................................................................................... 8- 1  
8.2 Machine resonance suppression filter................................................................................................... 8- 1  
8.3 Adaptive vibration suppression control................................................................................................. 8- 3  
8.4 Low-pass filter ......................................................................................................................................... 8- 4  
8.5 Gain changing function........................................................................................................................... 8- 5  
8.5.1 Applications....................................................................................................................................... 8- 5  
8.5.2 Function block diagram.................................................................................................................... 8- 5  
8.5.3 Parameters........................................................................................................................................ 8- 6  
8.5.4 Gain changing operation.................................................................................................................. 8- 8  
9. INSPECTION  
9- 1 to 9- 2  
10. TROUBLESHOOTING  
10- 1 to 10-12  
10.1 Trouble at start-up ..............................................................................................................................10- 1  
10.1.1 Position control mode ...................................................................................................................10- 1  
10.1.2 Speed control mode.......................................................................................................................10- 4  
10.1.3 Torque control mode.....................................................................................................................10- 5  
10.2 When alarm or warning has occurred...............................................................................................10- 6  
10.2.1 Alarms and warning list ..............................................................................................................10- 6  
10.2.2 Remedies for alarms.....................................................................................................................10- 7  
10.2.3 Remedies for warnings................................................................................................................10-12  
11. OUTLINE DIMENSION DRAWINGS  
11- 1 to 11- 8  
11.1 Servo amplifiers...................................................................................................................................11- 1  
11.2 Connectors............................................................................................................................................11- 6  
3
12. CHARACTERISTICS  
12- 1 to 12- 8  
12.1 Overload protection characteristics...................................................................................................12- 1  
12.2 Power supply equipment capacity and generated loss ....................................................................12- 3  
12.3 Dynamic brake characteristics...........................................................................................................12- 5  
12.4 Encoder cable flexing life....................................................................................................................12- 7  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13- 1 to 13-38  
13.1 Options..................................................................................................................................................13- 1  
13.1.1 Regenerative brake options .........................................................................................................13- 1  
13.1.2 Brake unit......................................................................................................................................13- 7  
13.1.3 Power return converter................................................................................................................13- 9  
13.1.4 Cables and connectors.................................................................................................................13-12  
13.1.5 Junction terminal block (MR-TB20)..........................................................................................13-20  
13.1.6 Maintenance junction card (MR-J2CN3TM) ............................................................................13-22  
13.1.7 Battery (MR-BAT, A6BAT).........................................................................................................13-23  
13.1.8 Servo configurations software ....................................................................................................13-24  
13.2 Auxiliary equipment ..........................................................................................................................13-26  
13.2.1 Recommended wires....................................................................................................................13-26  
13.2.2 No-fuse breakers, fuses, magnetic contactors...........................................................................13-28  
13.2.3 Power factor improving reactors................................................................................................13-28  
13.2.4 Relays............................................................................................................................................13-29  
13.2.5 Surge absorbers ...........................................................................................................................13-29  
13.2.6 Noise reduction techniques.........................................................................................................13-29  
13.2.7 Leakage current breaker.............................................................................................................13-35  
13.2.8 EMC filter.....................................................................................................................................13-37  
14. COMMUNICATION FUNCTIONS  
14- 1 to 14- 28  
14.1 Configuration.......................................................................................................................................14- 1  
14.1.1 RS-422 configuration....................................................................................................................14- 1  
14.1.2 RS-232C configuration .................................................................................................................14- 2  
14.2 Communication specifications............................................................................................................14- 3  
14.2.1 Communication overview.............................................................................................................14- 3  
14.2.2 Parameter setting.........................................................................................................................14- 4  
14.3 Protocol.................................................................................................................................................14- 5  
14.4 Character codes ...................................................................................................................................14- 7  
14.5 Error codes ...........................................................................................................................................14- 8  
14.6 Checksum.............................................................................................................................................14- 8  
14.7 Time-out operation..............................................................................................................................14- 9  
14.8 Retry operation....................................................................................................................................14- 9  
14.9 Initialization........................................................................................................................................14-10  
14.10 Communication procedure example ...............................................................................................14-10  
14.11 Command and data No. list.............................................................................................................14-11  
14.11.1 Read commands.........................................................................................................................14-11  
14.11.2 Write commands........................................................................................................................14-12  
4
14.12 Detailed explanations of commands...............................................................................................14-14  
14.12.1 Data processing..........................................................................................................................14-14  
14.12.2 Status display ............................................................................................................................14-16  
14.12.3 Parameter...................................................................................................................................14-17  
14.12.4 External I/O pin statuses (DIO diagnosis)..............................................................................14-19  
14.12.5 Disable/enable of external I/O signals (DIO) ..........................................................................14-20  
14.12.6 External input signal ON/OFF (test operation) .....................................................................14-21  
14.12.7 Test operation mode..................................................................................................................14-22  
14.12.8 Output signal pin ON/OFF output signal (DO) forced output..............................................14-24  
14.12.9 Alarm history .............................................................................................................................14-25  
14.12.10 Current alarm..........................................................................................................................14-26  
14.12.11 Other commands......................................................................................................................14-27  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15- 1 to 15- 66  
15.1 Outline..................................................................................................................................................15- 1  
15.1.1 Features.........................................................................................................................................15- 1  
15.1.2 Restrictions....................................................................................................................................15- 1  
15.2 Specifications .......................................................................................................................................15- 2  
15.3 Battery installation procedure...........................................................................................................15- 3  
15.4 Standard connection diagram ............................................................................................................15- 4  
15.5 Signal explanation...............................................................................................................................15- 5  
15.6 Startup procedure................................................................................................................................15- 6  
15.7 Absolute position data transfer protocol ...........................................................................................15- 7  
15.7.1 Data transfer procedure...............................................................................................................15- 7  
15.7.2 Transfer method ...........................................................................................................................15- 8  
15.7.3 Home position setting..................................................................................................................15-17  
15.7.4 Use of servo motor with electromagnetic brake .......................................................................15-19  
15.7.5 How to process the absolute position data at detection of stroke end....................................15-20  
15.8 Examples of use..................................................................................................................................15-21  
15.8.1 MELSEC-A1S (A1SD71).............................................................................................................15-21  
15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG).....................................................................................15-35  
15.8.3 MELSEC A1SD75(AD75) ...........................................................................................................15-47  
15.9 Confirmation of absolute position detection data............................................................................15-62  
15.10 Absolute position data transfer errors ...........................................................................................15-63  
15.10.1 Corrective actions ......................................................................................................................15-63  
15.10.2 Error resetting conditions.........................................................................................................15-65  
Appendix  
App- 1 to App- 2  
App 1. Signal arrangement recording sheets......................................................................................... App- 1  
App 2. Status display block diagram ...................................................................................................... App- 2  
5
Optional Servo Motor Instruction Manual CONTENTS  
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced  
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included  
in the Servo Amplifier Instruction Manual.  
1. INTRODUCTION  
2. INSTALLATION  
3. CONNECTORS USED FOR SERVO MOTOR WIRING  
4. INSPECTION  
5. SPECIFICATIONS  
6. CHARACTERISTICS  
7. OUTLINE DIMENSION DRAWINGS  
8. CALCULATION METHODS FOR DESIGNING  
6
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Introduction  
The Mitsubishi MELSERVO-J2-Super series general-purpose AC servo is based on the MELSERVO-J2  
series and has further higher performance and higher functions.  
It has position control, speed control and torque control modes. Further, it can perform operation with the  
control modes changed, e.g. position/speed control, speed/torque control and torque/position control.  
Hence, it is applicable to a wide range of fields, not only precision positioning and smooth speed control of  
machine tools and general industrial machines but also line control and tension control.  
As this new series has the RS-232C or RS-422 serial communication function, a servo configuration  
software-installed personal computer or the like can be used to perform parameter setting, test operation,  
status display monitoring, gain adjustment, etc.  
With real-time auto tuning, you can automatically adjust the servo gains according to the machine.  
The MELSERVO-J2-Super series servo motor is equipped with an absolute position encoder which has  
the resolution of 131072 pulses/rev to ensure more accurate control as compared to the MELSERVO-J2  
series. Simply adding a battery to the servo amplifier makes up an absolute position detection system.  
This makes home position return unnecessary at power-on or alarm occurrence by setting a home position  
once.  
(1) Position control mode  
An up to 500kpps high-speed pulse train is used to control the speed and direction of a motor and  
execute precision positioning of 131072 pulses/rev resolution.  
The position smoothing function provides a choice of two different modes appropriate for a machine, so  
a smoother start/stop can be made in response to a sudden position command.  
A torque limit is imposed on the servo amplifier by the clamp circuit to protect the power transistor in  
the main circuit from overcurrent due to sudden acceleration/deceleration or overload. This torque  
limit value can be changed to any value with an external analog input or the parameter.  
(2) Speed control mode  
An external analog speed command (0 to 10VDC) or parameter-driven internal speed command  
(max. 7 speeds) is used to control the speed and direction of a servo motor smoothly.  
There are also the acceleration/deceleration time constant setting in response to speed command, the  
servo lock function at a stop time, and automatic offset adjustment function in response to external  
analog speed command.  
(3) Torque control mode  
An external analog torque command (0 to 8VDC) or parameter-driven internal torque command is  
used to control the torque output by the servo motor.  
To protect misoperation under no load, the speed limit function (external or internal setting) is also  
available for application to tension control, etc.  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.2 Function block diagram  
The function block diagram of this servo is shown below.  
Regenerative brake option  
(Note 3)  
Servo amplifier  
Servo motor  
U
P
D
C
(Note2)  
Power  
(Note1)  
DS  
RA  
NFB MC  
U
V
L1  
L2  
L3  
supply  
3-phase  
200 to  
Regenerative  
brake  
V
Current  
detector  
SM  
transistor  
W
W
CHARGE  
lamp  
230VAC,  
1-phase  
230VACor  
1-phase  
Dynamic  
brake  
Fan  
100to120VAC  
(MR-J2S-200A or more)  
E1  
E2  
Electro-  
magnetic  
brake  
L11  
L21  
Control  
power  
supply  
Regenerative  
brake  
Base amplifier Voltage Overcurrent  
protection  
Current  
detection  
detection  
Encoder  
Virtual  
encoder  
Pulse  
input  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model torque  
Model  
position  
Model  
speed  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-BAT  
RS-232C  
A/D  
RS-422  
D/A  
Optional battery  
(for absolute position)  
I/F  
CN1A CN1B  
CN3  
Analog monitor  
(2 channels)  
Controller  
RS-422/RS-232C  
D I/O control  
Servo on  
Start  
Analog  
(2 channels)  
Failure, etc.  
To other servo  
amplifier  
Note:1. The built-in regenerative brake resistor is not provided for the MR-J2S-10A(1).  
2. For 1-phase 230VAC, connect the power supply to L1,L2 and leave L3 open.  
L3 is not provided for a 1-phase 100 to120VAC power supply.  
3. For MR-J2S-350 or less.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
1.3 Servo amplifier standard specifications  
Servo Amplifier  
MR-J2S-  
10A 20A 40A 60A 70A 100A 200A 350A 500A 700A 10A1 20A1 40A1  
Item  
3-phase 200 to 230VAC, 50/60Hz  
or 1-phase 230VAC, 50/60Hz  
3-phase 200 to 230VAC:  
1-phase 100 to  
Voltage/frequency  
3-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC  
120VAC 50/60Hz  
1-phase  
Permissible voltage fluctuation  
170 to 253VAC  
85 to 127VAC  
1-phase 230VAC: 207 to 253VAC  
Permissible frequency fluctuation  
Power supply capacity  
Within 5%  
Refer to Section12.2  
System  
Sine-wave PWM control, current control system  
Built-in  
Dynamic brake  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic  
thermal relay), servo motor overheat protection, encoder error protection, regenerative  
brake error protection, undervoltage, instantaneous power failure protection, overspeed  
protection, excessive error protection  
Protective functions  
Max. input pulse frequency  
Command pulse multiplying factor  
In-position range setting  
Error excessive  
500kpps (for differential receiver), 200kpps (for open collector)  
Electronic gear A:1 to 65535 131072 B:1 to 65535, 1/50 A/B 500  
0 to 10000 pulse (command pulse unit)  
10 revolutions  
Torque limit  
Set by parameter setting or external analog input (0 to 10VDC/maximum torque)  
Speed control range  
Analog speed command 1: 2000, internal speed command 1: 5000  
0 to 10VDC / Rated speed  
Analog speed command input  
0.01% or less (load fluctuation 0 to 100%)  
0% or less (power fluctuation 10%)  
Speed fluctuation ratio  
Torque limit  
0.2% max.(ambient temperature 25 10 ) for external speed setting only  
Set by parameter setting or external analog input (0 to 10VDC/maximum torque)  
0 to 8VDC / Maximum torque (input impedance 10 to 12k )  
Torque  
Analog torque command input  
control  
Speed limit  
Set by parameter setting or external analog input (0 to 10VDC/Rated speed)  
Self-cooled,  
mode  
Structure  
Self-cooled, open (IP00)  
Force-cooling, open (IP00)  
open(IP00)  
[
] 0 to 55 (non-freezing)  
] 32 to 131 (non-freezing)  
Operation  
[
[
[
Ambient  
temperature  
]
]
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Storage  
Operation  
Storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Altitude  
Vibration  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280ft) above sea level  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg] 0.7  
[lb] 1.5  
0.7  
1.5  
1.1  
2.4  
1.1  
1.7  
1.7  
2.0  
4.4  
2.0  
4.4  
4.9  
7.2  
0.7  
0.7  
1.5  
1.1  
2.4  
Weight  
2.4 3.75 3.75  
10.8 15.87 1.5  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
1.4 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the corresponding  
chapters and sections.  
(Note)  
Function  
Description  
Refer to  
Control mode  
Section 3.1.1  
Section 3.4.1  
Section 4.2.2  
Section 3.1.2  
Section 3.4.2  
Section 4.2.3  
Section 3.1.3  
Section 3.4.3  
Section 4.2.4  
Position control mode  
This servo is used as position control servo.  
P
Speed control mode  
Torque control mode  
This servo is used as speed control servo.  
This servo is used as torque control servo.  
S
T
Position/speed control change Using external input signal, control can be switched  
mode between position control and speed control.  
Speed/torque control change Using external input signal, control can be switched  
P/S  
S/T  
Section 3.4.4  
Section 3.4.5  
Section 3.4.6  
mode  
between speed control and torque control.  
Torque/position control  
change mode  
Using external input signal, control can be switched  
between torque control and position control.  
T/P  
High-resolution encoder of 131072 pulses/rev is used as a  
servo motor encoder.  
High-resolution encoder  
P, S, T  
P
Absolute position detection  
system  
Merely setting a home position once makes home position  
return unnecessary at every power-on.  
Chapter 15  
Section 8.5  
You can switch between gains during rotation and gains  
during stop or use an external signal to change gains  
during operation.  
Gain changing function  
P, S  
Servo amplifier detects mechanical resonance and sets filter  
characteristics automatically to suppress mechanical  
vibration.  
Adaptive vibration  
suppression control  
P, S, T  
P, S, T  
P
Section 8.3  
Section 8.4  
Suppresses high-frequency resonance which occurs as servo  
system response is increased.  
Low-pass filter  
Analyzes the frequency characteristic of the mechanical  
system by simply connecting a servo configuration software-  
installed personal computer and servo amplifier.  
Can simulate machine motions on a personal computer  
screen on the basis of the machine analyzer results.  
Personal computer changes gains automatically and  
searches for overshoot-free gains in a short time.  
Machine analyzer function  
Machine simulation  
Gain search function  
P
P
Slight vibration suppression Suppresses vibration of 1 pulse produced at a servo motor  
P
P
Section 7.5  
control  
stop.  
Electronic gear  
Input pulses can be multiplied by 1/50 to 50.  
Automatically adjusts the gain to optimum value if load  
applied to the servo motor shaft varies. Higher in  
performance than MR-J2 series servo amplifier.  
Speed can be increased smoothly in response to input pulse.  
Parameters No. 3, 4  
Auto tuning  
P, S  
Chapter 7  
Position smoothing  
P
Parameter No. 7  
Parameter No. 13  
S-pattern acceleration/  
deceleration time constant  
Speed can be increased and decreased smoothly.  
S, T  
Used when the built-in regenerative brake resistor of the  
servo amplifier does not have sufficient regenerative  
capability for the regenerative power generated.  
Used when the regenerative brake option cannot provide  
enough regenerative power.  
Regenerative brake option  
Brake unit  
P, S, T  
P, S, T  
Section 13.1.1  
Section 13.1.2  
Can be used with the MR-J2S-500A MR-J2S-700A.  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
(Note)  
Function  
Description  
Refer to  
Control mode  
Used when the regenerative brake option cannot provide  
enough regenerative power.  
Can be used with the MR-J2S-500A MR-J2S-700A.  
Alarm history is cleared.  
Return converter  
P, S, T  
P, S, T  
S
Section 13.1.3  
Alarm history clear  
Parameter No. 16  
Parameter No. 20  
If the input power supply voltage had reduced to cause an  
alarm but has returned to normal, the servo motor can be  
restarted by merely switching on the start signal.  
Command pulse train form can be selected from among four  
different types.  
Restart after instantaneous  
power failure  
Command pulse selection  
Input signal selection  
Torque limit  
P
Parameter No. 21  
Forward rotation start, reverse rotation start, servo-on and  
other input signals can be assigned to any pins.  
Parameters  
P, S, T  
P, S  
No. 43 to 48  
Section 3.4.1 (5)  
Parameter No. 28  
Section 3.4.3 (3)  
Parameter No. 8  
to 10,72 to 75  
Servo motor-generated torque can be limited to any value.  
Speed limit  
Servo motor speed can be limited to any value.  
T
Servo status is shown on the 5-digit, 7-segment LED  
display  
Status display  
P, S, T  
P, S, T  
Section 6.2  
Section 6.6  
ON/OFF statuses of external I/O signals are shown on the  
display.  
External I/O signal display  
Output signal can be forced on/off independently of the  
servo status.  
Output signal (DO)  
forced output  
P, S, T  
S, T  
Section 6.7  
Section 6.3  
Use this function for output signal wiring check, etc.  
Voltage is automatically offset to stop the servo motor if it  
does not come to a stop at the analog speed command (VC)  
or analog speed limit (VLA) of 0V.  
Automatic VC offset  
Servo motor can be run from the operation section of the  
servo amplifier without the start signal entered.  
Servo status is output in terms of voltage in real time.  
Test operation mode  
P, S, T  
P, S, T  
P, S, T  
Section 6.8  
Analog monitor output  
Servo configuration software  
Parameter No. 17  
Section 13.1.8  
Using  
a
personal computer, parameter setting, test  
operation, status display, etc. can be performed.  
If an alarm has occurred, the corresponding alarm number  
is output in 3-bit code.  
Alarm code output  
P, S, T  
Section 10.2.1  
Note:P: Position control mode, S: Speed control mode, T: Torque control mode  
P/S: Position/speed control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control change mode  
1.5 Model code definition  
(1) Rating plate  
AC SERVO  
MITSUBISHI  
Model  
MODEL  
MR-J2S-60A  
Capacity  
POWER : 600W  
INPUT : 3.2A 3PH 1PH200-230V 50Hz  
Applicable power supply  
3PH 1PH200-230V 60Hz  
5.5A 1PH 230V 50/60Hz  
OUTPUT : 170V 0-360Hz 3.6A  
SERIAL : TC3XXAAAAG52  
Rated output current  
Serial number  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
(2) Model  
MR–J2S–  
A
MR–J2S–100A or less  
MR–J2S–200A 350A  
Series  
Power Supply  
Power supply  
Symbol  
3-phase 200 to 230VAC  
(Note2) 1-phase 230VAC  
None  
(Note1)  
1
Rating plate  
1-phase 100V to 120VAC  
Rating plate  
Note:1. Not supplied to the servo amplifier of  
MR-J2S-60A or more.  
2. Not supplied to the servo amplifier of  
MR-J2S-100A or more.  
MR-J2S-500A  
MR-J2S-700A  
General-purpose interface  
Rated output  
Symbol  
Rated  
output [W]  
Rated  
output [W]  
Symbol  
10  
20  
40  
60  
70  
100  
200  
400  
600  
700  
100  
200  
350  
500  
700  
1000  
2000  
3500  
5000  
7000  
Rating plate  
Rating plate  
1.6 Combination with servo motor  
The following table lists combinations of servo amplifiers and servo motors. The same combinations apply  
to the models with electromagnetic brakes and the models with reduction gears.  
Servo motors  
HC-SFS  
HC-UFS  
Servo amplifier  
HC-KFS  
HC-MFS  
HC-RFS  
1000r/min 2000r/min 3000r/min  
2000r/min  
3000r/min  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
053 13  
23  
053 13  
23  
13  
23  
43  
43  
43  
52  
53  
MR-J2S-70A  
(Note) 73  
73  
72  
73  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
81  
102  
103  
121 201 152 202 153 203  
103 153  
203  
152  
202  
301  
352  
502  
702  
353  
353 503  
352 502  
Note: The HC-KFS73 may not be connected depending on the production time of the servo amplifier. Please consult us.  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
1.7 Structure  
1.7.1 Parts identification  
(1) MR-J2S-100A or less  
Name/Application  
Refer to  
Battery holder  
Contains the battery for absolute position data backup.  
Section15.3  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section15.3  
Chapter6  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
UP DOWN  
MODE  
SET  
Used to set data.  
Chapter6  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section3.3  
Section3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS-232C)  
and output analog monitor data.  
Chapter14  
Section13.1.2  
Name plate  
Section1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Section3.3  
Connector for connection of the servo motor encoder. Section13.1.4  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.7  
Section11.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative brake option.  
Section3.7  
Section11.1  
Section13.1.1  
Section3.10  
Section11.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200A MR-J2S-350A  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to Section 1.7.2.  
Name/Application  
Refer to  
Battery holder  
Contains the battery for absolute position data backup.  
Section15.3  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section15.3  
Chapter6  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
UP DOWN  
MODE  
SET  
Used to set data.  
Chapter6  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Section3.3  
Section3.3  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS232C) Section13.1.2  
and output analog monitor data.  
Chapter14  
Name plate  
Section1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Encoder connector (CN2)  
Section3.3  
Connector for connection of the servo motor encoder. Section13.1.4  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.7  
Section11.1  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply and  
regenerative brake option.  
Section3.7  
Section11.1  
Section13.1.1  
Cooling fan  
Section3.10  
Section11.1  
Protective earth (PE) terminal (  
Ground terminal.  
)
Installation notch  
(4 places)  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500A  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to Section 1.7.2.  
Name/Application  
Battery connector (CON1)  
Refer to  
Used to connect the battery for absolute position data  
Section15.3  
backup.  
Battery holder  
Contains the battery for absolute position data backup.  
Section15.3  
Chapter6  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
MODE  
UP  
DOWN  
SET  
MODE UP  
DOWN SET  
Used to set data.  
Chapter6  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
Installation notch  
(4 places)  
I/O signal connector (CN1A)  
Section3.3  
Section3.3  
Used to connect digital I/O signals.  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS232C)  
and output analog monitor data.  
Section3.3  
Section13.1.2  
Chapter14  
Encoder connector (CN2)  
Section3.3  
Connector for connection of the servo motor encoder. Section13.1.4  
Charge lamp  
Lit to indicate that the main circuit is charged.  
While this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Section3.7  
Used to connect the control circuit power supply and  
Section11.1.1  
regenerative brake option.  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section3.7  
Section11.1  
Section13.1.1  
Name plate  
Section1.5  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.10  
Section11.1  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700A  
POINT  
The servo amplifier is shown without the front cover. For removal of the  
front cover, refer to next page.  
Refer to  
Name/Application  
Battery connector (CON1)  
Used to connect the battery for absolute position data  
backup.  
Section15.3  
Battery holder  
Contains the battery for absolute position data backup.  
Section15.3  
Chapter6  
Display  
The 5-digit, seven-segment LED shows the servo  
status and alarm number.  
Operation section  
Used to perform status display, diagnostic, alarm and  
parameter setting operations.  
MODE  
UP  
DOWN  
SET  
MODE  
UP  
DOWN SET  
Used to set data.  
Chapter6  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
I/O signal connector (CN1A)  
Used to connect digital I/O signals.  
Section3.3  
Section3.3  
I/O signal connector (CN1B)  
Used to connect digital I/O signals.  
Communication connector (CN3)  
Used to connect a command device (RS-422/RS232C)  
and output analog monitor data.  
Section3.3  
Section13.1.4  
Chapter14  
Charge lamp  
Lit to indicate that the main circuit is charged.  
While this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Section3.7  
Used to connect the control circuit power supply.  
Section11.1.1  
Encoder connector (CN2)  
Section3.3  
Connector for connection of the servo motor encoder.  
Section13.1.4  
Section1.5  
Name plate  
Main circuit terminal block (TE1)  
Used to connect the input power supply, regenerative  
brake option and servo motor.  
Section3.7  
Section11.1  
Section13.1.1  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section3.10  
Section11.1  
Installation notch  
(4 places)  
1 - 10  
1. FUNCTIONS AND CONFIGURATION  
1.7.2 Removal and reinstallation of the front cover  
To avoid the risk of an electric shock, do not open the front cover while power is  
on.  
CAUTION  
(1) For MR-J2S-200A or more  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
Front cover  
1)  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
(2) For MR-J2S-500A  
Removal of the front cover  
1)  
Reinstallation of the front cover  
Front cover hook  
(2 places)  
2)  
2)  
1)  
Front cover  
Front cover socket  
(2 places)  
1) Hold down the removing knob.  
2) Pull the front cover toward you.  
1) Insert the front cover hooks into the front cover sockets of  
the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 11  
1. FUNCTIONS AND CONFIGURATION  
(3) For MR-J2S-700A  
Removal of the front cover  
Reinstallation of the front cover  
Front cover  
hook  
(2 places)  
A)  
B)  
2)  
2)  
1)  
A)  
1)  
Front cover socket  
(2 places)  
1) Push the removing knob A) or B), and put you  
finger into the front hole of the front cover.  
2) Pull the front cover toward you.  
1) Insert the two front cover hooks at the bottom into the  
sockets of the servo amplifier.  
2) Press the front cover against the servo amplifier until the  
removing knob clicks.  
1 - 12  
1. FUNCTIONS AND CONFIGURATION  
1.8 Servo system with auxiliary equipment  
To prevent an electric shock, always connect the protective earth (PE) terminal  
WARNING  
(terminal marked ) of the servo amplifier to the protective earth (PE) of the control  
box.  
(1) MR-J2S-100A or less  
(a) For 3-phase 200V to 230VAC or 1-phase 230VAC  
(Note2)  
3-phase 200V  
to 230VAC power  
supply or  
1-phase 230VAC  
power supply  
Options and auxiliary equipment  
No-fuse breaker  
Options and auxiliary equipment  
Regenerative brake option  
Cables  
Refer to  
Refer to  
Section 13.1.1  
Section 13.2.1  
Section 13.2.2  
Section 13.2.2  
Magnetic contactor  
Servo configuration software Section 13.1.8  
Power factor improving reactor Section 13.2.3  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Command device  
To CN1A  
To CN1B  
Junction terminal block  
Magnetic  
contactor  
(MC)  
Power  
factor  
To CN3  
CHARGE  
improving  
reactor  
(FR-BAL)  
Servo configuration  
software  
MRZJW3-SETUP121E  
Personal  
computer  
To CN2  
L1  
L2  
L3  
U
V
W
Protective earth(PE) terminal  
(Note1)  
Encoder cable  
(Note1)  
Power supply lead  
D
Control circuit terminal block  
L21  
L11  
P
Regenerative brake  
option  
Servo motor  
C
Note: 1. The HC-SFS, HC-RFS series have cannon connectors.  
2. A 1-phase 230VAC power supply may be used with the servo amplifier of MR-J2S-70A or less. Connect the power supply to  
L1 and L2 terminals and leave L3 open.  
1 - 13  
1. FUNCTIONS AND CONFIGURATION  
(b) For 1-phase 100V to 120VAC  
1-phase 100V  
to 120VAC  
power supply  
Options and auxiliary equipment  
No-fuse breaker  
Refer to  
Options and auxiliary equipment  
Regenerative brake option  
Cables  
Refer to  
Section 13.1.1  
Section 13.2.1  
Section 13.2.2  
Section 13.2.2  
Magnetic contactor  
Servo configuration software Section 13.1.8 Power factor improving reactor Section 13.2.3  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Command device  
To CN1A  
Junction terminal block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
CHARGE  
Servo configuration  
software  
MRZJW3-SETUP121E  
Personal  
computer  
Power  
To CN2  
factor  
improving  
reactor  
(FR-BAL)  
L1  
L2  
U
V
W
Protective earth(PE) terminal  
(Note)  
Encoder cable  
(Note)  
Power supply lead  
D
Control circuit terminal block  
L21  
L11  
P
Regenerative brake  
option  
Servo motor  
C
Note: The HC-SFS, HC-RFS series have cannon connectors.  
1 - 14  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J2S-200A MR-J2S-350A or more  
Options and auxiliary equipment  
3-phase 200V  
Options and auxiliary equipment  
Refer to  
Refer to  
to 230VAC  
power supply  
Regenerative brake option  
Section 13.1.1  
No-fuse breaker  
Section 13.2.2  
Section 13.2.2  
Section 13.1.8  
Magnetic contactor  
Cables  
Section 13.2.1  
Power factor improving reactor Section 13.2.3  
Servo configuration software  
No-fuse  
breaker  
(NFB) or  
Servo amplifier  
fuse  
Command device  
To CN1A  
Junction terminal  
block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
Power  
factor  
improving  
reactor  
(FR-BAL)  
Servo  
configuration  
software  
MRZJW3-  
SETUP121E  
To CN2  
Personal  
computer  
L11  
L21  
L1  
L2  
L3  
U
V
W
P
C
Regenerative brake option  
1 - 15  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J2S-500A  
3-phase 200V  
to 230VAC  
Options and auxiliary equipment  
Options and auxiliary equipment  
Refer to  
Refer to  
power supply  
No-fuse breaker  
Section 13.2.2  
Regenerative brake option  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
Section 13.2.2 Cables  
Servo configuration software  
Section 13.1.8 Power factor improving reactor Section 13.2.3  
No-fuse  
breaker  
(NFB) or  
fuse  
Magnetic  
contactor  
(MC)  
Servo amplifier  
Command device  
To CN1A  
Power  
factor  
improving  
reactor  
(FA-BAL)  
Junction terminal  
block  
L1  
L2  
L3  
To CN1B  
Servo  
configuration  
software  
MRZJW3-  
SETUP121E  
C
P
Personal  
computer  
U
V
W
Regenerative brake  
option  
To CN3  
To CN2  
L11  
L21  
1 - 16  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J2S-700A  
Options and auxiliary equipment  
Options and auxiliary equipment  
Refer to  
Refer to  
No-fuse breaker  
Section 13.2.2  
Regenerative brake option  
Section 13.1.1  
Section 13.2.1  
Magnetic contactor  
Section 13.2.2 Cables  
3-phase 200V  
to 230VAC  
power supply  
Servo configuration software  
Section 13.1.8  
Power factor improving reactor Section 13.2.3  
No-fuse  
breaker  
(NFB) or  
fuse  
Command device  
Servo amplifier  
L11  
To CN1A  
L21  
Junction terminal  
block  
Magnetic  
contactor  
(MC)  
To CN1B  
To CN3  
Servo  
configuration  
software  
MRZJW3-  
SETUP121E  
Personal  
computer  
Power  
factor  
improving  
To CN2  
reactor  
(FA-BAL)  
L2  
L3  
U
V
W
L1  
C
P
Regenerative brake  
option  
1 - 17  
1. FUNCTIONS AND CONFIGURATION  
MEMO  
1 - 18  
2. INSTALLATION  
2. INSTALLATION  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment to incombustibles. Installing them directly or close to  
combustibles will led to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range.  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the servo  
amplifier.  
CAUTION  
Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may  
occur.  
Do not subject the servo amplifier to drop impact or shock loads as they are  
precision equipment.  
Do not install or operate a faulty servo amplifier.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
2.1 Environmental conditions  
Environment  
Conditions  
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Operation  
[
[
[
Ambient  
temperature  
Storage  
Operation  
Storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambience  
Altitude  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
[m/s2] 5.9 [m/s2] or less  
[ft/s2] 19.4 [ft/s2] or less  
Vibration  
2 - 1  
2. INSTALLATION  
2.2 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between the servo amplifier and control box inside  
walls or other equipment.  
(1) Installation of one servo amplifier  
Control box  
Control box  
40mm  
(1.6 in.)  
or more  
Servo amplifier  
Wiring clearance  
70mm  
Top  
(2.8 in.)  
10mm  
10mm  
(0.4 in.)  
or more  
(0.4 in.)  
or more  
Bottom  
40mm  
(1.6 in.)  
or more  
2 - 2  
2. INSTALLATION  
(2) Installation of two or more servo amplifiers  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
Control box  
100mm  
(4.0 in.)  
or more  
10mm  
(0.4 in.)  
or more  
Servo  
amplifier  
30mm  
30mm  
(1.2 in.)  
or more  
(1.2 in.)  
or more  
40mm  
(1.6 in.)  
or more  
(3) Others  
When using heat generating equipment such as the regenerative brake option, install them with full  
consideration of heat generation so that the servo amplifier is not affected.  
Install the servo amplifier on a perpendicular wall in the correct vertical direction.  
2.3 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the  
servo amplifier.  
(2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control  
box or a fan installed on the ceiling.  
(3) When installing the control box in a place where there are toxic gas, dirt and dust, provide positive  
pressure in the control box by forcing in clean air to prevent such materials from entering the control  
box.  
2 - 3  
2. INSTALLATION  
2.4 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight  
stress are not applied to the cable connection.  
(2) In any application where the servo motor moves, the cables should be free from excessive stress. For  
use in any application where the servo motor moves run the cables so that their flexing portions fall  
within the optional encoder cable range. Fix the encoder cable and power cable of the servo motor.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner  
or stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as  
large as possible. Refer to section 12.4 for the flexing life.  
2 - 4  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before starting wiring, switch power off, then wait for more than 10 minutes, and  
after the charge lamp has gone off, make sure that the voltage is safe in the tester  
or like. Otherwise, you may get an electric shock.  
Ground the servo amplifier and the servo motor securely.  
WARNING  
Do not attempt to wire the servo amplifier and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
misoperate, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the emergency stop and other protective circuits.  
Servo  
Amplifier  
Servo amplifier  
COM  
COM  
(24VDC)  
(DC24V)  
CAUTION  
Control  
output  
signal  
Control output  
signal  
RA  
RA  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the servo amplifier.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF  
option) with the power line of the servo motor.  
When using the regenerative brake resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative brake  
resistor, causing a fire.  
Do not modify the equipment.  
POINT  
CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of  
the connectors will lead to a failure. Connect them correctly.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Standard connection example  
POINT  
Refer to Section 3.7.1 for the connection of the power supply system and to  
Section 3.8 for connection with the servo motor.  
3.1.1 Position control mode  
(1) FX-10GM  
Positioning module  
FX-10GM  
Servo amplifier  
(Note 4, 9) (Note 4)  
CN1A  
CN1B  
SVRDY  
COM2  
1
2
RD  
COM  
INP  
19  
9
18  
3
VDD  
(Note 12)  
12  
11  
14  
13  
COM2  
SVEND  
(Note 7)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2, 5)  
RA1  
COM4  
PG0  
P15R  
OP  
LG  
OPC  
COM  
4
14  
1
11  
9
Zero speed  
RA2  
RA3  
7,17  
8,18  
5
24  
Limiting torque  
VC  
6
TLC  
FPO  
FP  
6
PP  
3
9,19  
16  
15  
3
COM5  
RP  
SG 10  
NP  
2
RP0  
CLR  
COM3  
CR  
SG  
SD  
8
20  
Plate  
4
(Note 13)  
(Note 10) 2m(6.5ft) max.  
(Note 4, 9)  
CN1A  
START  
STO  
ZRN  
FWD  
RVS  
DOG  
LSF  
1
2
3
4
5
6
7
8
6
16  
7
LA  
LAR  
LB  
Encoder A-phase pulse  
(differential line driver)  
Encoder B-phase pulse  
(differential line driver)  
17  
LBR  
Encoder Z-phase pulse  
(differential line driver)  
5
LZ  
LZR  
SD  
LSR  
15  
COM1 9,19  
Plate  
10m(32ft) max.  
(Note 4, 9)(Note 4, 9)  
CN1B  
CN3  
(Note 3, 6) Emergency stop  
4
MO1  
LG  
A
A
EMG  
SON  
RES  
PC  
15  
(Note 8)  
10k  
Servo-on  
3
14  
5
14  
8
Monitor output  
Max. 1mA  
Reset  
MO2  
LG  
10k  
Reading in both  
directions  
13  
Proportion control  
Torque limit selection  
Plate  
SD  
TL  
9
2m (6.5ft) max.  
LSP  
LSN  
SG  
16  
17  
10  
11  
12  
1
(Note 6) Forward rotation stroke end  
Reverse rotation stroke end  
Upper limit setting  
P15R  
TLA  
LG  
Analog torque limit  
10V/max. torque  
Plate  
SD  
2m(6.5ft) max.  
(Note 8)  
Personal  
computer  
(Note 11)  
Servo configuration  
software  
(Note 4, 9)  
CN3  
(Note 1)  
Communication cable  
3 - 2  
3. SIGNALS AND WIRING  
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal  
marked ) of the servo amplifier to the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will  
be faulty and will not output signals, disabling the emergency stop and other protective  
circuits.  
3. The emergency stop switch (normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will  
lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA,  
supply interface power from external. (Refer to Section 3.6.2)  
6. When starting operation, always connect the emergency stop signal (EMG) and forward/  
reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)  
7. Trouble (ALM) is connected with COM in normal alarm-free condition. When this signal is  
switched off (at occurrence of an alarm), the output of the controller should be stopped by the  
sequence program.  
8. When connecting the personal computer together with monitor outputs 1, 2, use the  
maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)  
9. The pins with the same signal name are connected in the servo amplifier.  
10. This length applies to the command pulse train input in the opencollector system. It is 10m  
(32ft) or less in the differential line driver system.  
11. Use MRZJW3-SETUP 121E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them  
when supplying external power. Refer to Section 3.6.2.  
13. Connect to CN1A-10 when using the junction terminal block (MR-TB20).  
3 - 3  
3. SIGNALS AND WIRING  
(2) AD75P (A1SD75P  
)
Positioning module  
AD75P  
Servo amplifier  
(A1SD75P  
)
(Note 10) 10m(32ft) max.  
(Note 4,9)  
CN1A  
(Note 4)  
CN1B  
Ready  
COM  
INPS  
7
26  
8
RD  
COM  
INP 18  
19  
9
3
VDD  
(Note 12)  
(Note 7)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2,5)  
RA1  
PGO(24V)  
PGO(5V)  
PGO COM  
6
24  
25  
5
LZ  
LZR 15  
CR  
SG  
PG  
PP  
NG 12  
NP  
LG  
5
Zero speed  
RA2  
RA3  
CLEAR  
CLEAR COM  
8
10  
13  
3
Limiting torque  
23  
21  
3
6
TLC  
PULSE F  
PULSE F  
PULSE R  
PULSE R  
22  
4
2
1
SD Plate  
PULSE F  
1
PULSE COM  
19  
2
PULSE R  
(Note 13)  
PULSE COM  
20  
11  
12  
13  
14  
15  
16  
35  
36  
DOG  
FLS  
RLS  
STOP  
CHG  
START  
COM  
COM  
(Note 4,9)  
CN1A  
6
16  
7
LA  
LAR  
LB  
Encoder A-phase pulse  
(differential line driver)  
(Note 4,9)  
DC24V  
CN1B  
15  
5
(Note 3, 6) Emergency stop  
Servo-on  
EMG  
SON  
RES  
PC  
Encoder B-phase pulse  
(differential line driver)  
17  
1
LBR  
LG  
Reset  
14  
8
Control common  
Proportion control  
14  
4
OP  
Encoder Z-phase pulse  
(open collector)  
Torque limit selection  
TL  
9
P15R  
SD  
(Note 6) Forward rotation stroke end  
Reverse rotation stroke end  
LSP  
LSN  
SG  
16  
17  
10  
11  
12  
Plate  
(Note 4,9)  
CN3  
Upper limit setting  
P15R  
TLA  
LG  
Analog torque limit  
10V/max. torque  
4
3
MO1  
LG  
A
A
(Note 8)  
10k  
1
Monitor output  
Plate  
SD  
Max. 1mA  
14  
MO2  
LG  
2m(6.5ft) max.  
(Note 8)  
10k  
Reading in both  
directions  
13  
Plate  
SD  
Personal  
computer  
(Note 11)  
Servo configuration  
software  
2m(6.5ft) max.  
(Note 4,9)  
CN3  
Communication cable  
(Note 1)  
3 - 4  
3. SIGNALS AND WIRING  
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal  
marked ) of the servo amplifier to the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will  
be faulty and will not output signals, disabling the emergency stop and other protective  
circuits.  
3. The emergency stop switch (normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will  
lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA,  
supply interface power from external.(Refer to Section 3.6.2)  
6. When starting operation, always connect the emergency stop signal (EMG) and forward/  
reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)  
7. Trouble (ALM) is connected with COM in normal alarm-free condition. When this signal is  
switched off (at occurrence of an alarm), the output of the controller should be stopped by the  
sequence program.  
8. When connecting the personal computer together with monitor outputs 1, 2, use the  
maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)  
9. The pins with the same signal name are connected in the servo amplifier.  
10. This length applies to the command pulse train input in the differential line driver system.  
It is 2m (6.5ft) or less in the opencollector system.  
11. Use MRZJW3-SETUP 121E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect  
them when supplying external power. Refer to Section 3.6.2.  
13. Connect LG and pulse output COM to increase noise immunity.  
3 - 5  
3. SIGNALS AND WIRING  
3.1.2 Speed control mode  
Servo amplifier  
(Note 4)  
CN1B  
3
VDD  
(Note 12)  
(Note 4,9)  
CN1A  
(Note 7)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2,5)  
RA1  
SP1  
SG  
8
Speed selection 1  
10  
Zero speed  
RA2  
RA3  
Limiting torque  
6
TLC  
10m(32ft) max.  
(Note 4,9) (Note 4,9)  
CN1B  
EMG 15  
SON  
RES 14  
CN1A  
(Note 3, 6) Emergency stop  
Servo-on  
9
COM  
5
18 SA  
RA5  
RA4  
Speed reached  
Ready  
Reset  
SP2  
ST1  
ST2  
LSP  
LSN  
SG  
7
8
Speed selection 2  
Forward rotation start  
Reverse rotation start  
19 RD  
LZ  
15 LZR  
LA  
16 LAR  
LB  
17 LBR  
LG  
14 OP  
5
Encoder Z-phase pulse  
(differential line driver)  
9
(Note 6) Forward rotation stroke end  
Reverse rotation stroke end  
16  
17  
10  
6
Encoder A-phase pulse  
(differential line driver)  
Upper limit setting  
Encoder B-phase pulse  
(differential line driver)  
7
P15R 11  
Analog speed command  
10V/rated speed  
VC  
LG  
2
1
(Note 13)  
1
Control common  
Encoder Z-phase pulse  
(open collector)  
Upper limit setting  
TLA  
SD  
12  
4
P15R  
(Note 10) Analog torque limit  
10V/max. torque  
Plate  
SD  
Plate  
(Note 4,9)  
CN3  
(Note 8)  
4
3
MO1  
LG  
A
A
10k  
10k  
Monitor output  
Max. 1mA  
2m(6.5ft) max.  
(Note 8)  
14 MO2  
13 LG  
Reading in  
both directions  
Personal  
computer  
(Note 11)  
(Note 4,9)  
CN3  
Plate  
SD  
Servo configuration  
software  
Communication cable  
2m(6.5ft) max.  
(Note 1)  
3 - 6  
3. SIGNALS AND WIRING  
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal  
marked ) of the servo amplifier to the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will  
be faulty and will not output signals, disabling the emergency stop and other protective  
circuits.  
3. The emergency stop switch (normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will  
lead to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA,  
supply interface power from external.(Refer to Section 3.6.2)  
6. When starting operation, always connect the emergency stop signal (EMG) and forward/  
reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)  
7. Trouble (ALM) is connected with COM in normal alarm-free condition.  
8. When connecting the personal computer together with monitor outputs 1, 2, use the  
maintenance junction card (MR-J2CN3TM). (Refer to Section 13.1.4)  
9. The pins with the same signal name are connected in the servo amplifier.  
10. By setting parameters No.43 to 48 to make TL available, TLA can be used.  
11. Use MRZJW3-SETUP 121E.  
12. When using the internal power supply (VDD), always connect VDD-COM. Do not connect  
them when supplying external power. Refer to Section 3.6.2.  
13. Use an external power supply when inputting a negative voltage.  
3 - 7  
3. SIGNALS AND WIRING  
3.1.3 Torque control mode  
Servo amplifier  
(Note 4)  
CN1B  
(Note 10)  
3
VDD  
(Note 4,8)  
CN1A  
(Note 6)  
Trouble  
13 COM  
18 ALM  
19 ZSP  
(Note 2,5)  
RA1  
SP1  
SG  
8
Speed selection 1  
10  
Zero speed  
RA2  
RA3  
Limiting torque  
6
VLC  
10m(32ft) max.  
(Note 4,8) (Note 4,8)  
CN1B  
EMG 15  
SON  
RES 14  
CN1A  
(Note 3) Emergency stop  
Servo-on  
9
COM  
5
19 RD  
RA4  
Ready  
Reset  
SP2  
RS1  
RS2  
SG  
7
9
5
LZ  
Speed selection 2  
Forward rotation start  
Reverse rotation start  
Encoder Z-phase pulse  
(differential line driver)  
15 LZR  
LA  
16 LAR  
LB  
17 LBR  
LG  
14 OP  
8
6
Encoder A-phase pulse  
(differential line driver)  
10  
Upper limit setting  
Encoder B-phase pulse  
(differential line driver)  
P15R 11  
7
Analog torque command  
8V/max. torque  
TC  
LG  
12  
1
(Note 11)  
1
Control common  
Upper limit setting  
Encoder Z-phase pulse  
(open collector)  
VLA  
SD  
2
Analog speed limit  
0 to 10V/rated speed  
4
P15R  
SD  
Plate  
Plate  
(Note 4,8)  
CN3  
2m(6.5ft) max.  
4
3
MO1  
LG  
A
A
(Note 7)  
10k  
Monitor output  
Max. 1mA  
14 MO2  
13 LG  
10k  
Reading in both  
directions  
Personal  
computer  
(Note 9)  
Servo configuration  
software  
(Note 4,8)  
CN3  
Plate  
SD  
(Note 7)  
Communication cable  
2m(6.5ft) max.  
(Note 1)  
3 - 8  
3. SIGNALS AND WIRING  
Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the (terminal  
marked ) servo amplifier to the protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be  
faulty and will not output signals, disabling the emergency stop and other protective circuits.  
3. The emergency stop switch(normally closed contact) must be installed.  
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead  
to a fault.  
5. The sum of currents that flow in the external relays should be 80mA max. If it exceeds 80mA,  
supply interface power from external. (Refer to Section 3.6.2)  
6. Trouble (ALM) is connected with COM in normal alarm-free condition.  
7. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance  
junction card (MR-J2CN3TM). (Refer to Section 13.1.4)  
8. The pins with the same signal name are connected in the servo amplifier.  
9. Use MRZJW3-SETUP 121E.  
10. When using the internal power supply (VDD), always connect VDD-COM. Do not connect them  
when supplying external power. Refer to Section 3.6.2.  
11. Use an external power supply when inputting a negative voltage.  
3 - 9  
3. SIGNALS AND WIRING  
3.2 Internal connection diagram of servo amplifier  
The following is the internal connection diagram where the signal assignment has been made in the  
initial status in each control mode.  
Servo amplifier  
CN1B  
DC24V  
VDD  
3
COM  
13  
(Note)  
P
(Note)  
P
S
T
CN1A  
S
T
CN1A  
18  
COM COM COM  
9
8
INP  
SA  
RD  
Approx. 4.7k  
CR  
SP1 SP1  
19  
RD  
(Note)  
P
RD  
T
SG  
(Note)  
P
SG  
SG 10,20  
S
CN1B  
6
S
T
TLC TLC VLC  
ALM ALM ALM  
ZSP ZSP ZSP  
CN1B  
5
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
Approx. 4.7k  
SON SON SON  
SP2 SP2  
18  
19  
7
8
DO1 DO1  
PC  
TL  
ST1 RS2  
ST2 RS1  
4
DO1  
9
RES RES RES  
EMG EMG EMG  
LSP LSP  
14  
15  
16  
17  
LSN LSN  
SG  
(Note)  
P
SG  
SG 10,20  
CN1A  
6
CN1A  
11  
S
T
LA  
LAR  
LB  
OPC  
PG  
PP  
16  
7
13  
Approx. 100k  
Approx. 100k  
Approx. 1.2k  
3
17  
5
LBR  
LZ  
NG  
NP  
12  
Approx. 1.2k  
2
15  
LZR  
Case  
14  
1
OP  
LG  
SD  
SD  
SD  
T
CN3  
(Note)  
P
4
14  
2
MO1  
MO2  
TXD  
S
CN1B  
VC  
VLA  
TC  
2
TLA TLA  
12  
DC 15V  
12  
9
RXD  
SDP  
SDN  
RDP  
RDN  
P15R P15R P15R 11  
LG  
SD  
LG  
SD  
LG  
SD  
1
19  
5
Case  
15  
PE  
CN1A  
4
P15R  
Note. P: Position control mode, S: Speed control mode, T: Torque control mode  
3 - 10  
3. SIGNALS AND WIRING  
3.3 I/O signals  
3.3.1 Connectors and signal arrangements  
POINT  
The connector pin-outs shown above are viewed from the cable connector  
wiring section side.  
Refer to the next page for CN1A and CN1B signal assignment.  
(1) Signal arrangement  
CN1A  
CN1B  
1
3
5
7
9
11  
13  
15  
17  
19  
1
3
5
7
9
11  
13  
15  
17  
19  
2
4
12  
14  
16  
18  
20  
2
4
12  
14  
16  
18  
20  
6
6
MITSUBISHI  
MELSERVO-J2  
8
8
10  
10  
CN2  
CN3  
1
LG  
3
11  
LG  
13  
1
LG  
3
11  
LG  
13  
2
12  
LG  
14  
2
RXD  
4
12  
TXD  
14  
LG  
4
LG  
5
LG  
15  
MO1  
6
MO2  
16  
5
15  
6
MD  
8
16  
MDR  
18  
RDP  
7
RDN  
17  
7
MR  
9
17  
MRR  
19  
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
8
18  
P5  
9
19  
10  
20  
10  
20  
P5  
BAT  
P5  
SDP  
SDN  
P5  
TRE  
3 - 11  
3. SIGNALS AND WIRING  
(2) CN1A and CN1B signal assignment  
The signal assignment of connector changes with the control mode as indicated below;  
For the pins which are given parameter No.s in the related parameter column, their signals can be  
changed using those parameters.  
(Note2)I/O Signals in control modes  
Related  
Connector  
Pin No.  
(Note1)I/O  
parameter  
P
LG  
P/S  
S
S/T  
T
T/P  
1
2
3
4
5
6
7
8
9
LG  
LG  
LG  
LG  
LG  
/NP  
I
I
NP  
NP/  
/PP  
P15R  
LZ  
PP  
PP/  
P15R/P15R  
LZ  
P15R  
LZ  
P15R  
LZ  
P15R  
LZ  
P15R  
LZ  
O
O
O
I
LA  
LA  
LA  
LA  
LA  
LA  
LB  
LB  
LB  
LB  
LB  
LB  
CR  
CR/SP1  
COM  
SG  
SP1  
COM  
SG  
SP1/SP1  
COM  
SG  
SP1  
COM  
SG  
SP1/CR  
COM  
SG  
No.43 to 48  
COM  
SG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
CN1A  
OPC  
NG  
PG  
OPC/  
NG/  
/OPC  
/NG  
I
I
PG/  
/PG  
O
O
O
O
O
O
OP  
OP  
OP  
LZR  
LAR  
LBR  
SA  
OP  
LZR  
OP  
OP  
LZR  
LAR  
LBR  
INP  
RD  
LZR  
LZR  
LAR  
LBR  
LZR  
LAR  
LBR  
INP/SA  
RD  
LAR  
LAR  
LBR  
/INP  
RD  
LBR  
SA/  
No.49  
No.49  
RD  
RD  
RD  
SG  
SG  
SG  
SG  
SG  
SG  
LG  
LG  
LG  
LG  
LG  
LG  
2
I
/VC  
VC  
VC/VLA  
VDD  
DO1  
VLA  
VDD  
DO1  
SON  
VLC  
SP2  
RS2  
RS1  
SG  
VLA/  
VDD  
DO1  
SON  
VLC/TLC  
LOP  
RS2/PC  
RS1/TL  
SG  
3
VDD  
DO1  
SON  
TLC  
VDD  
DO1  
SON  
TLC  
LOP  
PC/ST1  
TL/ST2  
SG  
VDD  
DO1  
SON  
TLC  
SP2  
ST1  
ST2  
SG  
(Note 4)4  
O
I
5
SON  
No.43 to 48  
No.49  
6
O
I
TLC/VLC  
LOP  
7
No.43 to 48  
No.43 to 48  
No.43 to 48  
8
I
PC  
TL  
ST1/RS2  
ST2/RS1  
SG  
9
I
10  
11  
SG  
CN1B  
P15R  
P15R  
P15R  
P15R  
P15R  
P15R  
(Note3)  
(Note3)  
12  
I
TLA  
(Note3) TLA  
TC  
TC/TLA  
TLA/TLA  
COM  
RES  
TLA/TC  
COM  
RES  
13  
14  
15  
16  
17  
18  
19  
20  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SG  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SG  
COM  
RES  
COM  
RES  
EMG  
/LSP  
/LSN  
ALM  
ZSP  
I
I
No.43 to 48  
EMG  
LSP  
EMG  
LSP/  
LSN/  
ALM  
ZSP  
EMG  
I
I
LSN  
O
O
ALM  
ZSP  
ALM  
ZSP  
SG  
No.49  
No.1, 49  
SG  
SG  
SG  
For note, refer to the next page.  
3 - 12  
3. SIGNALS AND WIRING  
Note: 1. I : Input signal, O: Output signal  
2. P : Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed  
control change mode, S/T: Speed/torque control change mode, T/P: Torque/position control  
change mode  
3. By setting parameters No. 43 to 48 to make TL available, TLA can be used.  
4. The signal of CN1A-18 is always output.  
(3) Symbols and signal names  
Symbol  
SON  
LSP  
LSN  
CR  
Signal name  
Symbol  
VLC  
RD  
Signal name  
Servo-on  
Limiting speed  
Ready  
Forward rotation stroke end  
Reverse rotation stroke end  
Clear  
ZSP  
INP  
SA  
Zero speed  
In position  
Speed reached  
Trouble  
SP1  
SP2  
PC  
Speed selection 1  
Speed selection 2  
ALM  
WNG  
BWNG  
OP  
Proportion control  
Forward rotation start  
Reverse rotation start  
Torque limit selection  
Reset  
Warning  
ST1  
ST2  
TL  
Battery warning  
Encoder Z-phase pulse (open collector)  
Electromagnetic brake interlock  
Encoder Z-phase pulse  
MBR  
LZ  
RES  
EMG  
LOP  
VC  
(differential line driver)  
Forced stop  
LZR  
LA  
Control change  
Encoder A-phase pulse  
(differential line driver)  
Analog speed command  
Analog speed limit  
Analog torque limit  
Analog torque command  
Forward rotation selection  
Reverse rotation selection  
LAR  
LB  
VLA  
TLA  
TC  
Encoder B-phase pulse  
(differential line driver)  
I/F internal power supply  
Digital I/F power supply input  
Open collector power input  
Digital I/F common  
LBR  
VDD  
COM  
OPC  
SG  
RS1  
RS2  
PP  
NP  
P15R  
LG  
15VDC power supply  
Control common  
Forward/reverse rotation pulse train  
Limiting torque  
PG  
NG  
SD  
Shield  
TLC  
3 - 13  
3. SIGNALS AND WIRING  
3.3.2 Signal explanations  
For the I/O interfaces (symbols in I/O column in the table), refer to Section 3.6.2.  
In the control mode field of the table  
P : Position control mode, S: Speed control mode, T: Torque control mode  
: Denotes that the signal may be used in the initial setting status.  
: Denotes that the signal may be used by setting the corresponding parameter among parameters 43 to  
49.  
The pin No.s in the connector pin No. column are those in the initial status.  
(1) Input signals  
Control  
Connec-  
I/O  
mode  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
Servo-on  
SON  
CN1B Connect SON-SG to switch on the base circuit and make the servo  
DI-1  
5
amplifier ready to operate (servo-on).  
Disconnect SON-SG to shut off the base circuit and coast the  
servo motor (servo off) .  
Set "  
1" in parameter No. 41 to switch this signal on  
(keep terminals connected) automatically in the servo  
amplifier.  
Reset  
RES  
LSP  
CN1B Disconnect RES-SG for more than 50ms to reset the alarm.  
DI-1  
DI-1  
14  
Some alarms cannot be deactivated by the reset signal. Refer to  
Section 10.2.  
Shorting RES-SG in an alarm-free status shuts off the base  
circuit. The base circuit is not shut off when "  
parameter No. 51.  
1
"is set in  
Forward rotation  
stroke end  
CN1B To start operation, short LSP-SG and/or LSN-SG. Open them to  
16  
bring the motor to a sudden stop and make it servo-locked.  
Set " 1" in parameter No. 22 to make a slow stop.  
(Refer to Section 5.2.3.)  
(Note) Input signals  
Operation  
CCW CW  
direction direction  
LSP  
LSN  
1
0
1
0
1
1
0
0
Reverse rotation LSN  
stroke end  
CN1B  
17  
Note. 0: LSP/LSN-SG off (open)  
1: SP/LSN-SG on (short)  
Set parameter No. 41 as indicated below to switch on the signals  
(keep terminals connected) automatically in the servo amplifier:  
Parameter No.41  
Automatic ON  
LSP  
1
1
LSN  
3 - 14  
3. SIGNALS AND WIRING  
Control  
mode  
Connec-  
I/O  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
Outside torque  
limit selection  
TL  
CN1B Torque limit selection disconnecting TL-SG makes internal torque  
DI-1  
9
limit 1 (parameter No. 28) valid and connecting them makes  
analog torque limit (TLA) valid.  
For details, refer to (5), Section 3.4.1.  
Internal  
TL1  
ST1  
When using this signal, make it usable by making the setting of  
parameter No. 43 to 48.  
DI-1  
DI-1  
torque limit  
selection  
For details, refer to (5), Section 3.4.1.  
Forward rotation  
start  
CN1B Used to start the servo motor in any of the following directions:  
8
(Note) Input signals  
Servo motor starting direction  
ST2  
0
ST1  
0
Stop (servo lock)  
CCW  
Reverse rotation  
start  
ST2  
CN1B  
9
0
1
1
0
CW  
1
1
Stop (servo lock)  
Note. 0: ST1/ST2-SG off (open)  
1: ST1/ST2-SG on (short)  
If both ST1 and ST2 are switched on or off during operation, the  
servo motor will be decelerated to a stop according to the  
parameter No. 12 setting and servo-locked.  
Forward rotation  
selection  
RS1  
RS2  
CN1B Used to select any of the following servo motor torque generation  
DI-1  
9
directions:  
(Note) Input signals  
Torque generation direction  
Torque is not generated.  
RS2  
RS1  
0
0
Reverse rotation  
selection  
CN1B  
8
Forward rotation in driving mode /  
reverse rotation in regenerative mode  
0
1
Reverse rotation in driving mode /  
1
1
0
1
forward rotation in regenerative mode  
Torque is not generated.  
Note. 0: RS1/RS2-SG off (open)  
1: RS1/RS2-SG on (short)  
3 - 15  
3. SIGNALS AND WIRING  
Control  
mode  
S
Connec-  
tor pin  
No.  
I/O  
division  
Signal  
Symbol  
Functions/Applications  
P
T
Speed selection 1  
SP1  
CN1A <Speed control mode>  
DI-1  
8
Used to select the command speed for operation.  
When using SP3, make it usable by making the setting of  
parameter No. 43 to 48.  
Speed selection 2  
Speed selection 3  
SP2  
SP3  
CN1B  
7
DI-1  
DI-1  
(Note) Input  
signals  
Setting of  
parameter  
No. 43 to 48  
Speed command  
SP3 SP2 SP1  
0
0
Analog speed command (VC)  
Internal speed command 1  
(parameter No. 8)  
When speed  
selection  
0
1
(SP3) is not  
used  
(initial status)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No. 10)  
Analog speed command (VC)  
Internal speed command 1  
(parameter No. 8)  
1
0
1
0
0
1
0
1
0
0
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No.10)  
Internal speed command 4  
(parameter No. 72)  
Internal speed command 5  
(parameter No. 73)  
Internal speed command 6  
(parameter No. 74)  
Internal speed command 7  
(parameter No. 75)  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
When speed  
selection  
(SP3) is made  
valid  
Note 0: SP1/SP2/SP3-SG off (open)  
1: SP1/SP2/SP3-SG on (short)  
<Torque control mode>  
Used to select the limit speed for operation.  
When using SP3, make it usable by making the setting of  
parameter No. 43 to 48.  
(Note) Input  
signals  
Setting of  
parameter  
No. 43 to 48  
Speed limit  
SP3 SP2 SP1  
0
0
1
0
1
0
Analog speed limit (VLA)  
When speed  
selection  
(SP3) is not  
used  
(initial status)  
Internal speed command 1  
(parameter No. 8)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No. 10)  
Analog speed limit (VLA)  
1
0
0
1
0
1
0
0
Internal speed command 1  
(parameter No. 8)  
Internal speed command 2  
(parameter No. 9)  
Internal speed command 3  
(parameter No.10)  
Internal speed command 4  
(parameter No. 72)  
Internal speed command 5  
(parameter No. 73)  
Internal speed command 6  
(parameter No. 74)  
Internal speed command 7  
(parameter No. 75)  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
When speed  
selection  
(SP3) is made  
valid  
Note. 0: SP1/SP2/SP3-SG off (open)  
1: SP1/SP2/SP3-SG on (short)  
3 - 16  
3. SIGNALS AND WIRING  
Control  
mode  
Connec-  
I/O  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
Proportion  
control  
PC  
CN1B Connect PC-SG to switch the speed amplifier from the  
DI-1  
8
proportional integral type to the proportional type.  
If the servo motor at a stop is rotated even one pulse due to any  
external factor, it generates torque to compensate for a position  
shift. When the servo motor shaft is to be locked mechanically  
after positioning completion (stop), switching on the proportion  
control signal (PC) upon positioning completion will suppress the  
unnecessary torque generated to compensate for a position shift.  
When the shaft is to be locked for a long time, switch on the  
proportion control signal and torque control signal (TL) at the  
same time to make the torque less than the rated by the analog  
torque limit.  
Emergency stop  
Clear  
EMG  
CR  
CN1B Disconnect EMG-SG to bring the servo motor to emergency stop  
DI-1  
DI-1  
DI-1  
15  
state, in which the servo is switched off and the dynamic brake is  
operated.  
Connect EMG-SG in the emergency stop state to reset that state.  
CN1A Connect CR-SG to clear the position control counter droop pulses  
on its leading edge. The pulse width should be 10ms or more.  
When the parameter No.42 setting is" 1 ", the pulses are  
8
always cleared while CR-SG are connected.  
Electronic gear  
selection 1  
CM1  
When using CM1 and CM2, make them usable by the setting of  
parameters No. 43 to 48.  
The combination of CM1-SG and CM2-SG gives you a choice of  
four different electronic gear numerators set in the parameters.  
CM1 and CM2 cannot be used in the absolute position detection  
system.  
Electronic gear  
selection 2  
CM2  
(Note) Input signals  
DI-1  
Electronic gear denominator  
CM2  
CM1  
0
0
1
1
0
1
0
1
Parameter No. 3 (CMX)  
Parameter No. 69 (CM2)  
Parameter No. 70 (CM3)  
Parameter No. 71 (CM4)  
Note. 0: CM1/CM2-SG off (open)  
1: CM1/CM2-SG on (short)  
Gain changing  
CDP  
When using this signal, make it usable by the setting of  
parameter No. 43 to 48.  
DI-1  
Connect CDP-SG to change the load inertia moment ratio into the  
parameter No. 61 setting and the gain values into the values  
multiplied by the parameter No. 62 to 64 settings.  
3 - 17  
3. SIGNALS AND WIRING  
Control  
mode  
Connec-  
Symbol tor pin  
No.  
I/O  
division  
Signal  
Functions/Applications  
P
S
T
Control change  
LOP  
CN1B <Position/speed control change mode>  
DI-1  
Refer to  
Functions/  
Appli-  
7
Used to select the control mode in the position/speed control  
change mode.  
cations.  
(Note) LOP  
Control mode  
Position  
0
1
Speed  
Note.0: LOP-SG off (open)  
1: LOP-SG on (short)  
<Speed/torque control change mode>  
Used to select the control mode in the speed/torque control change  
mode.  
(Note) LOP  
Control mode  
Speed  
0
1
Torque  
Note.0: LOP-SG off (open)  
1: LOP-SG on (short)  
<Torque/position control mode>  
Used to select the control mode in the torque/position control  
change mode.  
(Note) LOP  
Control mode  
Torque  
0
1
Position  
Note.0: LOP-SG off (open)  
1: LOP-SG on (short)  
Analog torque  
limit  
TLA  
CN1B To use this signal in the speed control mode, set any of Analog  
12  
parameters No. 43 to 48 to make TL available.  
input  
When the analog torque limit (TLA) is valid, torque is limited in  
the full servo motor output torque range. Apply 0 to 10VDC  
across TLA-LG. Connect the positive terminal of the power supply  
to TLA. Maximum torque is generated at 10V. (Refer to (5) in  
Section 3.4.1.) Resolution:10bit  
Analog torque  
command  
TC  
VC  
Used to control torque in the full servo motor output torque Analog  
range.  
input  
Apply 0 to 8VDC across TC-LG. Maximum torque is generated  
at 8V. (Refer to (1) in Section 3.4.3.)  
The torque generated at 8V input can be changed using  
parameter No. 26.  
Analog speed  
command  
CN1B Apply 0 to 10VDC across VC-LG. Speed set in parameter No. 25 Analog  
2
is provided at 10V. (Refer to (1) in Section 3.4.2.)  
Resolution:14bit or equivalent  
input  
Analog speed  
limit  
VLA  
PP  
Apply 0 to 10VDC across VLA-LG. Speed set in parameter No. Analog  
25 is provided at 10V (Refer to (3) in Section 3.4.3.).  
CN1A Used to enter a command pulse train.  
input  
DI-2  
Forward rotation  
pulse train  
Reverse rotation  
pulse train  
3
CN1A  
2
CN1A  
13  
In the open collector system (max. input frequency 200kpps):  
Forward rotation pulse train across PP-SG  
Reverse rotation pulse train across NP-SG  
In the differential receiver system (max. input frequency  
500kpps):  
NP  
PG  
NG  
CN1A  
12  
Forward rotation pulse train across PG-PP  
Reverse rotation pulse train across NG-NP  
The command pulse train form can be changed using  
parameter No. 21.  
3 - 18  
3. SIGNALS AND WIRING  
(2) Output signals  
Control  
mode  
Connec-  
I/O  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
Trouble  
ALM  
CN1B ALM-SG are disconnected when power is switched off or the  
DO-1  
18  
protective circuit is activated to shut off the base circuit. Without  
alarm, ALM-SG are connected within 1 after power on.  
Ready  
RD  
CN1A RD-SG are connected when the servo is switched on and the servo  
19 amplifier is ready to operate.  
CN1A INP-SG are connected when the number of droop pulses is in the  
DO-1  
DO-1  
In position  
INP  
18  
preset in-position range. The in-position range can be changed  
using parameter No. 5.  
When the in-position range is increased, INP-SG may be kept  
connected during low-speed rotation.  
Speed reached  
Limiting speed  
SA  
SA-SG are connected when the servo motor speed has nearly  
reached the preset speed. When the preset speed is 50r/min or  
less, SA-SG are kept connected.  
DO-1  
DO-1  
VLC  
CN1B VLC-SG are connected when speed reaches the value set to any of  
6
the internal speed limits 1 to 7 (parameters No. 8 to 10, 72 to 75)  
or the analog speed limit (VLA) in the torque control mode. They  
are disconnected when the servo-on signal (SON) switches off.  
TLC-SG are connected when the torque generated reaches the  
value set to the internal torque limit 1 (parameter No. 28) or  
analog torque limit (TLA). They are disconnected when the servo-  
on signal (SON) switches off.  
Limiting torque  
Zero speed  
TLC  
DO-1  
ZSP  
CN1B ZSP-SG are connected when the servo motor speed is zero speed  
DO-1  
DO-1  
19  
(50r/min) or less. Zero speed can be changed using parameter No.  
24.  
Electromagnetic  
brake interlock  
MBR  
CN1B Set "  
1
" in parameter No. 1 to use this parameter. Note that  
ZSP will be unusable.  
19  
In the servo-off or alarm status, MBR-SG are disconnected.  
When an alarm occurs, they are disconnected independently of  
the base circuit status.  
Warning  
WNG  
To use this signal, assign the connector pin for output using  
parameter No.49. The old signal before assignment will be  
unusable.  
DO-1  
DO-1  
When warning has occurred, WNG-SG are connected.  
When there is no warning, WNG-SG are disconnected within 1  
second after power-on.  
Battery warning BWNG  
To use this signal, assign the connector pin for output using  
parameter No.49. The old signal before assignment will be  
unusable.  
BWNG-SG are connected when battery cable breakage warning  
(AL.92) or battery warning (AL.9F) has occurred.  
When there is no battery warning, BWNG-SG are disconnected  
within 1 second after power-on.  
3 - 19  
3. SIGNALS AND WIRING  
Control  
mode  
Connec-  
I/O  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
Alarm code  
ACD 0  
ACD 1  
ACD 2  
CN1A To use this signal, set "  
19 This signal is output when an alarm occurs. When there is no  
CN1A alarm, respective ordinary signals (RD, INP, SA, ZSP) are output.  
1" in parameter No.49.  
DO-1  
18  
CN1B  
19  
Alarm codes and alarm names are listed below:  
(Note) Alarm code  
Alarm  
Name  
CN1B CN1A CN1A  
display  
19 Pin 18 Pin 19 Pin  
88888 Watchdog  
AL.12 Memory error 1  
AL.13 Clock error  
AL.15 Memory error 2  
AL.17 Board error  
0
0
0
AL.19 Memory error 3  
AL.37 Parameter error  
Serial communication  
timeout  
AL.8A  
AL.8E Serial communication error  
AL.30 Regenerative error  
AL.33 Overvoltage  
0
0
0
1
1
0
AL.10 Undervoltage  
AL.45 Main circuit device  
AL.46 Servo motor overheat  
AL.50 Overload 1  
0
1
1
1
0
0
1
0
1
AL.51 Overload 2  
AL.24 Main circuit error  
AL.32 Overcurrent  
AL.31 Overspeed  
Command pulse frequency  
AL.35  
alarm  
AL.52 Error excessive  
AL.16 Encoder error 1  
AL.1A Monitor combination error  
AL.20 Encoder error 2  
1
1
0
AL.25 Absolute position erase  
Note.0: Pin-SG off (open)  
1: Pin-SG on (short)  
3 - 20  
3. SIGNALS AND WIRING  
Control  
mode  
Connec-  
I/O  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
Encoder Z-phase  
pulse  
OP  
CN1A Outputs the zero-point signal of the encoder. One pulse is output  
DO-2  
14  
per servo motor revolution. OP and LG are connected when the  
zero-point position is reached. (Negative logic)  
(Open collector)  
The minimum pulse width is about 400 s. For home position  
return using this pulse, set the creep speed to 100r/min. or less.  
Encoder A-phase  
pulse  
LA  
LAR  
LB  
CN1A Outputs pulses per servo motor revolution set in parameter No.  
27 in the differential line driver system. In CCW rotation of the  
CN1A servo motor, the encoder B-phase pulse lags the encoder A-phase  
DO-2  
6
(Differential line  
driver)  
16  
CN1A  
7
pulse by a phase angle of /2.  
The relationships between rotation direction and phase difference  
of the A- and B-phase pulses can be changed using parameter No.  
54.  
Encoder B-phase  
pulse  
(Differential line  
driver)  
LBR  
LZ  
CN1A  
17  
Encoder Z-phase  
pulse  
CN1A The same signal as OP is output in the differential line driver  
DO-2  
5
CN1A  
15  
system.  
(Differential line  
driver)  
LZR  
MO1  
MO2  
Analog monitor 1  
CN3  
4
Used to output the data set in parameter No.17 to across MO1-LG Analog  
in terms of voltage. Resolution 10 bits output  
Used to output the data set in parameter No.17 to across MO2-LG Analog  
Analog monitor 2  
CN3  
14  
in terms of voltage. Resolution 10 bits  
output  
(3) Communication  
POINT  
Refer to Chapter 14 for the communication function.  
Control  
mode  
Connec-  
Symbol tor pin  
I/O  
Signal  
Functions/Applications  
division  
No.  
P
S
T
RS-422 I/F  
SDP  
SDN  
RDP  
RDN  
TRE  
CN3  
9
RS-485 and RS-232C functions cannot be used together.  
Choose either one in parameter No. 16.  
CN3  
19  
CN3  
5
CN3  
15  
RS-422  
CN3  
10  
Termination resistor connection terminal of RS-422 interface.  
When the servo amplifier is the termination axis, connect this  
terminal to RDN (CN3-15).  
termination  
RS-232C I/F  
RXD  
TXD  
CN3  
2
RS-485 and RS-232C functions cannot be used together.  
Choose either one in parameter No. 16.  
CN3  
12  
3 - 21  
3. SIGNALS AND WIRING  
(4) Power supply  
Control  
mode  
Connec-  
I/O  
Signal  
Symbol tor pin  
No.  
Functions/Applications  
division  
P
S
T
I/F internal  
VDD  
CN1B Used to output 24V 10% to across VDD-SG.  
power supply  
3
When using this power supply for digital interface, connect it with  
COM.  
Permissible current : 80mA  
Digital I/F power  
supply input  
COM  
CN1A Used to input 24VDC for input interface.  
Connect the positive terminal of the 24VDC external power  
CN1B supply.  
9
13  
24VDC 10%  
Open collector  
power input  
Digital I/F  
common  
OPC  
SG  
CN1A When inputting a pulse train in the open collector system, supply  
11  
this terminal with the positive ( ) power of 24VDC.  
CN1A Common terminal for input signals such as SON and EMG. Pins  
10  
20  
are connected internally.  
Separated from LG.  
CN1B  
10  
20  
15VDC power  
supply  
P15R  
LG  
CN1A Outputs 15VDC to across P15R-LG. Available as power for TC,  
TLA, VC, VLA.  
4
CN1B Permissible current: 30mA  
11  
Control common  
CN1A Common terminal for TLA, TC, VC, VLA, FPA, FPB, OP ,MO1,  
1
MO2 and P15R.  
CN1B Pins are connected internally.  
1
CN3  
1
3
5
11  
13  
15  
Shield  
SD  
Plate Connect the external conductor of the shield cable.  
3 - 22  
3. SIGNALS AND WIRING  
3.4 Detailed description of the signals  
3.4.1 Position control mode  
(1) Pulse train input  
(a) Input pulse waveform selection  
Encoder pulses may be input in any of three different forms, for which positive or negative logic  
can be chosen. Set the command pulse train form in parameter No. 21.  
Arrow  
or  
in the table indicates the timing of importing a pulse train.  
A- and B-phase pulse trains are imported after they have been multiplied by 4.  
Forward rotation  
command  
Reverse rotation  
command  
Parameter No. 21  
Pulse train form  
(Command pulse train)  
Forward rotation  
pulse train  
PP  
0010  
0011  
Reverse rotation  
pulse train  
NP  
PP  
Pulse train sign  
L
H
NP  
PP  
A-phase pulse train  
B-phase pulse train  
0012  
NP  
PP  
Forward rotation  
pulse train  
0000  
0001  
0002  
Reverse rotation  
pulse train  
NP  
PP  
NP  
Pulse train sign  
L
H
PP  
NP  
A-phase pulse train  
B-phase pulse train  
3 - 23  
3. SIGNALS AND WIRING  
(b) Connections and waveforms  
1) Open collector system  
Connect as shown below:  
Servo amplifier  
VDD  
OPC  
PP  
Approx.  
1.2k  
Approx.  
1.2k  
NP  
SG  
SD  
The explanation assumes that the input waveform has been set to the negative logic and forward  
and reverse rotation pulse trains (parameter No.21 has been set to 0010). The waveforms in the  
table in (a), (1) of this section are voltage waveforms of PP and NP based on SG. Their  
relationships with transistor ON/OFF are as follows:  
Forward rotation  
pulse train  
(transistor)  
(OFF) (ON) (OFF) (ON)  
(OFF)  
Reverse rotation  
pulse train  
(transistor)  
(OFF)  
(ON) (OFF) (ON) (OFF) (ON)  
Reverse rotation command  
Forward rotation command  
3 - 24  
3. SIGNALS AND WIRING  
2) Differential line driver system  
Connect as shown below:  
Servo amplifier  
PP  
PG  
NP  
NG  
SD  
The explanation assumes that the input waveform has been set to the negative logic and forward  
and reverse rotation pulse trains (parameter No.21 has been set to 0010).  
For the differential line driver, the waveforms in the table in (a), (1) of this section are as follows.  
The waveforms of PP, PG, NP and NG are based on that of the ground of the differential line  
driver.  
Forward rotation  
pulse train  
PP  
PG  
Reverse rotation  
pulse train  
NP  
NG  
Forward rotation command  
Reverse rotation command  
3 - 25  
3. SIGNALS AND WIRING  
(2) In-position (INP)  
PF-SG are connected when the number of droop pulses in the deviation counter falls within the preset  
in-position range (parameter No. 5). INP-SG may remain connected when low-speed operation is  
performed with a large value set as the in-position range.  
ON  
Servo-on (SON)  
OFF  
Yes  
Alarm  
No  
In-position range  
Droop pulses  
ON  
In position (INP)  
OFF  
(3) Ready (RD)  
ON  
Servo-on (SON)  
OFF  
Yes  
Alarm  
No  
80ms or less  
10ms or less  
10ms or less  
ON  
Ready (RD)  
OFF  
(4) Electronic gear switching  
The combination of CM1-SG and CM2-SG gives you a choice of four different electronic gear  
numerators set in the parameters.  
As soon as CM1/CM2 is turned ON or OFF, the denominator of the electronic gear changes. Therefore,  
if any shock occurs at this change, use position smoothing (parameter No. 7) to relieve shock.  
(Note) External input signal  
Electronic gear denomination  
CM2  
CM1  
0
0
1
1
0
1
0
1
Parameter No. 3 (CMX)  
Parameter No. 69 (CM2)  
Parameter No. 70 (CM3)  
Parameter No. 71 (CM4)  
Note.0: CM1/CM2-SG off(open)  
1: CM1/CM2-SG on(short)  
3 - 26  
3. SIGNALS AND WIRING  
(5) Torque limit  
(a) Torque limit and generated torque  
By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum  
value during operation. A relationship between the limit value and servo motor-generated torque is  
shown below.  
Max. torque  
0
0
100  
Torque limit value [%]  
A relationship between the applied voltage of the analog torque limit (TLA) and the torque limit  
value of the servo motor is shown below. Generated torque limit values will vary about 5% relative  
to the voltage depending on products.  
At the voltage of less than 0.05V, generated torque may vary as it may not be limited sufficiently.  
Therefore, use this function at the voltage of 0.05V or more.  
100  
Servo amplifier  
TL  
SG  
5%  
P15R  
TLA  
LG  
2k  
2k  
0
0 0.05  
10  
Japan resistor  
TLA application voltage [V]  
RRS10 or equivalent  
SD  
TLA application voltage vs.  
torque limit value  
(b) Torque limit value selection  
Choose the torque limit made valid by the internal torque limit value 1 (parameter No. 28) using  
the external torque limit selection (TL) or the torque limit made valid by the analog torque limit  
(TLA) as indicated below.  
When internal torque limit selection (TL1) is made usable by parameter No. 43 to 48, internal  
torque limit 2 (parameter No. 76) can be selected. However, if the parameter No. 28 value is less  
than the limit value selected by TL/TL1, the parameter No. 28 value is made valid.  
(Note) External input signals  
Torque limit value made valid  
TL1  
TL  
0
0
Internal torque limit value 1 (parameter No. 28)  
TLA Parameter No. 28: Parameter No. 28  
TLA Parameter No. 28: TLA  
0
1
1
1
0
1
Parameter No. 76 Parameter No. 28: Parameter No. 28  
Parameter No. 76 Parameter No. 28: Parameter No. 76  
TLA Parameter No. 76: Parameter No. 76  
TLA Parameter No. 76: TLA  
Note.0: TL/TL1-SG off (open)  
1: TL/TL1-SG on (short)  
(c) Limiting torque (TLC)  
TLC-SG are connected when the torque generated by the servo motor reaches the torque set to  
internal torque limit value 1 or analog torque limit.  
3 - 27  
3. SIGNALS AND WIRING  
3.4.2 Speed control mode  
(1) Speed setting  
(a) Speed command and speed  
The servo motor is run at the speeds set in the parameters or at the speed set in the applied  
voltage of the analog speed command (VC). A relationship between the analog speed command  
(VC) applied voltage and the servo motor speed is shown below:  
The maximum speed is achieved at 10V. The speed at 10V can be changed using parameter No.  
25.  
Rated speed [r/min]  
Forward rotation (CCW)  
Speed [r/min]  
10  
CCW direction  
0
10  
VC applied voltage [V]  
CW direction  
Rated speed  
Reverse rotation (CW)  
The following table indicates the rotation direction according to forward rotation start (ST1) and  
reverse rotation start (ST2) combination:  
(Note) External input signals  
Rotation direction  
Analog speed command (VC)  
Internal speed  
commands  
ST2  
ST1  
Polarity  
0V  
Polarity  
Stop  
(Servo lock)  
CCW  
Stop  
(Servo lock)  
Stop  
Stop  
(Servo lock)  
CW  
Stop  
(Servo lock)  
CCW  
0
0
0
1
1
0
(No servo lock)  
CW  
CCW  
CW  
Stop  
Stop  
Stop  
Stop  
1
1
(Servo lock)  
(Servo lock)  
(Servo lock)  
(Servo lock)  
Note.0: ST1/ST2-SG off (open)  
1: ST1/ST2-SG on (short)  
The forward rotation start signal (ST1) and reverse rotation start signal (ST2) can be assigned to  
any pins of the connector CN1A, CN1B using parameters No. 43 to 48.  
Generally, make connection as shown below:  
Servo amplifier  
ST1  
ST2  
SG  
P15R  
2k  
VC  
LG  
SD  
2k  
Japan resistor  
RRS10 or equivalent  
3 - 28  
3. SIGNALS AND WIRING  
(b) Speed selection 1 (SP1), speed selection 2 (SP2) and speed command value  
Choose any of the speed settings made by the internal speed commands 1 to 3 using speed selection  
1 (SP1) and speed selection 2 (SP2) or the speed setting made by the analog speed command (VC).  
(Note) External input signals  
Speed command value  
SP2  
SP1  
0
0
1
1
0
1
0
1
Analog speed command (VC)  
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Note.0: SP1/SP2-SG off (open)  
1: SP1/SP2-SG on (short)  
By making speed selection 3 (SP3) usable by setting of parameter No. 43 to 48, you can choose  
the speed command values of analog speed command (VC) and internal speed commands 1 to 7.  
(Note) External input signals  
Speed command value  
SP3  
0
SP2  
0
SP1  
0
Analog speed command (VC)  
0
0
1
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Internal speed command 4 (parameter No. 72)  
Internal speed command 5 (parameter No. 73)  
Internal speed command 6 (parameter No. 74)  
Internal speed command 7 (parameter No. 75)  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note.0 : SP1/SP2/SP3-SG off (open)  
1 : SP1/SP2/SP3-SG on (short)  
The speed may be changed during rotation. In this case, the values set in parameters No. 11 and  
12 are used for acceleration/deceleration.  
When the speed has been specified under any internal speed command, it does not vary due to the  
ambient temperature.  
(2) Speed reached (SA)  
SA-SG are connected when the servo motor speed nearly reaches the speed set to the internal speed  
command or analog speed command.  
Internal speed  
command 2  
Internal speed  
command 1  
Set speed selection  
ON  
OFF  
Start (ST1,ST2)  
Servo motor speed  
ON  
OFF  
Speed reached (SA)  
(3) Torque limit  
As in Section 3.4.1 (5).  
3 - 29  
3. SIGNALS AND WIRING  
3.4.3 Torque control mode  
(1) Torque control  
(a) Torque command and generated torque  
A relationship between the applied voltage of the analog torque command (TC) and the torque  
generated by the servo motor is shown below.  
The maximum torque is generated at 8V. Note that the torque generated at 8V input can be  
changed with parameter No. 26.  
CCW direction  
Forward rotation (CCW)  
Max. torque  
Generated torque  
8
0.05  
0.05  
8
TC applied voltage [V]  
Max. torque (Note)  
CW direction  
Reverse rotation (CW)  
Generated torque limit values will vary about 5% relative to the voltage depending on products.  
Also the generated torque may vary if the voltage is low ( 0.05 to 0.05V) and the actual speed  
is close to the limit value. In such a case, increase the speed limit value.  
The following table indicates the torque generation directions determined by the forward rotation  
selection (RS1) and reverse rotation selection (RS2) when the analog torque command (TC) is used.  
(Note) External input signals  
Rotation direction  
Torque control command (TC)  
0V  
RS2  
RS1  
Polarity  
Polarity  
0
0
Torque is not generated.  
CCW (reverse rotation in  
driving mode/forward  
rotation in regenerative  
mode)  
Torque is not generated.  
CW (forward rotation in  
driving mode/reverse  
rotation in regenerative  
mode)  
0
1
Torque is not  
generated.  
CW (forward rotation in  
driving mode/reverse  
rotation in regenerative  
mode)  
CCW (reverse rotation in  
driving mode/forward  
rotation in regenerative  
mode)  
1
1
0
1
Torque is not generated.  
Torque is not generated.  
Note. 0: RS1/RS2-SG off (open)  
1: RS1/RS2-SG on (short)  
Generally, make connection as shown below:  
Servo amplifier  
RS1  
RS2  
SG  
TC  
8 to 8V  
LG  
SD  
3 - 30  
3. SIGNALS AND WIRING  
(b) Analog torque command offset  
Using parameter No. 30, the offset voltage of 999 to 999mV can be added to the TC applied  
voltage as shown below.  
Max. torque  
Parameter No.30 offset range  
999 to 999mV  
0
8( 8)  
TC applied voltage [V]  
(2) Torque limit  
By setting parameter No. 28 (internal torque limit 1), torque is always limited to the maximum value  
during operation. A relationship between limit value and servo motor-generated torque is as in (5) in  
section 3.4.1. Note that the analog torque limit (TLA) is unavailable.  
(3) Speed limit  
(a) Speed limit value and speed  
The speed is limited to the values set in parameters No. 8 to 10, 72 to 75 (internal speed limits 1 to  
7) or the value set in the applied voltage of the analog speed limit (VLA).  
A relationship between the analog speed limit (VLA) applied voltage and the servo motor speed is  
shown below.  
When the motor speed reaches the speed limit value, torque control may become unstable. Make  
the set value more than 100r/m greater than the desired speed limit value.  
Rated speed  
Forward rotation (CCW)  
Speed [r/min]  
CCW direction  
10  
0
10  
CW direction  
VLA applied voltage [V]  
Rated speed  
Reverse rotation (CW)  
The following table indicates the limit direction according to forward rotation selection (RS1) and  
reverse rotation selection (RS2) combination:  
(Note) External input signals  
Speed limit direction  
Analog speed limit (VLA)  
Internal speed  
commands  
RS1  
RS2  
Polarity  
CCW  
CW  
Polarity  
1
0
0
1
CW  
CCW  
CCW  
CW  
Note.0: RS1/RS2-SG off (open)  
1: RS1/RS2-SG on (short)  
Generally, make connection as shown below:  
Servo amplifier  
SP1  
SP2  
SG  
P15R  
VC  
2k  
2k  
LG  
Japan resistor  
RRS10 or equivalent  
SD  
3 - 31  
3. SIGNALS AND WIRING  
(b) Speed selection 1(SP1)/speed selection 2(SP2)/speed selection 3(SP3) and speed limit values  
Choose any of the speed settings made by the internal speed limits 1 to 7 using speed selection  
1(SP1), speed selection 2(SP2) and speed selection 3(SP3) or the speed setting made by the speed  
limit command (VLA), as indicated below.  
(Note) Input signals  
Setting of parameter  
No. 43 to 48  
Speed limit value  
SP3  
SP2  
0
SP1  
0
1
0
1
0
1
0
1
0
1
0
1
Analog speed command (VLA)  
When speed selection  
(SP3) is not used  
(initial status)  
0
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Analog speed command (VLA)  
1
1
0
0
0
0
1
1
1
1
0
0
Internal speed command 1 (parameter No. 8)  
Internal speed command 2 (parameter No. 9)  
Internal speed command 3 (parameter No. 10)  
Internal speed command 4 (parameter No. 72)  
Internal speed command 5 (parameter No. 73)  
Internal speed command 6 (parameter No. 74)  
Internal speed command 7 (parameter No. 75)  
1
1
When speed selection  
(SP3) is made valid  
0
0
1
1
Note.0: SP1/SP2/SP3-SG off (open)  
1: SP1/SP2/SP3-SG on (short)  
When the internal speed limits 1 to 7 are used to command the speed, the speed does not vary  
with the ambient temperature.  
(c) Limiting speed (VLC)  
VLC-SG are connected when the servo motor speed reaches the limit speed set to any of the  
internal speed limits 1 to 3 or analog speed limit.  
3 - 32  
3. SIGNALS AND WIRING  
3.4.4 Position/speed control change mode  
Set "0001" in parameter No. 0 to switch to the position/speed control change mode. This function is not  
available in the absolute position detection system.  
(1) Control change (LOP)  
Use control change (LOP) to switch between the position control mode and the speed control mode  
from an external contact. Relationships between LOP-SG status and control modes are indicated  
below:  
(Note) LOP  
Servo control mode  
Position control mode  
Speed control mode  
0
1
Note.0: LOP-SG off (open)  
1: LOP-SG on (short)  
The control mode may be changed in the zero-speed status. To ensure safety, change control after the  
servo motor has stopped. When position control mode is changed to speed control mode, droop pulses are  
reset.  
If the signal has been switched on-off at the speed higher than the zero speed and the speed is then  
reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown  
below:  
Position  
Speed  
Position  
control mode  
control mode  
control mode  
Zero speed  
level  
Servo motor speed  
ON  
Zero speed (ZSP)  
OFF  
ON  
Control change (LOP)  
(Note)  
(Note)  
OFF  
Note: When ZSP is not on, control cannot be changed if LOP is switched on-off.  
If ZSP switches on after that, control cannot not be changed.  
(2) Torque limit in position control mode  
As in Section 3.4.1 (5).  
3 - 33  
3. SIGNALS AND WIRING  
(3) Speed setting in speed control mode  
(a) Speed command and speed  
The servo motor is run at the speed set in parameter No. 8 (internal speed command 1) or at the  
speed set in the applied voltage of the analog speed command (VC). A relationship between analog  
speed command (VC) applied voltage and servo motor speed and the rotation directions determined  
by the forward rotation start signal (ST1) and reverse rotation start signal (ST2) are as in (a), (1) in  
section 3.4.2.  
Generally, make connection as shown below:  
Servo amplifier  
SP1  
SG  
P15R  
2k  
2k  
VC  
LG  
SD  
Japan resistor  
RRS10 or equivalent  
(b) Speed selection 1 (SP1) and speed command value  
Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and  
the speed set by the analog speed command (VC) as indicated in the following table:  
(Note) External input signals  
Speed command value  
SP1  
0
1
Analog speed command (VC)  
Internal speed command 1 (parameter No. 8)  
Note.0: SP1-SG off (open)  
1: SP1-SG on (short)  
The speed may also be changed during rotation. In this case, it is increased or decreased according  
to the value set in parameter No. 11 or 12.  
When the internal speed command 1 is used to command the speed, the speed does not vary with  
the ambient temperature.  
(c) Speed reached (SA)  
As in Section 3.4.2 (2).  
3 - 34  
3. SIGNALS AND WIRING  
3.4.5 Speed/torque control change mode  
Set "0003" in parameter No. 0 to switch to the speed/torque control change mode.  
(1) Control change (LOP)  
Use control change (LOP) to switch between the speed control mode and the torque control mode from  
an external contact. Relationships between LOP-SG status and control modes are indicated below:  
(Note) LOP  
Servo control mode  
Speed control mode  
Torque control mode  
0
1
Note.0: LOP-SG off (open)  
1: LOP-SG on (short)  
The control mode may be changed at any time. A change timing chart is shown below:  
Speed  
Torque  
Speed  
control mode control mode control mode  
ON  
Control change (LOP)  
Servo motor speed  
OFF  
(Note)  
Load torque  
10V  
0
Analog torque  
command (TC)  
Forward rotation in driving mode  
Note: When the start signal (ST1 ST2) is switched off as soon as the mode is changed to speed control,  
the servo motor comes to a stop according to the deceleration time constant.  
(2) Speed setting in speed control mode  
As in Section 3.4.2 (1).  
(3) Torque limit in speed control mode  
As in Section 3.4.1 (5).  
3 - 35  
3. SIGNALS AND WIRING  
(4) Speed limit in torque control mode  
(a) Speed limit value and speed  
The speed is limited to the limit value set in parameter No. 8 (internal speed limit 1) or the value  
set in the applied voltage of the analog speed limit (VLA). A relationship between the analog speed  
limit (VLA) applied voltage and the servo motor speed is as in (a), (3) in section 3.4.3.  
Generally, make connection as shown below:  
Servo amplifier  
SP1  
SG  
P15R  
2k  
VLA  
LG  
2k  
Japan resistor  
SD  
RRS10 or equivalent  
(b) Speed selection 1 (SP1) and speed limit value  
Use speed selection 1 (SP1) to select between the speed set by the internal speed command 1 and  
the speed set by the analog speed limit (VLA) as indicated in the following table:  
(Note) External input signals  
Speed command value  
SP1  
0
1
Analog speed limit (VLA)  
Internal speed limit 1 (parameter No. 8)  
Note.0: SP1-SG off (open)  
1: SP1-SG on (short)  
When the internal speed limit 1 is used to command the speed, the speed does not vary with the  
ambient temperature.  
(c) Limiting speed (VLC)  
As in (c), (3) in section 3.4.3.  
(5) Torque control in torque control mode  
As in Section 3.4.3 (1).  
(6) Torque limit in torque control mode  
As in Section 3.4.3 (2).  
3 - 36  
3. SIGNALS AND WIRING  
3.4.6 Torque/position control change mode  
Set "0005" in parameter No. 0 to switch to the torque/position control change mode.  
(1) Control change (LOP)  
Use control change (LOP) to switch between the torque control mode and the position control mode  
from an external contact. Relationships between LOP-SG status and control modes are indicated  
below:  
(Note) LOP  
Servo control mode  
Torque control mode  
Position control mode  
0
1
Note.0: LOP-SG off (open)  
1: LOP-SG on (short)  
The control mode may be changed in the zero-speed status.  
To ensure safety, change control after the servo motor has stopped. When position control mode is  
changed to torque control mode, droop pulses are reset.  
If the signal has been switched on-off at the speed higher than the zero speed and the speed is then  
reduced to the zero speed or less, the control mode cannot be changed. A change timing chart is shown  
below:  
Speed  
Torque  
Speed  
control mode control mode control mode  
Zero speed  
level  
Servo motor speed  
10V  
Analog torque  
command (TLA)  
0V  
ON  
Zero speed (ZSP)  
OFF  
ON  
Control change (LOP)  
OFF  
(2) Speed limit in torque control mode  
As in Section 3.4.3 (3).  
(3) Torque control in torque control mode  
As in Section 3.4.3 (1).  
(4) Torque limit in torque control mode  
As in Section 3.4.3 (2).  
(5) Torque limit in position control mode  
As in Section 3.4.1 (5).  
3 - 37  
3. SIGNALS AND WIRING  
3.5 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a  
stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the  
control circuit power supply from off to on, press the "SET" button on the current alarm screen, or turn  
the reset signal (RES) from off to on. However, the alarm cannot be reset unless its cause is removed.  
Main circuit  
control circuit  
power supply  
ON  
OFF  
ON  
Power off  
Power on  
Base circuit  
OFF  
Dynamic brake  
Valid  
Invalid  
Brake operation  
Brake operation  
Servo-on  
(SON)  
ON  
OFF  
ON  
Ready  
(RD)  
OFF  
ON  
Trouble  
(ALM)  
OFF  
ON  
1s  
Reset  
(RES)  
OFF  
50ms or more  
60ms or more  
Alarm occurs.  
Remove cause of trouble.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent  
(AL.32), overload 1 (AL.50) or overload 2 (AL.51) alarm after its occurrence, without removing  
its cause, the servo amplifier and servo motor may become faulty due to temperature rise.  
Securely remove the cause of the alarm and also allow about 30 minutes for cooling before  
resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative  
(AL.30) alarm after its occurrence, the external regenerative brake resistor will generate heat,  
resulting in an accident.  
(3) Instantaneous power failure  
Undervoltage (AL.10) occurs if power is restored after a 60ms or longer power failure of the  
control power supply or after a drop of the bus voltage to or below 200VDC. If the power failure  
persists further, the control power switches off. When the power failure is reset in this state, the  
alarm is reset and the servo motor will start suddenly if the servo-on signal (SON) is on. To  
prevent hazard, make up a sequence which will switch off the servo-on signal (SON) if an alarm  
occurs.  
(4) In position control mode (incremental)  
When an alarm occurs, the home position is lost. When resuming operation after deactivating  
the alarm, make a home position return.  
3 - 38  
3. SIGNALS AND WIRING  
3.6 Interfaces  
3.6.1 Common line  
The following diagram shows the power supply and its common line.  
CN1A  
CN1B  
DC24V  
CN1A  
CN1B  
VDD  
RA  
COM  
ALM .etc  
DO-1  
SON, etc.  
SG  
DI-1  
(Note)  
OPC  
PG NG  
PP NP  
SG  
SG  
Isolated  
OP  
LG  
15VDC 10%  
30mA  
P15R  
LA etc.  
Differential line  
driver output  
35mA max.  
LAR  
etc.  
TLA  
VC etc.  
Analog input  
( 10V/max. current)  
LG  
SD  
MO1  
MO2  
CN3  
Analog monitor output  
LG  
SD  
LG  
RDP  
RDN  
SDP  
SDN  
LG  
RS-422  
SD  
TXD  
RS-232C  
Servo motor encoder  
RXD  
CN2  
MR  
MRR  
LG  
Servo motor  
SM  
SD  
Ground  
Note: For the open collection pulse train input. Make the following  
connection for the different line driver pulse train input.  
OPC  
PG NG  
PP NP  
SG  
3 - 39  
3. SIGNALS AND WIRING  
3.6.2 Detailed description of the interfaces  
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in  
Sections 3.3.2.  
Refer to this section and connect the interfaces with the external equipment.  
(1) Digital input interface DI-1  
Give a signal with a relay or open collector transistor.  
Source input is also possible. Refer to (7) in this section.  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
Do not connect  
VDD-COM.  
24VDC  
VDD  
Servo amplifier  
R: Approx. 4.7  
COM  
24VDC  
VDD  
24VDC  
R: Approx. 4.7  
200mA or more  
(Note)  
COM  
For a transistor  
SON, etc.  
Approx. 5mA  
SON, etc.  
Switch  
TR  
SG  
Switch  
V CES 1.0V  
I CEO 100  
SG  
A
Note: This also applies to the use of the external power supply.  
(2) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush  
current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current:  
100mA or less)  
(a) Inductive load  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
24VDC  
Do not connect  
VDD  
Servo amplifier  
VDD-COM.  
24VDC  
VDD  
COM  
COM  
Load  
ALM, etc.  
SG  
24VDC  
10%  
Load  
ALM, etc.  
SG  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
If the diode is not  
connected as shown,  
the servo amplifier  
will be damaged.  
3 - 40  
3. SIGNALS AND WIRING  
(b) Lamp load  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
24VDC  
Servo amplifier  
Do not connect  
VDD-COM.  
VDD  
24VDC  
VDD  
COM  
COM  
R
R
24VDC  
ALM, etc.  
SG  
10%  
ALM, etc.  
SG  
(3) Pulse train input interface DI-2  
Provide a pulse train signal in the open collector or differential line driver system.  
(a) Open collector system  
1) Interface  
For use of internal power supply  
For use of external power supply  
Servo amplifier  
24VDC  
VDD  
Do not connect  
VDD-OPC.  
Servo amplifier  
Max. input pulse  
OPC  
24VDC  
frequency 200kpps  
VDD  
OPC  
Max. input pulse  
About 1.2k  
frequency 200kpps  
About 1.2k  
PP, NP  
24VDC  
PP, NP  
SG  
SD  
SG  
SD  
2) Conditions of the input pulse  
tc  
tHL  
tLH tHL 0.2 s  
tc 2 s  
PP 0.9  
0.1  
tF 3 s  
tc  
tLH  
tF  
NP  
3 - 41  
3. SIGNALS AND WIRING  
(b) Differential line driver system  
1) Interface  
Servo amplifier  
Max. input pulse  
frequency 500kpps  
Am26LS31 or equivalent  
PP(NP)  
About 100  
PG(NG)  
SD  
2) Conditions of the input pulse  
tc  
tHL  
tLH tHL 0.1 s  
0.9  
0.1  
PP PG  
tc 1 s  
tF 3 s  
tc  
tLH  
tF  
NP NG  
(4) Encoder pulse output DO-2  
(a) Open collector system  
Interface  
Max. output current : 35mA  
Servo amplifier  
Servo amplifier  
5 to 24VDC  
OP  
LG  
OP  
LG  
Photocoupler  
SD  
SD  
3 - 42  
3. SIGNALS AND WIRING  
(b) Differential line driver system  
1) Interface  
Max. output current: 35mA  
Servo amplifier  
Servo amplifier  
LA  
(LB, LZ)  
LA  
(LB, LZ)  
Am26LS32 or equivalent  
High-speed photocoupler  
100  
150  
LAR  
LAR  
(LBR, LZR)  
(LBR, LZR)  
LG  
SD  
SD  
2) Output pulse  
Servo motor CCW rotation  
LA  
LAR  
LB  
T
LBR  
/2  
LZ signal varies 3/8T on its leading edge.  
LZ  
LZR  
400 s or more  
OP  
(5) Analog input  
Input impedance 10 to 12k  
Servo amplifier  
15VDC  
P15R  
Upper limit setting 2k  
2k  
VC‚ etc  
Approx.  
LG  
10k  
SD  
(6) Analog output  
Output voltage 10V  
Max.1mA  
Max. output current  
Resolution : 10bit  
Servo amplifier  
10k  
MO1  
(MO2)  
Reading in one or  
both directions  
1mA meter  
A
LG  
SD  
3 - 43  
3. SIGNALS AND WIRING  
(7) Source input interface  
When using the input interface of source type, all Dl-1 input signals are of source type.  
Source output cannot be provided.  
For use of internal power supply  
Servo amplifier  
For use of external power supply  
Servo amplifier  
SG  
SG  
R: Approx. 4.7  
COM  
(Note)  
R: Approx. 4.7  
COM  
For a transistor  
Approx. 5mA  
SON,  
etc.  
Switch  
Switch  
SON,etc.  
24VDC  
VDD  
TR  
24VDC  
200mA or more  
VCES 1.0V  
ICEO 100 A  
Note: This also applies to the use of the external power supply.  
3 - 44  
3. SIGNALS AND WIRING  
3.7 Input power supply circuit  
When the servo amplifier has become faulty, switch power off on the servo  
amplifier power side. Continuous flow of a large current may cause a fire.  
Use the trouble signal to switch power off. Otherwise, a regenerative brake  
transistor fault or the like may overheat the regenerative brake resistor, causing a  
fire.  
CAUTION  
3.7.1 Connection example  
Wire the power supply and main circuit as shown below so that the servo-on signal turns off as soon as  
alarm occurrence is detected and power is shut off.  
A no-fuse breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply  
Emergency  
ON  
OFF  
stop  
MC  
RA  
MC  
SK  
MC  
NFB  
Servo amplifier  
L1  
3-phase  
200 to 230 VAC  
L2  
L3  
L11  
L21  
EMG  
SON  
SG  
Emergency stop  
Servo-on  
VDD  
COM  
ALM  
Trouble  
RA  
3 - 45  
3. SIGNALS AND WIRING  
(2) For 1-phase 100 to 120VAC or 1-phase 100 to 120VAC power supply  
Emergency  
stop  
ON  
MC  
OFF  
RA  
MC  
SK  
NFB  
MC  
Power supply  
1-phase 100 to  
120VAC or  
Servo amplifier  
(Note)  
L1  
L2  
1-phase 230VAC  
L3  
L11  
L21  
EMG  
SON  
SG  
Emergency stop  
Servo-on  
VDD  
COM  
ALM  
Trouble  
RA  
Note : Not provided for 1-phase 100 to 120VAC.  
3 - 46  
3. SIGNALS AND WIRING  
3.7.2 Terminals  
The positions and signal arrangements of the terminal blocks change with the capacity of the servo  
amplifier. Refer to Section 11.1.  
Symbol  
Signal  
Description  
Supply L1, L2 and L3 with the following power:  
For 1-phase 230VAC, connect the power supply to L1/L2 and leave L3 open.  
Servo amplifier MR-J2S-10A to MR-J2S-100A MR-J2S-10A1  
Power supply  
70A  
to 700A  
L1 L2 L3  
L1 L2  
to 40A1  
3-phase 200 to 230VAC,  
50/60Hz  
L1, L2, L3  
Main circuit power supply  
1-phase 230VAC,  
50/60Hz  
1-phase 100 to 120VAC,  
50/60Hz  
L1 L2  
U, V, W  
Servo motor output  
Connect to the servo motor power supply terminals (U, V, W).  
Servo amplifier  
MR-J2S-10A to 700A MR-J2S-10A1 to 40A1  
Power supply  
1-phase 200 to 230VAC,  
50/60Hz  
L11, L21  
Control circuit power supply  
L11 L21  
1-phase 100 to 120VAC,  
50/60Hz  
L11 L21  
1) MR-J2S-350A or less  
Wiring is factory-connected across P-D (servo amplifier built-in regenerative  
brake resistor).  
When using the regenerative brake option, always remove the wiring from  
across P-D and connect the regenerative brake option across P-C.  
P, C, D  
Regenerative brake option 2) MR-J2S-500A or more  
Wiring is factory-connected across P-C (servo amplifier built-in regenerative  
brake resistor).  
When using the regenerative brake option, always remove the wiring from  
across P-C and connect the regenerative brake option across P-C.  
Refer to Section 13.1.1 for details.  
When using the return converter or brake unit, connect it across P-N.  
Do not connect it to the servo amplifier of MR-J2S-350A or less.  
Refer to Sections 13.1.2 and 13.1.3 for details.  
Return converter  
Brake unit  
N
Connect this terminal to the protective earth (PE) terminals of the servo motor  
and control box for grounding.  
Protective earth (PE)  
3 - 47  
3. SIGNALS AND WIRING  
3.7.3 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above Section 3.7.1 using the magnetic contactor with  
the main circuit power supply (three-phase 200V: L1, L2, L3, single-phase 230V: L1, L2). Configure  
up an external sequence to switch off the magnetic contactor as soon as an alarm occurs.  
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power  
supply or before switching on the main circuit power supply. If the main circuit power supply is not  
on, the display shows the corresponding warning. However, by switching on the main circuit power  
supply, the warning disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on signal (SON) about 1 to 2s after the main circuit power  
supply is switched on. Therefore, when SON is switched on simultaneously with the main circuit  
power supply, the base circuit will switch on in about 1 to 2s, and the ready signal (RD) will switch  
on in further about 20ms, making the servo amplifier ready to operate. (Refer to paragraph (2) in  
this section.)  
4) When the reset signal (RES) is switched on, the base circuit is shut off and the servo motor shaft  
coasts.  
(2) Timing chart  
SON accepted  
(1 to 2s)  
ON  
power supply  
OFF  
ON  
Base circuit  
OFF  
60ms  
10ms  
10ms  
10ms  
Servo-on  
(SON)  
ON  
OFF  
60ms  
Reset  
(RES)  
ON  
OFF  
20ms  
20ms  
10ms  
20ms  
10ms  
Ready  
(RD)  
ON  
OFF  
(3) Emergency stop  
Make up a circuit which shuts off main circuit power as soon as EMG-SG are opened at an emergency  
stop. To ensure safety, always install an external emergency stop switch across EMG-SG. By  
disconnecting EMG-SG, the dynamic brake is operated to bring the servo motor to a sudden stop. At  
this time, the display shows the servo emergency stop warning (AL.E6).  
During ordinary operation, do not use the external emergency stop signal to alternate stop and run.  
The servo amplifier life may be shortened.  
Also, if the start signal is on or a pulse train is input during an emergency stop, the servo motor will  
rotate as soon as the warning is reset. During an emergency stop, always shut off the run command.  
Servo amplifier  
VDD  
COM  
EMG  
Emergency stop  
SG  
3 - 48  
3. SIGNALS AND WIRING  
3.8 Connection of servo amplifier and servo motor  
3.8.1 Connection instructions  
Insulate the connections of the power supply terminals to prevent an electric  
WARNING  
CAUTION  
shock.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier  
and servo motor. Otherwise, the servo motor will operate improperly.  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
The connection method differs according to the series and capacity of the servo motor and whether or not  
the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.  
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal of the  
servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective  
earth of the control box. Do not connect them directly to the protective earth of the control panel.  
Control box  
Servo  
amplifier  
Servo motor  
PE terminal  
(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
3.8.2 Connection diagram  
The following table lists wiring methods according to the servo motor types. Use the connection diagram  
which conforms to the servo motor used. For cables required for wiring, refer to Section 13.2.1. For  
encoder cable connection, refer to Section 13.1.4. For the signal layouts of the connectors, refer to Section  
3.8.3.  
For the servo motor connector, refer to Chapter 3 of the Servo Motor Instruction Manual.  
3 - 49  
3. SIGNALS AND WIRING  
Servo motor  
Connection diagram  
Servo amplifier  
Servo motor  
Motor  
U (Red)  
U
V
V (White)  
W (Black)  
(Green)  
W
(Note 1)  
24VDC  
B1  
B2  
(Note2)  
HC-KFS053 (B) to 73 (B)  
HC-MFS053 (B) to 73 (B)  
HC-UFS13 (B) to 73 (B)  
Electro-  
magnetic  
brake  
EMG  
To be shut off when servo  
on signal switches off or by  
alarm signal  
CN2  
Encoder  
Encoder cable  
Note:1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
U
V
U
V
Motor  
W
W
(Note 1)  
24VDC  
HC-SFS121 (B) to 301 (B)  
HC-SFS202 (B) 702 (B)  
HC-SFS203 (B) 353 (B)  
HC-UFS202 (B) to 502 (B)  
HC-RFS353 (B) to 503 (B)  
(Note2)  
B1  
B2  
Electro-  
magnetic  
brake  
EMG  
To be shut off when servo  
on signal switches off or by  
alarm signal  
CN2  
Encoder  
Encoder cable  
Note:1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
Servo amplifier  
Servo motor  
U
V
U
V
Motor  
W
W
(Note 1)  
24VDC  
HC-SFS81 (B)  
(Note2)  
B1  
B2  
HC-SFS52 (B) to 152 (B)  
HC-SFS53 (B) to 153 (B)  
HC-RFS103 (B) to 203 (B)  
HC-UFS72 (B) 152 (B)  
Electro-  
magnetic  
brake  
EMG  
To be shut off when servo  
on signal switches off or by  
alarm signal  
CN2  
Encoder  
Encoder cable  
Note:1. To prevent an electric shock, always connect the protective earth (PE) terminal of the  
servo amplifier to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3 - 50  
3. SIGNALS AND WIRING  
3.8.3 I/O terminals  
(1) HC-KFS HC-MFS HC-UFS3000r/min series  
Encoder connector signal arrangement  
Power supply lead  
4-AWG19 0.3m  
1
MR  
4
2
MRR  
5
3
BAT  
6
Power supply connector (Molex make)  
Without electromagnetic brake  
5557-04R-210 (receptacle)  
5556PBTL (Female terminal)  
With electromagnetic brake  
5557-06R-210 (receptacle)  
5556PBTL (Female terminal)  
Encoder cable 0.3m  
With connector 1-172169-9  
(AMP make)  
MD  
7
MDR  
8
9
P5  
LG  
SHD  
Power supply  
connector  
5557-04R-210  
Power supply  
connector  
5557-06R-210  
Pin Signal  
Pin Signal Lead wire color  
Lead wire color  
Red  
1
2
3
4
1
2
3
4
5
6
U
V
U
V
W
Red  
White  
Black  
1
2
3
4
1
2
3
4
5
6
White  
Black  
Earth Green/yellow  
W
Earth Green/yellow  
B1  
B2  
3 - 51  
3. SIGNALS AND WIRING  
(2) HC-SFS HC-RFS HC-UFS2000 r/min series  
Servo motor side connectors  
Servo motor  
Electromagnetic  
Motor plate  
For power supply For encoder  
(Opposite side)  
brake connector  
HC-SFS81(B)  
The connector  
for power is  
shared.  
CE05-2A22-  
23PD-B  
HC-SFS52(B) to 152(B)  
HC-SFS53(B) to 153(B)  
HC-SFS121(B) to 301(B)  
HC-SFS202(B) to 502 (B)  
HC-SFS203(B) 353(B)  
DOWN  
UP  
CE05-2A24-  
17PD-B  
MS3102A10SL-  
4P  
CE05-2A32-  
HC-SFS702(B)  
17PD-B  
MS3102A20-  
29P  
CE05-2A22-  
23PD-B  
HC-RFS103(B) to 203 (B)  
HC-RFS353(B) 503(B)  
HC-UFS72(B) 152(B)  
HC-UFS202(B) to 502(B)  
The connector  
for power is  
shared.  
CE05-2A24-  
10PD-B  
Encoder connector  
CE05-2A22-  
23PD-B  
Brake connector  
Power supply connector  
CE05-2A24-  
10PD-B  
MS3102A10SL-  
4P  
Power supply connector signal arrangement  
CE05-2A22-23PD-B  
Key  
CE05-2A24-10PD-B  
Key  
Pin  
Signal  
U
V
W
(Earth)  
Pin  
A
B
C
D
E
Signal  
U
V
W
A
B
C
D
E
F
F
A
F
A
C
G
H
B
E
B
(Earth)  
(Note) B1  
(Note) B2  
G
C
E
D
F
G
D
(Note) B1  
(Note) B2  
G
H
Note:24VDC,without  
polarity  
Note:24VDC,without  
polarity  
Encoder connector signal arrangement  
MS3102A20-29P  
Electromagnetic brake connector signal arrangement  
MS3102A10SL-4P  
Key  
Key  
Pin  
Signal  
Pin  
Signal  
Pin  
A
B
Signal  
(Note)B1  
(Note)B2  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
MD  
MDR  
MR  
M
B
A
C
L
J
N
G
D
T
P
K
Note:24VDC without  
polarity  
MRR  
SD  
B
E
A
S
R
H
BAT  
LG  
LG  
P5  
F
3 - 52  
3. SIGNALS AND WIRING  
3.9 Servo motor with electromagnetic brake  
Configure the electromagnetic brake operation circuit so that it is activated not only  
by the servo amplifier signals but also by an external emergency stop signal.  
Contacts must be open when  
servo-on signal is off or when an  
alarm (trouble) is present and when  
an electromagnetic brake signal.  
Circuit must be  
opened during  
emergency stop signal.  
Servo motor  
RA EMG  
CAUTION  
24VDC  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
POINT  
Refer to the Servo Motor Instruction Manual for specifications such as the  
power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor equipped with electromagnetic brake is used for applications  
requiring a brake to hold the motor shaft (vertical lift applications):  
1) Set "  
1
"in parameter No.1 to make the electromagnetic brake interlock signal (MBR) valid.  
Note that this will make the zero speed signal (ZSP) unavailable.  
2) Do not share the 24VDC interface power supply between the interface and electromagnetic  
brake. Always use the power supply designed exclusively for the electromagnetic brake.  
3) The brake will operate when the power (24VDC) switches off.  
4) While the reset signal is on, the base circuit is shut off. When using the servo motor with a  
vertical shaft, use the electromagnetic brake interlock signal (MBR).  
5) Switch off the servo-on signal after the servo motor has stopped.  
(1) Connection diagram  
Servo amplifier  
Servo motor  
Emergency  
stop  
RA  
B1  
Z
VDD  
COM  
MBR  
24VDC  
RA  
B2  
(2) Setting  
1) Set "  
1
"in parameter No.1 to make the electromagnetic brake interlock signal (MBR) valid.  
2) Using parameter No. 33 (electromagnetic brake sequence output), set a time delay (Tb) at servo-off  
from electromagnetic brake operation to base circuit shut-off as in the timing chart shown in (3) in  
this section.  
3 - 53  
3. SIGNALS AND WIRING  
(3) Timing charts  
(a) Servo-on signal command (from controller) ON/OFF  
Tb [ms] after the servo-on (SON) signal is switched off, the servo lock is released and the servo  
motor coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may  
be shorter. Therefore, when using the electromagnetic brake in a vertical lift application or the  
like, set Tb to about the same as the electromagnetic brake operation delay time to prevent a drop.  
Coasting  
0 r/min  
Servo motor speed  
Tb  
(60ms)  
(80ms)  
ON  
Base circuit  
OFF  
Invalid(ON)  
Valid(OFF)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake (MBR)  
ON  
Servo-on(SON)  
OFF  
(b) Emergency stop signal (EMG) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake release  
(180ms)  
(10ms)  
ON  
Base circuit  
OFF  
(180ms)  
Invalid (ON)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
Valid (OFF)  
Invalid (ON)  
Emergency stop (EMG)  
Valid (OFF)  
3 - 54  
3. SIGNALS AND WIRING  
(c) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake  
(10ms)  
ON  
Base circuit  
OFF  
Invalid(ON)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
Valid(OFF)  
No(ON)  
Trouble (ALM)  
Yes(OFF)  
(d) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
(Note)  
15 to 100ms  
Servo motor speed  
Base circuit  
Electromagnetic brake  
ON  
OFF  
(10ms or less)  
Invalid(ON)  
Valid(OFF)  
No(ON)  
Yes(OFF)  
ON  
Electromagnetic  
brake interlock(MBR)  
Electromagnetic brake  
operation delay time  
(Note 2)  
Trouble (ALM)  
Main circuit  
power  
Control circuit  
OFF  
Note: Changes with the operating status.  
(e) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
(10ms)  
Electromagnetic brake  
(Note 1)  
15ms or more  
Servo motor speed  
Electromagnetic brake  
ON  
Base circuit  
OFF  
10ms or less  
Invalid(ON)  
Valid(OFF)  
No(ON)  
Yes(OFF)  
ON  
Electromagnetic  
brake interlock  
(MBR)  
Electromagnetic brake  
operation delay time  
(Note 2)  
Trouble (ALM)  
Main circuit power  
supply  
OFF  
Note: 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status,  
the main circuit off warning (A.E9) occurs and the ALM signal does not turn off.  
3 - 55  
3. SIGNALS AND WIRING  
3.10 Grounding  
Ground the servo amplifier and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal of  
the servo amplifier with the protective earth (PE) of the control box.  
WARNING  
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on  
the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due to  
di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always  
ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Servo motor  
MC  
Servo amplifier  
L1  
NFB  
CN2  
(Note)  
Power supply  
3-phase  
200 to 230VAC,  
1-phase  
230VAC or  
1-phase  
100 to 120VAC  
Encoder  
L2  
L3  
L11  
L21  
U
U
V
V
SM  
W
W
CN1A CN1B  
Ensure to connect it to PE  
terminal of the servo amplifier.  
Do not connect it directly to  
the protective earth of  
the control panel.  
Outer  
box  
Protective earth(PE)  
Note: For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply.  
3 - 56  
3. SIGNALS AND WIRING  
3.11 Servo amplifier terminal block (TE2) wiring method  
(1) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is. (Cable size: 0.2 to  
2.5mm2)  
Approx. 10mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder  
the core as it may cause a contact fault. (Cable size: 0.2 to 2.5mm2)Alternatively, a bar  
terminal may be used to put the wires together.(Phoenix contact make)  
Bar terminal for 1 cable  
Bar terminal for 2 cable  
(Bar terminal ferrule with insulation sleeve)  
(Twin ferrule with insulation sleeve)  
Cable size  
Bar terminal type  
For 2 cables  
Crimping  
tool  
[mm2]  
AWG  
For 1 cable  
Al0.25-6YE  
0.25  
24  
Al0.25-8YE  
Al0.5-6WH  
Al0.5-8WH  
Al0.75-6GY  
Al0.75-8GY  
Al1-6RD  
0.5  
0.75  
1
20  
18  
18  
16  
14  
Al-TWIN2  
0.75-8GY  
0.75-10GY  
1-8RD  
Al-TWIN2  
Al-TWIN2  
Al-TWIN2  
Al-TWIN2  
Al-TWIN2  
Al-TWIN2  
Al-TWIN2  
CRIMPFOX-UD6  
Al1-8RD  
1-10RD  
Al1.5-6BK  
Al1.5-8BK  
Al2.5-8BU  
Al2.5-8BU-1000  
1.5-8BK  
1.5-12BK  
2.5-10BU  
2.5-13BU  
1.5  
2.5  
3 - 57  
3. SIGNALS AND WIRING  
(2) Connection  
Insert the core of the cable into the opening and tighten the screw with a flat-blade screwdriver so that  
the cable does not come off. (Tightening torque: 0.5 to 0.6N m) Before inserting the cable into the  
opening, make sure that the screw of the terminal is fully loose.  
When using a cable of 1.5mm2 or less, two cables may be inserted into one opening.  
Flat-blade screwdriver  
Tip thickness 0.4 to 0.6mm  
Overall width 2.5 to 3.5mm  
To loosen. To tighten.  
Cable  
Opening  
Control circuit terminal block  
3.12 Instructions for the 3M connector  
When fabricating an encoder cable or the like, securely connect the shielded external conductor of the  
cable to the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
Screw  
Cable  
Screw  
Ground plate  
3 - 58  
4. OPERATION  
4. OPERATION  
4.1 When switching power on for the first time  
Before starting operation, check the following:  
(1) Wiring  
(a) A correct power supply is connected to the power input terminals (L1, L2, L3, L11, L21) of the servo  
amplifier.  
(b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
(c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the  
power input terminals (L1, L2, L3) of the servo motor.  
(d) The servo amplifier and servo motor are grounded securely.  
(e) Note the following when using the regenerative brake option, brake unit or power return converter:  
1) For the MR-J2S-350A or less, the lead has been removed from across D-P of the control circuit  
terminal block, and twisted cables are used for its wiring.  
2) For the MR-J2S-500A or more, the lead has been removed from across P-C of the servo amplifier  
built-in regenerative brake resistor, and twisted cables are used for its wiring.  
(f) When stroke end limit switches are used, the signals across LSP-SG and LSN-SG are on during  
operation.  
(g) 24VDC or higher voltages are not applied to the pins of connectors CN1A and CN1B.  
(h) SD and SG of connectors CN1A and CN1B are not shorted.  
(i) The wiring cables are free from excessive force.  
(2) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
(3) Machine  
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.  
(b) The servo motor and the machine connected with the servo motor can be operated.  
4 - 1  
4. OPERATION  
4.2 Startup  
Do not operate the switches with wet hands. You may get an electric shock.  
WARNING  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
During power-on for some after power-off, do not touch or close a parts (cable etc.)  
to the servo amplifier heat sink, regenerative brake resistor, the servo motor, etc.  
Their temperatures may be high and you may get burnt or a parts may damaged.  
CAUTION  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
4.2.1 Selection of control mode  
Use parameter No. 0 to choose the control mode used. After setting, this parameter is made valid by  
switching power off, then on.  
4.2.2 Position control mode  
(1) Power on  
1) Switch off the servo-on (SON) signal.  
2) When main circuit power/control circuit power is switched on, the display shows "C (Cumulative  
feedback pulses)", and in two second later, shows data.  
In the absolute position detection system, first power-on results in the absolute position lost (AL.25)  
alarm and the servo system cannot be switched on. This is not a failure and takes place due to the  
uncharged capacitor in the encoder.  
The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then  
switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
500r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(2) Test operation 1  
Using jog operation in the test operation mode, make sure that the servo motor operates. (Refer to  
Section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for  
the parameter definitions and to Sections 6.5 for the setting method.  
Parameter No.  
Name  
Setting  
Description  
3
0
Control mode, regenerative brake  
option selection  
0
Position control mode  
MR-RB12 regenerative brake option is used.  
0
02  
Input filter 3.555ms (initial value)  
1
2
Function selection 1  
Electromagnetic brake interlock signal is not used.  
Used in incremental positioning system.  
1
5
Auto tuning  
Middle response (initial value) is selected.  
Auto tuning mode 1 is selected.  
Electronic gear numerator  
3
4
Electronic gear numerator (CMX)  
Electronic gear denominator (CDV)  
2
1
Electronic gear denominator  
After setting the above parameters, switch power off once. Then switch power on again to make  
the set parameter values valid.  
4 - 2  
4. OPERATION  
(4) Servo-on  
Switch the servo-on in the following procedure:  
1) Switch on main circuit/control power supply.  
2) Switch on the servo-on signal (SON).  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is  
locked.  
(5) Command pulse input  
Entry of a pulse train from the positioning device rotates the servo motor. At first, run it at low speed  
and check the rotation direction, etc. If it does not run in the intended direction, check the input  
signal.  
On the status display, check the speed, command pulse frequency, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the program of the positioning  
device.  
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing  
operation automatically adjusts gains. The optimum tuning results are provided by setting the  
response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)  
(6) Home position return  
Make home position return as required.  
(7) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor:  
Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that the stop  
pattern of stroke end (LSP/LSN) OFF is as described below.  
(a) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Emergency stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Alarm AL.E6 occurs.  
(d) Stroke end (LSP/LSN) OFF  
The servo motor is brought to a sudden stop and servo-locked. The motor may be run in the  
opposite direction.  
POINT  
A sudden stop indicates that a stop is made with the droop pulses erased.  
4 - 3  
4. OPERATION  
4.2.3 Speed control mode  
(1) Power on  
1) Switch off the servo-on (SON) signal.  
2) When main circuit power/control circuit power is switched on, the display shows "r (servo motor  
speed)", and in two second later, shows data.  
(2) Test operation  
Using jog operation in the test operation mode, make sure that the servo motor operates. (Refer to  
Section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for  
the parameter definitions and to Sections 6.5 for the setting method.  
Parameter No.  
Name  
Setting  
Description  
0
2
12  
5
Control mode, regenerative brake  
option selection  
0
Speed control mode  
Regenerative brake option is not used.  
1
2
Function selection 1  
Auto tuning  
Input filter 3.555ms (initial value)  
Electromagnetic brake interlock signal is used.  
1
Middle response (initial value) is selected.  
Auto tuning mode 1 is selected.  
Set 1000r/min.  
8
9
Internal speed command 1  
Internal speed command 2  
Internal speed command 3  
Acceleration time constant  
Deceleration time constant  
S-pattern acceleration/deceleration  
time constant  
1000  
1500  
2000  
1000  
500  
Set 1500r/min.  
10  
11  
12  
Set 2000r/min.  
Set 1000ms.  
Set 500ms.  
13  
0
Not used  
After setting the above parameters, switch power off once. Then switch power on again to make  
the set parameter values valid.  
(4) Servo-on  
Switch the servo-on in the following procedure:  
1) Switch on main circuit/control power supply.  
2) Switch on the servo-on signal (SON) (short SON-SG).  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is  
locked.  
(5) Start  
Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on  
forward rotation start (ST1) to run the motor in the forward rotation (CCW) direction or reverse  
rotation start (ST2) to run it in the reverse rotation (CW) direction. At first, set a low speed and check  
the rotation direction, etc. If it does not run in the intended direction, check the input signal.  
On the status display, check the speed, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the host controller or the like.  
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing  
operation automatically adjusts gains. The optimum tuning results are provided by setting the  
response level appropriate for the machine in parameter No. 2. (Refer to chapter 7)  
4 - 4  
4. OPERATION  
(6) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor:  
Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake. Note that  
simultaneous ON or simultaneous OFF of stroke end (LSP, LSN) OFF and forward rotation start  
(ST1) or reverse rotation start (ST2) signal has the same stop pattern as described below.  
(a) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Emergency stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Alarm AL.E6 occurs.  
(d) Stroke end (LSP/LSN) OFF  
The servo motor is brought to a sudden stop and servo-locked. The motor may be run in the  
opposite direction.  
(e) Simultaneous ON or simultaneous OFF of forward rotation start (ST1) and reverse rotation start  
(ST2) signals  
The servo motor is decelerated to a stop.  
POINT  
A sudden stop indicates that a stop is made at the deceleration time  
constant of zero.  
4.2.4 Torque control mode  
(1) Power on  
1) Switch off the servo-on (SON) signal.  
2) When main circuit power/control circuit power is switched on, the display shows "U (torque  
command voltage)", and in two second later, shows data.  
(2) Test operation  
Using jog operation in the test operation mode, make sure that the servo motor operates. (Refer to  
Section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for  
the parameter definitions and to Sections 6.5 for the setting method.  
Parameter No.  
Name  
Setting  
Description  
0
4
Control mode, regenerative brake  
option selection  
0
Torque control mode  
Regenerative brake option is not used.  
02  
1
Function selection 1  
Input filter 3.555ms (initial value)  
Electromagnetic brake interlock signal is not used.  
Set 1000r/min.  
Set 1500r/min.  
Set 2000r/min.  
Set 1000ms.  
Set 500ms.  
8
9
10  
11  
12  
Internal speed limit 1  
Internal speed limit 2  
Internal speed limit 3  
Acceleration time constant  
Deceleration time constant  
S-pattern acceleration/deceleration time  
constant  
1000  
1500  
2000  
1000  
500  
13  
0
Not used  
14  
28  
Torque command time constant  
Internal torque limit 1  
2000  
50  
Set 2000ms  
Controlled to 50% output  
After setting the above parameters, switch power off once. Then switch power on again to make the set  
parameter values valid.  
4 - 5  
4. OPERATION  
(4) Servo-on  
Switch the servo-on in the following procedure:  
1) Switch on main circuit/control power supply.  
2) Switch on the servo-on signal (SON) (short SON-SG).  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is  
locked.  
(5) Start  
Using speed selection 1 (SP1) and speed selection 2 (SP2), choose the servo motor speed. Turn on  
forward rotation select (DI4) to run the motor in the forward rotation (CCW) direction or reverse  
rotation select (DI3) to run it in the reverse rotation (CW) direction, generating torque. At first, set a  
low speed and check the rotation direction, etc. If it does not run in the intended direction, check the  
input signal.  
On the status display, check the speed, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the host controller or the like.  
(6) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor:  
Refer to Section 3.9, (2) for the servo motor equipped with electromagnetic brake.  
(a) Servo-on (SON) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Emergency stop (EMG) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Alarm AL.E6 occurs.  
(d) Simultaneous ON or simultaneous OFF of forward rotation selection (RS1) and reverse rotation  
selection (RS2) signals  
The servo motor coasts.  
POINT  
A sudden stop indicates that a stop is made at the deceleration time  
constant of zero.  
4.3 Multidrop communication  
You can use the RS-422 communication function (parameter No.16) to operate two or more servo  
amplifiers on the same bus. In this case, set station numbers to the servo amplifiers to recognize the servo  
amplifier to which the current data is being sent. Use parameter No. 15 to set the station numbers.  
Always set one station number to one servo amplifier. Normal communication cannot be made if the same  
station number is set to two or more servo amplifiers.  
For details, refer to Chapter 14.  
4 - 6  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
5.1 Parameter list  
5.1.1 Parameter write inhibit  
POINT  
After setting the parameter No. 19 value, switch power off, then on to  
make that setting valid.  
In the MR-J2S-A servo amplifier, its parameters are classified into the basic parameters (No. 0 to 19),  
expansion parameters 1 (No. 20 to 49) and expansion parameters 2 (No.50 to 84) according to their  
safety aspects and frequencies of use. In the factory setting condition, the customer can change the  
basic parameter values but cannot change the expansion parameter values. When fine adjustment, e.g.  
gain adjustment, is required, change the parameter No. 19 setting to make the expansion parameters  
write-enabled.  
The following table indicates the parameters which are enabled for reference and write by the setting of  
parameter No. 19. Operation can be performed for the parameters marked  
.
Basic parameters  
No. 0 to No. 19  
Expansion parameters 1 Expansion parameters 2  
No. 20 to No. 49 No. 50 to No. 84  
Parameter No. 19 setting  
Operation  
Reference  
Write  
0000  
(initial value)  
Reference  
Write  
No. 19 only  
No. 19 only  
000A  
000B  
000C  
000E  
100B  
100C  
100E  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
No. 19 only  
No. 19 only  
No. 19 only  
Reference  
Write  
Reference  
Write  
5 - 1  
5. PARAMETERS  
5.1.2 Lists  
POINT  
For any parameter whose symbol is preceded by *, set the parameter  
value and switch power off once, then switch it on again to make that  
parameter setting valid.  
The symbols in the control mode column of the table indicate the following  
modes:  
P : Position control mode  
S : Speed control mode  
T : Torque control mode  
(1) Item list  
Control  
mode  
Initial  
value  
Customer  
setting  
No. Symbol  
Name  
Unit  
0
1
2
3
4
5
6
*STY Control mode ,regenerative brake option selection  
*OP1 Function selection 1  
P S T  
0000  
0002  
0105  
1
P S T  
ATU Auto tuning  
P S  
P
CMX Electronic gear numerator  
CDV Electronic gear denominator  
P
1
INP  
PG1 Position loop gain 1  
Position command acceleration/deceleration time constant  
In-position range  
P
100  
35  
pulse  
rad/s  
P
7
8
PST  
SC1  
SC2  
SC3  
P
3
ms  
(Smoothing)  
Internal speed command 1  
Internal speed limit 1  
Internal speed command 2  
Internal speed limit 2  
Internal speed command 3  
Internal speed limit 3  
S
T
100  
100  
500  
500  
1000  
1000  
0
r/min  
r/min  
r/min  
r/min  
r/min  
r/min  
ms  
S
9
T
S
10  
T
11  
12  
13  
14  
15  
16  
17  
STA Acceleration time constant  
S T  
S T  
S T  
T
STB Deceleration time constant  
0
ms  
STC S-pattern acceleration/deceleration time constant  
TQC Torque command time constant  
*SNO Station number setting  
0
ms  
0
ms  
P S T  
P S T  
P S T  
P S T  
P S T  
0
station  
*BPS Serial communication function selection, alarm history clear  
MOD Analog monitor output  
0000  
0100  
0000  
0000  
18 *DMD Status display selection  
19 *BLK Parameter block  
5 - 2  
5. PARAMETERS  
Control  
mode  
Initial  
value  
Customer  
setting  
No. Symbol  
Name  
Unit  
20  
21  
22  
23  
24  
*OP2 Function selection 2  
P S  
0000  
0000  
0000  
0
*OP3 Function selection 3 (Command pulse selection)  
*OP4 Function selection 4  
P
P S T  
FFC Feed forward gain  
P
%
ZSP  
Zero speed  
P S T  
50  
r/min  
Analog speed command maximum speed  
Analog speed limit maximum speed  
S
T
T
(Note1)0 (r/min)  
(Note1)0 (r/min)  
25  
26  
27  
28  
29  
VCM  
TLC Analog torque command maximum output  
100  
%
pulse  
/rev  
%
*ENR Encoder output pulses  
P S T  
4000  
TL1  
Internal torque limit 1  
P S T  
S
100  
Analog speed command offset  
Analog speed limit offset  
Analog torque command offset  
Analog torque limit offset  
(Note2)  
mV  
mV  
mV  
mV  
mV  
mV  
ms  
VCO  
T
(Note2)  
T
0
0
30  
TLO  
S
31  
32  
33  
MO1 Analog monitor 1 offset  
P S T  
P S T  
P S T  
0
MO2 Analog monitor 2 offset  
0
MBR Electromagnetic brake sequence output  
100  
0.1  
34  
GD2 Ratio of load inertia moment to servo motor inertia moment  
P S  
70  
times  
rad/s  
rad/s  
rad/s  
ms  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
PG2 Position loop gain 2  
VG1 Speed loop gain 1  
VG2 Speed loop gain 2  
P
35  
P S  
P S  
P S  
P S  
177  
817  
VIC  
Speed integral compensation  
48  
VDC Speed differential compensation  
For manufacturer setting  
980  
0
*DIA Input signal automatic ON selection  
*DI1 Input signal selection 1  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
P S T  
0000  
0003  
0111  
0222  
0665  
0770  
0883  
0994  
0000  
*DI2 Input signal selection 2 (CN1B-5)  
*DI3 Input signal selection 3 (CN1B-14)  
*DI4 Input signal selection 4 (CN1A-8)  
*DI5 Input signal selection 5 (CN1B-7)  
*DI6 Input signal selection 6 (CN1B-8)  
*DI7 Input signal selection 7 (CN1B-9)  
*DO1 Output signal selection 1  
For notes, refer to next page.  
5 - 3  
5. PARAMETERS  
Control  
mode  
Initial  
value  
Customer  
setting  
No. Symbol  
Name  
Unit  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
For manufacturer setting  
0000  
0000  
0000  
0000  
0000  
0000  
0
*OP6 Function selection 6  
For manufacturer setting  
*OP8 Function selection 8  
*OP9 Function selection 9  
*OPA Function selection A  
P S T  
P S T  
P S T  
P
SIC  
Serial communication time-out selection  
For manufacturer setting  
P S T  
s
10  
NH1 Machine resonance suppression filter 1  
P S T  
P S T  
P S T  
0000  
0000  
0000  
NH2 Machine resonance suppression filter 2  
LPF Low-pass filter, adaptive vibration suppression control  
0.1  
times  
%
61 GD2B Ratio of load inertia moment to Servo motor inertia moment 2  
P S  
70  
62  
63  
64  
65  
66  
67  
68  
PG2B Position control gain 2 changing ratio  
VG2B Speed control gain 2 changing ratio  
VICB Speed integral compensation changing ratio  
*CDP Gain changing selection  
P
100  
100  
100  
0000  
10  
1
P S  
P S  
P S  
P S  
P S  
%
%
CDS Gain changing condition  
(Note3)  
ms  
CDT Gain changing time constant  
For manufacturer setting  
0
69 CMX2 Command pulse multiplying factor numerator 2  
70 CMX3 Command pulse multiplying factor numerator 3  
71 CMX4 Command pulse multiplying factor numerator 4  
Internal speed command 4  
P
1
P
1
P
1
S
72  
73  
74  
75  
SC4  
SC5  
SC6  
200  
300  
500  
800  
r/min  
r/min  
r/min  
Internal speed limit 4  
Internal speed command 5  
Internal speed limit 5  
Internal speed command 6  
Internal speed limit 6  
Internal speed command 7  
Internal speed limit 7  
Internal torque limit 2  
For manufacturer setting  
T
S
T
S
T
S
SC7  
TL2  
r/min  
%
T
76  
77  
78  
79  
80  
81  
82  
83  
84  
P S T  
100  
100  
10000  
10  
10  
100  
100  
100  
0
Note 1. The setting of "0" provides the rated servo motor speed.  
2. Depends on the servo amplifier.  
3. Depends on the parameter No. 65 setting.  
5 - 4  
5. PARAMETERS  
(2) Details list  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
0
*STY Control mode, regenerative brake option selection  
Used to select the control mode and regenerative brake option.  
0000  
Refer to P S T  
Name  
and  
0
0
function  
column.  
Select the control mode.  
0:Position  
1:Position and speed  
2:Speed  
3:Speed and torque  
4:Torque  
5:Torque and position  
Selection of regenerative brake option  
0:Not used  
1:FR-RC, FR-BU  
2:MR-RB032  
3:MR-RB12  
4:MR-RB32  
5:MR-RB30  
6:MR-RB50  
8:MR-RB31  
9:MR-RB51  
POINT  
Wrong setting may cause the regenerative brake option to burn.  
If the regenerative brake option selected is not for use with the  
servo amplifier, parameter error (AL.37) occurs.  
1
*OP1 Function selection 1  
0002  
Refer to P S T  
Name  
Used to select the input signal filter, pin CN1B-19 function and  
absolute position detection system.  
and  
function  
column.  
0
Input signal filter  
If external input signal causes chattering  
due to noise, etc., input filter is used to  
suppress it.  
0:None  
1:1.777[ms]  
2:3.555[ms]  
3:5.333[ms]  
CN1B-pin 19's function selection  
0:Zero Speed detection signal  
1:Electromagnetic brake interlock signal  
Selection of absolute position detection system  
(Refer to Chapter 15)  
0: Used in incremental system  
1: Used in absolute position detection system  
5 - 5  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
2
ATU Auto tuning  
0105  
Refer to  
Name  
P S  
Used to selection the response level, etc. for execution of auto tuning.  
Refer to Chapter 7.  
and  
function  
column.  
0
0
Auto tuning response level setting  
Set Response Machine resonance  
value  
1
level  
Low  
frequency guideline  
15Hz  
response  
2
20Hz  
3
25Hz  
4
30Hz  
5
35Hz  
6
45Hz  
7
8
9
55Hz  
70Hz  
85Hz  
Middle  
response  
A
B
C
D
E
F
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
High  
response  
If the machine hunts or generates  
large gear sound, decrease the  
set value.  
To improve performance, e.g.  
shorten the settling time, increase  
the set value.  
Gain adjustment mode selection  
(For more information, refer to Section 7.1.1.)  
Set  
value  
Gain adjustment mode  
Description  
Interpolation mode  
Fixes position control gain 1  
(parameter No. 6).  
0
Auto tuning mode 1  
Auto tuning mode 2  
Ordinary auto tuning.  
1
2
Fixes the load inertia moment  
ratio set in parameter No. 34.  
Response level setting can be  
changed.  
3
4
Manual mode 1  
Manual mode 2  
Simple manual adjustment.  
Manual adjustment of all gains.  
3
4
CMX Electronic gear numerator  
Used to set the electronic gear numerator value.  
1
1
0
1
P
P
For the setting, refer to Section 5.2.1.  
to  
Setting "0" automatically sets the resolution of the servo motor  
connected.  
65535  
For the HC-MFS series, 131072 pulses are set for example.  
CDV Electronic gear denominator  
1
to  
Used to set the electronic gear denominator value.  
For the setting, refer to Section 5.2.1.  
65535  
5 - 6  
5. PARAMETERS  
Initial  
value  
100  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
5
INP In-position range  
pulse  
0
to  
P
Used to set the in-position signal (INP) output range in the command  
pulse increments prior to electronic gear calculation.  
10000  
For example, when you want to set 10 m in the conditions that the  
ballscrew is direct coupled, the lead is 10mm, and the feedback  
pulses are 8192 pulses/rev (parameter No. 6 : 1), set "8" as indicated  
by the following expression:  
6
10 10  
8192 8.192  
8
3
10 10  
6
7
PG1 Position loop gain 1  
35  
red/s  
ms  
4
to  
2000  
P
P
Used to set the gain of position loop.  
Increase the gain to improve trackability in response to the position  
command.  
When auto turning mode 1,2 is selected, the result of auto turning is  
automatically used.  
PST Position command acceleration/deceleration time constant  
(position smoothing)  
3
0
to  
Used to set the time constant of a low pass filter in response to the  
position command.  
20000  
You can use parameter No. 55 to choose the primary delay or linear  
acceleration/deceleration control system. When you choose linear  
acceleration/deceleration, the setting range is 0 to 10ms. Setting of  
longer than 10ms is recognized as 10ms.  
POINT  
When you have chosen linear acceleration/deceleration, do not  
select control selection (parameter No. 0) and restart after  
instantaneous power failure (parameter No. 20). Doing so will  
cause the servo motor to make a sudden stop at the time of  
position control switching or restart.  
Example: When a command is given from a synchronizing detector,  
synchronous operation can be started smoothly if started during line  
operation.  
Synchronizing  
detector  
Start  
Servo motor  
Servo amplifier  
Without time  
constant setting  
With time  
Servo motor  
speed  
constant setting  
ON  
OFF  
t
Start  
0 to  
8
SC1 Internal speed command 1  
100  
r/min  
S
T
instan-  
taneous  
permi-  
ssible  
Used to set speed 1 of internal speed commands.  
Internal speed limit 1  
Used to set speed 1 of internal speed limits.  
speed  
5 - 7  
5. PARAMETERS  
Initial  
value  
500  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
9
SC2 Internal speed command 2  
r/min  
0 to  
instan-  
taneous  
permi-  
ssible  
speed  
0 to  
instan-  
taneous  
permi-  
ssible  
S
Used to set speed 2 of internal speed commands.  
Internal speed limit 2  
T
S
T
Used to set speed 2 of internal speed limits.  
10  
SC3 Internal speed command 3  
1000  
r/min  
ms  
Used to set speed 3 of internal speed commands.  
Internal speed limit 3  
Used to set speed 3 of internal speed limits.  
speed  
Acceleration time constant  
0
0
to  
S T  
11  
STA  
Used to set the acceleration time required to reach the rated speed  
from 0r/min in response to the analog speed command and internal  
speed commands 1 to 7.  
20000  
If the preset speed command is  
lower than the rated speed,  
acceleration/deceleration time  
Speed  
Rated  
speed  
will be shorter.  
Zero  
speed  
Time  
Parameter  
No.11 setting  
Parameter  
No.12 setting  
For example for the servo motor of 3000r/min rated speed, set 3000  
(3s) to increase speed from 0r/min to 1000r/min in 1 second.  
Deceleration time constant  
Used to set the deceleration time required to reach 0r/min from the  
rated speed in response to the analog speed command and internal  
speed commands 1 to 7.  
12  
13  
STB  
0
0
STC S-pattern acceleration/deceleration time constant  
Used to smooth start/stop of the servo motor.  
ms  
0
to  
S T  
Set the time of the arc part for S-pattern acceleration/deceleration.  
1000  
Speed command  
0r/min  
STC  
Time  
STC  
STC STB  
STA STC  
STA: Acceleration time constant (parameter No.11)  
STB: Deceleration time constant (parameter No.12)  
STC: S-pattern acceleration/deceleration time con-  
stant (parameter No.13)  
Long setting of STA (acceleration time constant) or STB (deceleration time  
constant) may produce an error in the time of the arc part for the setting of the  
S-pattern acceleration/deceleration time constant.  
The upper limit value of the actual arc part time is limited by  
2000000  
STA  
2000000  
STB  
for acceleration or by  
for deceleration.  
(Example)  
At the setting of STA 20000, STB 5000 and STC 200,  
the actual arc part times are as follows:  
Limited to 100[ms] since  
2000000  
20000  
During acceleration: 100[ms]  
During deceleration: 200[ms]  
100[ms] 200[ms].  
200[ms] as set since  
2000000  
5000  
400[ms] 200[ms].  
5 - 8  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
14  
TQC Torque command time constant  
0
ms  
0
to  
T
Used to set the constant of a low pass filter in response to the torque  
command.  
20000  
Torque command  
Torque  
After  
filtered  
Time  
TQC  
TQC  
TQC: Torque command time constant  
15 *SNO Station number setting  
Used to specify the station number for serial communication.  
0
sta-  
tion  
0
P S T  
to  
31  
Always set one station to one axis of servo amplifier. If one station  
number is set to two or more stations, normal communication cannot  
be made.  
16  
*BPS Serial communication function selection, alarm history clear  
Used to select the serial communication baudrate, select various  
communication conditions, and clear the alarm history.  
0000  
Refer to P S T  
Name  
and  
function  
column.  
Serial baudrate selection  
0: 9600 [bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid (reset to 0).  
Serial communication standard selection  
0: RS-232C used  
1: RS-485 used  
Serial communication response delay time  
0: Invalid  
1: Valid, reply sent after delay time of 800 s or more  
5 - 9  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
17  
MOD Analog monitor output  
0100  
Refer to P S T  
Name  
Used to selection the signal provided to the analog monitor output.  
(Refer to Section 5.3)  
and  
function  
column.  
0
0
Analog monitor output selection  
ch2 ch1  
Setting  
0
1
2
3
4
5
6
7
8
9
A
B
Servo motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque)  
Motor speed ( 8V/max. speed)  
Torque ( 8V/max. torque)  
Current command ( 8V/max. current command)  
Command pulse frequency ( 10V/500kpulse/s)  
Droop pulses  
( 10V/128 pulses)  
Droop pulses ( 10V/2048 pulses)  
Droop pulses ( 10V/8192 pulses)  
Droop pulses ( 10V/32768 pulses)  
Droop pulses ( 10V/131072 pulses)  
Bus voltage ( 8V/400V)  
5 - 10  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
18 *DMD Status display selection  
0000  
Refer to P S T  
Name  
Used to select the status display shown at power-on.  
and  
0 0  
function  
column.  
Selection of status display at  
power-on  
0: Cumulative feedback pulses  
1: Servo motor speed  
2: Droop pulses  
3: Cumulative command pulses  
4: Command pulse frequency  
5: Analog speed command voltage  
(Note 1)  
6: Analog torque command voltage  
(Note 2)  
7: Regenerative load ratio  
8: Effective load ratio  
9: Peak load ratio  
A: Instantaneous torque  
B: Within one-revolution position low  
C: Within one-revolution position high  
D: ABS counter  
E: Load inertia moment ratio  
F: Bus voltage  
Note: 1. In speed control mode. Analog  
speed limit voltage in torque  
control mode.  
2. In torque control mode. Analog  
torque limit voltage in speed or  
position control mode.  
Status display at power-on in  
corresponding control mode  
0: Depends on the control mode.  
Control Mode  
Position  
Status display at power-on  
Cumulative feedback pulses  
Position/speed  
Speed  
Cumulative feedback pulses/servo motor speed  
Servo motor speed  
Speed/torque  
Torque  
Servo motor speed/analog torque command voltage  
Analog torque command voltage  
Torque/position Analog torque command voltage/cumulative feedback pulses  
1: Depends on the first digit setting of this parameter.  
5 - 11  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
19  
*BLK Parameter block  
0000  
Refer to P S T  
Name  
Used to select the reference and write ranges of the parameters.  
Operation can be performed for the parameters marked  
.
and  
function  
column.  
Basic Expansion  
parameters parameters 1 parameters 2  
Expansion  
Set  
value  
Operation  
No. 0  
No. 20  
No. 50  
to No. 19  
to No. 49  
to No. 84  
0000  
(Initial  
value)  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
No. 19 only  
No. 19 only  
000A  
000B  
000C  
000E  
100B  
100C  
100E  
No. 19 only  
No. 19 only  
No. 19 only  
20  
*OP2 Function selection 2  
Used to select restart after instantaneous power failure,  
0000  
Refer to  
Name  
servo lock at a stop in speed control mode, and slight vibration  
suppression control.  
and  
function  
column.  
0
Restart after instantaneous  
power failure  
S
If the input power supply voltage  
had reduced in the speed control  
mode to stop the servo motor due  
to the undervoltage alarm (AL.10)  
but the supply voltage has return-  
ed to normal, the servo motor can  
be restarted by merely switching  
on the start signal without resett-  
ing the alarm.  
0: Invalid  
1: Valid  
Stop-time servo lock selection  
The shaft can be servo-locked to  
remain still at a stop in the speed  
control mode.  
0: Valid  
1: Invalid  
Slight vibration suppression control  
Made valid when auto tuning selection is  
set to "0400" in parameter No. 2.  
Used to suppress vibration at a stop.  
0: Invalid  
P
1: Valid  
5 - 12  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
21  
*OP3 Function selection 3 (Command pulse selection)  
Used to select the input form of the pulse train input signal.  
(Refer to Section 3.4.1.)  
0000  
Refer to  
Name  
P
and  
function  
column.  
0 0  
Command pulse train input form  
0: Forward/reverse rotation pulse train  
1: Signed pulse train  
2: A/B phase pulse train  
Pulse train logic selection  
0: Positive logic  
1: Negative logic  
22  
*OP4 Function selection 4  
0000  
Refer to  
Name  
Used to select stop processing at LSP/LSN signal off and choose  
VC/VLA voltage averaging.  
and  
function  
column.  
0
0
P S  
How to make a stop when LSP/LSN  
signal is valid. (Refer to Section 5.2.3.)  
0: Sudden stop  
1: Slow stop  
P S T  
VC/VLA voltage averaging  
Used to set the filtering time when the  
analog speed command (VC) voltage  
or analog speed limit (VLA) is imported.  
Set 0 to vary the speed to voltage fluctua-  
tion in real time. Increase the set value  
to vary the speed slower to voltage flu-  
ctuation.  
Set value  
Filtering time [ms]  
0
1
2
3
4
0
0.444  
0.888  
1.777  
3.555  
5 - 13  
5. PARAMETERS  
Initial  
value  
0
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
23  
FFC Feed forward gain  
Used to set the feed forward gain.  
%
0
to  
P
At the setting of 100%, droop pulses during constant-speed operation  
will be almost “zero”.  
100  
Note that sudden acceleration/deceleration will increase overshoot.  
As a guideline, set 1s or more as the acceleration/deceleration time  
constant to the rated speed when the feed forward gain is set to  
100%.  
24  
25  
ZSP Zero speed  
50  
0
r/min  
r/min  
0
to  
10000  
0
1
to  
50000  
P S T  
S
Used to set the output range of the zero speed signal (ZSP).  
VCM Analog speed command maximum speed  
Used to set the speed at the maximum input voltage (10V) of the  
analog speed command (VC).  
Set "0" to select the rated speed of the servo motor connected.  
Analog speed limit maximum speed  
Used to set the speed at the maximum input voltage (10V) of the  
analog speed limit (VLA).  
0
0
1
T
T
r/min  
%
to  
50000  
0
Set "0" to select the rated speed of the servo motor connected.  
TLC Analog torque command maximum output  
26  
100  
Used to set the output torque at the analog torque command voltage  
to  
(TC  
8V) of 8V on the assumption that the maximum torque is  
1000  
100[%]. For example, set 50 to output (maximum torque  
the TC of 8V.  
50/100) at  
27 *ENR Encoder output pulses  
4000 pulse/  
rev  
1
to  
P S T  
Used to set the encoder pulses (A-phase, B-phase) output by the  
servo amplifier.  
65535  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use parameter No. 54 to choose the output pulse setting or  
output division ratio setting.  
The number of A/B-phase pulses actually output is 1/4 times greater  
than the preset number of pulses.  
The maximum output frequency is 1.3Mpps (after multiplication by  
4). Use this parameter within this range.  
For output pulse designation  
Set "0  
" (initial value) in parameter No. 54.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
At the setting of 5600, for example, the actually output A/B-phase  
pulses are as indicated below:  
5600  
4
A B-phase output pulses  
1400[pulse]  
For output division ratio setting  
Set"1 "in parameter No. 54.  
The number of pulses per servo motor revolution is divided by the  
set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
At the setting of 8, for example, the actually output A/B-phase  
pulses are as indicated below:  
131072  
8
1
4
A B-phase output pulses  
4096[pulse]  
28  
TL1 Internal torque limit 1  
100  
%
0
to  
100  
P S T  
Set this parameter to limit servo motor-generated torque on the  
assumption that the maximum torque is 100[%].  
When 0 is set, torque is not produced.  
(Note)  
Torque limit  
TL  
0
1
Internal torque limit 1 (Parameter No. 28)  
Analog torque limit internal torque limit 1  
: Analog torque limit  
Analog torque limit internal torque limit 1  
: Internal torque limit 1  
Note.0 :TL-SG off (open)  
1 :TL-SG on(short)  
When torque is output in analog monitor output, this set value is the  
maximum output voltage ( 8V). (Refer to Section 3.4.1, (5))  
5 - 14  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
29  
VCO Analog speed command offset  
Depends mV  
on servo  
999  
to  
S
Used to set the offset voltage of the analog speed command (VC).  
For example, if CCW rotation is provided by switching on forward amplifier  
rotation start (ST1) with 0V applied to VC, set a negative value.  
When automatic VC offset is used, the automatically offset value is  
set to this parameter. (Refer to Section6.3.)  
999  
The initial value is the value provided by the automatic VC offset  
function before shipment at the VC-LG voltage of 0V.  
Analog speed limit offset  
T
Used to set the offset voltage of the analog speed limit (VLA).  
For example, if CCW rotation is provided by switching on forward  
rotation selection (RS1) with 0V applied to VLA, set a negative value.  
When automatic VC offset is used, the automatically offset value is  
set to this parameter. (Refer to Section6.3.)  
The initial value is the value provided by the automatic VC offset  
function before shipment at the VLA-LG voltage of 0V.  
30  
TLO Analog torque command offset  
0
mV  
mV  
999  
to  
999  
T
S
Used to set the offset voltage of the analog torque command (TC).  
Analog torque limit offset  
Used to set the offset voltage of the analog torque limit (TLA).  
MO1 Analog monitor 1 offset  
Used to set the offset voltage of the analog monitor ch1 output (MO1).  
MO2 Analog monitor 2 offset  
Used to set the offset voltage of the analog monitor ch2 output (MO2).  
MBR Electromagnetic brake sequence output  
Used to set the delay time (Tb) between electronic brake interlock  
signal (MBR) and the base drive circuit is shut-off.  
GD2 Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor  
shaft inertia moment. When auto tuning mode 1 and interpolation  
mode is selected, the result of auto tuning is automatically used.  
(Refer to section 7.1.1)  
31  
32  
33  
0
0
999  
to 999  
999  
to 999  
0
to  
1000  
0
P S T  
mV  
ms  
P S T  
P S T  
100  
34  
70  
35  
0.1  
times  
P S  
to  
3000  
In this case, it varies between 0 and 1000.  
35  
PG2 Position loop gain 2  
rad/s  
1
to  
P
Used to set the gain of the position loop.  
Set this parameter to increase the position response to level load  
disturbance. Higher setting increases the response level but is liable  
to generate vibration and/or noise.  
1000  
When auto tuning mode 1,2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
36  
37  
38  
VG1 Speed loop gain 1  
177  
817  
48  
rad/s  
rad/s  
ms  
20  
to  
8000  
P S  
P S  
P S  
Normally this parameter setting need not be changed.  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
When auto tuning mode 1 2, manual mode and interpolation mode  
is selected, the result of auto tuning is automatically used.  
VG2 Speed loop gain 2  
20  
to  
20000  
Set this parameter when vibration occurs on machines of low rigidity  
or large backlash. Higher setting increases the response level but is  
liable to generate vibration and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
VIC Speed integral compensation  
1
to  
1000  
Used to set the integral time constant of the speed loop.  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the  
result of auto tuning is automatically used.  
5 - 15  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
39  
VDC Speed differential compensation  
980  
0
to  
P S  
Used to set the differential compensation.  
Made valid when the proportion control signal is switched on.  
For manufacturer setting  
1000  
40  
41  
0
Must not be changed.  
*DIA Input signal automatic ON selection  
Used to set automatic ON of SON, LSP and LSN.  
0000  
Refer to P S T  
Name  
and  
0
function  
column.  
Servo-on signal (SON) input selection  
0: Switched on/off by external input.  
1: Switched on automatically in servo  
amplifier.  
(No need of external wiring)  
Forward rotation stroke end signal  
(LSP) input selection  
P S  
0: Switched on/off by external input.  
1: Switched on automatically in servo  
amplifier.  
(No need of external wiring)  
Reverse rotation stroke end signal (LSN)  
input selection  
0: Switched on/off by external input.  
1: Switched on automatically in servo  
amplifier.  
(No need of external wiring)  
42  
*DI1 Input signal selection 1  
0003  
Refer to  
Name  
and  
Used to assign the control mode changing signal input pins and to set  
the clear signal.  
function  
0 0  
column.  
P/S  
Control change signal (LOP) in-  
put pin assignment  
S/T  
T/P  
Used to set the control mode  
change signal input connector  
pins. Note that this parameter is  
made valid when parameter No.  
0 is set to select the position/spe-  
ed, speed/torque or torque/posi-  
tion change mode.  
Set value  
Connector pin No.  
CN1B-5  
0
1
2
3
4
5
CN1B-14  
CN1A-8  
CN1B-7  
CN1B-8  
CN1B-9  
Clear signal (CR) selection  
P S T  
0: Droop pulses are cleared on the  
leading edge.  
1: While on, droop pulses are always cleared.  
5 - 16  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
43  
*DI2 Input signal selection 2 (CN1B-5)  
0111  
Refer to P S T  
Name  
This parameter is unavailable when parameter No.42 is set to assign  
the control change signal (LOP) to CN1B-pin 5.  
Allows any input signal to be assigned to CN1B-pin 5.  
Note that the setting digit and assigned signal differ according to the  
control mode.  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 5  
selected.  
Torque control mode  
Signals that may be assigned in each control mode are indicated  
below by their symbols.  
Setting of any other signal will be invalid.  
(Note) Control mode  
Set value  
P
S
T
0
SON  
RES  
PC  
SON  
RES  
PC  
SON  
RES  
1
2
3
TL  
TL  
4
CR  
CR  
CR  
SP1  
SP2  
RS2  
RS1  
SP3  
5
SP1  
SP2  
ST1  
ST2  
SP3  
6
7
8
9
A
B
C
D
E
CM1  
CM2  
TL1  
TL1  
TL1  
CDP  
CDP  
CDP  
Note: P: Position control mode  
S: Speed control mode  
T: Torque control mode  
44  
*DI3 Input signal selection 3 (CN1B-14)  
0222  
Refer to P S T  
Name  
Allows any input signal to be assigned to CN1B-pin 14.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 14  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change signal (LOP) to CN1B-pin 14.  
5 - 17  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Input signal selection 4 (CN1A-8)  
Allows any input signal to be assigned to CN1A-pin 8.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
Unit  
45  
46  
47  
*DI4  
*DI5  
*DI6  
0665  
0770  
0883  
Refer to P S T  
Name  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1A-pin 8  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change signal (LOP) to CN1 A-pin 8.  
Input signal selection 5 (CN1B-7)  
Allows any input signal to be assigned to CN1B-pin 7.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
Refer to P S T  
Name  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 7  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change signal (LOP) to CN1 B-pin 7.  
Input signal selection 6 (CN1B-8)  
Allows any input signal to be assigned to CN1B-pin 8.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
Refer to P S T  
Name  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 8  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change signal (LOP) to CN1B-pin 8.  
When "Used in absolute position detection system" is selected in  
parameter No. 1, CN1B-pin 8 is in the ABS transfer mode (ABSM).  
(Refer to Section 15.5.)  
Input signal selection 7 (CN1B-9)  
48  
*DI7  
0994  
Refer to P S T  
Name  
Allows any input signal to be assigned to CN1B-pin 9.  
The assignable signals and setting method are the same as in input  
signal selection 2 (parameter No. 43).  
and  
function  
column.  
0
Position  
control mode  
Speed control  
mode  
Input signals of  
CN1B-pin 9  
selected.  
Torque control mode  
This parameter is unavailable when parameter No. 42 is set to  
assign the control change signal (LOP) to CN1B-pin 9.  
When "Used in absolute position detection system" is selected in  
parameter No. 1, CN1B-pin 9 is in the ABS request mode (ABSR).  
(Refer to Section 15.5.)  
5 - 18  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
49  
*DO1 Output signal selection 1  
0000  
Refer to  
Name  
P S T  
Used to select the connector pins to output the alarm code, warning  
(WNG) and battery warning (BWNG).  
and  
function  
column.  
0
Setting of alarm code output  
Connector pins  
Set value  
CN1B-19  
CN1A-18  
CN1A-19  
0
1
ZSP  
INP or SA  
RD  
Alarm code is output at alarm occurrence.  
(Note) Alarm code  
Alarm  
Name  
CN1B  
pin 19  
CN1A  
pin 19  
CN1A  
pin 18  
display  
88888 Watchdog  
AL.12 Memory error 1  
AL.13 Clock error  
AL.15 Memory error 2  
AL.17 Board error 2  
AL.19 Memory error 3  
AL.37 Parameter error  
0
0
0
AL.8A  
Serial communication time-out error  
AL.8E Serial communication error  
AL.30 Regenerative error  
AL.33 Overvoltage  
0
0
0
1
1
0
AL.10 Undervoltage  
AL.45 Main circuit device overheat  
AL.46 Servo motor overheat  
AL.50 Overload 1  
0
1
1
AL.51 Overload 2  
AL.24 Main circuit  
1
1
0
0
0
1
AL.32 Overcurrent  
AL.31 Overspeed  
AL.35 Command pulse frequency error  
AL.52 Error excessive  
AL.16 Encoder error 1  
AL.1A Motor combination error  
AL.20 Encoder error 2  
AL.25 Absolute position erase  
1
1
0
Note: 0:Pin-SG off (open)  
1:Pin-SG on (short)  
Setting of warning (WNG) output  
Select the connector pin to output warning.  
The old signal before selection will be unavailable.  
Set value  
Connector pin No.  
Not output.  
CN1A-19  
0
1
2
3
4
5
CN1B-18  
CN1A-18  
CN1B-19  
CN1B-6  
Setting of battery warning (BWNG) output  
Select the connector pin to output battery warning.  
The old signal before selection will be unavailable.  
Set this function as in the second digit of this  
parameter.  
Parameter No. 1 setting has priority.  
5 - 19  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
50  
51  
For manufacturer setting  
0000  
Must not be changed.  
*OP6 Function selection 6  
0000  
Refer to P S T  
Name  
Used to select the operation to be performed when the alarm reset  
signal switches on.  
and  
function  
column.  
0
0 0  
Operation to be performed when the  
alarm reset signal switches on  
0: Base circuit not switched off  
1: Base circuit switched off  
52  
53  
For manufacturer setting  
Must not be changed.  
0000  
0000  
*OP8 Function selection 8  
Refer to P S T  
Name  
Used to select the protocol of serial communication.  
and  
0
0
function  
column.  
Protocol checksum selection  
0: Yes (checksum added)  
1: No (checksum not added)  
Protocol checksum selection  
0: With station numbers  
1: No station numbers  
54  
*OP9 Function selection 9  
0000  
Refer to P S T  
Name  
Use to select the command pulse rotation direction, encoder output  
pulse direction and encoder pulse output setting.  
and  
function  
column.  
0
Servo motor rotation direction changing  
Changes the servo motor rotation  
direction for the input pulse train.  
Servo motor rotation direction  
Set value  
At forward rotation  
pulse input (Note)  
At reverse rotation  
pulse input (Note)  
0
1
CW  
CCW  
CW  
CCW  
Note. Refer to Section 3.4.1, (1), (a).  
Encoder pulse output phase changing  
Changes the phases of A, B-phase encoder pulses output .  
Servo motor rotation direction  
Set value  
CCW  
CW  
A phase  
B phase  
A phase  
B phase  
0
A phase  
B phase  
A phase  
B phase  
1
Encoder output pulse setting selection (refer to parameter No. 27)  
0: Output pulse setting  
1: Division ratio setting  
5 - 20  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
55  
*OPA Function selection A  
0000  
Refer to  
Name  
P
Used to select the position command acceleration/deceleration time  
constant (parameter No. 7) control system.  
and  
function  
column.  
0 0  
0
Position command acceleration/deceleration  
time constant control  
0: Primary delay  
1: Linear acceleration/deceleration  
56  
SIC  
Serial communication time-out selection  
0
P S T  
0
Used to set the communication protocol time-out period in [s].  
When you set "0", time-out check is not made.  
s
1 to 60  
57  
58  
For manufacturer setting  
Must not be changed.  
10  
NH1 Machine resonance suppression filter 1  
Used to selection the machine resonance suppression filter.  
(Refer to Section 8.1.)  
0000  
Refer to P S T  
Name  
and  
function  
column.  
0
Notch frequency selection  
Set "00" when you have set adaptive vibration  
suppression control to be "valid" or "held"  
(parameter No. 60:  
1
or  
2
).  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
value  
value  
value  
value  
00  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
281.3  
264.7  
250  
18  
187.5  
180  
01  
09  
11  
19  
02  
0A  
0B  
0C  
0D  
0E  
0F  
450  
12  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
03  
409.1  
375  
13  
236.8  
225  
04  
14  
05  
346.2  
321.4  
300  
15  
214.3  
204.5  
195.7  
06  
750  
16  
07  
642.9  
17  
145.2  
Notch depth selection  
Setting  
value  
Depth  
Gain  
0
1
40dB  
14dB  
Deep  
to  
2
3
8dB  
4dB  
Shallow  
59  
NH2 Machine resonance suppression filter 2  
0000  
Refer to P S T  
Name  
Used to set the machine resonance suppression filter.  
and  
0
function  
column.  
Notch frequency  
Same setting as in parameter No. 58  
However, you need not set "00" if you have  
set adaptive vibration suppression control to  
be "valid" or "held".  
Notch depth  
Same setting as in parameter No. 58  
5 - 21  
5. PARAMETERS  
Initial  
value  
Setting Control  
range mode  
Class No. Symbol  
Name and function  
Unit  
60  
LPF Low-pass filter/adaptive vibration suppression control  
Used to selection the low-pass filter and adaptive vibration  
suppression control. (Refer to Chapter 8.)  
0000  
Refer to P S T  
Name  
and  
function  
column.  
0
Low-pass filter selection  
0: Valid (Automatic adjustment)  
1: Invalid  
VG2 setting 10  
2 (1 GD2 setting 0.1)  
When you choose "valid",  
[Hz]  
bandwidth filter is set automatically.  
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration  
suppression control selection makes the machine  
resonance control filter 1 (parameter No. 58) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected  
and the filter is generated in response to resonance to  
suppress machine vibration.  
2: Held  
The characteristics of the filter generated so far are held,  
and detection of machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Used to set the sensitivity of machine resonance detection.  
0: Normal  
1: Large sensitivity  
61 GD2B Ratio of load inertia moment to servo motor inertia moment 2  
Used to set the ratio of load inertia moment to servo motor inertia  
moment when gain changing is valid.  
70  
0.1  
0
to  
P S  
P
times  
3000  
10  
62 PG2B Position control gain 2 changing ratio  
Used to set the ratio of changing the position control gain 2 when  
gain changing is valid.  
100  
%
%
%
to  
200  
Made valid when auto tuning is invalid.  
63 VG2B Speed control gain 2 changing ratio  
Used to set the ratio of changing the speed control gain 2 when gain  
changing is valid.  
100  
100  
10  
to  
P S  
P S  
200  
Made valid when auto tuning is invalid.  
64  
VICB Speed integral compensation changing ratio  
50  
to  
Used to set the ratio of changing the speed integral compensation  
when gain changing is valid. Made valid when auto tuning is invalid.  
1000  
5 - 22  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
65  
*CDP Gain changing selection  
0000  
Refer to  
Name  
P S  
Used to select the gain changing condition. (Refer to Section 8.3.)  
and  
0 0 0  
function  
column.  
Gain changing selection  
Gains are changed in accordance with the settings  
of parameters No. 61 to 64 under any of the following  
conditions:  
0: Invalid  
1: Gain changing (CDP) signal is ON  
2: Command frequency is equal to higher than  
parameter No. 66 setting  
3: Droop pulse value is equal to higher than  
parameter No. 66 setting  
4: Servo motor speed is equal to higher than  
parameter No. 66 setting  
66  
CDS Gain changing condition  
10  
1
kpps  
10  
to  
P S  
Used to set the value of gain changing condition (command  
frequency, droop pulses, servo motor speed) selected in parameter  
No. 65.The set value unit changes with the changing condition item.  
(Refer to Section 8.3.)  
pulse  
r/min 9999  
67  
68  
CDT Gain changing time constant  
ms  
0
to  
P S  
Used to set the time constant at which the gains will change in  
response to the conditions set in parameters No. 65 and 66.  
(Refer to Section 8.3.)  
100  
For manufacturer setting  
0
1
Must not be changed.  
69 CMX2 Command pulse multiplying factor numerator 2  
Used to set the multiplier for the command pulse.  
0 1  
to  
P
P
P
Setting "0" automatically sets the connected motor resolution.  
70 CMX3 Command pulse multiplying factor numerator 3  
Used to set the multiplier for the command pulse.  
65535  
0 1  
1
1
to  
Setting "0" automatically sets the connected motor resolution.  
71 CMX4 Command pulse multiplying factor numerator 4  
Used to set the multiplier for the command pulse.  
65535  
0 1  
to  
Setting "0" automatically sets the connected motor resolution.  
65535  
72  
SC4 Internal speed command 4  
Used to set speed 4 of internal speed commands.  
200  
r/min 0 to in-  
stanta-  
neous  
S
T
Internal speed limit 4  
permi-  
Used to set speed 4 of internal speed limits.  
ssible  
speed  
5 - 23  
5. PARAMETERS  
Initial  
value  
Setting Control  
Class No. Symbol  
Name and function  
Unit  
range  
mode  
0 to in-  
stanta-  
neous  
permi-  
ssible  
73  
74  
75  
SC5 Internal speed command 5  
300  
500  
800  
r/min  
S
Used to set speed 5 of internal speed commands.  
Internal speed limit 5  
T
S
T
S
Used to set speed 5 of internal speed limits.  
speed  
0 to in-  
stanta-  
neous  
permi-  
ssible  
SC6 Internal speed command 6  
r/min  
r/min  
Used to set speed 6 of internal speed commands.  
Internal speed limit 6  
Used to set speed 6 of internal speed limits.  
speed  
SC7 Internal speed command 7  
0 to in-  
stanta-  
neous  
permi-  
ssible  
Used to set speed 7 of internal speed commands.  
Internal speed limit 7  
T
Used to set speed 7 of internal speed limits.  
speed  
76  
TL2 Internal torque limit 2  
100  
%
0
P S T  
Set this parameter to limit servo motor torque on the assumption  
that the maximum torque is 100[%].  
to  
100  
When 0 is set, torque is not produced.  
When torque is output in analog monitor output, this set value is the  
maximum output voltage ( 8V). (Refer to Section 3.4.1, (5))  
For manufacturer setting  
77  
78  
79  
80  
81  
82  
83  
84  
00  
10000  
10  
Must not be changed.  
10  
100  
100  
100  
0
5 - 24  
5. PARAMETERS  
5.2 Detailed description  
5.2.1 Electronic gear  
Wrong setting can lead to unexpected fast rotation, causing injury.  
POINT  
CAUTION  
1
50  
CMX  
CDV  
The guideline of the electronic gear setting range is  
500.  
If the set value is outside this range, noise may be generated during  
acceleration/ deceleration or operation may not be performed at the preset  
speed and/or acceleration/deceleration time constants.  
The following specification symbols are required to calculate the electronic  
gear.  
(1) Concept of electronic gear  
The machine can be moved at any multiplication factor to input pulses.  
Motor  
CMX  
CDV  
Deviation  
counter  
CMX  
CDV  
Parameter No.3  
Parameter No.4  
Feedback pulse  
Electronic gear  
Encoder  
The following setting examples are used to explain how to calculate the electronic gear:  
POINT  
The following specification symbols are required to calculate the electronic  
gear  
Pb : Ballscrew lead [mm]  
n
: Reduction ratio  
Pt : Servo motor resolution [pulses/rev]  
Travel per command pulse [mm/pulse]  
Travel per servo motor revolution [mm/rev]  
Angle per pulse [ /pulse]  
0:  
:
:
S
: Angle per revolution [ /rev]  
(a) For motion in increments of 10 m per pulse  
Machine specifications  
n
n
NL/NM  
1/2  
NL  
Pb 10[mm]  
Ballscrew lead Pb 10 [mm]  
NM  
Reduction ratio: n 1/2  
Servo motor resolution: Pt 131072 [pulses/rev]  
Servo motor  
131072 [pulse/rev]  
CMX  
CDV  
Pt  
S
Pt  
n Pb  
131072  
1/2 10  
262144 32768  
1000 125  
3
0
0
10 10  
Hence, set 32768 to CMX and 125 to CDV.  
5 - 25  
5. PARAMETERS  
(b) Conveyor setting example  
For rotation in increments of 0.01 per pulse  
Servo motor  
131072 [pulse/rev]  
Machine specifications  
Table  
Table : 360 /rev  
Reduction ratio: n 4/64  
Servo motor resolution: Pt 131072 [pulses/rev]  
Timing belt : 4/64  
CMX  
CDV  
Pt  
131072  
4/64 360  
65536  
1125  
................................................................................. (5.2)  
0.01  
Since CMX is not within the setting range in this status, it must be reduced to the lowest term.  
When CMX has been reduced to a value within the setting range, round off the value to the  
nearest unit.  
CMX 65536  
1125  
26214.4  
450  
26214  
450  
CDV  
Hence, set 26214 to CMX and 450 to CDV.  
POINT  
For unlimited one-way rotation, e.g. an index table, indexing positions will  
be missed due to cumulative error produced by rounding off.  
For example, entering a command of 36000 pulses in the above example  
causes the table to rotate only:  
26214  
450  
1
4
36000  
360  
359.995  
131072 64  
Therefore, indexing cannot be done in the same position on the table.  
(2) Instructions for reduction  
The calculated value before reduction must be as near as possible to the calculated value after  
reduction.  
In the case of (1), (b) in this section, an error will be smaller if reduction is made to provide no fraction  
for CDV. The fraction of Expression (5.1) before reduction is calculated as follows.  
CMX  
CDV  
65536  
1125  
.................................................................................................................... (5.2)  
58.25422  
The result of reduction to provide no fraction for CMX is as follows.  
CMX  
CDV  
65536  
1125  
32768  
562.5  
32768  
563  
.................................................................................... (5.3)  
58.20249  
The result of reduction to provide no fraction for CDV is as follows.  
CMX  
CDV  
65536  
1125  
26214.4 26214  
450 450  
.................................................................................. (5.4)  
58.25333  
As a result, it is understood that the value nearer to the calculation result of Expression (5.2) is the  
result of Expression (5.4). Accordingly, the set values of (1), (b) in this section are CMX 26214,  
CDV 450.  
5 - 26  
5. PARAMETERS  
(3) Setting for use of AD75P  
The AD75P also has the following electronic gear parameters. Normally, the servo amplifier side  
electronic gear must also be set due to the restriction on the command pulse frequency (differential  
400kpulse/s, open collector 200kpulse/s).  
AP: Number of pulses per motor revolution  
AL: Moving distance per motor revolution  
AM: Unit scale factor  
AP75P  
Servo amplifier  
Command  
value  
AP  
AL AM  
CMX  
CDV  
Deviation  
counter  
Control  
unit  
Command  
pulse  
Electronic gear  
Electronic gear  
Feedback pulse  
Servo motor  
The resolution of the servo motor is 131072 pulses/rev. For example, the pulse command needed to  
rotate the servo motor is as follows  
Servo motor speed [r/min]  
Required pulse command  
2000  
3000  
131072 2000/60 4369066 pulse/s  
131072 3000/60 6553600 pulse/s  
For the AD75P, the maximum value of the pulse command that may be output is 200kpulse/s in the  
open collector system or 400kpulse/s in the differential line driver system. Hence, either of the servo  
motor speeds exceeds the maximum output pulse command of the AD75P.  
Use the electronic gear of the servo amplifier to run the servo motor under the maximum output pulse  
command of the AD75P.  
5 - 27  
5. PARAMETERS  
To rotate the servo motor at 3000r/min in the open collector system (200kpulse/s), set the electronic  
gear as follows  
CMX N0  
CDV 60  
f
pt  
f
N
Pt  
:
:
:
Input pulses [pulse/s]  
Servo motor speed [r/min]  
Servo motor resolution [pulse/rev]  
0
CMX 3000  
131072  
200  
60  
CDV  
CMX 3000 131072  
60 200  
3000 131072 4096  
60 200000 125  
CDV  
The following table indicates the electronic gear setting example (ballscrew lead 10mm) when the  
AD75P is used in this way.  
Rated servo motor speed  
Input system  
3000r/min  
Differential Open  
2000r/min  
Differential  
Open  
collector  
200  
line driver  
500  
collector  
200  
line driver  
500  
Max. input pulse frequency [kpulse/s]  
Feedback pulse/revolution [pulse/rev]  
Electronic gear (CMX/CDV)  
Servo amplifier  
131072  
4096/125  
131072  
8192/375  
2048/125  
400  
4096/375  
400  
Command pulse frequency [kpulse/s] (Note)  
Number of pulses per servo motor revolution as  
viewed from AD75P[pulse/rev]  
200  
200  
4000  
10000  
6000  
15000  
AP  
AL  
AM  
AP  
AL  
AM  
1
1
1
1
1
1
1
1
Minimum command unit  
AD75P  
1pulse  
Electronic gear  
1
1
1
1
4000  
1000  
10  
10000  
1000  
10  
6000  
1000  
10  
15000  
1000  
10  
Minimum command unit  
0.1 m  
Note: Command pulse frequency at rated speed  
5 - 28  
5. PARAMETERS  
5.2.2 Analog output  
The servo status can be output to two channels in terms of voltage. Use this function when using an  
ammeter to monitor the servo status or synchronizing the torque/speed with the other servo.  
(1) Setting  
Change the following digits of parameter No.17:  
Parameter No. 17  
0
0
Analog monitor ch1 output selection  
(Signal output to across MO1-LG)  
Analog monitor ch2 output selection  
(Signal output to across MO2-LG)  
Parameters No.31 and 32 can be used to set the offset voltages to the analog output voltages. The setting  
range is between 999 and 999mV.  
Parameter No.  
Description  
Setting range [mV]  
31  
32  
Used to set the offset voltage for the analog monitor ch1 output.  
Used to set the offset voltage for the analog monitor ch2 output.  
999 to 999  
5 - 29  
5. PARAMETERS  
(2) Set content  
The servo amplifier is factory-set to output the motor speed to ch1 and the torque to ch2. The setting  
can be changed as listed below by changing the parameter No.17 value:  
Refer to Appendix 2 for the measurement point.  
Setting  
Output item  
Motor speed  
Description  
Setting  
Output item  
Droop pulses  
Description  
CCW direction  
CCW direction  
0
6
10[V]  
8[V]  
( 10V/128pulse)  
128[pulse]  
Max. speed  
0
0
Max. speed  
8[V]  
128[pulse]  
10[V]  
CCW direction  
CW direction  
8[V]  
CW direction  
10[V]  
1
2
3
4
5
Torque  
7
Droop pulses  
Driving in CCW direction  
( 10V/2048pulse)  
2048[pulse]  
Max. torque  
0
0
2048[pulse]  
Max. torque  
10[V]  
8[V]  
Driving in CW direction  
CW direction  
10[V]  
CCW direction  
Motor speed  
8
Droop pulses  
( 10V/8192pulse)  
CW  
direction  
CCW  
direction  
8[V]  
8192[pulse]  
0
8192[pulse]  
Max. speed  
0
Max. speed  
10[V]  
CCW direction  
CW direction  
10[V]  
Torque  
9
Droop pulses  
( 10V/32768pulse)  
Driving in  
CW direction 8[V]  
Driving in  
CCW direction  
32768[pulse]  
0
32768[pulse]  
Max. torque  
8[V]  
Max. command  
current  
0
Max. torque  
10[V]  
CCW direction  
CW direction  
10[V]  
CCW direction  
Current command  
(Torque command)  
A
Droop pulses  
( 10V/131072pulse)  
(Max. torque  
command)  
131072[pulse]  
0
0
Max. command  
current  
(Max. torque  
131072[pulse]  
10[V]  
command)  
8[V]  
CW direction  
10[V]  
CW direction  
8[V]  
CCW direction  
Command pulse  
frequency  
B
Bus voltage  
500kpps  
0
500kpps  
0
400[V]  
10[V]  
CW direction  
5 - 30  
5. PARAMETERS  
(3) Analog monitor block diagram  
5 - 31  
5. PARAMETERS  
5.2.3 Using forward/reverse rotation stroke end to change the stopping pattern  
The stopping pattern is factory-set to make a sudden stop when the forward/reverse rotation stroke end is  
made valid. A slow stop can be made by changing the parameter No. 22 value.  
Parameter No.22 Setting  
Stopping method  
Sudden stop  
0
Position control mode  
Speed control mode  
Slow stop  
: Motor stops with droop pulses cleared.  
(initial value)  
: Motor stops at deceleration time constant of zero.  
Position control mode  
: The motor is decelerated to a stop in accordance with the  
parameter No. 7 value.  
1
Speed control mode  
: The motor is decelerated to a stop in accordance with the  
parameter No. 12 value.  
5.2.4 Alarm history clear  
The servo amplifier stores one current alarm and five past alarms from when its power is switched on  
first. To control alarms which will occur during operation, clear the alarm history using parameter No.16  
before starting operation.  
Clearing the alarm history automatically returns to "  
0 ".  
After setting, this parameter is made valid by switch power from OFF to ON.  
Parameter No.16  
Alarm history clear  
0: Invalid (not cleared)  
1: Valid (cleared)  
5 - 32  
5. PARAMETERS  
5.2.5 Position smoothing  
By setting the position command acceleration/deceleration time constant (parameter No.7), you can run  
the servo motor smoothly in response to a sudden position command.  
The following diagrams show the operation patterns of the servo motor in response to a position command  
when you have set the position command acceleration/deceleration time constant.  
Choose the primary delay or linear acceleration/deceleration in parameter No. 55 according to the  
machine used.  
(1) For step input  
: Input position command  
: Position command after  
filtering for primary delay  
: Position command after filtering  
for linear acceleration/deceleration  
: Position command acceleration/  
t
deceleration time constant (parameter No. 7)  
t
t
Time  
(3t)  
(2) For trapezoidal input  
(3t)  
t
: Input position command  
: Position command after filtering  
for linear acceleration/deceleration  
: Position command after  
filtering for primary delay  
t
: Position command acceleration/  
deceleration time constant  
(parameter No. 7)  
t
Time  
(3t)  
5 - 33  
5. PARAMETERS  
MEMO  
5 - 34  
6. DISPLAY AND OPERATION  
6. DISPLAY AND OPERATION  
6.1 Display flowchart  
Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display,  
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external  
sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move  
to the next screen.  
To refer to or set the expansion parameters, make them valid with parameter No. 19 (parameter write  
disable).  
button  
MODE  
Expansion  
parameters 1  
Expansion  
parameters 2  
Basic  
Status display  
Diagnosis  
Alarm  
parameters  
(Note)  
Cumulative feedback  
pulses [pulse]  
Sequence  
Current alarm  
Last alarm  
Parameter No. 0  
Parameter No. 1  
Parameter No. 20  
Parameter No. 21  
Parameter No. 50  
Parameter No. 51  
External I/O  
signal display  
Motor speed  
[r/min]  
Droop pulses  
[pulse]  
Output signal  
forced output  
Second alarm in past  
UP  
Cumulative command  
pulses [pulse]  
Test operation  
Jog feed  
Third alarm in past  
Fourth alarm in past  
DOWN  
Command pulse  
frequency [kpps]  
Test operation  
Positioning operation  
Parameter No. 18  
Parameter No. 19  
Parameter No. 48  
Parameter No. 49  
Parameter No. 83  
Parameter No. 84  
Speed command voltage  
Speed limit voltage[mV]  
Test operation  
Motor-less operation  
Fifth alarm in past  
Sixth alarm in past  
Parameter error No.  
Test operation  
Torque limit voltage  
Torque command voltage  
[mV]  
Machine analyzer operation  
Regenerative load  
ratio [%]  
Software version L  
Software version H  
Automatic VC offset  
Effective load ratio  
[%]  
Peak load ratio  
[%]  
Instantaneous torque  
[%]  
Motor series ID  
Motor type ID  
Encoder ID  
Within one-revolution  
position low [pulse]  
Within one-revolution  
position, high [100 pulses]  
ABS counter  
[rev]  
Load inertia moment  
ratio [times]  
Bus voltage [V]  
Note: The initial status display at power-on depends on the control mode.  
Position control mode: Cumulative feedback pulses(C), Speed control mode: Motor speed(r),  
Torque control mode: Torque command voltage(U)  
Also, parameter No. 18 can be used to change the initial indication of the status display at power-on.  
6 - 1  
6. DISPLAY AND OPERATION  
6.2 Status display  
The servo status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP" or  
"DOWN" button to change display data as desired. When the required data is selected, the corresponding  
symbol appears. Press the "SET" button to display its data. At only power-on, however, data appears after  
the symbol of the status display selected in parameter No. 18 has been shown for 2[s].  
The servo amplifier display shows the lower five digits of 16 data items such as the motor speed.  
6.2.1 Display examples  
The following table lists display examples:  
Displayed data  
Item  
Status  
Servo amplifier display  
Forward rotation at 3000r/min  
Motor speed  
Reverse rotation at 3000r/min  
Reverse rotation is indicated by " ".  
Load inertia  
moment  
15.5 times  
11252pulse  
Multi-  
revolution  
counter  
12566pulse  
Lit  
Negative value is indicated by the lit decimal points in the upper four  
digits.  
6 - 2  
6. DISPLAY AND OPERATION  
6.2.2 Status display list  
The following table lists the servo statuses that may be shown:  
Refer to Appendix 2 for the measurement point.  
Display  
range  
Name  
Symbol  
Unit  
Description  
Cumulative feedback  
pulses  
C
pulse  
Feedback pulses from the servo motor encoder are counted and  
displayed. The value in excess of 99999 is counted, bus since the  
servo amplifier display is five digits, it shows the lower five digits of  
the actual value. Press the "SET" button to reset the display value to  
zero.  
99999  
to  
99999  
Reverse rotation is indicated by the lit decimal points in the upper  
four digits.  
Servo motor speed  
Droop pulses  
r
r/min  
pulse  
The servo motor speed is displayed.  
The value rounded off is displayed in 0.1r/min.  
5400  
to  
5400  
99999  
to  
E
The number of droop pulses in the deviation counter is displayed.  
When the servo motor is rotating in the reverse direction, the  
decimal points in the upper four digits are lit.  
99999  
Since the servo amplifier display is five digits, it shows the lower five  
digits of the actual value.  
The number of pulses displayed is not yet multiplied by the electronic  
gear.  
Cumulative command  
pulses  
P
pulse  
The position command input pulses are counted and displayed.  
As the value displayed is not yet multiplied by the electronic gear  
(CMX/CDV), it may not match the indication of the cumulative  
feedback pulses.  
99999  
to  
99999  
The value in excess of 99999 is counted, but since the servo  
amplifier display is five digits, it shows the lower five digits of the  
actual value. Press the "SET" button to reset the display value to  
zero. When the servo motor is rotating in the reverse direction, the  
decimal points in the upper four digits are lit.  
Command pulse  
frequency  
n
F
kpps  
V
The frequency of the position command input pulses is displayed.  
The value displayed is not multiplied by the electronic gear  
(CMX/CDV).  
(1) Torque control mode  
Analog speed limit (VLA) voltage is displayed.  
(2) Speed control mode  
800  
to  
800  
10.00  
to  
10.00  
Analog speed  
command voltage  
Analog speed limit  
voltage  
Analog speed command (VC) voltage is displayed.  
Analog torque  
command voltage  
Analog torque limit  
voltage  
U
V
(1) Position control mode, speed control mode  
0
to  
10V  
10  
to  
Analog torque limit (TLA) voltage is displayed.  
(2) Torque control mode  
Analog torque command (TLA) voltage is displayed.  
10V  
0
to  
100  
0
to  
300  
0
to  
Regenerative load  
ratio  
L
J
%
%
The ratio of regenerative power to permissible regenerative power is  
displayed in %.  
Effective load ratio  
Peak load ratio  
The continuous effective load torque is displayed.  
The effective value is displayed relative to the rated torque of 100%.  
b
%
The maximum torque generated during acceleration/deceleration, etc.  
The highest value in the past 15 seconds is displayed relative to the  
rated torque of 100%.  
400  
Instantaneous torque  
T
%
Torque that occurred instantaneously is displayed.  
The value of the torque that occurred is displayed in real time  
relative to the rate torque of 100%.  
Position within one revolution is displayed in encoder pulses.  
The value returns to 0 when it exceeds the maximum number of  
pulses.  
0
to  
400  
0
to  
Within one-revolution  
position low  
Cy1  
pulse  
99999  
The value is incremented in the CCW direction of rotation.  
6 - 3  
6. DISPLAY AND OPERATION  
Display  
range  
Name  
Symbol  
Unit  
Description  
Within one-revolution  
position high  
Cy2  
100  
The within one-revolution position is displayed in 100 pulse  
increments of the encoder.  
0
to  
pulse  
The value returns to 0 when it exceeds the maximum number of  
pulses.  
1310  
The value is incremented in the CCW direction of rotation.  
Travel value from the home position in the absolute position  
detection systems is displayed in terms of the absolute position  
detectors counter value.  
ABS counter  
LS  
dC  
Pn  
rev  
0.1  
32768  
to  
32767  
0.0  
Load inertia moment  
ratio  
The estimated ratio of the load inertia moment to the servo motor  
Times shaft inertia moment is displayed.  
to  
300.0  
0
Bus voltage  
V
The voltage (across P-N) of the main circuit converter is displayed.  
to  
450  
6.2.3 Changing the status display screen  
The status display item of the servo amplifier display shown at power-on can be changed by changing the  
parameter No. 18 settings.  
The item displayed in the initial status changes with the control mode as follows:  
Control mode  
Position  
Status display at power-on  
Cumulative feedback pulses  
Position/speed  
Speed  
Cumulative feedback pulses/servo motor speed  
Servo motor speed  
Speed/torque  
Torque  
Servo motor speed/analog torque command voltage  
Analog torque command voltage  
Torque/position Analog torque command voltage/cumulative feedback pulses  
6 - 4  
6. DISPLAY AND OPERATION  
6.3 Diagnostic mode  
Name  
Display  
Description  
Not ready.  
Indicates that the servo amplifier is being initialized or an alarm  
has occurred.  
Sequence  
Ready.  
Indicates that the servo was switched on after completion of  
initialization and the servo amplifier is ready to operate.  
Indicates the ON-OFF states of the external I/O signals.  
The upper segments correspond to the input signals and the  
lower segments to the output signals.  
Lit: ON  
Refer to section 6.6.  
External I/O signal  
display  
Extinguished: OFF  
The I/O signals can be changed using parameters No. 43 to 49.  
Output signal (DO)  
forced output  
The digital output signal can be forced on/off. For more  
information, refer to section 6.7.  
Jog operation can be performed when there is no command from  
the external command device.  
Jog feed  
For details, refer to section 6.8.2.  
The servo configuration software (MRZJW3-SETUP121E) is  
required for positioning operation. This operation cannot be  
performed from the operation section of the servo amplifier.  
Positioning operation can be performed once when there is no  
command from the external command device.  
Positioning  
operation  
Test  
operation  
mode  
Without connection of the servo motor, the servo amplifier  
provides output signals and displays the status as if the servo  
motor is running actually in response to the external input  
signal.  
Motorless  
operation  
For details, refer to section 6.8.4.  
Merely connecting the servo amplifier allows the resonance point  
of the mechanical system to be measured.  
The servo configuration software (MRZJW3-SETUP121E or later)  
is required for machine analyzer operation.  
Machine  
analyzer  
operation  
Software version Low  
Software version High  
Indicates the version of the software.  
Indicates the system number of the software.  
If offset voltages in the analog circuits inside and outside the  
servo amplifier cause the servo motor to rotate slowly at the  
analog speed command (VC) or analog speed limit (VLA) of 0V,  
this function automatically makes zero-adjustment of offset  
voltages.  
When using this function, make it valid in the following  
procedure. Making it valid causes the parameter No. 29 value to  
be the automatically adjusted offset voltage.  
1) Press "SET" once.  
Automatic VC offset  
2) Set the number in the first digit to 1 with "UP"/"DOWN".  
3) Press "SET".  
You cannot use this function if the input voltage of VC or VLA  
is 0.4V or more.  
6 - 5  
6. DISPLAY AND OPERATION  
Name  
Display  
Description  
Press the "SET" button to show the motor series ID of the servo  
motor currently connected.  
Motor series  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the motor type ID of the servo  
motor currently connected.  
Motor type  
Encoder  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the encoder ID of the servo motor  
currently connected.  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
6 - 6  
6. DISPLAY AND OPERATION  
6.4 Alarm mode  
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the  
display indicate the alarm number that has occurred or the parameter number in error. Display examples  
are shown below.  
Name  
Display  
Description  
Indicates no occurrence of an alarm.  
Current alarm  
Indicates the occurrence of overvoltage (AL.33).  
Flickers at occurrence of the alarm.  
Indicates that the last alarm is overload 1 (AL.50).  
Indicates that the second alarm in the past is overvoltage (AL.33).  
Indicates that the third alarm in the past is undervoltage (AL.10).  
Indicates that the fourth alarm in the past is overspeed (AL.31).  
Indicates that there is no fifth alarm in the past.  
Alarm history  
Indicates that there is no sixth alarm in the past.  
Indicates no occurrence of parameter error (AL.37).  
Indicates that the data of parameter No. 1 is faulty.  
Parameter error  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) The other screen is visible during occurrence of an alarm. At this time, the decimal point in the fourth  
digit flickers.  
(3) For any alarm, remove its cause and clear it in any of the following methods (for clearable alarms,  
refer to Section 10.2.1):  
(a) Switch power OFF, then ON.  
(b) Press the "SET" button on the current alarm screen.  
(c) Turn on the alarm reset (RES) signal.  
(4) Use parameter No. 16 to clear the alarm history.  
(5) Pressing "SET" on the alarm history display screen for 2s or longer shows the following detailed  
information display screen. Note that this is provided for maintenance by the manufacturer.  
(6) Press "UP" or "DOWN" to move to the next history.  
6 - 7  
6. DISPLAY AND OPERATION  
6.5 Parameter mode  
The parameters whose abbreviations are marked* are made valid by changing the setting and then  
switching power off once and switching it on again. Refer to Section 5.1.2.  
(1) Operation example  
The following example shows the operation procedure performed after power-on to change the control  
mode (parameter No. 0) to the speed control mode.  
Using the "MODE" button, show the basic parameter screen.  
The parameter number is displayed.  
Press  
or  
UP DOWN  
to change the number.  
Press SET twice.  
The set value of the specified parameter number flickers.  
Press UP once.  
During flickering, the set value can be changed.  
Use  
(
or  
UP DOWN  
2: Speed control mode)  
.
Press SET to enter.  
/
UP DOWN  
To shift to the next parameter, press the  
button.  
When changing the parameter No. 0 setting, change its set value, then switch power off once and  
switch it on again to make the new value valid.  
(2) Expansion parameters  
To use the expansion parameters, change the setting of parameter No. 19 (parameter write disable).  
Refer to section 5.1.1.  
6 - 8  
6. DISPLAY AND OPERATION  
6.6 External I/O signal display  
The ON/OFF states of the digital I/O signals connected to the servo amplifier can be confirmed.  
(1) Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP once.  
External I/O signal display screen  
(2) Display definition  
CN1B CN1B  
CN1B CN1B  
CN1A CN1B  
CN1B CN1B  
CN1B  
16  
15  
9
8
7
8
14  
5
17  
Input signals  
Always lit  
Output signals  
CN1A  
14  
CN1B  
18  
CN1B  
4
CN1A  
18  
CN1B  
6
CN1B  
19  
CN1A  
19  
Lit: ON  
Extinguished: OFF  
The 7-segment LED shown above indicates ON/OFF.  
Each segment at top indicates the input signal and each segment at bottom indicates the output signal.  
The signals corresponding to the pins in the respective control modes are indicated below:  
6 - 9  
6. DISPLAY AND OPERATION  
(a) Control modes and I/O signals  
Signal  
(Note 2) Symbols of I/O signals in control modes  
Related  
Connector  
Pin No.  
input/output  
(Note 1) I/O  
parameter  
P
P/S  
S
S/T  
T
T/P  
8
14  
18  
19  
I
O
O
O
O
I
CR  
OP  
CR/SP1  
OP  
SP1  
OP  
SP1  
OP  
SP1  
OP  
SP1/CR  
OP  
No.43 to 48  
CN1A  
INP  
RD  
INP/SA  
RD  
SA  
SA/  
/INP  
No.49  
No.49  
RD  
RD  
DO1  
RD  
DO1  
SON  
VLC  
SP2  
RD  
(Note 3) 4  
DO1  
SON  
TLC  
DO1  
DO1  
SON  
TLC  
SP2  
ST1  
ST2  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
DO1  
5
6
SON  
TLC  
SON  
SON  
No.43 to 48  
No.49  
O
I
TLC/VLC  
LOP  
VLC/TLC  
LOP  
7
LOP  
No.43 to 48  
No.43 to 48  
No.43 to 48  
No.43 to 48  
8
I
PC  
TL  
PC/ST1  
TL/ST2  
RES  
ST1/RS2  
ST2/RS1  
RES  
RS2  
RS1  
RES  
EMG  
RS2/PC  
RS1/TL  
RES  
9
I
CN1B  
14  
15  
16  
17  
18  
19  
I
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
I
EMG  
LSP  
EMG  
EMG  
/LSP  
I
LSP/  
I
LSN  
LSN/  
/LSN  
ALM  
ZSP  
O
O
ALM  
ZSP  
ALM  
ALM  
ZSP  
No.49  
ZSP  
No.1 49  
Note: 1. I: Input signal, O: Output signal  
2. P: Position control mode, S: Speed control mode, T: Torque control mode, P/S: Position/speed control change mode, S/T:  
Speed/torque control change mode, T/P: Torque/position control change mode  
3. The signal of CN1A-18 is always output.  
(b) Symbol and signal names  
Symbol  
SON  
LSP  
LSN  
CR  
Signal name  
Symbol  
EMG  
LOP  
TLC  
VLC  
RD  
Signal name  
Servo-on  
Emergency stop  
Control change  
Limiting torque  
Limiting speed  
Ready  
Forward rotation stroke end  
Reverse rotation stroke end  
Clear  
SP1  
SP2  
PC  
Speed selection 1  
Speed selection 2  
ZSP  
Zero speed  
Proportion control  
Forward rotation start  
Reverse rotation start  
Forward rotation selection  
Reverse rotation selection  
Torque limit  
INP  
In position  
ST1  
ST2  
RS1  
RS2  
TL  
SA  
Speed reached  
Trouble  
ALM  
WNG  
OP  
Warning  
Encoder Z-phase pulse (open collector)  
Battery warning  
BWNG  
RES  
Reset  
6 - 10  
6. DISPLAY AND OPERATION  
(3) Default signal indications  
(a) Position control mode  
EMG(CN 1 B-15) Emergency stop  
TL (CN 1 B-9) Torque limit  
PC (CN 1 B-8) Proportional control  
CR (CN 1 A-8) Clear  
RES (CN 1 B-14) Reset  
SON(CN 1 B-5) Servo-on  
LSN (CN 1 B-17) Reverse rotation stroke end  
LSP (CN 1 B-16) Forward rotation stroke end  
Input signals  
Lit: ON  
Extinguished:OFF  
Output signals  
RD (CN 1 A-19) Ready  
LNP (CN 1 A-18) In position  
ZSP (CN 1 B-19) Zero speed  
TLC (CN 1 B-6) Limiting torque  
DO1 (CN 1 B-4) In position  
ALM (CN 1 B-18) Trouble  
OP (CN 1 A-14) Encoder Z-phase pulse  
(b) Speed control mode  
EMG(CN 1 B-15) Emergency stop  
ST2 (CN 1 B-9) Reverse rotation start  
ST1 (CN 1 B-8) For ward rotation start  
SP2 (CN 1 B-7) Speed selection 2  
SP1 (CN 1 A-8) Speed selection 1  
RES (CN 1 B-14) Reset  
SON (CN 1 B-5) Servo-on  
LSN (CN 1 B-17) External emergency stop  
LSP (CN 1 B-16) Forward rotation stroke end  
Input signals  
Lit: ON  
Extinguished: OFF  
Output signals  
RD (CN 1 A-19) Ready  
SA (CN 1 A-18) Limiting speed  
ZSP (CN 1 B-19) Zero speed  
TLC (CN 1 B-6) Limiting torque  
DO1 (CN 1 B-4) Limiting speed  
ALM (CN 1 B-18) Trouble  
OP (CN 1 A-14) Encoder Z-phase pulse  
(c) Torque control mode  
EMG(CN 1 B-15) Emergency stop  
RS1 (CN 1 B-9) Forward rotation selection  
RS2 (CN 1 B-8) Reverse rotation selection  
SP2 (CN 1 B-7) Speed selection 2  
SP1 (CN 1 A-8) Speed selection 1  
RES (CN 1 B-14) Reset  
SON (CN 1 B-5) Servo-on  
Input signals  
Lit: ON  
Extinguished: OFF  
RD (CN 1 A-19) Ready  
Output signals  
ZSP (CN 1 B-19) Zero speed  
VLC (CN 1 B-6) Speed reached  
ALM (CN 1 B-18) Trouble  
OP (CN 1 A-14) Encoder Z-phase pulse  
6 - 11  
6. DISPLAY AND OPERATION  
6.7 Output signal (DO) forced output  
POINT  
When the servo system is used in a vertical lift application, turning on the  
electromagnetic brake interlock signal after assigning it to pin CN1B-19  
will release the electromagnetic brake, causing a drop. Take drop  
preventive measures on the machine side.  
The output signal can be forced on/off independently of the servo status. This function is used for output  
signal wiring check, etc. This operation must be performed in the servo off state (SON signal off).  
Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
Press UP twice.  
Press SET for more than 2 seconds.  
Switch on/off the signal below the lit segment.  
Always lit  
Indicates the ON/OFF of the output signal. The correspondences  
between segments and signals are as in the output signals of the  
external I/O signal display.  
CN1A  
14  
CN1B CN1B CN1B CN1B CN1A CN1A  
18 19 18 19  
4
6
(Lit: ON, extinguished: OFF)  
Press MODE once.  
The segment above CN1A-pin 18 is lit.  
Press UP once.  
CN1A-pin 18 is switched on.  
(CN1A-pin 18-SG conduct.)  
Press DOWN once.  
CN1A-pin 18 is switched off.  
Press SET for more than 2 seconds.  
6 - 12  
6. DISPLAY AND OPERATION  
6.8 Test operation mode  
The test operation mode is designed to confirm servo operation and not to confirm  
machine operation. In this mode, do not use the servo motor with the machine.  
Always use the servo motor alone.  
CAUTION  
If any operational fault has occurred, stop operation using the forced stop (EMG)  
signal.  
POINT  
The test operation mode cannot be used in the absolute position detection  
system. Use it after choosing "Incremental system" in parameter No. 1.  
The servo configuration software is required to perform positioning  
operation.  
Test operation cannot be performed if the servo-on (SON) signal is not  
turned OFF.  
6.8.1 Mode change  
Call the display screen shown after power-on. Choose jog operation/motor-less operation in the following  
procedure. Using the "MODE" button, show the diagnostic screen.  
Press UP three times.  
Press UP five times.  
Press SET for more  
than 2s.  
Press SET for more than 2s.  
When this screen  
appears, jog feed can  
be performed.  
When this screen is displayed,  
motor-less operation can be  
performed.  
Flickers in the test operation mode.  
6 - 13  
6. DISPLAY AND OPERATION  
6.8.2 Jog operation  
Jog operation can be performed when there is no command from the external command device.  
(1) Operation  
Connect EMG-SG to start jog operation and connect VDD-COM to use the internal power supply.  
Hold down the "UP" or "DOWN" button to run the servo motor. Release it to stop. When using the  
servo configuration software, you can change the operation conditions. The initial conditions and  
setting ranges for operation are listed below:  
Item  
Initial setting  
200  
Setting range  
0 to instantaneous permissible speed  
0 to 50000  
Speed [r/min]  
Acceleration/deceleration time constant [ms]  
1000  
How to use the buttons is explained below:  
Button  
Description  
Press to start CCW rotation.  
Release to stop.  
"UP"  
Press to start CW rotation.  
Release to stop.  
"DOWN"  
If the communication cable is disconnected during jog operation performed by using the servo  
configuration software, the servo motor will be decelerated to a stop.  
(2) Status display  
You can confirm the servo status during jog operation.  
Pressing the "MODE" button in the jog operation-ready status calls the status display screen. With  
this screen being shown, perform jog operation with the "UP" or "DOWN" button. Every time you  
press the "MODE" button, the next status display screen appears, and on completion of a screen cycle,  
pressing that button returns to the jog operation-ready status screen. For full information of the status  
display, refer to Section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons  
to change the status display screen from one to another.  
(3) Termination of jog operation  
To end the jog operation, switch power off once or press the "MODE" button to switch to the next  
screen and then hold down the "SET" button for 2 or more seconds.  
6 - 14  
6. DISPLAY AND OPERATION  
6.8.3 Positioning operation  
POINT  
The servo configuration software is required to perform positioning  
operation.  
Positioning operation can be performed once when there is no command from the external command  
device.  
(1) Operation  
Connect EMG-SG to start positioning operation and connect VDD-COM to use the internal power  
supply.  
Pressing the "Forward" or "Reverse" button on the servo configuration software starts the servo motor,  
which will then stop after moving the preset travel distance. You can change the operation conditions  
on the servo configuration software. The initial conditions and setting ranges for operation are listed  
below:  
Item  
Travel distance [pulse]  
Initial setting  
10000  
Setting range  
0 to 9999999  
Speed [r/min]  
200  
0 to instantaneous permissible speed  
0 to 50000  
Acceleration/deceleration time constant [ms]  
1000  
How to use the keys is explained below:  
Key  
Description  
"Forward"  
"Reverse"  
Press to start positioning operation CCW.  
Press to start positioning operation CW.  
Press during operation to make a temporary stop. Pressing  
the "Pause" button again erases the remaining distance.  
To resume operation, press the button that was pressed to  
start the operation.  
"Pause"  
If the communication cable is disconnected during positioning operation, the servo motor will come  
to a sudden stop.  
(2) Status display  
You can monitor the status display even during positioning operation.  
6 - 15  
6. DISPLAY AND OPERATION  
6.8.4 Motor-less operation  
Without connecting the servo motor, you can provide output signals or monitor the status display as if the  
servo motor is running in response to external input signals. This operation can be used to check the  
sequence of a host programmable controller or the like.  
(1) Operation  
After turning off the signal across SON-SG, choose motor-less operation. After that, perform external  
operation as in ordinary operation.  
(2) Status display  
You can confirm the servo status during motor-less operation.  
Pressing the "MODE" button in the motor-less operation-ready status calls the status display screen.  
With this screen being shown, perform motor-less operation. Every time you press the "MODE"  
button, the next status display screen appears, and on completion of a screen cycle, pressing that  
button returns to the motor-less operation-ready status screen. For full information of the status  
display, refer to Section 6.2. In the test operation mode, you cannot use the "UP" and "DOWN" buttons  
to change the status display screen from one to another.  
(3) Termination of motor-less operation  
To terminate the motor-less operation, switch power off.  
6 - 16  
7. GENERAL GAIN ADJUSTMENT  
7. GENERAL GAIN ADJUSTMENT  
POINT  
For use in the torque control mode, you need not make gain adjustment.  
7.1 Different adjustment methods  
7.1.1 Adjustment on a single servo amplifier  
The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first  
execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual  
mode 1 and manual mode 2 in this order.  
(1) Gain adjustment mode explanation  
Parameter No. 2  
setting  
Estimation of load inertia  
moment ratio  
Automatically set  
parameters  
Gain adjustment mode  
Manually set parameters  
Auto tuning mode 1  
(initial value)  
010  
020  
Always estimated  
PG1 (parameter No. 6)  
Response level setting of  
GD2 (parameter No. 34) parameter No. 2  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Auto tuning mode 2  
Fixed to parameter No. PG1 (parameter No. 6)  
GD2 (parameter No. 34)  
34 value  
PG2 (parameter No. 35) Response level setting of  
VG1 (parameter No. 36) parameter No. 2  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Manual mode 1  
Manual mode 2  
030  
040  
PG2 (parameter No. 35) PG1 (parameter No. 6)  
VG1 (parameter No. 36) GD2 (parameter No. 34)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
PG1 (parameter No. 6)  
GD2 (parameter No. 34)  
PG2 (parameter No. 35)  
VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
Interpolation mode  
000  
Always estimated  
GD2 (parameter No. 34) PG1 (parameter No. 6)  
PG2 (parameter No. 35) VG1 (parameter No. 36)  
VG2 (parameter No. 37)  
VIC (parameter No. 38)  
7 - 1  
7. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Used when you want to  
match the position gain  
(PG1) between 2 or more  
axes. Normally not used for  
other purposes.  
Interpolation  
made for 2 or more  
axes?  
Interpolation mode  
Operation  
No  
Allows adjustment by  
merely changing the  
response level setting.  
First use this mode to make  
adjustment.  
Auto tuning mode 1  
Operation  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
This mode permits  
adjustment easily with three  
gains if you were not  
satisfied with auto tuning  
results.  
Manual mode 1  
Operation  
Yes  
OK?  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
No  
Manual mode 2  
END  
7.1.2 Adjustment using servo configuration software  
This section gives the functions and adjustment that may be performed by using the servo amplifier with  
the servo configuration software which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor  
coupled, the characteristic of the  
mechanical system can be measured by  
giving a random vibration command from  
the personal computer to the servo and  
measuring the machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine  
resonance suppression filter.  
You can automatically set the optimum gains in  
response to the machine characteristic. This simple  
adjustment is suitable for a machine which has large  
machine resonance and does not require much settling  
time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
changing gains, and automatically  
searches for gains which make settling  
time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Machine simulation  
Response at positioning settling of  
machine can be simulated from machine  
analyzer results on personal computer.  
a
You can optimize gain adjustment and command  
pattern on personal computer.  
7 - 2  
7. GENERAL GAIN ADJUSTMENT  
7.2 Auto tuning  
7.2.1 Auto tuning mode  
The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load  
inertia moment ratio) in real time and automatically sets the optimum gains according to that value. This  
function permits ease of gain adjustment of the servo amplifier.  
(1) Auto tuning mode 1  
The servo amplifier is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following parameters are automatically adjusted in the auto tuning mode 1.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
34  
35  
36  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
PG2  
VG1  
Speed control gain 1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to motor inertia moment is not more  
than 100 times.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode 1,2 to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1.  
Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load  
inertia moment ratio (parameter No. 34).  
The following parameters are automatically adjusted in the auto tuning mode 2.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
Position control gain 2  
Speed control gain 1  
35  
36  
37  
38  
PG2  
VG1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
7 - 3  
7. GENERAL GAIN ADJUSTMENT  
7.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Control gains  
Command  
Current  
control  
Servo  
motor  
PG1,VG1  
PG2,VG2,VIC  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
Parameter No. 34  
Parameter No. 2  
Load inertia moment  
ratio estimation value  
0 1 0 7  
First digit  
Response level setting  
Auto tuning selection  
Third digit  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to parameter No. 34 (load inertia moment ratio). These results can be confirmed on  
the status display screen of the servo amplifier display section.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly,  
chose the "auto tuning mode 2" (parameter No.2:  
2
) to stop the estimation of the load inertia  
moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (parameter No.  
34) manually.  
From the preset load inertia moment ratio (parameter No. 34) value and response level (The first digit of  
parameter No. 2), the optimum control gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 6 minutes since power-on.  
At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM being  
used as an initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation  
of the inertia moment ratio may malfunction temporarily. In such a case,  
choose the "auto tuning mode 2" (parameter No. 2: 020 ) and set the  
correct load inertia moment ratio in parameter No. 34.  
7 - 4  
7. GENERAL GAIN ADJUSTMENT  
7.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor  
automatically sets the optimum gains that match the machine. Merely changing the response level  
setting value as required completes the adjustment. The adjustment procedure is as follows.  
(1) Basic procedure  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(parameter No.2 : 020 ) and set  
the load inertia moment ratio  
(parameter No.34) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
7 - 5  
7. GENERAL GAIN ADJUSTMENT  
7.2.4 Response level setting in auto tuning mode  
Set the response (The first digit of parameter No.2) of the whole servo system. As the response level  
setting is increased, the trackability and settling time for a command decreases, but a too high response  
level will generate vibration. Hence, make setting until desired response is obtained within the vibration-  
free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, adaptive vibration suppression control (parameter No. 60) or machine resonance  
suppression filter (parameter No. 58 59) may be used to suppress machine resonance. Suppressing  
machine resonance may allow the response level setting to increase. Refer to Section 8.1 for adaptive  
vibration suppression control and machine resonance suppression filter.  
Parameter No. 2  
0 1 0 7  
Response level setting  
Auto tuning selection  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Guideline of corresponding machine  
1
2
Low  
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
3
Large conveyor  
4
5
6
Arm robot  
7
General machine  
tool conveyor  
8
Middle  
9
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
Precision  
working  
machine  
A
B
C
D
E
F
Inserter  
Mounter  
Bonder  
High  
7 - 6  
7. GENERAL GAIN ADJUSTMENT  
7.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with  
three parameters.  
7.3.1 Operation of manual mode 1  
In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and  
speed integral compensation (VIC) automatically sets the other gains to the optimum values according to  
these gains.  
GD2  
User setting  
PG1  
PG2  
VG2  
VG1  
Automatic setting  
VIC  
Therefore, you can adjust the model adaptive control system in the same image as the general PI control  
system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to  
PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment  
in this mode, set the load inertia moment ratio (parameter No. 34) correctly.  
7.3.2 Adjustment by manual mode 1  
POINT  
If machine resonance occurs, adaptive vibration suppression control  
(parameter No. 60) or machine resonance suppression filter (parameter No.  
58 59) may be used to suppress machine resonance. (Refer to Section 8.1.)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment:  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
34  
37  
38  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (parameter No. 34).  
1
2
3
Increase the speed control gain 2 (parameter No. 37) within the Increase the speed control gain.  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
Decrease the speed integral compensation (parameter No. 38) within Decrease the time constant of the speed  
the vibration-free range, and return slightly if vibration takes place.  
integral compensation.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to Section 8.2, 8.3.  
increased by suppressing resonance with adaptive vibration  
suppression control or machine resonance suppression filter and then  
executing steps 2 and 3.  
4
5
While checking the settling characteristic and rotational status, fine- Fine adjustment  
adjust each gain.  
7 - 7  
7. GENERAL GAIN ADJUSTMENT  
(c)Adjustment description  
1) Speed control gain 2 (parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment) 2  
Speed loop response  
frequency(Hz)  
2) Speed integral compensation (VIC: parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression:  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment setting 0.1)  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment:  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
34  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo  
motor inertia moment (parameter No. 34).  
1
2
Set a slightly smaller value to the position control gain 1 (parameter  
No. 6).  
Increase the speed control gain 2 (parameter No. 37) within the Increase the speed control gain.  
vibration- and unusual noise-free range, and return slightly if vibration  
takes place.  
3
Decrease the speed integral compensation (parameter No. 38) within Decrease the time constant of the speed  
4
5
the vibration-free range, and return slightly if vibration takes place.  
Increase the position control gain 1 (parameter No. 6).  
integral compensation.  
Increase the position control gain.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to Section 8.1.  
increased by suppressing resonance with adaptive vibration  
suppression control or machine resonance suppression filter and then  
executing steps 3 to 5.  
6
7
While checking the settling characteristic and rotational status, fine- Fine adjustment  
adjust each gain.  
7 - 8  
7. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Position control gain 1 (parameter No. 6)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves trackability to a position command but a too high value will make  
overshooting liable to occur at the time of settling.  
1
3
1
5
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Position control  
gain 1 guideline  
to  
)
(
2) Speed control gain 2 (VG2: parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response  
frequency(Hz)  
2
3) Speed integral compensation (parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under  
proportional integral control. For the speed integral compensation, set the time constant of this  
integral control. Increasing the setting lowers the response level. However, if the load inertia  
moment ratio is large or the mechanical system has any vibratory element, the mechanical  
system is liable to vibrate unless the setting is increased to some degree. The guideline is as  
indicated in the following expression:  
2000 to 3000  
Speed integral  
compensation setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment 2 setting 0.1)  
7 - 9  
7. GENERAL GAIN ADJUSTMENT  
7.4 Interpolation mode  
The interpolation mode is used to match the position control gains of the axes when performing the  
interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the  
position control gain 2 and speed control gain 2 which determine command trackability are set manually  
and the other parameter for gain adjustment are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
Parameter No.  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
34  
35  
37  
38  
PG2  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
Parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
(2) Adjustment procedure  
Step  
Operation  
Description  
Select the auto tuning mode 1.  
Set 15Hz (parameter No. 2: 010 ) as the machine resonance frequency of response  
in the auto tuning mode 1.  
1
2
During operation, increase the response level setting (parameter No. 2), and Adjustment in auto tuning mode  
return the setting if vibration occurs.  
1.  
Check the values of position control gain 1 (parameter No. 6) and speed control  
gain 1 (parameter No. 36).  
3
4
Check the upper setting limits.  
Select the interpolation mode.  
Set the interpolation mode (parameter No. 2: 000 ).  
Using the position control gain 1 value checked in step 3 as the guideline of the  
5
upper limit, set in PG1 the value identical to the position loop gain of the axis to Set position control gain 1.  
be interpolated.  
Using the speed control gain 1 value checked in step 3 as the guideline of the  
upper limit, look at the rotation status and set in speed control gain 1 the value Set speed control gain 1.  
three or more times greater than the position control gain 1 setting.  
6
7
Looking at the interpolation characteristic and rotation status, fine-adjust the  
Fine adjustment.  
gains and response level setting.  
(3) Adjustment description  
(a) Position control gain 1 (parameter No.6)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves trackability to a position command but a too high value will make  
overshooting liable to occur at the time of settling. The droop pulse value is determined by the  
following expression.  
Rotation speed (r/min) 131,072(pulse)  
Droop pulse value (pulse)  
Position control gain 1 setting  
(b) Speed control gain 1 (parameter No. 36)  
Set the response level of the speed loop of the model. Make setting using the following expression  
as a guideline.  
Speed control gain 1 setting Position control gain 1 setting 3  
7 - 10  
7. GENERAL GAIN ADJUSTMENT  
7.5 Differences in auto tuning between MELSERVO-J2 and MELSERVO-J2-Super  
7.5.1 Response level setting  
To meet higher response demands, the MELSERVO-J2-Super series has been changed in response level  
setting range from the MELSERVO-J2 series. The following table lists comparison of the response level  
setting.  
Parameter No. 2  
5
Response level setting  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Response level setting  
Machine resonance frequency  
Response level setting  
Machine resonance frequency guideline  
1
2
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
1
20Hz  
3
4
5
2
40Hz  
6
7
3
4
5
60Hz  
80Hz  
8
9
100Hz  
A
B
C
D
E
F
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the  
resonance frequency is set to the same value.  
7.5.2 Auto tuning selection  
The MELSERVO-J2-Super series has an addition of the load inertia moment ratio fixing mode. It also has  
the addition of the manual mode 1 which permits manual adjustment with three parameters.  
Parameter No. 2  
1
Auto tuning selection  
Auto tuning selection  
Gain adjustment mode  
Remarks  
MELSERVO-J2 series  
MELSERVO-J2-Super series  
Interpolation mode  
Auto tuning mode 1  
0
1
0
1
Position control gain 1 is fixed.  
Ordinary auto tuning  
Estimation of load inertia moment  
ratio stopped.  
Auto tuning  
Auto tuning mode 2  
2
Response level setting valid.  
Simple manual adjustment  
Manual adjustment of all gains  
Manual mode 1  
Manual mode 2  
3
4
Auto tuning  
invalid  
2
7 - 11  
7. GENERAL GAIN ADJUSTMENT  
MEMO  
7 - 12  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them  
if you are not satisfied with the machine status after making adjustment  
in the methods in Chapter 7.  
If a mechanical system has a natural resonance point, increasing the servo system response may cause  
the mechanical system to produce resonance (vibration or unusual noise) at that resonance frequency.  
Using the machine resonance suppression filter and adaptive vibration suppression control functions can  
suppress the resonance of the mechanical system.  
8.1 Function block diagram  
Speed  
control  
Parameter  
No.60  
Parameter  
No.59  
00  
Current  
command  
Parameter  
No.60  
Parameter  
No.58  
00  
0
0
Low-pass  
filter  
Servo  
motor  
Encoder  
Machine resonance  
suppression filter 1  
Machine resonance  
suppression filter 2  
1
00  
00  
except  
except  
Adaptive vibration  
suppression control  
1
or  
2
8.2 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of  
the specific frequency to suppress the resonance of the mechanical system. You can set the gain  
decreasing frequency (notch frequency) and gain decreasing depth.  
Machine resonance point  
Mechanical  
system  
response  
Frequency  
Notch  
depth  
Frequency  
Notch frequency  
8 - 1  
8. SPECIAL ADJUSTMENT FUNCTIONS  
You can use the machine resonance suppression filter 1 (parameter No. 58) and machine resonance  
suppression filter 2 (parameter No. 59) to suppress the vibration of two resonance frequencies. Note  
that if adaptive vibration suppression control is made valid, the machine resonance suppression filter  
1 (parameter No. 58) is made invalid.  
Machine resonance point  
Mechanical  
system  
response  
Frequency  
Notch  
depth  
Frequency  
Parameter No. 58 Parameter No. 59  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
(2) Parameters  
(a) Machine resonance suppression filter 1 (parameter No. 58)  
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (parameter  
No. 58)  
When you have made adaptive vibration suppression control selection (parameter No. 60) "valid" or  
"held", make the machine resonance suppression filter 1 invalid (parameter No. 58: 0000).  
Parameter No. 58  
0
Notch frequency  
Setting  
value  
Setting  
value  
Setting  
value  
Setting  
value  
Frequency  
Frequency  
Frequency  
Frequency  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
281.3  
264.7  
250  
18  
19  
187.5  
180  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
09  
450  
173.1  
166.7  
160.1  
155.2  
150  
0A  
0B  
0C  
0D  
0E  
0F  
1A  
1B  
1C  
1D  
1E  
1F  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth  
Setting  
value  
Depth (Gain)  
Deep ( 40dB)  
( 14dB)  
( 8dB)  
Shallow( 4dB)  
0
1
2
3
8 - 2  
8. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch  
frequency is set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the servo configuration software. This allows the required  
notch frequency and depth to be determined.  
Resonance may occur if parameter No. 58 59 is used to select a close  
notch frequency and set a deep notch.  
(b) Machine resonance suppression filter 2 (parameter No. 59)  
The setting method of machine resonance suppression filter 2 (parameter No. 59) is the same as  
that of machine resonance suppression filter 1 (parameter No. 58). However, the machine  
resonance suppression filter 2 can be set independently of whether adaptive vibration suppression  
control is valid or invalid.  
8.3 Adaptive vibration suppression control  
(1) Function  
Adaptive vibration suppression control is a function in which the servo amplifier detects machine  
resonance and sets the filter characteristics automatically to suppress mechanical system vibration.  
Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of  
the resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is  
valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes,  
it changes the filter characteristics in response to that frequency.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
response  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive vibration suppression  
control can respond to is about 150 to 500Hz. Adaptive vibration  
suppression control has no effect on the resonance frequency outside this  
range. Use the machine resonance suppression filter for the machine  
resonance of such frequency.  
Adaptive vibration suppression control may provide no effect on a  
mechanical system which has complex resonance characteristics or which  
has too large resonance.  
Under operating conditions in which sudden disturbance torque is imposed  
during operation, the detection of the resonance frequency may malfunction  
temporarily, causing machine vibration. In such a case, set adaptive  
vibration suppression control to be "held" (parameter No. 60:  
2
) to fix  
the characteristics of the adaptive vibration suppression control filter.  
8 - 3  
8. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive vibration suppression control selection (parameter No.60).  
Parameter No. 60  
0 0  
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration suppression  
control selection makes the machine resonance suppression  
filter 1 (parameter No. 58) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected to  
generate the filter in response to resonance, suppressing  
machine vibration.  
2: Held  
Filter characteristics generated so far is held, and detection of  
machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Set the sensitivity of detecting machine resonance.  
0: Normal  
1: Large sensitivity  
POINT  
Adaptive vibration suppression control is factory-set to be invalid  
(parameter No. 60: 0000).  
The filter characteristics generated are saved in the EEP-ROM every 6  
minutes since power-on. At next power-on, vibration suppression control is  
performed with this data saved in the EEP-ROM being used as an initial  
value.  
Setting the adaptive vibration suppression control sensitivity can change  
the sensitivity of detecting machine resonance. Setting of "large sensitivity"  
detects smaller machine resonance and generates a filter to suppress  
machine vibration. However, since a phase delay will also increase, the  
response of the servo system may not increase.  
8.4 Low-pass filter  
(1) Function  
When a ballscrew or the like is used, resonance of high frequency may occur as the response of the  
servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the  
following expression:  
Speed control gain 2 setting 10  
Filter frequency(Hz)  
(1 Ratio of load inertia moment to servo motor inertia moment setting 0.1)  
2
(2) Parameter  
Set the operation of the low-pass filter (parameter No. 60.)  
Parameter No. 60  
0
Low-pass filter selection  
0: Valid (automatic adjustment) initial value  
1: Invalid  
POINT  
In a mechanical system where rigidity is extremely high and resonance is  
difficult to occur, setting the low-pass filter to be "invalid" may increase  
the servo system response to shorten the settling time.  
8 - 4  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8.5 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop  
or can use an external signal to change gains during operation.  
8.5.1 Applications  
This function is used when:  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an external signal to ensure stability of the servo system since the  
load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
8.5.2 Function block diagram  
The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection CDP (parameter No. 65) and gain changing condition CDS (parameter  
No. 66).  
CDP  
Parameter No.65  
External signal  
CDP  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
Parameter No.66  
GD2  
Parameter No.34  
Valid  
GD2  
GD2 value  
Parameter No.61  
PG2  
Parameter No.35  
Valid  
PG2 PG2B  
100  
PG2 value  
VG2  
Parameter No.37  
Valid  
VG2 VG2B  
100  
VG2 value  
VIC  
Parameter No.38  
Valid  
VIC VICB  
100  
VIC value  
8 - 5  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8.5.3 Parameters  
When using the gain changing function, always set "  
4
" in parameter No.2 (auto tuning) to choose  
the manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto  
tuning mode.  
Parameter Abbrevi  
Name  
Unit  
Description  
No.  
6
ation  
PG1  
VG1  
Position control gain 1  
Speed control gain 1  
rad/s Position and speed gains of a model used to set the response  
level to a command. Always valid.  
Control parameters before changing  
36  
rad/s  
0.1  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
times  
rad/s  
rad/s  
ms  
35  
37  
38  
PG2  
VG2  
VIC  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2 changing  
ratio  
0.1  
Used to set the ratio of load inertia moment to servo motor  
61  
62  
63  
GD2B  
PG2B  
VG2B  
VICB  
times inertia moment after changing.  
Used to set the ratio (%) of the after-changing position  
%
control gain 2 to position control gain 2.  
Speed control gain 2 changing  
ratio  
Used to set the ratio (%) of the after-changing speed control  
%
gain 2 to speed control gain 2.  
Speed integral compensation  
changing ratio  
Used to set the ratio (%) of the after-changing speed integral  
64  
65  
%
compensation to speed integral compensation.  
CDP Gain changing selection  
Used to select the changing condition.  
kpps  
pulse  
r/min  
Used to set the changing condition values.  
66  
67  
CDS Gain changing condition  
You can set the filter time constant for a gain change at  
changing.  
CDT Gain changing time constant  
ms  
8 - 6  
8. SPECIAL ADJUSTMENT FUNCTIONS  
(1) Parameters No. 6, 34 to 38  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain  
2 and speed integral compensation to be changed.  
(2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: parameter No. 61)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia  
moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor  
inertia moment (parameter No. 34).  
(3) Position control gain 2 changing ratio (parameter No. 62), speed control gain 2 changing ratio (parameter  
No. 63), speed integral compensation changing ratio (parameter No. 64)  
Set the values of after-changing position control gain 2, speed control gain 2 and speed integral  
compensation in ratio (%). 100% setting means no gain change.  
For example, at the setting of position control gain 2 100, speed control gain 2 2000, speed integral  
compensation 20 and position control gain 2 changing ratio 180%, speed control gain 2 changing  
ratio 150% and speed integral compensation changing ratio 80%, the after-changing values are as  
follows:  
Position control gain 2 Position control gain 2 Position control gain 2 changing ratio /100 180rad/s  
Speed control gain 2 Speed control gain 2 Speed control gain 2 changing ratio /100 3000rad/s  
Speed integral compensation Speed integral compensation Speed integral compensation changing  
ratio /100 16ms  
(4) Gain changing selection (parameter No. 65)  
Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1"  
here, you can use the gain changing (CDP) external input signal for gain changing. The gain changing  
signal (CDP) can be assigned to the pins using parameters No. 43 to 48.  
Parameter No. 65  
0 0 0  
Gain changing selection  
Gains are changed in accordance with the settings of  
parameters No. 61 to 64 under any of the following conditions:  
0: Invalid  
1: Gain changing (CDP) input signal is ON  
2: Command frequency is equal to higher than parameter No. 66 setting  
3: Droop pulse value is equal to higher than parameter No. 66 setting  
4: Servo motor speed is equal to higher than parameter No. 66 setting  
(5) Gain changing condition (parameter No. 66)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (parameter No.65), set the gain changing level.  
The setting unit is as follows:  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (parameter No. 67)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
8 - 7  
8. SPECIAL ADJUSTMENT FUNCTIONS  
8.5.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by external input  
(a) Setting  
Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
4
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
61  
62  
63  
64  
GD2B  
PG2B  
VG2B  
VICB  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0001  
(Changed by ON/OFF of  
pin CN1A-8)  
100  
65  
67  
CDP  
CDT  
Gain changing selection  
Gain changing time constant  
ms  
(b) Changing operation  
OFF  
OFF  
ON  
Gain changing  
(CDP)  
After-changing gain  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
to servo motor inertia moment  
Position control gain 2  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed control gain 2  
Speed integral compensation  
8 - 8  
8. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
Parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
40  
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
61  
62  
63  
64  
65  
GD2B  
PG2B  
VG2B  
VICB  
CDP  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0003  
Gain changing selection  
(Changed by droop pulses)  
66  
67  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
CDS  
Droop pulses [pulses]  
0
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
4.0  
10.0  
4.0  
10.0  
to servo motor inertia moment  
Position control gain 2  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed control gain 2  
Speed integral compensation  
8 - 9  
8. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
8 - 10  
9. INSPECTION  
9. INSPECTION  
Before starting maintenance and/or inspection, make sure that the charge lamp is  
off more than 10 minutes after power-off. Then, confirm that the voltage is safe in  
the tester or the like. Otherwise, you may get an electric shock.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the servo amplifier with a megger (measure insulation  
resistance), or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
(1) Inspection  
It is recommended to make the following checks periodically:  
(a) Check for loose terminal block screws. Retighten any loose screws.  
(b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to  
operating conditions.  
(2) Life  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be  
changed immediately even when it has not yet reached the end of its life, which depends on the  
operating method and environmental conditions. For parts replacement, please contact your sales  
representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of  
emergency stop times : 100,000 times  
10,000 to 30,000hours (2 to 3 years)  
Refer to Section 15.2  
Relay  
Servo amplifier  
Cooling fan  
Absolute position battery  
(a) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly  
depends on ambient temperature and operating conditions. The capacitor will reach the end of its  
life in 10 years of continuous operation in normal air-conditioned environment.  
(b) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of  
their life when the cumulative number of power-on and emergency stop times is 100,000, which  
depends on the power supply capacity.  
(c) Servo amplifier cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore,  
the fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
9 - 1  
9. INSPECTION  
MEMO  
9 - 2  
10. TROUBLESHOOTING  
10. TROUBLESHOOTING  
10.1 Trouble at start-up  
Excessive adjustment or change of parameter setting must not be made as it will  
CAUTION  
make operation instable.  
POINT  
Using the optional servo configuration software, you can refer to unrotated  
servo motor reasons, etc.  
The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.  
10.1.1 Position control mode  
(1) Troubleshooting  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Refer to  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CNP1 cabling  
is shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to Section 10.2 and remove cause.  
Refer to Section 10.2 and remove cause.  
Section 10.2  
Section 10.2  
Section 6.6  
2
Switch on servo-on  
signal.  
Servo motor shaft is 1. Check the display to see if 1. Servo-on signal is not input.  
not servo-locked  
(is free).  
the servo amplifier is  
ready to operate.  
(Wiring mistake)  
2. 24VDC power is not  
supplied to COM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (SON) signal  
is ON.  
3
Enter input  
command.  
Servo motor does  
not rotate.  
Check cumulative command 1. Wiring mistake  
pulses. (a) For open collector pulse  
Section 6.2  
(Test operation)  
train input, 24VDC  
power is not supplied to  
OPC.  
(b) LSP/LSN-SG are not  
connected.  
2. No pulses is input.  
1. Mistake in wiring to  
controller.  
Servo motor run in  
reverse direction.  
Chapter 5  
2. Mistake in setting of  
parameter No. 54.  
10 - 1  
10. TROUBLESHOOTING  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Refer to  
4
Gain adjustment  
Rotation ripples  
Make gain adjustment in the Gain adjustment fault  
Chapter 7  
(speed fluctuations) following procedure:  
are large at low  
speed.  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several times  
to complete auto tuning.  
If the servo motor may be  
Large load inertia  
Gain adjustment fault  
Chapter 7  
moment causes the run with safety, repeat  
servo motor shaft to acceleration and  
oscillate side to side. deceleration several times to  
complete auto tuning.  
5
Cyclic operation  
Position shift occurs Confirm the cumulative  
Pulse counting error, etc.  
(2) in this  
section  
command pulses, cumulative due to noise.  
feedback pulses and actual  
servo motor position.  
10 - 2  
10. TROUBLESHOOTING  
(2) How to find the cause of position shift  
Positioning unit  
(a) Output pulse  
Servo amplifier  
Electronic gear (parameters No. 3, 4)  
Machine  
L
counter  
Servo motor  
SM  
CMX  
Q
P
(d) Machine stop  
position M  
CDV  
(B)  
(A)  
(b) Cumulative command  
pulses  
(C) Servo-on (SON),  
stroke end  
Encoder  
C
(LSP/LSN) input  
(c) Cumulative  
feedback pulses  
When a position shift occurs, check (a) output pulse counter, (b) cumulative command pulse display, (c)  
cumulative feedback pulse display, and (d) machine stop position in the above diagram.  
(A), (B) and (C) indicate position shift causes. For example, (A) indicates that noise entered the wiring  
between positioning unit and servo amplifier, causing pulses to be mis-counted.  
In a normal status without position shift, there are the following relationships:  
1) Q P (positioning unit's output counter servo amplifier's cumulative command pulses)  
CMX(parameter No.3)  
CDV(parameter No.4)  
2) P  
C (cumulative command pulses electronic gear cumulative feedback pulses)  
3) C  
M (cumulative feedback pulses travel per pulse machine position)  
Check for a position shift in the following sequence:  
1) When Q  
P
Noise entered the pulse train signal wiring between positioning unit and servo amplifier,  
causing pulses to be miss-counted. (Cause A)  
Make the following check or take the following measures:  
Check how the shielding is done.  
Change the open collector system to the differential line driver system.  
Run wiring away from the power circuit.  
Install a data line filter. (Refer to (2)(a) Section 13.2.6.)  
CMX  
2) When P  
C
CDV  
During operation, the servo-on signal (SON) or forward/reverse rotation stroke end signal was  
switched off or the clear signal (CR) and the reset signal (RES) switched on. (Cause C)  
If a malfunction may occur due to much noise, increase the input filter setting (parameter No. 1).  
3) When C  
M
Mechanical slip occurred between the servo motor and machine. (Cause B)  
10 - 3  
10. TROUBLESHOOTING  
10.1.2 Speed control mode  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Refer to  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CN1 cabling is  
shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to Section 10.2 and remove cause.  
Refer to Section 10.2 and remove cause.  
Section 10.2  
Section 10.2  
Section 6.6  
2
Switch on servo-on  
signal.  
Servo motor shaft is 1. Check the display to see if 1. Servo-on signal is not input.  
not servo-locked  
(is free).  
the servo amplifier is  
ready to operate.  
(Wiring mistake)  
2. 24VDC power is not  
supplied to COM.  
2. Check the external I/O  
signal indication to see if  
the servo-on (SON) signal  
is ON.  
3
Switch on forward  
Servo motor does  
Call the status display and  
check the input voltage of  
the analog speed command  
(VC).  
Analog speed command is 0V.  
LSP, LSN, ST1 or ST2 is off.  
Set value is 0.  
Section 6.2  
Section 6.6  
rotation start (ST1) not rotate.  
or reverse rotation  
start (ST2).  
Call the external I/O signal  
display and check the  
ON/OFF status of the input  
signal.  
Check the internal speed  
commands 1 to 7  
(1), Section  
5.1.2  
(parameters No. 8 to 10 72  
to 75).  
Check the internal torque  
limit 1 (parameter No. 28).  
When the analog torque  
Torque limit level is too low as  
compared to the load torque.  
Torque limit level is too low as  
limit (TLA) is usable, check compared to the load torque.  
the input voltage on the  
status display.  
4
Gain adjustment  
Rotation ripples  
Make gain adjustment in the Gain adjustment fault  
Chapter 7  
(speed fluctuations) following procedure:  
are large at low  
speed.  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several  
times to complete auto  
tuning.  
Large load inertia  
If the servo motor may be  
Gain adjustment fault  
Chapter 7  
moment causes the run with safety, repeat  
servo motor shaft to acceleration and  
oscillate side to side. deceleration several times to  
complete auto tuning.  
10 - 4  
10. TROUBLESHOOTING  
10.1.3 Torque control mode  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Refer to  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. Servo amplifier is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CN1 cabling is  
shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to Section 10.2 and remove cause.  
Refer to Section 10.2 and remove cause.  
Section 10.2  
Section 10.2  
Section 6.6  
2
3
Switch on servo-on  
signal.  
Servo motor shaft is Call the external I/O signal  
1. Servo-on signal is not input.  
(Wiring mistake)  
free.  
display and check the  
ON/OFF status of the input 2. 24VDC power is not  
signal.  
supplied to COM.  
Analog torque command is 0V. Section 6.2  
Switch on forward  
Servo motor does  
Call the status display and  
check the analog torque  
command (TC).  
rotation start (RS1) not rotate.  
or reverse rotation  
start (RS2).  
Call the external I/O signal  
display and check the  
ON/OFF status of the input  
signal.  
RS1 or RS2 is off.  
Section 6.6  
Check the internal speed  
limits 1 to 7  
Set value is 0.  
(1),  
Section 5.1.2  
(parameters No. 8 to 10 72  
to 75).  
Check the analog torque  
Torque command level is too  
command maximum output low as compared to the load  
(parameter No. 26) value.  
Check the internal torque  
limit 1 (parameter No. 28).  
torque.  
Set value is 0.  
10 - 5  
10. TROUBLESHOOTING  
10.2 When alarm or warning has occurred  
POINT  
Configure up a circuit which will detect the trouble (ALM) signal and turn  
off the servo-on (SON) signal at occurrence of an alarm.  
10.2.1 Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to Section 10.2.2 or 10.2.3 and take the appropriate action.  
Set "  
1" in parameter No. 49 to output the alarm code in ON/OFF status across the corresponding  
pin and SG. Warnings (AL.92 to AL.EA) have no alarm codes. Any alarm code is output at occurrence of  
the corresponding alarm. In the normal status, the signals available before alarm code setting (CN1B-19:  
ZSP, CN1A-18: INP or SA, CN1A-19: RD) are output.  
The alarms marked  
operations.  
in the alarm deactivation column can be deactivated by the corresponding  
(Note 2) Alarm code  
Alarm deactivation  
Press  
"SET" on  
current  
alarm  
screen.  
Alarm  
reset  
(RES)  
signal  
Display  
Name  
CN1B-19  
pin  
CN1A-18  
pin  
CN1A-19  
pin  
Power  
OFF ON  
AL.10  
AL.12  
AL.13  
AL.15  
AL.16  
AL.17  
AL.19  
AL.1A  
AL.20  
AL.24  
AL.25  
AL.30  
AL.31  
AL.32  
AL.33  
AL.35  
AL.37  
AL.45  
AL.46  
AL.50  
AL.51  
AL.52  
AL.8A  
AL.8E  
88888  
AL.92  
AL.96  
AL.9F  
AL.E0  
AL.E1  
AL.E3  
AL.E5  
AL.E6  
AL.E9  
AL.EA  
0
0
0
0
1
0
0
1
1
1
1
0
1
1
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
1
1
1
0
0
0
Undervoltage  
Memory error 1  
Clock error  
Memory error 2  
Encoder error 1  
Board error  
Memory error 3  
Motor combination error  
Encoder error 2  
Main circuit error  
Absolute position erase  
Regenerative error  
Overspeed  
Overcurrent  
Overvoltage  
Command pulse frequency error  
Parameter error  
Main circuit device overheat  
Servo motor overheat  
Overload 1  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
Overload 2  
Error excessive  
Serial communication time-out error  
Serial communication error  
Watchdog  
Open battery cable warning  
Home position setting warning  
Battery warning  
Excessive regenerative warning  
Overload warning  
Removing the cause of occurrence  
deactivates the alarm  
automatically.  
Absolute position counter warning  
ABS time-out warning  
Servo emergency stop warning  
Main circuit off warning  
ABS servo-on warning  
Note: 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. 0: Pin-SG off (open)  
1: Pin-SG on (short)  
10 - 6  
10. TROUBLESHOOTING  
10.2.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase alarm (AL.25) occurred, always make home position  
setting again. Otherwise, misoperation may occur.  
CAUTION  
POINT  
When any of the following alarms has occurred, always remove its cause  
and allow about 30 minutes for cooling before resuming operation. If  
operation is resumed by switching control circuit power off, then on to reset  
the alarm, the servo amplifier and servo motor may become faulty.  
Regenerative error (AL.30)  
Overload 1 (AL.50)  
Overload 2 (AL.51)  
The alarm can be deactivated by switching power off, then on press the  
"SET" button on the current alarm screen or by turning on the reset signal  
(RES). For details, refer to Section 10.2.1.  
When an alarm occurs, the trouble signal (ALM) switches off and the dynamic brake is operated to stop  
the servomotor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. The  
optional servo configuration software may be used to refer to the cause.  
Display  
Name  
Definition  
Cause  
Action  
AL.10  
Undervoltage Power supply  
voltage dropped.  
MR-J2S- A:160V or  
less  
1. Power supply voltage is low.  
2. There was an instantaneous  
control power failure of 60ms or  
longer.  
Review the power supply.  
MR-J2S- A1:83V or  
less  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
4. Power was restored after the bus  
voltage had dropped to 200VDC.  
(Main circuit power switched on  
within 5s after it had switched off.)  
5. Faulty parts in the servo amplifier Change the servo amplifier.  
Checking method  
Alarm (AL.10) occurs if power is  
switched on after CN1A, CN1B  
and CN3 connectors are  
disconnected.  
AL.12  
AL.13  
AL.15  
Memory error 1 RAM, memory fault Faulty parts in the servo amplifier  
Change the servo amplifier.  
Clock error  
Printed board fault  
Checking method  
Alarm (any of AL.12,13 and 15)  
occurs if power is switched on  
Memory error 2 EEP-ROM fault  
after CN1A, CN1B and CN3  
all connectors are disconnected.  
AL.16  
Encoder error 1 Communication  
error occurred  
1. CN2 connector disconnected.  
2. Encoder fault  
Connect correctly.  
Change the servo motor.  
Repair or change cable.  
between encoder  
3. Encoder cable faulty  
and servo amplifier.  
(Wire breakage or shorted)  
10 - 7  
10. TROUBLESHOOTING  
Display  
AL.17  
Name  
Definition  
Cause  
Action  
Board error 2  
CPU/parts fault  
Faulty parts in the servo amplifier  
Change the servo amplifier.  
AL.19  
Memory error 3 ROM memory fault  
Checking method  
Alarm (AL.17 or AL.19) occurs if  
power is switched on after CN1A,  
CN1B and CN3 connectors are  
disconnected.  
AL.1A  
AL.20  
Motor  
combination  
error  
Wrong combination Wrong combination of servo  
of servo anplifier  
and servo motor.  
Use correct combination.  
amplifier and servo motor connected.  
Encoder error 2 Communication  
1. Encoder connector (CN2)  
disconnected.  
2. Encoder cable faulty  
(Wire breakage or shorted)  
Connect correctly.  
error occurred  
between encoder  
Repair or change the cable.  
and servo amplifier.  
AL.24  
Main circuit  
error  
Ground fault  
1. Power input wires and servo motor Connect correctly.  
output wires are in contact at  
occurred at the  
servo motor outputs  
(U,V and W phases)  
of the servo  
main circuit terminal block (TE1).  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
amplififer.  
3. Main circuit of servo amplifier  
failed.  
Change the servo amplifier.  
Checking method  
AL.24 occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
AL.25  
Absolute  
Absolute position  
1. Reduced voltage of super capacitor After leaving the alarm occurring for a few  
position erase data in error  
in encoder  
minutes, switch power off, then on again.  
Always make home position setting again.  
Change battery.  
2. Battery voltage low  
Always make home position setting again.  
3. Battery cable or battery is faulty.  
Power was switched 4. Super capacitor of the absolute  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
on for the first time  
in the absolute  
position detection  
system.  
position encoder is not charged  
AL.30  
Regenerative  
alarm  
Permissible  
regenerative power  
of the built-in  
regenerative brake  
resistor or  
regenerative brake  
option is exceeded.  
1. Wrong setting of parameter No. 0 Set correctly.  
2. Built-in regenerative brake  
resistor or regenerative brake  
option is not connected.  
Connect correctly  
3. High-duty operation or continuous 1. Reduce the frequency of positioning.  
regenerative operation caused the 2. Use the regenerative brake option of  
permissible regenerative power of  
the regenerative brake option to  
be exceeded.  
larger capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal.  
MR-J2S- A:260V or more  
MR-J2S- A1:135V or more  
5. Built-in regenerative brake  
resistor or regenerative brake  
option faulty.  
Review power supply  
Change servo amplifier or regenerative  
brake option.  
Regenerative  
transistor fault  
Change the servo amplifier.  
6. Regenerative transistor faulty.  
Checking method  
1) The regenerative brake option  
has overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative brake resistor or  
regenerative brake option.  
10 - 8  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.31  
Overspeed  
Speed has exceeded 1. Input command pulse frequency  
Set command pulses correctly.  
the instantaneous  
permissible speed.  
exceeded the permissible  
instantaneous speed frequency.  
2. Small acceleration/deceleration  
Increase acceleration/deceleration time  
time constant caused overshoot to constant.  
be large.  
3. Servo system is instable to cause 1. Re-set servo gain to proper value.  
overshoot.  
2. If servo gain cannot be set to proper  
value:  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Set correctly.  
4. Electronic gear ratio is large  
(parameters No. 3, 4)  
5. Encoder faulty.  
Change the servo motor.  
AL.32  
Overcurrent  
Current that flew is 1. Short occurred in servo amplifier Correct the wiring.  
higher than the  
permissible current  
of the servo  
output phases U, V and W.  
2. Transistor (IPM) of the servo  
amplifier faulty.  
Change the servo amplifier.  
amplifier.  
Checking method  
Alarm (AL.32) occurs if power is  
switched on after U,V and W  
are disconnected.  
3. Ground fault occurred in servo  
amplifier output phases U, V and  
W.  
Correct the wiring.  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Take noise suppression measures.  
AL.33  
Overvoltage  
Converter bus  
voltage exceeded  
400V.  
1. Lead of built-in regenerative brake 1. Change lead.  
resistor or regenerative brake  
option is open or disconnected.  
2. Regenerative transistor faulty.  
3. Wire breakage of built-in  
regenerative brake resistor or  
regenerative brake option  
2. Connect correctly.  
Change servo amplifier  
1. For wire breakage of built-in  
regenerative brake resistor, change  
servo amplifier.  
2. For wire breakage of regenerative brake  
option, change regenerative brake  
option.  
4. Capacity of built-in regenerative  
brake resistor or regenerative  
brake option is insufficient.  
Add regenerative brake option or increase  
capacity.  
5. Power supply voltage high.  
Review the power supply.  
10 - 9  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Input pulse  
Cause  
Action  
AL.35  
Command  
1. Pulse frequency of the command  
pulse is too high.  
Change the command pulse frequency to a  
proper value.  
pulse frequency frequency of the  
error  
command pulse is  
too high.  
2. Noise entered command pulses.  
3. Command device failure  
Take action against noise.  
Change the command device.  
Change the servo amplifier.  
AL.37  
AL.45  
Parameter  
error  
Parameter setting is 1. Servo amplifier fault caused the  
wrong.  
parameter setting to be rewritten.  
2. Regenerative brake option not  
used with servo amplifier was  
selected in parameter No.0.  
Set parameter No.0 correctly.  
Main circuit  
Main circuit device 1. Servo amplifier faulty.  
Change the servo amplifier.  
The drive method is reviewed.  
device overheat overheat  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
3. Air cooling fan of servo amplifier  
stops.  
1. Exchange the cooling fan or the servo  
amplifier.  
2. Reduce ambient temperature.  
Review environment so that ambient  
AL.46  
Servo motor  
overheat  
Servo motor  
1. Ambient temperature of servo  
temperature rise  
actuated the  
motor is over 40  
.
temperature is 0 to 40  
1. Reduce load.  
.
2. Servo motor is overloaded.  
thermal protector.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
3. Thermal protector in encoder is  
faulty.  
Change servo motor.  
AL.50  
Overload 1  
Load exceeded  
overload protection  
characteristic of  
servo amplifier.  
Load ratio 300%:  
2.5s or more  
1. Servo amplifier is used in excess  
of its continuous output current.  
1. Reduce load.  
2. Review operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
Load ratio 200%:  
100s or more  
3. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated slowly with the servo off,  
the cumulative feedback pulses  
should vary in proportion to the  
rotary angle. If the indication  
skips or returns midway, the  
encoder is faulty.  
10 - 10  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
AL.51  
Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Review operation pattern.  
2. Install limit switches.  
output current to  
flow successively for  
several seconds.  
Servo motor locked:  
1s or more  
2. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated slowly with the servo off,  
the cumulative feedback pulses  
should vary in proportion to the  
rotary angle. If the indication  
skips or returns midway, the  
encoder is faulty.  
AL.52  
Error excessive The droop pulse  
value of the  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/deceleration  
time constant.  
deviation counter  
exceeded the  
2. Torque limit value (parameter  
No.28) is too small.  
Increase the torque limit value.  
encoder resolution  
10 [pulse].  
3. Motor cannot be started due to  
1. Review the power supply capacity.  
torque shortage caused by power 2. Use servo motor which provides larger  
supply voltage drop. output.  
4. Position control gain 1 (parameter Increase set value and adjust to ensure  
No.6) value is small. proper operation.  
5. Servo motor shaft was rotated by 1. When torque is limited, increase the  
external force.  
limit value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
7. Encoder faulty  
1. Review operation pattern.  
2. Install limit switches.  
Change the servo motor.  
8. Wrong connection of servo motor. Connect correctly.  
Servo amplifier's output terminals  
U, V, W do not match servo  
motor's input terminals U, V, W.  
AL.8A  
AL.8E  
Serial  
RS-232C or RS-422 1. Communication cable breakage.  
Repair or change communication cable  
communication communication  
time-out error stopped for longer  
than the time set in  
2. Communication cycle longer than Set correct value in parameter.  
parameter No. 56 setting.  
3. Wrong protocol.  
Correct protocol.  
parameter No.56.  
Serial  
Serial  
1. Communication cable fault  
(Open cable or short circuit)  
Repair or change the cable.  
communication  
error occurred  
between servo  
amplifier and  
communication  
device (e.g. personal  
computer).  
communication  
error  
2. Communication device (e.g.  
personal computer) faulty  
Change the communication device (e.g.  
personal computer).  
10 - 11  
10. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
88888 Watchdog  
CPU, parts faulty  
Fault of parts in servo amplifier  
Change servo amplifier.  
Checking method  
Alarm (88888) occurs if power  
is switched on after CN1A, CN1B  
and CN3 connectors are  
disconnected.  
10.2.3 Remedies for warnings  
If AL.E6 or AL.EA occurs, the servo off status is established. If any other warning occurs, operation can  
be continued but an alarm may take place or proper operation may not be performed. Use the optional  
servo configuration software to refer to the cause of warning.  
Display  
Name  
Definition  
Cause  
Action  
AL.92 Open battery  
cable warning  
Absolute position  
1. Battery cable is open.  
Repair cable or changed.  
detection system battery  
voltage is low.  
2. Battery voltage dropped to 2.8V or less. Change battery.  
AL.96 Home position  
Home position setting  
1. Droop pulses remaining are greater  
than the in-position range setting.  
Remove the cause of droop pulse  
occurrence  
setting warning could not be made.  
2. Command pulse entered after clearing Do not enter command pulse  
of droop pulses.  
after clearing of droop pulses.  
Reduce creep speed.  
3. Creep speed high.  
AL.9F Battery warning Voltage of battery for  
absolute position  
Battery voltage fell to 3.2V or less.  
Change the battery.  
detection system reduced.  
AL.E0 Excessive  
regenerative  
warning  
There is a possibility that Regenerative power increased to 85% or  
regenerative power may more of permissible regenerative power of  
1. Reduce frequency of  
positioning.  
exceed permissible  
regenerative power of  
built-in regenerative  
brake resistor or  
regenerative brake  
option.  
built-in regenerative brake resistor or  
2. Change regenerative brake  
option for the one with larger  
capacity.  
regenerative brake option.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
AL.E1 Overload  
warning  
There is a possibility that Load increased to 85% or more of overload Refer to AL.50, AL.51.  
overload alarm 1 or 2  
may occur.  
alarm 1 or 2 occurrence level.  
Cause, checking method  
Refer to AL.50,51.  
AL.E3 Absolute position Absolute position encoder 1. Noise entered the encoder.  
counter warning pulses faulty.  
Take noise suppression  
measures.  
2. Encoder faulty.  
Change servo motor.  
Contact the program.  
Connect properly.  
AL.E5 ABS time-out  
warning  
1. PC lader program wrong.  
2. ST2 TLC signal mis-wiring  
AL.E6 Servo emergency EMG-SG are open.  
stop warning  
External emergency stop was made valid. Ensure safety and deactivate  
(EMG-SG opened.)  
emergency stop.  
AL.E9 Main circuit off Servo was switched on  
Switch on main circuit power.  
warning  
with main circuit power  
off.  
AL.EA ABS  
Servo-on signal (SON)  
1. PC ladder program wrong.  
2. SON signal mis-wiring.  
1. Correct the program.  
2. Connect properly.  
servo-on warning turned on more than 1s  
after servo amplifier had  
entered absolute position  
data transfer mode.  
10 - 12  
11. OUTLINE DIMENSION DRAWINGS  
11. OUTLINE DIMENSION DRAWINGS  
11.1 Servo amplifiers  
(1) MR-J2S-10A to MR-J2S-60A  
MR-J2S-10A1 to MR-J2S-40A1  
[Unit: mm]  
([Unit: in])  
A
70 (2.76)  
135 (5.32)  
6 ( 0.24) mounting hole  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
B
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Name plate  
C
N
2
C
N
3
C
N
2
C
N
3
E
N
C
E
N
C
TE1  
L1 L2 L3  
(Note)  
U
V
W
TE2  
PE terminal  
6
(0.24)  
4(0.16)  
Variable dimensions  
Weight  
Servo amplifier  
[kg]([lb])  
A
B
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
50 (1.97)  
70 (2.76)  
6 (0.24)  
0.7 (1.54)  
1.1 (2.43)  
22 (0.87)  
Note: This data applies to the 3-phase 200 to 230VAC and 1-phase 230VAC power supply models.  
TE1  
For 3-phase 200 to 230VAC and 1-phase 230VAC  
For 1-phase 100 to 120VAC  
L1  
U
L2  
V
L3  
W
L1  
U
L2  
W
V
Terminal screw: M4  
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
PE terminals  
TE2  
Front  
D
C
P
L21 L11  
Tightening torque: 0.5 to 0.6 [N m] (70.8 to 85.0 [oz in])  
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
FRONT MSTB2,5/5-ST-5,08  
(Phoenix Contact make)  
11 - 1  
11. OUTLINE DIMENSION DRAWINGS  
(2) MR-J2S-70A MR-J2S-100A  
[Unit: mm]  
([Unit: in])  
6 ( 0.24)  
70(2.76)  
mounting hole  
70(2.76)  
190(7.48)  
22  
Terminal layout  
(Terminal cover open)  
MITSUBISHI  
(0.87)  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
Name plate  
C
N
2
C
N
3
C
N
2
C
N
3
E
N
C
E
N
C
L1 L2 L3  
U
V
W
PE terminal  
6(0.24)  
TE2  
TE1  
6(0.24)  
42  
22  
(0.87) (1.65)  
6(0.24)  
Weight  
Servo amplifier  
[kg]([lb])  
MR-J2S-70A  
MR-J2S-100A  
1.7  
(3.75)  
TE1  
L1  
L2  
V
L3  
W
U
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
TE2  
FRONT MSTB2,5/6-ST-5,08  
(Phoenix Contact make)  
Front  
D
C
P
L21 L11  
N
Tightening torque: 0.5 to 0.6 [N m] (70.8 to 85.0 [oz in])  
PE terminals  
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
11 - 2  
11. OUTLINE DIMENSION DRAWINGS  
(3) MR-J2S-200A MR-J2S-350A  
[Unit: mm]  
([Unit: in])  
6 ( 0.24)  
70(2.76)  
195(7.68)  
90(3.54)  
78(3.07)  
mounting hole  
6
(0.24)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
TE2  
TE1  
PE terminal  
Fan air orientation  
Weight  
Servo amplifier  
[kg]([lb])  
MR-J2S-200A  
MR-J2S-350A  
2.0  
(4.41)  
PE terminals  
TE1  
L1  
L2  
L3  
U
V
W
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
TE2  
L11 L21  
D
P
C
N
Terminal screw: M4  
Tightening torque: 1.24 [N m] (175.6 [oz in])  
11 - 3  
11. OUTLINE DIMENSION DRAWINGS  
(4) MR-J2S-500A  
2- 6( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
(0.24)  
6
(0.24)  
6
130(5.12)  
118(4.65)  
200(7.87)  
(0.19) 5  
70  
(2.76)  
Terminal layout  
MITSUBISHI  
OPEN  
MITSUBISHI  
OPEN  
OPEN  
TE1  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
2
C
N
3
C
N
2
C
N
3
TE2  
N.P.  
N.P.  
Fan  
Fan  
6(0.24)  
Fan air orientation  
Weight  
Servo amplifier  
MR-J2S-500A  
[kg]([lb])  
4.9(10.8)  
TE1  
PE terminals  
Built-in regenerative brake resistor  
lead terminal fixing screw  
Terminal screw : M4  
Tightening torque : 1.2 [N m](169.9[oz in])  
L1  
L2  
L3  
C
P
N
U
V
W
Terminal screw : M4  
Tightening torque : 1.2 [N m](169.9[oz in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 1.0 [N m](141.6[oz in])  
L11  
L21  
11 - 4  
11. OUTLINE DIMENSION DRAWINGS  
(5) MR-J2S-700A  
2- 6( 0.24)  
mounting hole  
[Unit: mm]  
([Unit: in])  
200(7.87)  
138(5.43)  
70  
(2.76)  
180(7.09)  
160(6.23)  
(0.39)  
10  
62  
10  
(0.39)  
6(0.24)  
(2.44)  
Terminal layout  
MITSUBISHI  
MITSUBISHI  
OPEN  
OPEN  
C
N
1
C
N
1
C
N
1
C
N
1
A
B
A
B
C
N
3
C
N
3
C
N
2
C
N
2
TE2  
OPEN  
TE1  
Fan  
6 (0.24)  
Fan air orientation  
Weight  
Servo amplifier  
MR-J2S-700A  
[kg]([lb])  
7.2(15.9)  
TE1  
PE terminals  
L1  
Terminal screw : M4  
Tightening torque : 1.2 [N m](169.9[oz in])  
L2  
L3  
C
P
N
U
V
W
Built-in regenerative brake resistor  
lead terminal fixing screw  
Terminal screw : M4  
Tightening torque : 1.2 [N m](169.9[oz in])  
TE2  
Terminal screw : M3.5  
Tightening torque : 1.0 [N m](141.6[oz in])  
L11  
L21  
11 - 5  
11. OUTLINE DIMENSION DRAWINGS  
11.2 Connectors  
(1) Servo amplifier side  
<3M >  
(a) Soldered type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-3000VE  
: 10320-52F0-008  
12.0(0.47)  
14.0  
(0.55)  
22.0 (0.87)  
Logo, etc. are indicated here.  
33.3 (1.31)  
12.7(0.50)  
(b) Threaded type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-3000VE  
: 10320-52A0-008  
12.0  
(0.47)  
Note. This is not available as option  
and should be user-prepared.  
22.0  
14.0  
7)  
(0.8  
(0.55)  
(1.08)  
27.4  
12.7  
33.3  
(1.31)  
(0.50)  
(c) Insulation displacement type  
Model  
Connector  
Shell kit  
[Unit: mm]  
([Unit: in])  
: 10120-6000EL  
: 10320-3210-000  
6.7  
(
0.26)  
20.9 (0.82)  
2- 0.5 (0.02)  
Logo, etc. are indicated here.  
29.7 (1.17)  
11 - 6  
11. OUTLINE DIMENSION DRAWINGS  
(2) Bus cable connector  
<Honda Tsushin>  
PCR-LS20LA1  
PCR-LS20LA1W  
[Unit: mm]  
(Unit: in)  
10.4  
13.0 (0.512)  
(0.409)  
14.2 (0.559)  
1
12.2  
1
23.0 (0.906)  
(0.48)  
(0.039)  
(0.039)  
H O N D A  
H O N D A  
RS  
RS  
1
1
27.4 (1.079)  
32.0 (0.906)  
27.4 (1.079)  
32.0 (0.906)  
(0.039)  
(0.039)  
12.2  
1.9  
(0.075)  
(0.48)  
Model  
Number of Pins  
Connector  
PCR-S20FS (soldering type)  
PCR-S20F (insulation displacement type)  
Case  
PCR-LS20LA1  
20  
PCR-LS20LA1W  
Crimping terminal: FHAT-002A  
Note: PCR-S20F and PCR-LS20LA1W are not options and are to be supplied by the customer.  
(3) Communication cable connector  
<Japan Aviation Electronics Industry >  
[Unit: mm]  
([Unit: in])  
B
A
Fitting fixing screw G  
E (max. diameter of  
cable used)  
F
C
D
A
B
C
D
F
Type  
DE-C1-J6-S6  
E
G
1
1
0.25  
1
Reference  
34.5(1.36)  
19(0.75)  
24.99(0.98)  
33(1.30)  
6(0.24)  
18(0.71)  
#4-40  
11 - 7  
11. OUTLINE DIMENSION DRAWINGS  
MEMO  
11 - 8  
12. CHARACTERISTICS  
12. CHARACTERISTICS  
12.1 Overload protection characteristics  
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier  
from overloads. The operation characteristics of the electronic thermal relay are shown below. Overload 1  
alarm (AL.50) occurs if overload operation performed is above the electronic thermal relay protection  
curve shown below. Overload 2 alarm (AL.51) occurs if the maximum current flew continuously for  
several seconds due to machine collision, etc. Use the equipment on the left-hand side area of the  
continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
(1) MR-J2S-10A to MR-J2S-100A  
HC-KFS series  
HC-MFS series  
HC-SFS series  
HC-UFS series  
1000  
During rotation  
100  
During stop  
10  
1
0.1  
0
50  
100  
150  
200  
250  
300  
Load ratio [%]  
Fig 12.1 Electronic thermal relay protection characteristics 1  
(2) MR-J2S-200A to MR-J2S-350A  
HC-SFS series  
HC-RFS series  
HC-UFS series  
1000  
100  
During rotation  
10  
1
During stop  
0.1  
0
50  
100  
150  
Load ratio [%]  
200  
250  
300  
Fig 12.2 Electronic thermal relay protection characteristics 2  
12 - 1  
12. CHARACTERISTICS  
(3) MR-J2S-500A MR-J2S-700A  
HC-SFS series  
HC-RFS series  
HC-UFS series  
10000  
1000  
100  
During servo lock  
During rotation  
10  
1
0
50  
100  
150  
200  
250  
300  
Load ratio [%]  
Fig 12.3 Electronic thermal relay protection characteristics 3  
12 - 2  
12. CHARACTERISTICS  
12.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the servo amplifier  
Table 12.1 indicates servo amplifiers' power supply capacities and losses generated under rated load.  
For thermal design of an enclosure, use the values in Table 12.1 in consideration for the worst  
operating conditions. The actual amount of generated heat will be intermediate between values at  
rated torque and zero torque according to the duty used during operation. When the servo motor is run  
at less than the maximum speed, the power supply capacity will be smaller than the value in the  
table, but the servo amplifier's generated heat will not change.  
Table 12.1 Power supply capacity and generated heat per servo amplifier at rated output  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Servo amplifier-generated heat[W]  
Servo amplifier  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
With servo off  
[m2]  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
0.7  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.8  
1.8  
1.8  
1.8  
1.0  
1.8  
1.8  
2.7  
2.7  
1.8  
1.8  
3.9  
2.7  
3.9  
3.9  
3.9  
6.0  
[ft2]  
5.4  
HC-KFS053 13  
HC-MFS053 13  
HC-UFS13  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.9  
0.9  
0.9  
1.0  
1.0  
1.3  
1.3  
1.3  
1.5  
1.7  
2.1  
3.5  
2.5  
3.5  
1.7  
2.5  
2.5  
4.8  
5.5  
3.5  
3.5  
7.5  
5.5  
7.5  
5.5  
7.5  
10.0  
25  
25  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
20  
20  
15  
20  
20  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
5.4  
25  
5.4  
HC-KFS23  
25  
5.4  
HC-MFS23  
25  
5.4  
HC-UFS23  
25  
5.4  
HC-KFS43  
35  
7.5  
MR-J2S-40A(1)  
MR-J2S-60A  
MR-J2S-70A  
MR-J2S-100A  
HC-MFS43  
35  
7.5  
HC-UFS43  
35  
7.5  
HC-SFS52  
40  
8.6  
HC-SFS53  
40  
8.6  
HC-KFS73  
50  
10.8  
10.8  
10.8  
10.8  
10.8  
19.4  
19.4  
19.4  
19.4  
10.8  
19.4  
19.4  
29.1  
29.1  
19.4  
19.4  
42.0  
29.1  
42.0  
42.0  
42.0  
64.6  
HC-MFS73  
50  
HC-UFS72 73  
HC-SFS81  
50  
50  
HC-SFS102 103  
HC-SFS121  
HC-SFS201  
HC-SFS152 153  
HC-SFS202 203  
HC-RFS103  
HC-RFS153  
HC-UFS152  
HC-SFS301  
HC-SFS352 353  
HC-RFS203  
HC-UFS202  
HC-SFS502  
HC-RFS353  
HC-RFS503  
HC-UFS352  
HC-UFS502  
HC-SFS702  
50  
90  
90  
90  
MR-J2S-200A  
MR-J2S-350A  
90  
50  
90  
90  
120  
130  
90  
90  
195  
135  
195  
195  
195  
300  
MR-J2S-500A  
MR-J2S-700A  
Note:1. Note that the power supply capacity will vary according to the power supply impedance.  
2. Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by  
the regenerative brake option, use Equation 13.1 in Section 13.1.1.  
12 - 3  
12. CHARACTERISTICS  
(2) Heat dissipation area for enclosed servo amplifier  
The enclosed control box (hereafter called the control box) which will contain the servo amplifier  
should be designed to ensure that its temperature rise is within 10 at the ambient temperature of  
40 . (With a 5 (41 ) safety margin, the system should operate within a maximum 55 (131  
limit.) The necessary enclosure heat dissipation area can be calculated by Equation 12.1:  
)
P
............................................................................................................................................. (12.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
T
K
: Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
]
When calculating the heat dissipation area with Equation 12.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 12.1 for heat generated by the servo amplifier. "A" indicates  
the effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall,  
that extra amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore,  
arrangement of the equipment in the enclosure and the use of a fan should be considered.  
Table 12.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is  
operated at the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 12.4 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because  
the temperature slope inside and outside the enclosure will be steeper.  
12 - 4  
12. CHARACTERISTICS  
12.3 Dynamic brake characteristics  
Fig. 12.4 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated.  
Use Equation 12.2 to calculate an approximate coasting distance to a stop. The dynamic brake time  
constant varies with the servo motor and machine operation speeds. (Refer to Fig. 12.5)  
ON  
Emergency stop(EMG)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 12.5 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
Lmax  
t
e
....................................................................................................................... (12.2)  
1
Lmax  
Vo  
: Maximum coasting distance .................................................................................................[mm][in]  
: Machine rapid feedrate......................................................................................... [mm/min][in/min]  
: Servo motor inertial moment.................................................................................[kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft.....[kg cm2][oz in2]  
: Brake time constant (Fig. 12.5)...................................................................................................... [s]  
M
J
L
J
te  
: Delay time of control section (Fig. 12.4)......................................................................................... [s]  
(There is internal relay delay time of about 30ms.)  
12 - 5  
12. CHARACTERISTICS  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
16  
14  
12  
23  
10  
8
23  
73  
43  
0.008  
0.006  
0.004  
0.002  
0
6
4
2
0
053  
43  
13  
13  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
a. HC-KFS series  
b. HC-MFS series  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
121  
201  
702  
352  
202  
52  
301  
502  
152  
102  
81  
0
50  
500  
1000  
0
500  
1000 1500 2000  
Speed [r/min]  
Speed [r/min]  
c. HC-SFS1000r/min series  
d. HC-SFS2000r/min series  
0.12  
0.1  
0.018  
0.016  
0.014  
0.012  
0.01  
203  
53  
0.08  
0.06  
0.04  
0.02  
0
103  
503  
0.008  
0.006  
153  
353  
153  
0.004  
0.002  
0
103  
353  
203  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
50 500 1000 1500 2000 2500 3000  
Speed [r/min]  
e. HC-SFS3000r/min series  
f. HC-RFS series  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
73  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
72  
502  
352  
43  
23  
13  
202  
152  
0
50 500 10001500200025003000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
g. HC-UFS 2000r/min series  
h. HC-UFS3000r/min series  
Fig. 12.6 Dynamic brake time constant  
12 - 6  
12. CHARACTERISTICS  
Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the  
load inertia moment may exceed the value, contact Mitsubishi.  
Servo amplifier  
Load inertia moment ratio [times]  
MR-J2S-10A to MR-J2S-200A  
MR-J2S-10A1 to MR-J2S-40A1  
MR-J2S-350A  
30  
16  
15  
MR-J2S-500A MR-J2S-700A  
12.4 Encoder cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flexing-life encoder cable  
MR-JCCBL M-H  
MR-JHSCBL M-H  
MR-ENCBL M-H  
1
5
106  
105  
b : Standard encoder cable  
MR-JCCBL M-L  
MR-JHSCBL M-L  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
12 - 7  
12. CHARACTERISTICS  
MEMO  
12 - 8  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or auxiliary equipment, make sure that the charge  
lamp is off more than 10 minutes after power-off, then confirm the voltage with a  
tester or the like. Otherwise, you may get an electric shock.  
WARNING  
CAUTION  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
13.1 Options  
13.1.1 Regenerative brake options  
The specified combinations of regenerative brake options and servo amplifiers  
may only be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combination and regenerative power  
(Note) Regenerative power[W]  
Servo amplifier  
Built-in regenerative MR-RB032 MR-RB12  
MR-RB32  
[40 ]  
MR-RB30  
[13 ]  
MR-RB50  
[13 ]  
MR-RB31  
[6.7 ]  
MR-RB51  
[6.7 ]  
brake resistor  
[40 ]  
30  
[40 ]  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
10  
10  
30  
100  
100  
100  
100  
100  
30  
10  
30  
MR-J2S-70A  
20  
30  
300  
300  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
20  
30  
100  
100  
130  
170  
300  
300  
300  
500  
500  
500  
300  
500  
Note: This value is the regenerative power of the resistor and is not the rated power.  
(2) Selection of the regenerative brake option  
(a) Simple selection method  
In horizontal motion applications, select the regenerative brake option as described below:  
When the servo motor is run without load in the regenerative mode from the running speed to a  
stop, the permissible duty is as indicated in Section 5.1 of the separately available Servo Motor  
Instruction Manual.  
For the servo motor with a load, the permissible duty changes according to the inertia moment of  
the load and can be calculated by the following formula:  
Permissible duty for servo motor with no load (value indication Section 5.1 in Servo Motor Instruction Manual)  
Permissible  
duty  
(m 1)  
2
ratedspeed  
running speed  
[times/min]  
where m  
load inertia moment/servo motor inertia moment  
From the permissible duty, find whether the regenerative brake option is required or not.  
Permissible duty number of positioning times [times/min]  
Select the regenerative brake option out of the combinations in (1) in this section.  
13 - 1  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) To make selection according to regenerative energy  
Use the following method when regeneration occurs continuously in vertical motion applications or  
when it is desired to make an in-depth selection of the regenerative brake option:  
a. Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
tf(1 cycle)  
No  
Up  
Time  
Down  
M
t1  
Tpsa1  
t2  
t3  
t4  
Tpsd1  
Tpsa2  
Tpsd2  
Friction  
torque  
1)  
( )  
(Driving)  
2)  
TF  
4)  
8)  
5)  
TU  
6)  
3)  
7)  
(Regenerative)  
( )  
Formulas for calculating torque and energy in operation  
Torque applied to servo motor [N m]  
Regenerative power  
Energy [J]  
0.1047  
(JL JM)  
1
N0  
E1  
T1  
TU  
TF  
N0 T1 Tpsa1  
1)  
104  
2
Tpsa1  
9.55  
2)  
3)  
T2 TU TF  
(JL JM)  
E2 0.1047 N0 T2 t1  
0.1047  
1
psd1  
0
N
3
T
TU  
TF  
E3  
N0 T3 Tpsd1  
9.55 104  
T
2
4), 8)  
T4 TU  
(JL JM)  
E4 0 (No regeneration)  
0.1047  
1
N0  
N0  
E5  
N0  
T5 Tpsa2  
T5  
TU TF  
5)  
6)  
7)  
104  
2
Tpsa2  
9.55  
T6 TU TF  
(JL JM)  
E6 0.1047 N0 T6 t3  
0.1047  
1
E7  
N0  
T7 Tpsd2  
T7  
TU TF  
104  
2
Tpsd2  
9.55  
Sum total of regenerative energies  
Sum total of negative energies in 1) to 8)  
b. Losses of servo motor and servo amplifier in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and servo amplifier in  
the regenerative mode.  
Servo amplifier  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
Inverse efficiency[%]  
Capacitor charging[J]  
55  
70  
85  
85  
80  
80  
85  
85  
90  
90  
9
9
11  
11  
18  
18  
40  
40  
45  
70  
MR-J2S-70A  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
Inverse efficiency ( )  
:Efficiency including some efficiencies of the servo motor and servo  
amplifier when rated (regenerative) torque is generated at rated speed.  
Since the efficiency varies with the speed and generated torque, allow for  
about 10%.  
Capacitor charging (Ec) :Energy charged into the electrolytic capacitor in the servo amplifier.  
13 - 2  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by  
the inverse efficiency to calculate the energy consumed by the regenerative brake option.  
ER [J]  
Es Ec  
Calculate the power consumption of the regenerative brake option on the basis of single-cycle operation  
period tf [s] to select the necessary regenerative brake option.  
PR [W] ER/tf............................................................................................(13.1)  
(3) Connection of the regenerative brake option  
Set parameter No.2 according to the open to be used.  
Parameter No.0  
Selection of regenerative  
0: Not used.  
2: MR-RB032  
3: MR-RB12  
4: MR-RB32  
5: MR-RB30  
6: MR-RB50  
8: MR-RB31  
9: MR-RB51  
13 - 3  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Connection of the regenerative brake option  
The regenerative brake option will generate heat of about 100 . Fully examine heat dissipation,  
installation position, used cables, etc. before installing the option. For wiring, use flame-resistant  
cables and keep them clear of the regenerative brake option body. Always use twisted cables of max.  
5m(16.4ft) length for connection with the servo amplifier.  
(a) MR-J2S-350A or less  
Always remove the wiring from across P-D and fit the regenerative brake option across P-C.  
Always remove the lead from across P-D.  
Servo amplifier  
Regenerative brake option  
D
P
P
C
C
G3  
(Note)  
G4  
G3 G4: Thermal protector terminals.  
Abnormal heating will dis-  
connect G3-G4.  
5m (16.4 ft) max.  
Note: Make up a sequence which will switch off the magnetic contactor  
(MC) when abnormal heating occurs.  
(b) MR-J2S-500A MR-J2S-700A  
Always remove the wiring (across P-C) of the servo amplifier built-in regenerative brake resistor  
and fit the regenerative brake option across P-C.  
Always remove wiring (across P-C) of servo  
amplifier built-in regenerative brake resistor.  
Servo amplifier  
Regenerative brake option  
P
P
C
C
G3  
(Note 2)  
G4  
G3 G4: Thermal protector terminals.  
Abnormal heating will dis-  
connect G3-G4.  
5m(16.4ft) or less  
Fan (Note 1)  
Note 1. When using the MR-RB51, forcibly cool it with a cooling fan (1.0m3/min, 92 or so).  
2. Make up a sequence which will switch off the magnetic contactor (MC)  
when abnormal heating occurs.  
13 - 4  
13. OPTIONS AND AUXILIARY EQUIPMENT  
When using the regenerative brake resistor option, remove the servo amplifier's built-in  
regenerative brake resistor terminals (across P-C), fit them back to back, and secure them to the  
frame with the accessory screw as shown below.  
Mounting method  
Accessory screw  
For MR-J2S-700A  
For MR-J2S-500A  
Accessory screw  
Accessory screw  
For the MR-RB51 install the cooling fan as shown.  
[Unit : mm(in)]  
Fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for fan installation)  
Depth 10 or less  
(Screw hole already  
machined)  
Fan  
Terminal block  
Thermal relay  
Bottom  
82.5  
40 (1.58)  
(3.25)  
Recommended fan:  
Installation surface  
Horizontal installation  
Vertical  
installation  
Toyo Denki's TL396A or equivalent  
13 - 5  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Outline drawing  
(a) MR-RB032 MR-RB12  
[Unit: mm (in)]  
LA  
6 (0.24) mounting hole  
LB  
MR-RB  
5 (0.20)  
G3  
G4  
P
TE1  
C
1.6 (0.06)  
6 (0.23)  
20  
(0.79)  
LD  
LC  
Regenerative Regenerative Resistance  
Variable dimensions  
Weight  
brake option  
power[W]  
[ ]  
LA  
LB  
LC  
LD [kg] [lb]  
30  
15  
119  
99  
MR-RB032  
30  
40  
0.5 1.1  
(1.18) (0.59) (4.69) (3.9)  
40 15 169 149  
(1.57) (0.59) (6.69) (5.87)  
MR-RB12  
100  
40  
1.1 2.4  
(b) MR-RB32 MR-RB30 MR-RB31  
(c) MR-RB50 MR-RB51  
[Unit: mm (in)]  
[Unit: mm (in)]  
79  
(7.05)  
7
14 slot  
Terminal  
block  
7(0.28)  
90  
Terminal  
10  
(0.39)  
3.2(0.13)  
block  
17  
7(0.28)  
116(4.57)  
128(5.04)  
(3.54)  
2.3(0.09)  
200(7.87)  
318(12.52)  
(0.67)  
12  
(0.47)  
100(3.94)  
17(0.67)  
Regenerative  
power  
Weight  
Regenerative  
power  
Weight  
Regenerative  
brake option  
Resistance  
[ ]  
Regenerative  
brake option  
Resistance  
[ ]  
[kg]  
[lb]  
[kg] [lb]  
[W]  
[W]  
MR-RB32  
MR-RB30  
300  
300  
40  
13  
2.9  
2.9  
6.4  
6.4  
MR-RB50  
500  
13  
5.6 12.3  
13 - 6  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.2 Brake unit  
POINT  
The brake unit and resistor unit of other than 200V class are not  
applicable to the servo amplifier.  
The brake unit and resistor unit of the same capacity must be combined.  
The units of different capacities may result in damage.  
The brake unit and resistor unit must be installed on a vertical surface in  
the vertical direction. If they are installed in the horizontal direction or on  
a horizontal surface, a heat dissipation effect reduces.  
The temperature of the resistor unit casing rises to higher than 100 . Do  
not cause cables and combustibles to make contact with the casing.  
The brake unit is the integration of the regenerative control and resistor and is connected to the bus  
(across P-N) of the servo amplifier. As compared to the MR-RB regenerative brake option, the brake unit  
can return larger power. Hence, use the this brake unit when the MR-RB cannot provide sufficient  
regenerative brake capability.  
(1) Selection  
Permissible Continuous Max. Instantaneous  
Brake unit  
Resistor unit  
Applicable Servo Amplifier  
Power [kw]  
0.99  
Current [kw]  
16.5  
FR-BU-15K  
FR-BU-30K  
FR-BR-15K  
FR-BR-30K  
MR-J2S-500A  
MR-J2S-700A  
1.99  
33.4  
(2) Connection example  
Servo amplifier  
No-fuse breaker  
NFB  
MC  
Servo motor  
SM  
Power  
supply  
3-phase  
200 to  
230VAC  
L1  
U
V
L2  
L3  
W
L11  
L21  
(Note 2)  
P
PR  
P
P/  
N/  
PR  
C
N
(Note 1)  
HA  
(Note 1)  
TH1  
HB  
Alarm  
output  
HC  
TH2  
THS  
FR-BR resistor unit  
FR-BU brake unit  
Note 1. Make up the external sequence to switch the power off when an alarm occurs or when the thermal relay is actuated.  
2. Always remove the wiring (across P-C) of the servo amplifier built-in resistor.  
13 - 7  
13. OPTIONS AND AUXILIARY EQUIPMENT  
The cables between the servo amplifier and brake unit and between the resistor unit and brake unit  
should be as short as possible. The cables longer than 5m(16.404ft) should be twisted. If twisted, the  
cables must not be longer than 10m(32.808ft).  
The cable size should be equal to or larger than the recommended size. See the brake unit instruction  
manual. You cannot connect one set of brake unit to two servo amplifiers or two sets of brake units to  
one servo amplifier.  
Servo amplifier  
Servo amplifier  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist.  
Twist.  
P
N
P
N
P
PR  
P
PR  
P
N
P
N
P
PR  
P
PR  
5m (16.404ft)  
or less  
5m (16.404ft)  
or less  
10m (32.808ft)  
or less  
10m (32.808ft)  
or less  
(3) Outside dimensions  
(a) Brake unit (FR-BU)  
[Unit : mm(in)]  
D
K
K
(Note)  
Operation  
Control circuit  
terminals  
Main circuit  
terminals  
display  
C
EE  
AA  
E
E
A
Note: Ventilation ports are provided in both side faces and top face. The bottom face is open.  
Approx.  
Brake Unit  
FR-BU-15K  
FR-BU-30K  
A
AA  
B
BA  
C
D
E
EE  
K
F
Weight [kg(Ib)]  
100  
60  
240  
225  
128  
6
18.5  
6
48.5  
7.5  
2.4  
(5.291)  
3.2  
(3.937) (2.362) (9.446) (10.039) (5.039) (0.236) (0.728) (0.236) (1.909) (0.295)  
160 90 240 225 128 33.5 78.5 7.5  
6
6
(6.299) (3.543) (9.446) (10.039) (5.039) (0.236) (1.319) (0.236) (3.091) (0.295)  
(7.055)  
13 - 8  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Resistor unit (FR-BR)  
[Unit : mm(in)]  
2- D  
Control circuit  
terminals  
(Note)  
Main circuit  
terminals  
FR-BR-55K  
Two eye bolts are provided  
(as shown below).  
EE  
(E)  
EE  
(E)  
AA 5 (0.197)  
204  
(8.031)  
Eye bolt  
A 5 (0.197)  
Note: Ventilation ports are provided in both side faces and top face. The bottom face is open.  
Resistor  
Unit  
Approx.  
Weight  
[kg(Ib)]  
A
AA  
B
BA  
BB  
C
D
E
EE  
K
F
Model  
FR-BR-  
15K  
170  
100  
450  
432  
410  
220  
6
35  
6
1.6  
20  
15  
(6.693) (3.937) (17.717) (17.008) (16.142) (8.661) (0.236) (1.378) (0.236) (0.063) (0.787) (66.139)  
340 270 600 582 560 220 10 35 10 20 30  
(11.389) (10.63) (23.622) (22.913) (22.047) (8.661) (0.394) (1.378) (0.394) (0.079) (0.787) (33.069)  
FR-BR-  
30K  
2
13.1.3 Power return converter  
(1) Selection  
The converters can continuously return 75% of the nominal regenerative power. They are applied to  
the servo amplifiers of the MR-J2S-500A and MR-J2S-700A.  
Nominal  
Power return  
500  
Regenerative Servo Amplifier  
converter  
300  
200  
Power (kW)  
FR-RC15  
FR-RC30  
15  
30  
MR-J2S-500A  
MR-J2S-700A  
100  
50  
30  
20  
0
50  
75 100  
150  
Nominal regenerative power (%)  
13 - 9  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
L11  
L21  
Power factor improving reactor  
NFB  
MC  
FR-BAL  
L1  
L2  
Power supply  
3-phase  
200V or 230VAC  
L3  
VDD  
RA2  
COM  
ALM  
SG  
EM1  
SG  
Always remove  
wiring across P-C.  
N
P
C
5m(16.4ft) or less  
N/  
P/  
RDY  
SE  
A
B
C
Ready  
RDY  
output  
B
C
R/L1  
Alarm  
output  
S/L2  
T/L3  
R
RX  
S
Phase detection  
terminals  
SX  
T
TX  
Power return converter  
FR-RC  
FR-RC  
Operation ready  
ON  
EM1  
RA2  
OFF  
B
C
MC  
SK  
MC  
13 - 10  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outside dimensions of the power return converters  
[Unit : mm(in)]  
Mounting foot (removable)  
Mounting foot  
movable  
2- D hole  
Rating plate  
Display  
panel  
window  
Front cover  
Cooling fan  
K
D
F
AA  
A
C
Heat generation area outside mounting dimension  
Power return  
converter  
Approx.  
A
AA  
200  
B
BA  
432  
C
D
E
EE  
K
F
Weight [kg(Ib)]  
270  
450  
195  
10  
10  
8
3.2  
87  
19  
FR-RC-15K  
FR-RC-30K  
(10.630) (7.874) (17.717) (17.008) (7.677) (0.394) (0.394) (0.315) (0.126) (3.425)  
340 270 600 582 195 10 10 3.2 90  
(13.386) (10.630) (23.622) (22.913) (7.677) (0.394) (0.394) (0.315) (0.126) (3.543)  
(41.888)  
31  
8
(68.343)  
(4) Mounting hole machining dimensions  
When the power return converter is fitted to a totally enclosed type box, mount the heat generating  
area of the converter outside the box to provide heat generation measures. At this time, the mounting  
hole having the following dimensions is machined in the box.  
[Unit : mm(in)]  
(2- D hole)  
(AA)  
Model  
A
B
D
AA  
BA  
260  
412  
10  
200  
432  
FR-RC-15K  
(10.236) (16.220) (0.394) (7.874) (17.009)  
330 562 10 270 582  
(12.992) (22.126) (0.394) (10.630) (22.913)  
FR-RC-30K  
(Mounting hole)  
a
13 - 11  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.4 Cables and connectors  
(1) Cable make-up  
The following cables are used for connection with the servo motor and other models. Those indicated  
by broken lines in the figure are not options.  
Servo amplifier  
9)  
Operation  
panel  
CN1A CN1B  
Personal  
computer  
CN2 CN3  
14)  
Controller  
13)  
10)  
10)  
12)  
11)  
11)  
To U, V, W,  
19) 20)  
HC-KFS  
HC-MFS  
HC-UFS 3000 r/min  
1) 2)  
6)  
HC-SFS  
HC-RFS  
HC-UFS 2000r/min  
15) 16) 17) 18)  
3) 4) 5)  
7) 8)  
13 - 12  
13. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
1) Standard encoder MR-JCCBL M-L  
cable Refer to (2) in this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
2) Long flexing life MR-JCCBL M-H  
Product  
Model  
Description  
Housing  
Application  
Connector: 10120-3000VE  
: 1-172161-9  
Standard  
flexing life  
IP20  
Connector pin : 170359-1  
(AMP or equivalent)  
Long flexing  
life  
encoder cable  
Refer to (2) in this  
section.  
IP20  
3) Standard encoder MR-JHSCBL M-L Connector: 10120-3000VE  
cable Refer to (2) in this Shell kit: 10320-52F0-008  
section. (3M or equivalent)  
4) Long flexing life MR-JHSCBL M-H  
Connector: MS3106B20-29S  
Cable clamp: MS3057-12A  
(Japan Aviation Electronics)  
Standard  
flexing life  
IP20  
Long flexing  
life  
encoder cable  
Refer to (2) in this  
section.  
5) IP65-compliant  
encoder cable  
MR-ENCBL M-H Connector: 10120-3000VE  
Refer to (2) in this Shell kit: 10320-52F0-008  
Connector  
Long flexing  
: MS3106A20-29S (D190) life  
section.  
(3M or equivalent)  
Cable clamp  
IP65  
: CE3057-12A-3 (D265) IP67  
Back shell: CE02-20BS-S  
Not oil-  
(DDK)  
resistant.  
6) Encoder  
connector set  
MR-J2CNM  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Housing : 1-172161-9  
IP20  
IP20  
Pin  
: 170359-1  
Cable clamp: MTI-0002  
(AMP or equivalent)  
7) Encoder  
connector set  
MR-J2CNS  
MR-ENCNS  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: MS3106B20-29S  
Cable clamp: MS3057-12A  
(Japan Aviation Electronics)  
8) Encoder  
connector set  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: MS3106A20-29S (D190) IP65  
Cable clamp: CE3057-12A-3 (D265) IP67  
Back shell: CE02-20BS-S  
(DDK)  
13 - 13  
13. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
MR-J2CN1  
Description  
Application  
Control signal  
connector set  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
9)  
Qty: 2 each  
Connector: 10120-6000EL  
Junction  
terminal block  
cable  
MR-J2TBL M  
Refer to  
Connector: HIF3BA-20D-2.54R  
(Hirose Electric)  
For junction  
terminal  
block  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Section13.1.5.  
10)  
11)  
12)  
13)  
connection  
Junction  
MR-TB20  
Refer to Section 13.1.5.  
terminal block  
Bus cable  
MR-J2HBUS M  
Refer to  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
For  
maintenance  
junction  
card  
section13.1.6.  
connection  
Maintenance  
junction card  
MR-J2CN3TM  
Refer to Section 13.1.6.  
Communication MR-CPCATCBL3M Connector: 10120-6000EL  
Connector: DE-9SF-N  
Case: DE-C1-J6-S6  
For  
cable  
Refer to (3) in this Shell kit: 10320-3210-000  
connection  
with PC-AT-  
compatible  
personal  
computer  
section.  
(3M or equivalent)  
(Japan Aviation Electronics)  
14)  
Power supply  
connector set  
MR-PWCNS1  
Refer to the Servo  
Motor Instruction  
Manual.  
Connector: CE05-6A22-23SD-B-BSS  
Cable clamp:CE3057-12A-2 (D265)  
(DDK)  
15)  
16)  
17)  
18)  
19)  
Power supply  
connector set  
MR-PWCNS2  
Refer to the Servo  
Motor Instruction  
Manual.  
Connector: CE05-6A24-10SD-B-BSS  
Cable clamp: CE3057-16A-2 (D265)  
(DDK)  
EN  
Standard-  
compliant  
IP65 IP67  
Power supply  
connector set  
MR-PWCNS2  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: CE05-6A24-10SD-B-BSS  
Cable clamp: CE3057-16A-2 (D265)  
(DDK)  
Brake connector MR-BKCN  
Plug: MS3106A10SL-4S (D190) (DDK)  
set  
Refer to the Servo  
Cable connector: YS010-5-8 (Daiwa Dengyo)  
Motor Instruction  
Manual.  
Power supply  
connector set  
MR-PWCNK1  
Refer to the Servo  
Motor Instruction  
Manual.  
Plug: 5559-04P-210  
IP20  
Terminal: 5558PBT3L (For AWG16)(6 pcs.)  
(Molex make)  
Power supply  
MR-PWCNK2  
Plug: 5559-06P-210  
For motor  
with brake  
IP20  
20) connector set  
Terminal: 5558PBT3L (For AWG16)(8 pcs.)  
(Molex make)  
13 - 14  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Encoder cable  
If you have fabricated the encoder cable, connect it correctly.  
CAUTION  
Otherwise, misoperation or explosion may occur.  
POINT  
The encoder cable is not oil resistant.  
Refer to Section 12.4 for the flexing life of the encoder cable.  
Generally use the encoder cable available as our options. If the required length is not found in the  
options, fabricate the cable on the customer side.  
(a) MR-JCCBL M-L MR-JCCBL M-H  
These encoder cables are used with the HC-KFS HC-MFS HC-UFS3000r/min series servo  
motors.  
1) Model explanation  
Model: MR-JCCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol (Note) Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note: MR-JCCBL M-H has  
no 40(131.2) and 50m(164.0ft) sizes.  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to Section 3.3.1.  
Encoder cable  
Servo amplifier  
supplied to servo motor  
Encoder connector  
Encoder connector  
172161-9 (AMP)  
Servo motor  
Encoder  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
4
5
6
MD MDR  
50m(164.0ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
13 - 15  
13. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JCCBL2M-L  
MR-JCCBL5M-L  
MR-JCCBL2M-H  
MR-JCCBL5M-H  
MR-JCCBL10M-L  
MR-JCCBL10M-H  
to  
to  
MR-JCCBL30M-L  
MR-JCCBL50M-H  
Servo amplifier side  
P5 19  
LG 11  
P5 20  
LG 12  
Encoder side Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side  
7
P5  
LG 11  
P5 20  
LG 12  
19  
7
P5  
LG 11  
P5 20  
LG 12  
19  
7
P5  
LG  
18  
2
P5  
LG  
18  
2
P5  
LG  
18  
2
8
1
2
4
5
3
8
1
2
4
5
3
8
1
2
4
5
3
MR  
7
MR  
7
MR  
7
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
6
6
6
BT  
LG  
9
1
BT  
LG  
9
1
BT  
LG  
9
1
SD  
Plate  
9
SD  
Plate  
9
SD  
Plate  
9
When fabricating an encoder cable, use the recommended wires given in Section 13.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of up to 50m(164.0ft) length including the length of the encoder cable supplied to the servo  
motor.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to Chapter 3 of the servo motor instruction guide and choose the encode side connector  
according to the servo motor installation environment.  
For use of AWG24  
Servo amplifier side  
(3M)  
19  
LG 11  
P5 20  
LG 12  
For use of AWG22  
Servo amplifier side  
(3M)  
19  
LG 11  
P5 20  
LG 12  
Encoder side  
7
Encoder side  
7
P5  
P5  
P5  
LG  
18  
2
P5  
LG  
18  
2
8
1
2
8
1
2
MR  
7
MR  
7
MRR 17  
MRR 17  
BT  
LG  
9
1
3
9
BT  
LG  
9
1
3
9
SD  
SD  
Plate  
Plate  
13 - 16  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JHSCBL M-L MR-JHSCBL M-H MR-ENCBL M-H  
These encoder cables are used with the HC-SFS HC-RFS HC-UFS2000r/min series servo motors.  
1) Model explanation  
Model: MR-JHSCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
Note: MR-JHSCBL M-L has  
no 40(131.2) and 50m(164.0ft) sizes.  
Model: MR-ENCBL M-H  
Long flexing life  
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
30  
40  
50  
10 (32.8)  
20 (65.6)  
30 (98.4)  
40 (131.2)  
50 (164.0)  
2) Connection diagram  
For the pin assignment on the servo amplifier side, refer to Section 3.3.1.  
Servo amplifier  
Encoder connector  
Encoder connector  
Pin Signal  
Pin Signal  
K
L
Servo motor  
A
B
C
D
E
F
G
H
J
MD  
MDR  
MR  
Encoder cable  
(Optional or fabricated)  
A
M
T
B
P
C
L
N
M
K
J
D
E
F
MRR  
N
P
R
S
SHD  
CN2  
Encoder  
S
R
H
G
BAT  
LG  
LG  
P5  
T
50m(164.0ft) max.  
13 - 17  
13. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JHSCBL2M-L  
MR-JHSCBL5M-L  
MR-JHSCBL2M-H  
MR-JHSCBL5M-H  
MR-ENCBL2M-H  
MR-ENCBL5M-H  
MR-JHSCBL10M-L  
MR-JHSCBL10M-H  
to  
to  
MR-JHSCBL30M-L  
MR-JHSCBL50M-H  
MR-ENCBL10M-H  
to  
MR-ENCBL50M-H  
Servo amplifier side  
P5 19  
LG 11  
P5 20  
LG 12  
MR  
MRR 17  
Encoder side Servo amplifier side  
Encoder side Servo amplifier side  
Encoder side  
S
P5  
LG 11  
P5 20  
LG 12  
19  
S
P5  
LG 11  
P5 20  
LG 12  
19  
S
R
C
D
7
P5  
LG  
18  
2
P5  
LG  
18  
2
P5  
18  
2
LG  
BAT  
LG  
R
C
D
R
C
D
9
F
MR  
7
MR  
7
1
G
MRR 17  
MRR 17  
SD  
N
Plate  
BAT  
LG  
9
1
F
BAT  
LG  
9
1
F
(Note) Use of AWG24  
(Less than 10m(32.8ft))  
G
G
SD  
N
SD  
N
Plate  
Plate  
Note: AWG28 can be used for 5m(16.4ft) or less.  
Use of AWG22  
(10m(32.8ft) to 50m(164.0ft))  
Use of AWG24  
(10m(32.8ft) to 50m(164.0ft))  
When fabricating an encoder cable, use the recommended wires given in Section 13.2.1 and the  
MR-J2CNS connector set for encoder cable fabrication, and fabricate an encoder cable in  
accordance with the optional encoder cable wiring diagram given in this section. You can  
fabricate an encoder cable of up to 50m(164.0ft) length.  
Refer to Chapter 3 of the servo motor instruction guide and choose the encode side connector  
according to the servo motor installation environment.  
13 - 18  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Communication cable  
POINT  
This cable may not be used with some personal computers. After fully  
examining the signals of the RS-232C connector, refer to this section and  
fabricate the cable.  
(a) Model definition  
Model : MR-CPCATCBL3M  
Cable length 3[m](10[ft])  
(b) Connection diagram  
MR-CPCATCBL3M  
Personal computer side  
Servo amplifier side  
Plate FG  
RXD  
TXD  
3
2
1
LG  
TXD  
LG  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
12  
11  
D-SUB9 pins  
Half-pitch 20 pins  
When fabricating the cable, refer to the connection diagram in this section.  
The following must be observed in fabrication:  
1) Always use a shielded, multi-core cable and connect the shield with FG securely.  
2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum  
length is 15m(49ft) in offices of good environment with minimal noise.  
13 - 19  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.5 Junction terminal block (MR-TB20)  
POINT  
When using the junction terminal block, you cannot use SG of CN1A-20  
and CN1B-20. Use SG of CN1A-4 and CN1B-4.  
(1) How to use the junction terminal block  
Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MR-  
J2TBL M) as a set. A connection example is shown below:  
Servo amplifier  
Junction terminal block  
Cable clamp  
MR-TB20  
(AERSBAN-ESET)  
CN1A  
or  
Junction terminal  
block cable  
CN1B  
(MR-J2TBL05M)  
Ground the junction terminal block cable on the junction terminal block side with the standard  
accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to Section  
13.2.6, (2)(c).  
(2) Terminal labels  
Among the terminal block labels for the junction terminal block, use the two for the MR-J2S-A(MR-J2-  
A). When changing the input signals in parameters No. 43 to 48, refer to (4) in this section and Section  
3.3 and apply the accessory signal seals to the labels.  
1) For CN1A  
2) For CN1B  
LG PP LZ LB COM OPC PG LZR LBR RD  
LG VDD SON  
TL P15R COM EMG LSN ZSP  
NP P15R LA CR SG NG OP LAR INP SD  
VC DO1 TLC PC SG TLA RES LSP ALM SD  
(3) Outline drawing  
[Unit: mm]  
([Unit: in.])  
126(4.96)  
117(4.61)  
MITSUBISHI  
MR-TB20  
2- 4.5(0.18)  
Terminal screw: M3.5  
Applicable cable: Max. 2mm2  
(Crimping terminal width: 7.2mm (0.283 in) max.)  
13 - 20  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Junction terminal block cable (MR-J2TBL M)  
Model : MR-J2TBL  
M
Symbol Cable length[m(ft)]  
05  
1
0.5 (1.64)  
1 (3.28)  
Junction terminal block side connector (Hirose Electric)  
HIF3BA-20D-2.54R (connector)  
Servo amplifier side (CN1A CN1B) connector (3M)  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
(Note) Symbol  
Pin  
No.  
Junction terminal Pin  
block terminal No. No.  
Position control mode Speed control mode Torque control mode  
For CN1A For CN1B For CN1A For CN1B For CN1A For CN1B  
10  
0
11  
1
12  
2
13  
3
14  
4
15  
5
16  
6
17  
7
B1  
A1  
B2  
A2  
B3  
A3  
B4  
A4  
B5  
A5  
B6  
A6  
B7  
A7  
B8  
A8  
B9  
A9  
B10  
A10  
1
2
3
4
5
6
7
LG  
LG  
NP  
LG  
VC  
VDD  
DO1  
SON  
TLC  
LG  
LG  
VC  
LG  
VLA  
VDD  
DO1  
SON  
VLC  
SP2  
RS2  
RS1  
SG  
P15R  
TC  
COM  
RES  
EMG  
PP  
VDD  
DO1  
SON  
TLC  
SP2  
ST1  
ST2  
SG  
P15R  
TLA  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SD  
P15R  
LZ  
LA  
LB  
SP1  
COM  
SG  
P15R  
LZ  
LA  
LB  
CR  
COM  
SG  
P15R  
LZ  
LA  
LB  
SP1  
COM  
SG  
8
9
PC  
TLC  
SG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Plate  
P15R  
TLA  
COM  
RES  
EMG  
LSP  
LSN  
ALM  
ZSP  
SD  
OPC  
NG  
PG  
OP  
OP  
OP  
LZR  
LAR  
LBR  
SA  
LZR  
LAR  
LBR  
LZR  
LAR  
LBR  
INP  
RD  
18  
8
19  
9
ALM  
ZSP  
SD  
RD  
SD  
RD  
SD  
SD  
Note: The labels supplied to the junction terminal block are designed for the position control mode. When using the junction  
terminal block in the speed or torque control mode, change the signal abbreviations using the accessory signal seals.  
13 - 21  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.6 Maintenance junction card (MR-J2CN3TM)  
(1) Usage  
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and  
analog monitor outputs are used at the same time.  
Communication cable  
Servo amplifier  
Maintenance junction card (MR-J2CN3TM)  
CN3B  
Bus cable  
MR-J2HBUS  
M
CN3  
CN3A  
CN3C  
A1 A2 A3 A4 B4 B3 B2 B1 B5 B6 A5 A6  
VDD EM1 DI MBR  
COM EMGO  
SG PE LG LG MO1MO2  
Analog monitor output 2  
Analog monitor output 1  
Not used  
(2) Connection diagram  
TE1  
B5  
B6  
A5  
LG  
LG  
MO1  
MO2  
CN3A  
CN3B  
CN3C  
1
1
2
1
2
1
2
A6  
3
4
5
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
A1  
A2  
9
9
9
10  
VDD  
COM  
EM1  
DI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A3  
A4  
13  
14  
15  
B4  
B3  
Not used  
MBR  
EMGO  
SG  
19  
20  
B2  
B1  
Shell  
Shell  
Shell  
PE  
(3) Outline drawing  
[Unit: mm]  
([Unit: in])  
CN3A  
CN3B  
CN3C  
2- 5.3(0.21)(mounting hole)  
A1  
B1  
A6  
B6  
TE1  
3(0.12)  
88(3.47)  
41.5(1.63)  
100(3.94)  
Weight: 110g(0.24Ib)  
13 - 22  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Bus cable (MR-J2HBUS M)  
Model: MR-J2HBUS  
M
Symbol  
Cable length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
MR-J2HBUS05M  
MR-J2HBUS1M  
MR-J2HBUS5M  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
LG  
LG  
RD  
1
1
11  
2
11  
2
RD* 12  
12  
3
3
13  
13  
4
TD  
TD*  
LG  
LG  
4
14  
5
14  
5
15  
6
15  
6
16  
7
16  
7
EMG  
EMG* 17  
17  
8
8
18  
9
18  
9
BAT  
SD  
19  
10  
20  
19  
10  
20  
Plate  
Plate  
13.1.7 Battery (MR-BAT, A6BAT)  
Use the battery to build an absolute position detection system.  
13 - 23  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.1.8 Servo configurations software  
The servo configuration software uses the communication function of the servo amplifier to perform  
parameter setting changes, graph display, test operation, etc. on a personal computer.  
(1) Specifications  
Item  
Description  
Communication signal Conforms to RS-232C.  
Baudrate [bps]  
57600, 38400, 19200, 9600  
Batch display, high-speed display, graph display  
Monitor  
(Minimum resolution changes with the processing speed of the personal computer.)  
Alarm display, alarm history, data display at alarm occurrence  
External I/O signal display, no-rotation reason display, cumulative power-on time display,  
software number display, motor information display, tuning data display, ABS data display,  
automatic VC offset display, shaft name setting.  
Alarm  
Diagnostic  
Parameters  
Data setting, list display, change list display, detailed information display, turning  
Jog operation, positioning operation, motor-less operation, output signal forced output, program  
operation in simple language.  
Test operation  
Advanced function  
File operation  
Others  
Machine analyzer, gain search, machine simulation.  
Data read, save, print  
Automatic operation, station setting, help display  
(2) System configuration  
(a) Components  
To use this software, the following components are required in addition to the servo amplifier and  
servo motor:  
Model  
(Note 1) Description  
(Note 2)  
Personal  
computer  
OS  
IBM PC-AT compatible on which Windows 95 or 98 (English) runs  
(Pentium133MHz or higher recommended).Memory: 16MB or more, hard disk free space: 20MB or more,  
serial port used.  
Windows 95/98 (English)  
Display  
Keyboard  
Mouse  
800 600 or more, 256-color or more display which can be used with Windows 95/98 (English).  
Which can be connected to the personal computer.  
Which can be used with Windows 95/98(English). Note that a serial mouse is not used.  
Which can be used with Windows 95/98(English).  
Printer  
Communication MR-CPCATCBL3M  
cable  
When this cannot be used, refer to (3) Section 13.1.4 and fabricate.  
RS-232C/RS-422  
converter  
Needed to use the RS-422 multidrop communication function of the servo amplifier.  
Note: 1. Windows is a trade mark of Microsoft Corporation.  
2. On some personal computers, this software may not run properly.  
13 - 24  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Configuration diagram  
1) When using RS-232C  
Servo amplifier  
Personal computer  
Communication cable  
CN3  
CN2  
Servo motor  
To RS-232C  
connector  
2) When using RS-422  
You can make multidrop connection of up to 32 axes.  
Servo amplifier  
Personal computer  
RS-232C/RS-422  
(Note)  
converter  
Communication cable  
CN3  
CN2  
Servo motor  
(Axis 1)  
To RS-232C  
connector  
Servo amplifier  
CN3  
CN2  
Servo motor  
(Axis 2)  
Servo amplifier  
CN3  
CN2  
Servo motor  
(Axis 32)  
Note: For cable connection, refer to section 14.1.1.  
13 - 25  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2 Auxiliary equipment  
Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-  
UL Standard, use the products which conform to the corresponding standard.  
13.2.1 Recommended wires  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or  
equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Servo motor  
Servo amplifier  
Power supply  
L1  
U
V
U
V
L2  
L3  
Motor  
W
W
L11  
L21  
6) Brake unit lead or  
Return converter  
5) Electromagnetic  
brake lead  
2) Control power supply lead  
Electro-  
magnetic  
brake  
Brake unit or  
Return converter  
B1  
B2  
N
Regenerative brake option  
C
P
Encoder  
Encoder cable (refer to Section 12.1.4)  
4) Regenerative brake option lead  
The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the  
wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in  
consideration of voltage drop.  
The alphabets (a, b, c) in the table correspond to the crimping terminals (Table 13.2) used to wire the  
servo amplifier. For connection with the terminal block TE2 of the MR-J2S-100A or less, refer to  
Section 3.11.  
The servo motor side connection method depends on the type and capacity of the servo motor. Refer to  
Section 3.8.  
Table 13.1 Recommended wires  
2
(Note 1) Wires [mm ]  
Servo amplifier  
1) L1 L2 L3  
2) L11 L21  
3) U  
V
W
4) P  
C
5) B1 B2  
MR-J2S-10A(1)  
MR-J2S-20A(1)  
MR-J2S-40A(1)  
MR-J2S-60A  
1.25 (AWG16) : a  
2 (AWG14) : a  
MR-J2S-70A  
2 (AWG14) : a  
3.5(AW12) : c  
1.25 (AWG16)  
1.25 (AWG16)  
MR-J2S-100A  
MR-J2S-200A  
2 (AWG14) : a  
3.5 (AWG12) : b  
(Note 2)  
5.5 (AWG10) : b  
5.5 (AWG10) : b  
8 (AWG8) : c  
3.5 (AWG12) : b  
5.5 (AWG10) : b  
8 (AWG8) : c  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
Note: 1. For the crimping terminals and applicable tools, refer to table 13.2:  
2. 3.5mm2 for use of the HC-RFS203 servo motor.  
13 - 26  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Use wires 6) of the following sizes with the brake unit (FR-BU) and power return converter (FR-RC).  
Model  
Wires[mm2]  
3.5(AWG12)  
5.5(AWG10)  
14(AWG6)  
14(AWG6)  
FR-BU-15K  
FR-BU-30K  
FR-BU-55K  
FR-RC-15K  
Table 13.2 Recommended crimping terminals  
Servo amplifier side crimping terminals  
Symbol  
Crimping terminal  
32959  
Applicable tool  
Maker name  
a
b
47387  
59239  
AMP  
32968  
Body YF-1 E-4  
Head YNE-38  
Die DH-111 DH-121  
Japan Solderless  
Terminal  
c
FVD8-5  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent:  
Table 13.3 Wires for option cables  
Characteristics of one core  
Conductor Insulation coating  
[Wires/mm] resistance[ /mm] ODd[mm] (Note 1)  
(Note 3)  
Finishing  
OD [mm]  
Length  
[m(ft)]  
Core size Number  
Type  
Model  
Wire model  
Structure  
[mm2]  
of Cores  
2 to 10  
(6.56 to 32.8)  
20 30  
12  
(6 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
(7 pairs)  
UL20276 AWG#28  
6pair (BLAC)  
UL20276 AWG#22  
6pair (BLAC)  
(Note 2)  
0.08  
0.3  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
40/0.08  
40/0.08  
7/0.127  
7/0.127  
222  
62  
0.38  
1.2  
5.6  
8.2  
7.2  
8.0  
4.7  
8.2  
6.5  
7.2  
6.5  
7.2  
4.6  
6.1  
MR-JCCBL M-L  
(65.6 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
0.2  
105  
105  
222  
62  
0.88  
0.88  
0.38  
1.2  
A14B2343 6P  
(Note 2)  
MR-JCCBL M-H  
MR-JHSCBL M-L  
MR-JHSCBL M-H  
0.2  
(32.8 to 164)  
A14B0238 7P  
UL20276 AWG#28  
4pair (BLAC)  
UL20276 AWG#22  
6pair (BLAC)  
(Note 2)  
A14B2339 4P  
(Note 2)  
A14B2343 6P  
(Note 2)  
A14B2339 4P  
2 5  
(6.56 16.4)  
10 to 30  
8
0.08  
0.3  
(4 pairs)  
12  
(6 pairs)  
Encoder cable  
(32.8 to 98.4)  
2 5  
(6.56 16.4)  
10 to 50  
8
0.2  
105  
105  
105  
105  
222  
222  
0.88  
0.88  
0.88  
0.88  
0.38  
0.38  
(4 pairs)  
12  
(6 pairs)  
0.2  
(32.8 to 164)  
2 5  
(6.56 16.4)  
10 to 50  
8
0.2  
(4 pairs)  
12  
(6 pairs)  
MR-ENCBL M-H  
MR-CPCATCBL3M  
(Note 2)  
0.2  
(32.8 to 164)  
A14B2343 6P  
UL20276 AWG#28  
3pair (BLAC)  
UL20276 AWG#28  
10pair (CREAM)  
Communication  
cable  
6
3 (9.84)  
0.08  
0.08  
(3 pairs)  
20  
(10 pairs)  
0.5 to 5  
(1.64 to 16.4)  
Bus cable  
MR-J2HBUS  
M
Note 1: d is as shown below:  
d
Conductor Insulation sheath  
2: Purchased from Toa Electric Industry  
3: Standard OD. Max. OD is about 10% greater.  
13 - 27  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.2 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse  
instead of the no-fuse breaker, use the one having the specifications given in this section.  
Fuse  
Servo amplifier  
No-fuse breaker  
Magnetic contactor  
Class Current [A] Voltage [V]  
MR-J2S-10A(1)  
MR-J2S-20A  
NF30 type 5A  
NF30 type 5A  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
K5  
10  
10  
MR-J2S-40A 20A1 NF30 type 10A  
MR-J2S-60A 40A1 NF30 type 15A  
15  
20  
S-N10  
MR-J2S-70A  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
NF30 type 15A  
NF30 type 15A  
NF30 type 20A  
NF30 type 30A  
NF50 type 50A  
NF100 type 75A  
20  
AC250  
25  
40  
S-N18  
S-N20  
S-N35  
S-N50  
70  
125  
150  
13.2.3 Power factor improving reactors  
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be  
slightly lower than 90%.  
[Unit : mm]  
FR-BAL  
FR-BAL  
FR-BAL  
Servo amplifier  
L1  
MC  
NFB  
R
S
T
X
Y
Z
3-phase  
200 to 230VAC  
L2  
L3  
Servo amplifier  
L1  
W
D1  
5
MC  
NFB  
R
S
T
X
Y
Z
Installation screw  
1-phase  
230VAC  
L2  
L3  
RXSYT Z  
W1  
C
Servo amplifier  
L1  
MC  
NFB  
R
S
T
X
Y
Z
1-phase  
100 to120VAC  
L2  
Dimensions [mm (in) ]  
Mounting Terminal  
screw size screw size  
Weight  
[kg (lb)]  
Servo amplifier  
Model  
W
W1  
H
D
D1  
C
MR-J2S-10A(1)/20A  
MR-J2S-40A/20A1  
FR-BAL-0.4K  
135 (5.31) 120 (4.72) 115 (4.53) 59 (2.32)  
45 (1.77) 7.5 (0.29)  
57 (2.24) 7.5 (0.29)  
55 (2.17) 7.5 (0.29)  
75 (2.95) 7.5 (0.29)  
M4  
M4  
M4  
M4  
M5  
M5  
M6  
M6  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.4)  
2.8 (6.17)  
3.7 (8.16)  
5.6 (12.35)  
8.5 (18.74)  
14.5 (32.0)  
19 (41.9)  
FR-BAL-0.75K 135 (5.31) 120 (4.72) 115 (4.53) 69 (2.72)  
MR-J2S-60A/70A/40A1 FR-BAL-1.5K  
160 (6.30) 145 (5.71) 140 (5.51) 71 (2.79)  
160 (6.30) 145 (5.71) 140 (5.51) 91 (3.58)  
220 (8.66) 200 (7.87) 192 (7.56) 90 (3.54)  
MR-J2S-100A  
MR-J2S-200A  
MR-J2S-350A  
MR-J2S-500A  
MR-J2S-700A  
FR-BAL-2.2K  
FR-BAL-3.7K  
FR-BAL-7.5K  
FR-BAL-11K  
FR-BAL-15K  
70 (2.76)  
10 (0.39)  
220 (8.66) 200 (7.87) 194 (7.64) 120 (4.72) 100 (3.94) 10 (0.39)  
280 (11.02) 255 (10.04) 220 (8.66) 135 (5.31) 100 (3.94) 12.5 (0.49)  
295 (11.61) 270 (10.62) 275 (10.83) 133 (5.24) 110 (4.33) 12.5 (0.49)  
M5  
M6  
M6  
27 (59.5)  
13 - 28  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.4 Relays  
The following relays should be used with the interfaces:  
Interface  
Selection example  
Relay used especially for switching on-off analog input To prevent defective contacts , use a relay for small signal  
command and input command (interface DI-1) signals (twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of 40mA or less  
(Ex.) Omron : type MY  
13.2.5 Surge absorbers  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
Insulate the wiring as shown in the diagram.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Surge  
Energy  
Rated  
limit voltage  
rating (range) V1mA  
immunity  
immunity power  
AC[Vma] DC[V]  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
140  
180  
20 s  
360  
300  
500/time  
(198 to 242)  
Note: 1 time  
8
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon chemi-con)  
Outline drawing [mm] ( [in] ) (ERZ-C10DK221)  
13.5 (0.53)  
4.7 1.0 (0.19 0.04)  
Vinyl tube  
Crimping terminal  
for M4 screw  
0.8 (0.03)  
13.2.6 Noise reduction techniques  
Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and  
those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier  
is an electronic device which handles small signals, the following general noise reduction techniques are  
required.  
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle  
them together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal  
transmission, and connect the shield to the SD terminal.  
Ground the servo amplifier, servo motor, etc. together at one point (refer to Section 3.10).  
13 - 29  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Reduction techniques for external noises that cause the servo amplifier to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many  
relays which make a large amount of noise) near the servo amplifier and the servo amplifier may  
malfunction, the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
(c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction  
Noises produced by the servo amplifier are classified into those radiated from the cables connected  
to the servo amplifier and its main circuits (input and output circuits), those induced  
electromagnetically or statically by the signal cables of the peripheral devices located near the  
main circuit cables, and those transmitted through the power supply cables.  
Noise radiated directly  
from servo amplifier  
Noises produced  
by servo amplifier  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
1)  
7)  
Sensor  
power  
supply  
Servo  
amplifier  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
SM  
13 - 30  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may  
malfunction due to noise and/or their signal cables are contained in a control box together with the  
servo amplifier or run near the servo amplifier, such devices may malfunction due to noises  
transmitted through the air. The following techniques are required.  
(1) Provide maximum clearance between easily affected devices and the servo amplifier.  
(2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
1) 2) 3)  
(3) Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
(4) Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
(5) Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and  
malfunction may occur. The following techniques are required.  
(1) Provide maximum clearance between easily affected devices and the servo amplifier.  
(2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
4) 5) 6)  
(3) Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side  
or bundling them together.  
(4) Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of the servo  
amplifier system, noises produced by the servo amplifier may be transmitted back through the  
power supply cable and the devices may malfunction. The following techniques are required.  
(1) Insert the radio noise filter (FR-BIF) on the power cables (Input cables) of the servo amplifier.  
(2) Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of the servo amplifier.  
When the cables of peripheral devices are connected to the servo amplifier to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of Tokin make are available as data  
line filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedances are reference values and not guaranteed values.  
[Unit: mm]([Unit: in.])  
Impedance[ ]  
10 to 100MHz  
80  
100 to 500MHz  
150  
39 1(1.54 0.04)  
Loop for fixing the  
cable band  
34 1  
(1.34 0.04)  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
13 - 31  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic  
brake or the like near the servo amplifier is shown below. Use this product or equivalent.  
MS  
Relay  
Surge suppressor  
Surge suppressor  
Surge suppressor  
This distance should be short  
(within 20cm(0.79 in.)).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Outline drawing [Unit: mm] ([Unit: in.])  
Rated  
voltage  
AC[V]  
Vinyl sheath  
18 1.5  
C [ F]  
R []  
Test voltage AC[V]  
(0.71 0.06)  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
6(0.24)  
200  
0.5  
(1W)  
T-C 1000(1 to 5s)  
10(0.39)or less 10(0.39)or less  
15 1(0.59 0.04)  
4(0.16)  
10 3  
(0.39  
0.12)  
10 3  
(0.39  
0.15)  
31(1.22)  
200(7.87)  
48 1.5  
200(7.87)  
or more (1.89 0.06) or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of  
the relay or the like  
Diode  
Maximum current: Not less than twice the drive current of  
the relay or the like  
(c) Cable clamp fitting (AERSBAN -SET)  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown  
below.  
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath  
to expose the external conductor, and press that part against the earth plate with the cable clamp.  
If the cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
13 - 32  
13. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
([Unit: in.])  
Earth plate  
Clamp section diagram  
2- 5(0.20) hole  
installation hole  
17.5(0.69)  
L or less  
10(0.39)  
22(0.87)  
6
(Note)M4 screw  
35(1.38)  
(0.24)  
Note:Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
Clamp fitting  
L
100  
86  
30  
70  
AERSBAN-DSET  
clamp A: 2pcs.  
A
(3.94) (3.39) (1.18)  
70 56  
(2.76) (2.20)  
(2.76)  
45  
AERSBAN-ESET  
clamp B: 1pc.  
B
(1.77)  
13 - 33  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BLF, FR-BSF01)  
This filter is effective in suppressing noises radiated from the power supply side and output side of  
the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current)  
especially within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm] ([Unit: in.])  
FR-BLF(MR-J2S-350A) or more  
Wind the 3-phase wires by the equal number of times in the  
same direction, and connect the filter to the power supply side  
and output side of the servo amplifier.  
7 (0.28)  
The effect of the filter on the power supply side is higher as the  
number of winds is larger. The number of turns is generally four.  
If the wires are too thick to be wound, use two or more filters  
and make the total number of turns as mentioned above.  
On the output side, the number of turns must be four or less.  
Do not wind the grounding wire together with the 3-phase wires.  
The filter effect will decrease. Use a separate wire for grounding.  
130 (5.12)  
85 (3.35)  
Example 1  
NFB  
Servo amplifier  
160 (6.30)  
180 (7.09)  
Power  
supply  
L1  
L2  
L3  
FR-BSF01(for MR-J2S-200A or less)  
Line noise  
filter  
(Number of turns: 4)  
110 (4.33)  
Example 2  
NFB  
95 (3.74)  
2- 5 (0.20)  
Servo amplifier  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
65 (2.56)  
33 (1.3)  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF)...for the input side only  
This filter is effective in suppressing noises radiated from the power supply side of the servo  
amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the  
input only.  
Connection diagram  
Outline drawing (Unit: mm) ([Unit: in.])  
Make the connection cables as short as possible.  
Grounding is always required.  
Leakage current: 4mA  
Red WhiteBlue  
Green  
Servo amplifier  
NFB  
L1  
L2  
L3  
Power  
supply  
29 (1.14)  
5 (0.20)  
hole  
Radio noise  
filter FR-BIF  
29 (1.14)  
44 (1.73)  
58 (2.28)  
7 (0.28)  
13 - 34  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.7 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the servo amplifier,  
servo motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm (11.8 in)) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] ..........(13.2)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
1
3
Mitsubishi  
products  
Noise  
filter  
Type  
NV  
Servo  
amplifier  
Cable  
Ig2  
SM  
Models provided with  
harmonic and surge  
reduction techniques  
NV-SF  
NV-CF  
NV-CA  
NV-CS  
NV-SS  
Ig1 Ign  
Iga  
Igm  
General models  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals  
of the servo amplifier (Found from Fig. 13.1.)  
Leakage current on the electric channel from the output terminals of the servo amplifier to the  
servo motor (Found from Fig. 13.1.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)  
Leakage current of the servo amplifier (Found from Table 13.6.)  
Leakage current of the servo motor (Found from Table 13.5.)  
Table 13.5 Servo motor's  
leakage current  
Table 13.6 Servo amplifier's  
leakage current  
120  
100  
80  
60  
40  
20  
0
example (Igm)  
example (Iga)  
Servo motor  
output [kW]  
Leakage  
Servo amplifier  
Leakage  
current [mA]  
capacity [kW]  
0.1 to 0.6  
current [mA]  
0.05 to 0.5  
0.6 to 1.0  
1.2 to 2.2  
3 to 3.5  
5
0.1  
0.1  
0.2  
0.3  
0.5  
0.7  
0.1  
0.15  
2
0.7 to 3.5  
[mA]  
5
7
2
3.5 8 1422 38 80 150  
5.5 30 60 100  
7
Table 13.7 Leakage circuit breaker selection example  
Rated sensitivity  
Cable size[mm2]  
Fig. 13.1 Leakage current example  
(Ig1, Ig2) for CV cable run  
in metal conduit  
Servo amplifier  
current of leakage  
circuit breaker [mA]  
MR-J2S-10A to MR-J2S-350A  
MR-J2S-10A1 to MR-J2S-40A1  
MR-J2S-500A  
15  
30  
50  
MR-J2S-700A  
13 - 35  
13. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions:  
2mm2 5m  
2mm2 5m  
NV  
Servo  
amplifier  
MR-J2S-60A  
Servo motor  
HC-MFS73  
SM  
Ig1  
Iga  
Ig2  
Igm  
Use a leakage current breaker generally available.  
Find the terms of Equation (13.2) from the diagram:  
5
1000  
Ig1  
Ig2  
20  
20  
0.1 [mA]  
0.1 [mA]  
5
1000  
Ign 0 (not used)  
Iga 0.1 [mA]  
Igm 0.1 [mA]  
Insert these values in Equation (13.2):  
Ig 10 {0.1 0 0.1 3 (0.1 0.1)}  
8.0 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity  
current (Ig) of 8.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-  
CA/CS/SS series.  
13 - 36  
13. OPTIONS AND AUXILIARY EQUIPMENT  
13.2.8 EMC filter  
For compliance with the EMC Directive of the EN Standard, it is recommended to use the following filter:  
(1) Combination with the servo amplifier  
Recommended filter  
Servo amplifier  
Weight [kg]([lb])  
Model  
Leakage current [mA]  
MR-J2S-10A to MR-J2S-100A  
MR-J2S-10A1 to MR-J2S-40A1  
MR-J2S-200A MR-J2S-350A  
MR-J2S-500A  
SF1252  
38  
0.75 (1.65)  
SF1253  
57  
1.5  
1.5  
1.37 (1.65)  
5.5 (12.13)  
6.7 (14.77)  
(Note) HF-3040A-TM  
(Note) HF-3050A-TM  
MR-J2S-700A  
Note : Soshin Electric  
(2) Connection example  
EMC filter  
Servo amplifier  
NFB LINE  
LOAD  
(Note 1) Power supply  
3-phase  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
200 to 230V AC,  
1-phase  
230VAC or  
(Note 2)  
1-phase  
100 to120VAC  
L11  
L21  
Note: 1. For 1-phase 230VAC power supply, connect the power supply to L1,L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply.  
2. Connect when the power supply has earth.  
(3) Outline drawing  
[Unit: mm(in)]  
6.0(0.236)  
SF1252  
SF1253  
6.0(0.236)  
LINE  
149.5(5.886)  
209.5(8.248)  
L1  
L2  
L3  
L1  
L2  
L3  
LINE  
(input side)  
(input side)  
L1'  
L2'  
L3'  
L1'  
L2'  
L3'  
LOAD  
(output side)  
LOAD  
(output side)  
8.5  
(0.335)  
16.0(0.63)  
23.0(0.906)  
8.5  
(0.335)  
42.0  
49.0  
(1.654)  
(1.929)  
13 - 37  
13. OPTIONS AND AUXILIARY EQUIPMENT  
HF3040-TM HF-3050A-TM  
K
L
L
M
J
C
C
H
B
A
Dimensions [mm(in)]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
260  
210  
85  
155  
(6.10)  
190  
140  
(5.51)  
175  
125  
(4.92)  
160  
44  
140  
(5.51)  
170  
70  
HF3040A-TM  
HF3050A-TM  
M5  
M4  
(10.23) (8.27)  
290 240  
(11.42) (9.45)  
(3.35)  
100  
(1.73)  
44  
(2.76)  
100  
R3.25,  
length 8  
M6  
M4  
(3.94)  
(7.48)  
(6.89)  
(6.30)  
(1.73)  
(5.51)  
(3.94)  
13 - 38  
14. COMMUNICATION FUNCTIONS  
14. COMMUNICATION FUNCTIONS  
This servo amplifier has the RS-422 and RS-232C serial communication functions. These functions can be  
used to perform servo operation, parameter changing, monitor function, etc.  
However, the RS-422 and RS-232C communication functions cannot be used together. Select between RS-  
422 and RS-232C with parameter No.16. (Refer to Section 14.2.2.)  
14.1 Configuration  
14.1.1 RS-422 configuration  
(1) Outline  
Up to 32 axes of servo amplifiers from stations 0 to 31 can be operated on the same bus.  
Servo amplifier  
Servo amplifier  
Servo amplifier  
MITSUBISHI  
MITSUBISHI  
MITSUBISHI  
Controller such as  
personal computer  
CHARGE  
CHARGE  
CHARGE  
To CN3  
To CN3  
To CN3  
RS-232C/  
RS-422  
converter  
Axis 1 (Station 0)  
Axis 2 (Station 1)  
RS-422  
Axis 32 (Station 31)  
Unavailable as option.  
To be prepared by customer.  
(2) Cable connection diagram  
Wire as shown below:  
(Note 1)  
Axis 32 (last axis)  
(Note 3) 30m(98.4ft) max.  
(Note 1)  
(Note 1)  
servo amplifier  
CN3 connector  
Axis 1 servo amplifier  
CN3 connector  
Plate SD  
Axis 2 servo amplifier  
CN3 connector  
Plate  
9
SD  
Plate  
9
SD  
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
SDP  
9
19  
5
SDP  
19 SDN  
RDP  
19 SDN  
RDP  
5
5
15 RDN  
10 TRE  
11 LG  
15  
10  
11  
1
15 RDN  
10 TRE  
11 LG  
(Note 2)  
LG  
1
LG  
1
LG  
RS-422  
output unit  
RDP  
RDN  
SDP  
SDN  
GND  
GND  
Note: 1. Connector set MR-J2CN1(3M or equivalent)  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
2. In the last axis, connect TRE and RDN.  
3. 30m max. in environment of little noise.  
14 - 1  
14. COMMUNICATION FUNCTIONS  
14.1.2 RS-232C configuration  
(1) Outline  
A single axis of servo amplifier is operated.  
Servo amplifier  
MITSUBISHI  
CHARGE  
To CN3  
RS-232C  
Controller such as  
personal computer  
(2) Cable connection diagram  
Wire as shown below. The communication cable for connection with the personal computer (MR-  
CPCATCBL3M) is available. (Refer to Section 13.1.4.)  
(Note 1)  
Servo amplifier  
CN3 connector  
Personal computer  
connector D-SUB25 (socket)  
(Note 3)  
(Note 2) 15m(49.2ft) max.  
Plate FG  
2
1
RXD  
GND  
TXD  
3
12 TXD  
11 GND  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
Note: 1. 3M's CN3 connector  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
2. 15m(49.2ft) max. in environment of little noise. However, this distance should be 3m(9.84ft)  
max. for use at 38400bps or more baudrate.  
3. For PC-AT compatible controller.  
14 - 2  
14. COMMUNICATION FUNCTIONS  
14.2 Communication specifications  
14.2.1 Communication overview  
This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this  
instruction (e.g. personal computer) is called a master station and the device which sends a reply in  
response to the instruction (servo amplifier) is called a slave station. When fetching data successively, the  
master station repeatedly commands the slave station to send data.  
Item  
Baudrate  
Description  
9600/19200/38400/57600 asynchronous system  
Start bit  
Data bit  
Parity bit  
Stop bit  
: 1 bit  
: 8 bits  
: 1 bit (even)  
: 1 bit  
Transfer code  
Transfer protocol Character system, half-duplex communication system  
(LSB)  
0
(MSB)  
7
Next  
start  
Start  
Parity  
Stop  
1
2
3
4
5
6
Data  
1 frame (11bits)  
14 - 3  
14. COMMUNICATION FUNCTIONS  
14.2.2 Parameter setting  
When the RS-422/RS-232C communication function is used to operate the servo, set the communication  
specifications of the servo amplifier in the corresponding parameters.  
After setting the values of these parameters, they are made valid by switching power off once, then on  
again.  
(1) Serial communication baudrate  
Choose the communication speed. Match this value to the communication speed of the sending end  
(master station).  
Parameter No. 16  
Communication baudrate  
0: 9600[bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
(2) Serial communication selection  
Select the RS-422 or RS-232C communication standard. RS-422 and RS-232C cannot be used together.  
Parameter No. 16  
Serial communication standard selection  
0: RS-232C used  
1: RS-422 used  
(3) Serial communication response delay time  
Set the time from when the servo amplifier (slave station) receives communication data to when it  
sends back data. Set "0" to send back data in less than 800 s or "1" to send back data in 800 s or more.  
Parameter No. 16  
Serial communication response delay time  
0: Invalid  
1: Valid, reply sent in 800 s or more  
(4) Station number setting  
Set the station number of the servo amplifier in parameter No. 15. The setting range is stations 0 to 31.  
(5) Protocol station number selection  
When communication is made without setting station numbers to servo amplifiers as in the MR-J2-A  
servo amplifiers, choose "no station numbers" in parameter No. 53. The communication protocol will  
be free of station numbers.  
Parameter No. 53  
Protocol station number selection  
0: With station numbers  
1: No station numbers  
14 - 4  
14. COMMUNICATION FUNCTIONS  
14.3 Protocol  
POINT  
Whether station number setting will be made or not must be selected if  
the RS-232C communication function is used. Note that choosing "no  
station numbers" in parameter No. 53 will make the communication  
protocol free of station numbers as in the MR-J2-A servo amplifiers.  
Since up to 32 axes may be connected to the bus, add a station number or group to the command, data  
No., etc. to determine the destination servo amplifier of data communication. Set the station number to  
each servo amplifier using the parameter and set the group to each station using the communication  
command. Transmission data is valid for the servo amplifier of the specified station number or group.  
When " " is set as the station number added to the transmission data, the transmission data is made  
*
valid for all servo amplifiers connected. However, when return data is required from the servo amplifier  
in response to the transmission data, set "0" to the station number of the servo amplifier which must  
provide the return data.  
(1) Transmission of data from the controller to the servo  
10 frames (data)  
S
O
H
S
T
X
E
T
X
Controller side  
(Master station)  
Data  
No.  
Check  
sum  
Station number  
Data*  
or  
group  
S
T
X
E
T
X
Servo side  
(Slave station)  
Station number  
Check  
sum  
or  
group  
6 frames  
Positive response: Error code  
A
Negative response: Error code other than A  
14 - 5  
14. COMMUNICATION FUNCTIONS  
(2) Transmission of data request from the controller to the servo  
10 frames  
S
O
H
S
T
X
E
T
X
Data  
No.  
Check  
sum  
Station number  
Controller side  
(Master station)  
or  
group  
S
T
X
E
T
X
Station number  
Check  
sum  
Servo side  
(Slave station)  
Data*  
or  
group  
6 frames (data)  
(3) Recovery of communication status by time-out  
EOT causes the servo to return to  
the receive neutral status.  
E
O
T
Controller side  
(Master station)  
Servo side  
(Slave station)  
(4) Data frames  
The data length depends on the command.  
or  
Data  
Data  
or 12 frames or 16 frames  
4 frames  
8 frames  
14 - 6  
14. COMMUNICATION FUNCTIONS  
14.4 Character codes  
(1) Control codes  
Hexadecimal  
Personal computer terminal key operation  
(General)  
Code name  
Description  
(ASCII code)  
SOH  
STX  
ETX  
EOT  
01H  
02H  
03H  
04H  
start of head  
start of text  
ctrl  
ctrl  
ctrl  
ctrl  
A
B
C
D
end of text  
end of transmission  
(2) Codes for data  
JIS8 unit codes are used.  
b
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
8
7
6
b
b
b5  
b to  
C
8
b4 b3 b2 b1  
0
1
2
3
4
5
6
7
b5  
R
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NUL DLE Space  
0
1
2
3
4
5
6
7
8
9
:
@
A
B
C
D
E
F
G
H
I
P
Q
R
S
`
a
b
c
p
q
r
SOH DC  
STX DC  
ETX DC  
!
1
2
3
2
3
#
$
%
&
s
4
T
U
V
W
X
Y
Z
d
e
f
t
5
u
v
w
x
y
z
{
6
7
g
h
i
8
(
9
)
10  
11  
12  
13  
14  
15  
J
j
;
K
L
M
N
O
[
k
l
,
|
}
]
m
n
o
.
/
^
_
?
DEL  
(3) Station numbers  
You may set 32 station numbers from station 0 to station 31 and the JIS8 unit codes are used to  
specify the stations.  
Station number  
JIS8 code  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
A
11  
B
12  
C
13  
D
14  
E
15  
F
Station number  
JIS8 code  
16  
G
17  
H
18  
I
19  
J
20  
K
21  
L
22  
M
23  
N
24  
O
25  
P
26  
Q
27  
R
28  
S
29  
T
30  
U
31  
V
For example, "30H" is transmitted in hexadecimal for the station number of "0" (axis 1).  
(4) Group  
Group  
a
a
b
b
c
c
d
d
e
e
f
f
All group  
JIS8 code  
For example, "61H" is transmitted in hexadecimal for group a.  
14 - 7  
14. COMMUNICATION FUNCTIONS  
14.5 Error codes  
Error codes are used in the following cases and an error code of single-code length is transmitted.  
On receipt of data from the master station, the slave station sends the error code corresponding to that  
data to the master station.  
The error code sent in upper case indicates that the servo is normal and the one in lower case indicates  
that an alarm occurred.  
Error code  
Error name  
Description  
Remarks  
Servo normal  
Servo alarm  
[A]  
[B]  
[C]  
[a]  
[b]  
[c]  
Normal operation  
Parity error  
Data transmitted was processed properly.  
Parity error occurred in the transmitted data.  
Checksum error occurred in the transmitted data.  
Character not existing in the specifications was  
transmitted.  
Positive response  
Checksum error  
[D]  
[E]  
[F]  
[d]  
[e]  
[f]  
Character error  
Command error  
Data No. error  
Negative response  
Command not existing in the specifications was  
transmitted.  
Data No. not existing in the specifications was  
transmitted.  
14.6 Checksum  
Checksum range  
Station number  
or  
group  
STX or  
SOH  
ETX Check  
Checksum range  
The check sum is a JIS8-coded hexadecimal representing the lower two digits of the sum of JIS8-coded  
hexadecimal numbers up to ETX, with the exception of the first control code (STX or S0H).  
(Example)  
S
T
X
E
T
X
[0] [A] [1] [2] [5] [F]  
[5] [2]  
02H 30H 41H 31H 32H 35H 46H 03H  
30H 41H 31H 32H 35H 46H 03H  
152H  
Lower 2 digits 52 is sent after conversion into ASCII code [5][2].  
14 - 8  
14. COMMUNICATION FUNCTIONS  
14.7 Time-out operation  
The master station transmits EOT when the slave station does not start reply operation (STX is not  
received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the  
master station retransmits the message. Time-out occurs if the slave station does not answer after the  
master station has performed the above operation three times. (Communication error)  
100ms  
100ms  
100ms  
*Time-out  
300ms  
300ms  
300ms  
300ms  
E
O
T
E
O
T
E
O
T
Controller  
(Master station)  
Servo  
(Slave station)  
14.8 Retry operation  
When a fault occurs in communication between the master and slave stations, the error code in the  
response data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the  
master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A  
communication error occurs if the above operation is repeated and results in the error three or more  
consecutive times.  
*Communication error  
Controller  
(Master station)  
Servo  
(Slave station)  
S
T
X
S
T
X
S
T
X
Station number  
Station number  
Station number  
or  
or  
or  
group  
group  
group  
Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the  
slave station, the master station retransmits the message which was sent at the occurrence of the fault. A  
communication error occurs if the retry operation is performed three times.  
14 - 9  
14. COMMUNICATION FUNCTIONS  
14.9 Initialization  
After the slave station is switched on, it cannot reply to communication until the internal initialization  
processing terminates. Hence, at power-on, ordinary communication should be started after:  
(1) 1s or more time has elapsed after the slave station is switched on; and  
(2) Making sure that normal communication can be made by reading the parameter or other data which  
does not pose any safety problems.  
14.10 Communication procedure example  
The following example reads the set value of parameter No.2 "function selection 1" from the servo  
amplifier of station 0:  
Data item  
Station number  
Command  
Value  
0
Description  
Servo amplifier station 0  
Read command  
05  
Data No.  
02  
Parameter No.2  
Axis No. Command  
Data No.  
ETX  
Start  
Data [0] 0 5 STX 0 2 ETX  
Data make-up  
[0][0][5]  
[0][2]  
STX  
Checksum 30H 30H 35H 02H 30H 32H 03H FCH  
Checksum calculation and  
addition  
Transmission data SOH 0 5 STX 0 2 ETX F C 46H 43H  
Master station slave station  
Addition of SOH to make  
up transmission data  
Data transmission  
Data receive  
Master station slave station  
No  
Is there receive data?  
Yes  
No  
300ms elapsed?  
Yes  
No  
3 consecutive times?  
Yes  
Master station slave station  
Yes  
Other than error code  
[A] [a]?  
100ms after EOT transmission  
No  
3 consecutive times?  
No  
Error processing  
Yes  
Receive data analysis  
Error processing  
End  
14 - 10  
14. COMMUNICATION FUNCTIONS  
14.11 Command and data No. list  
14.11.1 Read commands  
(1) Status display (Command [0][1])  
Command  
[0][1]  
Data No.  
[8][0]  
Description  
Display item  
Frame length  
Status display data value and  
processing information  
cumulative feedback pulses  
servo motor speed  
12  
12  
12  
12  
12  
[0][1]  
[8][1]  
[0][1]  
[8][2]  
droop pulses  
[0][1]  
[8][3]  
cumulative command pulses  
command pulse frequency  
analog speed command voltage  
analog speed limit voltage  
analog torque command voltage  
analog torque limit voltage  
regenerative load ratio  
effective load ratio  
[0][1]  
[8][4]  
[0][1]  
[0][1]  
[8][5]  
[8][6]  
12  
12  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
[8][B]  
[8][C]  
[8][D]  
[8][E]  
12  
12  
12  
12  
12  
12  
12  
12  
peak load ratio  
Instantaneous torque  
within one-revolution position  
ABS counter  
load inertia moment ratio  
Bus voltage  
(2) Parameter (Command [0][5])  
Command  
Data No.  
Description  
Frame length  
[0][5]  
[0][0] to Current value of each parameter  
8
[5][4]  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the parameter number.  
(3) External I/O signals (Command [1][2])  
Command  
[1][2]  
Data No.  
[4][0]  
Description  
Frame length  
External input pin statuses  
External output pin statuses  
8
8
[1][2]  
[C][0]  
(4) Alarm history (Command [3][3])  
Command  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
Data No.  
[1][0]  
[1][1]  
[1][2]  
[1][3]  
[1][4]  
[1][5]  
[2][0]  
[2][1]  
[2][2]  
[2][3]  
[2][4]  
[2][5]  
Description  
Alarm occurrence sequence  
Frame length  
most recent alarm  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
most recent alarm  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
4
4
4
4
4
4
8
8
8
8
8
8
Alarm number in alarm history  
Alarm occurrence time in alarm  
history  
14 - 11  
14. COMMUNICATION FUNCTIONS  
(5) Current alarm (Command [0][2] [3][5])  
Command Data No.  
Description  
Frame length  
[0][2]  
[0][0]  
Current alarm number  
4
Command Data No.  
Description  
Display item  
Frame length  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[8][0]  
[8][1]  
[8][2]  
[8][3]  
[8][4]  
Status display data value and  
processing information at alarm  
occurrence  
cumulative feedback pulses  
servo motor speed  
12  
12  
12  
12  
12  
droop pulses  
cumulative command pulses  
command pulse frequency  
analog speed command voltage  
analog speed limit voltage  
[3][5]  
[3][5]  
[8][5]  
[8][6]  
12  
12  
analog torque command voltage  
analog torque limit voltage  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
[8][B]  
[8][C]  
[8][D]  
[8][E]  
regenerative load ratio  
effective load ratio  
peak load ratio  
12  
12  
12  
12  
12  
12  
12  
12  
Instantaneous torque  
within one-revolution position  
ABS counter  
load inertia moment ratio  
Bus voltage  
(6) Group setting (Command [1][F])  
Command  
Data No.  
Description  
Reading of group setting value  
Frame length  
[1][F]  
[0][0]  
4
(7) Others  
Command  
[0][2]  
[0][2]  
Data No.  
[9][0]  
[9][1]  
Description  
Frame length  
Servo motor end pulse unit absolute position  
Command unit absolute position  
Software version  
8
8
16  
[0][2]  
[7][0]  
14.11.2 Write commands  
(1) Status display (Command [8][1])  
Command  
Data No.  
Description  
Description  
Setting range  
1EA5  
Frame length  
[8][1]  
[0][0]  
Status display data clear  
4
(2) Parameter (Command [8][4])  
Command  
Data No.  
[0][0] to Each parameter write  
[5][4] The decimal equivalent of the data No. value  
Setting range  
Frame length  
[8][4]  
Depends on the  
parameter.  
8
(hexadecimal) corresponds to the parameter  
number.  
(3) Alarm history (Command [8][2])  
Command  
Data No.  
Description  
Description  
Setting range  
Frame length  
[8][2]  
[2][0]  
Alarm history clear  
1EA5  
4
(4) Current alarm (Command [8][2])  
Command  
Data No.  
Setting range  
Frame length  
[8][2]  
[0][0]  
Alarm reset  
1EA5  
4
14 - 12  
14. COMMUNICATION FUNCTIONS  
(5) Operation mode selection (Command [8][B])  
Command Data No.  
[8][B] [0][0]  
Description  
Setting range Frame length  
0000 to 0004  
Operation mode changing  
4
0000: Exit from test operation mode  
0001: Jog operation  
0002: Positioning operation  
0003: Motor-less operation  
0004: Output signal (DO) forced output  
(6) External input signal disable (Command [9][0])  
Command Data No. Description  
Setting range Frame length  
[9][0]  
[0][0]  
Turns off the external input signals (DI), external analog  
input signals and pulse train inputs with the exception of  
EMG, LSP and LSN, independently of the external ON/OFF  
statuses.  
1EA5  
4
[9][0]  
[9][0]  
[0][3]  
[1][0]  
Changes the external output signals (DO) into the value of  
command [8][B] or command [A][0] data No. [0][1].  
Enables the disabled external input signals (DI), external  
analog input signals and pulse train inputs with the  
exception of EMG, LSP and LSN.  
1EA5  
1EA5  
4
4
[9][0]  
[1][3]  
Enables the disabled external output signals (DO).  
1EA5  
4
(7) Data for test operation mode (Command [9][2] [A][0])  
Command Data No. Description  
Input signal for test operation  
Forced output from signal pin  
Setting range Frame length  
[9][2]  
[9][2]  
[0][0]  
[A][0]  
8
8
Command Data No.  
Description  
Setting range Frame length  
[A][0]  
[A][0]  
[A][0]  
[A][0]  
[A][0]  
[1][0]  
[1][1]  
[1][2]  
[1][3]  
[1][5]  
Writes the speed of the test operation mode (jog operation,  
positioning operation).  
0000 to 7FFF  
4
8
4
8
4
Writes the acceleration/deceleration time constant of the test 00000000 to  
operation mode (jog operation, positioning operation).  
Clears the acceleration/deceleration time constant of the test  
operation mode (jog operation, positioning operation).  
Writes the moving distance (in pulses) of the test operation  
mode (jog operation, positioning operation).  
7FFFFFFF  
1EA5  
80000000 to  
7FFFFFFF  
1EA5  
Temporary stop command of the test operation mode (jog  
operation, positioning operation)  
(8) Group setting (Command [9][F])  
Command Data No.  
Description  
Setting range Frame length  
[9][F]  
[0][0]  
Setting of group  
4
14 - 13  
14. COMMUNICATION FUNCTIONS  
14.12 Detailed explanations of commands  
14.12.1 Data processing  
When the master station transmits a command data No. or a command data No. data to a slave  
station, the servo amplifier returns a reply or data according to the purpose.  
When numerical values are represented in these send data and receive data, they are represented in  
decimal, hexadecimal, etc.  
Therefore, data must be processed according to the application.  
Since whether data must be processed or not and how to process data depend on the monitoring,  
parameters, etc., follow the detailed explanation of the corresponding command.  
The following methods are how to process send and receive data when reading and writing data.  
(1) Processing the read data  
When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a  
decimal point is placed according to the decimal point position information.  
When the display type is 1, the eight-character data is used unchanged.  
The following example indicates how to process the receive data "003000000929" given to show.  
The receive data is as follows.  
0 0 3 0 0 0 0 0 0 9 2 9  
Data 32-bit length (hexadecimal representation)  
(Data conversion is required as indicated in the display type)  
Display type  
0: Data must be converted into decimal.  
1: Data is used unchanged in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit (normally not used)  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
6: Sixth least significant digit  
Since the display type is "0" in this case, the hexadecimal data is converted into decimal.  
00000929H 2345  
As the decimal point position is "3", a decimal point is placed in the third least significant digit.  
Hence, "23.45" is displayed.  
14 - 14  
14. COMMUNICATION FUNCTIONS  
(2) Writing the processed data  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is  
not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the  
decimal point position.  
The data to be sent is the following value.  
0
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
By way of example, here is described how to process the set data when a value of "15.5" is sent.  
Since the decimal point position is the second digit, the decimal point position data is "2".  
As the data to be sent is hexadecimal, the decimal data is converted into hexadecimal.  
155 9B  
Hence, "0200009B" is transmitted.  
14 - 15  
14. COMMUNICATION FUNCTIONS  
14.12.2 Status display  
(1) Status display data read  
When the master station transmits the data No. (refer to the following table for assignment) to the  
slave station, the slave station sends back the data value and data processing information.  
1) Transmission  
Transmit command [0][1] and the data No. corresponding to the status display item to be read.  
Refer to Section 14.11.1.  
2) Reply  
The slave station sends back the status display data requested.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(2) Status display data clear  
The cumulative feedback pulse data of the status display is cleared. Send this command immediately  
after reading the status display item. The data of the status display item transmitted is cleared to zero.  
Command Data No.  
[8][1] [0][0]  
Data  
1EA5  
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data,  
send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to  
zero.  
14 - 16  
14. COMMUNICATION FUNCTIONS  
14.12.3 Parameter  
(1) Parameter read  
Read the parameter setting.  
1) Transmission  
Transmit command [0][5] and the data No. corresponding to the parameter No.  
The data No. is expressed in hexadecimal equivalent of the data No. value corresponds to the  
parameter number.  
Command Data No.  
[0][5]  
[0][0] to  
[5][4]  
2) Reply  
The slave station sends back the data and processing information of the requested parameter No.  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
0
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Read enable/disable  
0: Read enable  
1: Read disable  
Enable/disable information changes according to the setting of parameter No.19 "parameter  
write inhibit". When the enable/disable setting is read disable, ignore the parameter data part  
and process it as unreadable.  
14 - 17  
14. COMMUNICATION FUNCTIONS  
(2) Parameter write  
POINT  
The number of parameter write times is restricted to 1,000,000 times.  
Write the parameter setting.  
Write the value within the setting range. Refer to Section 5.1 for the setting range.  
Transmit command [8][4], the data No., and the set data.  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to  
the parameter number.  
When the data to be written is handled as decimal, the decimal point position must be specified. If it  
is not specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the  
decimal point position.  
Write the data after making sure that it is within the upper/lower limit value range given in Section  
5.1.2. Read the parameter data to be written, confirm the decimal point position, and create  
transmission data to prevent error occurrence. On completion of write, read the same parameter  
data to verify that data has been written correctly.  
Command Data No.  
[8][4] [0][0] to See below.  
[5][4]  
Set data  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower forth digit  
5: Lower fifth digit  
Write mode  
0: Write to EEP-ROM  
3: Write to RAM  
When using communication to change parameter values frequently,  
set "3" here and change data on RAM in the servo amplifier.  
Frequent change to EEP-ROM data may cause the permissible write  
times (1 million times) of EEP-ROM to be exceeded, leading to a failure.  
14 - 18  
14. COMMUNICATION FUNCTIONS  
14.12.4 External I/O pin statuses (DIO diagnosis)  
(1) External input pin status read  
Read the ON/OFF statuses of the external input pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][0].  
Command Data No.  
[1][2]  
[4][0]  
(b) Reply  
The ON/OFF statuses of the input pins are sent back.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
1
2
3
4
5
6
7
External input pin  
CN1B-16  
CN1B-17  
CN1B-15  
CN1B-5  
bit  
8
9
10  
11  
12  
13  
14  
15  
External input pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External input pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External input pin  
CN1B-9  
CN1B-14  
CN1A-8  
CN1B-7  
CN1B-8  
(2) External output pin status read  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [C][0].  
Command Data No.  
[1][2]  
[C][0]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit External output pin  
bit External output pin  
bit External output pin  
bit External output pin  
0
1
2
3
4
5
6
7
CN1A-19  
CN1A-18  
CN1B-19  
CN1B-6  
CN1B-4  
CN1B-18  
CN1A-14  
8
9
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
14 - 19  
14. COMMUNICATION FUNCTIONS  
14.12.5 Disable/enable of external I/O signals (DIO)  
Inputs can be disabled independently of the external I/O signal ON/OFF. When inputs are disabled, the  
input signals are recognized as follows. Among the external input signals, EMG, LSP and LSN cannot be  
disabled.  
Signal  
Status  
OFF  
0V  
External input signals (DI)  
External analog input signals  
Pulse train inputs  
None  
(1) Disabling/enabling the external input signals (DI), external analog input signals and pulse train  
inputs with the exception of EMG, LSP and LSN.  
Transmit the following communication commands:  
(a) Disable  
Command  
Data No.  
Data  
[9][0]  
[0][0]  
1EA5  
(b) Enable  
Command  
Data No.  
Data  
[9][0]  
[1][0]  
1EA5  
(2) Disabling/enabling the external output signals (DO)  
Transmit the following communication commands:  
(a) Disable  
Command  
Data No.  
Data  
[9][0]  
[0][3]  
1EA5  
(b) Enable  
Command  
Data No.  
Data  
[9][0]  
[1][3]  
1EA5  
14 - 20  
14. COMMUNICATION FUNCTIONS  
14.12.6 External input signal ON/OFF (test operation)  
Each input signal can be turned on/off for test operation. Turn off the external input signals.  
Send command [9] [2], data No. [0] [0] and data.  
Command Data No.  
[9][2] [0][0]  
Set data  
See below  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
bit Signal abbreviation  
bit Signal abbreviation  
bit Signal abbreviation  
bit Signal abbreviation  
0
1
2
3
4
5
6
7
SON  
LSP  
LSN  
TL  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
ST1  
ST2  
PC  
RES  
CR  
14 - 21  
14. COMMUNICATION FUNCTIONS  
14.12.7 Test operation mode  
(1) Instructions for test operation mode  
The test operation mode must be executed in the following procedure. If communication is interrupted  
for longer than 0.5s during test operation, the servo amplifier causes the motor to be decelerated to a  
stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the  
status display.  
(a) Execution of test operation  
1) Turn off all external input signals.  
2) Disable the external input signals.  
Command Data No.  
[9][0] [0][0]  
Data  
1EA5  
3) Choose the test operation mode.  
Command Data No. Transmission data Selection of test operation mode  
[8][B]  
[8][B]  
[8][B]  
[8][B]  
[8][B]  
[0][0]  
[0][0]  
[0][0]  
[0][0]  
[0][0]  
0000  
0001  
0002  
0003  
0004  
Test operation mode cancel  
Jog operation  
Positioning operation  
Motor-less operation  
DO forced output  
4) Set the data needed for test operation.  
5) Start.  
6) Continue communication using the status display or other command.  
(b) Termination of test operation  
To terminate the test operation mode, complete the corresponding operation and:  
1) Clear the test operation acceleration/deceleration time constant.  
Command Data No.  
[A][0] [1][2]  
Data  
1EA5  
2) Cancel the test operation mode.  
Command Data No.  
Data  
[8][B]  
[0][0]  
0000  
3) Enable the disabled external input signals.  
Command Data No.  
[9][0] [1][0]  
Data  
1EA5  
14 - 22  
14. COMMUNICATION FUNCTIONS  
(2) Jog operation  
Transmit the following communication commands:  
(a) Setting of jog operation data  
Item  
Command Data No.  
Data  
Speed  
[A][0]  
[A][0]  
[1][0]  
[1][1]  
Write the speed [r/min] in hexadecimal.  
Write the acceleration/deceleration time constant  
[ms] in hexadecimal.  
Acceleration/decelerati  
on time constant  
(b) Start  
Turn on the external input signals SON and ST1/ST2 by using command [9][2] data No. [0][0].  
Item  
Command Data No.  
Data  
Forward rotation start  
Reverse rotation start  
[9][2]  
[9][2]  
[0][0]  
[0][0]  
00000801: Turns on SON and ST1.  
00001001: Turns on SON and ST2.  
(3) Positioning operation  
Transmit the following communication commands:  
(a) Setting of positioning operation data  
Item  
Command Data No.  
Data  
Speed  
[A][0]  
[A][0]  
[1][0]  
[1][1]  
Write the speed [r/min] in hexadecimal.  
Write the acceleration/deceleration time constant  
[ms] in hexadecimal.  
Acceleration/decelerat  
ion time constant  
Moving distance  
[A][0]  
[1][3]  
Write the moving distance [pulse] in  
hexadecimal.  
(b) Start  
Turn on the external input signals SON and ST1/ST2 by using command [9][2] data No. [0][0].  
Item  
Command Data No.  
Data  
Forward rotation start  
Reverse rotation start  
[9][2]  
[9][2]  
[0][0]  
[0][0]  
00000801: Turns on SON and ST1.  
00001001: Turns on SON and ST2.  
(c) Temporary stop  
A temporary stop can be made during positioning operation.  
Command Data No.  
[A][0] [1][5]  
Data  
1EA5  
Retransmit the same communication commands as at the start time to resume operation.  
To stop positioning operation after a temporary stop, retransmit the temporary stop communication  
command. The remaining moving distance is then cleared.  
14 - 23  
14. COMMUNICATION FUNCTIONS  
14.12.8 Output signal pin ON/OFF output signal (DO) forced output  
In the test operation mode, the output signal pins can be turned on/off independently of the servo status.  
Using command [9][0], disable the output signals in advance.  
(1) Choosing DO forced output in test operation mode  
Transmit command [8][B] data No. [0][0] data "0004" to choose DO forced output.  
0 0 0 4  
Selection of test operation mode  
4: DO forced output (output signal forced output)  
(2) External output signal ON/OFF  
Transmit the following communication commands:  
Command Data No.  
[9][2] [A][0]  
Setting data  
See below.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is sent to the slave station in hexadecimal.  
bit  
External output pin  
CN1A-19  
CN1A-18  
CN1B-19  
CN1B-6  
bit  
8
External output pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External output pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External output pin  
0
1
2
3
4
5
6
7
9
10  
11  
12  
13  
14  
15  
CN1B-4  
CN1B-18  
CN1A-14  
14 - 24  
14. COMMUNICATION FUNCTIONS  
14.12.9 Alarm history  
(1) Alarm No. read  
Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No. 0 (last  
alarm) to No. 5 (sixth alarm in the past) are read.  
(a) Transmission  
Send command [3][3] and data No. [1][0] to [1][5]. Refer to Section 14.11.1.  
(b) Reply  
The alarm No. corresponding to the data No. is provided.  
0 0  
Alarm No. is transferred in decimal.  
For example, “0032” means AL.32 and “00FF” means AL._ (no alarm).  
(2) Alarm occurrence time read  
Read the occurrence time of alarm which occurred in the past.  
The alarm occurrence time corresponding to the data No. is provided in terms of the total time  
beginning with operation start, with the minute unit omitted.  
(a) Transmission  
Send command [3][3] and data No. [2][0] to [2][5].  
Refer to Section 14.11.1.  
(b) Reply  
The alarm occurrence time is transferred in decimal.  
Hexadecimal must be converted into decimal.  
For example, data “01F5” means that the alarm occurred in 501 hours after start of operation.  
(3) Alarm history clear  
Erase the alarm history.  
Send command [8][2] and data No. [2][0].  
Command Data No.  
[8][2] [2][0]  
Data  
1EA5  
14 - 25  
14. COMMUNICATION FUNCTIONS  
14.12.10 Current alarm  
(1) Current alarm read  
Read the alarm No. which is occurring currently.  
(a) Transmission  
Send command [0][2] and data No. [0][0].  
Command Data No.  
[0][2]  
[0][0]  
(b) Reply  
The slave station sends back the alarm currently occurring.  
0 0  
Alarm No. is transferred in decimal.  
For example, “0032” means AL.32 and “00FF” means AL._ (no alarm).  
(2) Read of the status display at alarm occurrence  
Read the status display data at alarm occurrence. When the data No. corresponding to the status  
display item is transmitted, the data value and data processing information are sent back.  
(a) Transmission  
Send command [3][5] and any of data No. [8][0] to [8][E] corresponding to the status display item to  
be read. Refer to Section 14.11.1.  
(b) Reply  
The slave station sends back the requested status display data at alarm occurrence.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Conversion into decimal required  
1: Used unchanged in hexadecimal  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(3) Current alarm clear  
As by the entry of the RES signal, reset the servo amplifier alarm to make the servo amplifier ready to  
operate. After removing the cause of the alarm, reset the alarm with no command entered.  
Command Data No.  
[8][2] [0][0]  
Data  
1EA5  
14 - 26  
14. COMMUNICATION FUNCTIONS  
14.12.11 Other commands  
(1) Servo motor end pulse unit absolute position  
Read the absolute position in the servo motor end pulse unit.  
Note that overflow will occur in the position of 16384 or more revolutions from the home position.  
(a) Transmission  
Send command [0][2] and data No. [9][0].  
Command Data No.  
[0][2]  
[9][0]  
(b) Reply  
The slave station sends back the requested servo motor end pulses.  
Absolute value is sent back in hexadecimal in  
the servo motor end pulse unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the motor end pulse unit.  
(2) Command unit absolute position  
Read the absolute position in the command unit.  
(a) Transmission  
Send command [0][2] and data No. [9][1].  
Command Data No.  
[0][2]  
[9][1]  
(b) Reply  
The slave station sends back the requested command pulses.  
Absolute value is sent back in hexadecimal in the  
command unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the command unit.  
(3) Software version  
Reads the software version of the servo amplifier.  
(a) Transmission  
Send command [0][2] and data No.[7][0].  
Command Data No.  
[0][2]  
[7][0]  
(b) Reply  
The slave station returns the software version requested.  
Space  
Software version (15 digits)  
14 - 27  
14. COMMUNICATION FUNCTIONS  
MEMO  
14 - 28  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15. ABSOLUTE POSITION DETECTION SYSTEM  
If an absolute position erase alarm (AL.25) has occurred, always perform home  
position setting again. Not doing so can cause runaway.  
CAUTION  
15.1 Outline  
15.1.1 Features  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the general-purpose programming controller power is on or off.  
Therefore, once the home position is defined at the time of machine installation, home position return is  
not needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be  
retained within the specified period (cumulative revolution counter value retaining time) if the cable is  
unplugged or broken.  
General purpose programmable  
Servo amplifier  
controller  
Pulse train  
(command)  
CPU  
Positioning module  
Home position data  
Current  
position  
data  
EEPROM memory  
Current  
position  
data  
LSO  
1XO  
Backed up in the  
I/O module  
case of power failure  
LS  
1X  
Input  
Detecting the Detecting the  
number of  
revolutions  
position within  
one revolution  
Output  
Battery MR-BAT  
Servo motor  
1 pulse/rev Accumulative  
revolution counter  
High speed serial  
communication  
Super capacitor  
Within-one-revolution counter  
A, B, Z phase signals  
(Position detector)  
15.1.2 Restrictions  
The absolute position detection system cannot be configured under the following conditions. Test  
operation cannot be performed in the absolute position detection system, either. To perform test  
operation, choose incremental in parameter No.1.  
(1) Speed control mode, torque control mode.  
(2) Control switch-over mode (position/speed, speed/torque, torque/speed).  
(3) Stroke-less coordinate system, e.g. rotary shaft, infinitely long positioning.  
(4) Changing of electronic gear after home position setting.  
(5) Use of alarm code output.  
15 - 1  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.2 Specifications  
(1) Specification list  
Item  
Description  
System  
Electronic battery backup system  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-BAT or A6BAT  
Battery  
Maximum revolution range  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
(Note 3) Data holding time during battery  
replacement  
Home position 32767 rev.  
500r/min  
Approx. 10,000 hours (battery life with power off)  
2 hours at delivery, 1 hour in 5 years after delivery  
5 years from date of manufacture  
Battery storage period  
Note: 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the  
like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years  
independently of whether power is kept on or off.  
3. Period during which data can be held by the super capacitor in the encoder after power-off, with the  
battery voltage low or the battery removed, or during which data can be held with the encoder cable  
disconnected.  
Battery replacement should be finished within this period.  
(2) Configuration  
Positioning module  
I/O module  
AD71 AD71S2 AD71S7  
A1SD71S2 A1SD71S7  
AD75  
AX40 41 42  
AY40 41 42  
A1SD75  
FX-1PG FX-1GM  
FX(E)-20GM FX-10GM  
FX2-32MT  
Programmable controller  
AD75 etc.  
Servo amplifier  
CN1A  
CN2  
I/O  
CN1B  
CON1  
Servo motor  
Battery (MR-BAT)  
(3) Parameter setting  
Set " 1  
" in parameter No.1 to make the absolute position detection system valid.  
Parameter No. 1  
1
Selection of absolute position detection system  
0: Incremental system  
1: Absolute position detection system  
15 - 2  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.3 Battery installation procedure  
Before starting battery installation procedure, make sure that the charge lamp is off  
WARNING  
more than 10 minutes after power-off. Then, confirm that the voltage is safe in the  
tester or the like. Otherwise, you may get an electric shock.  
POINT  
The internal circuits of the servo amplifier may be damaged by static electricity.  
Always take the following precautions:  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical  
parts, directly by hand.  
(1) Open the operation window. (When the model used is the MR-J2S-200A MR-J2S-350A or more, also  
remove the front cover.)  
(2) Install the battery in the battery holder.  
(3) Install the battery connector into CON1 until it clicks.  
Battery connector  
Battery connector  
Operation window  
CON1  
CON1  
Battery  
Battery holder  
Battery  
Battery holder  
For MR-J2S-100A or less  
For MR-J2S-200A MR-J2S-350A  
Battery connector  
CON1  
Battery holder  
Battery  
For MR-J2S-500A MR-J2S-700A  
15 - 3  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.4 Standard connection diagram  
Servo amplifier  
VDD CN1B-3  
COM CN1B-13  
LSP CN1B-16  
LSN CN1B-17  
TL CN1B-7  
(Note 2) Stroke end in forward rotation  
Stroke end in reverse rotation  
External torque control  
(Note 3)  
Reset  
RES CN1B-14  
SG CN1B-10  
EMG (Note 1)  
Emergency stop  
Servo-on  
Output  
Input  
EMG CN1B-15  
SON CN1B-5  
Electromagnetic  
brake output  
ABS transmission  
mode  
RA2  
ABSM CN1B-8  
ABSR CN1B-9  
DO1 CN1B-4  
ZSP CN1B-19  
TLC CN1B-6  
ABS request  
ABS bit 0  
Reset  
ABS bit 1  
Send data ready  
I/O module  
Dog  
Near-zero point signal  
Stop signal  
Stop  
SG CN1A-10  
Power supply (24V)  
Ready  
VDD CN1B-3  
RD CN1A-19  
P15R CN1A-4  
OP CN1A-14  
CR CN1A-8  
SG CN1A-20  
Zero-point  
signal  
Clear  
PP CN1A-3  
PG CN1A-13  
NP CN1A-2  
NG CN1A-12  
Command  
pulses  
(for open-  
collector type)  
Upper limit setting  
Torque limit  
10V/max.torque  
P15R CN1B-11  
TLA CN1B-12  
LG CN1B-1  
SD  
Plate  
Note: 1. Always install the emergency stop switch.  
2. For operation, always short the forward/reverse rotation stroke end (LSN/LSP) with SG.  
3. When using the torque limit signal (TL), set "  
pin CN1B-7.  
4" in parameter No.46 to assign TL to  
15 - 4  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.5 Signal explanation  
When the absolute position data is transferred, the signals of connector CN1 change as described in this  
section. They return to the previous status on completion of data transfer. The other signals are as  
described in Section 3.3.2.  
For the I/O interfaces (symbols in the I/O Category column in the table), refer to Section 3.6.  
I/O  
Control  
mode  
Signal name  
Code  
Pin No.  
Function/Application  
category  
While ABSM is shorted by connection to SG, the servo  
amplifier is in the ABS transfer mode, and the functions  
of ZSP, TLC, and D01 are as indicated in this table.  
ABS transfer  
mode  
(Note)  
ABSM  
DI-1  
DI-1  
CN1B-8  
(Note)  
ABSR-SG are shorted to request the ABS data in the  
ABS request  
ABS bit 0  
ABSR  
D01  
CN1B-9 ABS transfer mode.  
Indicates the lower bit of the ABS data (2 bits) which is  
sent from the servo to the programmable controller in  
CN1B-4 the ABS transfer mode.  
DO-1  
DO-1  
If there is a signal, the circuit between D01 and SG is  
closed.  
P
(Position  
control)  
Indicates the upper bit of the ABS data (2 bits) which is  
sent from the servo to the programmable controller in  
ABS bit 1  
ZSP  
CN1B-19 the ABS transfer mode.  
If there is a signal, the circuit between ZSP and SG is  
closed.  
Indicates that the data to be sent is being prepared in  
CN1B-6 the ABS transfer mode. At the completion for the ready  
state, the circuit between TLC and SG is closed.  
When CR-SG are shorted, the position control counter is  
CN1A-8 cleared and the home position data is stored into the  
non-volatile memory (backup memory).  
Send data ready  
TLC  
CR  
DO-1  
DI-1  
Home position  
setting  
Note: When "Used in absolute position detection system" is selected in parameter No. 1, pin CN1B-8  
acts as the ABS transfer mode (ABSM) signal and pin CN1B-9 as the ABS request (ABSR) signal.  
They do not return to the original signals if data transfer ends.  
15 - 5  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.6 Startup procedure  
(1) Battery installation.  
Refer to Section 15.3 installation of absolute position backup battery.  
(2) Parameter setting  
Set "1  
"in parameter No. 1 of the servo amplifier and switch power off, then on.  
(3) Resetting of absolute position erase alarm (AL.25)  
After connecting the encoder cable, the absolute position erase alarm (AL.25) occurs at first power-on.  
Leave the alarm as it is for a few minutes, then switch power off, then on to reset the alarm.  
(4) Confirmation of absolute position data transfer  
When the servo-on signal is turned on, the absolute position data is transferred to the programmable  
controller. When the ABS data is transferred properly:  
(a) The ready output (RD) turns on.  
(b) The programmable controller/ABS data ready contact (M3 for A1SD71, M99 for 1PG) turns on.  
(c) The servo configuration software ABS data display window (refer to Section 15.9) and  
programmable controller side ABS data registers (D3, D4 for A1SD71, D106, D107 for 1PG) show  
the same value (at the home position address of 0).  
If any warning such as ABS time-out warning (AL.E5) or programmable controller side transfer  
error occurs, refer to Section 15.10 or Chapter 10 and take corrective action.  
(5) Home position setting  
The home position must be set if:  
(a) System setup is performed;  
(b) The servo amplifier has been changed;  
(c) The servo motor has been changed; or  
(d) The absolute position erase alarm (AL.25) occurred.  
In the absolute position system, the absolute position coordinates are made up by making home  
position setting at the time of system setup.  
The motor shaft may misoperate if positioning operation is performed without home position setting.  
Always make home position setting before starting operation.  
For the home position setting method and types, refer to Section 15.7.3.  
15 - 6  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7 Absolute position data transfer protocol  
POINT  
After switching on the ABS transfer mode (ABSM), turn on the servo-on  
signal (SON). When the ABS transfer mode is off, turning on the servo-on  
signal (SON) does not switch on the base circuit.  
15.7.1 Data transfer procedure  
Each time the SON signal is turned ON (when the power is switched ON for example), the programmable  
controller reads the position data (present position) of the servo amplifier.  
Time-out monitoring is performed by the programmable controller.  
Servo amplifier  
Programmable controller  
SON ON  
Every time the SON is  
turned ON, the ABS transfer  
mode signal is turned ON  
to set the data to be  
transmitted.  
ABS transfer mode ON  
DI0 allocation change  
Transmission data set  
Send data ready ON  
ABS request ON  
Watch dog timer  
<Current position data>  
Send data ready OFF  
The data is read in units of  
2 bits; the read data is written  
to the lowest bits, and the  
register is shifted right until  
32-bit data is configured.  
16 times  
Reading 2 bits  
Shift and addition  
ABS request OFF  
Send data ready ON  
ABS request ON  
<Sumcheck data>  
The data is read in units of  
2 bits; the read data is written  
to the lowest bits, and the  
register is shifted right until  
6-bit data is configured.  
Transmission data set  
Watch dog timer  
Send data ready OFF  
3 times  
Reading 2 bits  
Shift and addition  
ABS request OFF  
Send data ready ON  
Setting the current  
position  
A sum check is executed  
for the received 32-bit data.  
After making sure that  
there are no errors in the data,  
the current position is set.  
Sum check  
ABS transfer mode OFF  
DI0 allocation change  
TLC (send data ready) OFF  
15 - 7  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.2 Transfer method  
The sequence in which the base circuit is turned ON (servo-on) when it is in the OFF state due to the  
servo-on signal (SON) going OFF, an emergency stop, or alarm, is explained below. In the absolute  
position detection system, every time the servo-on (SON) signal is turned on, the ABS transfer mode  
(ABSM) signal should always be turned on to read the current position in the servo amplifier to the  
controller. The servo amplifier transmits to the controller the current position latched when the ABS  
transfer mode (ABSM) signal switches from OFF to ON. At the same time, this data is set as a position  
command value inside the servo amplifier. Unless the ABS transfer mode signal (ABSM) is turned ON,  
the base circuit cannot be turned ON.  
(1) At power-on  
(a) Timing chart  
ON  
Power  
supply  
OFF  
If SON is turned ON before ABSM is input  
ON  
Servo-on  
(SON)  
OFF  
2), 3)  
ON  
4)  
During transfer of ABS  
During transfer of ABS  
(Note)  
ABS transfer mode  
(ABSM)  
OFF  
(Note)  
ON  
ABS request  
(ABSR)  
OFF  
(Note)  
(Note)  
ON  
Send data ready  
(TLC)  
OFF  
(Note)  
(Note)  
Transmission  
(ABS) data  
ABS data  
ABS data  
D01:bit1  
ZSP:bit2  
80[ms]  
80[ms]  
ON  
Base circuit  
OFF  
1)  
Operation  
enabled  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
Note: For details, refer to (1) (b) in this section.  
15 - 8  
15. ABSOLUTE POSITION DETECTION SYSTEM  
1) The ready signal (RD) is turned ON when the ABS transfer mode signal (ABSM) is turned OFF  
after transmission of the ABS data.  
While the ready signal (RD) is ON, the ABS transfer mode signal (ABSM) input is not accepted.  
2) Even if the servo-on (SON) signal is turned ON before the ABS transfer mode signal (ABSM) is  
turned ON, the base circuit is not turned ON until the ABS transfer mode signal (ABSM) is  
turned ON.  
If a servo alarm has occurred, the ABS transfer mode signal (ABSM) is not received.  
The ABS transfer mode signal (ABSM) allows data transmission even while a servo warning is  
occurring.  
3) If the ABS transfer mode signal (ABSM) is turned OFF during the ABS transfer mode, the ABS  
transfer mode is interrupted and the time-out error (AL.E5) occurs.  
4) The functions of output signals such as ZSP, TLC, D01, and INP change depending on the  
ON/OFF state of the ABS transfer mode signal (ABSM).  
Note that if the ABS transfer mode signal (ABSM) is turned ON for a purpose other than ABS  
data transmission, the output signals will be assigned the functions of ABS data transmission.  
Output signal  
Symbol  
Pin No.  
ABS transfer mode (ABSM): OFF ABS transfer mode (ABSM): ON  
(Note)  
D01  
CN1B-4  
Positioning completion  
ABS data bit 0  
ZSP  
CN1B-19  
CN1B-6  
Zero speed  
ABS data bit 1  
TLC  
(Note)  
INP  
During torque limit control  
Send data ready  
CN1A-18  
Positioning completion  
ABS data bit 0  
Note: CN1B-4 and CN1A-18 output the same signals. (To enter the positioning completion  
signal into INPS of the AD75, connect CN1A-18.)  
15 - 9  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) Detailed description of absolute position data transfer  
ON  
Servo-on  
(programmable  
controller)  
OFF  
ON  
Servo-on  
(SON)  
OFF  
(Note)  
7)  
1)  
ON  
ABS transfer mode  
(ABSM)  
During transfer of ABS  
OFF  
3)  
5)  
ON  
ABS request  
(ABSR)  
OFF  
2)  
4)  
6)  
ON  
Send data ready  
(TLC)  
OFF  
Lower  
2 bits  
Check sum  
Upper 2 bits  
Transmission (ABS) data  
Note: If the servo-on signal (SON) is not turned ON within 1 second after the ABS transfer mode signal (ABSM)  
is turned ON, an SON time-out warning (AL.EA) occurs. This warning, however, does not interrupt data  
transmission. It is automatically cleared when the servo-on (SON) signal is turned ON.  
1) The programmable controller turns ON the ABS transfer mode signal (ABSM) and servo-on  
signals (SON) at the leading edge of the internal servo-on signal.  
2) In response to the ABS transfer mode signal, the servo detects and calculates the absolute  
position and turns ON the send data ready (TLC) signal to notify the programmable controller  
that the servo is ready for data transmission.  
3) After acknowledging that the ready to send (TLC) signal has been turned ON, the  
programmable controller turns ABS request (ABSR) ON.  
4) In response to ABS request (ABSR), the servo outputs the lower 2 bits of the ABS data and the  
ready to send (TLC) signal in the OFF state.  
5) After acknowledging that the ready to send (TLC) signal has been turned OFF, which implies  
that 2 bits of the ABS data have been transmitted, the programmable controller reads the lower  
2 bits of the ABS data and then turns OFF the ABS request (ABSR).  
6) The servo turns ON the ready to send (TLC) so that it can respond to the next request.  
Steps 3) to 6) are repeated until 32-bit data and the 6-bit check sum have been transmitted.  
7) After receiving of the check sum, the programmable controller turns the ABS transfer mode  
signal (ABSM) OFF.  
If the ABS transfer mode signal (ABSM) is turned OFF during data transmission, the ABS  
transfer mode is interrupted.  
15 - 10  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) Checksum  
The check sum is the code which is used by the programmable controller to check for errors in the  
received ABS data. The 6-bit check sum is transmitted following the 32-bit ABS data.  
At the programmable controller, calculate the sum of the received ABS data using the ladder  
program and compare it with the check sum code sent from the servo.  
The method of calculating the check sum is shown. Every time the programmable controller  
receives 2 bits of ABS data, it adds the data to obtain the sum of the received data. The check sum  
is 6-bit data.  
Negative data is available for the FX-1PG and unavailable for the A1SD71.  
Example: ABS data: 10 (FFFFFFF6H)  
10b  
01b  
<Appendix>  
11b  
11b  
10  
Decimal  
11b  
FFFF FFF6  
Hexadecimal  
Binary  
11b  
11b  
1111 1111 1111  
0110  
11b  
When the binary data of each 2bits of the  
ABS data is added up, "10 1101b " is obtained.  
11b  
11b  
11b  
11b  
11b  
11b  
11b  
11b  
101101b  
Therefore, the check sum of " 10" (ABS data) is "2Db"  
15 - 11  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Transmission error  
(a) Time-out warning(AL.E5)  
In the ABS transfer mode, the time-out processing shown below is executed at the servo. If a time-  
out error occurs, an ABS time-out warning (AL.E5) is output.  
The ABS time-out warning (AL.E5) is cleared when the ABS transfer mode (ABSM) changes from  
OFF to ON.  
1) ABS request OFF-time time-out check (applied to 32-bit ABS data in 2-bit units check sum)  
If the ABS request signal is not turned ON by the programmable controller within 5s after the  
send data ready signal is turned ON, this is regarded as a transmission error and the ABS time-  
out warning (AL.E5) is output.  
ON  
ABS transfer mode  
OFF  
5s  
ON  
ABS request  
OFF  
Signal is not turned ON  
ON  
Send data ready  
OFF  
Yes  
AL.E5 warning  
No  
2) ABS request ON-time time-out check (applied to 32-bit ABS data in 2-bit units check sum)  
If the ABS request signal is not turned OFF by the programmable controller within 5s after the  
send data ready signal is turned OFF, this is regarded as the transmission error and the ABS  
time-out warning (AL.E5) is output.  
ON  
ABS transfer mode  
OFF  
5s  
ON  
ABS request  
OFF  
Signal is not turned OFF  
ON  
Send data ready  
OFF  
Yes  
AL.E5 warning  
No  
15 - 12  
15. ABSOLUTE POSITION DETECTION SYSTEM  
3) ABS transfer mode finish-time time-out check  
If the ABS transfer mode signal is not turned OFF within 5s after the last ready to send signal  
(19th signal for ABS data transmission) is turned ON, it is regarded as the transmission error  
and the ABS time-out warning (AL.E5) is output.  
5s  
ON  
ABS transfer mode  
OFF  
Signal is not turned OFF  
1
2
3
4
18  
19  
ON  
ABS request  
OFF  
ON  
Send data ready  
1
2
3
4
18  
19  
OFF  
Yes  
No  
AL.E5 warning  
(b) Check sum error  
If the check sum error occurs, the programmable controller should retry transmission of the ABS  
data.  
Using the ladder check program, turn OFF the ABS transfer mode (ABSM) and servo-on (SON)  
signals once. Turn them ON again after an OFF time of longer than 20 ms.  
If the ABS data transmission fails to end normally even after retry, regard this situation as an  
ABS check sum error and execute error processing.  
The start command should be interlocked with the ABS data ready signal to disable positioning  
operation when an check sum error occurs.  
20ms  
20ms  
20ms  
or more  
or more  
or more  
ON  
Servo-on  
Retry 1  
Retry 2  
Retry 3  
OFF  
ON  
ABS transfer mode  
ABS request  
OFF  
ON  
OFF  
ON  
Send data ready  
ABS check sum error  
OFF  
Yes  
No  
15 - 13  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(3) At the time of alarm reset  
If an alarm occurs, turn OFF the servo-on (SON) signal by detecting the alarm output (ALM).  
If an alarm has occurred, the ABS transfer mode signal (ABSM) cannot be accepted.  
In the reset state, the ABS transfer mode signal (ABSM) can be input.  
ON  
Servo-on  
(SON)  
OFF  
ON  
Reset  
(RES)  
OFF  
ON  
ABS transfer mode  
During transfer of ABS  
(ABSM)  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Transmission  
(ABS) data  
ABS data  
80[ms]  
ON  
Base circuit  
OFF  
ON  
Alarm output  
(ALM)  
OFF  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
Occurrence of alarm  
15 - 14  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(4) At the time of emergency stop reset  
(a) If the power is switched ON in the emergency stop state  
The emergency stop state can be reset while the ABS data is being transferred.  
If the emergency stop state is reset while the ABS data is transmitted, the base circuit is turned  
ON 80[ms] after resetting. If the ABS transfer mode signal (ABSM) is OFF when the base circuit is  
turned ON, the ready signal (RD) is turned ON 20[ms] after the turning ON of the base circuit. If  
the ABS transfer mode signal (ABSM) is ON when the base circuit is turned ON, it is turned OFF  
and then the ready signal (RD) is turned ON. The ABS data can be transmitted after the  
emergency stop state is reset.  
The current position in the servo amplifier is updated even during an emergency stop. When servo-  
on (SON) and ABS transfer mode (ABSM) are turned ON during an emergency stop as shown  
below, the servo amplifier transmits to the controller the current position latched when the ABS  
transfer mode (ABSM) switches from OFF to ON, and at the same time, the servo amplifier sets  
this data as a position command value. However, since the base circuit is OFF during an  
emergency stop, the servo-lock status is not encountered. Therefore, if the servo motor is rotated by  
external force or the like after the ABS transfer mode (ABSM) is turned ON, this travel is  
accumulated in the servo amplifier as droop pulses. If the emergency stop is cleared in this status,  
the base circuit turns ON and the motor returns to the original position rapidly to compensate for  
the droop pulses. To avoid this status, reread the ABS data before clearing the emergency stop.  
ON  
Power  
supply  
OFF  
ON  
Servo-on  
(SON)  
OFF  
Reset  
ON  
Emergency stop  
(EMG)  
OFF  
ON  
ABS transfer mode  
During transfer of ABS  
(ABSM)  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Send (ABS) data  
Base circuit  
ABS data  
80[ms]  
20[ms]  
ON  
OFF  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
15 - 15  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) If emergency stop is activated during servo-on  
The ABS transfer mode signal (ABSM) is permissible while in the emergency stop state. In this  
case, the base circuit and the ready signal (RD) are turned ON after the emergency stop state is  
reset.  
ON  
Servo-on  
(SON)  
OFF  
ON  
Emergency stop  
(EMG)  
OFF  
ON  
ABS transfer mode  
During transfer of ABS  
(ABSM)  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Send (ABS) data  
Base circuit  
ABS data  
80[ms]  
ON  
OFF  
ON  
Ready  
(RD)  
Operation  
enabled  
OFF  
15 - 16  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.3 Home position setting  
(1) Dog type home position return  
Preset a home position return creep speed at which the machine will not be given impact. On detection  
of a zero pulse, the home position setting signal (CR) is turned from off to on. At the same time, the  
servo amplifier clears the droop pulses, comes to a sudden stop, and stores the stop position into the  
non-volatile memory as the home position ABS data.  
The home position setting signal should be turned on after it has been confirmed that the in-position  
(D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will  
occur, but that warning will be reset automatically by making home position return correctly.  
The number of home position setting times is limited to 1,000,000 times.  
Servo Motor  
Near-zero point dog  
ON  
Dog signal  
(DOG)  
OFF  
Completion of  
positioning  
ON  
OFF  
(D01 or INP)  
ON  
Home position  
setting (CR)  
OFF  
20 [ms] or more  
20 [ms] or more  
Home position  
ABS data  
Update  
15 - 17  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Data set type home position return  
Move the machine to the position where the home position is to be set by performing manual operation  
such as jog operation to turn the motor shaft more than one revolution. When the home position  
setting signal (CR) is on for longer than 20ms, the stop position is stored into the non-volatile memory  
as the home position ABS data.  
The home position setting signal should be turned on after it has been confirmed that the in-position  
(D01 or INP) is on. If this condition is not satisfied, the home position setting warning (AL.96) will  
occur, but that warning will be reset automatically by making home position return correctly.  
The number of home position setting times is limited to 1,000,000 times.  
Manual feed (JOG, etc.)  
(more than 1 revolution  
of the motor shaft)  
Servo Motor  
Completion of  
positioning  
ON  
OFF  
(D01 or INP)  
ON  
Home position  
setting (CR)  
OFF  
20 [ms] or more  
Home position  
ABS data  
Update  
15 - 18  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.4 Use of servo motor with electromagnetic brake  
The timing charts at power on/off and servo-on (SON) on/off are given below.  
Preset "  
1 " in parameter No. 1 to make the electromagnetic brake interlock signal (MBR) usable.  
When the ABS transfer mode is ON, the electromagnetic brake interlock (MBR) is used as the ABS data  
bit 1.  
Hence, make up an external sequence which will cause the electromagnetic brake torque to be generated  
by the ABS mode (ABSM) and electromagnetic brake interlock signals.  
ON  
Power  
supply  
OFF  
ON  
Servo-on  
(SON)  
OFF  
ON  
ABS transfer mode  
(ABSM)  
During transmission  
of ABS  
During transmission  
of ABS  
OFF  
ON  
ABS request  
(ABSR)  
OFF  
ON  
Send data ready  
(TLC)  
OFF  
Send (ABS) data  
Base circuit  
ABS data  
80 [ms]  
ABS data  
80 [ms]  
ON  
OFF  
20 [ms]  
20 [ms]  
ON  
Ready  
(RD)  
OFF  
Tb  
Tb  
ON  
Electromagnetic  
brake (MBR)  
OFF  
ON  
Electromagnetic  
brake torque  
OFF  
15 - 19  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.7.5 How to process the absolute position data at detection of stroke end  
The servo amplifier stops the acceptance of the command pulse when stroke end (LSP LSN) is detected,  
clears the droop pulses to 0 at the same time, and stops the servo motor rapidly.  
At this time, the programmable controller keeps outputting the command pulse. Since this causes a  
discrepancy between the absolute position data of the servo amplifier and the programmable controller, a  
difference will occur between the position data of the servo amplifier and that of the programmable  
controller.  
To prevent this difference in position data from occurring, do as described below. When the servo  
amplifier has detected the stroke end, perform jog operation or the like to clear the stroke end. After that,  
switch the servo-on signal off once, then on again, or switch the power off once, then on again. This causes  
the absolute position data of the servo amplifier to be transferred to the programmable controller,  
restoring the normal data.  
15 - 20  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.8 Examples of use  
15.8.1 MELSEC-A1S (A1SD71)  
(1) Instructions  
The absolute coordinate system (programmable controller coordinate system) of the A1SD71 (AD71)  
only covers the range in which the address increases (positive coordinate values) on moving away from  
the machine home position (the position reached in the home position return operation). Therefore, if  
the motor enters the range where the coordinate value is negative due to the load torque or a fall on a  
vertical axis when the power is turned ON/OFF at a point near the machine home position, the system  
fails to detect the absolute position. To prevent this problem, it is necessary to set the home position  
(operation home position) for positioning in addition to the machine home position.  
(a) The home position should be set in the direction in which the position address of the programmable  
controller coordinate system increases on moving away from machine home position, as illustrated  
below. Note that the home position for positioning must be more than one revolution of the servo  
motor shaft from the machine home position.  
If the address of the machine home position is changed to any value other than "0", the home  
position should be set in the direction in which the position address increases on moving away from  
the machine home position (machine home position after changing the home position address) and  
at a point removed from the machine home position by more than one revolution of the motor shaft.  
Home position  
Machine home position (operation home position)  
Machine home  
Home position position  
Programmable  
controller coordinate  
system  
Programmable  
controller coordinate  
system  
0 10000  
0
50000  
50000  
10000 0  
0
20000  
50000  
Direction in which  
address increases  
20000  
50000  
ABS  
coordinate  
system  
ABS  
coordinate  
system  
Direction in which  
address increases  
More than 1 revolution  
of motor shaft  
More than 1 revolution  
of motor shaft  
a) If revolution direction parameter (Pr. 14)  
0
b) If revolution direction parameter (Pr. 14) 1  
(b) In the range where the address decreases on moving away from the machine home position, do not  
turn the power supply to the programmable controller or the servo amplifier, the servo-on  
pushbutton switch, or the PC-RESET switch, ON/OFF. If any of these operations are attempted,  
the ABS coordinate error (Y4B) is output since the absolute position cannot be detected.  
Machine  
Machine home position Home position  
Programmable  
Home position home position  
Programmable  
controller coordinate  
system  
controller coordinate  
system  
0 10000  
50000  
50000  
10000 0  
ABS  
coordinate  
system  
20000  
0
50000  
Direction in which  
address increases  
50000  
Direction in which  
address increases  
0
20000  
ABS  
coordinate  
system  
ABS coordinate  
ABS coordinate  
value error occurs  
if power is turned  
on within this range  
value error occurs  
if power is turned  
on within this range  
Absolute position data can be  
detected  
Absolute position data can be  
detected  
a) If revolution direction parameter (Pr. 14)  
0
b) If revolution direction parameter (Pr. 14)  
1
15 - 21  
15. ABSOLUTE POSITION DETECTION SYSTEM  
If the address of the machine home position is changed to any coordinate value other than "0", the  
programmable controller coordinate system will be as illustrated below.  
The power should be turned ON/OFF in the range in which the address increases on moving away  
from the home position.  
Machine home position Home position  
Programmable  
controller coordinate  
Machine home position Home position  
Programmable  
controller coordinate  
system  
0
20000 30000  
70000  
50000  
70000  
30000 20000  
0
0
system  
ABS  
coordinate  
system  
ABS  
coordinate  
system  
20000  
0
50000  
20000  
Direction in which  
address increases  
Direction in which  
address increases  
Absolute position data can be detected  
Absolute position data can be detected  
ABS coordinate value error occurs if  
power is turned on within this range  
ABS coordinate value error occurs if  
power is turned on within this range  
* Home position address changed to "2000"  
* Home position address changed to "2000"  
a) If revolution direction parameter (Pr. 14)  
0
b) If revolution direction parameter (Pr. 14)  
1
(c) In a positioning program, the address of the positioning point should be determined by adding the  
home position address to the target position address.  
Example) After home position return, execute positioning at 1) to 3).  
1) Positioning at position address 80000  
(PC coordinate 140000)  
2) Positioning at position address 130000  
(PC coordinate 190000)  
3) Positioning at position address 0  
(PC coordinate 60000)  
1)  
ABS coordinate  
error region  
(80000 60000)  
Machine home position  
Home position (operation home  
position)  
Programmable  
controller  
coordinate  
system  
2)  
(130000 60000)  
0 10000  
50000 60000  
100000  
150000  
ABS coordinate  
system  
50000  
Stroke limit  
0
50000  
Direction in which  
address increases  
(0 60000)  
3)  
* Home position address changed to "50000"  
Mechanical limit  
If revolution direction parameter (Pr. 14)  
0
15 - 22  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(d) Slot arrangement  
The sequence programs presented in this section show I/O numbers (X, Y) assuming the  
arrangement of modules on the main base unit is as illustrated below. A1SD71 is mounted at I/O  
slots 0 and 1, a 16-point input module at slot 2, and 16-point output module at slot 3. If the actual  
arrangement of the modules differs from this arrangement, change the X and Y numbers  
accordingly.  
The numbers of the devices (M, D, T, etc.) used in the program can be changed as required.  
7
6
5
4
3
2
1
0
I/O slot No.  
A1SD71  
A1S  
Power  
CPU  
supply  
16-point output module  
16-point input module  
[Numbers used] X, X0-X, Y2F  
Example arrangement of modules  
(e) Points  
1) The A1SD71 has 48 I/O points and occupies 2 slots. For I/O allocation using the GPP function,  
follow the instructions given below.  
First slot: Vacant slot 16 points  
Second slot: Special function module 32 points  
2) To execute the FROM/TO instruction for the A1SD71, use the head I/O number of the second  
slot.  
X30 to X3F  
Note: The program example given  
Y40 to Y4F  
in (3) in this section is for 1-axis  
control. Slot allocations are as  
A1S  
illustrated to the left. To use the  
system for 2-axis control,  
A1SD71  
CPU  
increase the number of I/O  
points.  
X,Y000 X,Y010  
I/O numbers to be set  
to  
to  
with FROM/TO instruction  
X,Y00F X,Y02F  
Therefore, the I/O number to be set with the FROM/TO instruction is head I/O number allocated  
to the A1SD71 010H.  
3) By setting "0 point of vacant slot" for the first slot of the A1SD71 in the "I/O allocation" of the  
GPP function, the 16 points in the first slot can be saved.  
In this case, the I/O number to be set with the FROM/TO instruction is the same number as the  
head I/O number allocated to the A1SD71.  
A1S  
A1SD71  
CPU  
X,Y000  
I/O numbers to be set with FROM/TO instruction  
to  
X,Y00F  
15 - 23  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Connection diagram  
Servo amplifier  
General purpose  
programmable controller  
CN1B  
VDD  
COM  
SG  
3
A1S62P  
24  
13  
10  
20  
24G  
LG  
FG  
SG  
Power  
supply  
INPUT  
AC100/200  
A1SCPU  
A1SX40  
ABS bit 0/Completion of positioning  
ABS bit 1/Zero speed  
0
1
2
3
4
5
6
7
DO1  
ZSP  
TLC  
ALM  
EMG  
4
19  
6
18  
15  
Send data ready/Torque limit control  
Trouble  
Alarm reset  
Emergency stop  
Servo-on  
Home position return  
COM  
Operation mode I  
Operation mode II  
Position start  
8
9
A
B
C
D
Position stop  
(Note 3)  
JOG  
JOG  
E
F
COM  
NC  
NC  
A1SY40  
Servo-on  
0
1
2
3
4
5
6
7
SON  
5
8
9
ABS transfer mode  
ABS request  
Alarm reset  
ABSM  
ABSR  
RES  
14  
RA2  
Electromagnetic  
brake output  
(Note 4)  
COM1  
8
9
(Note 2)  
A
B
COM2  
(Note 1)  
A1SD71-S2  
DOG  
6B  
6A  
5A  
STOP  
Power supply  
CN1A  
RD  
P15R  
OP  
CR  
SG  
OPC  
PP  
SG  
NP  
SD  
RDY  
PGO  
5B  
9A  
9B  
12A  
12B  
17A  
15A  
15B  
16A  
16B  
19  
4
14  
8
10  
11  
3
20  
2
CLEAR  
Power supply  
PULSE-  
F
PULSE-  
R
Plate  
Note: 1. To be connected for dog type home position setting. The connection in Note 2 is not required.  
2. To be connected for data set type home position setting. The connection in Note 1 is not required.  
3. This circuit is for reference only.  
4. The electromagnetic brake output should be controlled by connecting the programmable controller output to a relay.  
15 - 24  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(3) Sequence program example  
(a) Conditions  
This sample program is an ABS sequence program example for a single axis (X axis).  
To transmit the ABS data using the OFF-to-ON change of the servo-on signal as the trigger.  
1) When the servo-ON signal and the GND of the power supply are shorted, the ABS data is  
transmitted when the power to the servo amplifier power is turned ON, or at the leading edge of  
the RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when  
an alarm is reset, or when the emergency stop state is reset.  
2) If a check sum discrepancy is detected in the transmitted data, ABS data transmission is retried  
up to three times. If the check sum discrepancy is still detected after retrying, the ABS check  
sum error is generated (Y4A ON).  
3) The following time periods are measured and if the ON/OFF state does not change within the  
specified time, the ABS communication error is generated (Y4A ON).  
ON period of ABS transfer mode (Y41)  
ON period of ABS request (Y42)  
OFF period of ready to send ABS data (X32).  
4) If the relationship between the polarity ( ) of the received ABS data and the setting value for  
parameter No. 14 (rotating direction) of A1SD71 (AD71) involves negative coordinate values,  
which cannot be handled by the A1SD71 (AD71), the ABS coordinate error is generated (Y4B  
ON).  
(b) Device list  
X input contact  
Y output contact  
Servo-on  
ABS transfer mode  
ABS request  
Alarm reset  
Electromagnetic brake output  
Clear  
X30  
X31  
X32  
X33  
X34  
X35  
X36  
X37  
X38  
X39  
ABS bit 0 / completion of positioning  
ABS bit 1 / zero speed  
Send ABS data ready / torque limit control Y42  
Servo alarm  
Error reset  
Servo emergency stop  
Servo-on  
Home position return start  
Operation mode I  
Operation mode II  
Y40  
Y41  
Y43  
X44 (Note 2)  
Y45 (Note 1)  
Y48  
Y49  
Y4A  
Servo alarm  
ABS communication error  
ABS check sum error  
ABS coordinate error  
M contact  
Y4B  
D register  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
ABS data transmission counter  
Check sum transmission counter  
Check sum addition counter  
ABS data: Lower 16 bits  
ABS data: Upper 16 bits  
ABS data 2-bit receiving buffer  
Check data in case of check sum error  
Retry frequency  
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
ABS data transmission start  
Sum check completion  
Sum check discrepancy  
ABS data ready  
Transmission data read enabled  
Check sum 2 bits read completion  
ABS 2 bits read completion  
ABS 2 bits request  
D8  
D9  
D10  
D100  
D101  
Forward rotation direction  
Home position address: Lower 16 bits  
Home position address: Upper 16 bits  
Received shift data: Lower 16 bits  
Received shift data: Upper 16 bits  
T timer  
M8  
M9  
M10  
M11  
M12  
M13  
Servo-on request  
Servo alarm  
ABS data transmission retry start pulse  
Retry flag setting  
Retry flag reset  
PLS processing command  
T0  
T1  
T2  
ABS transfer mode timer  
ABS request response timer  
Retry wait timer  
M20 (Note 1) Clear signal ON timer request  
M21 (Note 2) Data set type home position return request  
C counter  
T3  
T10 (Note 1)  
T200  
Ready to send response timer  
Clear signal ON timer  
Transmitted data read 10ms delay timer  
C0  
C1  
C2  
ABS data receive frequency counter  
Check sum receive frequency counter  
Retry counter  
Note 1: Necessary when data set type home position return is executed.  
2: Necessary in the event of electromagnetic brake output.  
15 - 25  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) ABS data transfer program for X axis  
This sequence program example assumes the following conditions:  
Parameters of the A1SD71-S2 (AD71) positioning module  
1) Unit setting  
: 3 pulse (PLS)  
2) Travel per pulse : 1 1 pulse  
To select the unit other than the pulse, conversion into the unit of the feed command value per  
pulse is required. Hence, add the following program to the area marked Note in the sequence  
program.  
<Additional program>  
Item  
mm  
inch  
degree  
pulse  
D * P K  
D3 D3  
Unit setting  
0
1
2
3
0.00001 0.0001 0.001 0.00001 0.0001 0.001  
Travel per pulse  
0.1 to 1.0 to 10.0  
m/PLS  
to  
to  
to  
to  
to  
to  
Unit of travel  
inch/PLS  
degree/PLS  
PLS  
Constant K for  
conversion into  
unit of travel  
1 to  
10 to  
100  
1 to  
10 to  
100  
1 to  
10 to  
100 None  
Reference  
For 1 m/PLS, set constant K to 10  
For 5 m/PLS, set constant K to 50  
When the unit setting is pulse, the additional program is not required.  
M9038  
TOP H0001 K201 K1  
K1  
A1SD71 error reset  
Initial  
pulse  
ON  
MOV K3  
DMOV D100  
SET  
D7  
A0  
Setting retry count (3 times)  
Loading received shift data  
Servo-on request  
Initial setting  
M9039  
PC RUN  
X36  
M8  
M3  
M8  
C0  
C1  
Y40  
M0  
Servo-on PB  
X36  
RST  
Resetting ready to send  
Resetting servo-on request  
Servo-on  
PB  
RST  
Resetting ABS transfer  
counter at servo OFF  
RST  
Servo-on control  
Resetting checksum transfer  
counter at servo OFF  
RST  
M8  
M9  
M11  
Servo-on output  
ABS I/F start  
Servo-on Error Retry flag  
request flag setting  
PLS  
(To be continued)  
1
1
15 - 26  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
1
1
M8  
PLS  
RST  
M12  
C2  
Setting retry flag  
ABS data  
transmission  
retry control  
Servo-on request  
M12  
Resetting retry counter  
Alarm reset output  
Retry flag reset request  
X34  
M9  
Y43  
Error reset Error flag  
PB  
Y43  
Alarm reset  
X35  
M9  
M3  
M8  
Y48  
D0  
Error flag output  
Servo alarm  
detection, alarm  
reset control  
Emergency  
stop PB  
X33  
RST  
RST  
Resetting ready to send  
Resetting servo-on request  
Servo alarm  
Servo alarm  
M0  
Initializing ABS data transfer  
counter  
MOV K16  
MOV K3  
MOV K0  
MOV K0  
DMOV K0  
DMOV K0  
RST  
ABS data  
transfer  
start  
Initializing check sum transfer  
counter  
D1  
D2  
Initializing check sum register  
Initializing ABS data register  
Initializing ABS data register  
Initializing ABS data register  
D5  
ABS transfer  
mode  
Initial setting  
D9  
A0  
Resetting error for ABS  
coordinate  
Y4B  
C0  
Resetting ABS transfer  
counter  
RST  
Resetting check sum transfer  
counter  
RST  
C1  
M0  
Y41  
ABS transfer mode  
ABS data transfer  
start  
ABS transfer  
mode control  
Y41  
C1  
ABS Checksum  
transfer counter  
mode  
(To be continued)  
2
2
15 - 27  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
2
2
C0  
C1  
Y41  
DMOVP A0  
D3  
A0  
K1  
D8  
A1  
M13  
D4  
D4  
D3  
D4  
D5  
D5  
A0  
K2  
Saving ABS 32-bit data  
Clearing register  
Counter Check sum ABS  
counter transfer  
mode  
MOVP K0  
*1 Reading X-axis rotating  
direction parameter  
FROMP H0001 K7872 D8  
Detecting absolute  
position polarity  
and A1SD71  
Rotation direction parameter  
mask  
WAND H0004  
WAND H8000  
PLS  
rotating direction  
ABS data sign mask  
PLS processing command  
Rotation direction  
judgment  
M13  
Reversing polarity of upper  
16 bits  
D8 K4  
NEG  
PLS processing  
command  
K1  
Subtraction for upper 16 bits  
Reversing polarity of  
absolute position  
Reversing polarity of lower  
16 bits  
NEG  
Lower 16 bits  
D4 D4  
0
K0 D3  
K1  
MOV K1X30  
WAND H0003  
WOR D5  
FOR  
1
M4  
C0  
Reading 4 bits  
Masking 2 bits  
Adding 2 bits  
Read  
ABS data  
enabled counter  
Reading checksum  
6 bits  
(2 bit 3 times)  
Right rotation of A0 2 bits  
D1  
C1  
Counting check sum data  
reception frequency  
Completion of reading, 2 bits  
of check sum  
PLS  
M5  
(To be continued)  
3
3
15 - 28  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
3
3
M4  
Read  
C0  
MOV K1X30  
WAND H0003  
WOR D5  
DROR  
D5  
D5  
A0  
K2  
D2  
Reading 4 bits  
ABS data  
enabled counter  
Masking 2 bits  
Adding 2 bits  
Reading ABS data  
32 bits  
(2 bits 16 times)  
Right rotation of A0 2 bits  
Adding check sum  
D5  
D2  
D0  
C0  
Counting frequency of ABS  
data reception  
Completion of reading: 2 bits  
of ABS data  
PLS  
M6  
K10  
A0  
C1  
RORP  
Right rotation of A0 10 bits  
Masking check sum  
Sum check OK  
Check  
sum  
counter  
WAND H003F  
D2 A0  
D2 A0  
M1  
M2  
D6  
Detecting ABS data  
check sum error  
Sum check NG  
MOV A0  
Sum check memory  
ABS check sum error  
Resetting ABS request  
C2  
Y4A  
Y42  
Retry counter  
M6  
RST  
ABS 2 bits read  
completion  
M5  
Check sum 2 bits read completion  
Y41 X32  
PLS  
SET  
M7  
ABS 2 bits request  
Setting ABS request  
10ms delay timer  
ABS transfer Send data  
ABS request  
control  
mode  
M7  
ready  
Y42  
ABS 2 bits request  
Y42  
X32  
K1  
T200  
ABS  
Send data ready  
request  
Y42  
X32  
T200  
Transmission data read  
enabled  
M4  
10ms delay timer  
(To be continued)  
4
4
15 - 29  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
4
4
M1  
*1 A1SD71: reading home  
position address  
DFROP H0001 K7912 D9  
K1  
Check sum OK  
Restoring absolute  
position data  
Inserting constant K for conversion  
into the unit of feed per pulse  
D*P  
D3  
D3  
K
(Note)  
Adding home position address  
to absolute position  
D P D3  
D9  
D3  
Detecting ABS  
coordinate error  
D
K0 D3  
SET  
D3  
Y4B  
K1  
Setting ABS coordinate error  
M1  
Y4B  
ABS coordinate error  
*1 X-axis: Present position  
change ABS data "ready"  
DTOP H0001 K41  
Check  
Writing ABS data  
to A1SD71  
sum OK  
SET  
RST  
M3  
Y41  
ABS data "ready"  
Y49  
X36  
Resetting ABS transfer mode  
ABS transfer mode timer (5s)  
ABS commu- Servo-on PB  
nication error  
Y41  
K50  
T0  
ABS transfer mode  
Y41  
Y42  
K10  
T1  
ABS request response timer  
(1s)  
ABS transfer ABS request  
mode  
Y41  
X32  
K10  
T3  
Ready to send response  
timer (1s)  
ABS communication  
error detecting  
ABS transfer Send data ready  
mode  
T0  
Y49  
ABS communication error  
ABS transfer NG  
T1  
ABS request NG  
T3  
Send data ready NG  
(To be continued)  
5
5
Note: When the unit setting parameter value of the AD71 positioning module is changed from "3" (pulse) to "0" (mm),  
the unit is 0.1 m for the input value. To change the unit to 1 m, and this program to multiple the feed value  
by 10.  
15 - 30  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
5
5
M2  
PLS  
SET  
M10  
M11  
ABS transfer retry start pulse  
Setting retry flag  
Check sum NG  
M10  
C2  
Retry start Retry  
pulse  
counter  
D7  
C2  
Retry counter  
ABS transfer  
retry control  
M11  
K1  
T2  
Retry wait timer (100ms)  
Resetting retry flag  
Retry flag set  
T2  
RST  
M11  
Retry wait timer  
M9039  
DMOV A0  
D100  
END  
Saving received shift data  
PC RUN  
POINT  
When absolute position data is received at power ON, for example, if a  
negative coordinate position which cannot be handled by the A1SD71 is  
detected, the ABS coordinate error (Y4B ON) is generated. If this error is  
generated, move the axis into the positive coordinate zone in JOG operation.  
Then, turn OFF the servo-on pushbutton switch and turn it ON again.  
15 - 31  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(d) X-axis control program  
This precludes execution of the X-axis start program while M3 (ready to send the ABS data) is  
OFF.  
Positioning X-axis start  
When M3 (ready to send the ABS data)  
is turned ON, the X-axis start command  
executes the X-axis start program.  
mode  
command M3  
X-axis start program  
Ready to  
send the  
ABS date  
(e) Dog type home position return  
For an example of a program for the dog type home position return operation, refer to the home  
position return program presented in the User's Manual for A1SD71.  
(f) Data set type home position return  
After jogging the machine to the position where the home position (e.g.500) is to be set, choose the  
home position return mode set the home position with the home position return start (PB ON).  
After switching power on, rotate the servo motor more than 1 revolution before starting home  
position return.  
Do not turn ON the clear signal (Y45) for an operation other than home position return. Turning it  
ON in other circumstances will cause position shift.  
M9039  
Home position return mode  
Y2D  
M20  
PC ready  
(Note 1)  
PC RUN  
Home position  
return mode  
M20  
Y41  
X30  
X37  
PLS  
Clear signal ON timer request  
Clear signal 100ms ON timer  
ABS  
transfer  
mode  
Positioning Home position  
return start PB  
completion  
K1  
T10  
Clear signal ON  
timer request  
M21  
SET  
RST  
M21  
M21  
Y45  
D9  
Setting data set type home position return request  
Resetting data set type home position return request  
Data set type home  
position return request  
T10  
Clear signal 100ms ON timer  
M21  
Clear signal ON  
Data set type home  
position return request  
Setting X-axis home position address "500"  
in the data register  
DMOVP K500  
DTOP H0001 K7912 D9  
DFROP H0001 K7912 D9  
(Note 1)  
K1  
*1:Changing X-axis home position address  
(Note 2)  
K1  
DTOP H0001 K41  
D9  
K1  
*1:Changing X-axis present position data  
Note 1: If data of the home position address parameter is not written by using an A6GPP programming tol, etc. before  
starting a program for data set type home position return, the circuits indicated by Note 1 are necessary and the  
circuit indicated by Note 2 is not necessary.  
2: Contrary to Note 1 above, if the home position address is written in the home position address parameter.  
the circuit indicated by Note 3 is necessary and the circuits indicated by Note 1 are not necerssary.  
15 - 32  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(g) Electromagnetic brake output  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Set "1 1 "in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock  
signal.  
Y41  
X31  
Y44  
Electromagnetic brake output  
ABS  
Brake (MBR)  
transfer  
mode  
(h) Positioning completion  
To create the status information for servo positioning completion.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Y41  
X30  
M
Completion of servo positioning  
ABS transfer Positioning  
mode completion  
Y41  
ABS transfer  
mode  
(i) Zero speed  
To create the status information for servo zero speed  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Y41  
X31  
M
Servo zero speed  
ABS transfer Zero  
mode speed  
Y41  
ABS transfer  
mode  
(j) Torque limiting  
To create the status information for the servo torque limiting mode  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the torque  
limiting must be off.  
Y41  
X32  
M
Servo torque limiting mode  
ABS transfer Torque limiting  
mode mode  
15 - 33  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(4) Sequence program - 2-axis control  
The following program is a reference example for creation of an ABS sequence program for the second  
axis (Y axis) using a single A1SD71 module. Create a program for the third axis in a similar manner.  
(a) Y-axis program  
Refer to the X-axis ABS sequence program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so  
that they do not overlap those of the X axis.  
The buffer memory addresses of the A1SD71 differ between the X and Y axes. The instructions  
marked *1 in the program of Section 15.8.1 (3), (c) should be changed as indicated below for use  
with the Y axis:  
[FROMP H0001 K7872 D8 K1]  
[DFROP H0001 K7912 D9 K1]  
[DTOP H0001 K41 D3 K1]  
[FROMP H0001 K7892 D8 K1]  
[DFROP H0001 K7922 D9 K1]  
[DTOP H0001 K341 D3 K1]  
[Program configuration]  
X-axis ABS sequence program  
(Program in Section 15.8.1 (3), (f))  
Y-axis ABS sequence program  
(Refer to the X-axis program and write the Y-axis  
program)  
(b) Data set type home position return  
Arrange the data set type home position return programs given in Section 15.8.1 (3), (f) in series to  
control two axes.  
Refer to the X-axis data set type home position return program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do  
not overlap those of the X axis.  
The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions  
marked *1 in the program of Section 15.8.1 (3), (f) should be changed as indicated below for use  
with the Y axis:  
[DTOP H0001 K7912 D9 K1]  
[DTOP H0001 K41 D9 K1]  
[DTOP H0001 K7922 D9 K1]  
[DTOP H0001 K341 D9 K1]  
[Program configuration]  
X-axis data set type home position return program  
(Program in Section 15.8.1 (3), (f))  
Y-axis data set type home position return program  
(Refer to the X-axis program and write the Y-axis  
program)  
15 - 34  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.8.2 MELSEC FX(2N)-32MT (FX(2N)-1PG)  
(1) Connection diagram  
(a) FX-32MT (FX-1PG)  
Servo amplifier  
FX-32MT  
L
Power supply  
CN1B  
SG 10  
N
24V  
COM  
PC-RUN  
RUN  
ABS bit 0/Completion of positioning  
3.3k  
X0  
X1  
DO1  
ZSP 19  
TLC  
4
ABS bit 1/Zero speed  
Send data ready/Torque limit control  
Alarm  
X2  
6
X3  
ALM 18  
CN1A  
Servo ready  
Alarm reset  
Emergency stop  
Servo-on  
X4  
RD  
19  
X5  
X6  
X7  
JOG( )  
JOG( )  
X10  
X11  
X12  
X13  
X14  
X15  
Position start  
Position stop  
Home position return start  
1PG error reset  
COM1  
Y0  
EMG 15  
Servo-on  
SON  
ABSM  
ABSR  
5
8
9
ABS transfer mode  
ABS request  
Alarm reset  
Y1  
Y2  
Y3  
RES 14  
COM2  
Y4  
RA2  
Electromagnetic  
brake output  
(Note 3)  
Y5  
Y6  
Y7  
COM3  
Y10  
Y11  
Y12  
Y13  
24  
Servo alarm  
(Note 2)  
ABS communication  
error  
ABS check sum error  
COM 13  
SG  
FX-1PG  
3.3k  
SG  
S/S  
DOG  
STOP  
VH  
DOG  
24V  
VDD  
3
SD  
VL  
(Note 1)  
CN1A  
11  
3
FPO  
FP  
OPC  
PP  
3.3k  
3.3k  
Pulse train for forward rotation  
COM0  
SG 20  
NP  
Pulse train for reverse rotation  
RP  
2
RPO  
COM1  
CLR  
PGO  
PGO  
SG 10  
Clear  
CR  
8
4
P15R  
15V  
Z-phase pulse  
OP 14  
SD Plate  
SD  
Note 1: To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).  
2: To be connected for the data set type home position setting. At this time, do not connect the portions marked (Note 1).  
3: The electromagnetic brake interlock signal should be controlled by connecting the programmable controller output to a relay.  
15 - 35  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) FX2N-32MT (FX2N-1PG)  
Servo amplifier  
FX2N-32MT  
L
Power supply  
N
CN1B  
SG 10  
24V  
COM  
ABS bit 0/Completion of positioning  
X0  
X1  
DO1  
ZSP 19  
TLC  
4
ABS bit 1/Zero speed  
Send data ready/Torque limit control  
Alarm  
3.3k  
X2  
6
X3  
ALM 18  
Alarm reset  
Emergency stop  
Servo-on  
Servo ready  
CN1A  
X4  
RD  
19  
X5  
X6  
X7  
JOG( )  
X10  
X11  
X12  
X13  
X14  
X15  
JOG( )  
Position start  
Position stop  
Home position return start  
1PG error reset  
COM1  
Y0  
EMG  
SON  
ABSM  
ABSR  
15  
5
Servo-on  
ABS transfer mode  
ABS request  
Alarm reset  
Y1  
8
Y2  
9
Y3  
RES 14  
COM2  
Y4  
RA2  
Electromagnetic  
brake output  
(Note 3)  
Y5  
Y6  
Y7  
COM3  
Y10  
Y11  
Y12  
Y13  
24  
Servo alarm  
(Note 2)  
ABS communication  
error  
ABS check sum error  
COM 13  
FX2N-1PG  
3.3k  
S/S  
DOG  
STOP  
VIN  
SD  
DOG  
24V  
VDD  
3
CN1A  
(Note 1)  
OPC 11  
PP  
SG 20  
NP 12  
3.3k  
3.3k  
Pulse train for forward rotation  
FP  
COM0  
RP  
3
Pulse train for reverse rotation  
COM1  
CLR  
PGO  
SG 10  
Clear  
CR  
8
4
P15R  
15V  
Z-phase pulse  
PGO  
OP 14  
SD  
Plate  
SD  
Note 1: To be connected for the dog type home position setting. At this time, do not connect the portions marked (Note 2).  
2: To be connected for the data set type home position setting. At this time, do not connect the portions marked  
(Note 1).  
3: The electromagnetic brake interlock signal should be controlled by connecting the programmable controller  
output to a relay.  
15 - 36  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Sequence program example  
(a) Conditions  
1) Operation pattern  
ABS data transfer is made as soon as the servo-on pushbutton is turned on. After that,  
positioning operation is performed as shown below:  
Home position  
3)  
1)  
300000  
0
300000  
address  
2)  
After the completion of ABS data transmission, JOG operation is possible using the JOG or  
JOG pushbutton switch.  
After the completion of ABS data transmission, dog type home position return is possible using  
the home position return pushbutton switch.  
2) Buffer memory assignment  
For BFM#26 and later, refer to the FX2(N)-1PG User's Manual.  
BMF No.  
Name and symbol  
Set value  
Remark  
Upper 16 Lower 16  
bits  
bits  
#0  
#1  
#3  
#4  
#6  
Pulse rate  
Feed rate  
Parameter  
Max. speed  
Bias speed  
JOG operation  
Home position return speed (high speed)  
Home position return speed (creep)  
Home position return zero-point signal count  
Home position address  
Acceleration/deceleration time  
Not usable  
Target address (I)  
Operation speed (I)  
Target address (II)  
Operation speed (II)  
Operation command  
A
B
2000  
1000  
H0000  
100000PPS  
0PPS  
10000PPS  
50000PPS  
1000PPS  
2 pulses  
0
-
#2  
-
#5  
-
#8  
#10  
-
Command unit: Pulses  
Vmax  
Vbia  
Vjog  
VRT  
#7  
#9  
#11  
#12  
#13  
#15  
#16  
#17  
#19  
#21  
#23  
#25  
VCL  
-
N
HP  
Ta  
Initial value: 10  
Initial value: 100  
#14  
-
-
#18  
#20  
#22  
#24  
-
200ms  
P(I)  
V(I)  
P(II)  
V(II)  
0
100000  
0
10  
H0000  
Initial value: 10  
3) Instructions  
When the servo-on pushbutton switch and the GND of the power supply are shorted, the ABS  
data is transmitted when the servo amplifier power is turned ON, or at the leading edge of the  
RUN signal after a PC reset operation (PC-RESET). The ABS data is also transmitted when an  
alarm is reset, or when the emergency stop state is reset.  
If check sum discrepancy is detected in the transmitted data, the ABS data transmission is  
retried up to three times. If the check sum discrepancy is still detected after retrying, the ABS  
check sum error is generated (Y12 ON).  
The following time periods are measured and if the ON/OFF state does not change within the  
specified time, the ABS communication error is generated (Y11 ON).  
ON period of ABS transfer mode (Y1)  
ON period of ABS request (Y2)  
OFF period of ready to send the ABS data (X2).  
15 - 37  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(b) Device list  
X input contact  
Y output contact  
X0  
ABS bit 0 / completion of positioning  
ABS bit 1 / zero speed  
Send ABS data ready/ torque limit control  
Servo alarm  
Y0  
Servo-on  
X1  
Y1  
ABS transfer mode  
ABS request  
X2  
Y2  
X3  
Y3  
Alarm reset  
X4  
Alarm reset PB  
Y4 (Note 2)  
Y5 (Note 1)  
Y10  
Electromagnetic brake output  
Clear  
X5  
Servo emergency stop  
Servo-on PB  
X6  
Servo alarm  
X7  
Servo ready  
Y11  
ABS communication error  
ABS check sum error  
X10  
X11  
X12  
X13  
X14  
X15  
JOG ( ) PB  
Y12  
JOG () PB  
Position start PB  
Position stop PB  
Home position return start PB  
1PG error reset  
D register  
M contact  
D0  
D1  
D2  
D3  
D4  
ABS data: Lower 16 bits  
M0  
M1  
M2  
M3  
M4  
Error flag  
ABS data: Upper 16 bits  
ABS data transmission start  
Retry command  
ABS data read  
Spare  
Check sum addition counter  
Check data in case of check sum error  
Transmission retry count in check sum  
discrepancy  
D24  
Home position address: Lower 16 bits  
Home position address: Upper 16 bits  
1PG present position address: Lower 16 bits  
1PG present position address: Upper 16 bits  
M5  
Servo-on request  
Retry flag  
D25  
M6  
D106  
D107  
M10  
M11  
M12  
M13  
M20  
ABS data 2 bit receiving buffer  
ABS data 32 bit buffer  
Check sum 6 bit buffer  
M51  
M52  
M57  
M58  
M59  
For checksum comparison  
T timer  
M62  
Sum check discrepancy (greater)  
T200  
T201  
T202  
T203  
T204  
Retry wait timer  
M63  
M64  
Sum check discrepancy  
ABS transfer mode timer  
ABS request response timer  
Ready to send response timer  
ABS data waiting timer  
Sum check discrepancy (less)  
M70 (Note 1) Clear signal ON timer request  
M71 (Note 1) Data set type home position return request  
M99  
ABS data ready  
T210 (Note 1) Clear signal ON timer  
C counter  
C0  
C1  
C2  
All data reception frequency counter (19 times)  
Check sum reception frequency counter  
ABS data reception frequency counter (16 times)  
Note 1: Necessary when data set type home position return is executed.  
2: Necessary in the event of electromagnetic brake output.  
15 - 38  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) ABS data transfer program for X-axis  
M8002  
Setting home position address  
to 0  
DMOV K0  
D24  
Initial  
pulse  
Setting 1PG pulse command  
unit  
TO  
K0  
K3  
K0  
K1  
DTO K0  
DTO K0  
DTO K0  
K4  
K100000 K1  
K10000 K1  
K50000 K1  
1PG max. speed: 100 kpps  
1PG Jog speed: 10 kpps  
K7  
1PG home position return  
speed: 50 kpps  
K9  
TO  
TO  
K0  
K0  
K11  
K12  
K13  
K15  
K19  
K1000  
K2  
K1  
K1  
K1  
K1  
1PG creep speed: 1 kpps  
1PG home position return  
zero-point count: twice  
1PG home position address  
setting  
DTO K0  
D24  
Initial setting  
1PG acceleration/deceleration  
time: 200ms  
TO  
K0  
K200  
1PG operation speed:  
100kpps  
DTO K0  
K100000 K1  
Position move account 1:  
300000 pulses  
DMOV K300000 D100  
DMOV K 250000 D102  
Position move account 2:  
250000 pulses  
Position move account 3:  
0 pulses  
DMOV K0  
DMOV K0  
DMOV K4  
D104  
Z
Clearing index registers V, Z  
Setting "4 times" for check  
sum error transmission  
frequency  
D4  
(To be continued)  
1
1
15 - 39  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(Continued from preceding page)  
1
1
X6  
M6  
SET  
M5  
Y0  
Servo-on request  
Servo-on  
PB  
M5  
Retry  
Y12  
M0  
Y11  
ABS  
communication  
error  
Servo-on output  
Servo-on ABS check Error  
error  
request flag  
PLS  
RST  
M1  
C1  
ABS data transmission start  
Clearing retry counter  
M1  
M6  
ABS  
Retry  
transmission  
start  
X6  
Servo-on PB  
Resetting ready to send ABS  
data  
RST  
M99  
M5  
Y1  
Servo-on and  
retry control  
RST  
Resetting servo-on request  
Resetting ABS transfer mode  
Resetting ABS request  
Resetting retry flag  
Y12  
RST  
RST  
Y2  
RST  
M6  
M64  
C2  
Resetting check sum  
judgement  
ZRST M62  
ZRST C0  
Resetting communication  
counter  
2
(To be continued) 2  
15 - 40  
15. ABSOLUTE POSITION DETECTION SYSTEM  
2
(Continued from preceding page)  
Y3  
2
X4  
M0  
Alarm reset output  
Alarm  
reset PB  
Y3  
Error flag  
RST  
C1  
Clearing retry counter  
Alarm reset  
Clearing ABS data receiving  
area  
ZRST M0  
M64  
D3  
Clearing ABS receive data  
buffer  
ZRST D0  
Resetting ABS data reception  
counter  
RST  
C2  
Resetting all data reception  
counter  
RST  
C0  
Servo alarm  
X5  
M0  
Y10  
Y1  
Error flag output  
detection, alarm  
reset control  
Emergency stop PB  
X3  
Servo alarm output  
Servo alarm  
RST  
RST  
Resetting ABS transfer mode  
Resetting ABS request  
Resetting ready to send  
Resetting servo-on request  
Resetting retry flag  
Y2  
RST  
M99  
M5  
M6  
Y1  
RST  
RST  
M1  
SET  
ABS transfer mode ON  
ABS data  
transmission start  
Clearing ABS data reception  
area  
ZRST M10  
ZRST D0  
RST  
M64  
D2  
ABS transfer  
mode  
Initial setting  
Clearing ABS receiver data  
buffer  
Resetting ABS data reception  
counter  
C2  
Resetting all data reception  
counter  
RST  
C0  
(To be continued)  
3
3
15 - 41  
15. ABSOLUTE POSITION DETECTION SYSTEM  
3
(Continued from preceding page)  
3
Y1  
ABS  
transfer  
mode  
X2  
PLS  
SET  
M3  
Y2  
Resetting ABS data  
ABS request ON  
Send data ready  
M3  
ABS data 32 bits  
(2 bits 16 times)  
ABS data read  
Y2  
X2  
K1  
T204  
Check sum 6 bits  
(2 bits 3 times)  
ABS data waiting timer 10ms  
Masking ABS data 2 bits  
Right shift (2 bits) of ABS data  
Check sum addition  
ABS  
request ready  
Send data  
T204  
WANDP K1X0 H0003 K1M10  
ABS data waiting timer  
SFTR M10  
M20  
K38  
K2  
D2  
C2  
ADDP K1M10 D2  
K16  
C2  
Updating ABS data reception  
counter  
K19  
C0  
Updating all data reception  
counter  
RST  
RST  
Y2  
Resetting ABS request  
C0  
Y1  
Resetting ABS transfer mode  
All data reception counter  
WANDP H003F D2  
CMPP K2M52 D2  
D2  
Masking check sum 6 bits  
Comparison of check sum  
ABS data check sum error  
Retry command  
M62  
Detection of ABS  
check sum error,  
retry control  
C1  
Y12  
M2  
Retry counter  
M62  
M64  
C1  
PLS  
Retry  
counter  
K10  
T200  
Setting retry wait timer: 100ms  
Storing check sum value in the  
case of check sum error  
MOV K2M52  
D3  
M6  
M5  
SET  
Retry flag ON  
RST  
Resetting servo-on request  
4
(To be continued)  
4
15 - 42  
15. ABSOLUTE POSITION DETECTION SYSTEM  
4
(Continued from preceding page)  
4
M63  
DMOVP K8M20  
D0  
ABS data  
D0, D1  
Check  
sum  
match  
Adding 1PG home position  
address  
DADDPD0  
D24  
D0  
D0  
DTOP K0  
K26  
K1  
ABS data  
1PG  
Writing absolute  
position data to  
1PG  
SET  
M99  
M64  
M6  
Y1  
Setting ABS data ready  
Clearing check sum judging  
area  
ZRST M62  
RST  
Resetting retry flag  
Y11  
X6  
Detecting ABS  
communication error  
RST  
ABS  
communi-  
cation error  
Servo-on  
PB  
RST  
Y2  
Resetting ABS request  
Y1  
K500  
T201  
ABS transfer mode 5s timer  
ABS transfer mode  
Y1 Y2  
K100  
T202  
ABS request response  
1s timer  
Detecting ABS  
communication  
error  
ABS transfer ABS request  
mode  
Y1  
X2  
K100  
T203  
Ready to send response  
1s timer  
ABS transfer Send data ready  
mode  
T201  
Y11  
ABS communication error  
ABS transmission NG  
T202  
ABS request NG  
T203  
Send data ready NG  
M2  
D4  
C1  
Counting retry frequency  
Setting servo-on request  
Retry command  
ABS transfer  
retry control  
T200  
M6  
SET  
M5  
Retry  
wait  
Retry  
timer  
5
(To be continued) 5  
15 - 43  
15. ABSOLUTE POSITION DETECTION SYSTEM  
5
(Continued from preceding page)  
M109  
5
M8000  
Normally  
OFF  
M110  
M111  
M112  
M102  
M103  
1PG control  
command  
(not used)  
X7  
X12  
M99  
PLS  
M120  
M104  
M105  
M106  
K1  
Start command pulse  
1PG JOG command  
1PG JOG command  
Servo  
ready  
Position ABS data  
start PB ready  
X10  
Operation  
command  
control  
JOG  
X11  
JOG  
(Note)  
X7  
X14  
1PG home position return  
start  
Servo ready Home position return PB  
M120  
DTO K0  
K17  
D100Z  
SET  
Setting motion distance  
1PG start  
Position  
start  
command  
pulse  
108  
Z
DINC  
DINC  
K6  
Z
Index processing  
Position  
command  
control  
DCMP  
Z
M121  
Z
M122  
DMOV K0  
INDX 6  
X12  
M101  
1PG stop command  
1PG error reset  
Position  
stop PB  
M0  
Error flag  
X16  
M100  
1PG error reset  
6
(To be continued)  
6
Note: Program example for the dog type home position return. For the data set type home position return, refer to the  
program example in (2), (d) in this section.  
15 - 44  
15. ABSOLUTE POSITION DETECTION SYSTEM  
6
(Continued from preceding page)  
6
M8000  
TO  
K0  
K25  
K28  
K26  
K4M100 K1  
K3M200 K1  
FX2 1PG  
Transmission of control signals  
Normally  
ON  
FROM K0  
DFROMK0  
1PG FX2  
Transmission of status  
D106  
RST  
K1  
1PG FX2  
Transmission of present  
position D106, D107  
1PG  
M200  
M108  
END  
Resetting start command  
(d) Data set type home position return  
After jogging the machine to the position where the home position (e.g.500) is to be set, choose the  
home position return mode set the home position with the home position return start (PBON).  
After switching power on, rotate the servo motor more than 1 revolution before starting home  
position return.  
Do not turn ON the clear signal (Y5) for an operation other than home position return. Turning it  
ON in other circumstances will cause position shift.  
Y1  
X0  
X14  
PLS  
M70  
Clear signal ON timer request  
ABS transfer Positioning Home position  
mode completion return start PB  
M70  
K10  
T210  
Clear signal 100ms ON timer  
Clear signal ON  
timer request  
M71  
SET  
RST  
M71  
M71  
Y5  
Setting data set type home position return request  
Resetting data set type home position return request  
Clear signal ON  
Date set type home position return request  
T210  
Clear signal 100ms ON timer  
M71  
Data set type  
home position  
return request  
Setting X-axis home position address "500"  
in the data register  
DMOVP K500  
D24  
K1  
DTOP K0  
DTOP K0  
K13  
K26  
D24  
D24  
Changing X-axis home position address  
Changing X-axis present position data  
K1  
15 - 45  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(e) Electromagnetic brake output  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Set "1 1 " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock  
signal.  
Y1  
X1  
Y4  
Electromagnetic brake output  
ABS transfer Brake (MBR)  
mode  
(f) Positioning completion  
To create the status information for servo positioning completion.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Y1  
X0  
M
Completion of servo positioning  
ABS transfer Positioning  
mode completion  
Y1  
ABS transfer  
mode  
(g) Zero speed  
To create the status information for servo zero speed.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Y1  
X1  
M
Servo zero speed  
ABS transfer Zero speed  
mode  
Y1  
ABS transfer  
mode  
(h) Torque limiting  
To create the status information for the servo torque limiting mode.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the torque  
limiting must be off.  
Y1  
X2  
M
Servo torque limiting mode  
ABS transfer Torque limiting mode  
mode  
15 - 46  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.8.3 MELSEC A1SD75(AD75)  
(1) Connection diagram  
Servo amplifier  
CN1B  
3
13  
VDD  
COM  
SG  
A1S62P  
600mA  
24  
24G  
10  
LG  
FG  
SG  
20  
Power  
supply  
INPUT  
AC100/200  
A1SCPU  
A1SX40  
ABS data bit 0/Positioning completion  
ABS data bit 1/zero speed  
Readying to send data/Torque limiting  
Trouble  
0
1
2
3
4
5
6
7
COM  
DO1  
ZSP  
TLC  
ALM  
4
19  
6
18  
Alarm reset  
Emergency stop  
Servo-on  
EMG  
15  
Upper limit  
Home position return  
LSP  
LSN  
16  
17  
Operation mode I  
Operation mode II  
Position start  
Position stop  
JOG  
Lower limit  
Operation  
8
9
A
B
C
D
Operating  
mode  
(Note 3)  
status  
I
II  
OFF OFF  
OFF ON  
JOG  
JOG  
E
F
COM  
NC  
NC  
ON OFF  
Home  
position  
return  
ON  
ON Positioning  
A1SY40  
Servo-on  
0
1
2
3
4
5
6
7
SON  
5
8
9
ABS transfer mode  
ABS request  
ABSM  
ABSR  
RES  
Alarm reset  
14  
RA2  
Electromagnetic  
brake output  
(Note 4)  
COM1  
Servo alarm  
8
9
A
B
ABS communication error  
ABS checksum error  
COM2  
(Note 1)  
Proximity signal  
(Note 2)  
A1SD75-P  
DOG  
PLS  
RLS  
STOP  
CHG  
11  
12  
13  
14  
15  
START 16  
COMMON 35  
COMMON  
36  
CN1A  
9
19  
COM  
RD  
INP  
Servo ready  
RDY  
INPS  
7
8
Positioning completion  
18  
COMMON 26  
CLEAR  
COMMON  
5
23  
CR  
SG  
SG  
LZ  
LZR  
PG  
PP  
NG  
NP  
LG  
SD  
8
10  
20  
5
15  
13  
3
12  
2
1
(Note 2)  
24  
25  
PGO  
PULSE- 21  
F
PULSE-  
R
PLS COM 19  
PLS COM 20  
3
22  
4
Plate  
(Note 6)  
(Note 5)  
(Note 6)  
15 - 47  
15. ABSOLUTE POSITION DETECTION SYSTEM  
Note 1: For the dog type home position return. Need not be connected for the data set type home position return.  
2: If the servo motor provided with the zero point signal is started, the A1SD75(AD75) will output the deviation counter clear  
signal. Therefore, do not connect the clear signal of the MR-J2-A to the A1SD75(AD75) but connect it to the output module of  
the programmable controller.  
3: This circuit is provided for your reference.  
4: The electromagnetic brake output should be controlled via a relay connected to the programmable controller output.  
5: Use the differential line driver system for pulse input. Do not use the open collector system.  
6: To reinforce noise suppression, connect LG and pulse output COM.  
15 - 48  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Sequence program example  
(a) Conditions  
1) When the servo-on signal and power supply GND are shorted, the ABS data is transmitted at  
power-on of the servo amplifier or on the leading edge of the RUN signal after a PC reset  
operation (PC-RESET). The ABS data is also transmitted when an alarm is reset or when an  
emergency stop is reset.  
2) If a checksum mismatch is detected in the transmitted data, data transmission is retried up to  
three times. If the checksum mismatch still persists after the retries, the ABS checksum error  
occurs (Y3A ON).  
3) The following time periods are measured. If the ON/OFF state does not change within the  
specified time, the ABS communication error occurs change within the specified time, the ABS  
communication error occurs (Y3A ON):  
ON period of ABS transfer mode (Y31)  
ON period of ABS request (Y32)  
OFF period of reading to send ABS data (X22)  
(b) Device list  
X input contact  
Y output contact  
Servo-on  
ABS transfer mode  
ABS request  
X20  
X21  
X22  
X23  
X24  
X25  
X26  
X27  
X28  
X29  
ABS bit 0 / positioning completion  
ABS bit 1 / zero speed  
Reading to send ABS data / limiting torque Y32  
Y30  
Y31  
Servo alarm  
Alarm reset  
Y33  
Alarm reset  
Electromagnetic brake output  
Clear  
Servo alarm  
ABS communication error  
ABS checksum error  
X34 (Note 2)  
Y35 (Note 1)  
Y38  
Y39  
Y3A  
Servo emergency stop  
Servo-on  
Home position return start  
Operation mode I  
Operation mode II  
2)  
1)  
D register  
M contact  
D0  
D1  
D2  
D3  
ABS data transmission counter  
Checksum transmission counter  
Checksum addition register  
ABS data: Lower 16 bits  
M5  
M6  
M7  
M8  
ABS data transmission start  
Sum check completion  
Sum check mismatch  
ABS data ready  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D110  
D111  
ABS data: Upper 16 bits  
M9  
Transmission data read enabled  
Checksum 2 bits read completion  
ABS 2 bits read completion  
ABS 2 bits request  
Servo-on request  
Servo alarm  
ABS data transmission retry start pulse  
Retry flag set  
Retry flag reset  
ABS data 2-bit receiving buffer  
Check data in case of checksum error  
Number of retries  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
4)  
Forward rotation direction  
Home position address: Lower 16 bits  
Home position address: Upper 16 bits  
Drive unit ready data  
Home position return completion data  
Received shift data: Lower 16 bits  
Received shift data: Upper 16 bits  
PLS processing command  
M20 (Note 1) Clear signal ON timer request  
T timer  
M21 (Note 1) Data set type home position return request  
3)  
T0  
T1  
T2  
T3  
ABS transmission mode timer  
ABS request response timer  
Retry wait timer  
ABS data send reading response timer  
Clear signal ON timer  
M22  
M23  
M24  
Home position return processing  
instruction  
Current position change processing  
instruction  
T10 (Note 1)  
Current position change flag  
T200  
Transmitted data read 10ms delay timer  
C counter  
C0  
C1  
C2  
ABS data receive times counter  
Checksum receive times counter  
Retry counter  
Note: 1.Required for data set type home position return.  
2.Required for electromagnetic brake output.  
15 - 49  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) ABS data transfer program for X axis  
This sequence program example assumes the following conditions:  
Parameters of the A1SD75-P1 (AD75-P1) positioning module  
1) Unit setting  
:3 pulse (PLS)  
2) Travel per pulse :1 1 pulse  
To select the unit other than the pulse, conversion into the unit of the feed value per pulse is  
required. Hence, add the following program to the area marked (Note) in the sequence program:  
<Additional program>  
Item  
mm  
inch  
degree  
pulse  
D * P K  
D3 D3  
Unit setting  
0
1
2
3
0.00001 0.0001 0.001 0.01 0.00001 0.0001 0.001 0.01  
Travel per pulse  
Unit of travel  
0.1 to 1 to 10 to 100  
m/PLS  
to  
to  
to  
to  
to  
to  
to  
to  
inch/PLS  
degree/PLS  
PLS  
Constant K for  
conversion into unit of 1 to 10 to  
travel  
100  
to  
100  
to  
1000 1 to 10 to 100 to 1000 1 to 10 to  
1000 None  
Reference  
For 1 m/PLS, set constant K to 10  
For 5 m/PLS, set constant K to 50  
The additional program is not required for the unit setting is PLS.  
5)  
M101  
MOV K0  
K3  
Y30  
K1  
Output signal reset  
A1SD75 error reset  
Error reset  
completion  
TO  
H0000 K1151 K1  
MOV K3  
Initial  
setting  
6)  
Setting the number of retries  
(to 3 times)  
D7  
SET  
M101  
A0  
Error reset completion flag  
Loading received shift data  
M9039  
DMOV D110  
PC RUN  
1
(To be continued)  
1
15 - 50  
15. ABSOLUTE POSITION DETECTION SYSTEM  
1
(Continued from preceding page) 1  
X26  
SET  
FROM H0000 K816 D11  
WAND H0001  
M13  
K1  
Servo-on request  
7)  
Servo-on  
PB  
Reading A1SD75 1-axis RDY  
signal  
D11  
M23  
M24  
M8  
Masking RDY signal  
Current position change  
processing instruction  
M23  
D11 K1  
PLS  
RST  
RST  
RST  
RST  
Current position change flag  
Resetting ready  
Processing instruction RDY signal ON judgment  
X26  
Servo-on  
control  
Servo-on  
PB  
M13  
C0  
Resetting servo-on request  
Resetting ABS transmission  
counter at servo OFF  
Resetting checksum  
transmission counter at servo  
OFF  
C1  
M13  
M14  
M16  
Y30  
M5  
Servo-on output  
Servo-on  
request  
Error  
flag  
Retry flag  
set  
PLS  
PLS  
RST  
ABS interface start  
Setting retry flag  
M13  
M17  
C2  
Servo-on  
request  
M17  
ABS transfer  
retry control  
Resetting retry counter  
Alarm reset output  
Retry flag  
reset request  
X24  
M14  
Y33  
Error reset Error flag  
PB  
Y33  
Alarm reset  
X25  
M14  
M8  
Servo alarm  
detection,  
alarm reset  
control  
Error flag output  
Emergency stop PB  
X23  
RST  
RST  
Resetting ready  
Servo alarm  
M13  
Y38  
Resetting servo-on request  
Servo alarm  
2
(To be continued) 2  
15 - 51  
15. ABSOLUTE POSITION DETECTION SYSTEM  
2
(Continued from preceding page)  
2
M5  
Initializing ABS data  
transmission counter  
MOV K16  
MOV K3  
MOV K0  
MOV K0  
DMOV K0  
DMOV K0  
RST  
D0  
D1  
D2  
D5  
D9  
A0  
C0  
C1  
Y31  
ABS data  
transfer  
start  
Initializing checksum  
transmission counter  
Initializing checksum register  
Initializing ABS data register  
Initializing ABS data register  
Initializing ABS data register  
ABS transfer mode  
initial setting  
Resetting ABS transmission  
counter  
Resetting checksum  
transmission counter  
RST  
M5  
ABS transfer mode  
ABS data  
transfer start  
Y31  
ABS transfer mode  
control  
C1  
ABS transfer Checksum counter  
mode  
C0  
C1  
Y31  
DMOVPA0  
MOVP K0  
D3  
A0  
K1  
D8  
A1  
M18  
D4  
D4  
D3  
D4  
Saving ABS 32-bit data  
Clearing register  
Counter Sum  
ABS transfer  
counter mode  
8)  
*1 Reading x-axis rotation  
direction parameter  
FROMPH0000 K5  
D8  
WAND H0001  
WAND H8000  
PLS  
Absolute position  
polarity,A1SD75  
rotation direction  
setting detection  
Masking rotation direction  
parameter  
9)  
Masking ABS data sign  
PLS processing command  
10)  
Rotation direction  
judgment  
M18  
Reversing polarity of upper  
16 bits  
D8 K1  
NEG  
PLS  
processing  
command  
Decrementing upper 16 bits  
by 1  
K1  
Reversing absolute  
position polarity  
Reversing polarity of lower  
16 bits  
NEG  
Lower 16 bits  
D4 D4  
0
K0 D3  
K1  
1
3
(To be continued)  
3
15 - 52  
15. ABSOLUTE POSITION DETECTION SYSTEM  
11)  
3
(Continued from preceding page)  
3
M9  
Read  
C0  
MOV K1X20  
WAND H0003  
WOR D5  
ROR  
D5  
D5  
A0  
K2  
Reading 4 bits  
ABS data  
enabled counter  
Masking 2 bits  
Adding 2 bits  
Reading checksum  
6bits  
(2 bits 3 times)  
Right rotation of A0 2 bits  
D1  
C1  
Counting the number of  
checksum data  
Completion of reading  
checksum 2 bits  
PLS  
MOV K1X20  
WAND H0003  
WOR D5  
DROR  
M10  
D5  
D5  
A0  
M9  
Read  
C0  
Reading 4 bits  
ABS data  
enabled counter  
11)  
Masking 2 bits  
Adding 2 bits  
Reading ABS data  
32 bits  
(2 bits 16 times)  
K2  
Right rotation of A0 2 bits  
Adding checksum  
D5  
D2  
D2  
D0  
C0  
Counting the number of ABS  
data  
Completion of reading ABS  
2 bits data  
PLS  
M11  
K10  
A0  
C1  
RORP  
Right rotation of A0 10 bits  
Masking sum check  
Sum check OK  
Checksum  
counter  
WAND H003F  
D2 A0  
D2 A0  
M6  
Detecting ABS  
checksum error  
M7  
Sum check NG  
MOV A0  
D6  
Sum check memory  
ABS checksum error  
C2  
Y3A  
Retry counter  
4
(To be continued) 4  
15 - 53  
15. ABSOLUTE POSITION DETECTION SYSTEM  
4
(Continued from preceding page)  
4
M11  
RST  
Y32  
ABS request reset  
ABS 2 bits  
completion  
M10  
Checksum 2 bits completion  
Y31  
X22  
PLS  
SET  
M12  
Y32  
ABS 2 bits request  
ABS request set  
10ms delay timer  
ABS transfer Ready to send  
mode ABS data  
M12  
ABS request  
control  
ABS 2 bits request  
Y32 X22  
ABS request Ready to send ABS data  
K1  
T200  
Y32  
X22  
T200  
M9  
K1  
D3  
D3  
Transmitted data read enabled  
12)  
10ms delay timer  
M6  
*1: Reading A1SD75 home  
position address  
DFROPH0000 K0072 D9  
Checksum  
OK  
Restoring absolute  
position data.  
Inserting constant K for conversion  
into the unit of feed per pulse  
(Note)  
D*P  
K
D3  
D9  
Adding home position address  
to absolute position  
D
P
D3  
7)  
M24  
13)  
M6  
Y3B  
SET  
M8  
K1  
ABS data ready  
14)  
Checksum ABS  
OK  
Change  
coordinate flag  
error  
*1: Changing X-axis current  
position  
DTOP H0000 K1154 D3  
Writing absolute  
position data to  
A1SD75  
*1: Writing No. 9003 data for  
changing current value  
TO  
H0000 K1150 K9003  
K1  
SET  
RST  
Y10  
Y10  
Positioning start  
Y10  
X1  
X4  
Switching start signal off on  
completion of positioning  
Positioning Start com- BUSY  
start  
pletion  
XA  
Error detection  
15)  
5
(To be continued) 5  
Note: When the unit setting parameter value of the AD75 positioning module is changed from "3" (pulse) to "0" (mm), the  
unit is 0.1 m for the input value. To set the unit to 1 m, add this program to multiple the feed value by 10.  
15 - 54  
15. ABSOLUTE POSITION DETECTION SYSTEM  
5
(Continued from preceding page)  
5
Y39  
X26  
RST  
Y31  
Resetting ABS transfer mode  
ABS transfer mode 5s timer  
ABS communi- Servo-on PB  
cation error  
Y31  
K50  
T0  
ABS transfer mode  
Y31  
Y32  
K10  
T1  
ABS request response  
1s timer  
ABS transfer ABS request  
mode  
Detecting ABS  
communication  
error  
Y31  
X22  
K10  
T3  
ABS data send ready  
response 1s timer  
ABS transfer Ready to send  
mode ABS data  
T0  
Y39  
ABS communication error  
ABS transfer NG  
T1  
ABS request NG  
T3  
Readying to send ABS data NG  
M7  
PLS  
SET  
M15  
M16  
ABS transfer retry start pulse  
Setting retry flag  
Sum check NG  
M15  
C2  
Retry start Retry  
counter  
D7  
C2  
Retry counter  
ABS transfer  
retry control  
M16  
K1  
T2  
Retry waiting timer (100ms)  
Resetting retry flag  
Retry flag set  
T2  
RST  
M16  
Retry waiting timer  
M9039  
DMOV A0  
D110  
END  
Saving received shift data  
PC RUN  
15 - 55  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(d) X-axis program  
Do not execute the X-axis program while the ABS ready (M8) is off.  
(Note)  
Positioning X-axis start  
When "M8" (ready to send ABS data) switches on,  
the X-axis start program is executed by the X-axis  
start command.  
mode  
command  
M8  
X-axis start program  
Ready to  
send ABS  
data  
(e) Dog type home position return  
Refer to the home position return program in the A1SD75 User’s Manual.  
Note that this program requires a program which outputs the clear signal (Y35) after completion of  
home position return.  
Add the following program:  
16)  
Home position return  
start command  
Reading 1-axis home position return  
completion signal  
FROM H0000 K817 D12  
WAND K0016  
K1  
D12  
M22  
Y35  
Masking home position return completion  
Home position return processing instruction  
Switching clear signal on  
M22  
D12 K16  
Processing  
instruction  
Home position return  
completion judgment  
15 - 56  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(f) Data set type home position return  
After jogging the machine to the position where the home position (e.g. 500) is to be set, choose the  
home position return mode and set the home position with the home position return start (PBON).  
After switching power on, rotate the servo motor more than 1 revolution before starting home  
position return.  
Do not turn ON the clear signal (Y35) for an operation other than home position return. Turning it  
on in other circumstances will cause position shift.  
M9039  
Y1D  
Programmable controller ready  
PC RUN  
Home position  
return mode  
Y31  
X20  
X27  
PLS  
M20  
Clear signal ON timer request  
ABS transfer Positioning Home position  
mode completion return start PB  
M20  
K1  
T10  
Clear signal 100ms ON timer  
Clear signal ON  
timer request  
M21  
SET  
RST  
M21  
M21  
Y35  
D9  
Setting data set type home position return request  
Data set type home position return request  
T10  
Resetting data set type home position return  
request  
Clear signal 100ms ON timer  
M21  
Switch clear signal on  
Data set type home position  
return request  
Setting X-axis home position address 500  
DMOVP K500  
in data register  
17)  
18)  
(Note 1)  
(Note 2)  
DTOP H0000 K72  
D9  
D9  
K1  
*1: Changing X-axis home position address  
DFROP H0000 K72  
K1  
DTOP H0000 K1154 D9  
K1  
*1: Changing X-axis current value  
*1: Writing positioning data No. 9003  
Starting positioning  
TO  
H0000 K1150 K9003  
K1  
SET  
RST  
Y10  
Y10  
Y10  
X1  
X4  
Switching BUSY signal off to switch start  
signal off.  
Positioning Start  
start completion  
BUSY  
XA  
Error detection  
19)  
Note 1: If the data of the home position address parameter is not written from the A7PHP programming tool or the like  
before starting the data set type home position return program, this sequence circuit (Note 1) is required and  
the sequence circuit (Note 2) is not required.  
2: Contrary to above 2, if the home position address is written in the home position address parameter,  
the sequence circuit (Note1) is not required but this sequence circuit (Note 1) is required.  
15 - 57  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(g) Electromagnetic brake output  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Set "1 1 " in parameter No. 1 of the servo amplifier to choose the electromagnetic brake interlock  
signal.  
Y31  
X21  
Y34  
Electromagnetic brake output  
ABS transfer Brake (MBR)  
mode  
(h) Positioning completion  
To create the status information for servo positioning completion.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Y31  
X20  
M
Servo positioning completion  
ABS transfer Positioning  
mode completion  
Y31  
ABS transfer  
mode  
(i) Zero speed  
To create the status information for servo zero speed.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the servo  
motor must be at a stop.  
Y31  
X21  
M
Servo zero speed  
ABS transfer Zero  
mode speed  
Y31  
ABS transfer  
mode  
(j) Torque limiting  
To create the status information for the servo torque limiting mode.  
During ABS data transfer (for several seconds after the servo-on signal is turned on), the torque  
limiting must be off.  
Y31  
X22  
M
Servo torque limiting mode  
ABS transfer Torque limiting  
mode mode  
15 - 58  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(3) Sequence program - 2-axis control  
The following program is a reference example for creation of an ABS sequence program for the second  
axis (Y axis) using a single A1SD75 module. Create a program for the third axis in a similar manner.  
(a) Y-axis program  
Refer to the X-axis ABS sequence program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts, T timers and C counters of the Y axis so  
that they do not overlap those of the X axis.  
The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions  
marked *1 in the program of Section 15.8.3 (2), (c) should be changed as indicated below for use  
with the Y axis:  
[FROMP H0000 K5 D8 K1]  
[DFROP H0000 K0072 D9 K1]  
[DTOP H0000 K1154 D3 K1]  
[TO H0000 K1150 K9003 K1]  
[FROMP H0000 K155 D8  
[DFROP H0000 K222 D9  
[DTOP H0000 K1204 D3  
K1]  
K1]  
K1]  
[TO  
H0000 K1200 K9003 K1]  
[Program configuration]  
20)  
X-axis ABS sequence program  
(Program in Section 15.8.3 (2) (c))  
Y-axis ABS sequence program  
(Refer to the X-axis program and write the Y-axis  
program)  
(b) Data set type home position return  
Arrange the data set type home position return programs given in Section 15.8.3 (2), (f) in series to  
control two axes.  
Refer to the X-axis data set type home position return program and create the Y-axis program.  
Assign the X inputs, Y outputs, D registers, M contacts and T timers of the Y axis so that they do  
not overlap those of the X axis.  
The buffer memory addresses of the A1SD75 differ between the X and Y axes. The instructions  
marked *1 in the program of Section 15.8.3 (2), (f) should be changed as indicated below for use  
with the Y axis:  
[DTOP H0000 K72 D9 K1]  
[DTOP H0000 K1154 D9 K1]  
[TO H0000 K1150 K9003 K1]  
[DTOP H0000 K222 D9 K1]  
[DTOP H0000 K1204 D3 K1]  
[TO H0000 K1200 K9003 K1]  
[Program configuration]  
20)  
X-axis data set type home position return program  
(Program in Section 15.8.3 (2) (f))  
Y-axis data set type home position return program  
(Refer to the X-axis program and write the Y-axis  
program)  
15 - 59  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(4) Differences between A1SD75 (AD75) and A1SD71 (AD71)  
The sequence programs shown in (2) of this section differ from those for the A1SD71 (AD71) in the  
following portions. 1) to 20) in the following sentences indicate the numbers in the programs given in  
(2) of this section.  
(a) Devices used  
Since the A1SD75 (AD75) is a one-slot module which occupies 32 I/O points, the I/O devices are  
different, as indicated by 1) and 2), from those of the two-slot A1SD71 which occupies 48 point. The  
A1SD75 (AD75) uses the devices indicated in the following table, and its D registers and M  
contacts are different as indicated by 3) and 4).  
Devices  
Axis 1 Axis 2 Axis 3  
X0  
Bit device  
:Data at ON  
:Stored data  
Device name  
Application  
Data register  
AD75 ready  
BUSY  
Not ready/ WDT error  
BUSY(running)  
Input  
X4  
X5  
X6  
XA  
XB  
XC  
Error detection  
Error detection  
Y10  
Y13  
Y16  
Y17  
Y11  
Y14  
Y18  
Y19  
Y12 Positioning start  
Start being requested  
Stop being requested  
Forward rotation being started  
Reverse rotation being started  
Programmable controller CPU  
normal  
Y1C Axis stop  
Y1A Forward rotation jog start  
Y1B Reverse rotation jog start  
Output  
Y1D  
M0  
Programmable controller ready  
Parameter setting completion flag  
Flash ROM registration processing  
flag  
Setting complete  
M1  
Processing  
M2  
M3  
M4  
Axis error reset requesting flag  
AD75 normal flag  
Requesting  
internal relay  
Data register  
M100  
M101  
M102  
M103  
D100  
D102  
D105  
D108  
AD75 normal  
Initial error reset completion flag  
All BUSY signal OFF flag  
AD75 operable flag  
Error reset complete  
All BUSY signal OFF  
Operable  
Flash ROM registration results  
Registration results  
Error code  
D101  
D104  
D107  
D103 Axis error code  
D106 Axis warning code  
D109 Axis error reset results  
Warning code  
Axis error reset results  
(b) ABS sequence program example  
1) Initial setting  
To reset the error of the A1SD75, the program 5) is added to reset all output signals at start-up.  
The axis error reset buffer memory address is changed from 201 to 1154 (axis 1) and the slot  
number from H0001 (slot number 1) to H0000 (slot number 2) 6).  
2) Absolute position polarity, A1SD75 rotation direction setting detection  
The slot number and buffer memory of the X-axis rotation direction parameter reading area are  
changed from [FROMP H0001 K7872 D8 K1] to [FROMP H0000 K5 D8 K1] 8).  
The rotation direction parameter masking area is changed from [WAND H0004 D8] to [WAND  
H0001 D8] 9).  
3) Reversing absolute position polarity  
The rotation direction judging area is changed from [= D8 K4] to [= D8 K1] 10).  
4) Reading checksum 6 bits, reading ABS data 32 bits  
The 4 bits reading area is changed from [MOV K1 X30D5] to [MOV K1X20 D5] 11).  
5) Restoring absolute position data  
The slot number and buffer address of the A1SD75 home position address reading area are  
changed from [DFROP H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 12)  
15 - 60  
15. ABSOLUTE POSITION DETECTION SYSTEM  
6) Writing absolute position data to A1SD75  
The slot number and buffer address of the X-axis current value changing area are changed from  
[DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 14). When the current value is changed  
in the A1SD75, the current feed value is changed at the start of positioning data No.9003.  
Therefore, the starting program for positioning data No.9003 15) is added.  
7) X-axis data set type home position return program  
The slot numbers and buffer addresses of the X-axis home position address changing area are  
changed from [DTOP H0001 K7912 D9 K1] to [DTOP H0000 K72 D9 K1] and from [DFROP  
H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 17).  
The slot number and buffer address of the X-axis current value changing area are changed from  
[DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154 D3 K1] 18). When the current value is changed  
in the A1SD75, the current feed value is changed at the start of positioning data No.9003.  
Therefore, the starting program for positioning data No.9003 19) is added.  
8) Y-axis sequence program, Y-axis data set type home position return program.  
The slot numbers and buffer addresses are changed as indicated by 20).  
9) Writing absolute position data to AD75  
The A1SD75 (AD75) allows the current position to be changed only when the ready signal of the  
Servo amplifier is on. Therefore, if the CPU scan is fast, the program for A1SD71 may change  
the current position before the ready signal switches on. 7) is added because the current position  
must be changed after it has been confirmed that the drive unit ready signal of the A1SD75  
(D75) has switched on/off.  
10) ABS coordinate error detection  
As the A1SD75 (AD75) can handle the negative-polarity coordinate position that the A1SD71  
could not handle, the program for ABS coordinate error detection is deleted. 13)  
11) Dog type home position return program  
Due to the changes in wiring described in (4), (a), 4) of this section, the program for  
outputting the clear signal (Y35) after completion of a home position return is required. 16)  
15 - 61  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.9 Confirmation of absolute position detection data  
You can confirm the absolute position data with servo configuration software (MRZJW3-SETUP121E).  
Choose "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen.  
(1) Choosing "Diagnostics" in the menu opens the sub-menu as shown below:  
(2) By choosing "Absolute Encoder Data" in the sub-menu, the absolute encoder data display window  
appears.  
(3) Press the "Close" button to close the absolute encoder data display window.  
15 - 62  
15. ABSOLUTE POSITION DETECTION SYSTEM  
15.10 Absolute position data transfer errors  
15.10.1 Corrective actions  
(1) Error list  
The number within parentheses in the table indicates the output coil or input contact number of the  
A1SD71 (AD71).  
Output coil  
Name  
Description  
Cause  
Action  
AD71 1PG  
(Note)  
Y49 Y11 1. The ABS data transfer mode 1. Wiring for ABS transfer mode Correct the wiring.  
ABS  
communication  
error  
signal (Y41) is not completed  
within 5s.  
signal, ABS data request  
signal, or ready to send signal  
is disconnected or connected to  
the SG terminal.  
2. The ready to send signal  
(X32) is not turned OFF  
within 1s after the ABS data  
request signal (Y42) is turned  
ON.  
2. PC ladder program wrong.  
Correct the ladder.  
3. Faulty PLC output or input Change the input or output  
module.  
module.  
3. The ready to send signal  
(X32) remains OFF for longer  
than 1s.  
4. Faulty printed board in the  
servo amplifier.  
Change the amplifier  
5. Power supply to the servo  
amplifier is OFF.  
Turn on the power to the servo  
amplifier.  
ABS data  
check sum  
error  
Y4A Y12  
ABS data sumcheck resulted 1. Wiring for the ABS data  
Correct the wiring.  
in mismatch four times  
consecutively.  
signal (ABS bit 0 (PF), bit 1  
(ZSP)) is disconnected or  
connected to the SG terminal.  
2. PC ladder program wrong.  
3. Faulty PLC input module.  
4. Faulty printed board in the  
servo amplifier.  
Correct the ladder.  
Change the input module.  
Change the amplifier.  
ABS  
coordinate  
error  
Y4B  
The motor position is in the  
negative coordinate value  
range when the servo is  
turned ON or when power  
supply is turned ON.  
1. The servo is turned ON or the 1. Reconsider the position  
power supply is turned ON  
near the machine home  
position or in the zone in  
which addresses decrease.  
where the servo is turned  
ON.  
2. Set the home position for  
positioning apart from the  
machine home position.  
Change the electromagnetic  
2. The machine falls on a  
vertical axis when the servo brake operation sequence.  
signal is turned ON/OFF.  
Servo alarm  
Y48 Y10  
Alarm occurred in the servo  
amplifier.  
1. Emergency stop (EMG) of the After ensuring safety, turn  
servo amplifier was turned  
off.  
EMG on.  
2. Trouble (ALM) of the servo  
amplifier was turned on.  
Refer to Section 10.2.2 and take  
action.  
Note: Refer to (2) in this section for details of error occurrence definitions.  
15 - 63  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(2) ABS communication error  
(a) The OFF period of the send data ready signal output from the servo amplifier is checked.  
If the OFF period is 1s or longer, this is regarded as a transfer fault and the ABS communication  
error is generated.  
The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the  
servo amplifier due to an ABS request ON time time-out.  
ON  
ABS transfer mode  
OFF  
1s  
ON  
ABS request  
OFF  
ON  
Send data ready  
OFF  
The signal does not come ON  
YES  
ABS communication  
error  
NO  
(b) The time required for the ABS transfer mode signal to go OFF after it has been turned ON (ABS  
transfer time) is checked.  
If the ABS transfer time is longer than 5s, this is communication error occurs if the ABS time-out  
warning (AL.E5) is generated at the servo amplifier due to an ABS transfer mode completion time  
time-out.  
5s  
ON  
ABS transfer mode  
The signal does not go OFF  
18 19  
OFF  
1
2
3
4
ON  
ABS request  
OFF  
ON  
Send data ready  
1
2
3
4
18  
19  
OFF  
YES  
NO  
ABS communication  
error  
15 - 64  
15. ABSOLUTE POSITION DETECTION SYSTEM  
(c) To detect the ABS time-out warning (AL.E5) at the servo amplifier, the time required for the ABS  
request signal to go OFF after it has been turned ON (ABS request time) is checked. If the ABS  
request remains ON for longer than 1s, it is regarded that an fault relating to the ABS request  
signal or the send data ready signal has occurred, and the ABS communication error is generated.  
The ABS communication error occurs if the ABS time-out warning (AL.E5) is generated at the  
servo amplifier due to an ABS request OFF time time-out.  
ON  
ABS transfer mode  
OFF  
1s  
ON  
ABS request  
OFF  
The signal does  
not go OFF  
ON  
Send data ready  
OFF  
YES  
ABS communication  
error  
NO  
15.10.2 Error resetting conditions  
Always remove the cause of the error before resetting the error.  
Output coil  
Name  
Servo status  
Resetting condition  
AD71  
1PG  
ABS communication error  
Y49  
Y11  
Ready (RD) signal off  
Reset when servo-on PB (X36)  
signal turns off.  
ABS checksum error  
Y4A  
Y12  
Ready (RD) signal on  
For AD71  
Reset when servo-on PB (X36)  
signal turns from off to on.  
For FX-1PG  
Reset when servo-on PB (X36)  
signal turns off.  
ABS coordinate error  
Servo alarm  
Y4B  
Y48  
Ready (RD) signal on  
Ready (RD) signal on  
Reset when servo-on PB (X36)  
signal turns from off to on after a  
motion to ( ) coordinate is made by  
jog operation.  
Y10  
Reset when alarm reset PB turns  
on or power switches from off to on.  
15 - 65  
15. ABSOLUTE POSITION DETECTION SYSTEM  
MEMO  
15 - 66  
Appendix  
App 1. Signal arrangement recording sheets  
(1) Position control mode  
CN1A  
CN1B  
1
11  
OPC  
13  
1
11  
P15R  
13  
2
NP  
4
12  
2
12  
TLA  
14  
LG  
LG  
3
NG  
14  
3
PP  
5
4
DO1  
6
PG  
15  
VDD  
5
COM  
15  
P15R  
6
OP  
16  
16  
LSP  
18  
LZ  
7
LZR  
17  
EMG  
17  
LAR  
LA  
8
7
9
18  
8
LB  
9
LBR  
19  
LSN  
19  
10  
20  
10  
20  
COM  
SG  
SG  
SG  
SG  
(2) Speed control mode  
CN1A  
CN1B  
1
LG  
3
11  
13  
1
11  
P15R  
13  
2
12  
2
VC  
4
12  
LG  
3
4
P15R  
6
14  
OP  
16  
14  
VDD  
COM  
15  
DO1  
6
5
LZ  
7
15  
LZR  
17  
5
16  
EMG  
17  
LAR  
LA  
8
LSP  
7
18  
8
18  
LB  
9
LBR  
19  
LSN  
19  
9
10  
20  
10  
20  
COM  
SG  
SG  
SG  
SG  
(3) Torque control mode  
CN1A  
CN1B  
1
LG  
3
11  
13  
1
11  
P15R  
13  
2
12  
2
VLA  
4
12  
LG  
TC  
3
4
P15R  
6
14  
OP  
16  
14  
VDD  
COM  
15  
DO1  
6
5
LZ  
7
15  
LZR  
17  
5
16  
EMG  
17  
LAR  
LA  
8
7
18  
8
18  
LB  
9
LBR  
19  
9
19  
10  
20  
10  
20  
COM  
SG  
SG  
SG  
SG  
App - 1  
Appendix  
App 2. Status display block diagram  
App - 2  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Print data  
Nov.,1999  
Sep.,2000  
*Manual number  
SH(NA)030006-A First edition  
Revision  
Addition of single-phase 100VAC specifications  
Compatible Servo Configuration software model name change  
Compliance with EC Directives 1: Review of sentence  
Section 1.2: Review of function block diagram  
Section 1.3: Moving of servo amplifier standard specifications  
Review of torque limit description in position control mode  
Review of torque limit description in speed control mode  
Deletion of torque linearity in torque limit mode  
Addition of speed limit in torque control mode  
Section 3.1.1 (1): Addition of encoder Z-phase pulse connection  
Addition of Note for use of junction terminal block  
Section 3.1.1 (2): Addition of Note for increased noise immunity  
Section 3.1.2: Addition of Note for input of negative voltage  
Section 3.1.3: Addition of Note for input of negative voltage  
Section 3.3.1 (2): Review of Note  
SH(NA)030006-B  
Section 3.4.1 (4): Addition of description about electronic gear switching  
Section 3.4.3 (1)(a): Review of description for low voltage  
Section 3.5: Change in timing chart  
Section 3.5 3): Review of description  
Section 3.6.2 (7): Review of connection  
Section 3.9: Review of POINT  
Section 3.9 (3)(b),(c): Change in timing chart  
Section 3.9 (3)(d),(e): Addition  
Section 5.1.2 (2): Deletion of description as to parameter No. 22 TC, TLA  
Addition of parameter No. 27 setting example  
Correction of parameter No. 35 setting range  
Review of parameter No. 47, 48 sentences  
Section 5.2.5: Correction of operation pattern diagram  
Section 6.2.2: Review of within one-revolution position sentence  
Section 6.3: Review of automatic VC offset description  
Section 6.6 (2)(a): Review of Note  
Section 6.8: Review of PL sentence  
Chapter 7: Addition of POINT  
Section 7.3.2 (1), (2): Review of sentence makeup  
Section 7.4: Addition  
Section 8.1.1: Addition  
Section 8.3.2: Addition  
Section 10.1.1 (1): Addition of Investigation item at power-on  
Section 10.1.2: Addition of Investigation item at power-on  
Addition of Investigation item at on of ST1 or ST2  
Section 10.1.3: Addition of Investigation item at power-on  
Addition of Investigation item at on of ST1 or ST2  
Section 10.2: Addition of POINT  
Section 10.2.2: Review of Cause of AL.10  
Deletion of Cause 4 of AL.16  
Review of Cause and Action of AL.24  
Addition of description to AL.25  
Print data  
*Manual number  
Revision  
Sep.,2000  
SH(NA)030006-B Section 10.2.2: Addition of description to AL.30  
Addition of Cause to AL.33  
Chapter 11: Changed to only outline dimensional drawing  
Section 11.2 (2): Addition  
Section 12.2 (1): Review of Note for Table 12.1  
Section 12.3: Correction of dynamic brake time constant graph  
Chapter 13: Deletion of MR-CPC98CBL3M communication cable  
Section 13.1.1 (4)(c): Review of outline drawing  
Section 13.1.2 (1): Deletion of MR-PWCNF power supply connector set  
Section 13.1.2 (1)1), 6): Change of encoder side connector models  
Section 13.1.2 (1)19), 20): Change of terminal models  
Section 13.1.2 (2)(a)2): Addition of description for fabrication  
Section 13.1.3: Addition of POINT  
Section 13.1.3 (4): Addition of cable length  
Change in connection diagram  
Section 13.2.1 (1): Addition of Note for recommended wires  
Section 13.2.8 (1): Addition of leakage current to recommended filter  
Section 14.1.2 (2): Deletion of MR-CPC98CBL3M communication cable  
Section 14.11.1 (6): Addition  
Section 14.11.2 (8): Addition  
Section 15.7: Addition of POINT  
Section 15.8.1 (1)(b): Change in b) Coordinates when zero address is changed  
to other than 0  
Section 15.8.2 (1)(b): Review of connection diagram  
Section 15.9: Change of display screen  
Section 15.10.1 (1): Deletion of Cause 5 of ABS checksum error  
SH(NA)030006-C Addition of MR-J2S-500A, 700A servo amplifiers  
Addition of HC-KFS73, HC-SFS502, HC-SFS702, HC-RFS353, HC-RFS503,  
HC-UFS502, HC-UFS353 servo motors  
Feb.,2001  
Section 1.2: Function block diagram modification  
Section 1.7: Overall reexamination  
Section 3.7.1(2): Addition of single-phase 100 to 120VAC  
Section 3.7.2: Addition of regenerative brake converter and brake unit  
Section 5.1.2(2): No. 0, Item addition to regenerative brake option selection  
No. 5, Example addition  
No. 27, Setting range change  
No. 49, AL.26 addition  
Section 5.2.2: Overall reexamination  
Section 7.4(1): Reexamination  
Chapter 8: Hierarchy reexamination  
Section 10.2.2: AL.30, Reexamination  
AL.8E, Reexamination of Cause and Action  
Section 11.1(4)(5): Addition  
Section 11.2(3): Addition  
Section 12.1(3): Addition  
Chapter 13: Hierarchy reexamination  
Section 13.1.4(1): Connection diagram change  
Cable addition  
Section 13.1.4(3): Reexamination  
Section 13.2.1(1): Connection diagram change  
Wire table addition  
Chapter 15: Addition of Note on AL.25  
HEADQUARTERS  
EUROPEAN REPRESENTATIVES  
EUROPEAN REPRESENTATIVES  
MIDDLEEASTREPRESENTATIVE  
MITSUBISHI ELECTRIC  
EUROPE GEVA  
AUSTRIA UTECO A.B.E.E.  
GREECE SHERF Motion Techn. LTD ISRAEL  
EUROPE B.V.  
Wiener Straße 89  
5, Mavrogenous Str.  
Rehov Hamerkava 19  
IL-58851 Holon  
German Branch  
A-2500 Baden  
GR-18542 Piraeus  
Gothaer Straße 8  
Phone: +43 (0) 2252 / 85 55 20  
Fax: +43 (0) 2252 / 488 60  
E mail: office@geva.at  
Phone: +30 (0) 1 / 42 10 050  
Fax: +30 (0) 1 / 42 12 033  
E mail: uteco@uteco.gr  
Phone: +972 (0) 3 / 559 54 62  
Fax: +972 (0) 3 / 556 01 82  
D-40880 Ratingen  
Phone: +49 (0) 21 02 / 486-0  
Fax: +49 (0) 21 02 / 4 86-1120  
E mail: megfa-mail@meg.mee.com  
Getronics  
BELGIUM MITSUBISHI ELECTRIC  
EUROPE B.V. – Irish Branch  
Westgate Business Park  
IRL-Dublin 24  
IRELAND  
Industrial Automation B.V.  
MITSUBISHI ELECTRIC  
FRANCE  
25, Boulevard des Bouvets  
F-92741 Nanterre Cedex  
Phone: +33 1 55 68 55 68  
Fax: +33 1 55 68 56 85  
E mail: factory.automation@fra.mee.com  
MITSUBISHI ELECTRIC  
EUROPE B.V.  
Italian Branch  
C.D. Colleoni - P. Perseo Ing. 2  
Via Paracelso 12  
I-20041 Agrate Brianza (MI)  
Phone: +39 (0) 39 / 60 53 1  
Fax: +39 (0) 39 / 60 53 312  
E mail: factory.automation@it.mee.com  
MITSUBISHI ELECTRIC  
EUROPE B.V.  
Carretera de Rubí 76-80  
E-08190 Sant Cugat del Vallés  
Phone: +34 (9) 3 / 565 31 31  
Fax: +34 (9) 3 / 589 29 48  
E mail: —  
FRANCE Pontbeeklaan 43  
B-1731 Asse-Zellik  
Phone: +32 (0) 2 / 467 17 51  
Fax: +32 (0) 2 / 467 17 45  
Phone: +353 (0) 1 / 419 88 00  
Fax: +353 (0) 1 / 419 88 90  
E mail: sales.info@meuk.mee.com  
E mail: infoautomation@getronics.com  
EURASIAN REPRESENTATIVES  
TELECON CO.  
BULGARIA Getronics NETHERLANDS  
4, A. Ljapchev Blvd.  
Industrial Automation B.V.  
MITSUBISHI ELECTRIC  
EUROPE B.V.  
RUSSIA  
ITALY BG-1756 Sofia  
Control Systems  
Phone: +359 2 / 97 44 05 8  
Donauweg 10  
12/1 Goncharnaya St, suite 3C  
RUS-109240 Moskow  
Phone: +7 (0) 95 / 915-8624/02  
Fax: +7 (0) 95 / 915-8603  
Fax: +359 2 / 97 44 06 1  
E mail: —  
NL-1043 AJ-Amsterdam  
Phone: +31 (0) 20 / 586 15 92  
Fax: +31 (0) 20 / 586 19 27  
E mail: infoautomation@getronics.com  
AutoCont  
CZECHIA  
Control Systems s.r.o.  
Nemocnicni 12  
STC Drive Technique  
RUSSIA  
MPL Technology SP. z.o.o  
ul. Wroclawska 53  
PL-30011 Kraków  
POLAND  
Poslannikov per., 9, str.1  
RUS-107005 Moskow  
Phone: +7 (0) 95 / 786 21 00  
Fax: +7 (0) 95 / 786 21 01  
CZ-702 00 Ostrava 2  
Phone: +420 (0) 69 / 615 21 11  
SPAIN Fax: +420 (0) 69 / 615 21 12  
Phone: +48 (0) 12 / 632 28 85  
Fax: +48 (0) 12 / 632 47 82  
E mail: krakow@mpl.com.pl  
INEA d.o.o.  
Ljubljanska 80  
E mail: —  
louis poulsen  
DANMARK  
industri & automation  
Geminivej 32  
DK-2670 Greve  
SLOWENIA  
SI-61230 Domžale  
Phone: +386 (0) 17 21 80 00  
Fax: +386 (0) 17 24 16 72  
E mail: inea@inea.si  
Phone: +45 (0) 43 / 95 95 95  
UK Fax: +45 (0) 43 / 95 95 91  
E mail: lpia@lpmail.com  
MITSUBISHI ELECTRIC  
EUROPE B.V.  
UK Branch  
Travellers Lane  
URHO TUOMINEN OY  
Hevoshaankatu 3  
FIN-28600 Pori  
FINLAND ECONOTEC AG  
SWITZERLAND  
Postfach 282  
GB-Hatfield Herts. AL10 8 XB  
Phone: +44 (0) 1707 / 27 61 00  
Fax: +44 (0) 1707 / 27 86 95  
MITSUBISHI ELECTRIC  
CORPORATION  
Mitsubishi Denki Bldg.  
2-2-3 Marunouchi Chiyoda-Ku  
Tokyo 100-8310  
Phone: +81 (0) 3 / 32 18 31 76  
Fax: +81 (0) 3 / 32 18 24 22  
CH-8309 Nürensdorf  
Telefon: +358 (0) 2 / 550 800  
Telefax: +358 (0) 2 / 550 8841  
JAPAN E mail: —  
Phone: +41 (0) 1 / 838 48 11  
Fax: +41 (0) 1 / 838 48 12  
E mail: info@econotec.ch  
GTS  
TURKEY  
Darülaceze Cad. No. 43A KAT: 2  
TR-80270 Okmeydani-Istanbul  
Phone: +90 (0) 212 / 320 1640  
Fax: +90 (0) 212 / 320 1649  
E mail: —  
MITSUBISHI ELECTRIC  
AUTOMATION  
USA  
500 Corporate Woods Parkway  
Vernon Hills, Illinois 60061  
Phone: +1 (0) 847 / 478 21 00  
Fax: +1 (0) 847 / 478 22 83  
INDUSTRIAL AUTOMATION  
Gothaer Strasse 8 Phone: +49 2102 486-0  
Fax:  
+49 2102 486-717 www.mitsubishi-automation.de  
D-40880 Ratingen Hotline: +49 2102 1805 000-765 megfa-mail@meg.mee.com www.mitsubishi-automation.com  

Alpine 68 21627Z13 A User Manual
Black Box Cable Box RMT3200A R2 User Manual
Canon Elura40 User Manual
Casio Scientific Calculator FX300ESPLUSPK User Manual
Focal K2 Power 33 KX User Manual
GE 16 Feb User Manual
Icom IC V85 User Manual
JVC CS V6 SERIES CS V6946 User Manual
JVC Everio GZ MS250BU User Manual
JVC GET0580 002B User Manual