Toshiba Network Card XLTR 200 User Manual

NETWORK GATEWAY SERIES  
ICC  
INDUSTRIAL CONTROL COMMUNICATIONS, INC.  
XLTR-200  
SERIAL MULTIPROTOCOL NETWORK GATEWAY  
September 2006  
ICC #10604-1.101-000  
Download from Www.Somanuals.com. All Manuals Search And Download.  
XLTR-200 Serial Multiprotocol Network Gateway  
User's Manual  
Part Number 10604-1.100-000  
Printed in U.S.A.  
©2006 Industrial Control Communications, Inc.  
All rights reserved  
Industrial Control Communications, Inc. reserves the right to make changes  
and improvements to its products without providing notice.  
Notice to Users  
INDUSTRIAL CONTROL COMMUNICATIONS, INC.’S PRODUCTS ARE NOT  
AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE-SUPPORT  
DEVICES OR SYSTEMS. Life-support devices or systems are devices or  
systems intended to sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the labeling and user's  
manual, can be reasonably expected to result in significant injury.  
No complex software or hardware system is perfect. Bugs may always be  
present in a system of any size. In order to prevent danger to life or property, it  
is the responsibility of the system designer to incorporate redundant protective  
mechanisms appropriate to the risk involved.  
2
Download from Www.Somanuals.com. All Manuals Search And Download.  
Usage Precautions  
Operating Environment  
Please use the gateway only when the ambient temperature of the  
environment into which the unit is installed is within the following  
specified temperature limits:  
Operation: -10 +50°C (+14 +122°F)  
Storage:  
-40 +85°C (-40 +185°F)  
Avoid installation locations that may be subjected to large shocks or  
vibrations.  
Avoid installation locations that may be subjected to rapid changes in  
temperature or humidity.  
Installation and Wiring  
Proper ground connections are vital for both safety and signal reliability  
reasons. Ensure that all electrical equipment is properly grounded.  
Route all communication cables separate from high-voltage or noise-  
emitting cabling (such as ASD input/output power wiring).  
ASD Connections  
Do not touch charged parts of the drive such as the terminal block  
while the drive’s CHARGE lamp is lit. A charge will still be present in  
the drive’s internal electrolytic capacitors, and therefore touching these  
areas may result in an electrical shock. Always turn all drive input  
power supplies OFF, and wait at least 5 minutes after the CHARGE  
lamp has gone out before connecting communication cables.  
To avoid misoperation, do not connect any gateway terminals to either  
the ASD’s E/GND terminals, the motor, or to any other power ground.  
When making common serial connections between the gateway and  
Toshiba ASDs, do not use cables that exceed 5 meters in length.  
For further drive-specific precaution, safety and installation information,  
please refer to the appropriate documentation supplied with your drive.  
Internal ASD EEPROMs have a limited life span of write cycles.  
Observe all precautions contained in this manual and your ASD  
manual regarding which drive registers safely may and may not be  
repetitively written to.  
When used without an Auxiliary power source (Toshiba ASD common  
serial mode), the gateway derives its control power from the connected  
drives. Therefore, removing power to all connected drives will also  
cause the gateway to lose power.  
3
Download from Www.Somanuals.com. All Manuals Search And Download.  
TABLE OF CONTENTS  
1. The Network Gateway Series Concept.......................................7  
2. Feature Summary..........................................................................8  
3. Installing the Gateway................................................................10  
3.1  
Mounting .............................................................................................10  
3.1.1 Panel Mounting...............................................................................10  
3.1.2 SnapTrackTM Mounting ...................................................................11  
3.1.3 DIN Rail Mounting...........................................................................11  
3.2  
3.3  
Installation for Non-Toshiba ASD Networks ........................................12  
Toshiba Common Serial ASD Network Installation .............................12  
3.3.1 Installation for G7 ASDs..................................................................13  
3.3.2 Installation for S7, S9, S11, A7 and VF-nC1 ASDs.........................15  
4. RS485 Port Electrical Interfaces ...............................................17  
5. Environmental Specifications ...................................................18  
6. Maintenance and Inspection .....................................................19  
7. Storage and Warranty ................................................................20  
7.1  
7.2  
Storage................................................................................................20  
Warranty..............................................................................................20  
8. LED Indicators ............................................................................21  
8.1  
8.2  
Toshiba ASD Common Serial Port Indicators .....................................21  
RS485 Port Indicators.........................................................................21  
9. Configuration Switches .............................................................21  
10.  
Auxiliary Power Supply..........................................................22  
11.  
Unit Configuration Concepts.................................................23  
Port and Protocol Configuration ..........................................................23  
Timeout Configuration.........................................................................23  
Point Configuration..............................................................................24  
General Configuration Procedure........................................................25  
11.1  
11.2  
11.3  
11.4  
12.  
Console Access......................................................................27  
12.1  
RS232 .................................................................................................27  
12.1.1  
12.1.2  
Requirements.............................................................................27  
Connection .................................................................................27  
4
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.1.3  
Application Configuration........................................................... 28  
12.2  
12.3  
Invocation ........................................................................................... 30  
Main Menu.......................................................................................... 31  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
12.3.5  
View/Edit Points......................................................................... 32  
View/Edit Ports .......................................................................... 39  
Load Points................................................................................ 41  
Xmodem Point File..................................................................... 41  
XLTR-200 Information................................................................ 43  
13.  
Protocol-Specific Information ...............................................44  
13.1  
Modbus............................................................................................... 44  
13.1.1  
13.1.2  
13.1.3  
Coil Mappings ............................................................................ 45  
Modbus RTU Slave.................................................................... 46  
Modbus RTU Master.................................................................. 46  
13.2  
13.3  
13.4  
13.5  
13.6  
Metasys N2......................................................................................... 48  
Toshiba Common Serial ASD Protocol............................................... 51  
Toshiba RS485 ASD Protocol ............................................................ 51  
Mitsubishi ASD Protocol ..................................................................... 54  
Siemens FLN...................................................................................... 58  
13.6.1  
13.6.2  
13.6.3  
13.7  
13.7.1  
13.7.2  
Ports .......................................................................................... 58  
Supported Subpoints ................................................................. 59  
Subpoint Details......................................................................... 60  
Toshiba 3-Series ASD Protocol.......................................................... 63  
Command Parameters............................................................... 64  
Monitor Parameters ................................................................... 65  
Fundamental Parameters #1...................................................... 69  
Fundamental Parameters #2...................................................... 70  
Panel Control Parameters.......................................................... 70  
Terminal Selection Parameters.................................................. 71  
Special Control Parameters ....................................................... 75  
Frequency Setting Parameters .................................................. 76  
Protection Function Parameters................................................. 79  
Pattern Run Control Parameters................................................ 81  
Feedback Control Parameters ................................................... 84  
Communication Setting Parameters .......................................... 85  
AM/FM Terminal Adjustment Parameters .................................. 86  
Utility Parameters....................................................................... 87  
Motor Rating Parameters........................................................... 89  
Inverter Fault Codes .................................................................. 90  
13.7.3  
13.7.4  
13.7.5  
13.7.6  
13.7.7  
13.7.8  
13.7.9  
13.7.10  
13.7.11  
13.7.12  
13.7.13  
13.7.14  
13.7.15  
13.7.16  
14.  
Firmware Updates...................................................................92  
14.1  
Requirements ..................................................................................... 92  
5
Download from Www.Somanuals.com. All Manuals Search And Download.  
14.2  
14.3  
Connection..........................................................................................92  
Using the RFU Utility...........................................................................93  
14.3.1  
14.3.2  
14.3.3  
Required Files ............................................................................93  
First-Time Configuration.............................................................93  
Transmitting Firmware Files .......................................................94  
14.4  
Wrap-Up..............................................................................................96  
15.  
Notes........................................................................................97  
6
Download from Www.Somanuals.com. All Manuals Search And Download.  
1. The Network Gateway Series Concept  
The XLTR-200 is a member of the ICC Network Gateway Series product family.  
Members of this family are designed to provide a uniform interface,  
configuration and application experience. This commonality reduces the user’s  
learning curve, reducing commissioning time while simplifying support. The  
XLTR-200 provides simultaneous support for many different communication  
protocols, allowing complex interchanges of data between otherwise  
incompatible networks.  
The heart of the Network Gateway Series concept is an element called the  
“point database”. The point database is entirely user-configurable, and  
provides the mapping information that allows requests from the various  
supported networks to be interpreted and stored in a common format. This  
allows data to be routed from any supported network to any other supported  
network.  
Additionally, the point database provides the added benefit of “data mirroring”,  
whereby current copies of point values (populated by a “source port”  
designation) are maintained locally within the gateway itself. This greatly  
reduces the request-to-response latency times on the various networks, as  
requests (read or write) can be entirely serviced locally, thereby eliminating the  
time required to execute a secondary transaction on a different network.  
When properly configured, the gateway will become essentially “transparent” on  
the networks, and the various network devices can engage in seamless dialogs  
with each other.  
7
Download from Www.Somanuals.com. All Manuals Search And Download.  
2. Feature Summary  
RS485 Ports  
Two half-duplex 2-wire RS485 ports (A / B / Signal Ground / Shield). These  
ports allow a selection of various master and slave protocols.  
RS232 Port  
One RS232 port that can be used to configure the unit, update the internal  
firmware, upload/download files or act as a control protocol port.  
Toshiba ASD Ports  
Three common serial (aka logic level) ports for connection of Toshiba 7-series,  
9-series, 11-series or VF-nC1 ASDs. ASD connections use the same standard  
RJ45 style 8-conductor UTP patch cables: any standard CAT5 Ethernet cable  
(found in most electronics stores) 5 meters or less in length can be used. ASD  
connections are automatically established and continuously monitored: no  
drive configuration needs to be performed to connect the unit to the drives.  
Just plug it in – it’s that simple.  
Power Supply  
When connected to Toshiba ASDs via the ASD1 / ASD2 / ASD3 ports, can be  
either powered directly from the attached ASDs, or from the auxiliary power  
(“AUX PWR”) input jack. All other non-Toshiba applications require the use of  
the AUX PWR input to supply power to the unit. When more than one power  
source is connected, the unit will draw its control power from the source with  
the highest supply voltage.  
Supported Protocols  
Modbus RTU (RS485 master & slave)  
Modbus RTU (RS232 master & slave)  
Toshiba ASD (common serial master)  
Toshiba ASD (RS485 master)  
Toshiba 3-series ASD (RS232 master)  
Mitsubishi 500-series & 700-series ASD (RS485 master) (also used by  
MGI Technologies, Inc. ASDs)  
Siemens FLN (RS485 slave)  
Johnson Controls, Inc. Metasys N2 (RS485 slave)  
New network drivers are continuously being added, and can be downloaded for  
free from our web site.  
8
Download from Www.Somanuals.com. All Manuals Search And Download.  
Text-Based Console Configuration  
Unit configuration is performed via a text-based console interface, available  
locally over the RS232 port via a standard PC terminal program such as  
Microsoft Windows HyperTerminal®.  
Configuration File Upload/Download  
A unit’s configuration can be uploaded from / downloaded to a PC, which  
provides the capability for PC-based file backup and easy configuration copying  
to multiple units. Sample configuration files and related documentation can  
also be downloaded from our web site, uploaded to a unit, and custom-modified  
to suit a specific application.  
Network Timeout Action  
A per-port and per-point 2-level configurable network timeout action can be  
programmed that allows each internal point to have its own unique “fail-safe”  
condition in the event of a network interruption.  
Indicators  
1 bicolor red/green “MS” LED that indicates module status information.  
1 bicolor red/green “NS” LED that indicates network status information.  
1 green “TX” and 1 red “RX” LED on each RS485 port.  
1 green and 1 red LED on each of the Toshiba common serial ASD ports.  
Refer to section 8 for more detailed information about the LED indicators and  
their meanings.  
Field-Upgradeable  
As new firmware becomes available, the unit can be upgraded in the field by  
the end-user. Refer to section 13.6 for more information.  
Versatile Mounting Options  
The unit can be panel-mounted with the included standoff kit, or snapped into  
existing 4” Augat SnapTrackTM (6TK series or equivalent). An optional  
mounting kit (ICC part number 10581) is also available for DIN-rail mount  
applications.  
9
Download from Www.Somanuals.com. All Manuals Search And Download.  
3. Installing the Gateway  
The gateway’s installation procedure will vary slightly depending on the chosen  
mounting method and the networks that will be used.  
3.1 Mounting  
3.1.1 Panel Mounting  
The included standoff kit allows for panel mounting of the unit. The standoff kit  
is comprised of four 1” aluminum male/female standoffs and four #6 lock  
washers.  
1. Remove one of the four cover standoff retention screws and its lock  
washer from the bottom side of the unit. DO NOT dispose of this screw  
and washer, as they will be used later to mount the unit to the panel.  
2. Install one of the male/female standoffs and a #6 lock washer from the  
standoff kit through the unit’s circuit board and into the bottom of the cover  
standoff. Refer to Figure 1.  
gateway unit  
panel  
lock washers  
lock washers  
and screws  
from step 1  
aluminum standoffs  
Figure 1: Standoff Kit Installation  
3. Repeat steps 1 and 2 above to replace each of the three other cover  
standoff retention screws.  
10  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4. Using the dimensions provided in Figure 2, drill four 0.150” diameter holes  
at the specified locations on the panel. As a convenient pattern guide, the  
unit with attached mounting standoffs can be held against the panel, and  
the four standoff locations marked with a pencil or scribe.  
3.5 IN  
2.9 IN  
4.0 IN  
4.0 IN  
Figure 2: Standoff Hole Placement  
5. As shown in Figure 1, use the four screws and lock washers from step 1 to  
mount the unit from the back side of the panel.  
3.1.2 SnapTrackTM Mounting  
The unit footprint measures 4” x 4” square, and is designed to fit directly into  
existing 4” Augat SnapTrackTM (6TK series or equivalent). Carefully insert the  
unit into the SnapTrackTM by pressing firmly on the pan head screws located at  
the 4 corners of the unit’s cover. DO NOT press directly on the aluminum  
cover, as this may damage the cover.  
3.1.3 DIN Rail Mounting  
An optional mounting kit (ICC part number 10581) allows DIN rail mounting of  
the unit. The mounting kit is comprised of a 4” section of Augat 6TK  
SnapTrackTM and two DIN rail clips.  
1. Carefully insert the unit into the SnapTrackTM by pressing firmly on the pan  
head screws located at the 4 corners of the unit’s cover. DO NOT press  
directly on the aluminum cover, as this may damage the cover.  
2. Install the DIN rail clips into the openings on the bottom side of the  
SnapTrackTM. Refer to Figure 3.  
11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 3: DIN Rail Mounting Kit Installation  
3.2 Installation for Non-Toshiba ASD Networks  
Note that in order to power the unit when not connecting to Toshiba ASDs via  
the common serial ports, the optional 120VAC/9VDC power supply (ICC part  
number 10456) or a user-supplied power source meeting the requirements  
outlined in section 10 must also be installed.  
1. Mount the unit via the desired method (refer to section 3.1).  
2. Connect the various networks to their respective plugs/terminal blocks.  
Ensure that any terminal blocks are fully seated into their respective  
headers, and route the network cables such that they are located well away  
from any electrical noise sources, such as ASD input power or motor  
wiring. Also take care to route all cables away from any sharp edges or  
positions where they may be pinched.  
3. Take a moment to verify that the gateway and all network cables have  
sufficient clearance from electrical noise sources such as drives, motors, or  
power-carrying electrical wiring.  
4. Connect the power supply to the gateway’s “AUX PWR” jack.  
3.3 Toshiba Common Serial ASD Network Installation  
The gateway connects to each drive via the drive’s common serial (logic level)  
communication port, typically located on either the main drive control board  
(G7, S11), on the front of the drive enclosure under a small snap-on cover (A7,  
S9), on the right-hand side of the drive enclosure under a small snap-on cover  
(S7), or on the bottom side of the drive enclosure (VF-nC1). Although in  
general no drive parameters need to be configured in order to use the gateway,  
12  
Download from Www.Somanuals.com. All Manuals Search And Download.  
it is advantageous to check that the drive’s common serial communication data  
rate is set to its maximum speed. Because the gateway will communicate to  
each drive only at the drive’s configured data rate, this will provide the fastest  
response time for drive-to-network data transfers. For information on checking  
the drive’s common serial communication data rate, refer to the appropriate  
manual supplied with your drive.  
Note that the common serial communication parameters of each drive are  
handled independently by the gateway, which means that different drive  
families may be connected to different channels of the unit in any combination,  
and that the drives connected to each channel may simultaneously  
communicate to the unit at completely different baud rates, parity settings, etc.  
Drives can be connected to the gateway on any ASD channel in any order or  
combination. When more than one drive is connected to the unit, or if the  
optional auxiliary power supply is used, the gateway will draw its control power  
from the source with the highest power supply voltage.  
Installation of the gateway should only be performed by a qualified technician  
familiar with the maintenance and operation of the connected drives. To install  
the gateway, complete the steps outlined in the following sections related to  
your specific drive.  
3.3.1 Installation for G7 ASDs  
1. Mount the unit via the desired method (refer to section 3.1).  
2.  
3.  
CAUTION! Verify that all input power sources to the drives to  
be connected have been turned OFF and are locked and tagged out.  
DANGER!  
Wait at least 5 minutes for the drive’s  
electrolytic capacitors to discharge before proceeding to the next step. Do  
not touch any internal parts with power applied to the drive, or for at  
least 5 minutes after power to the drive has been removed. A hazard  
exists temporarily for electrical shock even if the source power has  
been removed. Verify that the CHARGE LED has gone out before  
continuing the installation process.  
4. Remove the drive’s front cover / open the drive’s cabinet door (refer to the  
appropriate drive manual for instructions how to do this).  
5. The drive’s LCD panel (also called the “Electronic Operator Interface” or  
“EOI”) can communicate with the drive via either the RS485/RS232  
channel (CNU1/CNU1A) or the common serial channel (CNU2/CNU2A).  
Because the gateway uses the common serial channel, the LCD panel  
must be configured to use the RS485/RS232 channel. If the drive to be  
connected is currently using CNU2 (on the drive control board) and  
CNU2A (on the LCD panel), then this connection must first be switched  
13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
over to CNU1 (on the drive control board) and CNU1A (on the LCD panel).  
Refer to Toshiba’s documentation for any precautions or notices regarding  
this connection change. If the LCD panel is already connected via the  
RS485/RS232 channel, then no change is required.  
6. Configure the drive’s LCD panel to communicate via the RS485/RS232  
channel by setting parameter ”Communication Setting  
Parameters...Communication Settings...Select LCD Port  
Connection” to “RS485/232 serial”.  
7. Connect the drive’s common serial communication port (CNU2) to one of  
the ASD channels of the gateway with the communication cable  
(communication cable is not included with the gateway kit). When  
choosing cables for this connection, standard 24 AWG category 5 (CAT5)  
unshielded twisted-pair (UTP) 8-conductor cables found in Ethernet  
networks in most office environments can be used. The maximum  
allowable length for these cables is 5 meters. Although there are many  
varieties and styles of CAT5 UTP cables available, ICC strongly  
recommends using only high-quality cables from reputable manufacturers  
to guarantee optimal noise immunity and cable longevity. Ensure that each  
end of the cable is fully seated into the modular connectors, and route the  
cable such that it is located well away from any drive input power or motor  
wiring. Also take care to route the cable away from any sharp edges or  
positions where it may be pinched.  
8. Reinstall the drive’s front cover / close the drive’s cabinet door.  
9. Repeat steps 2-8 to connect other drive(s) as needed.  
10. Connect the other various networks to their respective plugs/terminal  
blocks. Ensure that any terminal blocks are fully seated into their  
respective headers, and route the network cables such that they are  
located well away from any electrical noise sources, such as ASD input  
power or motor wiring. Also take care to route all cables away from any  
sharp edges or positions where they may be pinched.  
11. If an auxiliary power supply is going to be used, connect it to the gateway’s  
“AUX PWR” jack.  
12. Take a moment to verify that the gateway and all network cables have  
sufficient clearance from drives, motors, or power-carrying electrical wiring.  
13. Turn the power sources to all connected drives ON, and verify that the  
drives function properly. If the drives do not appear to power up, or do not  
function properly, immediately turn power OFF. Repeat steps 2 and 3 to  
remove all power from the drives. Then, verify all connections. Contact  
ICC or your local Toshiba representative for assistance if the problem  
persists.  
14  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3.3.2 Installation for S7, S9, S11, A7 and VF-nC1 ASDs  
1. Mount the unit via the desired method (refer to section 3.1).  
2.  
3.  
CAUTION! Verify that all input power sources to the drives to  
be connected have been turned OFF and are locked and tagged out.  
DANGER!  
Wait at least 5 minutes for the drive’s  
electrolytic capacitors to discharge before proceeding to the next step. Do  
not touch any internal parts with power applied to the drive, or for at  
least 5 minutes after power to the drive has been removed. A hazard  
exists temporarily for electrical shock even if the source power has  
been removed. Verify that the CHARGE LED has gone out before  
continuing the installation process.  
4. Remove the drive’s common serial communication port cover if it has one  
(refer to the appropriate drive manual for instructions how to do this). Do  
not discard this cover, as it should be reinstalled to minimize contamination  
of the port’s electrical contacts if the gateway is ever disconnected from the  
drive.  
5. Connect the drive’s common serial communication port to one of the ASD  
channels of the gateway with the communication cable (communication  
cable is not included with the gateway kit). When choosing cables for this  
connection, standard 24 AWG category 5 (CAT5) unshielded twisted-pair  
(UTP) 8-conductor cables found in Ethernet networks in most office  
environments can be used. The maximum allowable length for these  
cables is 5 meters. Although there are many varieties and styles of CAT5  
UTP cables available, ICC strongly recommends using only high-quality  
cables from reputable manufacturers to guarantee optimal noise immunity  
and cable longevity. Ensure that each end of the cable is fully seated into  
the modular connectors, and route the cable such that it is located well  
away from any drive input power or motor wiring. Also take care to route  
the cable away from any sharp edges or positions where it may be  
pinched.  
6. Repeat steps 2-5 to connect other drive(s) as needed.  
7. Connect the other various networks to their respective plugs/terminal  
blocks. Ensure that any terminal blocks are fully seated into their  
respective headers, and route the network cables such that they are  
located well away from any electrical noise sources, such as ASD input  
power or motor wiring. Also take care to route all cables away from any  
sharp edges or positions where they may be pinched.  
8. If an auxiliary power supply is going to be used, connect it to the gateway’s  
“AUX PWR” jack.  
9. Take a moment to verify that the gateway and all network cables have  
sufficient clearance from drives, motors, or power-carrying electrical wiring.  
15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
10. Turn the power sources to all connected drives ON, and verify that the  
drives function properly. If the drives do not appear to power up, or do not  
function properly, immediately turn power OFF. Repeat steps 2 and 3 to  
remove all power from the drives. Then, verify all connections. Contact  
ICC or your local Toshiba representative for assistance if the problem  
persists.  
16  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4. RS485 Port Electrical Interfaces  
In order to ensure appropriate network conditions (signal voltage levels, etc.)  
when using the gateway’s RS485 ports, some knowledge of the network  
interface circuitry is required. Refer to Figure 4 for a simplified network  
schematic of the RS485 interface circuitry. Note that the “Shield” terminal has  
no internal connection: its purpose is simply to provide a cable shield chaining  
location between devices. The shield is then typically connected to ground at  
one location only.  
Figure 4: RS485 Interface Circuitry Schematic  
Figure 5 details the specific network connections to the RS485 terminal block.  
This connection scheme applies equally to both RS485 ports.  
A
B
Signal Ground  
Shield  
Figure 5: RS485 Terminal Block Connections  
17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5. Environmental Specifications  
Item  
Specification  
Indoors, less than 1000m above sea level, do not  
expose to direct sunlight or corrosive / explosive  
gasses  
Operating Environment  
Operating Temperature  
Storage Temperature  
Relative Humidity  
Vibration  
-10 +50°C (+14 +122°F)  
-40 +85°C (-40 +185°F)  
20% 90% (without condensation)  
5.9m/s2 {0.6G} or less (10 55Hz)  
Non-isolated, referenced to power source ground  
Self-cooled  
Grounding  
Cooling Method  
18  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6. Maintenance and Inspection  
Preventive maintenance and inspection is required to maintain the gateway in  
its optimal condition, and to ensure a long operational lifetime. Depending on  
usage and operating conditions, perform a periodic inspection once every three  
to six months. Before starting inspections, disconnect all power sources.  
Inspection Points  
Check that the network cable(s) are properly terminated in the terminal  
block(s), and ensure that pluggable terminal blocks are fully seated in their  
headers. Reseat if necessary.  
Check that there are no defects in any attached wire terminal crimp points.  
Visually check that the crimp points are not damaged or loose.  
Visually check all wiring and cables for damage. Replace as necessary.  
Clean off any accumulated dust and dirt.  
If use of the gateway is discontinued for extended periods of time, apply  
power at least once every two years and confirm that the unit still functions  
properly.  
Do not perform hi-pot tests on the gateway, as they may damage the unit.  
Please pay close attention to all periodic inspection points and maintain a good  
operating environment.  
19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7. Storage and Warranty  
7.1 Storage  
Observe the following points when the gateway is not used immediately after  
purchase or when it is not used for an extended period of time.  
Avoid storing the unit in places that are hot or humid, or that contain large  
quantities of dust or metallic dust. Store the unit in a well-ventilated  
location.  
When not using the unit for an extended period of time, apply power at  
least once every two years and confirm that it still functions properly.  
7.2 Warranty  
The gateway is covered under warranty by ICC, Inc. for a period of 12 months  
from the date of installation, but not to exceed 18 months from the date of  
shipment from the factory. For further warranty or service information, please  
contact Industrial Control Communications, Inc. or your local distributor.  
20  
Download from Www.Somanuals.com. All Manuals Search And Download.  
8. LED Indicators  
The gateway contains several different LED indicators, each of which conveys  
important information about the status of the unit and connected networks.  
These LEDs and their functions are summarized here.  
8.1 Toshiba ASD Common Serial Port Indicators  
Each Toshiba ASD common serial port RJ45 connector has two LEDs  
positioned immediately above them (1 green and 1 red).  
Green LED.......Indicates “drive link”. Solid green when a logical connection  
exists with the attached drive (i.e. the gateway is reading data  
from the drive).  
Red LED..........Data write. Flashes briefly when data is written to the drive  
from the point database.  
8.2 RS485 Port Indicators  
Each RS485 port has one red and one green LED situated next to its  
respective terminal block.  
Green LED.......Lights when the gateway is transmitting data on the port.  
Red LED..........Lights when the gateway is receiving data on the port (note that  
this does not indicate the validity of the data with respect to a  
particular protocol: only that data exists and is being detected.)  
9. Configuration Switches  
There are two configuration DIP switches (marked “CFG”) located on the unit  
near the RS232 port.  
Switch #1 .........Firmware update switch. Place in “OFF” position for normal  
operation, and in the “ON” position only when new firmware is  
to be downloaded to the unit. Refer to section 14 for more  
information.  
Switch #2 .........RS232 port selection switch. When “OFF” at unit startup, the  
RS232 port will act as the serial console, regardless of the  
port’s configuration or protocol assignment (refer to section 12  
for more information on the serial console). When “ON” at unit  
startup, the RS232 port carries whatever protocol (if any) was  
assigned to it at configuration time. Note that the state of this  
switch is only detected when the gateway boots up.  
21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
10. Auxiliary Power Supply  
The ICC part #10456 120VAC/9VDC power supply can be used to power the  
unit via the AUX PWR input. If providing your own auxiliary power supply,  
ensure that it adheres to the following specifications:  
+
Connection diagram ...............  
Voltage rating ......................... 9 - 40VDC  
Current rating ......................... 500mA (@9VDC)  
The gateway’s AUX PWR input uses the CUI, Inc. PJ-002A (2.1mm x 5.5mm)  
or equivalent DC power jack, which mates with the PP-002A (2.1mm x 5.5mm)  
or equivalent power plug.  
22  
Download from Www.Somanuals.com. All Manuals Search And Download.  
11. Unit Configuration Concepts  
11.1 Port and Protocol Configuration  
Each of the communication ports can be individually configured or  
enabled/disabled. It is important to note that the ports function independent of  
one another, and can operate simultaneously. For example, a Modbus RTU  
slave request on RS485A, and an ASD1 request can simultaneously access  
the same internal point.  
Although each communication port can be configured via the serial console  
interface, their configuration selections vary slightly. The Toshiba ASD  
common serial ports have a simple enable/disable selection. The RS232 and  
RS485 ports can be disabled, or can have one of a selection of control  
protocols assigned to them.  
Along with the protocol selection for the RS232/RS485 ports, each of these  
ports also has a corresponding baudrate, parity, address assignment and  
timeout time assignment. Note that not all assignable protocols support the  
same range of configuration options: therefore be sure to assign a valid entry in  
all cases (for example, a Modbus RTU slave’s “address” assignment must be in  
the range 1-247 to comply with the Modbus specification). Also note that  
certain protocols may not make use of all available configuration options (e.g.  
certain protocols operate only at one specified baudrate regardless of the  
“baudrate” selection value). The protocol-specific sections of this manual will  
document these cases.  
11.2 Timeout Configuration  
The gateway’s points can be configured to perform a specific set of actions  
when primary communications are lost on one or more of its various networks.  
This allows each point to have its own unique “fail-safe” condition in the event  
of a network interruption. There are three separate elements that define the  
network timeout behavior:  
A port’s network timeout time  
A point’s “Timeout Enable” selection  
A point’s “Timeout Value” setting  
The timeout time is adjustable in 1s increments from 0 to 500s.  
The default timeout time in all cases is 0, which disables network timeout  
handling. When nonzero, timeout processing does not begin until after a valid  
network packet has been received by the unit on that port.  
When the timeout time is nonzero and a communication interruption is  
detected, the timeout enable selections for each point are inspected. Those  
23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
points that are found to have their timeout enable selections set to “enabled”  
will then have their configured timeout values automatically written to their  
assigned “source port” objects. This mechanism provides for a flexible set of  
device failsafe conditions to be established on a point-by-point basis.  
11.3 Point Configuration  
As mentioned in section 1, the Network Gateway Series concept revolves  
around a central “point database”, containing the value and access  
characteristics for each network. With respect to the Network Gateway Series,  
a “point” is simply an object that defines some sort of network access, mapping  
and configuration data, as well as a single “value” attribute that can be read  
from or written to by various communication ports or protocols.  
The only restriction placed on this “central clearinghouse” concept is that only  
one port can autonomously update the point’s value, “mirroring” its designated  
object for other protocols to access. What this means is that although any  
protocol can read from or write to a point’s internal value, most of the time that  
point’s value will simply be mirroring a remote data object that resides on one of  
the gateway’s subnets. The selection of what a specific point is to mirror is  
performed via its “source port” selection.  
For example, a point may be configured to contain Toshiba ASD parameter  
mapping and Modbus master ID and holding register mapping information.  
However, because both of these protocols act as “master” protocols, only one  
of them can be allowed to continuously update the point’s value. If both master  
protocols could simultaneously update the point’s internal value, it would  
erratically alternate back and forth between the values designated by the  
Toshiba parameter and Modbus holding register objects. Any “slave” protocol  
(Modbus RTU slave, Metasys N2 etc.) can read from or write to a point at any  
time, but only the protocol designated by the point’s “source port” assignment  
will autonomously update the point’s value independent of any other protocol  
traffic.  
The “source port” designation also determines where a new point value will be  
written to when a “slave” protocol writes a new value to the point. For example,  
if a Modbus RTU slave connection is used to write new data that changes the  
value of a point, how do we know where this new value will exit the gateway to  
arrive at its final destination? The answer is that any new point values written  
by “slave” protocols will generate “write” transactions only on the “source port”.  
This concept may best be further explained by way of a representative  
scenario. For example, let’s assume that the gateway’s RS485A port has been  
designated to be a Modbus Master. Let’s further assume that the “Modbus  
Master” portion of point #5 indicates an “Address” value of 8 and “Register”  
value of 14, and that point #5’s “Source Port” selection is set to “RS485A”.  
What this means is that independent of any other gateway traffic, point #5 will  
continuously attempt to update its internal value by making requests to the  
24  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RS485A port. And, because the RS485A port has been designated as a  
Modbus Master, then the “Modbus Master” portion of point #5’s configuration  
will be referenced by the update task, and point #5’s value will therefore always  
be mirroring the value of holding register #14 of remote Modbus station address  
#8 connected to the Modbus subnet attached to the gateway’s RS485A port.  
Perhaps holding register #14 of Modbus station address #8 is a monitor item,  
indicating the pressure in compressor tank. Whenever the tank’s pressure  
changes, therefore, the value of point #5 will automatically update to reflect the  
new value read from the remote device. Once the tank’s pressure reading has  
been brought into the gateway, it can then be retrieved by any protocol (or ALL  
the protocols) currently assigned to the gateway’s other communication ports.  
As a modification to the previous example, let’s assume this time that holding  
register #14 of Modbus remote station address #8 is the speed command of a  
conveyor belt. In this case, point #5 of the gateway will be mirroring the current  
speed command of the conveyor, in a similar fashion to how it previously  
mirrored the compressor tank’s pressure. This time, however, the speed  
command represents something that can also be written to. Therefore, any  
new data value that is written to point #5 from any other port connection will  
automatically cause a “write holding register” transaction to occur on the  
RS485A Modbus master port, updating the value of holding register #14 on  
remote Modbus station #8, causing the conveyor to accelerate (or decelerate)  
to the new speed.  
Note that it is also perfectly acceptable to have a point’s “source port” assigned  
to “NONE”. All this means that this point will not be autonomously updated (i.e.  
that it will not automatically mirror anything.) In a sense, it will simply be  
“scratchpad memory” that the various ports and protocols can use to exchange  
information among themselves.  
Although the various configuration possibilities may seem overwhelming at first,  
it is clear that the gateway can perform powerful and flexible routing algorithms.  
Through configuration experience, the “in” and “out” data flows will become  
more clear.  
11.4 General Configuration Procedure  
Now that we have had a brief tutorial on port and point configuration, we can  
proceed on to how these elements fit into the overall configuration procedure.  
The general configuration procedure steps can be summarized as follows:  
1. Access the serial console configuration interface via Hyperterminal or  
other text-based console program.  
2. Assign (or enable/disable) the desired protocols and their  
characteristics to the specific communication ports.  
3. Perform the desired per-protocol mapping and definition assignments  
for each point, including the name, timeout and “source port”  
assignments.  
4. Exit the serial console, which will update the gateway’s internal  
configuration file and reboot the unit.  
25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5. Download a copy of the unit’s configuration file to your PC for backup  
purposes  
Of course, it is possible to simplify or even eliminate some of these steps by  
starting your configuration from a pre-existing point database file (either  
downloaded from the internet or previously-created by the user), and then  
simply modifying those elements necessary to match your application.  
26  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12. Console Access  
12.1 RS232  
The console is accessible via an RS232 interface for direct connection to a  
computer’s serial (COM) port. This is performed by connecting the unit’s  
RS232 port to the computer’s serial port via a standard straight-thru serial  
cable.  
12.1.1 Requirements  
All that is needed is a computer with a serial (COM) port containing some sort  
of communications software (such as HyperTerminal, included with Microsoft  
Windows operating systems) and a straight-thru serial cable, such as the Belkin  
6’ serial extension cable (Belkin part #F2N209-06). Refer to Figure 6 for a  
representative example cable. Any communications software and PC will work,  
provided they support ASCII communications at 38.4kbaud.  
Figure 6: A Typical Serial Extension Cable  
12.1.2 Connection  
Connect one end of the serial cable to the gateway’s RS232 port, and connect  
the other end to the computer’s serial port. Make sure that CFG DIP switch #2  
is in the “OFF” (left) position to force the RS232 port to act as the serial  
console. If the unit is currently using the RS232 port for control protocol  
communication, then it must be rebooted (powered down and then back up  
again) with CFG switch #2 in the OFF position to enable the serial console on  
the RS232 port.  
27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.1.3 Application Configuration  
As previously mentioned, any PC communication software and PC serial port  
can be used. The software configuration example given here will be for  
Windows HyperTerminal communicating via COM1.  
Figure 7 shows the “Connect To” tab of the properties window for COM1.  
Figure 8 shows the window that appears when “Configure” is selected in the  
“Connect To” tab. Figure 9 shows the “Settings” tab of the properties window.  
Most of these settings are their default values: usually the only change needed  
is the “Bits per second” setting shown in Figure 8.  
Figure 7: HyperTerminal Properties…Connect To  
28  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 8: HyperTerminal Properties…Connect To…Configure  
Figure 9: HyperTerminal Properties…Settings  
29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.2 Invocation  
The console provides standard access and editing methods for the various  
configuration items (ports, points and their associated attributes). It is important  
to note that whenever you modify the point database and are ready to restart  
the gateway (“exit”), you must save the database to the internal file system prior  
to restarting or your changes will be lost. The console will automatically ask  
you if you would like to save the database to the file system every time you exit  
even if you did not modify it. If the database was unchanged, then saving is not  
required. Before modifying the configuration, it is a recommended practice to  
download a configuration file to your PC for backup purposes, so that the  
original configuration can be restored if any unintended changes are made.  
To enter the console, simply type “menu” and press the Enter key. You will  
then be notified that all communication tasks will be terminated for the duration  
of the editing (refer to Figure 10). It is important to ensure that all connected  
devices are in a safe state such that loss of communications will not pose a  
danger to equipment or personnel. Exiting the console will reset the gateway  
and restart network communications using the current configuration data.  
At most console prompt locations, typing “x” will return you to the previous  
menu, and typing “menu” will return you to the main menu. Also note that  
console commands are not case-sensitive.  
Figure 10: Console Invocation  
30  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.3 Main Menu  
The main menu is shown in Figure 11. All gateway configuration is performed  
by “drilling down” into progressively lower-level menus.  
Figure 11: Console Main Menu  
All navigation and data entry commands are input by simply entering the menu  
selection number to the right of the “>” symbol along with any required data  
fields at the console prompt. In Figure 11, for example, entering the menu  
selection number “1” (without the quotation marks) will bring up the View/Edit  
Points submenu. Throughout this manual, example console entry strings will  
be provided enclosed in quotation marks to delineate them from the description  
text: whenever actually entering the console strings, however, do not include  
the quotation marks.  
When additional data fields are required with a data entry command, they will  
be indicated by square brackets (“[…]”) after the menu selection number. All  
data entry commands and data fields must be separated by spaces. Because  
data entry commands and data fields are delineated by spaces, spaces are  
therefore not allowed within data fields (such as name strings). In these cases,  
it is usually convenient to use an underscore “_” in place of a space. For  
example, attempting to enter a point’s name as “My point” would result in an  
error, but “My_point” would be perfectly acceptable.  
31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.3.1 View/Edit Points  
Main menu selection number 1 displays a screen which shows a summary of  
the current point configuration (see Figure 12). This screen only displays the  
point number and the point name: in order to access more detailed point  
information, menu selection number 1 “Edit/View a Point” must be entered with  
the additional argument of the targeted point’s number. The syntax used to  
edit/view point #1 is shown at the bottom of Figure 12.  
Only 10 points are shown at a time (of 100 total available in the unit). Menu  
selection 2 “More Points” allows the next 10 points to be viewed.  
Figure 12: View/Edit Points  
Entering “1” with a point’s number (such as “1 1”, as shown at the bottom of  
Figure 12) at the Edit Points submenu will display and allow editing of that  
point’s mapping and definition information. Refer to Figure 13 for an example.  
When editing a point, the top half of the screen (menu selections 1-4) contains  
point definitions that are protocol-independent. The bottom half of the screen  
(menu selections 5-9) contains the menu options for editing point definitions  
that are protocol-specific.  
32  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 13: Edit a Point  
Edit Name: Menu selection number 1 allows you to change the point’s  
name. For example, the bottom of Figure 13 shows an example of  
changing point #1’s name to output_voltage. The point’s name is  
purely for user recognition of a point, and has no bearing upon  
communications functionality. To clear the point’s name field, just  
enter the menu selection (“1”) with no additional argument.  
Edit Timeout Enable: Menu selection number 2 allows you to change  
the point’s timeout enable selection. Refer to section 11.2 for more  
information about timeout processing.  
Edit Timeout value: Menu selection number 3 allows you to change  
the point’s timeout data value. Refer to section 11.2 for more  
information about timeout processing.  
Edit Source Port: Menu selection 4 allows you to change the point’s  
source port. Refer to section 11.3 for more information about source  
ports.  
Edit Toshiba, Mitsubishi, Modbus, Metasys: Menu selections 5-9  
allow you to edit/view protocol-specific point attributes. Enter the  
menu selection corresponding to the protocol you wish to edit/view.  
33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Toshiba Point Attributes  
Figure 14: Edit Toshiba Attributes  
Edit Address: Menu selection 1 allows you to edit the network  
address of the Toshiba ASD that this point refers to. This address  
field is only used in conjunction with the Toshiba RS485 protocol:  
Toshiba common-serial port connections are point-to-point, and  
therefore do not require targeting a drive at a specific address.  
Edit Parameter: Menu selection 2 allows you to edit the Toshiba  
ASD parameter that this point will access. Figure 14 shows an  
example of how to change the current setting of FA00 to FA04 (which  
would be a typical change if the Toshiba RS485 protocol were to be  
used with this point). Note that Toshiba parameter values must be  
entered in hexadecimal format.  
34  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Mitsubishi Point Attributes  
Figure 15: Edit Mitsubishi Attributes  
Edit Address: Menu selection 1 allows you to edit the network  
address of the Mitsubishi ASD that this point refers to.  
Edit Parameter: Menu selection 2 allows you to edit the Mitsubishi  
ASD parameter that this point will access. Figure 15 shows an  
example of how to change the current setting of 1 to 1001.  
35  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Modbus Master Point Attributes  
Figure 16: Edit Modbus Master Attributes  
Edit Address: Menu selection 1 allows you to edit the network  
address of the Modbus slave that this point refers to.  
Edit Register: Menu selection 2 allows you to edit the Modbus  
holding register or input register that this point will access. The type of  
register accessed (holding or input) will be determined on the basis of  
the “Read FC” setting (see below). Figure 16 shows an example of  
how to change the current setting of holding register 1 to holding  
register 50.  
Read FC: Menu selection 3 allows you to choose the Modbus “read”  
function code that will be used to read from the designated register.  
The default setting of function code 03 (read holding registers) will  
access a holding register on the remote device. By selecting function  
code 04 (read input registers), a Modbus input register will be  
accessed instead.  
Write FC: Menu selection 4 allows you to choose the Modbus “write”  
function code that will be used to write to the designated holding  
register (this setting does not apply to input registers, as they are  
read-only). The default setting is function code 16 (preset multiple  
registers). Alternatively, this setting can be changed to function code  
06 (preset single register) in order to connect to those Modbus slave  
devices that do not support function code 16.  
36  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Modbus Slave Point Attributes  
Figure 17: Edit Modbus Slave Attributes  
Edit Register: Menu selection 1 allows you assign a Modbus holding  
register to this point. Figure 17 shows an example of how to change  
the current setting of 1 to 8.  
37  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Metasys N2 Point Attributes  
Figure 18: Edit Metasys N2 Attributes  
Edit Object Type: Menu selection 1 allows modification of the object  
type. Figure 18 shows an example of how to change the current  
setting of AI to AO.  
Edit Object Number: Menu selection 2 allows modification of the  
object number. The current configuration as indicated in Figure 18  
shows that point #1 is configured to be AI #1.  
Edit Multiplier: Menu selection 3 allows modification of the multiplier  
to be used with analog (AI or AO) objects. This setting has no effect  
when the point is configured to be a binary (BI or BO) object.  
Edit Bit Mask: Menu selection 4 allows modification of the bit mask  
to be used with binary (BI or BO) objects. This setting has no effect  
when the point is configured to be an analog (AI or AO) object. Note  
that the bit mask is displayed and entered as a hexadecimal value  
(e.g. to mask bits #15 and #10, a value of “8400” must be entered).  
38  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.3.2 View/Edit Ports  
Main menu selection number 2 displays a screen which shows a summary of  
the current port configuration (see Figure 19). This screen only displays the  
current protocol selected for each port: in order to access more detailed port  
information, select the menu number corresponding to the desired port. Menu  
selections 1-3 correspond to the Toshiba ASD ports, and these contain no  
other port configuration other than enable/disable. The syntax used to disable  
port ASD1 is shown at the bottom of Figure 19.  
Figure 19: View/Edit Ports  
39  
Download from Www.Somanuals.com. All Manuals Search And Download.  
RS485/232 Port Configuration  
Figure 20: Edit Port Configuration  
Edit Protocol Selection: Menu selection 1 allows you to change  
what serial protocol is running on the selected port. Note that not all  
ports run the same protocols. Figure 20 shows how to change the  
protocol selection from the current setting of Metasys N2 to Modbus  
slave.  
Edit Baudrate: Menu selection 2 allows you to change the baudrate  
for the selected port. Note that the baudrate for some protocols is  
determined by the specification, and these will therefore ignore this  
setting.  
Edit Parity: Menu selection 3 allows you to change the parity for the  
selected port. Note that the parity for some protocols is determined by  
the specification, and these will therefore ignore this setting.  
Edit address: Menu selection 4 allows you to edit the network  
address that the selected port will respond to. This setting is  
applicable for slave protocols only.  
Edit Timeout: Menu selection 5 allows you to edit the timeout time  
for the selected port. Refer to section 11.2 for more information on  
timeout processing.  
40  
Download from Www.Somanuals.com. All Manuals Search And Download.  
12.3.3 Load Points  
Main menu selection number 3 allows the retrieval of a predefined configuration  
into working memory and the flash file system (see Figure 21). Loading one of  
these configurations overwrites the existing point configuration.  
The FLN application listed in menu selection 1 loads the predefined  
configuration detailed in section 13.6. Menu selection 2 returns the gateway’s  
configuration to its factory default state.  
Figure 21: Loading a Point File  
12.3.4 Xmodem Point File  
Main menu selection number 4 gives access to the “xmodem” command, which  
allows unit configuration files to be transferred between the gateway and a PC.  
Whenever unit configuration is completed, it is strongly recommended that a  
backup copy of the configuration file be downloaded from the unit to a PC. One  
reason for this is in case it becomes necessary to restore a previous  
configuration at a later time. Another reason is that it may be desirable to load  
multiple units with the same configuration. Configuration files contain all point  
and port settings. A downloaded configuration file can be uploaded to any  
compatible XLTR-200, allowing the user to clone multiple units with the same  
configuration.  
Two different variations of the Xmodem protocol are supported (CRC and  
Checksum) for those serial communication packages that only support one or  
the other. However, some programs can automatically adapt to the user’s  
41  
Download from Www.Somanuals.com. All Manuals Search And Download.  
selection, making the specific Xmodem protocol selection arbitrary. The first  
argument of the xmodem command indicates the mode, and must be set to  
either “/crc” for Xmodem CRC mode, or “/cs” for Xmodem checksum mode.  
As mentioned above, configuration files can be both downloaded and uploaded.  
The second argument in the xmodem command indicates the action to take,  
and must be set to either “/d” to download the configuration file from the unit, or  
“/u” to upload a configuration file to the unit.  
Figure 22 shows an example of initiating an Xmodem download in CRC mode.  
Once the message “The XLTR-200 is ready to send its configuration file via  
Xmodem…Download the file now” appears, the user has 30 seconds to start  
the Xmodem download. This can be performed in HyperTerminal by clicking  
the “receive” button ( ) on the tool bar. Figure 23 shows the dialog box that  
will appear after clicking the “receive” button. Specify the folder in which to  
place the received file, select Xmodem as the receiving protocol, and click  
“Receive”. One last dialog box will prompt the user to name the received file,  
and then the transfer will begin. This will only take several seconds to  
complete, and at the conclusion the console will indicate the status of the  
transfer and return to the entry menu.  
Figure 22: “Xmodem” Command Overview and Implementation  
42  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 23: HyperTerminal receive file dialog box  
When uploading a file, the procedure is similar to downloading. Enter “/u”  
instead of “/d” for the action parameter of the xmodem command. Once the  
xmodem upload command is entered, the user will have 30 seconds to click the  
“send” button ( ) on the tool bar in HyperTerminal and initiate the Xmodem  
upload transaction. Upon successful completion of the Xmodem upload, the  
integrity of the file will be checked and, if valid, will be copied to both the unit’s  
working memory and flash file system. The previous configuration cannot be  
recovered (unless a corresponding configuration file exists, of course).  
12.3.5 XLTR-200 Information  
Main menu selection 5 provides some basic information about the gateway,  
such as firmware version (see Figure 24).  
Figure 24: XLTR-200 Information  
43  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13. Protocol-Specific Information  
This section will discuss topics that are specific to each of the available network  
selections.  
13.1 Modbus  
The gateway supports Modbus slave and master functionality via Modbus RTU.  
The slave implementations share common access methods, which is to say  
they support the same functions and reference the internal points via a  
common “Modbus Slave” holding register assignment. Other notes of interest  
are:  
Points are addressed by their assigned holding register (4X reference) via  
Modbus slave protocols.  
Points can access both holding registers (4X references) and input  
registers (3X references) via Modbus master protocols.  
Supported Modbus slave functions are indicated in Table 1.  
Table 1: Supported Modbus Slave Functions  
Function Code  
Function  
Read coils  
1
3
Read multiple registers  
Write coil  
5
6
Write single register  
Force multiple coils  
Write multiple registers  
15  
16  
Register number entry radix is decimal (e.g. 10 = 1010)  
Configuration tip: Improved network utilization may be obtained by  
appropriately grouping points into blocks having contiguous holding  
register assignments. In this way, the “read multiple registers” and “write  
multiple registers” functions can be used to perform transfers of larger  
blocks of registers using fewer Modbus transactions compared to a  
situation where the read/write registers were arranged in an alternating or  
scattered fashion.  
Because the transaction is handled locally within the gateway, write data  
checking is not available. For example, if a write is performed to a register  
with a data value that is out-of-range of the corresponding “source port”  
44  
Download from Www.Somanuals.com. All Manuals Search And Download.  
object, no Modbus exception will be immediately returned. However, the  
point will always reflect the “source port” status and object value. In other  
words, if such an out-of-range write attempt is performed, the unsuccessful  
“source port” network write can be observed by reading the current  
(unchanged) value of the point during a subsequent Modbus transaction.  
13.1.1 Coil Mappings  
The Modbus slave implementation provides read/write support for coils (0X  
references). Accessing coils does not reference any new physical data: coils  
are simply indexes into various bits of Modbus holding registers. What this  
means is that when a coil is accessed, that coil is resolved by the gateway into  
a specific holding register, and a specific bit within that holding register. The  
pattern of coil-to-register/bit relationships can be described as follows:  
Coils 1...16 map to holding register #1, bit0...bit15 (bit0=LSB, bit15=MSB)  
Coils 17...32 map to holding register #2, bit0...bit15, and so on.  
Arithmetically, the coil-to-register/bit relationship can be described as follows:  
For any given coil, the holding register in which that coil resides can be  
determined by:  
coil + 15  
holding register =  
…Equation 1  
16  
Where the bracket symbols “ ” indicate the “floor” function, which means that  
any fractional result (or “remainder”) is to be discarded, with only the integer  
value being retained.  
Also, for any given coil, the targeted bit in the holding register in which that coil  
resides can be determined by:  
bit = (coil 1) %16  
…Equation 2  
Where “coil” [1…65535], “bit” [0…15], and “%” is the modulus operator,  
which means that any fractional result (or “remainder”) is to be retained, with  
the integer value being discarded (i.e. it is the opposite of the “floor” function).  
From these equations, it can be seen that the largest holding register number  
that can be accessed via this coil-to-register mapping method is 4096 (which  
contains coil 65535).  
For clarity, let’s use Equation 1 and Equation 2 in a calculation example. Say,  
for instance, that we are going to read coil #34. Using Equation 1, we can  
determine that coil #34 resides in holding register #3, as 3.0625= 3 r1= 3.  
Then, using Equation 2, we can determine that the bit within holding register #3  
that coil #34 targets is (34-1)%16 = 1, as 33%16 = mod(3 r1) = 1. Therefore,  
reading coil #34 will return the value of holding register #3, bit #1.  
45  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Note that this coil-to-register/bit relationship holds true regardless of whether or  
not holding register #3 is assigned to a point. If holding register #3 is not  
assigned to a point, then a Modbus exception will be returned. Either way, coil  
#34 will always access holding register #3, bit #1.  
13.1.2 Modbus RTU Slave  
Broadcast (for functions 5, 6, 15 and 16) is supported.  
Network characteristics selections  
o
o
Baud rate: 2400 / 4800 / 9600 / 19200 / 38400 bps  
Parity: odd / even / none (1 stop bit) / none (2 stop bits)  
13.1.3 Modbus RTU Master  
Supported Modbus master functions are indicated in Table 2. These  
functions are automatically invoked by the gateway in response to point  
read or write requests. The specific read or write function code used  
depends on the point’s assigned configuration.  
Table 2: Supported Modbus Master Functions  
Function Code  
Function  
3
4
Read multiple registers  
Read input registers  
Write single register  
Write multiple registers  
6
16  
The slave response timeout (in seconds) is assigned via the designated  
port’s “Timeout” selection. If “0” is chosen (an invalid timeout time), the  
gateway will use a 2s timeout by default.  
Network characteristics selections  
o
o
Baud rate: 2400 / 4800 / 9600 / 19200 / 38400 bps  
Parity: odd / even / none (1 stop bit) / none (2 stop bits)  
Note that various manufacturers will document their Modbus slave  
products in different ways. In particular, according to the Modbus  
specification, registers have two different indices at which they can be  
referenced: their “known as” value (which starts at number 1) and their  
“addressed as” value (which is always 1 less than the “known as” value).  
The “known as” value is typically the number that is presented for human  
entry or consumption, while the “addressed as” value is the number that  
appears “on the wire” when the Modbus packet is sent from master to  
46  
Download from Www.Somanuals.com. All Manuals Search And Download.  
slave. This gateway follows this generally-accepted industry paradigm,  
where a point’s configured Modbus master “register” value is decremented  
by 1 before it is placed “on the wire”. Some vendors, however, will  
document their slave device’s “addressed as” values in their literature,  
which means that these register indices must have 1 added to them when  
entered into the gateway’s “Modbus master register” field.  
For example, the Toshiba VF-AS1 drive’s Modbus RTU slave protocol  
implementation & corresponding user’s manual references all internal ASD  
parameters using “addressed as” values. This means that (in addition to  
the required conversion from Toshiba’s native hexadecimal radix to the  
Modbus protocol’s natural decimal radix) these parameter values must  
have 1 added to them when they are to be accessed via an ICC gateway  
executing the Modbus RTU master protocol.  
e.g VF-AS1 “command 1” parameter is documented to be FA00 in the  
Toshiba literature. Converting this to decimal, we arrive at a value of  
64000. To allow a point in the gateway’s database to correctly access the  
“command 1” parameter via Modbus RTU, therefore, that point’s Modbus  
master “register” attribute must be set to 64001 (which will result in an  
address value of 64000 (0xFA00) “on the wire”).  
47  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.2 Metasys N2  
The gateway acts as a Johnson Controls Metasys N2 slave, and supports  
N2 analog input, analog output, binary input and binary output object types.  
Analog input (AI) objects are used for monitoring analog status items. AI  
objects support low alarm limits, low warning limits, high warning limits,  
high alarm limits and differential values. Change of state (COS), alarm and  
warning functions can also be enabled. An AI object will accept an  
override command, but will not change its actual value or indicate override  
active. A “multiplier value” is associated with the object, and is multiplied  
to the point’s value to produce the floating-point AI value sent to the NCU  
(AI value = [point data value] X multiplier).  
Analog output (AO) objects are used for setting and monitoring analog  
control and configuration items. An AO value can be modified by issuing  
an override command. Issuing a release command will not cause the AO  
to automatically return to its pre-override value, nor will the AO  
automatically return to its pre-override value after a certain time period of  
no communication. A “multiplier value” is associated with the object, and  
the floating-point AO value is divided by this multiplier to produce the result  
that is passed on to a point’s value (point data value = [AO value] /  
multiplier).  
Binary input (BI) objects are used for monitoring discrete (digital) status  
items. BI objects support COS, alarm enabling and normal/alarm status  
indications. A BI object will accept an override command, but will not  
change its actual value or indicate override active. A “bit mask” is  
associated with the object, and is used to determine the current state of the  
BI by inspecting the point’s data at the bit location(s) indicated in the bit  
mask. If all of the bit locations of the point’s data value indicated by a “1” in  
the bit mask are set, then the BI’s current state is set to “1”. Else, it is set  
to “0”. The point data’s least-significant bit (LSB) is bit #0, and the most-  
significant bit (MSB) is bit #15.  
Binary output (BO) points are used for setting and monitoring discrete  
control and configuration items. A BO value can be modified by issuing an  
override command. Issuing a release command will not cause the BO to  
automatically return to its pre-override value, nor will the BO return to its  
pre-override value after a certain time period of no communication. A “bit  
mask” is associated with the object, and is used to determine the current  
state of the BO by modifying the point’s data at the bit location(s) indicated  
in the bit mask. When the BO’s current state is set to “1” by the NCU, then  
the bit(s) of the point’s data indicated by a “1” in the bit mask are set.  
Similarly, when the BO’s current state is set to “0” by the NCU, then the  
bit(s) of the point’s data indicated by a “1” in the bit mask are cleared. The  
point data’s least-significant bit (LSB) is bit #0, and the most-significant bit  
(MSB) is bit #15.  
48  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The Metasys device type for the gateway is VND.  
Because the Metasys N2 protocol specifies strict response timing  
requirements, all accessible data objects must be designated as points,  
thereby making use of data mirroring.  
Network characteristics selections: not configurable according to the  
Metasys N2 specification.  
Because all transactions are handled locally within the gateway, write data  
checking is not available. For example, if a write to an object is performed,  
and the write data is out-of-range of the corresponding secondary network  
object, no N2 error will be immediately returned. However, the N2 object  
will always reflect the network status and data object value. In other  
words, if such an out-of-range write is performed, the unsuccessful write  
will be detected and the N2 object’s value corrected. If COS is enabled for  
that object, the correction will be reported to the NCU upon the next COS  
poll request.  
The gateway can be configured to perform a specific set of actions for  
each AO or BO point when Metasys communications are lost. Metasys  
communications are said to be “lost” when the gateway does not receive  
any Metasys packets for a specified period of time, causing a “network  
timeout”. Refer to section 11.2 for more information about configuring  
network timeout parameters.  
The gateway’s RS485A port can be directly connected to the N2 bus by  
using twisted-pair cable connected as shown in Figure 25. Connect the  
N2+ wire to terminal “A”, the N2- wire to terminal “B”, and the cable shield  
to terminal “SHLD” on the gateway’s terminal block. Although not available  
on all devices, it is also recommended to connect a network ground wire  
whenever possible. Continue this connection scheme throughout the  
remainder of the network. Always connect each unit in a daisy-chain  
fashion, without drop lines, star configurations, etc. For further N2 network  
wiring requirements and procedures, please refer to the appropriate JCI  
network installation documentation.  
49  
Download from Www.Somanuals.com. All Manuals Search And Download.  
N2+  
N2-  
A
B
SG  
GND  
SHIELD  
SHIELD  
N2 Network  
Devices  
Gateway RS-485  
Terminals  
Figure 25: N2 Bus Cable Connection  
50  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.3 Toshiba Common Serial ASD Protocol  
The gateway can act as a Toshiba ASD master via the dedicated common  
serial port connections. All Toshiba ASDs that include a common serial  
port are supported.  
No configuration is necessary, as the gateway automatically adapts to the  
ASD’s configured characteristics.  
All parameter writes use the drive’s RAM / EEPROM data write (“W”)  
command. For all writes that target the drive’s EEPROM, be sure to follow  
Toshiba’s guidelines regarding the number of times a specific parameter  
can be written without risk of EEPROM damage.  
Point parameter number entry radix is hexadecimal (e.g. 10 = 0x0010 or  
1610)  
13.4 Toshiba RS485 ASD Protocol  
The gateway can act as a Toshiba ASD master via its RS485 ports. All  
Toshiba drives that implement the Toshiba protocol and provide either a  
built-in or option-based RS485 port are supported.  
Because the gateway implements a 2-wire (half-duplex) RS485 network,  
the drive(s) involved must also be connected via 2-wire mode. Optionally,  
it is also possible to convert the gateway’s network from 2-wire (half-  
duplex) to 4-wire (half-duplex) via an external repeater such as the  
485OPIN from B&B Electronics (http://www.bb-elec.com).  
Note that Toshiba 7-series drives configured for 2-wire mode (F821=0)  
shipped prior to early 2006 may exhibit an issue that can cause their  
RS485 ports to stop communicating after a certain amount of time. Please  
contact Toshiba technical support to confirm your configuration prior to  
using 2-wire RS485 mode on these drives.  
The required drive configuration will vary depending on the specific drive(s)  
involved. In general, most parameters are freely configurable to match the  
gateway’s port settings (baud rate, parity etc.) The most critical selection,  
however, is that if the drive is directly connected to the gateway via 2-wire  
mode, then the drive must be properly configured for 2-wire RS485. Note  
that this may involve hardware configuration in addition to parameter  
changes. For example, G7/Q7/H7-series drives have duplex selection  
jumpers located on the drive’s control board near the communication ports.  
For these drives, both jumpers must be placed in the “HALF” position.  
Refer to Figure 26 for an example detailed view of correctly-positioned  
duplex selection jumpers.  
51  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Figure 26: RS485 Terminal Block (CN3) and Duplex Selection Jumpers  
The Toshiba RS485 terminal block connections for G7/Q7/H7/W7 drives  
are shown in Figure 27 for reference only. Because there are many  
possible RS485 port configurations & options available for the various  
Toshiba drives, please refer to the relevant Toshiba documentation for  
your drive.  
A
B
Signal Ground  
Shield  
Figure 27: G7/Q7/H7/W7 RS485 Terminal Block (CN3) Connections  
All parameter writes use the drive’s RAM / EEPROM data write (“W”)  
command. For all writes that target the drive’s EEPROM, be sure to follow  
Toshiba’s guidelines regarding the number of times a specific parameter  
can be written without risk of EEPROM damage.  
52  
Download from Www.Somanuals.com. All Manuals Search And Download.  
The drive response timeout (in seconds) is assigned via the designated  
port’s “Timeout” selection. If “0” is chosen (an invalid timeout time), the  
gateway will use a 1s timeout by default.  
Network characteristics selections  
o
o
Baud rate: 2400 / 4800 / 9600 / 19200 / 38400 bps  
Parity: odd / even / none (1 stop bit) / none (2 stop bits)  
Point parameter number entry radix is hexadecimal (e.g. 10 = 0x0010 or  
1610)  
53  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.5 Mitsubishi ASD Protocol  
The gateway acts as a Mitsubishi protocol master via its RS-485 ports.  
Adjustable speed drives such as the FR-A500/E500/F500 series and F700-  
series that support the Mitsubishi protocol can be accessed. Also  
supported are MGI Technologies, Inc. M3000, M4000 and M5000-series  
drives that support the Mitsubishi protocol.  
For 500-series drives, the gateway can connect to the ASD via either the  
PU (panel) connector, or via an optional FR-A5NR computer link board.  
Because the ASDs externally present a 4-wire RS-485 network, connecting  
them to the gateway requires jumpering the network wires for 2-wire format  
(i.e. connecting SDA-RDA and SDB-RDB).  
When Using an FR-A5NR Card  
Connect as shown in Figure 28.  
B
(TB:2)  
A
Signal  
Ground  
(TB:3)  
(TB:1)  
Figure 28: FR-A5NR Connections  
When Using the PU Port  
Connecting to the drive’s RJ-45 PU port will likely require building a custom  
cable. For simplicity, a standard 8-conductor Ethernet patch cable can be  
used as a starting point. There are two standard color schemes for the  
wire pairs in such cables as defined by the Electronic Industry Association /  
Telecommunications Industry Association (EIA-TIA). These two standards  
are called T-568B and T-568A (refer to Figure 29). The most common  
color scheme is T-568B, and will therefore be the one used for this  
example connection. If starting with a cable wired according to the T-568A  
specification, just interchange the colors to achieve the same pin  
connections.  
54  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Connect as shown in Figure 30.  
Figure 29: EIA/TIA Wiring Standards  
RDA SDA  
SDB RDB  
B
(TB:2)  
Signal  
Ground  
(TB:3)  
A
(TB:1)  
Figure 30: PU Port Connections  
For 700-series drives, the gateway can connect to the ASD via either the  
PU (panel) connector as indicated in Figure 30, or via the on-board RS-485  
terminals. Because both of these ports externally present a 4-wire RS-485  
network, connecting them to the gateway requires jumpering the network  
wires for 2-wire format (i.e. connecting SDA-RDA and SDB-RDB). When  
using the on-board RS-485 terminals, connect as shown in Figure 31.  
55  
Download from Www.Somanuals.com. All Manuals Search And Download.  
A
(TB:1)  
B
(TB:2)  
Signal  
Ground  
(TB:3)  
Figure 31: 700-Series ASD Connections  
Note that although the 700-series ASD also supports the Modbus RTU  
protocol, the initial ASD firmware did not support the Modbus RTU protocol  
in 2-wire format. Therefore, using the Mitsubishi protocol may be the only  
available method to communicate with the gateway (ASD parameter 549  
must be “0”). Contact Mitsubishi Technical Support for more information.  
The slave response timeout is determined via the gateway’s RS-485 port  
timeout value setting. If the timeout value is set to 0, a default timeout time  
of 2s is used.  
ASD communication characteristics are dictated by parameters 117-124  
(PU port) and 331-341 (RS-485 port). Most of these parameters can be  
set as desired by the user. However, the following parameters must be set  
as indicated to successfully connect to the gateway:  
Parameter 119/333 (stop bits/data bits) .........Must be set for 8 data bits  
Parameter 123/337 (wait time setting)............Must be set to 9999  
Parameter 124/341 (CR/LF selection)............Must be set to 1 (CR only)  
ASD parameter number entry radix is decimal (e.g. 10 = 1010)  
Any numerically-addressed parameter defined by the Mitsubishi protocol  
reference manual is directly accessible (base frequency = parameter #3,  
etc.). However, some ASD data objects do not have parameter numbers  
assigned by Mitsubishi. For these data objects, the additional parameter  
numbers indicated in Table 3 have been assigned. For further information  
56  
Download from Www.Somanuals.com. All Manuals Search And Download.  
on these parameters, please refer to the relevant Mitsubishi  
documentation.  
Table 3: Additional Mitsubishi Parameter Assignments  
Parameter  
Item  
Number  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1014  
1015  
1016  
1017  
Second parameter switch-over  
Frequency command (RAM)  
Frequency command (EEPROM)  
Frequency monitor  
Output current monitor  
Output voltage monitor  
Special monitor  
Special monitor selection number  
Most recent #1 and #2 alarms / alarm clear  
Most recent #3 and #4 alarms  
Most recent #5 and #6 alarms  
Most recent #7 and #8 alarms  
Inverter status monitor / operation command  
Operation mode acquisition  
All parameter clear  
Inverter reset  
57  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.6 Siemens FLN  
Currently, the XLTR-200 supports Siemens application number 2750. This  
application acts as an FLN to Mitsubishi gateway.  
13.6.1 Ports  
For this application, the FLN network must be connected to XLTR-200  
RS485 port A, and the Mitsubishi network must be connected to XLTR-200  
RS485 port B.  
The FLN port (RS485 port A) requires no configuration other than the FLN  
node address, which has a valid address range of 0 – 98. NOTE that the  
factory default value is 99.  
The baudrate and parity settings of the Mitsubishi port (RS485B port B)  
must be configured to match the serial settings of the connected ASD.  
NOTE that the factory default values for these settings are 9600 baud, no  
parity (8 data bits, 1 stop bit).  
The ASD connected to RS485 port B must be configured as address #1 to  
allow the gateway to communicate with it (parameter 117 or 331 = 1).  
Refer to section 12.3.2 for information about using the serial console  
interface to configure XLTR-200 ports.  
58  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.6.2 Supported Subpoints  
This application contains a predefined set of FLN subpoints (refer to Table 4).  
These points are static for this application, and cannot be edited.  
Table 4: Supported Subpoints  
Point  
Type  
Subpoint  
Name  
Factory  
Default  
On  
Text  
Off  
Text  
Point #  
Units Slope Intercept  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
29  
99  
LAO  
LAO  
LAI  
LAI  
LAI  
LAI  
LAO  
LAO  
LAO  
ADDRESS  
99  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
APPLICATION  
FREQ OUTPUT  
OUTPUT CUR  
OUTPUT VOLT  
SPECIAL MON  
MON SELECT  
ACCEL TIME  
DECEL TIME  
2750  
0
HZ  
A
0.01  
0.01  
0.1  
1
0
0
0
V
-
0
-
1
50  
SEC  
SEC  
0.1  
0.1  
1
100  
STOP  
STOP  
0
FWD  
REV  
STOP  
STOP  
LDO CMD FWD.STOP  
LDO CMD REV.STOP  
1
LAO  
LAO  
LAO  
LAO  
FREQ CMD  
MIN FREQ  
HZ  
HZ  
HZ  
HZ  
0.01  
0.01  
0.01  
0.01  
1
0
-
-
FREQ JUMP A  
FREQ JUMP B  
32767  
32767  
0
-
-
-
-
LDI ALARM OUTPUT  
ALARM  
RUN  
-
-
LDI  
LAO  
LDO  
LAO  
LDI  
LAO  
LDO  
RUNNING  
PID SET PNT  
RESET CMD  
OVRD TIME  
ASD COMM  
STOP  
0
1
STOP  
-
PCT  
0.01  
1
0
RESET  
-
1
HRS  
-
1
NO  
1
YES  
-
NO  
-
OPER MODE  
DAY.NIGHT  
0
-
1
DAY  
0
1
NIGHT  
DAY  
LAO ERROR STATUS  
1
Notes:  
Points not listed are not used in this application.  
All points have the same value for English units and SI units.  
59  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.6.3 Subpoint Details  
This section gives a brief overview of each subpoint, including any notable  
behavior or settings. Further information may be obtained by referring to  
applicable Mitsubishi ASD documentation.  
1. ADDRESS  
This is the FLN address of the drive. It can be changed via FLN or via the  
gateway’s serial console.  
2. APPLICATION  
This is the Application ID for FLN on the A500/F700 drives. This ID is assigned  
by Siemens for each unique application, and correlates directly to a particular  
point list approved at the time of release. The Application ID assigned to the  
A500/F700 drives is 2750.  
3. FREQ OUTPUT  
The output frequency of the drive in Hertz. Corresponds to drive parameter  
1003.  
4. OUTPUT CUR  
The output current of the drive in Amps. Corresponds to drive parameter 1004.  
5. OUTPUT VOLT  
The output voltage of the drive in Volts. Corresponds to drive parameter 1005.  
6. SPECIAL MON  
This is the point which allows monitoring of a selected special monitor item.  
The meaning of the value, scaling and engineering units displayed here  
depends on the setting of the MON SELECT item (point #7). Corresponds to  
drive parameter 1006.  
7. MON SELECT  
This point allows a selection of data codes to be written to it. Each designated  
code corresponds to a particular drive status item that will then be reflected in  
the SPECIAL MON item (point #6). Please refer to the applicable Mitsubishi  
documentation for a list of available codes. Corresponds to drive parameter  
1007.  
8. ACCEL TIME  
Acceleration time in seconds. Corresponds to drive parameter 7.  
9. DECEL TIME  
Deceleration time in seconds. Corresponds to drive parameter 8.  
10. CMD FWD.STOP  
Commands the drive to run forward or stop. Note that commanding this point is  
effective only when the drive is configured for network start/stop control.  
Corresponds to drive command parameter 1014, bit #1.  
60  
Download from Www.Somanuals.com. All Manuals Search And Download.  
11. CMD REV.STOP  
Commands the drive to run reverse or stop. Note that commanding this point is  
effective only when the drive is configured for network start/stop control.  
Corresponds to drive command parameter 1014, bit #2.  
12. FREQ CMD  
The frequency command of the drive in Hertz. Note that commanding this point  
is effective only when the drive is configured for network frequency control.  
Corresponds to drive parameter 1001.  
13. MIN FREQ  
The drive’s minimum allowable frequency in Hertz. Corresponds to drive  
parameter 2.  
14. FREQ JUMP A  
Sets the lower limit of the jump frequency for area #1. An FLN object value of  
32767 for this point corresponds to an internal drive value of 9999 (disabled).  
Corresponds to drive parameter 31.  
15. FREQ JUMP B  
Sets the upper limit of the jump frequency for area #1. An FLN object value of  
32767 for this point corresponds to an internal drive value of 9999 (disabled).  
Corresponds to drive parameter 32.  
16. ALARM OUTPUT  
Indicates whether or not the drive is in an alarm condition. Corresponds to  
drive status parameter 1014, bit #7.  
17. RUNNING  
Indicates whether or not the drive is running. Corresponds to drive status  
parameter 1014, bit #0.  
18. PID SET PNT  
PID set point. Note that commanding this point is effective only when the drive  
is in the PU operation or PU/external combined mode. Corresponds to drive  
parameter 133.  
19. RESET CMD  
Drive fault reset command. Corresponds to drive parameter 1017.  
20. OVRD TIME  
This is a mandatory FLN point required for compatibility with Siemens control  
systems. It has no effect in this application.  
21. ASD COMM  
Drive network communications health indicator. This point has a value of  
“YES” if the gateway is successfully communicating with the attached drive.  
Status points read from the gateway should be disregarded whenever this  
61  
Download from Www.Somanuals.com. All Manuals Search And Download.  
point’s value is “NO”. The drive network wiring, etc., should also be inspected  
in such a condition in order to identify the cause of the communication outage.  
22. OPER MODE  
Drive operation mode. Corresponds to drive parameter 1015.  
29. DAY.NIGHT  
This is a mandatory FLN point required for compatibility with Siemens control  
systems. It has no effect in this application.  
99. ERROR STATUS  
This is a mandatory FLN point required for compatibility with Siemens control  
systems. It has no effect in this application.  
62  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7 Toshiba 3-Series ASD Protocol  
The gateway can act as an RS232 master for Toshiba 3-series ASDs (G3,  
H3, E3 etc.) Use of the ICC “Toshiba 3-Series ASD Interface Cable” (ICC  
part #10603) or an equivalent cable is required to connect the gateway’s  
RS232 port to the drive’s on-board RS232 port.  
The following ASD parameters (in GROUP:COMMUNICATION SETTING  
PARAMETERS) must be set as indicated:  
RS232 BAUD RATE.........................2(9600 baud)  
NUMBER OF DATA BITS................1(8 bits)  
PARITY SETTING...........................0(even parity)  
Remember that the drive must be reset whenever communication-related  
parameters are changed in order to activate the change.  
All parameter writes use the drive’s RAM / EEPROM data write (“W”)  
command. For all writes that target the drive’s EEPROM, be sure to follow  
Toshiba’s guidelines regarding the number of times a specific parameter  
can be written without risk of EEPROM damage.  
Point parameter number entry radix is hexadecimal (e.g. 10 = 0x0010 or  
1610).  
The available ASD parameters are as indicated in the tables starting in  
section 13.7.1. For further details on how to interpret these tables, please  
refer to the Toshiba G3 RS232C Communications Manual (Toshiba part  
number 42709) or the Toshiba INV3-MODBUS-RTU Communications  
Manual (ICC part number 10028).  
63  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.1 Command Parameters  
Parameter  
Bit  
Function  
Bank  
Mask  
Adjustment Range  
0.00 400.00Hz  
Multiplier  
0001  
word  
Frequency command  
0
FFFF  
0.01  
Actual frequency will be limited by  
LL, UL and Fmax.  
0002  
0
RUN command  
Reserved  
0
0: Stop  
1: Run  
1
2
0: reverse  
Forward reverse run  
selection  
1: forward  
3
Acc/dec #1 / #2  
selection  
0: Acc / dec #1  
1: Acc / dec #2  
4
5
6
7
Reserved  
Reserved  
Reserved  
0: Normal (acc/dec mode)  
1: Jog mode  
Jog mode selection  
8
9
Feedback control  
0: Feedback valid  
1: Feedback invalid  
Compulsory DC  
injection braking mode  
0: No compulsory DC injection  
braking  
1: Compulsory DC injection  
below DC INJECTION  
START FREQUENCY  
A
B
C
D
Fundamental  
parameter switching  
0: V/F #1  
1: V/F #2  
Gate block command  
(coast stop command)  
0: Normal  
1: Gate block  
0: Does nothing  
1: Emergency off  
0: Does nothing  
1: Reset  
Emergency off  
command  
Reset command  
(trip clear)  
E
F
Reserved  
Reserved  
0003  
word  
RS232 command /  
frequency selection  
0
0003  
0000: FREQUENCY MODE  
SELECTION, COMMAND  
MODE SELECTION  
settings  
0001: RS232C commands valid  
0002: RS232C frequency valid  
0003: RS232C commands and  
frequency valid  
0004  
word  
Preset speed run  
command  
0
000F  
0000: Output frequency  
selected by FREQUENCY  
MODE SELECTION  
0001 000F: speeds 1 15  
64  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.2 Monitor Parameters  
Parameter  
Bit  
Function  
Bank  
Mask  
Adjustment Range  
Multiplier  
0005  
0006  
word  
0
Output frequency monitor  
0
0
FFFF  
0.00 ~ 400.00Hz  
0: Stopped  
0.01  
Run stop status  
1: Running  
1
2
Reserved  
0: Reverse  
Forward reverse status  
1: Forward  
3
Accel / decel #1 / #2 selection  
status  
0: Accel / decel #1  
1: Accel / decel #2  
4
5
6
7
Reserved  
Reserved  
Reserved  
Jog mode status  
0: Normal (accel /  
decel mode)  
1: Jog mode  
8
9
Feedback enable status  
0: Feedback invalid  
1: Feedback valid  
Compulsory DC injection  
braking mode  
0: DC injection braking  
inactive  
1: DC injection braking  
active  
A
B
C
Fundamental parameter  
switching  
0: V/F #1  
1: V/F #2  
Coast stop command status  
0: Normal  
1: Coast to stop  
0: Normal  
Emergency off command  
1: Emergency off  
D
E
Reserved  
Reserved  
F
Reserved  
0007  
0008  
word  
word  
Output current monitor  
0
0
00FF  
FFFF  
0 ~ 255%  
0 ~ 232%  
1
Output voltage monitor (Note  
0.1  
1)  
0009  
000A  
word  
word  
IV terminal analog input value  
0
0
FFFF  
FFFF  
0000 ~ FFFF (0% ~  
100%)  
1
1
0000 ~ 7FFF (-100% ~  
0%), 7FFF ~ FFFF  
(0% ~ 100%)  
RX terminal analog input  
value  
000B  
word  
Frequency command monitor  
0
FFFF  
0.01  
0000 9C40  
(0.00 400.00 Hz)  
000C  
000D  
word  
word  
Input voltage monitor (Note 1)  
0
0
FFFF  
FFFF  
0 ~ 255%  
0.1  
Input terminal status monitor  
Refer to Table 5 (page  
67)  
000E  
low  
byte  
Output terminal status  
monitor  
0
00FF  
FF00  
FFFF  
Refer to Table 6 (page  
67)  
high  
byte  
Inverter Status 2  
000F  
word  
Inverter Status 1  
0
Refer to Table 7 (page  
68)  
0010  
0011  
word  
Present trip  
0
0
00FF  
7F00  
high  
byte  
4th Past trip (most recent)  
low  
3rd past trip  
007F  
Refer to section  
byte  
13.7.16 for fault codes  
65  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Bit  
Function  
2nd past trip  
Bank  
Mask  
Adjustment Range  
Multiplier  
0012  
high  
byte  
0
7F00  
low  
byte  
1st past trip (oldest)  
007F  
FFFF  
FFFF  
0013  
0014  
word  
word  
word  
Pre-compensation output  
frequency  
0
0
0.01  
0.01  
0000 9C40  
(0.00 400.00 Hz)  
Post-compensation output  
frequency  
0000 9C40  
(0.00 400.00 Hz)  
0015  
0016  
Torque current monitor  
0
0
FFFF  
00FF  
(Note 2)  
0.01  
1
low  
Excitation current monitor  
00 FF (0 ~ 255%)  
byte  
high  
byte  
Reserved  
0017  
0018  
0019  
001A  
001B  
001C  
001D  
001E  
001F  
0020  
0021  
0022  
0023  
word  
word  
word  
word  
word  
word  
word  
word  
word  
PID feedback value  
Motor overload ratio  
Inverter overload ratio  
DBR overload ratio  
Input power (%)  
Input power (kW)  
Output power (%)  
Output power (kW)  
RR input  
0
0
FFFF  
FFFF  
FFFF  
FFFF  
FFFF  
FFFF  
FFFF  
FFFF  
FFFF  
(Note 2)  
0 ~ 65535  
0 ~ 65535  
0 ~ 65535  
0 ~ 6553.5  
(Note 3)  
(Note 2)  
(Note 2, Note 3)  
0 ~ 65535  
0.02  
100/65535  
100/65535  
100/65535  
0.1  
0
0
0
0
0
0.1  
0
0
100/65535  
Reserved  
0
Reserved  
Reserved  
low  
byte  
Inverter typeform monitor  
00FF  
Refer to Table 8 (page  
68)  
8
Input / output power units  
Command mode status  
0
0
0100  
0600  
0: 0.01kW  
1: 0.1kW  
9,A  
00: terminal  
01: panel  
10: option  
11: RS232C  
00: terminal  
01: panel  
B,C  
Frequency mode selection  
status  
0
1800  
10: option  
11: RS232C  
D,E,F  
Reserved  
0024  
0025  
Reserved  
word  
Output current (amps)  
FFFF  
0.0 ~ 6553.5 A  
0.1  
(Note 1).... These monitor voltage units are not affected by the setting of VOLTAGE UNITS SELECTIONin  
GROUP:UTILITY PARAMETERS; they are always in units of %.  
(Note 2).... These parameters use signed data (data values larger than 7FFFH are negative). If the parameter data is  
8000H or larger, the actual value can be obtained by: actual value = - [FFFFH - (parameter data) + 1].  
(Note 3).... If the input / output power units data is 0, the monitored data is in 0.01kW units, and the multiplier is 0.01.  
If the input / output power units data is 1, the monitored data is in 0.1kW units, and the multiplier is 0.1.  
These values are automatically set according to the inverter’s capacity.  
66  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 5: Input Terminal Status Monitor (parameter 000D)  
Single-Bit  
Read Mask  
Bit  
Input Terminal  
0
1
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
F
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
0001  
0002  
0004  
0008  
0010  
0020  
0040  
0080  
R
S1  
Lower  
Byte  
S2  
S3  
S4  
S5 (option)  
S6 (option)  
Single-Bit  
Read Mask  
Bit  
Input Terminal  
0
1
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
unused (always 0)  
unused (always 0)  
unused (always 0)  
unused (always 0)  
unused (always 0)  
S7 (option)  
Upper  
Byte  
terminal - CC open  
terminal - CC open  
terminal - CC open  
terminal - CC shorted  
terminal - CC shorted  
terminal - CC shorted  
0020  
0040  
0080  
RES  
ST  
Table 6: Output Terminal Status Monitor / Inverter Status 2 (parameter 000E)  
Single-Bit  
Read Mask  
Bit  
Output Terminal  
0
1
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
unused (always 0)  
unused (always 0)  
FAN  
Lower  
Byte  
OFF  
ON  
0004  
0008  
0010  
0020  
0040  
0080  
FL  
FLB-FLC shorted  
OFF  
FLA-FLC shorted  
ON  
MS relay  
OUT (option)  
RCH  
OUTB-OUTC shorted  
RCHA-RCHC open  
LOWA-LOWC open  
OUTA-OUTC shorted  
RCHA-RCHC shorted  
LOWA-LOWC shorted  
LOW  
Single-Bit  
Read Mask  
Bit  
Inverter Status  
0
1
bit 0  
bit 1  
bit 2  
bit 3  
accelerating  
decelerating  
for inverter use  
retry  
not accelerating  
not decelerating  
accelerating  
decelerating  
0001  
0002  
Upper  
Byte  
not retrying  
retrying  
0008  
running (including DC  
injection braking)  
bit 4  
stopped  
running  
0010  
bit 5  
bit 6  
bit 7  
for inverter use  
for inverter use  
tripped  
not tripped  
tripped  
0080  
67  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 7: Inverter Status 1 (parameter 000F)  
Single-Bit  
Read Mask  
Bit  
Inverter Status  
0
1
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
running (accel/decel)  
unused (always 0)  
forward / reverse  
accel/decel #1/#2  
for inverter use  
running  
0001  
forward  
accel/decel #2  
reverse  
0004  
0008  
Lower  
Byte  
accel/decel #1  
for inverter use  
for inverter use  
jog/normal mode  
normal (accel/decel)  
jog mode  
0080  
Single-Bit  
Read Mask  
Bit  
Inverter Status  
0
1
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
feedback ON/OFF  
DC injection braking  
V/F #1/#2  
OFF  
feedback active  
0001  
0002  
0004  
0008  
0010  
OFF  
DC inj. braking active  
V/F #1  
V/F #2  
Upper  
Byte  
coasting  
not coasting  
coasting  
emergency off  
for inverter use  
for inverter use  
for inverter use  
not in emergency off  
in emergency off  
Table 8: Inverter Typeform Codes  
230v Class  
460v Class  
575v Class  
Inverter  
Model  
Typeform  
Data (Hex)  
Inverter  
Model  
Typeform  
Data (Hex)  
Inverter  
Model  
Typeform  
Data (Hex)  
G3-2010  
G3-2015  
G3-2025  
G3-2035  
G3-2055  
G3-2080  
G3-2110  
G3-2160  
G3-2220  
G3-2270  
G3-2330  
G3-2400  
G3-4015  
G3-4025  
G3-4035  
G3-4055  
G3-4080  
G3-4110  
G3-4160  
G3-4220  
G3-4270  
G3-4330  
G3-4400  
G3-4500  
G3-4600  
G3-4750  
G3-410K  
G3-412K  
G3-415K  
G3-420K  
G3-425K  
G3-430K  
G3-6060  
G3-6120  
G3-6160  
G3-6220  
G3-6270  
G3-6330  
G3-6400  
G3-6500  
G3-6600  
G3-6750  
G3-610K  
G3-612K  
G3-615K  
G3-620K  
××21  
××22  
××23  
××24  
××25  
××26  
××27  
××28  
××29  
××2A  
××2B  
××2C  
××42  
××43  
××44  
××45  
××46  
××47  
××48  
××49  
××4A  
××4B  
××4C  
××4D  
××4E  
××4F  
××50  
××51  
××52  
××53  
××54  
××55  
××65  
××67  
××68  
××69  
××6A  
××6B  
××6C  
××6D  
××6E  
××6F  
××70  
××71  
××72  
××73  
68  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.3 Fundamental Parameters #1  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
MAXIMUM OUTPUT  
FREQUENCY  
0026  
0 / 1  
FFFF  
0.01  
0BB8 9C40 (30.00400.00)  
(*)  
(*)  
BASE FREQUENCY #1  
0027  
0028  
0 / 1  
0 / 1  
FFFF  
0030  
0.01  
09C4 9C40 (25.00400.00)  
0000: Input voltage level  
0020: Automatic setting  
0030: Stationary setting  
BASE FREQUENCY  
VOLTAGE SELECT  
(0)  
(1)  
(2)  
MAXIMUM OUTPUT  
VOLTAGE #1  
0029  
002A  
0 / 1  
0 / 1  
FFFF  
0020  
1
0000 0258 (0 600)  
REVERSE OPERATION  
DISABLE SELECT  
0000: Reverse allowed  
0020: Reverse not allowed  
0000 ~ Fmax  
(0)  
(1)  
UPPER LIMIT FREQUENCY  
LOWER LIMIT FREQUENCY  
VOLTS PER HERTZ  
002B  
002C  
002D  
0 / 1  
0 / 1  
0 / 1  
FFFF  
FFFF  
000F  
0.01  
0.01  
0000 UL, Fmax  
0000: Constant torque  
0001: Variable torque  
0002: Auto. torque boost  
(1)  
(2)  
(3)  
PATTERN  
(*)  
0006: #3 w/ auto. energy savings (4)  
000A: Vector control (5)  
000E: #5 w/ auto. energy savings (6)  
VOLTAGE BOOST  
#1  
002E  
002F  
0 / 1  
0 / 1  
FFFF  
FFFF  
0.1  
0000 012C (0.0 30.0)  
1, 2  
ACCELERATION TIME #1  
0.01  
0.1  
0001 EA60 (0.01~ 600.00)  
0001 EA60 (0.1~ 6000.0)  
0001 EA60 (0.01~ 600.00)  
0001 EA60 (0.1~ 6000.0)  
DECELERATION TIME #1  
0030  
0031  
0 / 1  
0 / 1  
FFFF  
0030  
0.01  
0.1  
ACC/DEC PATTERN #1  
SELECTION  
0000: Linear  
(0)  
(1)  
(2)  
(3)  
0010: Self-adjusting  
0020: S-Pattern #1  
0030: S-Pattern #2  
ACCEL/DECEL PATTERN  
ADJUST LOW  
0032  
0033  
0 / 1  
0 / 1  
00FF  
00FF  
1
1
0003 ~ 00FD (0 50) (Note 1)  
ACCEL/DECEL PATTERN  
ADJUST HIGH  
0003 ~ 00FD (0 50) (Note 1)  
Note 1:  
Parameter data = (desired setting x 5 + 3), converted to hexadecimal  
69  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.4 Fundamental Parameters #2  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
BASE FREQUENCY #2  
0034  
0035  
0 / 1  
0 / 1  
FFFF  
FFFF  
0.01  
1
09C4 9C40 (25.00 400.00)  
MAXIMUM OUTPUT  
VOLTAGE #2  
0000 0258 (0 600)  
VOLTAGE BOOST #2  
0036  
0037  
0 / 1  
0 / 1  
FFFF  
00FF  
0.1  
1
0000 012C (0.0 30.0)  
ELECTRONIC THERMAL  
PROTECT LVL #2  
000A 0064 (10 100)  
STALL PROTECTION  
SELECTION #2  
0038  
0 / 1  
0040  
0000: ON  
(0)  
(1)  
0040: OFF  
STALL PROTECTION  
0039  
003A  
0 / 1  
0 / 1  
00FF  
FFFF  
1
000A 00D7 (10 215)  
0
LEVEL #2  
ACCELERATION TIME #2  
0.1  
0001 EA60 (0.1~ 6000.0)  
0.01  
0001 EA60 (0.01~ 600.00)  
DECELERATION TIME #2  
003B  
003C  
0 / 1  
0 / 1  
FFFF  
0030  
0.1  
0001 EA60 (0.1~ 6000.0)  
0001 EA60 (0.01~ 600.00)  
0000: Linear  
0.01  
ACC/DEC PATTERN #2  
SELECTION  
(0)  
(1)  
(2)  
(3)  
0010: Self-adjusting  
0020: S-Pattern #1  
0030: S-Pattern #2  
ACC/DEC #1/#2 SWITCH  
FREQUENCY  
003D  
0 / 1  
FFFF  
0.01  
0000 Fmax  
13.7.5 Panel Control Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
DIRECTION SELECTION  
(FORWARD/REV)  
003E  
0 / 1  
0004  
0000: Reverse  
(0)  
(1)  
(0)  
(1)  
(1)  
(2)  
(1)  
(2)  
(0)  
(1)  
(2)  
(0)  
(1)  
0004: Forward  
STOP PATTERN  
SELECTION  
003F  
0040  
0041  
0042  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0040  
0004  
0008  
0030  
0000: Decelerated stop  
0040: Coast stop  
0000: V/F #1  
FUNDAMENTAL PARAM  
SWITCHING  
0004: V/F #2  
ACCEL/DECEL #1/#2  
SELECTION  
0000: Accel / decel #1  
0008: Accel / decel #2  
0000: All possible  
0010: OL only  
PANEL RESET  
SELECTION  
0020: OL, OC only  
0000: Feedback valid  
0001: Feedback invalid  
PANEL FEEDBACK  
CONTROL  
0043  
0 / 1  
0001  
70  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.6 Terminal Selection Parameters  
Parameter  
Function / Title  
INPUT TERMINAL  
Bank  
Mask  
Adjustment Range  
Multiplier  
0044  
0 / 1  
0001  
0000: Standard functions  
0001: Individual selections  
(0)  
(1)  
SELECTION  
“R” INPUT TERMINAL  
0045  
0046  
0047  
0048  
0049  
004A  
004B  
004C  
004D  
004E  
004F  
0050  
0051  
0052  
0053  
0054  
0055  
0 / 1  
FFFF  
0000 FFFF (0 54)  
FUNCTION  
“S1” INPUT  
TERMINAL FUNCTION  
Refer to Table 9 (page 73)  
“S2” INPUT  
TERMINAL FUNCTION  
“S3” INPUT  
TERMINAL FUNCTION  
“S4” INPUT  
TERMINAL FUNCTION  
“F” INPUT TERMINAL  
FUNCTION  
1
“RES” INPUT  
TERMINAL FUNCTION  
“ST” INPUT  
TERMINAL FUNCTION  
“S5” INPUT  
TERMINAL FUNCTION  
“S6” INPUT  
TERMINAL FUNCTION  
“S7” INPUT  
TERMINAL FUNCTION  
POTENTIAL TERMINAL  
FUNCTION  
R,S1-S7 TERMINAL  
RESPONSE TIME  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
00FF  
00FF  
00FF  
FFFF  
1
1
0001 0064 (1 100)  
0001 0064 (1 100)  
0001 0064 (1 100)  
0001 0064 (1 100)  
F INPUT TERMINAL  
RESPONSE TIME  
RES INPUT TERMINAL  
RESPONSE TIME  
1
ST INPUT TERMINAL  
RESPONSE TIME  
1
“RCH” CONTACTS  
FUNCTION  
0 FFFF (0 63)  
Refer to Table 10 (page 74)  
“RCH” CONTACTS DELAY  
TIME  
0056  
0057  
0058  
0 / 1  
0 / 1  
0 / 1  
00FF  
00FF  
FFFF  
1
1
0001 0064 (1 100)  
“RCH” CONTACTS HOLD  
TIME  
0001 0064 (1 100)  
“LOW” CONTACTS  
FUNCTION  
0 FFFF (0 63)  
Refer to Table 10 (page 74)  
“LOW” CONTACTS DELAY  
TIME  
0059  
005A  
005B  
0 / 1  
0 / 1  
0 / 1  
00FF  
00FF  
FFFF  
1
1
0001 0064 (1 100)  
“LOW” CONTACTS HOLD  
TIME  
0001 0064 (1 100)  
“FL” CONTACTS FUNCTION  
0 FFFF (0 63)  
Refer to Table 10 (page 74)  
“FL” CONTACTS DELAY  
TIME  
005C  
005D  
005E  
0 / 1  
0 / 1  
0 / 1  
00FF  
00FF  
FFFF  
1
1
0001 0064 (1 100)  
“FL” CONTACTS HOLD  
TIME  
0001 0064 (1 100)  
“OUT” CONTACTS  
FUNCTION  
0 FFFF (0 63)  
Refer to Table 10 (page 74)  
“OUT” CONTACTS DELAY  
TIME  
005F  
0060  
0 / 1  
0 / 1  
00FF  
00FF  
1
1
0001 0064 (1 100)  
“OUT” CONTACTS HOLD  
TIME  
0001 0064 (1 100)  
71  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
0 Fmax  
Multiplier  
LOW SPEED SIGNAL  
OUTPUT FREQ  
0061  
0 / 1  
FFFF  
0.01  
ACC/DEC COMPLETE  
DETECT BAND  
0062  
0063  
0064  
0065  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
FFFF  
FFFF  
FFFF  
00C0  
0.01  
0.01  
0.01  
0 Fmax  
0 Fmax  
0 Fmax  
SPEED REACH MAXIMUM  
FREQUENCY  
SPEED REACH MINIMUM  
FREQUENCY  
COMMERCIAL POWER/INV  
SWITCHING OUTPUT  
0000: OFF  
(0)  
(1)  
0040: Auto switch on trip  
0080: At COMMERCIAL POWER/  
INV SWITCH FREQ  
(2)  
00C0:Both (1) and (2)  
(3)  
COMMERCIAL  
0066  
0067  
0 / 1  
0 / 1  
FFFF  
0003  
0.01  
0 Fmax  
POWER/INV  
2, 3  
SWITCH FREQ  
“FP” OUTPUT TERMINAL  
PULSE FREQUENCY  
0000: 48f  
(0)  
(1)  
(2)  
(0)  
(1)  
0001: 96f  
0002: 360f  
0000: Standard  
0040: Fmax  
RR INPUT SPECIAL  
FUNCTION SELECT  
0068  
0 / 1  
00E0  
0080: TACC/TDEC multiplier (2)  
00C0: VB multiplication factor (3)  
0020: CL multiplication factor (4)  
72  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 9: Input Terminal Selections  
Setting  
Value  
Data  
(Hex)  
Setting  
Value  
Data  
(Hex)  
Function  
Function  
0
1
2
3
4
5
6
7
10C8  
011C  
021C  
041C  
081C  
20C8  
201B  
C0C9  
R
(reverse run)  
28  
29  
30  
31  
32  
33  
34  
35  
04AF  
08AF  
10AF  
20AF  
40AF  
04CE  
01C7  
02C7  
Binary bit #6  
Binary bit #7  
Binary bit #8  
Binary bit #9  
SS1  
SS2  
SS3  
SS4  
F
(preset speed selection)  
(preset speed selection)  
(preset speed selection)  
(preset speed selection)  
(forward run)  
Binary bit #10  
No effect  
RES  
ST  
(fault reset)  
UP/DOWN frequency setting (UP)  
(gate ON/OFF)  
UP/DOWN frequency setting  
(DOWN)  
8
0CC8  
081A  
101B  
021B  
041B  
JOG selection  
36  
37  
38  
39  
40  
04C7  
08C7  
10C7  
02B9  
C0C8  
UP/DOWN frequency clear  
PUSH-type RUN key  
PUSH-type STOP key  
No effect  
9
Accel / decel #1/#2 selection  
Emergency off  
10  
11  
12  
DC injection braking ON/OFF  
Fundamental parameter  
switching (V/F #2)  
Forward/reverse run selection  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
011B  
10CE  
20CE  
40CE  
80CE  
02CE  
01CE  
0AC9  
06C9  
10AE  
20AE  
Feedback control ON/OFF  
Pattern run selection #1  
Pattern run selection #2  
Pattern run selection #3  
Pattern run selection #4  
Pattern run continue signal  
Pattern run step trigger signal  
JOG forward run  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
20C7  
30C9  
0198  
0298  
0498  
0898  
1098  
2098  
4098  
8098  
08CE  
RUN  
Binary data write  
[LOCAL/REMOTE] key  
[MON] key  
[PRG] key  
[UP] key  
[DOWN] key  
[READ/WRITE] key  
[RUN] key  
JOG reverse run  
Binary bit #0  
[STOP/CLEAR] key  
Binary bit #1  
Commercial power / inverter  
switching signal  
24  
25  
26  
27  
40AE  
80AE  
01AF  
02AF  
Binary bit #2  
Binary bit #3  
Binary bit #4  
Binary bit #5  
52  
53  
54  
40C7  
10CB  
20CB  
Reserved for option use  
RR frequency switching input  
IV frequency switching input  
Note:  
In order for binary bit #0 #10 (setting values 22 32) and UP/DOWN frequency setting (setting values 34 &  
35) inputs to be valid, parameter FREQUENCY PRIORITY SELECTION #1or FREQUENCY PRIORITY  
SELECTION #2in GROUP:FREQUENCY SETTING PARAMETERSmust be set to 5 (BIN (binary setting or  
UP/DOWN setting)).  
73  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table 10: Output Terminal Selections (RCH, LOW, FL, OUT relay contacts)  
Setting  
Value  
Data  
(Hex)  
Setting  
Value  
Data  
(Hex)  
Function  
Function  
0
1
0000  
0100  
0200  
0300  
0400  
0500  
0600  
0700  
0800  
0900  
0A00  
Lower limit frequency  
/Lower limit frequency  
Upper limit frequency  
/Upper limit frequency  
Low speed signal  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
C5B7  
CDB7  
B5BB  
BDBB  
D5CF  
DDCF  
D5D8  
DDD8  
C5BB  
CDBB  
1400  
Executing emergency off  
/Executing emergency off  
Executing retry  
2
3
/Executing retry  
4
Pattern run switching output  
/Pattern run switching output  
PID deviation limit  
/PID deviation limit  
Run/stop  
5
/Low speed signal  
6
Accel/decel complete  
/Accel/decel complete  
Selected speed reach signal  
/Selected speed reach signal  
Fault  
7
8
9
/Run/stop  
10  
Severe fault (armature short, load-  
end short, open phase, output  
error, earth fault)  
11  
0B00  
/Fault  
43  
1500  
/Severe fault (armature short, load-  
end short, open phase, output  
error, earth fault)  
12  
13  
14  
15  
16  
17  
0C00  
0D00  
95B5  
9DB5  
85C5  
8DC5  
Fault other than earth fault or  
load-end overcurrent  
44  
45  
46  
47  
48  
49  
1600  
1700  
Non-severe fault (overload,  
overcurrent, overvoltage)  
/Fault other than earth fault or  
load-end overcurrent  
/Non-severe fault (overload,  
overcurrent, overvoltage)  
Overcurrent pre-alarm  
E5D8  
EDD8  
F5D8  
FDD8  
Commercial power / inverter  
switching output #1  
/Overcurrent pre-alarm  
Inverter overload pre-alarm  
/Inverter overload pre-alarm  
/Commercial power / inverter  
switching output #1  
Commercial power / inverter  
switching output #2  
/Commercial power / inverter  
switching output #2  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
95C5  
9DC5  
D5C5  
DDC5  
A5B4  
ADB4  
E5B4  
EDB4  
85B5  
8DB5  
85D1  
8DD1  
E5BB  
EDBB  
Motor overload pre-alarm  
/Motor overload pre-alarm  
Overheat pre-alarm  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
85C0  
8DC0  
F5B6  
FDB6  
1800  
1900  
A5D1  
ADD1  
1A00  
1B00  
A5B6  
ADB6  
1E00  
1F00  
Fan ON/OFF  
/Fan ON/OFF  
Executing JOG  
/Overheat pre-alarm  
/Executing JOG  
Overvoltage pre-alarm  
/Overvoltage pre-alarm  
Undervoltage alarm  
Local/remote operation  
/Local/remote operation  
Cumulative timer alarm  
/Cumulative timer alarm  
Communication error alarm  
/Communication error alarm  
F/R  
/Undervoltage alarm  
Undercurrent alarm  
/Undercurrent alarm  
Overtorque alarm  
/Overtorque alarm  
/F/R  
Braking resistor OL pre-alarm  
/Braking resistor OL pre-alarm  
Run preparation complete  
/Run preparation complete  
74  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.7 Special Control Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
START-UP FREQUENCY  
0069  
0 / 1  
FFFF  
0.01  
0000 03E8 (0.00 10.00)  
006A ∼  
006F  
Reserved  
END FREQUENCY  
RUN FREQUENCY  
0070  
0071  
0072  
0 / 1  
0 / 1  
0 / 1  
FFFF  
FFFF  
FFFF  
0.01  
0.01  
0.01  
0000 0BB8 (0.00 30.00)  
0000 Fmax  
RUN FREQUENCY  
HYSTERESIS  
0000 0BB8 (0.00 30.00)  
ENABLE JUMP  
FREQUENCIES  
0073  
0 / 1  
0080  
0000: Function OFF  
0080: Function ON  
(0)  
(1)  
JUMP FREQUENCY #1  
0074  
0075  
0 / 1  
0 / 1  
FFFF  
FFFF  
0.01  
0.01  
0000 Fmax  
JUMP FREQUENCY #1  
BANDWIDTH  
0000 0BB8 (0.00 30.00)  
JUMP FREQUENCY #2  
0076  
0077  
0 / 1  
0 / 1  
FFFF  
FFFF  
0.01  
0.01  
0000 Fmax  
1
JUMP FREQUENCY #2  
BANDWIDTH  
0000 0BB8 (0.00 30.00)  
JUMP FREQUENCY #3  
0078  
0079  
0 / 1  
0 / 1  
FFFF  
FFFF  
0.01  
0.01  
0000 Fmax  
JUMP FREQUENCY #3  
BANDWIDTH  
0000 0BB8 (0.00 30.00)  
007A ∼  
007F  
Reserved  
PWM CARRIER FREQUENCY  
(Note 1)  
0080  
0 / 1  
00FF  
0.1  
0005 0064 (0.5 10.0)  
Note 1: Actual adjustment range depends on inverter rating.  
75  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.8 Frequency Setting Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
FREQUENCY PRIORITY  
SELECTION #1  
0081  
0 / 1  
0007  
0001: RR  
(1)  
(2)  
(3)  
(4)  
(5)  
(1)  
(2)  
(3)  
(4)  
(5)  
(0)  
(1)  
(2)  
(3)  
(0)  
(1)  
0002: IV  
0003: RX  
0004: PG  
0005: BIN  
FREQUENCY PRIORITY  
SELECTION #2  
0082  
0 / 1  
0038  
0008: RR  
0010: IV  
0018: RX  
0020: PG  
0028: BIN  
ANALOG INPUT FILTER  
0083  
0084  
0 / 1  
0 / 1  
0003  
0002  
0000: No filter  
0001: Small filter  
0002: Medium filter  
0003: Large filter  
0000: Standard  
0002: Adjustable  
RR TERMINAL STANDARD  
OR ADJUSTABLE  
RR REFERENCE  
0085  
0086  
0087  
0088  
0089  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
FFFF  
00FF  
FFFF  
0004  
1
0.01  
1
0000 0064 (0 100)  
SETTING POINT #1  
RR REF POINT #1  
FREQUENCY  
0000 Fmax  
1
RR REFERENCE  
SETTING POINT #2  
0000 0064 (0 100)  
0000 Fmax  
RR REF POINT #2  
FREQUENCY  
0.01  
IV TERMINAL STANDARD  
OR ADJUSTABLE  
0000: Standard  
0004: Adjustable  
(0)  
(1)  
IV REFERENCE  
008A  
008B  
008C  
008D  
008E  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
FFFF  
00FF  
FFFF  
0008  
1
0.01  
1
0000 0064 (0 100)  
SETTING POINT #1  
IV REF POINT #1  
FREQUENCY  
0000 Fmax  
1
IV REFERENCE  
SETTING POINT #2  
0000 0064 (0 100)  
0000 Fmax  
IV REF POINT #2  
FREQUENCY  
0.01  
RX TERMINAL STANDARD  
OR ADJUSTABLE  
0000: Standard  
0008: Adjustable  
(0)  
(1)  
RX REFERENCE  
008F  
0 / 1  
00FF  
1
009C 00FF, 0000 0064  
(-100 -1, 0 100)  
-Fmax Fmax  
SETTING POINT #1  
RX REF POINT #1  
FREQUENCY  
0090  
0091  
0 / 1  
0 / 1  
FFFF  
00FF  
0.02  
1
1
RX REFERENCE  
SETTING POINT #2  
009C 00FF, 0000 0064  
(-100 -1, 0 100)  
-Fmax Fmax  
RX REF POINT #2  
FREQUENCY  
0092  
0093  
0 / 1  
0 / 1  
FFFF  
0010  
0.02  
PG TERMINAL STANDARD  
OR ADJUSTABLE  
0000: Standard  
0010: Adjustable  
(0)  
(1)  
PG REFERENCE  
0094  
0 / 1  
00FF  
1
009C 00FF, 0000 0064  
(-100 -1, 0 100)  
-Fmax Fmax  
SETTING POINT #1  
PG REF POINT #1  
FREQUENCY  
0095  
0096  
0 / 1  
0 / 1  
FFFF  
00FF  
0.02  
1
1
PG REFERENCE  
SETTING POINT #2  
009C 00FF, 0000 0064  
(-100 -1, 0 100)  
-Fmax Fmax  
PG REF POINT #2  
FREQUENCY  
0097  
0 / 1  
FFFF  
0.02  
76  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
0000: Standard  
Multiplier  
BINARY INPUT STD OR  
ADJUSTABLE  
0098  
0 / 1  
0001  
(0)  
(1)  
0001: Adjustable  
BINARY REF SETTING  
POINT #1  
0099  
009A  
009B  
009C  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
FFFF  
00FF  
FFFF  
1
0000 0064 (0 100)  
BINARY REF POINT  
#1 FREQUENCY  
0.02  
1
-Fmax Fmax  
1
BINARY REF SETTING  
POINT #2  
0000 0064 (0 100)  
-Fmax Fmax  
BINARY REF POINT  
#2 FREQUENCY  
0.02  
JOG RUN FREQUENCY  
009D  
009E  
0 / 1  
0 / 1  
FFFF  
00C0  
0.01  
0000 07D0 (0.00 20.00)  
0000: Decelerated stop  
0040: Coast stop  
JOG STOP  
METHOD  
(0)  
(1)  
(2)  
Other  
than 0  
0080: DC injection stop  
PRESET SPEED SELECTION  
009F  
0 / 1  
000F  
1
0000 000F (0 15)  
00A0 ∼  
00FF  
Reserved  
PRESET SPEED  
MODE  
ACTIVATION  
0100  
0 / 1  
0004  
0000: Deactivated  
0004: Activated  
(0)  
(1)  
PRESET SPEED  
#1 FREQUENCY  
0101  
0102  
1
1
FFFF  
040C  
0.01  
1
LL UL  
PRESET SPEED  
0004:  
0000:  
000C:  
0008:  
0404:  
0400:  
040C:  
0408:  
(0)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
#1 OPERATING  
Other  
MODE  
than 0  
PRESET SPEED  
0103  
0104  
1
1
FFFF  
040C  
0.01  
1
LL UL  
#2 FREQUENCY  
2 or  
higher  
PRESET SPEED  
#2 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
0105  
0106  
1
1
FFFF  
040C  
0.01  
1
LL UL  
#3 FREQUENCY  
3 or  
higher  
PRESET SPEED  
#3 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
0107  
0108  
1
1
FFFF  
040C  
0.01  
1
LL UL  
#4 FREQUENCY  
4 or  
higher  
PRESET SPEED  
#4 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
0109  
010A  
1
1
FFFF  
040C  
0.01  
1
LL UL  
#5 FREQUENCY  
5 or  
higher  
PRESET SPEED  
#5 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
010B  
010C  
1
1
FFFF  
040C  
0.01  
1
LL UL  
#6 FREQUENCY  
6 or  
higher  
PRESET SPEED  
#6 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
010D  
010E  
1
1
FFFF  
040C  
0.01  
1
LL UL  
#7 FREQUENCY  
7 or  
higher  
PRESET SPEED  
#7 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#8 FREQUENCY  
010F  
1
FFFF  
0.01  
LL UL  
8 or  
77  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
higher  
PRESET SPEED  
#8 OPERATING  
MODE  
0110  
1
040C  
Same as PRESET SPEED #1  
OPERATING MODE  
1
PRESET SPEED  
#9 FREQUENCY  
0111  
0112  
1
1
FFFF  
040C  
0.01  
1
LL UL  
9 or  
higher  
PRESET SPEED  
#9 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#10 FREQUENCY  
0113  
0114  
1
1
FFFF  
040C  
0.01  
1
LL UL  
10 or  
higher  
PRESET SPEED  
#10 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#11 FREQUENCY  
0115  
0116  
1
1
FFFF  
040C  
0.01  
1
LL UL  
11 or  
higher  
PRESET SPEED  
#11 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#12 FREQUENCY  
0117  
0118  
1
1
FFFF  
040C  
0.01  
1
LL UL  
12 or  
higher  
PRESET SPEED  
#12 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#13 FREQUENCY  
0119  
011A  
1
1
FFFF  
040C  
0.01  
1
LL UL  
13 or  
higher  
PRESET SPEED  
#13 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#14 FREQUENCY  
011B  
011C  
1
1
FFFF  
040C  
0.01  
1
LL UL  
14 or  
higher  
PRESET SPEED  
#14 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
PRESET SPEED  
#15 FREQUENCY  
011D  
011E  
1
1
FFFF  
040C  
0.01  
1
LL UL  
15  
PRESET SPEED  
#15 OPERATING  
MODE  
Same as PRESET SPEED #1  
OPERATING MODE  
78  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.9 Protection Function Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
DYNAMIC BRAKING  
SELECTION  
011F  
0 / 1  
0003  
0000: no dynamic braking  
(0)  
0001: with dynamic braking, no DBR  
overload trip  
(1)  
0003: with dynamic braking and DBR  
overload trip  
(2)  
BRAKING  
0120  
0121  
0 / 1  
0 / 1  
FFFF  
FFFF  
0.1  
000A 2710 (1.0 1000)  
RESISTOR VALUE  
2
BRAKING  
RESISTOR POWER  
RATING  
0.01  
0001 EA60 (0.01 600.00)  
OVERVOLTAGE STALL  
PROTECTION  
0122  
0 / 1  
0004  
0000: ON  
(0)  
(1)  
0004: OFF  
DC INJECTION START  
FREQUENCY  
0123  
0124  
0 / 1  
0 / 1  
FFFF  
00FF  
0.01  
1
0000 2EE0 (0.00 120.00)  
DC INJECTION  
0000 0064 (0 100)  
CURRENT  
Other  
than  
0
MAGNITUDE  
DC INJECTION  
TIME  
0125  
0126  
0 / 1  
0 / 1  
00FF  
0040  
0.1  
0000 0064 (0.0 10.0)  
FWD/REV DC  
INJECTION PRIORITY  
CTRL  
0000: OFF  
0040: ON  
(0)  
(1)  
MOTOR SHAFT  
0127  
0128  
0 / 1  
0 / 1  
0080  
0030  
0000: OFF  
(0)  
(1)  
(0)  
(1)  
(2)  
STATIONARY CTRL  
0080: ON  
EMERGENCY OFF MODE  
SELECTION  
0000: Coast stop  
0010: Decelerated stop  
0020: DC injection stop  
EMERGENCY OFF  
DC INJECTION  
TIME  
0129  
0 / 1  
00FF  
0.1  
0000 0064 (0.0 10.0)  
2
NUMBER OF RETRY  
ATTEMPTS  
012A  
012B  
0 / 1  
0 / 1  
00FF  
00FF  
1
0000 000A (0 10)  
TIME BETWEEN  
Other  
than  
0
0.1  
0000 0064 (0.0 10.0)  
RETRY  
ATTEMPTS  
REGENERATION POWER  
RIDE-THROUGH  
012C  
012D  
0 / 1  
0 / 1  
0008  
00FF  
0000: OFF  
0008: ON  
(0)  
(1)  
REGENERATION  
0.1  
0000 00FA (0.0 25.0)  
RIDE-THROUGH  
TIME  
1
AUTO-RESTART (MOTOR  
SPEED SEARCH)  
012E  
0 / 1  
0018  
0000: OFF  
(0)  
(1)  
(2)  
(3)  
0008: On power failure  
0010: On ST make/break  
0018: Both (1) and (2)  
ELECTRONIC THERMAL  
PROTECT LVL #1  
012F  
0130  
0131  
0132  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
FFFF  
00FF  
0030  
1
0.01  
10  
000A 0064 (10 100)  
0000 0BB8 (0.00 30.00)  
0001 00F0 (10 2400)  
OVERLOAD REDUCTION  
START FREQ  
MOTOR 150% OVERLOAD  
TIME LIMIT  
OVERLOAD SELECTION  
0000: with motor overload trip,  
without soft-stall  
(0)  
(1)  
(2)  
(3)  
0010: with motor overload trip and  
soft-stall  
0020: without soft-stall or motor  
overload trip  
0030: with soft-stall, without motor  
overload trip  
79  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
STALL PROTECTION  
ENABLE  
0133  
0 / 1  
0040  
0000: ON  
(0)  
(1)  
0040: OFF  
STALL  
0134  
0135  
0 / 1  
0 / 1  
00FF  
0080  
1
000A 00D7 (10 215)  
PROTECTION  
0
CURRENT LEVEL  
UNDERVOLTAGE TRIP  
SELECTION  
0000: Trip disabled  
(0)  
(1)  
0080: Trip (during run)  
UNDERVOLTAGE DETECT  
TIME  
0136  
0137  
0 / 1  
0 / 1  
FFFF  
0008  
0.01  
0000 03E8 (0.00 10.00)  
LOW CURRENT DETECT  
SELECTION  
0000: Trip disabled  
(0)  
(1)  
0008: Trip on detection  
LOW CURRENT DETECT  
LEVEL  
0138  
0139  
0140  
0 / 1  
0 / 1  
0 / 1  
00FF  
00FF  
0003  
1
1
0000 0064 (0 100)  
LOW CURRENT  
DETECTION TIME  
0000 00FF (0 255)  
OUTPUT SHORT-  
CIRCUIT DETECTION  
SELECT  
0000: Standard motor  
(0)  
(1)  
0001: High-speed motor  
0002: Positioning use (standard  
motor)  
(2)  
0003: Positioning use (high-speed  
motor)  
(3)  
(0)  
(1)  
OVERTORQUE TRIP  
SELECTION  
0141  
0 / 1  
0040  
0000: Trip disabled  
0040: Trip enabled  
OVERTORQUE TRIP  
LEVEL  
0142  
0143  
0 / 1  
0 / 1  
00FF  
0002  
1
0000 00C8 (0 200)  
FAULT TRIP EEPROM  
SAVE ENABLE  
0000: Data cleared when powered  
OFF  
(0)  
(1)  
0002: Data retained when powered  
OFF  
COOLING FAN CONTROL  
SELECTION  
0144  
0145  
0 / 1  
0 / 1  
0004  
FFFF  
0000: Automatic (temperature  
detection)  
(0)  
(1)  
0004: Always ON  
CUMULATIVE RUN  
TIMER ALARM SETTING  
0.02  
0000 C34B (0.00 999.90)  
80  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.10 Pattern Run Control Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
PATTERN RUN SELECTION  
0146  
0 / 1  
0008  
0000: OFF  
(0)  
(1)  
(0)  
(1)  
(0)  
0008: ON  
PATTERN RUN  
CONTINUE MODE  
0147  
1
0 / 1  
1
0001  
00FF  
0000: reset on stop  
0001: switch when done  
0000: Skip  
PATTERN GROUP #1  
SPEED #0  
0148  
0149  
0150  
0151  
0152  
0153  
0154  
0155  
0156  
0157  
0158  
0159  
015A  
015B  
015C  
015D  
015E  
015F  
0160  
0161  
0162  
0163  
0164  
0165  
0166  
0167  
0168  
0169  
1
PATTERN GROUP #1  
SPEED #1  
0001 000F: Speeds 1 15  
PATTERN GROUP #1  
SPEED #2  
PATTERN GROUP #1  
SPEED #3  
PATTERN GROUP #1  
SPEED #4  
PATTERN GROUP #1  
SPEED #5  
PATTERN GROUP #1  
SPEED #6  
PATTERN GROUP #1  
SPEED #7  
PATTERN GROUP #1  
NUMBER OF CYCLES  
0 / 1  
1
00FF  
00FF  
1
1
0001 00FF: 1 255  
0000: Skip  
PATTERN GROUP #2  
SPEED #0  
(0)  
(0)  
(0)  
PATTERN GROUP #2  
SPEED #1  
0001 000F: Speeds 1 15  
PATTERN GROUP #2  
SPEED #2  
PATTERN GROUP #2  
SPEED #3  
PATTERN GROUP #2  
SPEED #4  
PATTERN GROUP #2  
SPEED #5  
PATTERN GROUP #2  
SPEED #6  
PATTERN GROUP #2  
SPEED #7  
PATTERN GROUP #2  
NUMBER OF CYCLES  
0 / 1  
1
00FF  
00FF  
1
1
0001 00FF: 1 255  
0000: Skip  
PATTERN GROUP #3  
SPEED #0  
PATTERN GROUP #3  
SPEED #1  
0001 000F: Speeds 1 15  
PATTERN GROUP #3  
SPEED #2  
PATTERN GROUP #3  
SPEED #3  
PATTERN GROUP #3  
SPEED #4  
PATTERN GROUP #3  
SPEED #5  
PATTERN GROUP #3  
SPEED #6  
PATTERN GROUP #3  
SPEED #7  
PATTERN GROUP #3  
NUMBER OF CYCLES  
0 / 1  
1
00FF  
00FF  
1
1
0001 00FF: 1 255  
PATTERN GROUP #4  
SPEED #0  
0000: Skip  
81  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
PATTERN GROUP #4  
SPEED #1  
016A  
0001 000F: Speeds 1 15  
PATTERN GROUP #4  
SPEED #2  
016B  
016C  
016D  
016E  
016F  
0170  
0171  
0172  
PATTERN GROUP #4  
SPEED #3  
PATTERN GROUP #4  
SPEED #4  
PATTERN GROUP #4  
SPEED #5  
PATTERN GROUP #4  
SPEED #6  
PATTERN GROUP #4  
SPEED #7  
PATTERN GROUP #4  
NUMBER OF CYCLES  
0 / 1  
1
00FF  
00FF  
1
0001 00FF: 1 255  
SPEED #1 CONTINUE  
MODE  
0000: Count in seconds from time  
of activation  
(0)  
0001: Count in minutes from time  
of activation  
(1)  
0002: Count in seconds from  
speed reach  
(2)  
(3)  
(4)  
(5)  
0003: Count in minutes from  
speed reach  
0004: Non-stop (continue until  
STOP command)  
0005: Continue until next step  
command  
SPEED #1  
0173  
0174  
0175  
0176  
0177  
0178  
0179  
017A  
017B  
017C  
017D  
017E  
017F  
0180  
0181  
0182  
0183  
0184  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
1
1
0000 1F40 (0 8000)  
< 4  
DRIVE TIME  
SPEED #2 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
SPEED #2  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #3 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #3  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #4 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #4  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #5 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #5  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #6 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #6  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #7 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #7  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #8 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #8  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #9 CONTINUE  
MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #9  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #10  
CONTINUE MODE  
Same as SPEED #1 CONTINUE  
MODE  
82  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
SPEED #10  
Bank  
Mask  
Adjustment Range  
Multiplier  
0185  
1
FFFF  
1
0000 1F40 (0 8000)  
< 4  
DRIVE TIME  
SPEED #11  
0186  
0187  
0188  
0189  
018A  
018B  
018C  
018D  
018E  
018F  
1
1
1
1
1
1
1
1
1
1
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
00FF  
FFFF  
Same as SPEED #1 CONTINUE  
1
CONTINUE MODE  
MODE  
SPEED #11  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #12  
CONTINUE MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #12  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #13  
CONTINUE MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #13  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #14  
CONTINUE MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #14  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
SPEED #15  
CONTINUE MODE  
Same as SPEED #1 CONTINUE  
MODE  
1
SPEED #15  
DRIVE TIME  
0000 1F40 (0 8000)  
< 4  
83  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.11 Feedback Control Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
FEEDBACK CONTROL  
SELECTION  
0190  
0 / 1  
0060  
0020: No feedback  
(0)  
(1)  
(2)  
(1)  
(2)  
(3)  
(4)  
(5)  
0040: PID control  
0060: Speed feedback  
0004: RR input  
FEEDBACK INPUT  
SIGNAL  
SELECTION  
0191  
0 / 1  
001C  
0008: IV input  
000C: RX input  
0010: PG feedback  
0014: RS232C input  
0018: Communication/12-bit binary  
interface board  
(6)  
(7)  
001C: BIN input  
1,  
2
PROPORTIONAL  
GAIN  
0192  
0 / 1  
00FF  
0.01  
0001 00FF (0.01 2.55)  
INTEGRAL GAIN  
0193  
0194  
0 / 1  
0 / 1  
FFFF  
00FF  
0.01  
0.1  
0001 8CA0 (0.01 360.00)  
ANTI-HUNTING  
GAIN  
0000 00FF (0.0 25.5)  
LAG TIME  
CONSTANT  
0195  
0196  
0197  
0 / 1  
0 / 1  
0 / 1  
00FF  
FFFF  
0080  
1
0000 00FF (0 255)  
PID LOWER LIMIT  
FREQUENCY  
0.01  
0 Fmax  
PID DEVIATION LIMIT  
SELECTION  
0000: No PID deviation limit  
0080: PID deviation limited  
(0)  
(1)  
PID DEVIATION  
0198  
0199  
019A  
019B  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
00FF  
FFFF  
0001  
1
1
0000 0032 (0 50)  
0000 0032 (0 50)  
0001 270F (1 9999)  
UPPER LIMIT  
1
PID DEVIATION  
LOWER LIMIT  
PG INPUT: NUMBER OF  
PULSES  
1
PG INPUT: NUMBER OF  
PHASES  
0000: Single-phase input  
0001: Two-phase input  
0000: OFF  
(1)  
(2)  
(0)  
(1)  
DROOPING CONTROL  
ENABLE  
019C  
0 / 1  
0002  
0002: ON  
DROOPING  
019D  
019E  
0 / 1  
0 / 1  
00FF  
0007  
0.1  
0000 0064 (0 10.0)  
1
CONTROL AMOUNT  
OVERRIDE CONTROL  
SELECTION  
0000: OFF  
(0)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(0)  
(1)  
(2)  
(3)  
(4)  
0001: FCRR  
0002: FCIV  
0003: FCRX  
0004: FCPG  
0005: FCPNL  
0006: FCOPT  
0007: FCMLT  
0000: Reference  
0008: KRR  
OVERRIDE  
MULTIPLIER  
INPUT SELECTION  
019F  
01A0  
0 / 1  
0038  
0010: KIV  
7
0018: KRX  
0020: KBIN  
OVERRIDE CHANGE  
MULTIPLIER  
0 / 1  
FFFF  
0.1  
FC18 03E8 (-100.0 100.0)  
01A1 ∼  
0203  
Reserved  
84  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.12 Communication Setting Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
INVERTER ID NUMBER  
0204  
0205  
1
1
00FF  
0007  
1
0000 00FF (0 255)  
COMMUNICATION  
SELECTION  
0000: OFF  
0001: RS485  
(0)  
(1)  
0002: Modbus, F10, DeviceNet (2)  
0003: TOSLINE S-20  
(3)  
(4)  
(5)  
(6)  
0004: 12 bit binary input  
0005: 3-digit BCD (0.1Hz)  
0006: 3-digit BCD (1Hz)  
MASTER/SLAVE  
SELECTION  
0206  
1
0018  
0000: Slave  
(0)  
0008: Master (freq. command) (1)  
0010: Master (output frequency) (2)  
1
RS485 BAUD RATE  
0207  
0208  
1
1
0004  
0003  
0000: Normal mode  
0004: High-speed mode  
0000: OFF  
(0)  
(1)  
(0)  
(1)  
(2)  
(3)  
TOSLINE-F10  
COMMAND INPUT  
0001: Frequency command  
0002: Command input  
0003: Both (1) and (2)  
TOSLINE-F10  
MONITOR OUTPUT  
0209  
1
003C  
0000: (0)  
0004: (1)  
0008: (2)  
000C: (3)  
0010: (4)  
0014: (5)  
0018: (6)  
001C: (7)  
0020: (8)  
0024: (9)  
0028: (10)  
002C: (11)  
0030: (12)  
0034: (13)  
0038: (14)  
003C: (15 )  
2
TOSLINE-F10 COMM  
ERROR MODE  
020A  
1
0080  
0000: Data cleared  
0080: Data retained  
(0)  
(1)  
TOSLINE-S20  
020B  
020C  
020D  
020E  
020F  
1
1
1
1
1
FFFF  
FFFF  
001F  
001F  
0001  
1
1
1
1
1
0000 03FF (0 1023)  
0000 03FF (0 1023)  
0000 001F (0 31)  
0000 001F (0 31)  
RECEIVE ADDRESS  
TOSLINE-S20  
TRANSMIT ADDRESS  
TOSLINE-S20  
COMMAND INPUT  
TOSLINE-S20  
MONITOR OUTPUT  
TOSLINE-S20 FREQ  
REF ADDR SELECT  
0000: Disable  
0001: Enable  
(0)  
(1)  
3
TOSLINE-S20  
FREQ REFERENCE  
ADDR  
0210  
1
FFFF  
1
0000 03FF (0 1023)  
1
TOSLINE-S20 COMM  
ERROR MODE  
0211  
0212  
0213  
1
1
0002  
0004  
0020  
0000: Data cleared  
0002: Data retained  
0000: No effect  
0004: Reset  
(0)  
(1)  
(0)  
(1)  
(0)  
(1)  
1
1
TOSLINE-S20 COMM  
OPTION RESET  
RS485/12-BIT BINARY  
BIAS,GAIN  
0 / 1  
0000: OFF  
0020: ON  
RS485/12-BIT  
0214  
0215  
0216  
0217  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
00FF  
FFFF  
00FF  
FFFF  
1
0000 0064 (0 100)  
0000 Fmax (0 Fmax)  
0000 0064 (0 100)  
0000 Fmax (0 Fmax)  
BINARY POINT #1  
RS485/12-BIT  
BINARY PT. #1 FREQ  
0.01  
1
1
RS485/12-BIT  
BINARY POINT #2  
RS485/12-BIT  
BINARY PT. #2 FREQ  
0.01  
85  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.13 AM/FM Terminal Adjustment Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
FM TERMINAL FUNCTION  
SELECTION  
0218  
0 / 1  
FFFF  
1194: Pre-comp ref. frequency  
6686: Post-comp output freq.  
1500: Frequency setting  
2576: Output current  
(0)  
(1)  
(2)  
(3)  
2689: DC voltage  
(4)  
5668: Output voltage  
(5)  
3684: Torque current  
(6)  
2688: Excitation current  
7506: PID feedback value  
0584: Motor overload ratio  
0586: Inverter overload ratio  
0588: DBR overload ratio  
835C: Input power  
(7)  
(8)  
(9)  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
835E: Output power  
A000: Fixed output  
2304: Peak output current  
8302: Peak input voltage  
FREQUENCY METER  
ADJUSTMENT  
0219  
021A  
021B  
0 / 1  
0 / 1  
0 / 1  
FFFF  
FFFF  
FFFF  
1
1
0000 FFFF  
AM TERMINAL FUNCTION  
SELECTION  
Same as FM TERMINAL FUNCTION  
SELECTION  
CURRENT METER  
ADJUSTMENT  
0000 FFFF  
86  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.14 Utility Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
INDUSTRIAL  
021C  
0 / 1  
00FF  
0000: Standard shipment setting  
0001: Pump application  
0002: Fan application  
(0)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(0)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(0)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(0)  
(1)  
(2)  
APPLICATIONS  
(previous setting monitor  
for read use only)  
0003: Conveyor application  
0004: Hoist application  
0005: Textiles application  
0006: Machine tools application  
0000: Does nothing  
INDUSTRIAL  
APPLICATIONS  
021D  
0 / 1  
00FF  
0011: Pump application  
0012: Fan application  
(for write use)  
(*)  
(*)  
0013: Conveyor application  
0014: Hoist application  
0015: Textiles application  
0016: Machine tools application  
0000: Does nothing  
STANDARD SETTING  
MODE SELECTION  
021E  
0 / 1  
00FF  
0001: 50Hz standard settings  
0002: 60Hz standard settings  
0003: Factory settings  
0004: Trip clear  
0005: Save user-set parameters  
0006: TYPE 5 reset  
0007: Initialize typeform  
0000: Only RS232C valid  
0001: Terminal input valid  
0002: Panel input valid  
COMMAND MODE  
SELECTION  
021F  
0220  
0221  
0 / 1  
0 / 1  
0 / 1  
0007  
0038  
00FB  
1
0003: Communication interface input  
valid  
(3)  
0004: local/remote valid  
0000: Only RS232C valid  
0008: Terminal input valid  
0010: Panel input valid  
(4)  
(0)  
(1)  
(2)  
FREQUENCY MODE  
SELECTION  
0018: Communication/12-bit binary  
interface input valid  
(3)  
(4)  
0020: local/remote valid  
PANEL OPERATION  
MODE SELECTION  
0000 003F (0 63)  
(except 0004, 0008, 000C....)  
PASS NUMBER  
0222  
0223  
0224  
0225  
0226  
0227  
0 / 1  
2
00FF  
FFFF  
FFFF  
FFFF  
00FF  
FFFF  
1
0000 0063 (0 99)  
(Monitor only)  
CPU VERSION  
1
ROM VERSION  
3
(Monitor only)  
EEPROM VERSION  
INVERTER TYPEFORM  
1
(Monitor only)  
0
(Monitor only)  
STATUS MONITOR #1  
DISPLAY SELECT  
0 / 1  
0001 0010 (1 16)  
STATUS MONITOR #2  
DISPLAY SELECT  
0228  
0229  
022A  
022B  
022C  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
FFFF  
FFFF  
FFFF  
FFFF  
0003  
1
1
0001 0010 (1 16)  
0001 0010 (1 16)  
0001 0010 (1 16)  
0000 4E20 (0.00 200.00)  
STATUS MONITOR #3  
DISPLAY SELECT  
STATUS MONITOR #4  
DISPLAY SELECT  
1
FREQUENCY UNITS  
SCALE FACTOR  
0.01  
FREQUENCY DISPLAY  
RESOLUTION  
0000: 1Hz  
(0)  
(1)  
(2)  
0001: 0.1Hz  
0002: 0.01Hz  
87  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
0000: 0.1 sec.  
Multiplier  
(0)  
(1)  
(0)  
(1)  
(0)  
(1)  
(0)  
(1)  
(0)  
(1)  
(0)  
(1)  
(0)  
(1)  
ACC/DEC TIME UNITS  
SELECTION  
022D  
0 / 1  
0004  
0004: 0.01 sec.  
0000: %  
CURRENT UNITS  
SELECTION  
022E  
022F  
0 / 1  
0 / 1  
0008  
0010  
0008: A  
0000: %  
VOLTAGE UNITS  
SELECTION  
0010: V  
0000: Blind  
0001: Selective unblinding  
0000: Blind  
0040: Unblind  
0000: Blind  
0080: Unblind  
0000: Blind  
0001: Unblind  
BLIND FUNCTION  
SELECTION  
0230  
0231  
0 / 1  
0 / 1  
0001  
0040  
FUNDAMENTAL  
PARAMS #2 BLIND  
PANEL CONTROL  
PARAMS BLIND  
0232  
0233  
0 / 1  
0 / 1  
0080  
0001  
TERMINAL  
SELECTION  
PARAMS BLIND  
SPECIAL CONTROL  
PARAMS BLIND  
0234  
0235  
0 / 1  
0 / 1  
0002  
0004  
0000: Blind  
(0)  
(1)  
(0)  
(1)  
0002: Unblind  
0000: Blind  
FREQUENCY  
SETTING PARAMS  
BLIND  
0004: Unblind  
PROTECTION  
FUNCTION PARAMS  
BLIND  
0236  
0237  
0238  
0 / 1  
0 / 1  
0 / 1  
0008  
0010  
0020  
0000: Blind  
(0)  
(1)  
0008: Unblind  
PATTERN RUN  
CONTROL PARAMS  
BLIND  
0000: Blind  
(0)  
(1)  
0010: Unblind  
FEEDBACK  
CONTROL PARAMS  
BLIND  
0000: Blind  
(0)  
(1)  
0020: Unblind  
COMMUNICATION  
0239  
023A  
0 / 1  
0 / 1  
0040  
0080  
0000: Blind  
(0)  
(1)  
(0)  
(1)  
PARAMS BLIND  
0040: Unblind  
0000: Blind  
1
INDUSTRIAL  
APPL:PUMP  
PARAMS BLIND  
0080: Unblind  
INDUSTRIAL  
APPL:FAN PARAMS  
BLIND  
023B  
023C  
023D  
023E  
023F  
0240  
0241  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0 / 1  
0001  
0002  
0004  
0008  
0010  
0001  
0004  
0000: Blind  
(0)  
(1)  
0001: Unblind  
INDUSTRIAL  
APPL: CONVEYOR  
BLIND  
0000: Blind  
(0)  
(1)  
0002: Unblind  
INDUSTRIAL  
APPL: HOIST  
BLIND  
0000: Blind  
(0)  
(1)  
0004: Unblind  
INDUSTRIAL  
APPL: TEXTILES  
BLIND  
0000: Blind  
(0)  
(1)  
0008: Unblind  
INDUST  
APPL:MACHINE  
TOOLS BLIND  
0000: Blind  
(0)  
(1)  
0010: Unblind  
AM/FM  
ADJUSTMENT  
PARAMS BLIND  
0000: Blind  
(0)  
(1)  
0001: Unblind  
MOTOR  
PARAMETERS  
BLIND  
0000: Blind  
(0)  
(1)  
0004: Unblind  
88  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.15 Motor Rating Parameters  
Parameter  
Function / Title  
Bank  
Mask  
Adjustment Range  
Multiplier  
NUMBER OF MOTOR POLES  
0242  
0 / 1  
00FF  
0001:  
0002:  
0003:  
0004:  
0005:  
0006:  
0007:  
0008:  
(2)  
2
(4)  
(6)  
(8)  
(10)  
(12)  
(14)  
(16)  
MOTOR RATED CAPACITY  
MOTOR TYPE  
0243  
0244  
0 / 1  
0 / 1  
FFFF  
0030  
0.1  
0001 270F (0.1 999.9)  
0000:Toshiba EQPIII motor  
0010:Toshiba STD motor  
0020:Other  
(0)  
(1)  
(2)  
MOTOR RATED  
VOLTAGE  
0245  
0 / 1  
00FF  
5
2
0012 0078 (90 600)  
(230 / 460v units)  
0246  
0247  
(575v units)  
001A 00AC (130 860)  
MOTOR RATED  
FREQUENCY  
2
0 / 1  
00FF  
0000 00C8 (0 400)  
MOTOR RATED RPM  
0248  
0249  
0 / 1  
0
FFFF  
0008  
1
0000 270F (0 9999)  
0000: Auto-tuning disabled  
0008: Auto-tuning enabled  
0000: Small  
AUTO-TUNING ENABLE  
(0)  
(1)  
(0)  
(1)  
(2)  
(3)  
LOAD MOMENT OF INERTIA  
024A  
0 / 1  
00C0  
0040: Medium  
0080: Large  
00C0: Very large  
89  
Download from Www.Somanuals.com. All Manuals Search And Download.  
13.7.16 Inverter Fault Codes  
Data  
LCD Display Message  
(Hex)  
Explanation  
NO ERROR  
No error has been recorded since the last inverter reset or trip clear  
××00  
××01  
××02  
××03  
××04  
××05  
××06  
××07  
××08  
××09  
××0A  
××0B  
××0C  
××0D  
××0E  
××0F  
××10  
××11  
××12  
××13  
OVERCURRENT (ACCEL)  
(PRESS CLEAR)  
Overcurrent during acceleration  
Overcurrent during deceleration  
Overcurrent during constant-speed run  
OVERCURRENT (DECEL)  
(PRESS CLEAR)  
OVERCURRENT (RUN)  
(PRESS CLEAR)  
LOAD-END OVERCURRENT  
(PRESS CLEAR)  
Load-end overcurrent detected at start-up (output terminals, motor wiring  
etc.)  
U-PHASE SHORT CKT  
(PRESS CLEAR)  
U-phase armature short circuit  
V-phase armature short circuit  
W-phase armature short circuit  
Lost input phase (option)  
Lost output phase (option)  
Overvoltage during acceleration  
Overvoltage during deceleration  
Overvoltage during constant-speed run  
Inverter overload  
V-PHASE SHORT CKT  
(PRESS CLEAR)  
W-PHASE SHORT CKT  
(PRESS CLEAR)  
LOST INPUT PHASE  
(PRESS CLEAR)  
LOST OUTPUT PHASE  
(PRESS CLEAR)  
OVERVOLTAGE (ACCEL)  
(PRESS CLEAR)  
OVERVOLTAGE (DECEL)  
(PRESS CLEAR)  
OVERVOLTAGE (RUN)  
(PRESS CLEAR)  
INVERTER OVERLOAD  
(PRESS CLEAR)  
MOTOR OVERLOAD  
(PRESS CLEAR)  
Motor overload  
DBR OVERLOAD TRIP  
(PRESS CLEAR)  
Dynamic braking resistor overload  
Inverter overheat  
OVERHEAT TRIP  
(PRESS CLEAR)  
EMERGENCY OFF  
Emergency off  
(PRESS CLEAR)  
EEPROM WRITE FAILURE  
(PRESS CLEAR)  
EEPROM failure during write  
EEPROM failure during initial read  
EEPROM READ FAILURE  
(PRESS CLEAR)  
Unused  
××14  
RAM ERROR  
RAM error  
××15  
(PRESS CLEAR)  
ROM ERROR  
ROM error  
××16  
××17  
××18  
××19  
××1A  
(PRESS CLEAR)  
CPU ERROR  
CPU error  
(PRESS CLEAR)  
COMMUNICATION ERROR  
(PRESS CLEAR)  
GATE ARRAY FAULT  
(PRESS CLEAR)  
CURRENT DETECT ERROR  
(PRESS CLEAR)  
RS232C timer time-out  
Gate array error  
Output current detection circuit error  
90  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Data  
(Hex)  
LCD Display Message  
Explanation  
OPTION PCB ERROR  
(PRESS CLEAR)  
Option PCB error  
××1B  
OPTION ROM ERROR  
Option ROM error  
Low current  
××1C  
LOW CURRENT TRIP  
(PRESS CLEAR)  
××1D  
UNDERVOLTAGE TRIP  
(PRESS CLEAR)  
Main circuit undervoltage  
××1E  
Unused  
××1F  
OVERTORQUE TRIP  
(PRESS CLEAR)  
Overtorque  
××20  
EARTH FAULT (SOFT)  
(PRESS CLEAR)  
Earth fault (software)  
Earth fault (hardware)  
Open fuse  
××21  
××22  
××23  
××24  
××25  
××26  
××27  
××28  
××29  
EARTH FAULT (HARD)  
(PRESS CLEAR)  
OPEN FUSE TRIP  
(PRESS CLEAR)  
DBR OVERCURRENT TRIP  
(PRESS CLEAR)  
Dynamic braking resistor overcurrent  
Overcurrent in DC section during acceleration  
Overcurrent in DC section during deceleration  
Overcurrent in DC section during constant-speed run  
Auto-tuning error  
DC OVERCURRENT (ACC)  
(PRESS CLEAR)  
DC OVERCURRENT (DEC)  
(PRESS CLEAR)  
DC OVERCURRENT (RUN)  
(PRESS CLEAR)  
AUTO-TUNING ERROR  
(PRESS CLEAR)  
INV TYPEFORM ERROR  
(PRESS READ/WRITE)  
Inverter typeform error  
91  
Download from Www.Somanuals.com. All Manuals Search And Download.  
14. Firmware Updates  
The gateway’s embedded firmware resides in flash memory that can be  
updated in the field. Firmware updates may be released for a variety of  
reasons, such as custom firmware implementations, firmware improvements  
and added functionality as a result of user requests.  
ICC is continually striving to enhance the functionality and flexibility of our  
products, and we therefore periodically release new embedded firmware to  
achieve these goals and meet customer requests. Flash firmware files and all  
related documentation (such as updated user manuals) can be downloaded as  
complete board support packages (referred to as BSPs) from  
prior to installation, and then periodically afterwards to determine if new support  
packages have been released and are available to upgrade their units.  
14.1 Requirements  
Besides the new firmware file, firmware updates require a PC with a Windows  
operating system (Windows 95 or newer) and a serial port, the RFU PC  
application (refer to section 14.3), and an appropriate cable to connect the  
RS232 port of the unit to the PC.  
Please be sure to read the firmware release notes and updated user’s manual  
(included with the BSP) for any important notices, behavior precautions or  
configuration requirements prior to updating your firmware. For example,  
upgrading to a new firmware version may affect user-defined configuration files:  
prior to starting an update procedure always back up your configuration file to a  
PC for later recovery if necessary.  
14.2 Connection  
IMPORTANT: Note that the gateway will not be operating its system  
control and communication tasks while its internal firmware is being updated.  
Therefore, be sure to shut down the system to a known safe state prior to  
initiating the firmware update procedure.  
Connect the serial port cable between the RS232 port of the gateway and the  
computer’s serial port. Move “CFG” switch #1 to the “ON” (right-hand) position:  
this will place the gateway into the “firmware download” mode. Whenever  
“CFG” switch #1 is “ON”, the gateway can only download firmware to its flash  
memory: all other application functions (such as communications, console  
access etc.) will be disabled.  
92  
Download from Www.Somanuals.com. All Manuals Search And Download.  
14.3 Using the RFU Utility  
Support for downloading new application firmware to the gateway is provided by  
the free Rabbit Field Utility (RFU), which is a 32-bit application that runs on  
Microsoft Windows platforms. The RFU utility can be downloaded from ICC’s  
application BSP, always confirm that you also have the latest version of RFU,  
as new .BIN firmware files contained in BSPs may require functionality found  
only in the most recent RFU versions for successful downloading.  
The remainder of this section will detail the RFU utility configuration and  
firmware download procedures.  
14.3.1 Required Files  
When first downloaded, the RFU utility files are compressed into one self-  
extracting .EXE distribution file. Create a folder (such as c:\RFU), place the  
distribution file in this folder, and then execute it. This will extract the  
compressed files into that same folder. The distribution file is then unneeded  
and can be deleted if desired. To run the RFU utility, double-click on the  
RFU.EXE file icon.  
14.3.2 First-Time Configuration  
The first time the RFU utility is run on a computer, several configuration items  
need to be confirmed. These configuration items are retained in the computer’s  
registry from that point on, so reconfiguration is not required unless certain  
parameters (such as which serial port to use on the computer) are changed.  
The two configuration items that need to be confirmed are the communications  
and bootstrap loaders path. First, select the “Setup…Communications” menu  
item (refer to Figure 32).  
Figure 32: RFU Main Screen  
The Communications Options window shown in Figure 33 then appears.  
Confirm that the settings are as shown, with the possible exception of the  
93  
Download from Www.Somanuals.com. All Manuals Search And Download.  
“Comm Port” settings, which depends on the COM port you are using. Click  
“OK” when complete.  
Figure 33: Communications Options Window  
Next, select the “Setup…File Locations” menu item from the main screen. The  
“Choose File Locations” window shown in Figure 34 then appears. Confirm that  
the correct paths to the referenced files are entered. Enter the correct paths if  
necessary.  
Figure 34: Choose File Locations Window  
14.3.3 Transmitting Firmware Files  
When a board support package (BSP) has been downloaded and unzipped, the  
flash firmware file will be the one with “.BIN” as its file name extension.  
94  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Once the RFU utility has been configured, the flash firmware files can be  
downloaded to the gateway by two different methods. The simplest way is to  
drag the application firmware .BIN file’s icon and drop it onto the RFU utility’s  
main screen. This will automatically initiate the download process.  
Alternatively, select the “File…Load Flash Image” menu item (refer to Figure  
35).  
Figure 35: Load Flash Image Menu Selection  
The flash image (.BIN file) selection window will then appear (refer to Figure  
36). Browse to the location of the flash image file and select it. Clicking “OK”  
will then initiate the download process.  
Figure 36: Flash File Selection Window  
While downloading, the RFU utility will indicate the download status. Once  
complete, summary information will be displayed in the bottom status bar (see  
Figure 37).  
Figure 37: Summary Information  
95  
Download from Www.Somanuals.com. All Manuals Search And Download.  
14.4 Wrap-Up  
Once downloading is complete, close the RFU utility, move “CFG” switch #1  
back to the “OFF” (left-hand) position to exit “firmware download” mode, and  
cycle power momentarily to the unit by either disconnecting the auxiliary power  
supply and/or powering down all connected drives or momentarily removing all  
drive communication cables from the unit.  
When the unit powers up again, it will be running the new application firmware.  
If the new firmware version release notes indicated that the configuration file  
might need to be reloaded, then do so at this point.  
96  
Download from Www.Somanuals.com. All Manuals Search And Download.  
15. Notes  
97  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ICC  
Madison Office  
INDUSTRIAL CONTROL COMMUNICATIONS, INC.  
Houston Office  
1600 Aspen Commons, Suite 210  
Middleton, WI USA 53562-4720  
Tel: [608] 831-1255 Fax: [608] 831-2045  
12300 Dundee Court, Suite 212  
Cypress, TX USA 77429-8364  
Printed in U.S.A  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Technika Flat Panel Television LCD19W 219 User Manual
Telstrat Network Card Argent User Manual
Toshiba Air Conditioner RAV SM1106BT E User Manual
Toshiba Power Supply REMOTE D User Manual
Tripp Lite Surge Protector ISOBAR6ULTRAHG User Manual
Tripp Lite TV Cables P570 006 User Manual
Vantec Network Card LPC 420 User Manual
Vent a Hood Ventilation Hood XR9 XRH9 User Manual
Vidikron Projection Television Model 85 User Manual
ViewSonic Flat Panel Television N3700w User Manual