Nortel Networks Welding System 411 2021 111 User Manual

411-2021-111  
Wireless Networks  
DualMode Metrocell  
Cell Site Description  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Wireless Networks  
DualMode Metrocell  
Cell Site Description  
Product release: DualMode Metrocell  
Document release: Standard 01.01  
Date: June 1996  
Document Number: 411-2021-111  
Copyright Country of printing Confidentiality Legal statements Trademarks  
1996 Northern Telecom  
Printed in the United States of America  
NORTHERN TELECOM CONFIDENTIAL: The information contained in this document is the property of Northern  
Telecom. Except as specifically authorized in writing by Northern Telecom, the holder of this document shall keep the information  
contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to third parties and use  
same for evaluation, operation, and maintenance purposes only.  
Information is subject to change without notice.  
DMS, DMS SuperNode, DMS-MSC, DMS-HLR, DMS-100, and MAP are trademarks of Northern Telecom.  
Download from Www.Somanuals.com. All Manuals Search And Download.  
iv  
Publication history  
June 1996  
Standard 01.01  
Initial release of document.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
v
Contents  
Publication history  
iv  
ix  
About this document  
Intended audience for this publication ix  
How this publication is organized x  
Applicability of this publication x  
List of terms  
xi  
Introduction  
1-1  
Northern Telecom's DualMode Metrocell 1-1  
The 800 MHz cellular band 1-4  
Cell Site Configurations  
Overview 2-1  
Omni configuration 2-1  
120° sectorized configuration 2-2  
60° sectorized configuration 2-4  
2-1  
3-1  
Cell Site Layouts  
Omni cell site configuration 3-1  
Control Channel redundancy 3-2  
Transmit cabling 3-5  
Receive cabling 3-7  
Component requirement 3-7  
120° STSR cell site configuration 3-8  
Control Channel redundancy 3-8  
Transmit cabling 3-12  
Receive cabling 3-17  
Component requirement 3-20  
60° STSR cell site connection 3-21  
Control Channel redundancy 3-21  
Transmit cabling 3-27  
Receive cabling 3-33  
Component requirement 3-37  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
vi Contents  
Cell Site Components  
Customer Service Operations 4-3  
4-1  
5-1  
Power and Grounding Requirements  
Safety requirements 5-1  
Power and grounding requirements 5-2  
Frame power distribution 5-5  
System power protection 5-6  
Grounding 5-6  
Cable Identification 5-9  
Datafilling a Metro Cell Site  
Datafill Overview 6-1  
6-1  
Table CLLI 6-2  
Table ACUALM 6-2  
Table VCHINV, CCHINV, LCRINV 6-5  
Appendices  
Appendix A: DualMode Metrocell Cell Site Specifications 7-1  
System Configuration 7-1  
Radio Frequency 7-1  
Audio Interface 7-2  
Alarms 7-2  
DC Power Requirements 7-3  
Power Distribution Requirements 7-3  
Mechanical 7-3  
Packaging 7-4  
Environmental 7-4  
Regulatory 7-5  
Appendix B: Frequency plans 7-7  
N=7 Frequency plan (Band A) 7-7  
N=7 Frequency plan (Band B) 7-8  
N=4 Frequency plan (Band A) 7-9  
N=4 Frequency plan (Band B) 7-9  
List of figures  
Figure 1-1  
Figure 1-2  
Figure 1-3  
Figure 1-4  
Figure 2-1  
Figure 2-2  
Figure 2-3  
Figure 3-1  
System architecture of a DualMode Metrocell 1-2  
Digital ready cellular product 1-2  
Basic components of a DualMode Metrocell 1-3  
Channel assignment for 800 MHz cellular systems 1-4  
Omni (N=7) frequency reuse plan 2-2  
120° (N=7) sectorized frequency reuse plan 2-3  
60° (N=4) sectorized frequency reuse plan 2-4  
Frame layout of an omni Metrocell with one RF frame (front view) 3-  
2
Figure 3-2  
Figure 3-3  
Block diagram of an omni Metrocell with up to 20 channels in one  
RF Frame 3-3  
Block diagram of an omni Metrocell with 21 to 24 channels in one  
RF Frame 3-4  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Contents vii  
Figure 3-4  
Figure 3-5  
Frame layout of a 120° STSR Metrocell site with one RF frame  
(front view) 3-9  
Frame layout of a 120° STSR Metrocell site with three RF frames  
(front view) 3-9  
Figure 3-6  
Figure 3-7  
Block diagram of a 120° STSR Metrocell using one RF Frame 3-10  
Block diagram of a 120° STSR Metrocell using three RF Frames 3-  
11  
Figure 3-8  
Figure 3-9  
Frame layout of a 60° STSR Metrocell with two RF frames (front  
view) 3-22  
Typical frame layout of a 60° STSR Metrocell with four RF frames  
(front view) 3-22  
Figure 3-10  
Figure 3-11  
Figure 5-1  
Figure 6-1  
Figure 6-2  
Block diagram of a 60° STSR Metrocell with two RF Frames 3-23  
Block diagram of a 60° STSR Metrocell with four RF Frames 3-25  
Power distribution for the CE and RF Frames in a Metrocell 5-5  
Example of Metro TRU datafill 6-6  
Example of Metro ICRM/TRU hardwire configuration 6-7  
List of tables  
Table 1-1  
Table 3-1  
Channel designation and frequency assignment 1-5  
RF Frame 1 PA to ATC connection for an omni Metrocell with up to  
20 channels 3-5  
Table 3-2  
RF Frame 1 PA to ATC connection for an omni Metrocell with 21  
channels or more 3-6  
Table 3-3  
Table 3-4  
Table 3-5  
Table 3-6  
RMC to splitter connections for an Omni Metrocell 3-7  
Component requirement for an omni Metrocell 3-7  
PA to ATC connection for a 120° Metrocell with one RF Frame 3-12  
PA to ATC connection for a 120° Metrocell with 20 channels or less  
per RF frame for one sector 3-13  
Table 3-7  
Table 3-8  
Table 3-9  
Table 3-10  
Table 3-11  
Table 3-12  
Table 3-13  
Table 3-14  
Table 3-15  
Table 3-16  
Table 3-17  
PA to ATC connection for a 120° Metrocell with 21 channels or  
more per RF frame for one sector 3-15  
RMC to splitter connections for a 120° STSR Metrocell with one RF  
Frame 3-17  
RMC to splitter connections for a 120° STSR Metrocell with three  
RF Frames 3-18  
Component requirement for a 120° STSR Metrocell with one RF  
Frame 3-20  
Component requirement for a 120° STSR Metrocell with three RF  
Frames 3-20  
PA to ATC connection for a 60° STSR Metrocell using two RF  
Frames 3-28  
PA to ATC connection for a 60° STSR Metrocell using four RF  
Frames 3-30  
RMC to splitter connections for a 60° STSR Metrocell with two RF  
Frames 3-33  
RMC to splitter connections for a 60° STSR Metrocell with four RF  
Frames 3-34  
Component requirement for a 60° STSR Metrocell with two RF  
Frames 3-37  
Component requirement for a 60° STSR Metrocell with four RF  
Frames 3-37  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
viii Contents  
Table 4-1  
Table 5-1  
Table 5-2  
Table 6-1  
Table 6-2  
Table 6-3  
Table 6-4  
Table 6-5  
Major components of a DualMode Metrocell 4-1  
Metrocell DC Power performance requirements 5-3  
Cable identification - North America 5-9  
Datafill differences of the Metrocell from an NT800DR cell 6-1  
Trunk requirement for different Metrocell configurations 6-2  
MTX Datafill Alarm Points for Metro RF Frame 6-3  
MTX Alarm Points Datafill Numbers for Metro RF Frame 6-4  
MTX Alarm Points Datafill Numbers for Metro CE Frame  
components 6-4  
Table 6-6  
NT8X47BA Port Numbers for Metro TRU locations 6-5  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ix  
About this document  
This publication is one of a set of documents that provide Northern Telecom  
(Nortel) customers with information and suggestions on the planning and  
maintenance of their DualMode Metrocell system. This set of documents  
includes the following manuals:  
DualMode Metrocell Functional Description Manual  
— DualMode Metrocell Cell Site Description  
— DualMode Metrocell Common Equipment (CE) Frame Description  
— DualMode Metrocell Radio Frequency (RF) Frame Description  
DualMode Metrocell Planning and Engineering Guidelines  
DualMode Metrocell Installation Manual  
DualMode Metrocell Operation and Maintenance Manual  
DualMode Metrocell Troubleshooting Guidelines  
The manual suite for the DualMode Metrocell provides information on cell  
site configurations, hardware components, planning and installation  
procedures, as well as maintenance and troubleshooting methods.  
Intended audience for this publication  
The intended audience for this set of manuals is the cell site technicians and  
the planning engineers who require information in the maintenance and  
planning of a DualMode Metrocell. The Functional Description Manual  
provides a technical reference foundation for the other documents in the  
documentation suite and is written for all.  
The Planning and Engineering Guidelines is written for system planning  
personnel in implementing new cells or expanding existing cell sites in a  
cellular system.  
The Operation and Maintenance Manual and the Troubleshooting Guidelines  
that provide information on problem recognition and preventive maintenance  
are written for cell site technicians to assist them in troubleshooting and  
performing their routine work.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
x About this document  
The document suite assumes that the reader possesses a basic knowledge of  
the cellular system and radio propagation and is familiar with measurement  
units incorporated in the system. Therefore, this document will not provide  
detailed information on the theory of switching and radio propagation.  
How this publication is organized  
This publication is organized to present the following information:  
an introduction to the DualMode Metrocell Cell Site  
the Metrocell cell site configurations; omni, 120° STSR and 60° STSR  
the equipment layouts, block diagrams and transmit and receive cabling  
for each configuration  
the cell site components required for each configuration  
the power and grounding requirements for a Metrocell cell site  
information on datafilling a Metrocell.  
Applicability of this publication  
This publication is generically applicable to MTX01 feature functionality, yet  
captures some BCS-independent environment and implementation issues.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
xi  
List of terms  
A-Band  
The lower 333 channels (Channel 1 - 333) of the cellular band, normally assigned  
to a non-wireline operator in the US and Canada.  
The Expanded Spectrum provides 83 more channels, 50 (Channel 667 - 716) in  
the A-Band and 33 (channel 991 - 1023) in the A"-Band.  
ACU  
Alarm Control Unit. A unit that provides discrete alarm monitoring, reporting and  
control functions at the cell site. It concentrates all alarm input points at the cell  
site and updates the MTX of any status change over redundant data links.  
AMPS  
ATC  
Advanced Mobile Phone Service. Analog cellular phone service.  
AutoTune Combiner. A cavity/isolator combiner featuring an automatic tuning  
system which monitors the transmitted RF and automatically tunes itself to that  
frequency.  
B-Band  
The upper 333 channels (Channel 334 - 666) of the cellular band, normally  
assigned to a wireline operator in the US and Canada.  
The Expanded Spectrum provides 83 more channels (Channel 717 - 799) in the  
B’-Band.  
BER  
Bit Error Rate. The ratio of error bits to the total number of transmitted bits. It is  
a measurement of quality of the digital connection.  
Carrier (RF)  
An unmodulated radio signal. Normally, it is a pure sine wave of steady  
frequency, amplitude, and phase.  
CCH  
Control Channel, sometimes referred to as the Signaling Channel which is always  
in use to enable call setup and registration.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
xii List of terms  
Cell  
By theoretical design, it is the geographical representation of the cellular  
coverage area or service area defining both the associated size and shape.  
CSM2  
dBm  
Cell Site Monitor 2. A unit that provides analog testing and monitoring  
capabilities at the cell site.  
Decibels above a milliwatt. Unit of power measurement popular in wireless  
telephony, general telephony, audio, and microwave.  
dBW  
DCC  
Decibels above a watt. Unit of measurement for radio power  
Digital Color Code. An identifying code associated with the control channel of  
the cellular base transmitter which is used to enhance call processing in the  
cellular infrastructure.  
DLR  
Digital Locate Receiver. The TDMA equivalent of the Locating Channel  
Receiver. See LCR.  
DMS-MTX  
DPA  
The acronym for Nortel's family of cellular switches: Digital Multiplex Switch -  
Mobile Transmission Exchange.  
Dual Power Amplifier. A module which contains two discrete power amplifiers  
that provide amplification of the RF signal for the two corresponding Transmit  
Receive Units (TRU) on the same TRU/DPA shelf.  
DRUM  
DualMode Radio Unit Monitor. A test and monitor unit capable of radio  
communications with any Voice Channel of the local Transmit Receive Units  
(TRU) in the digital mode.  
Duplexer  
A device that consists of two pass or pass/reject filters configured to provide a  
common output port for both transmit and receive frequencies.  
DVCC  
ES  
Digital Verification Color Code. The TDMA equivalent of DCC.  
Expanded Spectrum. The additional frequency spectrum assigned to the cellular  
band. The Expanded Spectrum in the A-Band consists of the A’-Band and the A"-  
Band while the B’-Band is the Expanded Spectrum for the B-Band. The  
Expanded Spectrum provides a total of 416 channels to each of the two bands.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of terms xiii  
FDMA  
Filter  
FM  
Frequency Division Multiple Access. A frequency assignment arrangement  
whereby all users share the total frequency allotment and each frequency is  
assigned to a given user at access on a multiple user access basis.  
A frequency selective device which is tuned to pass some frequencies and  
attenuate others. Common filter types include high-pass, low pass, band-pass,  
and notch filters  
Frequency Modulation. A modulation technique that causes the frequency of the  
carrier to vary above and below its resting frequency; the rate of which is  
determined by the frequency of the modulating signal and the deviation of which  
is determined by the magnitude of the modulating signal.  
Forward path  
The path from cell site to cellular subscriber.  
HSMO  
High Stability Master Oscillator. A unit that provides a highly stable 4.8 MHz  
reference for synchronizing the Transmit Receive Unit (TRU).  
ICP  
Intelligent Cellular Peripheral. A switch site peripheral that provides an interface  
between the cell site and the switch. The ICP also oversees the operations of the  
cell site.  
ICRM  
IM  
Integrated Cellular Remote Module. A cell site peripheral that serves as an  
interface between the Intelligent Cellular Peripheral (ICP) and the radio  
transmission subsystems. The ICRM is designed to support both analog and  
digital Radio Frequency (RF) equipment.  
Intermodulation. A type of interaction between signals in a nonlinear medium  
which produces phantom signals at sum and difference frequencies. These  
phantom signals may interfere with reception of legitimate signals occupying the  
frequencies upon which they happen to fall.  
Isolation  
LCR  
The attenuation (expressed in dB) between any two signal or radiation points.  
Locating Channel Receiver. A radio receiver which is frequency agile and is used  
to measure and report the received signal strength, in dBm, of a channel.  
Loss  
A magnitude of attenuation, expressed in dB, for a given path between any two  
points.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
xiv List of terms  
Modulation  
The process of placing information on an RF carrier. The modulation technique  
may involve changing the amplitude, frequency, or phase of the carrier  
determined by the modulation index.  
NES  
Non-expanded Spectrum. The frequency spectrum initially assigned to the  
cellular band. The Non-expanded Spectrum provides 333 channels to each of the  
two bands, the A-Band and the B-Band.  
Omni  
An antenna design which permits radiation in essentially all H-Plane azimuths.  
In cell sites, an Omni configuration means a single set of omni antennas is used  
for all channels.  
π/4 DQPSK  
Variation of Differential Quadrature Phase Shift Keying used in D_AMPS IS-54  
TDMA for improved spectral characteristics and phase resolution. Permissible  
phase changes are integral multiples of π/4 radians (45 degrees). π/4 is used to  
reduce the peak to root mean square ratio requirements for linear PAs.  
Return loss  
A logarithmic relationship of the incident signal to the reflected signal as  
expressed, in dB, by the following relationship:  
P
r
Return Loss = 10 log  
P
i
where Pi = incident power in watts  
Pr = reflected power in watts  
The strength of the signal, expressed in dB, reflected by a load back into a  
transmission line due to impedance mismatch. -14 dB corresponds to a VSWR of  
1.5:1.  
Reverse path  
The path from cellular subscriber terminal to cell site.  
RF  
Radio Frequency. Electromagnetic energy of the frequency range just above the  
audible frequencies and extending to visible light.  
RIP  
Rack Interface Panel. The RIP is the interface between the cell site power supply  
and the cell site equipment.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
List of terms xv  
RMC  
RSSI  
Receive Multicoupler. A device for amplifying the input received from a single  
antenna and providing multiple outputs for a group of receivers.  
Received Signal Strength Indicator. A measurement of the received RF signal  
strength measured at the base station or the subscriber terminal. It is expressed in  
dBm.  
SAT  
Supervisory Audio Tone. A tone of 5970, 6000, or 6030 Hz which modulates the  
AMPS voice channel along with voice audio. It is generated by the cell site and  
is repeated by the mobile back to the cell site. The repeated SAT is checked by  
the cellular system to confirm the continuity of the complete RF path from the  
cell site to the subscriber terminal and back to the cell site.  
SCC  
SAT Color Code. The datafill values corresponding to the various SATs: 00 for  
5970 Hz, 01 for 6000 Hz, 10 for 6030 Hz.  
Sector  
A theoretical wedge-shaped part of the coverage area of one cell site, served by a  
specific group of directional antennas on specific channels.  
Sectorization  
A cell site configuration that consists of two or more sectors in which a different  
control and voice channel assignment is given for each sector. In this  
arrangement, the datafill and channel assignments for each sector are tailored to  
meet the system operational requirements, providing more flexibility in the cell  
site configuration compared to an omni configuration but with a decrease in  
trunking efficiency.  
Signal (RF)  
SINAD  
Radio frequency energy associated with a particular or desired frequency.  
A standard measurement of detected audio quality that is related to signal-to-  
noise plus distortion of the RF signal strength at the receiver input terminal. 12  
dB SINAD is the commonly used threshold for receiver sensitivity measurements  
to determine the weakest-practical analog RF input, in dBm, required by the  
receiver. A SINAD of 20 dB is considered good quality and defines the RF input  
level needed to fully quiet the receiver.  
S/N  
Signal-to-Noise ratio. The ratio of signal power to noise power on a radio  
channel.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
xvi List of terms  
ST  
Signaling Tone. In AMPS cellular, a 10 kHz tone transmitted on the Reverse  
Voice Channel (RVC) as a precursor to messaging activity, and for certain call-  
processing functions (acknowledgments, call termination). Presence of the tone  
mutes normal conversational audio.  
STSR  
TDMA  
Sectored-Transmit/Sectored-Receive. A cell configuration in which a different  
control and voice frequency assignment is designated for each sector. A  
directional antenna system is required for each sector.  
Time Division Multiple Access. A modulation and transmission format that  
allows a number of digital conversations (three in TDMA-3) to occur within the  
same Radio Frequency (RF) channel. Mobile units take turns transmitting/  
receiving data on specific time slots of a TDMA frame.  
TRU  
Transmit Receive Unit. The TRU is a Digital Signal Processing (DSP) based  
transceiver capable of two modes of operation, analog (AMPS) and digital  
(TDMA).  
VCH  
Voice Channel. A Radio Frequency (RF) channel used to transmit cellular voice  
conversations. The VCH is also an integral part of call setup, handoff, and  
disconnect.  
VSWR  
Voltage Standing Wave Ratio. A measure of the mismatch between the  
transmitter source impedance and the load impedance to which it is connected. It  
is defined by the following relationship:  
Reflected Power  
1 +  
Forward Power  
VSWR =  
Reflected Power  
1 -  
Forward Power  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1-1  
1
Introduction  
Northern Telecom's DualMode Metrocell  
As cellular systems evolve to the digital format, service providers and mobile  
subscribers are confronted by a mixture of analog and digital technologies.  
Northern Telecom (Nortel)’s dual mode cellular product allows a smooth  
transition from analog to digital technology. It uses Time Division Multiple  
Access (TDMA) technology for digital systems and Advanced Mobile Phone  
Service (AMPS) technology for analog systems. This evolutionary strategy  
enables service providers to gradually upgrade their cellular systems to digital  
while providing support of existing analog equipment.  
The Nortel cellularsystemsupportingdual mode service includesthe following  
components:  
the DMS-MTX switch containing the Intelligent Cellular Peripheral (ICP)  
unit at the mobile switching office  
dual mode cell sites with the configurable DualMode Radio Units (DRU)  
on a Radio Frequency (RF) Frame and the Integrated Cellular Remote  
Module (ICRM), on a Common Equipment (CE) Frame at the cell site  
external and internal interface links.  
The Nortel DualMode Metrocell serves as the intelligent interface between a  
Digital Multiplex Switch - Mobile Telephone Exchange (DMS-MTX) and its  
registered cellular mobiles. It is a dual mode cell that works in both the analog  
(AMPS) mode and the digital (TDMA) mode.  
The Metrocell is designed for high density, small radius cells in areas where  
large traffic capacity is required. It can exist independently or it can be added  
to existing cells for increased coverage. The Metrocell provides a reduced  
power output for urban applications. The typical power output of the Power  
Amplifier (PA) is 22 watts (43.5 dBm).  
Figure 1-1 shows the architecture of a DualMode Metrocell system and  
Figure 1-2 is a block diagram of the product of the system.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1-2 Introduction  
Figure 1-1  
System architecture of a DualMode Metrocell  
Trunk  
DMS-MTX  
PSTN  
Digital Transmission  
Facility  
DualMode  
Metrocell  
Figure 1-2  
Digital ready cellular product  
DMS - MTX  
DRU  
voice &  
control  
DRUM  
CSM2  
voice and  
control  
control  
ICRM  
ICP  
control  
ACU  
SWITCH SITE  
CELL SITE  
There are at least two equipment frames in a Metrocell, a Universal Common  
Equipment (CE) Frame and a Metro Radio Frequency (RF) Frame. The cell  
site can be expanded or sectorized by adding more Metro RF frames as traffic  
grows. The number of Metro RF frames is determined by the cell site  
configuration and the channel capacity. Figure 1-3 shows the frames and the  
components of a DualMode Metrocell.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Introduction 1-3  
Figure 1-3  
Basic components of a DualMode Metrocell  
Universal CE Frame  
Metro RF Frame  
RIP  
RIP  
Duplexer  
(one to three)  
DRUM  
ACU  
ATC  
HSMO  
CSM2  
TRU/DPA Shelf  
(TRUs & DPAs)  
Dual RMC  
(one to six)  
ATC  
TRU/DPA Shelf  
(TRUs & DPAs)  
ICRM  
ATC  
TRU/DPA Shelf  
(TRUs & DPAs)  
Blank Panel  
Base  
Base  
Legend:  
RIP  
Rack Interface Panel  
DRUM  
ACU  
HSMO  
CSM2  
RMC  
ICRM  
ATC  
DualMode Radio Unit Monitor  
Alarm Control Unit  
High Stability Master Oscillator  
Cell Site Monitor 2  
Receive Multicoupler  
Integrated Cellular Remote Module  
AutoTune Combiner  
TRU  
DPA  
Transmit Receive Unit  
Dual Power Amplifier  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1-4 Introduction  
The 800 MHz cellular band  
In an 800 MHz North American cellular system, a frequency spectrum of 50  
MHz is available for service. Operating from 824 to 894 MHz, including the  
expanded spectrum, the system conforms to the AMPS IS-54 protocol.  
Typically this range is divided into 832 radio frequency (RF) channelsT.he 832  
RF channels are divided into two bands,A and B. The two bands are identified  
as follows:  
Band A—for Non-Wireline Operators  
Band B—for Wireline Operators.  
Each frequency band has 416 RF channels. Of these 416 RF channels,  
typically 21 (depending on the frequency plan) are assigned as the Control  
Channels (CCH) and the remaining 395 are Voice Channels (VCH). See  
Figure 1-4 and Table 1-1.  
Figure 1-4  
Channel assignment for 800 MHz cellular systems  
Base Station Frequency (MHz)  
835  
RX 824 825  
TX 869 870  
835 846.5 849 851  
890 891.5 894 896  
A-Band CCH  
B-Band CCH  
880  
A"  
A
B
A'  
B'  
R
Band  
991 1  
1023  
333  
716  
799  
R=Reserved  
666  
Channel Number  
Channel assignment  
Band A (416 channels) Band B (416 channels)  
Control channels  
313 - 333 (21)  
688 - 708 (21)  
334 - 354 (21)  
737 - 757 (21)  
Optional—TDMA secondary  
control channels  
Voice channels  
001 - 312 (312)  
667 - 716 (50)  
991 - 1023 (33)  
355 - 666 (312)  
717 - 799 (83)  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Introduction 1-5  
Table 1-1  
Channel designation and frequency assignment  
System  
Channel  
Cell site receive  
frequency (MHz)  
Cell site transmit  
frequency (MHz)  
Not used  
990  
824.010  
869.010  
A"  
A
991 - 1023  
1 - 333  
824.040 - 825.000  
825.030 - 834.990  
835.020 - 844.980  
845.010 - 846.480  
846.510 - 848.970  
869.040 - 870.000  
870.030 - 879.990  
880.020 - 889.980  
890.010 - 891.480  
891.510 - 893.970  
B
334 - 666  
667 - 716  
717 - 799  
A’  
B’  
The relationship between the channel number (N) and the frequency is:  
Channel number: 1 N 799  
Receiver frequency (in MHz) = 0.03N + 825.000  
Transmit frequency (in MHz) = 0.03N +870.000  
Channel number: 990 N 1023  
Receiver frequency (in MHz) = 0.03(N - 1023) + 825.000  
Transmit frequency (in MHz) = 0.03(N - 1023) + 870.000  
Both non-expanded and expanded spectrums are shown in Appendix B for the  
N=7 and N=4 frequency groups.  
Important  
For ALL Metrocell cell site configurations, the frequency  
plan used should have a minimum of 21 channel spacing  
(630 kHz) between the RF channels.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1-6 Introduction  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2-1  
2
Cell Site Configurations  
Overview  
The DualMode Metrocell can be configured in the following ways:  
Omni-directional transmit/receive  
120° Sectored Transmit Sectored Receive (STSR)  
60° Sectored Transmit Sectored Receive (STSR)  
The majority of systems may begin as Omni-directional to minimize startup  
costs. As the subscriber traffic increases, the Omni configuration may reach  
its maximum traffic capacity. At that time it will be necessary to provide  
additional capacity through expanded spectrum, 120 degree sectorization, 60  
degree sectorization, or frequency borrowing.  
It is important that the operator selects a frequency plan before the Omni  
configuration is installed. If not, future expansions will be very difficult. The  
most common frequency plans are:  
7 Cell Cluster (N=7)—This frequency plan allows proper expansion from  
Omni to 120 degree sectorization (see Figure 2-1 and Figure 2-2).  
4 or 12 Cell Cluster (N=4 or N=12)—This frequency plan allows proper  
expansion from Omni to 60 degree sectorization (see Figure 2-3).  
Both non-expanded and expanded spectrums are shown in Appendix B for the  
N=7 and N=4 frequency groups.  
Omni configuration  
In an Omni (N=7) configuration, the 416 RF channels are divided among a  
group of seven cells (often known as a cluster). Each cell consists of a  
maximum of 59 or 60 RF channels (four cells with 59 channels and three cells  
with 60 channels, where three of the 59 or 60 channels are Control channels).  
The RF channels are reused by other cell clusters. Frequency reuse refers to  
the use of RF channels on the same carrier frequency in different areas which  
are separated from one another by the greatest possible distance so that co-  
channel interference is minimized.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2-2 Cell Site Configurations  
Figure 2-1 shows the layout of an Omni (N=7) frequency reuse plan;. The RF  
channels used in Cell 1 of a cluster are reused in Cell 1 of other clusters,  
channels in Cell 2 are reused in Cell 2 of other clusters and so on.  
Figure 2-1  
Omni (N=7) frequency reuse plan  
CELL 6  
CELL 5  
CELL 4  
CELL 6  
CELL 1  
CELL 3  
CELL 7  
CELL 2  
CELL 5  
CELL 4  
CELL 1  
CELL 6  
CELL 3  
CELL 7  
CELL 2  
CELL 7  
CELL 1  
CELL 2  
CELL 5  
CELL 4  
CELL 3  
120° sectorized configuration  
In a 120° (N=7) sectorized configuration, the 416 RF channels are divided  
among a cluster of seven cells. Each cell contains a maximum of 59 or 60 RF  
channels, with three Control channels for each cell. Since each cell is further  
divided into three sectors, each sector will contain a maximum of 19 or 20 RF  
channels, with one Control channel for each sector. The available RF  
channels are reused by other groups of cells within the system.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Configurations 2-3  
Figure 2-2 shows the layout of a 120° (N=7) sectorized frequency reuse plan.  
The RF channels used in Cell 1 of a cluster are reused in Cell 1 of other  
clusters, channels in Cell 2 are reused in Cell 2 of other clusters and so on.  
This arrangement will have the RF channels using the same carrier frequency  
in different areas to be separated from one another by the greatest possible  
distance to minimize co-channel interference.  
However, sectorization (by virtue of the modified coverage areas and  
directional antenna usage) permits greater reuse of frequencies for a given  
C/I ratio.  
Figure 2-2  
120° (N=7) sectorized frequency reuse plan  
Sector  
X
Sector  
Z
CELL 6  
Sector  
X
Sector  
X
Sector  
Y
Sector  
Z
Sector  
Z
CELL 5  
CELL 7  
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Z
CELL 1  
Sector  
X
Sector  
X
Sector  
Y
Sector  
Z
Sector  
Z
CELL 2  
CELL 4  
Sector  
X
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Z
Sector  
Z
CELL 3  
CELL 6  
Sector  
X
Sector  
X
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Z
Sector  
Z
Sector  
Z
CELL 6  
CELL 7  
CELL 5  
Sector  
X
Sector  
X
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Y
Sector  
Z
Sector  
Z
Sector  
Z
CELL 5  
CELL 1  
CELL 7  
Sector  
X
Sector  
X
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Y
Sector  
Z
Sector  
Z
Sector  
Z
CELL 1  
CELL 2  
CELL 4  
Sector  
X
Sector  
X
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Y
Sector  
Z
Sector  
Z
Sector  
Z
CELL 4  
CELL 2  
CELL 3  
Sector  
X
Sector  
Y
Sector  
Y
Sector  
Y
Sector  
Z
CELL 3  
Sector  
Y
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2-4 Cell Site Configurations  
60° sectorized configuration  
In a 60° (N=4) sectorized configuration, the 416 RF channels are divided  
among a group of four cells. Each cell contains a maximum of 104 RF  
channels, with six Control channels for each cell. Since each cell is further  
divided into six sectors, each sector will contain a maximum of 16 or 17 RF  
channels, with one Control channels for each sector. The RF channels are  
reused by other groups of cells.  
Figure 2-3 shows the layout of a 60° (N=4) sectorized frequency reuse plan.  
The RF channels used in Cell 1 of a cluster are reused in Cell 1 of other  
clusters, channels in Cell 2 are reused in Cell 2 of other clusters and so on.  
This arrangement will have the RF channels on the same carrier frequency in  
different areas to be separated from one another by the greatest possible  
distance so that co-channel interference is minimized.  
However, 60° sectorization is difficult to expand and optimize due to a more  
demanding environment of frequency re-use.  
Figure 2-3  
60° (N=4) sectorized frequency reuse plan  
Sector  
X
Sector  
Y
Sector  
W
CELL 2  
Sector  
X
Sector  
X
Sector  
V
Sector  
Z
Sector  
U
Sector  
W
Sector  
Y
Sector  
Y
Sector  
W
CELL 1  
CELL 3  
Sector  
X
Sector  
X
Sector  
V
Sector  
X
Sector  
V
Sector  
Z
Sector  
Z
Sector  
W
Sector  
Y
Sector  
U
Sector  
Y
CELL 4  
Sector  
W
Sector  
Y
Sector  
W
Sector  
U
CELL 2  
CELL 2  
Sector  
V
Sector  
X
Sector  
X
Sector  
X
Sector  
Z
Sector  
V
Sector  
X
Sector  
V
Sector  
Z
Sector  
Z
Sector  
W
Sector  
U
Sector  
W
Sector  
U
Sector  
W
Sector  
Y
Sector  
Y
Sector  
Y
Sector  
Y
Sector  
U
Sector  
W
CELL 3  
CELL 1  
CELL 1  
CELL 3  
Sector  
V
Sector  
X
Sector  
X
Sector  
Sector  
X
Sector  
V
Sector  
V
Sector  
Z
Sector  
Z
Sector  
V
Sector  
Z
Z
Sector  
W
Sector  
U
Sector  
W
Sector  
Y
Sector  
U
Sector  
U
Sector  
W
Sector  
Y
Sector  
U
Sector  
Y
CELL 4  
CELL 4  
CELL 2  
Sector  
V
Sector  
X
Sector  
X
Sector  
V
Sector  
V
Sector  
Z
Sector  
Z
Sector  
Z
Sector  
U
Sector  
W
Sector  
U
Sector  
U
Sector  
W
Sector  
Y
Sector  
Y
CELL 1  
CELL 3  
Sector  
X
Sector  
V
Sector  
V
Sector  
Z
Sector  
Z
Sector  
U
Sector  
W
Sector  
Y
Sector  
U
CELL 4  
Sector  
V
Sector  
Z
Sector  
U
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-1  
3
Cell Site Layouts  
This chapter provides information on the layout and cabling of the different  
DualMode Metrocell configurations.  
Important  
For ALL Metrocell cell site configurations, the frequency  
plan used should have a minimum of 21 channel spacing  
(630 kHz) between the channels in one RF Frame.  
Note: The DualMode Metrocell supports only Transmit Receive Units  
(TRU) with Product Engineering Code (PEC) NTAX98AA. No other  
radios can be used. The NTAX98AA TRU supports full digital and analog  
transmissions in accordance with IS-54 and IS-41 standards.  
Omni cell site configuration  
The Metrocell in an omni configuration uses at least two equipment frames,  
one CE Frame and one RF frame (see Figure 3-1). With only one RF frame,  
the maximum number of Voice Channels (VCH) supported by the cell site is  
22 since two of the 24 TRUs have to be assigned as the Control Channel  
(CCH) and the Locate Channel Receiver (LCR). As traffic grows, four  
additional RF frames can be added to the site to accommodate up to a  
maximum of 120 channels, including the CCH and the LCR.  
An RF Frame with up to 20 channels requires only one duplexer in the RF  
Frame and one TX/RX antenna. The outputs of the three AutoTune  
Combiners (ATC) are combined through one phasing transformer (located at  
ATC 2) and then connected to Duplexer position 2. This configuration  
requires a RX only antenna for the diversity receive function of the cell. See  
Figure 3-2.  
An RF Frame with 21 channels or more requires two duplexers in the RF  
Frame and two TX/RX antennas. The outputs of the lower and middle ATCs  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-2 Cell Site Layouts  
(ATC 1 and ATC 2) are combined through one phasing transformer (located at  
ATC 2) and then connected to Duplexer position 2 and the main TX/RX  
Antenna. The output of the upper ATC (ATC 3) is connected to Duplexer  
position 3 and the diversity TX/RX Antenna. This arrangement is used to  
meet the requirement of a minimum of 21 channel spacing (630 kHz)  
between the channels in one RF Frame. This configuration requires a TX/RX  
antenna to perform the diversity receive function of the cell. See Figure 3-3.  
Control Channel redundancy  
Control Channel (CCH) redundancy is commonly provided with a Locate  
Channel Receiver (LCR) backup. The CCH is assigned to position 1 on the  
TRU/DPA Shelf 1 and the LCR is assigned to position 4 on the same shelf.  
This arrangement will have the CCH and the LCR supplied on a different DC  
power feed and a TCM card. No RF coaxial switch is required since the  
cavity of the LCR position on the ATC will tune to the CCH frequency when  
backup is required.  
Figure 3-1  
Frame layout of an omni Metrocell with one RF frame (front view)  
CE Frame  
RF Frame 1  
RF RIP  
Duplexer Duplexer Duplexer  
CE RIP  
DRUM  
Position 3 Position 2 Position 1  
ACU  
ATC 3  
HSMO  
DPA DPA  
11 12  
CSM2  
TRU/DPA  
Shelf 3  
RMC 1  
DPA DPA  
9
10  
ATC 2  
Blank Panel  
ICRM  
DPA DPA  
7
8
TRU/DPA  
Shelf 2  
DPA DPA  
5
6
ATC 1  
DPA DPA  
3
4
TRU/DPA  
Shelf 1  
Blank Panel  
Base  
DPA DPA  
1
2
Base  
Note: For a frame with up to 20 channels, only one duplexer (located in  
position 2) is required.  
For a frame with 21 channels or more, two duplexers (located in  
positions 2 and 3) are required.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-3  
Figure 3-2  
Block diagram of an omni Metrocell with up to 20 channels in one RF Frame  
RF Frame 1  
(Note 1)  
See Table 3-3 for  
RMC/TRU Shelf connection  
Antenna  
(Main  
receive)  
A1  
A2  
A3  
TX  
Control Channel  
(Note 2)  
Duplexer  
Position 2  
RX  
ANT  
A8  
DPA 1  
Antenna  
(Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 1  
ATC 1  
B8  
DPA 4  
See Table 3-1 for  
PA/ATC connection  
DPA 5  
Notes:  
ATC 2  
TRU/DPA  
1. For diagram clarity, only one RF Frame is  
shown. Other RF Frames with 20 channels  
or less are connected and operated  
Shelf 2  
identically to that of RF Frame 1.  
2. TRU1 at TRU/DPA Shelf 1 of RF Frame 1 is  
assigned as the CCH and TRU4 at the same  
shelf is assigned as the backup CCH.  
DPA 8  
DPA 9  
TRU/DPA  
Shelf 3  
ATC 3  
DPA 10  
CE Frame  
ICRM  
HSMO  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-4 Cell Site Layouts  
Figure 3-3  
Block diagram of an omni Metrocell with 21 to 24 channels in one RF Frame  
See Table 3-3 for  
RMC/TRU Shelf connection  
RF Frame 1  
(Note 1)  
Antenna  
(Main  
receive)  
A1  
A2  
A3  
TX  
Control Channel  
(Note 2)  
Duplexer  
Position 2  
RX  
ANT  
A8  
DPA 1  
Antenna  
(Diversity  
receive)  
B1  
B2  
B3  
TX  
RX Duplexer ANT  
TRU/DPA  
Shelf 1  
Position 3  
ATC 1  
B8  
DPA 4  
DPA 5  
See Table 3-2 for  
PA/ATC connection  
Notes:  
ATC 2  
TRU/DPA  
1. For diagram clarity, only one RF Frame is  
shown. Other RF Frames with 21 channels  
or mor are connected and operated  
Shelf 2  
identically to that of RF Frame 1.  
2. TRU1 at TRU/DPA Shelf 1 of RF Frame 1 is  
assigned as the CCH and TRU4 at the same  
shelf is assigned as the backup CCH.  
DPA 8  
DPA 9  
TRU/DPA  
Shelf 3  
ATC 3  
DPA 12  
CE Frame  
ICRM  
HSMO  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-5  
Transmit cabling  
In the transmit path, the output of each Transmit Receive Unit (TRU) is  
connected to the input of each corresponding power amplifier (PA) on the  
Dual Power Amplifier (DPA) module. The output of each power amplifier  
(PA) is input to an 8-channel AutoTune Combiner (ATC).  
The output of the ATC is connected to the Transmit (TX) port of the duplexer.  
For RF Frames using more than one ATC, the outputs of the ATCs are  
combined together and connected to the TX port of the duplexer. The  
duplexer serves as the interface between the antenna system and the RF  
frame. Table 3-1 lists the connection between the PAs and the ATC for an RF  
Frame with up to 20 channels. Table 3-2 lists the connection between the PAs  
and the ATC for an RF Frame with 21 channels or more.  
Table 3-1  
RF Frame 1 PA to ATC connection for an omni Metrocell with up to 20 channels  
From  
Through  
ATC1 - Port 1  
To  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
DPA 2 - Port1  
DPA 2 - Port2 (LCH)  
DPA 3 - Port1  
DPA 3 - Port2  
DPA 4 - Port1  
DPA 4 - Port2  
DPA 5 - Port1  
DPA 5 - Port2  
DPA 6 - Port1  
DPA 6 - Port2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 9 - Port1  
DPA 9 - Port 2  
DPA 10 - Port1  
DPA 10 - Port2  
ATC1 - Port 2  
ATC1 - Port 3  
ATC1 - Port 4  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7  
ATC1 - Port 8  
ATC2 - Port 1  
ATC2 - Port 2 Duplexer  
TRU/DPA  
Shelf 1  
ATC Shelf 1  
Antenna  
(Main receive)  
Position 2  
ATC2 - Port 3  
TRU/DPA  
Shelf 2  
ATC Shelf 2  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4  
TRU/DPA  
Shelf 3  
ATC Shelf 3  
Note: Additional RF Frames with 20 channels or less are connected to  
their respective TX/RX antennas in the same way as RF Frame 1.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-6 Cell Site Layouts  
Table 3-2  
RF Frame 1 PA to ATC connection for an omni Metrocell with 21 channels or more  
From  
Through  
ATC1 - Port 1  
To  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
DPA 2 - Port1  
DPA 2 - Port2 (LCH)  
DPA 3 - Port1  
DPA 3 - Port2  
DPA 4 - Port1  
DPA 4 - Port2  
DPA 5 - Port1  
DPA 5 - Port2  
DPA 6 - Port1  
DPA 6 - Port2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 9 - Port1  
DPA 9 - Port 2  
DPA 10 - Port1  
DPA 10 - Port2  
DPA 11 - Port1  
DPA 11 - Port 2  
DPA 12 - Port1  
DPA 12 - Port2  
ATC1 - Port 2  
ATC1 - Port 3  
TRU/DPA  
Shelf 1  
ATC Shelf 1  
ATC Shelf 2  
ATC Shelf 3  
ATC1 - Port 4  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7  
ATC1 - Port 8 Duplexer  
Antenna  
(Main receive)  
Position 2  
ATC2 - Port 1  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4 Duplexer  
TRU/DPA  
Shelf 2  
TRU/DPA  
Shelf 3  
Antenna  
(Diversity  
receive)  
Position 3  
ATC3 - Port 5  
ATC3 - Port 6  
ATC3 - Port 7  
ATC3 - Port 8  
Note: Additional RF Frames with 21 channels or more are connected to  
their respective TX/RX antennas in the same way as RF Frame 1.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-7  
Receive cabling  
In the reverse path, the receive signal from the main antenna is connected to  
the A-input of the Receive Multicoupler (RMC) through the receive port of  
the duplexer. The diversity antenna connects directly to the B-input of the  
RMC. Distribution of the reverse path frequencies is accomplished by RF  
splitters within each RF frame.  
Table 3-3 shows the connection between the RMC and the splitters.  
Table 3-3  
RMC to splitter connections for an Omni Metrocell  
From  
Through  
To  
Splitter 1  
Main antenna  
RMC 1A - A1  
RMC 1B - B1  
RMC 1A - A2  
RMC 1B - B2  
RMC 1A - A3  
RMC 1B - B3  
TRU Shelf 1  
TRU Shelf 1  
TRU Shelf 2  
TRU Shelf 2  
TRU Shelf 3  
TRU Shelf 3  
Diversity antenna  
Main antenna  
Splitter 4  
Splitter 1  
Splitter 4  
Splitter 1  
Splitter 4  
Diversity antenna  
Main antenna  
Diversity antenna  
Component requirement  
Table 3-4 lists the components required for a Metrocell with one to five RF  
Frames. An omni cell site requires only one Receive Multicoupler (RMC).  
Table 3-4  
Component requirement for an omni Metrocell  
No. of RF  
Frames  
No. of  
TRUs  
No. of  
ATCs  
Duplexer  
per frame  
ICRM TCM  
Port cards  
No. of  
antennas  
Configuration  
with up to 20  
channels per  
RF Frame  
1
2
3
4
5
1
2
3
4
5
3 to 20  
21 to 40  
41 to 60  
61 to 80  
81 to 100  
3 to 24  
1 to 3  
4 to 6  
1
1
1
1
1
2
2
2
2
2
2
4
6
6
8
2
4
6
6
8
1 TX/RX, 1 RX  
2 TX/RX  
7 to 9  
2 TX/RX, 1 TX  
2 TX/RX, 2 TX  
2 TX/RX, 3 TX  
2 TX/RX  
10 to 12  
13 to 15  
1 to 3  
Configuration  
with up to 24  
channels per  
RF Frame  
25 to 48  
49 to 72  
73 to 96  
97 to 120  
4 to 6  
2 TX/RX, 2 TX  
2 TX/RX, 4 TX  
2 TX/RX, 6 TX  
2 TX/RX, 8 TX  
7 to 9  
10 to 12  
13 to 15  
Note: An additional TCM port card is required for the DRUM, the ACU  
and the CSM2.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-8 Cell Site Layouts  
120° STSR cell site configuration  
The Metrocell in a 120° STSR configuration uses at least two equipment  
frames, one CE Frame and one RF frame (see Figure 3-4). Each TRU/DPA  
Shelf and its associated ATC on the RF frame support one of the three sectors.  
With only one RF frame, the maximum number of Voice Channels (VCH)  
supported by each sector is six since two of the eight TRUs on the TRU shelf  
have to be assigned as the Control Channel (CCH) and the Locate Channel  
Receiver (LCR). A 120° STSR Metrocell with one RF Frame requires six  
antennas; one TX/RX antenna and one RX only antenna for each sector (see  
Figure 3-6). As traffic grows, two additional RF frames can be added to  
accommodate more VCHs (see Figure 3-5).  
A 120° STSR Metrocell with three RF Frames requires six antennas. It may  
be three TX/RX antennas and three RX only antennas or six TX/RX antennas  
depending on the number of channels in each RF Frame. An RF Frame with  
20 channels or less in one sector requires one duplexer in the RF Frame and  
one TX/RX antennas for that sector. The outputs of the three combiners are  
combined through one phasing transformer (located at ATC 2) and connected  
to Duplexer position 2 in that RF Frame. The output of the duplexer is then  
connected to the main TX/RX Antenna of that sector).  
An RF Frame with 21 channels or more in one sector requires two duplexers  
in the RF Frame and two TX/RX antennas for that sector. The outputs of ATC  
1 and ATC 2 are combined through one phasing transformer (located at ATC  
2) and connected to Duplexer position 2 in that RF Frame. The output of the  
duplexer is then connected to main TX/RX Antenna of that sector. The output  
of ATC 3 is connected to Duplexer position 3 and then to the diversity TX/RX  
Antenna of that sector. This arrangement is used to meet the requirement of a  
minimum of 21 channel spacing (630 kHz) between the channels in one RF  
Frame. Figure 3-5 shows the frame layout and Figure 3-7 shows the block  
diagram of a 120° STSR Metrocell with three RF Frames.  
Control Channel redundancy  
Control Channel (CCH) redundancy is commonly provided with a Locate  
Channel Receiver (LCR) backup. With one RF Frame, the CCH of each  
sector is assigned to position 1 on the TRU/DPA Shelf of that sector and the  
LCR is assigned to position 4 on the same shelf. With three RF Frames, the  
CCH of each sector is assigned to position 1 on TRU/DPA Shelf 1 of that  
sector and the LCR is assigned to position 4 on the same shelf. This  
arrangement will have the CCH and the LCR supplied on a different DC  
power feed and a TCM card. No RF coaxial switch is required since the  
cavity of the LCR position on the ATC will tune to the CCH frequency when  
backup is required.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-9  
Figure 3-4  
Frame layout of a 120° STSR Metrocell site with one RF frame (front view)  
CE Frame  
RF Frame 1  
RF RIP  
CE RIP  
Duplexer Duplexer Duplexer  
Position 3 Position 2 Position 1  
(Sector Z) (Sector Y) (Sector X)  
DRUM  
ATC 3  
(Sector Z)  
ACU  
HSMO  
DPA DPA  
TRU/DPA  
Shelf 3  
(Sector Z)  
CSM 2  
11  
12  
RMC 1 (Sector X)  
RMC 2 (Sector Y)  
RMC 3 (Sector Z)  
DPA DPA  
10  
9
ATC 2  
(Sector Y)  
Blank Panel  
DPA DPA  
TRU/DPA  
Shelf 2  
(Sector Y)  
7
8
DPA DPA  
5
6
ICRM  
ATC 1  
(Sector X)  
DPA DPA  
TRU/DPA  
Shelf 1  
(Sector X)  
3
4
Blank Panel  
Base  
DPA DPA  
1
2
Base  
Figure 3-5  
Frame layout of a 120° STSR Metrocell site with three RF frames (front view)  
RF Frame 1  
(Sector X)  
RF Frame 2  
(Sector Y)  
RF Frame 3  
(Sector Z)  
CE Frame  
RF RIP  
RF RIP  
RF RIP  
CE RIP  
Duplexer Duplexer Duplexer  
Duplexer Duplexer Duplexer  
Duplexer Duplexer Duplexe  
DRUM  
Position 3 Position 2 Position 1  
Position 3 Position 2 Position 1  
Position 3 Position 2 Position 1  
ACU  
ATC 3  
ATC 3  
ATC 3  
HSMO  
DPA DPA  
DPA DPA  
11 12  
DPA DPA  
CSM 2  
11  
12  
11  
12  
TRU/DPA  
Shelf 3  
RMC 1 (Sector X)  
RMC 2 (Sector Y)  
RMC 3 (Sector Z)  
DPA DPA  
10  
DPA DPA  
DPA DPA  
10  
9
9
10  
9
ATC 2  
ATC 2  
ATC 2  
Blank Panel  
DPA DPA  
DPA DPA  
DPA DPA  
7
8
7
8
7
8
TRU/DPA  
Shelf 2  
DPA DPA  
DPA DPA  
DPA DPA  
5
6
5
6
5
6
ICRM  
ATC 1  
ATC 1  
ATC 1  
DPA DPA  
DPA DPA  
DPA DPA  
3
4
3
4
3
4
TRU/DPA  
Shelf 1  
Blank Panel  
Base  
DPA DPA  
DPA DPA  
DPA DPA  
1
2
1
2
1
2
Base  
Base  
Base  
Note:  
For a frame with up to 20 channels, only one duplexer (located in position  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-10 Cell Site Layouts  
2) is required.  
For a frame with 21 channels or more, two duplexers (located in positions  
2 and 3) are required.  
Figure 3-6  
Block diagram of a 120° STSR Metrocell using one RF Frame  
See Table 3-8 for  
RMC/TRU Shelf connection  
See Table 3-5 for  
PA/ATC connection  
RF Frame 1  
Antenna  
(Sector X  
Main  
A1  
A2  
A3  
TX  
Control Channel  
for Sector X  
Duplexer  
Position 1  
receive)  
RX  
ANT  
A8  
DPA 1  
Antenna  
(Sector X  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 1  
ATC 1  
B8  
DPA 4  
DPA 5  
Antenna  
(Sector Y  
Main  
Control Channel  
for Sector Y  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
receive)  
RX  
ANT  
A8  
Antenna  
(Sector Y  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 2  
ATC 2  
B8  
DPA 8  
DPA 9  
Antenna  
(Sector Z  
Main  
Control Channel  
for Sector Z  
A1  
A2  
A3  
TX  
Duplexer  
Position 3  
receive)  
RX  
ANT  
A8  
Antenna  
(Sector Z  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 3  
ATC 3  
B8  
DPA 12  
CE Frame  
ICRM  
HSMO  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-11  
Figure 3-7  
Block diagram of a 120° STSR Metrocell using three RF Frames  
See Table 3-9 for  
RF Frame 1  
See Tables 3-6 and 3-7  
RMC/TRU Shelf connection  
Note 1  
Antenna  
(Sector X  
Main  
for PA/ATC connection  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
Control Channel  
for Sector X  
RX  
ANT  
receive)  
A8  
DPA 1  
Antenna  
(Sector X  
Diversity  
receive)  
B1  
B2  
B3  
TX  
RX Duplexer ANT  
TRU/DPA  
Shelf 1  
Position 3  
ATC 1  
B8  
Note 2  
DPA 4  
DPA 5  
Antenna  
(Sector Y  
Main  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
RX  
ANT  
receive)  
A8  
RF Frame 2  
Antenna  
(Sector Y  
Diversity  
receive)  
B1  
B2  
B3  
TX  
TRU/DPA  
Shelf 2  
ATC 2  
RX Duplexer ANT  
Position 3  
B8  
DPA 8  
Antenna  
(Sector Z  
Main  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
DPA 9  
RX  
ANT  
receive)  
A8  
RF Frame 3  
Antenna  
(Sector Z  
Diversity  
receive)  
B1  
B2  
B3  
TX  
TRU/DPA  
Shelf 3  
ATC 3  
RX Duplexer ANT  
Position 3  
B8  
DPA 12  
CE Frame  
ICRM  
HSMO  
Notes:  
1. For diagram clarity, only RF Frame 1 is shown. RF Frames 2 and 3  
are connected and operated identically to that of RF Frame 1.  
2. For RF Frames with 20 channels or less, the Duplexer in position 3 is  
not required. The outputs of the three ATCs are combined together  
and connected to the Duplexer in position 2. See Table 3-6.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-12 Cell Site Layouts  
Transmit cabling  
In the transmit path, the output of each Transmit Receive Unit (TRU) is  
connected to the input of each corresponding power amplifier (PA) on the  
Dual Power Amplifier (DPA) module.  
For a 120° STSR cell site with one RF Frame, each TRU/DPA Shelf and its  
associated ATC and duplexer serve for one of the three sectors; TRU/DPA  
Shelf 1, ATC 1 and Duplexer 1 for Sector X, TRU/DPA Shelf 2, ATC 2 and  
Duplexer 2 for Sector Y and TRU/DPA Shelf 3, ATC 3 and Duplexer 3 for  
Sector Z. The output of each power amplifier (PA) is input to an 8-channel  
AutoTune Combiner (ATC). The output of each 8-channel ATC is connected  
to the Transmit (TX) port of each corresponding duplexer. Table 3-5 lists the  
connection between the PAs and the ATC for a 120° STSR cell site using one  
RF Frame for three sectors.  
For a 120° STSR cell site with three RF Frames, each frame serves for one of  
the three sectors; RF Frame 1 for Sector X, RF Frame 2 for Sector Y and RF  
Frame 3 for Sector Z. With an RF Frame holding up to 20 channels, only one  
duplexer is required. With 21 or more channels in one RF Frame, two  
duplexers are required. Table 3-6 lists the connection between the PAs and the  
ATC for an RF Frame with up to 20 channels. Table 3-7 lists the connection  
between the PAs and the ATC for an RF Frame with 21 channels or more.  
Table 3-5  
PA to ATC connection for a 120° Metrocell with one RF Frame  
From  
Through  
ATC1 - Port 1  
To  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
DPA 2 - Port1  
DPA 2 - Port2 (LCR)  
DPA 3 - Port1  
DPA 3 - Port2  
DPA 4 - Port1  
DPA 4 - Port2  
DPA 5 - Port1 (CCH)  
DPA 5 - Port2  
DPA 6 - Port1  
DPA 6 - Port2 (LCR)  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
ATC1 - Port 2  
ATC1 - Port 3  
TRU/DPA  
Shelf 1  
ATC Shelf 1  
ATC1 - Port 4 Duplexer  
Antenna  
(Mainreceive  
for Sector X)  
Position 1  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7  
ATC1 - Port 8  
ATC2 - Port 1  
ATC2 - Port 2  
ATC2 - Port 3  
TRU/DPA  
Shelf 2  
ATC Shelf 2  
ATC2 - Port 4 Duplexer  
Antenna  
(Mainreceive  
for Sector Y)  
Position 2  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-13  
Table 3-5  
PA to ATC connection for a 120° Metrocell with one RF Frame (continued)  
From  
Through  
ATC3 - Port 1  
To  
DPA 9 - Port1 (CCH)  
DPA 9 - Port 2  
ATC3 - Port 2  
ATC3 - Port 3  
DPA 10 - Port1  
TRU/DPA  
Shelf 3  
DPA 10 - Port2 (LCR) ATC Shelf 3  
DPA 11 - Port1  
ATC3 - Port 4 Duplexer  
Antenna  
(Mainreceive  
for Sector Z)  
Position 3  
ATC3 - Port 5  
DPA 11 - Port2  
ATC3 - Port 6  
ATC3 - Port 7  
ATC3 - Port 8  
DPA 12 - Port1  
DPA 12 - Port2  
Table 3-6  
PA to ATC connection for a 120° Metrocell with 20 channels or less per RF frame for one sector  
From  
Through  
ATC1 - Port 1  
To  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
ATC1 - Port 2  
RF Frame 1 DPA 2 - Port1  
ATC1 - Port 3  
TRU/DPA  
Shelf 1  
DPA 2 - Port2 (LCR)  
DPA 3 - Port1  
DPA 3 - Port2  
DPA 4 - Port1  
DPA 4 - Port2  
DPA 5 - Port1  
DPA 5 - Port2  
RF Frame 1  
ATC Shelf 1  
ATC1 - Port 4  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7  
ATC1 - Port 8  
ATC2 - Port 1 RF Frame 1  
Antenna  
(Main receive  
for Sector X)  
Duplexer  
Position 2  
ATC2 - Port 2  
RF Frame 1 DPA 6 - Port1  
ATC2 - Port 3  
TRU/DPA  
Shelf 2  
DPA 6 - Port2  
RF Frame 1  
ATC Shelf 2  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 9 - Port1  
RF Frame 1 DPA 9 - Port 2  
TRU/DPA  
Shelf 3  
RF Frame 1  
ATC Shelf 3  
DPA 10 - Port1  
DPA 10 - Port2  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-14 Cell Site Layouts  
Table 3-6  
PA to ATC connection for a 120° Metrocell with 20 channels or less per RF frame for one sector  
(continued)  
From  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
Through  
ATC1 - Port 1  
To  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 2 DPA 2 - Port2 (LCR)  
RF Frame 2  
ATC Shelf 1  
ATC1 - Port 4  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
ATC1 - Port 5  
DPA 3 - Port2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port2  
ATC2 - Port 2 RF Frame 2  
Antenna  
Duplexer  
Position 2  
(Main receive  
for Sector Y)  
DPA 6 - Port1  
ATC2 - Port 3  
RF Frame 2 DPA 6 - Port2  
RF Frame 2  
ATC Shelf 2  
ATC2 - Port 4  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4  
ATC1 - Port 1  
ATC1 - Port 2  
ATC1 - Port 3  
ATC1 - Port 4  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7 RF Frame 3  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 9 - Port1  
RF Frame 2 DPA 9 - Port 2  
RF Frame 2  
ATC Shelf 3  
TRU/DPA  
Shelf 3  
DPA 10 - Port1  
DPA 10 - Port2  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
DPA 2 - Port1  
RF Frame 3 DPA 2 - Port2 (LCR)  
RF Frame 3  
ATC Shelf 1  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
DPA 3 - Port2  
DPA 4 - Port1  
DPA 4 - Port2  
Antenna  
(Main receive  
for Sector Z)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
RF Frame 3 DPA 6 - Port1  
RF Frame 3  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 6 - Port2  
DPA 7 - Port1  
DPA 7 - Port 2  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-15  
Table 3-6  
PA to ATC connection for a 120° Metrocell with 20 channels or less per RF frame for one sector  
(continued)  
From  
Through  
To  
RF Frame 3 DPA 8 - Port1  
RF Frame 3  
ATC 2  
ATC2 - Port 7  
ATC2 - Port 8  
TRU/DPA  
DPA 8 - Port 2  
Shelf 2  
DPA 9 - Port1  
ATC3 - Port 1 RF Frame 3  
Antenna  
Duplexer  
Position 2  
(Main receive  
for Sector Z)  
RF Frame 3 DPA 9 - Port 2  
RF Frame 3  
ATC Shelf 3  
ATC3 - Port 2  
TRU/DPA  
Shelf 3  
DPA 10 - Port1  
ATC3 - Port 3  
DPA 10 - Port2  
ATC3 - Port 4  
Table 3-7  
PA to ATC connection for a 120° Metrocell with 21 channels or more per RF frame for one sector  
From  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
Through  
ATC1 - Port 1  
To  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 1 DPA 2 - Port2 (LCR)  
RF Frame 1  
ATC Shelf 1  
ATC1 - Port 4  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
ATC1 - Port 5  
DPA 3 - Port2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7 RF Frame 1  
Antenna  
(Main receive  
for Sector X)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4 RF Frame 1  
DPA 6 - Port1  
RF Frame 1 DPA 6 - Port2  
RF Frame 1  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 9 - Port1  
DPA 9 - Port 2  
DPA 10 - Port1  
RF Frame 1 DPA 10 - Port2  
RF Frame 1  
ATC Shelf 3  
Antenna  
TRU/DPA  
Shelf 3  
Duplexer  
Position 3  
(Diversity  
receive for  
Sector X)  
DPA 11- Port1  
ATC3 - Port 5  
DPA 11- Port 2  
ATC3 - Port 6  
DPA 12 - Port1  
DPA 12 - Port2  
ATC3 - Port 7  
ATC3 - Port 8  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-16 Cell Site Layouts  
Table 3-7  
PA to ATC connection for a 120° Metrocell with 21 channels or more per RF frame for one sector  
(continued)  
From  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
Through  
ATC1 - Port 1  
To  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 2 DPA 2 - Port2 (LCR)  
RF Frame 2  
ATC Shelf 1  
ATC1 - Port 4  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
ATC1 - Port 5  
DPA 3 - Port2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7 RF Frame 2  
Antenna  
(Main receive  
for Sector Y)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4 RF Frame 2  
DPA 6 - Port1  
RF Frame 2 DPA 6 - Port2  
RF Frame 2  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 9 - Port1  
DPA 9 - Port 2  
DPA 10 - Port1  
RF Frame 2 DPA 10 - Port2  
RF Frame 2  
ATC Shelf 3  
Antenna  
TRU/DPA  
Shelf 3  
Duplexer  
Position 3  
(Diversity  
receive for  
Sector Y)  
DPA 11- Port1  
ATC3 - Port 5  
DPA 11- Port 2  
ATC3 - Port 6  
DPA 12 - Port1  
DPA 12 - Port2  
ATC3 - Port 7  
ATC3 - Port 8  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
ATC1 - Port 1  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 3 DPA 2 - Port2 (LCR)  
RF Frame 3  
ATC Shelf 1  
ATC1 - Port 4  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
ATC1 - Port 5 RF Frame 3  
Antenna  
(Main receive  
for Sector Z)  
Duplexer  
Position 2  
DPA 3 - Port2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7  
ATC1 - Port 8  
ATC2 - Port 1  
ATC2 - Port 2  
ATC2 - Port 3  
RF Frame 3 DPA 5 - Port1  
RF Frame 3  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 5 - Port2  
DPA 6 - Port1  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-17  
Table 3-7  
PA to ATC connection for a 120° Metrocell with 21 channels or more per RF frame for one sector  
(continued)  
From  
Through  
To  
Antenna  
RF Frame 3 DPA 6 - Port2  
RF Frame 3  
ATC2 - Port 4 RF Frame 3  
TRU/DPA  
Shelf 2  
ATC Shelf 2  
Duplexer  
Position 2  
(Main receive  
for Sector Z)  
DPA 7 - Port1  
ATC2 - Port 5  
DPA 7 - Port 2  
ATC2 - Port 6  
DPA 8 - Port1  
DPA 8 - Port 2  
ATC2 - Port 7  
ATC2 - Port 8  
DPA 9 - Port1  
ATC3 - Port 1  
DPA 9 - Port 2  
ATC3 - Port 2  
DPA 10 - Port1  
ATC3 - Port 3  
RF Frame 3 DPA 10 - Port2  
RF Frame 3  
ATC Shelf 3  
ATC3 - Port 4 RF Frame 3  
Antenna  
TRU/DPA  
Shelf 3  
Duplexer  
Position 3  
(Diversity  
receive for  
Sector Z)  
DPA 11- Port1  
ATC3 - Port 5  
DPA 11- Port 2  
ATC3 - Port 6  
DPA 12 - Port1  
DPA 12 - Port2  
ATC3 - Port 7  
ATC3 - Port 8  
Receive cabling  
In the reverse path, the receive signal from the main antenna of each sector is  
connected to the A-input of the Receive Multicoupler (RMC) through the  
receive port of the duplexer of that sector. The diversity antenna connects  
directly to the B-input of the RMC. Distribution of the reverse path  
frequencies is accomplished by RF splitters within each RF frame.  
Table 3-8 lists the connection between the RMCs and the RF splitters in a  
120° STSR Metrocell with one RF Frame. Table 3-9 lists the connection  
between the RMCs and the RF splitters in a 120° STSR Metrocell using three  
RF frames.  
Table 3-8  
RMC to splitter connections for a 120° STSR Metrocell with one RF Frame  
From  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Through  
RMC 1A - A1  
RMC 2A - A1  
To  
Splitter 1  
Splitter 2  
Sector X  
RMC 3A - A1 TRU shelf 1 Splitter 3  
RMC 1B - B1  
RMC 2B - B1  
RMC 3B - B1  
Splitter 4  
Splitter 5  
Splitter 6  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-18 Cell Site Layouts  
Table 3-8  
RMC to splitter connections for a 120° STSR Metrocell with one RF Frame  
From  
Main antenna, Sector X  
Through  
RMC 1A - A2  
RMC 2A - A2  
To  
Splitter 1  
Splitter 2  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Sector Y  
Sector Z  
Table 3-9  
RMC 3A - A2 TRU shelf 2 Splitter 3  
RMC 1B - B2  
RMC 2B - B2  
RMC 3B - B2  
RMC 1A - A3  
RMC 2A - A3  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
RMC 3A - A3 TRU shelf 3 Splitter 3  
RMC 1B - B3  
RMC 2B - B3  
RMC 3B - B3  
Splitter 4  
Splitter 5  
Splitter 6  
RMC to splitter connections for a 120° STSR Metrocell with three RF Frames  
From  
Main antenna, Sector X  
Through  
RMC 1A - A1  
RMC 2A - A1  
To  
Splitter 1  
Splitter 2  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
RMC 3A - A1 RF Frame 1 Splitter 3  
TRU shelf 1  
RMC 1B - B1  
RMC 2B - B1  
RMC 3B - B1  
RMC 1A - A2  
RMC 2A - A2  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector X  
RMC 3A - A2 RF Frame 1 Splitter 3  
TRU shelf 2  
RMC 1B - B2  
RMC 2B - B2  
RMC 3B - B2  
RMC 1A - A3  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
RMC 2A - A3 RF Frame 1 Splitter 2  
TRU shelf 3  
RMC 3A - A3  
RMC 1B - B3  
RMC 2B - B3  
Splitter 3  
Splitter 4  
Splitter 5  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-19  
Table 3-9  
RMC to splitter connections for a 120° STSR Metrocell with three RF Frames (continued)  
From  
Through  
To  
Sector X  
Diversity antenna, Sector Z  
RMC 3B - B3 RF Frame 1 Splitter 6  
TRU Shelf 3  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Main antenna, Sector X  
Main antenna, Sector Y  
Main antenna, Sector Z  
RMC 1A - A4  
RMC 2A - A4  
Splitter 1  
Splitter 2  
RMC 3A - A4 RF Frame 2 Splitter 3  
TRU shelf 1  
RMC 1B - B4  
RMC 2B - B4  
RMC 3B - B4  
RMC 1A - A5  
RMC 2A - A5  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector Y  
RMC 3A - A5 RF Frame 2 Splitter 3  
TRU shelf 2  
RMC 1B - B5  
RMC 2B - B5  
RMC 3B - B5  
RMC 1A - A6  
RMC 2A - A6  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
RMC 3A - A6 RF Frame 2 Splitter 3  
TRU shelf 3  
RMC 1B - B6  
RMC 2B - B6  
RMC 3B - B6  
RMC 1A - A7  
RMC 2A - A7  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
RMC 3A - A7 RF Frame 3 Splitter 3  
TRU shelf 1  
RMC 1B - B7  
RMC 2B - B7  
RMC 3B - B7  
RMC 1A - A8  
RMC 2A - A8  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector Z  
RMC 3A - A8 RF Frame 3 Splitter 3  
TRU shelf 2  
RMC 1B - B8  
RMC 2B - B8  
RMC 3B - B8  
Splitter 4  
Splitter 5  
Splitter 6  
RMC 1A - A9 RF Frame 3 Splitter 1  
TRU shelf 3  
RMC 2A - A9  
RMC 3A - A9  
Splitter 2  
Splitter 3  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-20 Cell Site Layouts  
Table 3-9  
RMC to splitter connections for a 120° STSR Metrocell with three RF Frames (continued)  
From  
Diversity antenna, Sector X  
Diversity antenna, Sector Y  
Diversity antenna, Sector Z  
Through  
To  
RMC 1B - B9 RF Frame 3 Splitter 4  
TRU shelf 3  
Sector Z  
RMC 2B - B9  
RMC 3B - B9  
Splitter 5  
Splitter 6  
Component requirement  
Table 3-10 lists the components required for a 120° STSR Metrocell with one  
RF Frame and Table 3-11 lists the components required for a 120° STSR  
Metrocell with three RF Frames. Both configurations require three Receive  
Multicouplers (RMC).  
Table 3-10  
Component requirement for a 120° STSR Metrocell with one RF Frame  
No. of TRUs No. of TRUs No. of ATCs No. of No. of ICRM  
No. of antennas  
per Sector  
Duplexers  
TCM Port  
cards  
3 to 8  
9 to 24  
3
3
2
3 TX/RX, 3 RX  
Note: An additional TCM port card is required for the DRUM, the ACU  
and the CSM2.  
Table 3-11  
Component requirement for a 120° STSR Metrocell with three RF Frames  
No. of TRUs No. of TRUs No. of ATCs No. of  
No. of ICRM  
TCM Port  
cards  
No. of antennas  
per Sector  
Duplexers  
3 to 20  
9 to 60  
9
9
3
6
6
6
3 TX/RX, 3 RX  
6 TX/RX  
21 to 24  
63 to 72  
Note: An additional TCM port card is required for the DRUM, the ACU  
and the CSM2.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-21  
60° STSR cell site connection  
The Metrocell in a 60° STSR configuration uses at least three equipment  
frames, one CE Frame and two RF frames (see Figure 3-8). Each TRU/DPA  
Shelf and its associated ATC on one of the two RF frames support one of the  
six sectors. With only two RF frames, the maximum number of Voice  
Channels (VCH) supported by each sector is six since two of the eight TRUs  
on the TRU shelf have to be assigned as the Control Channel (CCH) and the  
Locate Channel Receiver (LCR). A 60° STSR Metrocell with two RF Frames  
requires twelve antennas; one TX/RX antenna and one RX only antenna for  
each sector (see Figure 3-10). As traffic grows, two additional RF frames can  
be added to accommodate more VCHs per sector (see Figure 3-9).  
A 60° STSR Metrocell with four RF Frames has 16 channels for one sector  
(including the CCH and the LCR) and each sector requires two TRU/DPA  
shelves and two ATCs. It also requires twelve antennas; one TX/RX antenna  
and one RX only antenna for each sector. The outputs of the two ATCs for  
each sector are combined through one phasing transformer and connected to a  
duplexer. The output of duplexer is then connected to the main TX/RX  
Antenna of that sector. The diversity RX antenna of each sector is connected  
directly to the Receive Multicoupler (RMC) of that sector. Figure 3-9 shows  
the frame layout and Figure 3-11 shows the block diagram of a 60° STSR  
Metrocell with four RF Frames.  
Control Channel redundancy  
Control Channel (CCH) redundancy is commonly provided with a Locate  
Channel Receiver (LCR) backup. With two RF Frames, the CCH of each sector  
is assigned to position 1 on the TRU/DPA Shelf of that sector and the LCR is  
assigned to position 4 on the same shelf. With four RF Frames, a typical  
assignment of the CCH and LCR for each sector is listed below:  
Control Channel  
Locate Channel Receiver  
Sector X RF Frame 1/TRU Shelf 1/Position 1 RF Frame 1/TRU Shelf 1/Position 4  
Sector Y RF Frame 2/TRU Shelf 1/Position 1 RF Frame 2/TRU Shelf 1/Position 4  
Sector Z RF Frame 2/TRU Shelf 3/Position 1 RF Frame 2/TRU Shelf 3/Position 4  
Sector U RF Frame 3/TRU Shelf 1/Position 1 RF Frame 3/TRU Shelf 1/Position 4  
Sector V RF Frame 4/TRU Shelf 1/Position 1 RF Frame 4/TRU Shelf 1/Position 4  
Sector W RF Frame 3/TRU Shelf 3/Position 1 RF Frame 3/TRU Shelf 3/Position 4  
This arrangement will have the CCH and the LCR supplied on a different DC  
power feed and a TCM card. No RF coaxial switch is required since the  
cavity of the LCR position on the ATC will tune to the CCH frequency when  
backup is required.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-22 Cell Site Layouts  
Figure 3-8  
Frame layout of a 60° STSR Metrocell with two RF frames (front view)  
CE Frame  
RF Frame 1  
RF Frame 2  
RF RIP  
RF RIP  
CE RIP  
Duplexer Duplexer Duplexer  
Position 3 Position 2 Position 1  
(Sector Z) (Sector Y) (Sector X)  
Duplexer Duplexer Duplexer  
Position 3 Position 2 Position 1  
(Sector W) (Sector V) (Sector U)  
DRUM  
ATC 3  
(Sector Z)  
ATC 3  
(Sector W)  
ACU  
HSMO  
DPA DPA  
DPA DPA  
TRU/DPA  
Shelf 3  
(Sector Z)  
TRU/DPA  
Shelf 3  
(Sector W)  
CSM 2  
11  
12  
11  
12  
RMC 1 (Sector X)  
RMC 2 (Sector Y)  
RMC 3 (Sector Z)  
RMC 4 (Sector U)  
RMC 5 (Sector V)  
RMC 6 (Sector W)  
DPA DPA  
10  
DPA DPA  
10  
9
9
ATC 2  
(Sector Y)  
ATC 2  
(Sector V)  
DPA DPA  
DPA DPA  
TRU/DPA  
Shelf 2  
(Sector Y)  
TRU/DPA  
Shelf 2  
(Sector V)  
7
8
7
8
DPA DPA  
DPA DPA  
5
6
5
6
ICRM  
ATC 1  
ATC 1  
(Sector X)  
(Sector U)  
DPA DPA  
DPA DPA  
TRU/DPA  
Shelf 1  
(Sector X)  
TRU/DPA  
Shelf 1  
(Sector U)  
3
4
3
4
Blank Panel  
Base  
DPA DPA  
DPA DPA  
1
2
1
2
Base  
Base  
Figure 3-9  
Typical frame layout of a 60° STSR Metrocell with four RF frames (front view)  
RF Frame 4  
RF Frame 3  
RF Frame 1  
RF Frame 2  
(Sectors V & W) (Sectors U & W)  
CE Frame  
(Sectors X & Z) (Sectors Y & Z)  
RF RIP  
RF RIP  
RF RIP  
RF RIP  
CE RIP  
Duplexer Duplexer Duplexer Duplexer Duplexer Duplexer  
Position 3 Position 2 Position 1 Position 3 Position 2 Position 1  
Duplexer Duplexer Duplexer Duplexer Duplexer Duplexer  
Position 3 Position 2 Position 1 Position 3 Position 2 Position 1  
(Sector V)  
(Sector W) (Sector U)  
DRUM  
(Sector X)  
(Sector Z) (Sector Y)  
ATC 3  
(Sector W)  
DPA DPA  
ATC 3  
(Sector W)  
ATC 3  
(Sector Z)  
DPA DPA  
ATC 3  
(Sector Z)  
DPA DPA  
11 12  
ACU  
HSMO  
DPA DPA  
11  
12  
11  
12  
11  
12  
CSM 2  
(Sector W)  
DPA DPA  
(Sector W)  
DPA DPA  
(Sector Z)  
DPA DPA  
(Sector Z)  
DPA DPA  
RMC 1 (Sector X)  
RMC 2 (Sector Y)  
RMC 3 (Sector Z)  
RMC 4 (Sector U)  
RMC 5 (Sector V)  
RMC 6 (Sector W)  
9
10  
9
10  
9
10  
9
10  
ATC 2  
(Sector V)  
ATC 2  
(Sector U)  
ATC 2  
(Sector X)  
ATC 2  
(Sector Y)  
DPA DPA  
DPA DPA  
DPA DPA  
DPA DPA  
7
8
7
8
7
8
7
8
(Sector V)  
DPA DPA  
(Sector U)  
DPA DPA  
(Sector X)  
DPA DPA  
(Sector Y)  
DPA DPA  
5
6
5
6
5
6
5
6
ICRM  
ATC 1  
ATC 1  
ATC 1  
ATC 1  
(Sector V)  
(Sector U)  
(Sector X)  
(Sector Y)  
DPA DPA  
DPA DPA  
DPA DPA  
DPA DPA  
3
4
3
4
3
4
3
4
(Sector V)  
DPA DPA  
(Sector U)  
DPA DPA  
(Sector X)  
DPA DPA  
(Sector Y)  
DPA DPA  
Blank Panel  
Base  
1
2
1
2
1
2
1
2
Base  
Base  
Base  
Base  
Note: A fifth RF Frame can be added for expanding three of the sectors to  
24 channels.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-23  
Figure 3-10  
Block diagram of a 60° STSR Metrocell with two RF Frames  
See Table 3-12 for  
PA/ATC connection  
See Table 3-14 for  
RMC/TRU Shelf connection  
RF Frame 1  
Antenna  
(Sector X  
Main  
A1  
A2  
A3  
TX  
Control Channel  
for Sector X  
Duplexer  
Position 1  
receive)  
RX  
ANT  
A8  
DPA 1  
Antenna  
(Sector X  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 1  
ATC 1  
B8  
From  
RMC 6B-B1  
DPA 4  
Antenna  
(Sector Y  
Main  
Control Channel  
for Sector Y  
A1  
A2  
A3  
TX  
DPA 5  
Duplexer  
Position 2  
receive)  
RX  
ANT  
A8  
Antenna  
(Sector Y  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 2  
ATC 2  
B8  
DPA 8  
Antenna  
(Sector Z  
Main  
Control Channel  
for Sector Z  
A1  
A2  
A3  
TX  
DPA 9  
Duplexer  
Position 3  
receive)  
RX  
ANT  
A8  
Antenna  
(Sector Z  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 3  
ATC 3  
B8  
DPA 12  
CE Frame  
ICRM  
HSMO  
- continued -  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-24 Cell Site Layouts  
Figure 3-10  
Block diagram of a 60° STSR Metrocell with two RF Frames (continued)  
See Table 3-12 for  
PA/ATC connection  
See Table 3-14 for  
RMC/TRU Shelf connection  
RF Frame 2  
Antenna  
(Sector U  
Main  
A1  
A2  
A3  
TX  
Control Channel  
for Sector U  
Duplexer  
Position 1  
receive)  
RX  
ANT  
A8  
DPA 1  
Antenna  
(Sector U  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 1  
ATC 1  
B8  
From  
RMC 3B-B2  
DPA 4  
Antenna  
(Sector V  
Main  
Control Channel  
for Sector V  
A1  
A2  
A3  
TX  
DPA 5  
Duplexer  
Position 2  
receive)  
RX  
ANT  
A8  
Antenna  
(Sector V  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 2  
ATC 2  
B8  
DPA 8  
DPA 9  
Antenna  
(Sector W  
Main  
Control Channel  
for Sector W  
A1  
A2  
A3  
TX  
Duplexer  
Position 3  
receive)  
RX  
ANT  
A8  
Antenna  
(Sector W  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 3  
ATC 3  
B8  
DPA 12  
CE Frame  
ICRM  
HSMO  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-25  
Figure 3-11  
Block diagram of a 60° STSR Metrocell with four RF Frames  
See Table 3-15 for  
RF Frame 1  
See Tables 3-13 for  
RMC/TRU Shelf connection  
Note  
Antenna  
(Sector X  
Main  
PA/ATC connection  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
Control Channel  
for Sector X  
RX  
ANT  
receive)  
A8  
DPA 1  
Antenna  
(Sector X  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 1  
ATC 1  
B8  
Antenna  
(Sector Y  
Main  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
RX  
ANT  
receive)  
DPA 4  
DPA 5  
A8  
RF Frame 2  
Antenna  
(Sector Y  
Diversity  
receive)  
B1  
B2  
B3  
Sector X  
B8  
From  
RMC 3A-A4  
TRU/DPA  
Shelf 2  
ATC 2  
Antenna  
(Sector V  
Main  
A1  
A2  
A3  
TX  
DPA 8  
DPA 9  
Duplexer  
RX  
ANT  
receive)  
Position 2  
A8  
Antenna  
(Sector V  
Diversity  
receive)  
RF Frame 4  
B1  
B2  
B3  
Sector Z  
B8  
Antenna  
(Sector W  
Main  
TRU/DPA  
Shelf 3  
A1  
A2  
A3  
ATC 3  
TX  
Duplexer  
Position 3  
To Phasing  
RX  
ANT  
receive)  
Transformer  
on ATC3,  
RF Frame 2  
A8  
RF Frame 3  
Antenna  
(Sector W  
Diversity  
receive)  
B1  
B2  
B3  
DPA 12  
B8  
CE Frame  
ICRM  
HSMO  
Note:  
For diagram clarity, only RF Frames 1 and 2 are shown. RF Frames 3 and 4 are connected  
and operated identically to that of RF Frames 1 and 2 respectively for Sectors U, V and W.  
Refer to Tables 3-13 and 3-15 for the complete cabling information.  
- continued -  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-26 Cell Site Layouts  
Figure 3-11  
Block diagram of a 60° STSR Metrocell with four RF Frames (continued)  
See Table 3-15 for  
RF Frame 2  
See Tables 3-13 for  
RMC/TRU Shelf connection  
Note  
Antenna  
(Sector X  
Main  
PA/ATC connection  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
Control Channel  
for Sector Y  
RX  
ANT  
receive)  
A8  
DPA 1  
RF Frame 1  
Antenna  
(Sector X  
Diversity  
receive)  
B1  
B2  
B3  
TRU/DPA  
Shelf 1  
ATC 1  
B8  
Antenna  
(Sector Y  
Main  
A1  
A2  
A3  
TX  
Duplexer  
Position 2  
RX  
ANT  
receive)  
DPA 4  
DPA 5  
A8  
Antenna  
(Sector Y  
Diversity  
receive)  
B1  
B2  
B3  
Sector Y  
B8  
From  
RMC 3A-A3  
TRU/DPA  
Shelf 2  
ATC 2  
Antenna  
(Sector V  
Main  
A1  
A2  
A3  
TX  
DPA 8  
DPA 9  
Duplexer  
RX  
ANT  
receive)  
Position 2  
A8  
Antenna  
(Sector V  
Diversity  
receive)  
RF Frame 4  
Control Channel  
for Sector Z  
From ATC 3 on  
RF Frame 1  
B1  
B2  
B3  
Sector Z  
B8  
Antenna  
(Sector W  
Main  
TRU/DPA  
Shelf 3  
A1  
A2  
A3  
ATC 3  
TX  
Duplexer  
Position 3  
To Sector Z  
Main Antenna  
through  
Duplexer 3 on  
RF Frame 2  
RX  
ANT  
receive)  
A8  
RF Frame 3  
Antenna  
(Sector W  
Diversity  
receive)  
B1  
B2  
B3  
DPA 12  
B8  
CE Frame  
ICRM  
HSMO  
Note:  
For diagram clarity, only RF Frames 1 and 2 are shown. RF Frames 3 and 4 are connected  
and operated identically to that of RF Frames 1 and 2 respectively for Sectors U, V and W.  
Refer to Tables 3-13 and 3-15 for the complete cabling information.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-27  
Transmit cabling  
In the transmit path, the output of each Transmit Receive Unit (TRU) is  
connected to the input of each corresponding power amplifier (PA) on the  
Dual Power Amplifier (DPA) module.  
For a 60° STSR cell site with two RF Frames, each TRU/DPA Shelf and its  
associated ATC and duplexer serve for one of the six sectors as listed below:  
Sector X RF Frame 1—TRU/DPA Shelf 1, ATC 1 and Duplexer 1  
Sector Y RF Frame 1—TRU/DPA Shelf 2, ATC 2 and Duplexer 2  
Sector Z  
RF Frame 1—TRU/DPA Shelf 3, ATC 3 and Duplexer 3  
Sector U RF Frame 2—TRU/DPA Shelf 1, ATC 1 and Duplexer 1  
Sector V RF Frame 2—TRU/DPA Shelf 2, ATC 2 and Duplexer 2  
Sector W RF Frame 2—TRU/DPA Shelf 3, ATC 3 and Duplexer 3  
The output of each power amplifier (PA) is input to an 8-channel AutoTune  
Combiner (ATC). The output of each 8-channel ATC is connected to the  
Transmit (TX) port of each corresponding duplexer. Table 3-12 lists the  
connection between the PAs and the ATC for a 60° STSR cell site using two  
RF Frame for six sectors.  
For a 60°STSR cell site with four RF Frames, the assignment of the equipment  
for each sector is as listed below:  
Sector X RF Frame 1 —TRU/DPA Shelf 1, ATC 1  
TRU/DPA Shelf 2, ATC 2 and Duplexer 2  
Sector Y RF Frame 2 —TRU/DPA Shelf 1, ATC 1  
TRU/DPA Shelf 2, ATC 2 and Duplexer 2  
Sector Z  
RF Frame 1 —TRU/DPA Shelf 3, ATC 3  
RF Frame 2 —TRU/DPA Shelf 3, ATC 3 and Duplexer 3  
Sector U RF Frame 3 —TRU/DPA Shelf 1, ATC 1  
TRU/DPA Shelf 2, ATC 2 and Duplexer 2  
Sector V RF Frame 4 —TRU/DPA Shelf 1, ATC 1  
TRU/DPA Shelf 2, ATC 2 and Duplexer 2  
Sector W RF Frame 3 —TRU/DPA Shelf 3, ATC 3 and Duplexer 3  
RF Frame 4 —TRU/DPA Shelf 3, ATC 3  
By adding one more RF Frame to this configuration, three of the six sectors  
can be expanded to provide up to 24 channels (including the CCH and LCR).  
With this additional RF Frame, the equipment and cabling may need to be  
reassigned and rearranged. Table 3-12 lists the connection between the PAs  
and the ATC for a 60° STSR configuration with two RF Frames and Table 3-  
13 lists the connection between the PAs and the ATC for a 60° STSR  
configuration with four RF Frames.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-28 Cell Site Layouts  
Table 3-12  
PA to ATC connection for a 60°STSR Metrocell using two RF Frames  
From  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
Through  
ATC1 - Port 1  
To  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 1 DPA 2 - Port2 (LCH)  
RF Frame 1  
ATC Shelf 1  
ATC1 - Port 4 RF Frame 1  
Antenna  
(Main receive  
for Sector X)  
TRU/DPA  
Shelf 1  
Duplexer  
Position 1  
DPA 3 - Port1  
ATC1 - Port 5  
DPA 3 - Port2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7  
ATC1 - Port 8  
DPA 5 - Port1 (CCH)  
DPA 5 - Port2  
ATC2 - Port 1  
ATC2 - Port 2  
DPA 6 - Port1  
ATC2 - Port 3  
RF Frame 1 DPA 6 - Port2 (LCH)  
RF Frame 1  
ATC Shelf 2  
ATC2 - Port 4 RF Frame 1  
Antenna  
(Main receive  
for Sector Y)  
TRU/DPA  
Shelf 2  
Duplexer  
Position 2  
DPA 7 - Port1  
ATC2 - Port 5  
DPA 7 - Port 2  
ATC2 - Port 6  
DPA 8 - Port1  
ATC2 - Port 7  
DPA 8 - Port 2  
DPA 9 - Port1 (CCH)  
DPA 9 - Port 2  
DPA 10 - Port1  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
RF Frame 1 DPA 10 - Port2 (LCH) RF Frame 1  
ATC3 - Port 4 RF Frame 1  
Antenna  
TRU/DPA  
Shelf 3  
ATC Shelf 3  
Duplexer  
Position 3  
(Main receive  
for Sector Z)  
DPA 11 - Port1  
DPA 11 - Port2  
DPA 12 - Port1  
DPA 12 - Port2  
DPA 13 - Port1 (CCH)  
DPA 13 - Port2  
DPA 14 - Port1  
ATC3 - Port 5  
ATC3 - Port 6  
ATC3 - Port 7  
ATC3 - Port 8  
ATC4 - Port 1  
ATC4 - Port 2  
ATC4 - Port 3  
RF Frame 2 DPA 14 - Port2 (LCH) RF Frame 2  
ATC4 - Port 4 RF Frame 2  
Antenna  
TRU/DPA  
Shelf 1  
ATC Shelf 1  
Duplexer  
Position 1  
(Main receive  
for Sector U)  
DPA 15 - Port1  
DPA 15 - Port2  
DPA 16 - Port1  
DPA 16 - Port2  
ATC4 - Port 5  
ATC4 - Port 6  
ATC4 - Port 7  
ATC4 - Port 8  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-29  
Table 3-12  
PA to ATC connection for a 60°STSR Metrocell using two RF Frames (continued)  
From  
Through  
ATC5 - Port 1  
To  
DPA 17 - Port1 (CCH)  
DPA 17 - Port2  
ATC5 - Port 2  
DPA 18 - Port1  
ATC5 - Port 3  
RF Frame 2 DPA 18 - Port2 (LCH) RF Frame 2  
ATC5 - Port 4 RF Frame 2  
Antenna  
TRU/DPA  
Shelf 2  
ATC Shelf 2  
Duplexer  
Position 2  
(Main receive  
for Sector V)  
DPA 19 - Port1  
DPA 19 - Port 2  
DPA 20 - Port1  
DPA 20 - Port 2  
DPA 21 - Port1 (CCH)  
DPA 21 - Port 2  
DPA 22 - Port1  
ATC5 - Port 5  
ATC5 - Port 6  
ATC5 - Port 7  
ATC5 - Port 8  
ATC6 - Port 1  
ATC6 - Port 2  
ATC6 - Port 3  
RF Frame 2 DPA 22 - Port2 (LCH) RF Frame 2  
ATC6 - Port 4 RF Frame 2  
Antenna  
TRU/DPA  
Shelf 3  
ATC Shelf 3  
Duplexer  
Position 3  
(Main receive  
for Sector W)  
DPA 23 - Port1  
DPA 23 - Port2  
DPA 24 - Port1  
DPA 24 - Port2  
ATC6 - Port 5  
ATC6 - Port 6  
ATC6 - Port 7  
ATC6 - Port 8  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-30 Cell Site Layouts  
Table 3-13  
PA to ATC connection for a 60°STSR Metrocell using four RF Frames  
From  
DPA 1 - Port1 (CCH)  
DPA 1 - Port2  
Through  
ATC1 - Port 1  
To  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 1 DPA 2 - Port2 (LCH)  
RF Frame 1  
ATC Shelf 1  
ATC1 - Port 4  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
ATC1 - Port 5  
DPA 3 - Port2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7 RF Frame 1  
Antenna  
(Main receive  
for Sector X)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC1 - Port 1  
ATC1 - Port 2  
ATC1 - Port 3  
ATC1 - Port 4  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7 RF Frame 2  
DPA 6 - Port1  
RF Frame 1 DPA 6 - Port2  
RF Frame 1  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port 2  
DPA 1 - Port1 (CCH)  
DPA 1 - Port 2  
DPA 2 - Port1  
RF Frame 2 DPA 2 - Port2 (LCR)  
RF Frame 2  
ATC Shelf 1  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
DPA 3 - Port 2  
DPA 4 - Port1  
DPA 4 - Port2  
Antenna  
(Main receive  
for Sector Y)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port 2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
DPA 6 - Port1  
RF Frame 2 DPA 6 - Port2  
RF Frame 2  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port2  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-31  
Table 3-13  
PA to ATC connection for a 60°STSR Metrocell using four RF Frames (continued)  
From  
DPA 9 - Port1  
Through  
ATC3 - Port 1  
To  
DPA 9 - Port2  
ATC3 - Port 2  
DPA 10 - Port1  
ATC3 - Port 3  
RF Frame 1 DPA 10 - Port2  
RF Frame 1  
ATC Shelf 3  
ATC3 - Port 4  
TRU/DPA  
Shelf 3  
DPA 11 - Port1  
ATC3 - Port 5  
DPA 11 - Port2  
ATC3 - Port 6  
DPA 12 - Port1  
DPA 12- Port2  
ATC3 - Port 7 RF Frame 2  
Antenna  
(Main receive  
for Sector Z)  
Duplexer  
Position 3  
ATC3 - Port 8  
DPA 9 - Port1 (CCH)  
ATC3 - Port 1  
DPA 9 - Port2  
DPA 10 - Port1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4  
ATC3 - Port 5  
ATC3 - Port 6  
ATC3 - Port 7  
ATC3 - Port 8  
ATC1 - Port 1  
ATC1 - Port 2  
ATC1 - Port 3  
ATC1 - Port 4  
ATC1 - Port 5  
ATC1 - Port 6  
ATC1 - Port 7 RF Frame 3  
RF Frame 2 DPA 10 - Port2 (LCH) RF Frame 2  
TRU/DPA  
Shelf 3  
ATC Shelf 3  
DPA 11 - Port1  
DPA 11 - Port 2  
DPA 12 - Port1  
DPA 12 - Port 2  
DPA 1 - Port1 (CCH)  
DPA 1 - Port 2  
DPA 2 - Port1  
RF Frame 3 DPA 2 - Port2 (LCR)  
RF Frame 3  
ATC Shelf 1  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
DPA 3 - Port 2  
DPA 4 - Port1  
DPA 4 - Port2  
Antenna  
(Main receive  
for Sector U)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port 2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
DPA 6 - Port1  
RF Frame 3 DPA 6 - Port2  
RF Frame 3  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port2  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-32 Cell Site Layouts  
Table 3-13  
PA to ATC connection for a 60°STSR Metrocell using four RF Frames (continued)  
From  
DPA 1 - Port1 (CCH)  
DPA 1 - Port 2  
Through  
ATC1 - Port 1  
To  
ATC1 - Port 2  
DPA 2 - Port1  
ATC1 - Port 3  
RF Frame 4 DPA 2 - Port2 (LCR)  
RF Frame 4  
ATC Shelf 1  
ATC1 - Port 4  
TRU/DPA  
Shelf 1  
DPA 3 - Port1  
ATC1 - Port 5  
DPA 3 - Port 2  
ATC1 - Port 6  
DPA 4 - Port1  
DPA 4 - Port2  
ATC1 - Port 7 RF Frame 4  
Antenna  
(Main receive  
for Sector V)  
Duplexer  
Position 2  
ATC1 - Port 8  
DPA 5 - Port1  
ATC2 - Port 1  
DPA 5 - Port 2  
ATC2 - Port 2  
ATC2 - Port 3  
ATC2 - Port 4  
ATC2 - Port 5  
ATC2 - Port 6  
ATC2 - Port 7  
ATC2 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4  
ATC3 - Port 5  
ATC3 - Port 6  
ATC3 - Port 7 RF Frame 3  
DPA 6 - Port1  
RF Frame 4 DPA 6 - Port2  
RF Frame 4  
ATC Shelf 2  
TRU/DPA  
Shelf 2  
DPA 7 - Port1  
DPA 7 - Port 2  
DPA 8 - Port1  
DPA 8 - Port2  
DPA 9 - Port1 (CCH)  
DPA 9 - Port2  
DPA 10 - Port1  
RF Frame 3 DPA 10 - Port2 (LCH) RF Frame 3  
TRU/DPA  
Shelf 3  
ATC Shelf 3  
DPA 11 - Port1  
DPA 11 - Port2  
DPA 12 - Port1  
DPA 12- Port2  
DPA 9 - Port1  
DPA 9 - Port2  
DPA 10 - Port1  
Antenna  
(Main receive  
for Sector W)  
Duplexer  
Position 3  
ATC3 - Port 8  
ATC3 - Port 1  
ATC3 - Port 2  
ATC3 - Port 3  
ATC3 - Port 4  
ATC3 - Port 5  
ATC3 - Port 6  
ATC3 - Port 7  
ATC3 - Port 8  
RF Frame 4 DPA 10 - Port2  
RF Frame 4  
ATC Shelf 3  
TRU/DPA  
Shelf 3  
DPA 11 - Port1  
DPA 11 - Port 2  
DPA 12 - Port1  
DPA 12 - Port 2  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-33  
Receive cabling  
In the reverse path, the receive signal from the main antenna of each sector is  
connected to the A-input of the Receive Multicoupler (RMC) through the  
receive port of the duplexer of that sector. The diversity antenna connects  
directly to the B-input of the RMC. Distribution of the reverse path  
frequencies is accomplished by RF splitters within each RF frame.  
Table 3-14 lists the connection between the RMCs and the RF splitters in a  
60° STSR Metrocell with two RF Frames. Table 3-15 lists the connection  
between the RMCs and the RF splitters in a 60° STSR Metrocell using four  
RF frames.  
Table 3-14  
RMC to splitter connections for a 60° STSR Metrocell with two RF Frames  
From  
Main antenna, Sector X — primary sector  
Main antenna, Sector Y — right adjacent sector  
Sector X Main antenna, Sector U — rear sector  
Diversity antenna, Sector X — primary sector  
Diversity antenna, Sector U — rear sector  
Through  
To  
RMC 1A - A1  
RMC 2A - A1  
Splitter 1  
Splitter 2  
RMC 4A - A1 RF Frame 1 Splitter 3  
TRU shelf 1  
RMC 1B - B1  
RMC 4B - B1  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector W — left adjacent sector RMC 6B - B1  
Main antenna, Sector Y — primary sector  
Main antenna, Sector Z — right adjacent sector  
Sector Y Main antenna, Sector V — rear sector  
Diversity antenna, Sector Y — primary sector  
Diversity antenna, Sector V — rear sector  
RMC 2A - A2  
RMC 3A - A1  
RMC 5A - A1 RF Frame 1 Splitter 3  
TRU shelf 2  
RMC 2B - B1  
RMC 5B - B1  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector X — left adjacent sector RMC 1B - B2  
Main antenna, Sector Z — primary sector  
Main antenna, Sector U — right adjacent sector  
Sector Z Main antenna, Sector W — rear sector  
Diversity antenna, Sector Z — primary sector  
Diversity antenna, Sector W — rear sector  
RMC 3A - A2  
RMC 4A - A2  
RMC 6A - A1 RFFrame1 Splitter 3  
TRU shelf 3  
RMC 3B - B1  
RMC 6B - B2  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector Y — left adjacent sector RMC 2B - B2  
Main antenna, Sector U — primary sector  
Main antenna, Sector V — right adjacent sector  
Sector U Main antenna, Sector X — rear sector  
Diversity antenna, Sector U — primary sector  
Diversity antenna, Sector X — rear sector  
RMC 4A - A3  
RMC 5A - A2  
RMC 1A - A2 RFFrame2 Splitter 3  
TRU shelf 1  
RMC 4B - B2  
RMC 1B - B3  
Splitter 4  
Splitter 5  
Splitter 6  
Diversity antenna, Sector Z — left adjacent sector RMC 3B - B2  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-34 Cell Site Layouts  
Table 3-14  
RMC to splitter connections for a 60° STSR Metrocell with two RF Frames (continued)  
From  
Main antenna, Sector V — primary sector  
Main antenna, Sector W — right adjacent sector  
Sector V Main antenna, Sector Y — rear sector  
Diversity antenna, Sector V — primary sector  
Diversity antenna, Sector Y — rear sector  
Through  
To  
RMC 5A - A3  
RMC 6A - A2  
Splitter 1  
Splitter 2  
RMC 2A - A3 RFFrame2 Splitter 3  
TRU shelf 2  
RMC 5B - B2  
RMC 2B - B3  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector U — left adjacent sector RMC 4B - B3  
Main antenna, Sector W — primary sector  
Main antenna, Sector X — right adjacent sector  
Sector W Main antenna, Sector Z — rear sector  
Diversity antenna, Sector W — primary sector  
Diversity antenna, Sector Z — rear sector  
RMC 6A - A3  
RMC 1A - A3  
RMC 3A - A3 RFFrame2 Splitter 3  
TRU shelf 3  
RMC 6B - B3  
RMC 3B - B3  
Splitter 4  
Splitter 5  
Splitter 6  
Diversity antenna, Sector V — left adjacent sector RMC 5B - B3  
Table 3-15  
RMC to splitter connections for a 60° STSR Metrocell with four RF Frames  
From  
Through  
To  
Main antenna, Sector X — primary sector  
Main antenna, Sector Y — right adjacent sector  
Main antenna, Sector U — rear sector  
Diversity antenna, Sector X — primary sector  
Diversity antenna, Sector U — rear sector  
RMC 1A - A1  
RMC 2A - A1  
Splitter 1  
Splitter 2  
RMC 4A - A1 RFFrame1 Splitter 3  
TRU shelf 1  
RMC 1B - B1  
RMC 4B - B1  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector X Diversity antenna, Sector W — left adjacent sector RMC 6B - B1  
Main antenna, Sector X — primary sector  
Main antenna, Sector Y — right adjacent sector  
Main antenna, Sector U — rear sector  
RMC 1A - A2  
RMC 2A - A2  
RMC 4A - A2 RFFrame1 Splitter 3  
TRU shelf 2  
Diversity antenna, Sector X — primary sector  
Diversity antenna, Sector U — rear sector  
RMC 1B - B2  
RMC 4B - B2  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector W — left adjacent sector RMC 6B - B2  
Main antenna, Sector Y — primary sector  
Main antenna, Sector Z — right adjacent sector  
Sector Y Main antenna, Sector V — rear sector  
Diversity antenna, Sector Y — primary sector  
Diversity antenna, Sector V — rear sector  
RMC 2A - A3  
RMC 3A - A1  
RMC 5A - A1 RFFrame2 Splitter 3  
TRU shelf 1  
RMC 2B - B1  
RMC 5B - B1  
Splitter 4  
Splitter 5  
Splitter 6  
Diversity antenna, Sector X — left adjacent sector RMC 1B - B3  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-35  
Table 3-15  
RMC to splitter connections for a 60° STSR Metrocell with four RF Frames (continued)  
From  
Main antenna, Sector Y — primary sector  
Main antenna, Sector Z — right adjacent sector  
Sector Y Main antenna, Sector V — rear sector  
Diversity antenna, Sector Y — primary sector  
Diversity antenna, Sector V — rear sector  
Through  
To  
RMC 2A - A4  
RMC 3A - A2  
Splitter 1  
Splitter 2  
RMC 5A - A2 RFFrame2 Splitter 3  
TRU shelf 2  
RMC 2B - B2  
RMC 5B - B2  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector X — left adjacent sector RMC 1B - B4  
Main antenna, Sector Z — primary sector  
Main antenna, Sector U — right adjacent sector  
Main antenna, Sector W — rear sector  
RMC 3A - A3  
RMC 4A - A3  
RMC 6A - A1 RFFrame2 Splitter 3  
TRU shelf 3  
Diversity antenna, Sector Z — primary sector  
Diversity antenna, Sector W — rear sector  
RMC 3B - B1  
RMC 6B - B3  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector Z Diversity antenna, Sector Y — left adjacent sector RMC 2B - B3  
Main antenna, Sector Z — primary sector  
Main antenna, Sector U — right adjacent sector  
Main antenna, Sector W — rear sector  
RMC 3A - A4  
RMC 4A - A4  
RMC 6A - A2 RFFrame1 Splitter 3  
TRU shelf 3  
Diversity antenna, Sector Z — primary sector  
Diversity antenna, Sector W — rear sector  
RMC 3B - B2  
RMC 6B - B4  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector Y — left adjacent sector RMC 2B - B4  
Main antenna, Sector U — primary sector  
Main antenna, Sector V — right adjacent sector  
Main antenna, Sector X — rear sector  
RMC 4A - A5  
RMC 5A - A3  
RMC 1A - A3 RFFrame3 Splitter 3  
TRU shelf 1  
Diversity antenna, Sector U — primary sector  
Diversity antenna, Sector X — rear sector  
RMC 4B - B3  
RMC 1B - B5  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector U Diversity antenna, Sector Z — left adjacent sector RMC 3B - B3  
Main antenna, Sector U — primary sector  
Main antenna, Sector V — right adjacent sector  
Main antenna, Sector X — rear sector  
RMC 4A - A6  
RMC 5A - A4  
RMC 1A - A4 RFFrame3 Splitter 3  
TRU shelf 2  
Diversity antenna, Sector U — primary sector  
Diversity antenna, Sector X — rear sector  
RMC 4B - B4  
RMC 1B - B6  
Splitter 4  
Splitter 5  
Splitter 6  
Diversity antenna, Sector Z — left adjacent sector RMC 3B - B4  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-36 Cell Site Layouts  
Table 3-15  
RMC to splitter connections for a 60° STSR Metrocell with four RF Frames (continued)  
From  
Through  
To  
Main antenna, Sector V — primary sector  
Main antenna, Sector W — right adjacent sector  
Main antenna, Sector Y — rear sector  
Diversity antenna, Sector V — primary sector  
Diversity antenna, Sector Y — rear sector  
RMC 5A - A5  
RMC 6A - A3  
Splitter 1  
Splitter 2  
RMC 2A - A5 RFFrame4 Splitter 3  
TRU shelf 1  
RMC 5B - B3  
RMC 2B - B5  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector V Diversity antenna, Sector U — left adjacent sector RMC 4B - B5  
Main antenna, Sector V — primary sector  
Main antenna, Sector W — right adjacent sector  
Main antenna, Sector Y — rear sector  
RMC 5A - A6  
RMC 6A - A4  
RMC 2A - A6 RFFrame4 Splitter 3  
TRU shelf 2  
Diversity antenna, Sector V — primary sector  
Diversity antenna, Sector Y — rear sector  
RMC 5B - B4  
RMC 2B - B6  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Diversity antenna, Sector U — left adjacent sector RMC 4B - B6  
Main antenna, Sector W — primary sector  
Main antenna, Sector X — right adjacent sector  
Main antenna, Sector Z — rear sector  
RMC 6A - A5  
RMC 1A - A5  
RMC 3A - A5 RFFrame3 Splitter 3  
TRU shelf 3  
Diversity antenna, Sector W — primary sector  
Diversity antenna, Sector Z — rear sector  
RMC 6B - B5  
RMC 3B - B5  
Splitter 4  
Splitter 5  
Splitter 6  
Splitter 1  
Splitter 2  
Sector W Diversity antenna, Sector V — left adjacent sector RMC 5B - B5  
Main antenna, Sector W — primary sector  
Main antenna, Sector X — right adjacent sector  
Main antenna, Sector Z — rear sector  
RMC 6A - A6  
RMC 1A - A6  
RMC 3A - A6 RFFrame4 Splitter 3  
TRU shelf 3  
Diversity antenna, Sector W — primary sector  
Diversity antenna, Sector Z — rear sector  
RMC 6B - B6  
RMC 3B - B6  
Splitter 4  
Splitter 5  
Splitter 6  
Diversity antenna, Sector V — left adjacent sector RMC 5B - B6  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Layouts 3-37  
Component requirement  
Table 3-16 lists the components required for a 60° STSR Metrocell with two  
RF Frame and Table 3-17 lists the components required for a 60° STSR  
Metrocell with four RF Frames. Both configurations require six Receive  
Multicouplers (RMC).  
Table 3-16  
Component requirement for a 60° STSR Metrocell with two RF Frames  
No. of TRUs No. of TRUs No. of ATCs No. of  
No. of ICRM  
No. of antennas  
per Sector  
Duplexers  
TCM Port  
cards  
3 to 8  
18 to 48  
6
6
4
6 TX/RX, 6 RX  
Note: An additional TCM port card is required for the DRUM, the ACU  
and the CSM2.  
Table 3-17  
Component requirement for a 60° STSR Metrocell with four RF Frames  
No. of TRUs No. of TRUs No. of ATCs No. of No. of ICRM  
No. of antennas  
per Sector  
Duplexers  
TCM Port  
cards  
3 to 16  
18 to 96  
12  
6
6
6 TX/RX, 6 RX  
Note: An additional TCM port card is required for the DRUM, the ACU  
and the CSM2.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
3-38 Cell Site Layouts  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4-1  
4
Cell Site Components  
This chapter provides information on the description and Product  
Engineering Codes (PEC) of the major components used in a DualMode  
Metrocell.  
Table 4-1  
Major components of a DualMode Metrocell  
Note: FRU = Field Replaceable Unit  
Description  
PEC  
Metro RF Frame  
NTFB10AA  
NTFB0901  
NTFB0902  
NTFB11AA  
NTFB16AA  
NTFB17AA  
NTFB18AA  
NTFB1801  
NTFB1802  
NTFB19AA  
NTFB19AB  
NTFB20AA  
NTFB21AA  
NTFB21AB  
NTFB21AC  
NTFB23AA  
NTFB24AA  
NTFB34AA  
NTFB34AB  
NTFB35AA  
"A" DC Power Cable Harness  
"B" DC Power Cable Harness  
Metro RF Rack Interface Panel (RIP) Shelf  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
Duplexer  
AutoTune Combiner (ATC)  
ATC Phasing Transformer  
ATC Transformer Phasing Cable, A-Band  
ATC Transformer Phasing Cable, B-Band  
ATC Phasing Cable, A-Band  
ATC Phasing Cable, B-Band  
ATC Shorting Stub  
ATC-Duplexer Cable 1  
ATC-Duplexer Cable 2  
ATC-Duplexer Cable 3  
TRU/DPA Shelf  
TRU/DPA Shelf Fan Module Assembly  
PA-ATC Coax Cable Assembly 1-4  
PA-ATC Coax Cable Assembly 5-8  
TRU/PA- ATC Alarm Cable  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4-2 Cell Site Components  
Table 4-1  
Major components of a DualMode Metrocell  
Note: FRU = Field Replaceable Unit  
Description  
PEC  
Cable DATA 25-Pair TRU/DPA Shelf 1  
NTFA1004  
NTFA1008  
NTFA1009  
NTAX98AA  
NTFB38AA  
NTFB41AA  
NT3P64CA  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
Cable DATA 25-Pair TRU/DPA Shelf 2  
Cable DATA 25-Pair TRU/DPA Shelf 3  
Transmit Receive Unit (TRU)  
Dual Power Amplifier (DPA)  
CE Frame Alarm Cable  
Universal CE Frame  
Universal CE RIP Shelf  
DualMode Radio Unit Monitor (DRUM)  
—sniffer  
—whip antenna  
NTAX40DA  
NTAX40CA  
FRU  
Alarm Control Unit (ACU)  
Output Contact card  
NT3P20GA  
NT3P20EA  
NT3P20FB  
NT3P20JB  
NT3P70AB  
NT3P75AB  
NT3P78AB  
NT3P20HP  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
FRU  
Enhanced ACU Input card  
High Stability Master Oscillator (HSMO)  
Cell Site Monitor 2 (CSM2)  
M6200 Handset  
Handset coil cord  
Receive Multicoupler (RMC)  
Integrated Cellular Remote Module (ICRM) NTAX8607  
Port (RMDP) card  
Controller (RMCP) card  
Time Switch (RMTS) card  
(RMTC) card  
NTAX47BA  
NTAX89AA  
NTAX88AA  
NTAX88CA  
NT6X50AB  
NT6X27BB  
NT2X70CA  
NTAX90AB  
NTAX92AA  
NTAX91AA  
DS1 Interface card  
E1 Interface card  
Power convertor  
ICRM FSP Shelf  
Alarm (RMAC) card  
TCM-RS232 Conversion (RMTP) card  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Cell Site Components 4-3  
Customer Service Operations  
Most of these components can be ordered from Nortel. Contact the following  
Nortel Customer Service Operations (CSO) when replacement is required:  
For United States customers:  
Northern Telecom Inc.  
Attn. Customer Service Operations  
400 N. Industrial  
Richardson, Texas 75081  
For Bell Canada customers:  
Northern Telecom Canada Ltd.  
Customer Service Operations  
c/o Wesbell Transport  
1630 Trinity Rd., Unit #3, Door #4  
Mississauga, Ontario L5T 1L6  
Attn.: Replacement and Repair Operations  
Dept.: S898  
For Mexico customers:  
Northern Telecom de Mexico  
Toltecas #113  
Col. San Pedro De Los Pinos  
Casi Esq Calle 4  
Mexico  
For Asia Pacific customers:  
Northern Telecom Asia Pacific Ltd.  
Attn.: Technical Assistance Service  
Warwick House 17/F  
28 Tong Chong Street  
Quarry Bay, Hong Kong  
For Non-Bell Canada/CALA/International customers:  
Northern Telecom Canada Ltd.  
Customer Service Operations  
c/o Wesbell Transport  
1630 Trinity Rd., Unit #3, Door #4  
Mississauga, Ontario L5T 1L6  
Attn.: Replacement and Repair Operations  
Dept.: S898  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4-4 Cell Site Components  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5-1  
5
Power and Grounding Requirements  
Cell sites are built to house communication equipment of the cellular  
telephone network. Cellular equipment can be located in stand-alone sites or  
in larger buildings in urban areas. Cellular equipment is traditionally powered  
from a +24 Vdc power plant. Some switching equipment can also be located  
in a cell site. It is connected with other equipment through CO cables. RF  
signals are transmitted using coaxial cables through areal antennas. Since cell  
sites are susceptible to lightning strikes, extra precautions have to take place  
to ensure the operation.  
Safety requirements  
Safety standards for installation and maintenance of electrical equipment are  
the object of the national codes; Canadian Electrical Code (CEC) in Canada  
and the National Electrical Code (NEC) in the USA. Although these codes do  
not govern installations of communication equipment under the exclusive  
control of communication utilities, it is good design and installation practice  
for the new equipment or system to comply with the intent of the appropriate  
Code. For systems installed at the customer premises outside of the above  
communication utilities, compliance with the Code is mandatory.  
One of the basic safety rules of the national codes (CEC and NEC) in North  
America, for example, requires that there shall be no objectionable current on  
the Framework Ground conductor (grounding conductor). In practice, this  
usually means no measurable current.  
In view of the above, communication equipment shall use a three wire  
distribution system as required by the codes (system with separated  
grounding such as Floor Ground and grounded conductor such as Battery  
Return or the neutral) rather than two wire power distribution system (system  
with joined grounding and grounded conductor).  
Note: Countries outside North America may have different safety  
standards codes. Follow the safety standards for installation and  
maintenance of electrical equipment in your country accordingly.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5-2 Power and Grounding Requirements  
Power and grounding requirements  
Typical cell site radio equipment is powered by a +24 Vdc power system.  
However, the primary power for a DualMode Metrocell is +27 Vdc nominal.  
The reason that +27 Volts is specified as the nominal voltage rather than +24  
Volts is to highlight that the system requires the full float voltage level to  
enable it to deliver its fully rated available transmit RF output power level.  
When AC power is lost and the voltage level to the system is reduced to the  
nominal battery (that is, +24 Vdc), the power amplifiers will automatically  
step down their transmit RF output power. See the Dual Power Amplifier  
(DPA) section in NTP 411-2021-113Metrocell Radio Frequency (RF) Frame  
Description for details.  
The power plant normally consists of a negative grounded 12-cell Valve  
Regulated Lead-Acid (VRLA) battery plant andAC powered battery charging  
units commonly referred to as the rectifiers. Under normal operating  
conditions, that is, when AC power is available, the batteries are maintained  
within their specified float voltage range via the rectifiers which must supply  
current to power the system and keep the batteries charged. When an AC  
outage occurs, the battery plant provides back-up power to the system.  
However, at this time, the system will experience a step drop in voltage due to  
a battery plant transition from the float state to the fully charged state. During  
the battery discharge period, the voltage supplied to the system will gradually  
drop from its fully charged voltage.  
Under normal operating conditions an equalizing charge is not required. An  
equalizing charge is a special charge given to a battery when non-uniformity  
in voltage has developed between cells. It is given to restore all units to a  
fully charged condition by using a charging voltage higher than the normal  
float voltage and for a specified number of hours as determined by the specific  
voltage used. An equalize charge is also often applied when a recharge of the  
batteries is required in a minimum time following an emergency discharge.  
A typical operating voltage range at the Power Distribution Plant of a  
Metrocell should not exceed the range between +22.8 Vdc to +29 Vdc. +22.8  
Vdc assumes 1 V drop from the batteries to the Rack Interface Panel (RIP)  
and 0.8 V from the RIP to the load. The operating voltage range of a specific  
system could vary.  
The power plant supplies two (designated as ‘Aand ‘B’) power feeds to each  
Metrocell frame. Table 5-1 lists the performance requirements related to  
primary DC power in a Metrocell.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Power and Grounding Requirements 5-3  
Table 5-1  
Metrocell DC Power performance requirements  
Description  
Requirements  
Maximum  
Nominal  
Minimum  
Module or unit level operating voltage range  
29.00 Vdc 27.00 Vdc  
75 Adc  
21.00 Vdc  
Metro RF Frame current draw per feed (A or B) with all PAs  
transmitting at full RF output power  
Metro RF Frame power distribution voltage drop (from the  
feed input at the RIP to any module)  
0.65 Vdc  
Metro RF Frame power distribution resistance (from the  
feed input at the RIP to any module)  
40  
MOhms  
Metro RF Frame operating voltage range (measured at the  
RIP power feed input)  
29.00 Vdc 27.00 Vdc 21.60 Vdc  
Metro RF Frame minimum voltage to guarantee maximum  
PA RF power is available (measured at the RIP power feed  
input)  
26.20 Vdc  
Power Plant normal operating "Float" voltage range  
Power Plant "Equalize" voltage (one to two days)  
Power Plant voltage drop  
27.60 Vdc 27.25 Vdc  
29.00 Vdc  
27.00 Vdc  
0.25 Vdc  
Maximum power feed length (measured from Metro RF  
Frame RIP to Power Plant breaker  
#2/0 AWG or Welding Copper Wire  
#1/0 AWG or Welding Copper Wire  
60 feet  
47 feet  
Absolute maximum voltage (no damage, non-operational,  
applied continuously)  
30.50 Vdc  
Transient voltage immunity (Metro RF Frame modules) for  
40 Vdc  
300 µs  
Noise from battery (system and module immunity)  
into 600 Ohms  
56 dBmC  
100 mV  
(rms)  
from 10 kHz to 20 MHz in 3 kHz BW into 50 Ohms  
from dc to 100 MHz into Hi-Z  
250 mV  
(p-p)  
Noise to battery (system and module emissions)  
from 300 Hz to 10 kHz (where Ip is the steady state  
dc current draw)  
9+10logIp  
dBmC  
from 10 kHz to 1 MHz  
Ip**0.5mV  
(rms)  
Broadband noise  
250 mV  
(p-p)  
Battery step (system and module immunity) within nominal  
operating range with 1 V/ms maximum rate of change)  
±3 Vdc  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5-4 Power and Grounding Requirements  
The input voltage for other communication equipment is typically -48 Vdc  
nominal. The voltage range at the Power Distribution Centre (or other type of  
a branch panel) shall not exceed the range between -43.75 Vdc to -55.80 Vdc.  
The input power is usually obtained from a centralized plant, which may be  
shared with other systems or dedicated to the equipment.  
Power plant batteries provide backup power for the equipment in case of  
power outage. The backup time is typically 8 hours at the site with no engine-  
alternator or 3 hours at the site with an emergency engine-alternator.  
The grounding system of radio and transmission equipment typically conform  
to the Common Bonding Network (CBN) bonding topology.  
Switching equipment conforms to the Isolated Bonding Network (IBN)  
grounding topology (typically, Star-IBN or Sparse-Mesh-IBN). Some  
systems also use a Star-IBN bonding topology where the Logic Return (LR)  
is isolated from the Framework Ground (FG) except at one clearly defined  
point.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Power and Grounding Requirements 5-5  
Frame power distribution  
Figure 5-1 shows the distribution network for supplying power to the cell site  
components in the CE and RF Frames.  
Figure 5-1  
Power distribution for the CE and RF Frames in a Metrocell  
RIP/Breaker  
RIP/Breaker  
Breaker1  
Breaker9  
Duplexer Shelf  
DRUM Shelf  
ACU Shelf  
Breaker10  
Breaker11  
Breaker2  
Breaker3  
Breaker4  
Breaker5  
Breaker9  
Breaker12  
ATC Shelf 3  
Breaker12  
HSMO Shelf  
CSM2 Shelf  
TRU 21,22  
DPA 11  
TRU 23,24  
DPA 12  
Breaker8  
Breaker7  
Breaker13  
Breaker14  
TRU/PA Shelf 3  
Breaker13  
TRU 17,18  
DPA 9  
TRU 19,20  
DPA 10  
RMC Shelf  
(one to six)  
Breaker6  
Breaker15  
ATC Shelf 2  
TRU 13,14  
DPA 7  
TRU 15,16  
DPA 8  
Breaker5  
Breaker4  
Breaker16  
Breaker17  
TRU/PA Shelf 2  
TRU 9,10  
DPA 5  
TRU 11,12  
DPA 6  
Breaker8  
Breaker16  
ICRM Shelf  
Breaker3  
Breaker18  
ATC Shelf 1  
TRU 5,6  
DPA 3  
TRU 7,8  
DPA 4  
Breaker2  
Breaker1  
Breaker19  
Breaker20  
TRU/PA Shelf 1  
Blank  
TRU 1,2  
DPA 1  
TRU 3,4  
DPA 2  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5-6 Power and Grounding Requirements  
System power protection  
There are three levels of protection at a Metrocell cell site. The first level is at  
the power plant which may consist of a hydraulic-magnetic breaker or slow-  
blow fuse. This stage is not provided by Nortel. The second level of  
protection is located in the RIP of the frames that consists of a magnetic  
breaker. In some cases, a third level of protection is implemented in the  
equipment shelf such as the TRU/DPA shelf fans and the ATC shelf and  
usually consists of a faster blow fuse. This arrangement isolates faults that  
occur lower down in the hierarchy from affecting circuits higher up.  
Grounding  
UL/CSA approval  
The North American electrical codes require that there be no current over the  
grounding conductors (see C22.1 par 10-200 and ANSI/NFPA No. 70 article  
250-21) and the safety standards specify that the electrical codes be adhered  
to. The Metrocell uses a two-wire DC power distribution scheme. In a  
grounded two-wire system, the return and ground are multiply connected and  
an unspecified amount of the return current can flow over the grounding  
conductors in violation of the electrical code rules.  
Therefore, each cell site has to be inspected by a safety authority (UL/CSA in  
North America) such that the codes requirements (refer to UL-1459 par 14.2  
and 34.6 and CSA C22.2 No. 225 par 4.5.3.1a) are met in order to obtain an  
approval from that authority.  
UL-1459 par 14.2  
A product intended for permanent connection to the branch-circuit supply  
shall have provision for the connection of one of the wiring methods in  
accordance with the National Electrical Code, ANSI/NFPA No. 70.  
UL-1459 par 34.6  
A field-wiring terminal intended solely for connection of an equipment-  
grounding conductor shall be capable of securing a conductor of the size rated  
for the application in accordance with the National Electrical Code ANSI/  
NFPA No. 70.  
CSA C22.2 N0. 225 par 3.5.3.1a  
Permanently connected equipment shall be provided with wiring terminals or  
leads for the connection of conductors not less than 14 AWG and having an  
ampacity not less than 125% of the rated input current.  
UL would not accept the grounding of the battery return when the battery/cell  
site configuration is not in the same room unless the battery is floating. A  
dedicated battery/cell site configuration residing in the same equipment room  
would not raise any concerns. CSA would have no objections to a grounding  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Power and Grounding Requirements 5-7  
scheme if the system input power is less than 50V thus not requiring any  
ground (see CEC par 10-102).  
CEC par 10-102  
Two wire direct-current systems supplying interior wiring and operating at  
not more than 300 V or less than 50 V between conductors shall be grounded,  
unless such system is used for supplying industrial equipment in limited areas  
and the circuit is equipped with a ground detector.  
The interpretation of "objectionable current" is to be aligned with the leakage  
current limits as defined in CSA 950 (maximum 5% current rating) or CSA  
225 (maximum 10% current rating). The NEC definition of "objectionable  
current" is any current not suitable for a particular installation; which would  
include leakage current limits, grounding conductor size, electrochemical  
potential between dissimilar metals, etc.  
Grounding requirements for the Metrocell is to keep the total return current on  
the grounding network below 5% of the total system DC current draw. This is  
done by:  
1. Making the desired return path a much lower resistance than the  
undesired return path (that is, current divider principle). Eliminating the  
grounding conductor at the power plant will help discourage return  
current flow through the supplementary grounding conductor.  
2. Minimize equalization currents between frames via the grounding  
conductors and antenna coax, etc. This is achieved by adhering to an  
isolated mesh grounding concept. The mesh concept means that all the  
metal surfaces (frames, shelves, PCP ground planes and module chassis)  
within the system are bonded together with ideally as little contact  
resistance as practically possible.  
Isolation means that the system grounding mesh only makes contact with  
other grounded systems at the local ground reference or BPG. This helps  
to reduce the chance of ground currents from other systems from flowing  
through the Metrocell grounding conductors. Isolation from building steel  
should be facilitated by providing an isolation pad underneath each frame.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5-8 Power and Grounding Requirements  
DC coupled signals  
DC coupled signals are considered undesirable from a grounding point of view  
for the following reasons:  
If a signal is routed to another system on a separate ground, then isolation  
is lost due to a connection via the signal return.  
Any noise on the system ground can resistively couple onto the signal  
potentially causing degradation in system performance (for example, bit  
errors on digital signals or unwanted noise pick-up on analog signals).  
The Metrocell contains the following DC coupled signal links:  
TRU terminal interface (RS-232 data only) — This potentially creates a  
connection between the system ground and the AC ground in which the  
connected terminal can affect system performance and damage  
equipment. A RS-232 opto (for example, Telebyte model 268) is  
recommended for this connection and this link should only be used in  
commissioning or doing maintenance and not be connected in normal  
operations.  
Control signals between the TRU and DPA (TTL/COMS logic levels) —  
These signals are restricted to the shelf backplane only.  
Alarm signals between the ATC shelf and the TRU/DPA shelf (+27 V) —  
These signals are restricted between the two shelves on the Metro RF  
Frame which provides a good low resistance ground to frame.  
Interframe alarm signals (+27V) — These signals are actually opto-  
isolated at the receive end (that is, at the ACU). The return path is through  
the system framework ground.  
ATC remote interface (RS-232 or RS-485) — (Future Development.)  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Power and Grounding Requirements 5-9  
Cable Identification  
It is a current practice to label or color-code insulated conductors. The  
following table shows the labeling and colors of insulated wires used in North  
America.  
Table 5-2  
Cable identification - North America  
Conductor Potential  
Function  
Label  
Color Code (if used)  
+24 Vdc  
dc power  
L+  
(typically black with a  
tag)  
0 V (grounded side of  
the +24 Vdc power  
supply)  
dc power return,  
battery return,  
BR conductor  
L-  
(typically black with a  
tag)  
-48 Vdc /-60 Vdc  
dc power  
L-  
(typically black with a  
tag)  
0 V (grounded side of  
the -48/-60 Vdc power  
supply)  
dc power return,  
battery return, BR  
conductor  
L+  
(typically black with a  
tag)  
grounded (or bonded  
to ground)  
framework ground,  
framework bonding  
conductor  
FG  
green (50%) yellow  
(50%)  
grounded (or bonded  
to ground)  
ac equipment  
grounding conductor  
none  
green (N. America)  
green + yellow  
(Europe)  
Framework Ground or Framework Bonding conductors are also known as  
"Protective Earth" as per IEC-950. The 50/50 green yellow ratio must be no  
less than 30% and no more than 70% for either color.  
Note: Countries outside North America may have different labeling and  
color coding of cables. Follow the safety standards for installation and  
maintenance of electrical equipment in your country accordingly.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5-10 Power and Grounding Requirements  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6-1  
6
Datafilling a Metro Cell Site  
Datafill Overview  
This section outlines the differences which you should consider when  
datafilling a Metro site. It makes no attempt at dealing with the entire datafill  
procedure and assumes that you are familiar with the MTX Cell Site Datafill  
Procedures. Please refer to NTP 411-2131-461 ICP Datafill Guidefor  
information concerning the entire Cell Site Table Datafill.  
A Metro Cell site looks for all intensive purposes like any other ICP/ICRM  
cell site to the MTX. It uses all the same tables, loads, and parameters as do  
the previous ICP/ICRM methods. The outstanding difference, which is  
apparent, is that more Trunks and DSPMs will be required to service the  
additional radios that the Metro RF frame is equipped with. The following  
datafill tables will be addressed in the view of differences to keep in mind  
when datafilling a Metro Cell Site:  
Table 6-1  
Datafill differences of the Metrocell from an NT800DR cell  
Table  
Metro differences  
CLLI  
More trunks should be assigned as each RF frame can be  
equipped with 8 more radios than a standard macrocell frame.  
ACUALM  
CCHINV  
PA Fan Alarms are laid out differently with the new RF frame.  
The RF frame location of the DRU should be correctly identified  
in relation to the ICRM P-side card port number.  
LCRINV  
VCHINV  
The RF frame location of the DRU should be correctly identified  
in relation to the ICRM P-side card port number.  
The RF frame location of the DRU should be correctly identified  
in relation to the ICRM P-side card port number.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6-2 Datafilling a Metro Cell Site  
Table CLLI  
Table CLLI defines both a name and a quantity to a certain MTX trunk  
assignment. For the Metro application the number of trunks assigned in  
TRKGRSIZ should be capable of supporting the additional VCHs supported.  
The minimum number of trunks required is shown in Table 6-2 for various  
Metro configurations with the maximum number of DRUs.  
Table 6-2  
Trunk requirement for different Metrocell configurations  
Metro Site Type  
Minimum Number of Trunks assigned to Table  
CLLI field TRKGRSIZ  
Omni site  
24  
24  
48  
120 Sectored (1 RF Frame)  
60 Sectored (2 RF Frames)  
Note: It is a good practice to assign more trunks than is necessary to  
prevent from having to backtrack through all the Tables to change the  
number in Table CLLI.  
Table ACUALM  
A Metrocell has input alarm points hardwired to the ACU. The alarm points  
for the CE Frame remain the same as per the standard NT800DR Macro Cell  
Site although their numbering scheme is changed. However the Metro RF  
Frame alarm points differ. The alarm point configuration for each Metro RF  
Frame has 23 alarm points to be datafilled in Table ACUALM. The alarm  
points monitor the:  
TRU/DPA cooling fans  
A and B side DC power filters  
ATC: cavities, DC power, and cooling fan  
The alarm points are also assigned for each DRU in the frequency assignment  
tables (CCHINV, LCRINV, VCHINV) of the Metro Cell Site.  
The MTX alarm point numbers for the hardwired Metro RF frame alarm  
points are listed in Table 6-3 and Table 6-4 for the MTX Table ACUALM.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Datafilling a Metro Cell Site 6-3  
Table 6-3  
MTX Datafill Alarm Points for Metro RF Frame  
Metro RF Shelves Fan Alarm  
Points  
Metro RF Frame ATC  
Alarm Points  
Shelf #  
1
FAN 1 FAN 2 FAN 3 FAN 4  
ATC # Cavities  
Fan  
20  
Pwr  
21  
0
4
1
5
2
3
1
2
16  
17  
2
6
7
22  
23  
3
8
9
10  
11  
3
18  
24  
25  
4
12  
32  
36  
40  
44  
64  
68  
72  
76  
96  
100  
104  
108  
160  
164  
13  
33  
37  
41  
45  
65  
69  
73  
77  
97  
101  
105  
109  
161  
165  
14  
15  
4
19  
26  
27  
5
34  
35  
5
48  
52  
53  
6
38  
39  
6
49  
54  
55  
7
42  
43  
7
50  
56  
57  
8
46  
47  
8
51  
58  
59  
9
66  
67  
9
80  
84  
85  
10  
11  
12  
13  
14  
15  
16  
17  
18  
70  
71  
10  
11  
12  
13  
14  
15  
16  
17  
18  
81  
86  
87  
74  
75  
82  
88  
89  
78  
79  
83  
90  
91  
98  
99  
112  
113  
114  
115  
176  
177  
116  
118  
120  
122  
180  
182  
117  
119  
121  
123  
181  
183  
102  
106  
110  
162  
166  
103  
107  
111  
163  
167  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6-4 Datafilling a Metro Cell Site  
Table 6-4  
MTX Alarm Points Datafill Numbers for Metro RF Frame  
Metro RF Frame Power Filter Alarm Points  
Metro RF Frame #  
Power Filter A-Side  
Power Filter B-Side  
1
2
3
4
5
6
28  
60  
29  
61  
92  
93  
30  
31  
124  
188  
125  
189  
The MTX Datafill alarm points for the CE frame are shown in Table 6-5.  
Table 6-5  
MTX Alarm Points Datafill Numbers for Metro CE Frame components  
Alarm  
name  
Alarm  
point  
Alarm  
name  
Alarm  
point  
Alarm  
name  
Alarm  
point  
Alarm  
name  
Alarm  
point  
HSMO +27V A  
CSM2  
128  
132  
134  
138  
142  
146  
152  
HSMO +27V B  
129  
HSMO #1  
130  
HSMO #2  
131  
RMC +27V A1  
RMC LNA1  
RMC LNA5  
RMC LNA9  
ICRM 1  
RMC +27V B1  
RMC LNA2  
RMC LNA6  
RMC LNA10  
ICRM 2  
135  
139  
143  
147  
153  
RMC +27V A2  
RMC LNA3  
RMC LNA7  
RMC LNA11  
ICRM 3  
136  
140  
144  
148  
154  
RMC +27V B2  
RMC LNA4  
RMC LNA8  
RMC LNA12  
ICRM 4  
137  
141  
145  
149  
155  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Datafilling a Metro Cell Site 6-5  
Table VCHINV, CCHINV, LCRINV  
The frequency assignment tables should be datafilled so that the TRU  
location in the Metro RF Frame with respect to the port card of the ICRM are  
correctly identified in the datafill tuple. Each physical location in the Metro  
RF Frame corresponds with a port number of the NT8X47BA Port Card of  
the ICRM. The datafill of these frequency assignment tables requires that the  
P-side card and port number be defined. Each NT8X47BA Port Card of the  
ICRM must be cabled to either J205 or J206 of the Metro RF Frame RIP.  
Table 6-6 is a matrix of NT8X47BA port connections to the TRU number of  
the Metro RF frame for each RIP connector.  
Note: Even though channels can be datafilled on every Port Card and on  
almost every Port (Exception: Card 8 Port 14, Card 8 Port 15, Card 9 Port  
13, Card 9 Port 14, and Card 9 Port 15), it is recommended that the  
Control Channel and its backup (Locate Receiver, Analog or Digital) be  
datafilled on separate Port Cards (see Frequency Assignment Example).  
Table 6-6  
NT8X47BA Port Numbers for Metro TRU locations  
RIP Connector J205  
Rip Connector J206  
METRO  
TRU #  
NT8X47BA  
Port #  
METRO  
TRU #  
NT8X47BA  
Port #  
RF Frame 1  
RF RIP  
Duplexer  
1
3
0
1
2
0
1
1
4
ATC 3  
5
2
6
2
DPA DPA  
11 12  
7
3
8
3
DPA DPA  
9
10  
9
4
10  
12  
14  
16  
18  
20  
22  
24  
4
ATC 2  
11  
13  
15  
17  
19  
21  
23  
5
5
DPA DPA  
7
8
6
6
DPA DPA  
5
6
7
7
ATC 1  
8
8
DPA DPA  
3
4
9
9
DPA DPA  
1
2
10  
11  
10  
11  
Base  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6-6 Datafilling a Metro Cell Site  
Frequency Assignment Example  
An example configuration is shown in Figure 6-1. In this example The ICRM  
virtual port card 0 is hardwired to the RIP Connector J205 and virtual port  
card 1 is hardwired to RIP Connector J206 (see Figure 6-2). Since port card 0  
is hardwired to J205 it will be connected to all the TRUs with odd numbered  
Metro locations (Refer to the Metro RF Frame Figure for the TRU numbering  
scheme). Hence port card 1, which is hardwired to J206, will be connected to  
all the TRUs with even numbered Metro locations.  
Five datafill tuples are shown in the example figure for:  
a CCH,  
a Digital Locate Receiver (DLR)—serving as the CCH backup in this  
example,  
an Analog Locate Receiver (ALR)—can be assigned to any TRU, and  
two VCH TRU personalities.  
The table in the figure shows the location of the five TRUs with respect to  
their Metro shelf locations.  
Figure 6-1  
Example of Metro TRU datafill  
Table CCHINV  
CCHKEY  
49 0  
CHANNO  
331  
BACKUP  
Y 0 AUTOTUNE  
MODE  
TERMATTR  
CARD  
0
PORT  
0
ALRAMPT  
0
COMBINED TRU2AN60  
Table LCRINV  
LCRKEY  
49 0  
CCHBACKED  
Y 0  
N
ADMODE  
TDMA3  
ANALOG  
TERMATTR  
TRU2AN60  
TRU2AN60  
CARD  
1
1
PORT  
1
2
ALARMPT  
LCRTEST  
1
2
N
N
49 1  
Table VCHINV  
VCHKEY CHANNO  
ADMODE  
TDMA3  
GROUP  
TRKMEMS  
TERMATTR CARD PORT ALARMPT XCVRSAT  
49 1  
49 4  
289  
(000) (1)(101)(201) TRU2AN60  
0
1
1
3
1
4
DEFAULT  
DEFAULT  
226 ANALOG_TDMA3 (001) (4)(104)(204) TRU2AN60  
Channel and Frequency  
CCH 0 (331)  
ICRM location  
Card 0 Port 0  
Card 1 Port 1  
Card 1 Port 2  
Card 0 Port 1  
Card 1 Port 3  
RF Frame location  
TRU Slot 1  
LCR 0 (DLR)  
TRU Slot 4  
LCR 1 (ALR)  
TRU Slot 6  
VCH 1 (289)  
TRU Slot 3  
VCH 4 (226)  
TRU Slot 8  
Note: J205 and J206 are cabled to the ICRM port cards as shown in Figure 6-2.  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Datafilling a Metro Cell Site 6-7  
Figure 6-2  
Example of Metro ICRM/TRU hardwire configuration  
4
5
6
7
8
Physical Port Card Slot Location  
20 21  
17 18 19  
ICRM  
0
1
2
3
4
Logical Port Card Slot Locations  
5
6
7
8
9
Metro  
RF RIP  
J201 J202 J203 J204 J205 J206 J207 J208 J209  
Connector Assignments  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
6-8 Datafilling a Metro Cell Site  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-1  
Appendix A: DualMode Metrocell Cell  
Site Specifications  
System Configuration  
Channel capacity  
Up to 120 RF Channels for Omni cell sites  
Up to 8, 16 or 24 RF Channels per sector  
for 120° STSR cell sites  
Up to 8 or 16 RF Channels per sector for  
60° STSR cell sites  
Locate capacity  
23,077 locates/hr./locate transceiver  
22,464 messages/hr.  
Control channel capacity  
Radio Frequency  
Radio frequency band  
Receive: 824 to 849 MHz  
Transmit: 869 to 894 MHz  
±0.25 ppm  
Frequency stability  
Channel spacing  
Duty cycle  
30 kHz  
Continuous  
PA power: Maximum  
43.5 dBm (22.4 Watts) ±0.5 dB  
23.5 to 43.5 dBm (0.22 to 22.4 Watts)  
Adjustment range  
Note: Adjustment range is the range of requested powers which  
may be typed into the TRU terminal interface.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-2 DualMode Metrocell Cell Site Specifications  
Transmit path insertion loss (including ATC, duplexer and cable losses):  
8 channels  
16 channels  
24 channels  
-4.4 dB maximum  
-4.7 dB maximum  
-5.0 dB maximum  
Minimum antenna input RF power (at the ANT port of the duplexer):  
8 channels  
16 channels  
24 channels  
38.6 dBm (7.33 watts)  
38.3 dBm (6.68 watts)  
38.0 dBm (6.38 watts)  
Intermodulation spurious emissions< -60 dBc  
Receive path insertion gain (ANT port of duplexer to TRU input port)  
+3 dB ±2 dB  
Receiver sensitivity for 12 dB SINAD C message weighting:  
Analog mode  
Digital mode  
< -119 dBm  
< -113 dBm  
< 3 dB  
Receiver de-sensitization  
Antenna port impedance  
50 ohms unbalanced  
Audio Interface  
Audio impedance  
600 ohms balanced  
Audio output levels:  
Nominal -18 dBm @ ±2.9 kHz  
Adjustable in fractional units, up to two  
decimal points, from -28.0 dBm to -10.0  
dBm for the transmit path and from -28.0  
dBm to -16.0 dBm for the receive path  
Alarms  
Base station  
192 points  
Auxiliary alarms  
16 assemble points (cabinet, power, tower,  
etc.)  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DualMode Metrocell Cell Site Specifications 7-3  
DC Power Requirements  
Grounding  
As specified in Northern Telecom’s  
NTP-297-1001-156  
Voltage  
Nominal +27.0 Vdc ±0.5 Vdc  
Range +21.0 Vdc to 29.0 Vdc  
Ripple  
400 millivolts  
Spurious 0.005 - 10 MHz  
Noise  
< -55 dBm @ 0.3 to 3.4 kHz  
< 32 dBrnC (600 ohms bridged)  
±1% of pre-set voltage @ 0-100% load  
< 600 ms for a step of 10-70% load  
Voltage stability  
Voltage response  
Voltage over/under shoot  
< 20% of pre-set voltage for a step of  
10-70% load  
Power Distribution Requirements  
Channel/Frames  
Current Breakers  
Mechanical  
Rack dimension  
Height 84" (213.4 cm)  
Width 22" (56 cm)  
Depth 24" (61 cm), including cables and  
excluding unit handles  
Clearance and Access  
Ceiling 8 feet (7.5 feet. after cable tray  
installation  
Front aisle 3 feet  
Rear aisle 2 feet  
Building access door are required to be a  
minimum of 30 inches wide  
Weight CE frame  
RF Frame  
400 lb. @ 80 lb./sq. ft.  
950 lb. @ 115 lb./sq. ft.  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-4 DualMode Metrocell Cell Site Specifications  
Paint  
Maple Brown # SCP-717-R1  
Nortel Logo  
Marking  
Packaging  
Frames  
ShockAir bubble sheet and Styrofoam  
packaging material  
Vibration  
Styrofoam sandwich pallet  
Wood, 2 x 4 braces  
5 mil polyethylene  
Bracing and support  
Moisture  
Transport  
Air ride shock  
Modules  
Separate shipping carton  
Environmental  
Operating temperature  
Normal operation  
+5°C to +40°C (+41°F to +105°F)  
Short-term operation 0°C to +50°C (+32°F to 120°F)  
Note: Short-term refers to a period of not more than 72  
consecutive hours and a total of not more than 15 days in one year.  
Thermal cycling  
Capable of withstanding the changes in  
temperature at the rate of 1°C (1.8°F) in  
three minutes over the short-term operating  
temperature range  
Operating Relative Humidity  
20 to 95% (non-condensing) over nominal  
temperature range and not to exceed 0.024  
lb of water/lb of dry air  
Altitude  
61 meters (200 feet) below sea level to  
4000 meters (13,000 feet) above sea level  
Shock and vibration  
Screw lock on required modules  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
DualMode Metrocell Cell Site Specifications 7-5  
Earthquake  
Meet earthquake requirements of Zone 1  
and Zone 2 as defined by Bellcore  
TR-NWT-000063  
Fixed equipment anchorage.  
Thermal dissipation for Metrocell RF Frame:  
Component  
Dissipation per  
unit  
Maximum  
number of units  
Total  
dissipation  
TRU  
27 W  
89 W  
21 W  
9.3 W  
24  
24  
24  
3
648 W  
2136 W  
504 W  
28 W  
PA  
Combiner (-4.5 dB)  
Duplexer (-0.7 dB)  
Total  
3.3 KW  
Regulatory  
Electromagnetic Emissions  
Cell site equipment complies with the following Regulatory Specification:  
FCC part 22 for 800 MHz frequency  
FCC part 15 Class B for cell site with Universal CE Frame and Metro RF  
Frame (except for the ICRM, CSM, HSMO and ACU shelves located on  
the Universal CE Frame)  
DOC RSS-128 Issue 1.0 Dual Mode Capability in Canada  
|
Radiated Emissions  
Cell site equipment complies with the following Regulatory Specification:  
FCC Part 22 for 800 MHz frequency  
FCC Part 15 Class B for cell site with Universal CE Frame and Metro RF  
Frame (except for the ICRM, CSM, HSMO and ACU shelves located on  
the Universal CE Frame)  
Bell Canada Design Standard TAD 8465 of Bellcore TR-NWT-001089 in  
10 kHz to 30 MHz and 1 GHz to 10 GHz range for radiated emission  
Telecom Compliance  
Cell site equipment complies with the following Regulatory Specification:  
CS03, Issue 7, Part 2 (Table 1: Digital Interface Requirement, Type IV)  
FCC Part 68 (TSB31, Table 4.5-2: Test Requirement Matrix)  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-6 DualMode Metrocell Cell Site Specifications  
Product Safety  
Cell site equipment complies with the following Safety Specification:  
CSA C22.2 No. 225-M90, Telecommunication Equipment  
CSA C22.2 No. 1, Radio, Television and Electronic Apparatus  
UL-1459, Issue 2.0 Telephone Standard  
UL-1419, Proposed Video and Audio Equipment  
Nortel Standard 9001.00, Product Safety  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Frequency Plans 7-7  
Appendix B: Frequency Plans  
N=7 Frequency plan (Band A)  
Group  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
Channel 333 332 331 330 329 328 327 326 325 324 323 322 321 320 219 318 317 316 315 314 313  
Number 312 311 310 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292  
291 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271  
270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 252 251 250  
249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229  
228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208  
207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187  
186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166  
165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145  
144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124  
123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103  
102 101 100  
99  
78  
57  
36  
15  
98  
77  
56  
35  
14  
97  
76  
55  
34  
13  
96  
75  
54  
33  
12  
95  
74  
53  
32  
11  
94  
73  
52  
31  
10  
93  
72  
51  
30  
9
92  
71  
50  
29  
8
91  
70  
49  
28  
7
90  
69  
48  
27  
6
89  
68  
47  
26  
5
88  
67  
46  
25  
4
87  
66  
45  
24  
3
86  
65  
44  
23  
2
85  
64  
43  
22  
1
84  
63  
42  
21  
83  
62  
41  
20  
82  
61  
40  
19  
81  
60  
39  
18  
80  
59  
38  
17  
79  
58  
37  
16  
1023 1022 1021  
1020 1019 1018 1017 1016 1015 1014 1013 1012 1011 1010 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000  
999 998 997 996 995 994 993 992 991  
716 715 714 713 712 711 710 709 708 707 706 705  
704 703 702 701 700 699 698 697 696 695 694 693 692 691 690 689 688 687 686 685 684  
683 682 681 680 670 678 677 676 675 674 673 672 671 670 669 668 667  
Note: The control channels are indicated inbold in these frequency plans  
(they may be re-assigned as required).  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-8 Frequency Plans  
N=7 Frequency plan (Band B)  
Group  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
Channel 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354  
Number 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375  
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396  
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417  
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438  
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459  
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480  
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501  
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522  
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543  
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564  
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585  
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606  
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627  
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648  
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666  
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732  
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753  
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774  
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795  
796 797 798 799  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Frequency Plans 7-9  
N=4 Frequency plan (Band A)  
Group  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
A4  
B4  
C4  
D4  
A5  
B5  
C5  
D5  
A6  
B6  
C6  
D6  
Channel 333 332 331 330 329 328 327 326 325 324 323 322 321 320 219 318 317 316 315 314 313 312 311 310  
Number 309 308 307 306 305 304 303 302 301 300 299 298 297 296 295 294 293 292 291 290 289 288 287 286  
285 285 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262  
261 260 259 258 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 240 239 238  
237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214  
213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190  
189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166  
165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142  
141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118  
117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99  
98  
74  
50  
26  
2
97  
73  
49  
25  
1
96  
72  
48  
24  
95  
71  
47  
23  
94  
70  
46  
22  
93  
69  
45  
21  
92  
68  
44  
20  
91  
67  
43  
19  
90  
66  
42  
18  
89  
65  
41  
17  
88  
64  
40  
16  
87  
63  
39  
15  
86  
62  
38  
14  
85  
61  
37  
13  
84  
60  
36  
12  
83  
59  
35  
11  
82  
58  
34  
10  
81  
57  
33  
9
80  
56  
32  
8
79  
55  
31  
7
78  
54  
30  
6
77  
53  
29  
5
76  
52  
28  
4
75  
51  
27  
3
1023 1022 1021  
1020 1019 1018 1017 1016 1015 1014 1013 1012 1011 1010 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000 999 998 997  
996 995 994 993 992 991  
716 715 714 713 712 711 710 709 708 707 706 705 704 703  
702 701 700 699 698 697 696 695 694 693 692 691 690 689 688 687 686 685 684 683 682 681 680 679  
678 677 676 675 674 673 672 671 670 669 668 667  
N=4 Frequency plan (Band B)  
Group  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
A4  
B4  
C4  
D4  
A5  
B5  
C5  
D5  
A6  
B6  
C6  
D6  
Channel 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357  
Number 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381  
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405  
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429  
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453  
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477  
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501  
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525  
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549  
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573  
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597  
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621  
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645  
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666  
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740  
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764  
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788  
789 790 791 792 793 794 795 796 797 798 799  
DMS-MTX DualMode Metrocell Cell Site Description  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7-10 Frequency Plans  
411-2021-111 Standard 01.01 June 1996  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Family Product Manual Contacts Copyright Confidentiality Legal statements DocInfo  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2
DualMode Metrocell  
Cell Site Description  
Manual  
Wireless Customer Documentation, Manager  
Nortel  
P.O. Box 833858  
Richardson, Texas 75083-3858  
Phone: (214) 684-1770 / Fax: (214) 684-3977  
Copyright 1996 Northern Telecom  
NORTHERN TELECOM CONFIDENTIAL: The  
information contained in this document is the property of  
Northern Telecom. Except as specifically authorized in writing by  
Northern Telecom, the holder of this document shall keep the  
information contained herein confidential and shall protect same  
in whole or in part from disclosure and dissemination to third  
parties and use same for evaluation, operation, and  
maintenance purposes only.  
Information is subject to change without notice.  
DMS, DMS SuperNode, DMS-MSC, DMS-HLR, DMS-100, and  
MAP are trademarks of Northern Telecom.  
Publication number: 411-2021-111  
Product release: DualMode Metrocell Cell Site Description  
Manual  
Document release: Standard 01.01  
Date: June 1996  
Printed in the United States of America  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Net Optics Switch 10 100 1000 User Manual
Neuros Audio MP3 Player MP3 DiGITAL AUDIO COMPUTER User Manual
Niles Audio Speaker OS53SI User Manual
Nortel Networks Answering Machine P091943002 User Manual
Nortel Networks Conference Phone NN 10300 014 User Manual
Nuvo Home Theater Server NV MPS4 User Manual
Olevia Car Stereo System ZP 500 User Manual
Omnimount Indoor Furnishings OM10015 User Manual
Onkyo MP3 Player MB S1 User Manual
Panasonic Fax Machine KX PW513DL User Manual