Emerson Process Management Emerson Electric Co Automobile Accessories 3095FC User Manual

Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC MultiVariable™  
Mass Flow Transmitter  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Rosemount 3095FC MultiVariable  
Mass Flow Transmitter  
The products described in this document are NOT designed for nuclear-qualified  
applications. Using non-nuclear qualified products in applications that require  
nuclear-qualified hardware or products may cause inaccurate readings.  
For information on Rosemount nuclear-qualified products, contact an Emerson Process  
Management Sales Representative.  
This device is intended for use in temperature monitoring applications and should not be  
used in control and safety applications.  
NOTICE  
Read this manual before working with the product. For personal and system safety, and for  
optimum product performance, make sure to thoroughly understand the contents before  
installing, using, or maintaining this product.  
The United States has two toll-free assistance numbers and one International number.  
Customer Central  
1-800-999-9307 (7:00 a.m. to 7:00 P.M. CST)  
International  
1-(952) 906-8888  
National Response Center  
1-800-654-7768 (24 hours a day)  
Equipment service needs  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table of Contents  
SECTION 1  
Introduction  
3095FC Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Firmware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Automatic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
3095FC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Flow Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
1992 Flow Calculations for Orifice Metering . . . . . . . . . . . . . . . 1-4  
Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Enclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Power Installation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Rosemount User Interface Software PC Requirements. . . . . . . . . 1-6  
Site Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Wiring Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
SECTION 2  
Installation  
Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Rosemount 3095FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Installing the Rosemount 3095FC on a Pipestand . . . . . . . . . . 2-2  
Installing the 3095FC on an Orifice Plate (Direct Mount) . . . . . 2-2  
Solar Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Solar Panel Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Power Supply Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
RTD Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Communications Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
Local Operator Interface Port (LOI). . . . . . . . . . . . . . . . . . . . . . 2-6  
EIA-485 (RS-485) Serial Communications - Comm 1. . . . . . . . 2-7  
EIA-232 (RS-232) Communications - Comm 2 . . . . . . . . . . . . . 2-7  
Ground the Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Earth Grounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Pipelines With Cathodic Protection . . . . . . . . . . . . . . . . . . . . . . 2-8  
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Apply Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10  
Install the Rosemount User Interface Software . . . . . . . . . . . . . . . . . 2-11  
Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Install With Autorun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Install Without Autorun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Uninstalling the Rosemount User Interface Software. . . . . . . . . . 2-12  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Getting Started with the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Run the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Log into the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
Establishing Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
Connection Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
Direct Connect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13  
Connect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Remote Hardware Connection . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Disconnect from the 3095FC. . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Configuration Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Adding a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
Deleting a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
Adding a 3095FC transmitter . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Deleting a 3095FC transmitter . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Deleting all 3095FC transmitters. . . . . . . . . . . . . . . . . . . . . . . 2-16  
Renaming a Group or 3095FC . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
SECTION 3  
Configuration  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Select TLP Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Display TLP Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Duplicating a Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Using Copy and Paste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
New Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Open File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Save File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Download File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Print Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Configuring the System Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Advanced Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
3095FC Communications Ports Configuration . . . . . . . . . . . . . . . . 3-8  
General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
RBX Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
3095FC Device Configuration / Information . . . . . . . . . . . . . . . . . 3-10  
General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
Points Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
Other Information Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
Revision Info Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
Security Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
Rosemount User Interface Security - Menu and Log On . . . . 3-13  
3095FC Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
LCD User List Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
I/O Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
Scanning Disabled versus Scanning Enabled. . . . . . . . . . . . . 3-15  
I/O Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15  
Analog Input (AI) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
AI General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16  
AI Advanced Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17  
AI Alarms Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19  
TOC-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Soft Points Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20  
Opcode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
Opcode Table Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22  
Radio Power Control Configuration . . . . . . . . . . . . . . . . . . . . . . . 3-23  
Meter Run Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25  
General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26  
AGA Meter Inputs Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27  
Gas Quality Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28  
Advanced Meter Setup Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29  
Instrument Calibration Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30  
Meter Setup Alarms Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31  
History Points Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32  
Meter History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32  
Averaging Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33  
Log Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33  
General History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35  
History, Alarm, Event, and Audit Log Reports . . . . . . . . . . . . . . . 3-37  
Collect Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38  
Configure History for EFM Reporting . . . . . . . . . . . . . . . . . . . . . . 3-38  
Electronic Flow Measurement (EFM) Reports . . . . . . . . . . . . 3-38  
Modbus Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40  
General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40  
Scale Values Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42  
Modbus - History Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44  
History Access Registers Tab . . . . . . . . . . . . . . . . . . . . . . . . . 3-44  
Modbus - Events / Alarms Functionality . . . . . . . . . . . . . . . . . 3-45  
Modbus - Detailed Point / Parameter Information . . . . . . . . . . 3-47  
Configure Modbus Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47  
Modbus Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51  
Custom Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54  
New Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54  
Save Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55  
SECTION 4  
Calibration  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Calibrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
3095FC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Analog Input (AI) Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
Calibration Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
Calibration Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
Zero Shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
Verify Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
SECTION 5  
Troubleshooting and  
Maintenance  
Backup Configuration Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Communication Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
Communication Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
Debug Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
Resetting the 3095FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
Warm Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
Cold Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
Jumper Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
After Installing Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
Replacing the Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
TOC-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Changing the Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
APPENDIX A  
Specifications and  
Reference Data  
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1  
Functional Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1  
Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-3  
Physical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-4  
Memory Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-6  
Flow Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-6  
Dimensional Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-7  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-9  
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-11  
Standard Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-11  
Custom Configuration (Option Code C1) . . . . . . . . . . . . . . . . . . .A-11  
Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-11  
Optional 305 Integral Manifolds. . . . . . . . . . . . . . . . . . . . . . . .A-11  
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-11  
Rosemount User Interface Software Packages . . . . . . . . . . .A-11  
Windows 98 or higher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-11  
APPENDIX B  
Product Certifications  
Approved Manufacturing Locations . . . . . . . . . . . . . . . . . . . . . . . . . . .B-1  
European Directive Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-1  
Hazardous Locations Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . .B-1  
North American Certifications . . . . . . . . . . . . . . . . . . . . . . . . . .B-1  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-1  
APPENDIX C  
Rosemount User  
Interface Software  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-1  
Point Type Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-1  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Point Type 0 InformationC-2  
Device Point Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-3  
APPENDIX Glossary  
TOC-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Section 1  
Introduction  
3095FC Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1-1  
3095FC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1-4  
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1-5  
3095FC OVERVIEW  
The 3095FC is a 32-bit microprocessor-based transmitter. The device  
electronically measures, monitors, and manages gas flow for a single meter  
run using an orifice plate (DP). It reliably and accurately performs gas flow  
calculations, temperature measurements, and data archival.  
The 3095FC performs minute, 10-minute, hourly (periodic), daily, and  
minimum / maximum historical data archival. It records the corrected gas flow  
across an orifice plate, stores the data, and has the ability to send the data to  
a remote host.  
The 3095FC computes gas flow for both volume and energy. It provides  
on-site functionality and supports remote monitoring, measurement, data  
archival, communications, and control.  
The 3095FC provides the following components and features:  
Weather-tight enclosure  
Termination Board  
32-bit Processor Board  
Battery Charger Board  
Backplane Board  
2 MB of flash ROM (Read Only Memory), which is field upgradeable  
512 KB of battery backed-up RAM (Random Access Memory) storage  
Support for a three-wire 100-ohm Resistance Thermal Detector (RTD)  
input  
Internal lead-acid batteries (optional)  
Local Operator Interface (LOI) port - EIA-232 (RS-232)  
EIA-485 (RS-485) Comm 1 port  
Communications card using EIA-232 (RS-232) on Comm 2 port  
(optional)  
Extensive applications firmware  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Hardware  
The backplane board provides the power regulation, the routing of the signals  
to the termination board, the processor board, the backup battery board, the  
optional communications board, the sensor module, and the battery charger  
board.  
The termination board provides connections to the field wiring and is located  
on the terminal side of the housing. Connections include the power supply,  
Local Operator Interface (LOI) communications, Comm 1 communications,  
optional Comm 2 communications, RTD wiring, and the I/O field wiring. The  
termination board provides surge and static discharge protection for the field  
wiring. Electronics include the RTD circuits and the final I/O drivers/receivers.  
The termination board also serves as an interface to the backplane board in  
the electronics portion of the enclosure.  
The 32-bit processor board contains the processor, memory, Local Operator  
Interface (LOI) communications driver, Comm 1 communications driver, the  
reset controller, and the real-time clock. The functions for the I/O of analog  
conversion originate on the processor board. The processor board, also  
called the central processor unit, provides the Serial Peripheral Interface  
(SPI) buss, Liquid Crystal Display drivers, and Sensor module.  
The microprocessor has low-power operating modes, including inactivity and  
low battery condition. The 3095FC comes standard with 512 KB of built-in,  
static random access memory (SRAM) for storing data and history. The  
3095FC also has 2 MB of flash ROM for storing operating system firmware,  
applications firmware, and configuration parameters.  
The charger board controls the charging of the internal batteries, if installed.  
Three D-size lead-acid batteries provide 2.5 Amp-hours of current at 6.2 volts  
nominal. The charger board also serves as the interface to the optional LCD  
assembly, as well as supporting the On/Off and Norm/Reset jumpers.  
A backup battery provides backup power for the static RAM and the  
Real-Time Clock. This battery is field replaceable. Under normal conditions,  
the battery has a functional life that exceeds five years.  
An RTD temperature probe typically mounts in a thermowell on the meter run.  
The RTD measures the flowing temperatures under a constant current drive.  
The RTD wires connect directly to the RTD connector on the termination  
board located inside the enclosure.  
The built-in inputs and outputs (I/O) on the 3095FC consist of a port for a  
3-wire 100-ohm RTD input interface. Three diagnostic analog inputs (AI)  
monitor the battery voltage, logical voltage, and enclosure/battery  
temperature.  
The Local Operator Interface (LOI) port provides a direct link between the  
3095FC and a personal computer (PC) through a Local Operator Interface  
Cable using EIA-232 (RS-232) communications. Configure the functionality of  
the 3095FC and monitor its operation using Rosemount User Interface  
Software (see Section 3: Configuration).  
The Comm 1 allows for EIA-485 (RS-485) serial communication protocols.  
The EIA-232 (RS-232) activates Comm 2. “Establishing Communication” on  
page 2-13  
The I/O parameters, Sensor inputs, flow calculations, power control, and  
security are configured and accessed using the configuration options  
available in Section 3: Configuration.  
1-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Firmware  
The firmware contained in flash ROM on the termination board, determines  
the functionality of the 3095FC and includes:  
1992 AGA-3 flow calculations (with user-selectable AGA8  
compressibility Detail, Gross I, or Gross II) for a single meter run  
Memory logging of 240 alarms and 240 events  
Archival of minute data from the last 60 minutes for 15 points  
Archival of 60 days of 10-minute data for 4 points  
Archival of 35 days of hourly data for 15 points  
Archival of 35 days of daily data for 15 points  
Archival of Min / Max historical data for today and yesterday  
Communications based on Modbus slave, (ASCII or RTU) protocol for  
use with EFM applications  
User level security  
Accessories  
The 3095FC supports the following options and accessories:  
Local Operator Interface (LOI) cable  
Liquid Crystal Display (LCD) with two-line alphanumeric viewing. The  
LCD automatically displays information at 3-second intervals.  
Solar panel mast assembly (installed to recharge the backup battery)  
Automatic Tests  
The 3095FC performs the following self-tests on a periodic basis:  
Battery low and high  
Software and hardware watchdog  
RTD automatic temperature compensation  
Sensor operation  
Memory validity  
The 3095FC will operate with its internal batteries down to 5.4 VDC. The LCD  
becomes active when input power with the proper polarity and startup voltage  
(typically set greater than 8.0 Volts) is applied to the CHG+ connector  
(provided the power input fusing/protection is operational). The battery and  
logical voltage tests ensure that the 3095FC is operating in the optimum  
mode.  
The software watchdog is controlled by the central processor unit (CPU). The  
software will arm the watchdog timer every second. If the watchdog timer is  
not armed for a period of 6 seconds, then the watchdog timer forces the  
3095FC unit to reset. If necessary, the software automatically resets. The  
hardware watchdog is controlled by the CPU and monitors the power to the  
hardware. If the battery voltage drops below 5.4 volts, the 3095FC  
automatically shuts down.  
The Rosemount 3095FC monitors its orifice-metering measurement for  
accurate and continuous operation.  
1-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Low Power Mode  
Sleep mode is used to place the CPU in a low power mode. The battery  
voltage is monitored by low voltage detection circuitry and the low voltage limit  
value is set at 5.4 volts. During Sleep mode, sub-modules are powered down.  
The 3095FC enters Sleep mode after one minute of inactivity on the  
communication ports.  
Wake-up from Sleep occurs when the 3095FC receives a:  
Timed interrupt from the Real-Time Clock  
Signal from one of the communication ports  
3095FC Functions  
Most of the 3095FC functions are determined by the firmware. The features  
and applications provided by the firmware, which must be configured by using  
Rosemount User Interface Software, include:  
Flow calculations for an orifice meter  
Extensive historical data archival  
Memory logging of 240 alarms and 240 events  
Security with local and remote password protection  
Flow Measurement  
The primary function of the 3095FC is to measure the flow of natural gas  
through an orifice in accordance with the 1992 American Petroleum Institute  
(API) and American Gas Association (AGA) standards.  
The primary inputs used for the orifice metering flow measurement function  
are DP, SP, and temperature. The DP and SP inputs are sampled once per  
second. The temperature input is sampled and linearized once per second  
from an RTD probe.  
1992 Flow Calculations for Orifice Metering  
The 1992 flow calculation is in accordance with ANSI/API 2530-92 (AGA  
Report No. 3 1992), API Chapter 14.2 (AGA Report No. 8 1992 2nd printing  
1994), and API Chapter 21.1. The 1992 flow calculation may be configured for  
either Metric or U.S. units.  
Flow Time  
The DP stored for each second is compared to the configured low flow  
cutoff. If the DP is less than or equal to the low flow cutoff or the converted  
SP is less than or equal to zero, flow is considered to be zero for that  
second. Flow time for a recalculation period is defined to be the number of  
seconds the DP exceeded the low flow cutoff.  
Input and Extension Calculation  
Every second the Rosemount 3095FC stores the measured input for DP,  
SP, and temperature and calculates the Integrated Value (IV) (the square  
root of the absolute upstream SP times the DP).  
Flow time averages of the inputs and the IV over the configured calculation  
period are calculated, unless there is no flow for an entire calculation  
period. Averages of the inputs are recorded to allow monitoring during no  
flow periods.  
1-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Instantaneous Rate Calculations  
The instantaneous value of the IV is used with the previous calculation  
period of the Integral Multiplier Value (IMV) to compute the instantaneous  
flow rate. The IMV is defined as the value resulting from the calculation of  
all other factors of the flow rate equation not included in the IV. The  
instantaneous flow rate is used with the volumetric heating value to  
compute the instantaneous energy rate.  
Flow and Energy Accumulation  
The averages of the DP and SP, temperature, and sum of the IV are used  
with the flow time to compute the flow and energy over the calculation  
period. The flow and energy are then accumulated and stored at the top of  
every hour. At the configured contract hour, the flow and energy are stored  
to the Daily Historical Log and zeroed for the start of a new day.  
CONSIDERATIONS  
Environmental  
Requirements  
The 3095FC is designed to operate between -40 to 75°C (-40 to 167°F).  
When mounting, ambient temperatures may effect the operating temperature.  
Operation beyond the recommended temperature range may cause  
measurement error and erratic performance.  
The 3095FC should not be exposed to levels of vibration that exceed 2g for  
15 to 150 Hz and 1g for 150 to 2000 Hz.  
Enclosures  
Mounting  
The 3095FC is packaged in a NEMA 4 windowed enclosure The enclosure is  
fabricated from die-cast aluminum alloy with iridite plating and paint. There  
are two ¾-in. pipe threaded holes for field conduit wiring, and  
communications.  
Provide adequate clearance for wiring, service, and solar panel. Mount on a  
pipestand or to an orifice plate using a 3- or 5-valve manifold. The LCD  
display can be rotated 90 degrees in either direction.  
For solar-powered 3095FC units orient solar panels as follows:  
Northern Hemisphere: due south (not magnetic south)  
Southern Hemisphere: and due north (not magnetic north)  
Sunlight is not blocked from 9:00 AM to 4:00 PM.  
Power Installation  
Requirements  
The primary power source is provided through DC voltage sources or solar  
power. Route power away from hazardous areas, sensitive monitoring  
devices, and radio equipment. Adhere to all local, company, and National  
Electrical Code (NEC) requirements for power installations.  
The 3095FC accepts input voltages from 8.0 volts to 28 volts at the charge  
(CHG+ / CHG-) terminals on the termination board. The maximum power for  
DC voltage sources is 130 mW, not including battery charging.  
An external solar panel connects to the CHG+ / CHG- inputs on the  
termination board. Circuitry on the battery charger board monitors and  
regulates the charge based on battery voltage, charging voltage, and  
temperature. The 3095FC requires a minimum 8-volt 200 mA solar panel.  
1-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
NOTE:  
Do not allow the batteries to fully discharge. If the batteries fully discharge, the  
battery charger board may enter thermal limiting.  
Rosemount User  
Interface Software PC  
Requirements  
The Rosemount User Interface Software operates on any PC that meets the  
following requirements:  
IBM compatible  
Pentium-Class Processor (233 MHz or greater is recommended)  
CD-ROM drive  
Windows 95 (service release B), 98, ME, NT 4.0 (Service Pack 6),  
2000 (Service Pack 2), or XP.  
32 MB RAM  
10 MB of available hard disk space  
RS-232 serial communication  
SVGA color monitor, 800 x 600 pixels  
Site Requirements  
Local, state, and federal codes may restrict monitoring locations and dictate  
site requirements. Position the 3095FC to minimize the length of signal and  
power wiring.  
Wiring Requirements  
I/O wiring requirements are site and application dependent. Local, state, or  
NEC requirements determine the I/O wiring installation methods. Direct burial  
cable, conduit and cable, or overhead cables are options for I/O wiring  
installations.  
1-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Section 2  
Installation  
Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-1  
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-2  
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-4  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-9  
Apply Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-10  
Install the Rosemount User Interface Software . . . . . . . . page 2-11  
Getting Started with the Software . . . . . . . . . . . . . . . . . . . page 2-12  
Establishing Communication . . . . . . . . . . . . . . . . . . . . . . page 2-13  
Configuration Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2-14  
MOUNTING  
Mounting the Rosemount 3095FC can be accomplished using one of the  
following methods:  
Pipestand mounted – The Rosemount 3095FC can mount to a 2-in.  
pipestand. Ensure that the pipestand meets all weight requirements  
and installation conforms to local building codes.  
Orifice Plate – Mount directly to an orifice plate using a 3- or 5-valve  
manifold.  
With either mounting method, the pressure inputs must be piped to the  
process connections.  
For solar panel mounting see “Mounting” on page 1-5. Dimensional drawings  
are located on page page A-7. Solar power installation is located on page  
page 2-3.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
INSTALLATION  
Rosemount 3095FC  
Piping from the static and DP meter runs connect to female ¼-18 NPT  
connections. The 3095FC is an upstream device, meaning that the SP line  
normally connects to the high pressure side (labeled “H” on the sensor body).  
Installing the Rosemount 3095FC on a Pipestand  
The following steps must be taken to install the 3095FC on a 2-in. pipestand:  
1. Install the pipestand using the pipestand documentation.  
2. Remove the orifice/meter run from service.  
3. Install the 3095FC on a pipestand using clamps or mounting  
brackets.  
4. Connect the impulse lines.  
5. Attach the appropriate wiring (see “Wiring” on page 2-4).  
6. Using the prefabricated operator interface cable, physically connect  
the 3095FC to the PC running the Rosemount User Interface  
Software. One end of the cable (a 9-pin, D-shell, female connector)  
plugs into a serial communications port on the PC. The other end of  
the cable plugs into the 3095FC.  
7. Apply power to the 3095FC (see “Apply Power” on page 2-10)  
8. Log into the Rosemount User Interface Software (see page “Log into  
the Software” on page 2-12)  
9. Establish communication between the 3095FC and PC (see  
“Establishing Communication” on page 2-13).  
10. Configure the 3095FC (see “Configuration” on page 3-4)  
11. Calibrate the 3095FC (see “Calibrate” on page 4-1).  
12. Connect the 3095FC unit to any other external communication  
devices or networks.  
13. Place the meter run in service and monitor with Rosemount User  
Interface Software for proper operation.  
Installing the 3095FC on an Orifice Plate (Direct Mount)  
The following steps must be taken to install the 3095FC on an orifice plate:  
1. Remove the orifice/meter run from service.  
2. Install the 3095FC on the meter run using a manifold and hardware to  
secure the 3095FC to the orifice flanges.  
3. Attach the appropriate wiring (see “Wiring” on page 2-4).  
4. Using the prefabricated operator interface cable, physically connect  
the 3095FC to the PC running the Rosemount User Interface  
Software. One end of the cable (a 9-pin, D-shell, female connector)  
plugs into a serial communications port on the PC. The other end of  
the cable plugs into the 3095FC.  
5. Apply power to the 3095FC (see “Apply Power” on page 2-10)  
6. Log into the Rosemount User Interface Software (see page “Log into  
the Software” on page 2-12)  
7. Establish communication between the 3095FC and PC (see  
“Establishing Communication” on page 2-13).  
8. Configure the 3095FC (see “Configuration” on page 3-4)  
2-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
9. Calibrate the 3095FC (see “Calibrate” on page 4-1).  
10. Connect the 3095FC unit to any other external communication  
devices or networks.  
11. Place the meter run in service and monitor with Rosemount User  
Interface Software for proper operation.  
Solar Panels  
Solar panels generate electrical power for the 3095FC from solar radiation.  
They are the optimal choice for locations where a DC voltage source is not  
available. The size of solar panels required for a particular installation  
depends on several factors, including the power consumption of all devices  
connected to the solar array and the geographic location of the installation. An  
8-volt solar panel can provide charging power for the backup batteries (see  
“Solar Panel Sizing” for information on how to determine the appropriate  
panel size required for an application).  
An external solar panel typically mounts to the same 2-in. pipe that supports  
the 3095FC (see “Mounting” on page 2-1). The panel wiring terminates at the  
charge (CHG+ / CHG-) power terminals on the termination board.  
NOTE:  
Solar panel size may violate certain CSA Class I, Division 1 ratings. Use  
approved 3095FC enclosure connectors for routing the power wiring.  
The optional solar panel is adequate for support of API Chapter 21.1  
compliant measurement and the retrieval of the historical logs once a day  
using the internal communication methods.  
Solar Panel Sizing  
To determine solar panel output requirements, first determine the solar  
insolation for the geographic area. The map in Figure 2-1 shows solar  
insolation (in hours) for the United States during winter months. Contact an  
Emerson Process Management representative for a map detailing a specific  
geographic area.  
Insolation (from map) = _____ hours  
Next, calculate the amount of current required from the solar array per day  
using the following equation. I is the system current requirement.  
SF  
I
= [I (amps) ´ 24 (hrs)]/Insolation (hrs) = _____ amps  
SF  
array  
Finally, the number of solar panels can be determined using the following  
equation:  
Number of Panels = I  
amps/(I  
amps/panel) = _____ panels  
panel  
array  
NOTE:  
The “I  
“value varies depending on the type of solar panel installed. Refer  
panel  
to the vendor's specifications for the solar panel being used.  
The current accepted by the Rosemount 3095FC is limited by its charging  
circuit to around 1 Amp. Therefore, it is not practical to install a solar array that  
2-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
supplies significantly more than 1 Amp to the 3095FC. The maximum input is  
28 volts.  
Do not allow the batteries to fully discharge. If the batteries are fully  
discharged, the battery charger board may enter thermal limiting.  
Figure 2-1. Solar Insolation in  
Hours for the United States  
WIRING  
The field terminals are all located on a Termination Board. The input power  
termination (CHG+ / CHG-) uses a removable connector and accommodates  
wiring up to 16 AWG in size.  
Use the following steps to connect wiring. See Figure 2-2 on page 2-5.  
1. Remove power from transmitter (if applicable)  
2. Strip the rubber coating from the end (1/4-in. maximum) of the wire.  
3. Insert the bared end into the clamp beneath the termination screw. To  
prevent short circuits, the inserted wires should have as little bare  
wire exposed as possible.To prevent strain, allow some slack when  
making connections.  
4. Tightening the screw to 0.25 N-m (2.2 lb-in.). Do not over torque the  
connector screws.  
5. Check the polarity before applying power.  
NOTE  
To avoid circuit damage, use appropriate electrostatic discharge precautions,  
such as wearing a grounded wrist strap.  
2-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 2-2. Wiring Terminals  
Power Supply Wiring  
The terminals are labeled CHG+ for positive power connection and CHG- for  
negative power connection on a label on the termination board. These  
connections provide the input voltage and power for the battery charging  
circuitry. The maximum voltage that can be applied to the CHG+ / CHG-  
terminals is 28 Volts dc.  
Pin  
Signal  
Description  
1
2
CHG+  
CHG–  
Battery 8.0 to 28 V Power  
Battery Common  
RTD Wiring  
Temperature is input through the Resistance Temperature Detector (RTD)  
probe and circuitry. The 3095FC provides terminations for a 2- or 3-wire  
100-ohm platinum RTD with a IEC 751 curve. The RTD has an alpha (α)  
equal to 0.00385.  
The RTD mounts directly to the piping using a thermowell. RTD wires should  
be protected by a metal sheath or by a conduit connected to a conduit wiring  
fitting on the enclosure. The RTD wires connect to the three screw terminals  
designated “RTD” on the Termination Board (see Figure 2-2).  
Wiring between the RTD and 3095FC should be shielded wire, with the shield  
grounded only at one end to prevent ground loops. Ground loops cause RTD  
input signal errors.  
Table 2-1 displays the RTD terminal connections for the various RTD probes.  
Table 2-1. RTD Signal Routing  
Terminal  
Designation  
3-Wire RTD  
2-Wire RTD  
RTD +  
Signal positive input  
Signal positive input  
Return reference  
RTD +  
RTD +  
RTD +  
RTD +  
Jumper to RTD +  
RTD RET  
RTD RET  
RTD RET  
2-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Communications Wiring  
The communication ports located on the 3095FC provide a data link to the  
Rosemount User Interface Software, other 3095FC units, and host systems.  
NOTE  
All communication ports for the 3095FC are located on an optional  
communications card or built into the termination board.  
Table 2-2. Communication Ports  
for the 3095FC  
3095FC Comm  
Port  
Port Location  
CPU RJ-45 (top)  
CPU RJ-45 (top)  
CPU 5-pin (bottom)  
Module Slot 1  
Default Tag  
Local Port  
COMM1  
Function/Type  
LOI / RS-232D  
1
2
3
Ethernet  
COMM2  
Serial / EIA-232 (RS-232)  
COMM3  
EIA-232 (RS-232), EIA-485  
(RS-485), Modem, or MVS  
4
5
6
Module Slot 2  
Module Slot 3  
COMM4  
COMM5  
EIA-232 (RS-232), EIA-485  
(RS-485), Modem, or MVS  
EIA-232 (RS-232), EIA-485  
(RS-485), Modem, or MVS  
Local Operator Interface Port (LOI)  
The Local Operator Interface (LOI) port provides direct communications  
between the 3095FC and the serial port of an operator interface device, such  
as an IBM compatible PC using an EIA-232 (RS-232) link. The interface  
allows access to the 3095FC (using Rosemount User Interface Software) for  
configuration and transfer of stored data.  
The LOI terminal on the Termination Board provides wiring access to a built-in  
EIA-232 (RS-232) serial interface, which is capable of up to 19,200 bps  
operation. The operator interface port supports Modbus protocol  
communications. The LOI also supports the log-on security feature of the  
3095FC if the Security on LOI is Enabled in Rosemount User Interface  
Software (“Security Configuration” on page 3-13).  
NOTE  
By default, the LOI Port is Comm Tag Local Port in the 3095FC > Comm Port  
settings screen. Use the 3095FC > Direct Connect command to connect  
using the LOI. See “Connection Methods” on page 2-13.  
To ease wiring, operator interface cable is available as an accessory (see  
“Installation” on page 2-2). Refer to Figure 2-3.  
Figure 2-3. Operator Interface  
Wiring  
1
White TX  
6
2
7
To screw  
Terminals  
3
8
Red TX  
4
9
5
Black TX  
Connection at  
PC COM Port  
2-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table 2-3. Local Operator  
Interface Port Wiring  
Signal  
Label  
Common  
LOI Power(1)  
COM  
TX + V  
COM  
RTS  
RX  
Common  
Ready to Send  
Receive (RX)  
Transmit (TX)  
TX  
(1) Do not use the LOI to power external devices.  
Table 2-4. PC Comm Port  
Wiring  
Signal  
Pin  
Label  
Transmit (TX)  
Receive (RX)  
Ground (GND)  
2
3
5
TX  
RX  
COM  
EIA-485 (RS-485) Serial Communications - Comm 1  
Use Comm 1 to monitor or alter the 3095FC from a remote site using a host or  
Rosemount User Interface Software. Comm 1 supports baud rates up to  
19200 bps. Comm 1 also supports the log-on security feature of the 3095FC if  
the Security on Comm 1 is Enabled in Rosemount User Interface Software.  
Comm 1 sends and receives messages using Modbus protocol. Comm 1  
permits EIA-485 (RS-485) serial communication protocols that meet EIA-485  
(RS-485) specifications for differential, asynchronous transmission of data  
over distances of up to 1220 m (4000 ft). The EIA-485 (RS-485) drivers are  
designed for true multi-point applications with multiple devices on a single bus.  
The default values for the EIA-485 (RS-485) communications are: 9600 Baud  
Rate, 8 Data Bits, 1 Stop Bit, No Parity, 10 millisecond Key On Delay, and 10  
millisecond Key Off Delay. The maximum baud rate is 19200 bps. To enable or  
disable the Comm 1 port, select Configure > Radio Power Control and select  
the Enable (default)/Disable under Radio Power Control (see “Radio Power  
Control Configuration” on page 3-23).  
Wiring should be twisted-pair cable. The terminals and their functions are as  
follows:  
Table 2-5. EIA-485 (RS-485)  
Communications Wiring  
Pin  
Function  
Label  
1
2
RS-485  
RS-485  
B
A
EIA-232 (RS-232) Communications - Comm 2  
A EIA-232 (RS-232) communications card in the Comm 2 port can switch  
power to an external communication devices, such as a radio, to conserve  
power. A label on the termination board denotes the usage of each pin on the  
connector.  
The EIA-232 communications card meets all EIA-232 specifications for  
single-ended RS-232 asynchronous data transmission over distances of up to  
15 m (50 ft). The EIA-232 (RS-232) communications card defaults are: 9600  
baud rate, 8 data bits, 1 stop bit, no parity, 10 millisecond Key On Delay, and  
10 millisecond Key Off Delay. The maximum baud rate is 19200 bps. Refer to  
Table 2-6 for communication card signals.  
2-7  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table 2-6. Communications  
Card Signals  
Signals  
Action  
RTS  
RX  
The request to send signals that the modem is ready to transmit.  
The RXD receive data signals that data is being received at the  
communications card.  
TX  
The TXD transmit data signals that data is being transmitted from  
the communications card.  
Table 2-7. EIA-232 (RS-232)  
Communications Card Wiring  
Signal  
Label  
Signal Common Negative  
Switched Power  
Ground  
Request to Send  
Tip / Receive Data  
Ring / Transmit Data  
COM(1)  
TX(2) + B  
COM(1)  
RTS  
RX  
TX(3)  
(1) GND at Pin 1 and Pin 3 are identical. They are separated for ease of wiring.  
(2) Switched Power is used with an internal radio or cell phone. It does not power external devices.  
(3) Transmit (TX) connects to the 3095FC unit's receive.  
Ground the Transmitter  
Grounding reduces the effects of electrical noise on the unit's operation and  
protects against lightening. The 3095FC provides lightening protection for  
built-in field wiring inputs and outputs. Install a surge protection device on the  
DC voltage source system to protect the device against lightning and power  
surges.  
The 3095FC has two grounding screws inside the enclosure. It is  
recommended that a minimum of 14 AWG wire be used for the ground wiring.  
To minimize signal errors caused by EMI (electromagnetic interference), RFI  
(radio frequency interference), and transients, The I/O signal wiring cable  
should be an insulated, shielded, twisted-pair. All grounds should terminate at  
a single point.  
NOTE  
Grounding wiring requirements for DC voltage sources equipment are  
governed by the National Electrical Code (NEC). When the equipment uses  
DC voltage sources, the grounding system must terminate at the service  
disconnect. All equipment grounding conductors must provide an  
uninterrupted electrical path to the service disconnect.  
Earth Grounds  
All earth grounds must have an earth to ground rod or grid impedance of 25  
ohms or less as measured with a ground system tester. The grounding  
conductor should have a resistance of 1 ohm or less between the 3095FC  
enclosure ground and the earth ground rod or grid.  
Pipelines With Cathodic Protection  
The 3095FC must be electrically isolated from the pipeline. Electrical isolation  
can be accomplished by using insulating flanges upstream and downstream  
on the meter run. In this case, the Rosemount 3095FC could be flange  
mounted or saddle-clamp mounted directly on the meter run and grounded  
with a ground rod or grid system (see “Earth Grounds” on page 2-8).  
2-8  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Pipelines Without Cathodic Protection  
The pipeline may provide an adequate earth ground and the 3095FC could  
mount directly on the meter run using an orifice plate. Use a ground system  
tester to make sure the pipeline to earth impedance is less than 2 ohms. If the  
pipeline to earth impedance is greater than 2 ohms, the 3095FC installation  
should be electrically isolated and a ground rod or grid grounding system  
installed. If the pipeline provides an adequate ground, a separate ground rod  
or grid system may not need to be installed.  
POWER SUPPLY  
The 3095FC accepts input voltages from 8.0 volts to 28 volts at the power  
terminals (CHG+ / CHG-) with no external current limiting (internal current  
limit is 200 mA). The CHG+ / CHG- terminal can accommodate up to 16 AWG  
wire.  
To adequately meet the needs of the 3095FC system, it is important to  
determine the total power consumption and size of solar panel requirements  
accordingly. To determine the total 3095FC power consumption, be sure to  
add the power consumption (in mW) of any other devices used with the  
3095FC in the same power system. The maximum power for DC voltage  
sources is 130 mW not including the battery charging.  
Convert the total value (in mW) to Watts by dividing it by 1000.  
mW / 1000 = Watts  
For selecting an adequate power supply, use a safety factor (SF) of 1.25 to  
account for losses and other variables not factored into the power  
consumption calculations. To incorporate the safety factor, multiply the total  
power consumption (P) by 1.25.  
PSF = P x 1.25 = _____ Watts  
To convert PSF to current consumption in amps (ISF), divide PSF by the  
system voltage (V) of 12 volts.  
ISF = PSF / 12V = _____ Amps  
Batteries  
Batteries provide power for the 3095FC when the solar panels are not  
generating sufficient output. The batteries are three D-size lead-acid batteries  
providing 2.5 Amp-hours of current at 6.2 volts.  
The batteries are connected in series by the Battery Charger Board to  
achieve the required capacity. The battery capacity determines the number of  
days of reserve (autonomy) desired.  
When the 3095FC is configured as an API compliant Electric Flow  
Management (EFM) and requires an internal communications card, a solar  
panel, and the internal batteries, the 3095FC should be able to communicate  
the API audit trail information once a day to a remote host using no additional  
battery source, no additional solar panel, and maintain a 13 day autonomy in  
the event that the solar panel is lost.  
To determine the system capacity requirements, multiply the system current  
load (ISF) on the batteries by the amount of reserve time required. Compute  
“ISF” as described above. The equation is as follows:  
System Requirement = ISF amps x Reserve hrs = _____ amp-hrs  
2-9  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
APPLY POWER  
To prevent unnecessary battery drainage, the 3095FC is delivered with the  
reset jumper in the OFF position. To apply power to the 3095FC:  
1. Complete the necessary wiring (“Wiring” on page 2-4).  
1. Unscrew the front end cap cover (LCD end).  
2. Place the power jumper in the ON position. The jumper is located on  
the LCD (if installed) or at J1 on the Battery Charger Board.  
3. Screw the front-end cap cover (LCD end).  
After the 3095FC completes start-up diagnostics (RAM and other internal  
checks), the optional LCD displays the date and time to indicate that the  
3095FC completed a valid reset sequence. If the LCD does not come on,  
refer to Section 5: Troubleshooting and Maintenance.  
2-10  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
INSTALL THE  
ROSEMOUNT USER  
INTERFACE SOFTWARE  
If a previous version of the Rosemount User Interface Software is installed,  
refer to “Uninstalling the Rosemount User Interface Software” on page 2-12.  
Software Overview  
The Rosemount User Interface Software is used to configure the 3095FC. For  
PC requirements see “I/O wiring requirements are site and application  
dependent. Local, state, or NEC requirements determine the I/O wiring  
installation methods. Direct burial cable, conduit and cable, or overhead  
cables are options for I/O wiring installations.” on page 1-6.  
The major components of the Rosemount User Interface Software user  
interface are:  
Menu bar and menus  
Function screens  
Dialog boxes  
Help system, including the Status bar and message boxes  
The menu bar appears on the screen after successfully logging on. From the  
menu bar, the user may activate a menu and select a function in that menu.  
Functions may be selected using Toolbar Buttons or the Configuration Tree  
Menu  
Several buttons are commonly used on many Rosemount User Interface  
Software screens.These buttons are:  
Update: updates content of the window.  
OK: approves and closes the window. A Confirm Save dialog box  
appears if there are unsaved changes.  
Cancel: cancels all changes and closes the window.  
Apply: applies changes to the window.  
Install With Autorun  
1. Insert the Rosemount User Interface Software installation CD-ROM  
into the drive  
2. Click Next.  
3. Click Yes to agree with the Terms and Conditions  
4. Enter the users Name and the Company name. Click Next.  
5. The software is saved to the default directory  
C:\Program Files\Rosemount\Rosemount 3095FC User  
Interface\User Interface. If another location is desired, use to Browse  
button to select that location. Click Next. A warning box appears if  
there are incompatible files.  
6. Review the items in the list and click Next.  
7. When the installation is complete click Finish.  
8. Remove the Rosemount User Interface Software installation  
CD-ROM.  
2-11  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Install Without Autorun  
1. Insert the Rosemount User Interface Software installation CD-ROM.  
2. Click the Windows Start button.  
3. Select Run.  
4. Click the Browse button  
5. Navigate to and select the Select.exe located on the CD-ROM.  
6. Click OK in the Navigation Window.  
7. Click OK in the Run window.  
8. Continue with in “Install With Autorun" steps 2-8, located above.  
Uninstalling the  
Rosemount User  
Interface Software  
1. Click the Windows Start button.  
2. Select Settings > Control Panel.  
3. Double-click the Add/Remove Programs icon.  
4. Select Rosemount 3095FC User Interface.  
5. Click Change/Remove.  
6. Follow the instructions that appear on the screen.  
GETTING STARTED  
WITH THE SOFTWARE  
Run the Software  
To run the software, perform one of the following steps  
Double-click on 3095FC User Interface located on the desktop.  
Select Start > Programs > Rosemount 3095FC User Interface >  
3095FC User Interface.  
Double-click on the file 3095.exe located in C:\Program  
Files\Rosemount\Rosemount 3095FC User Interface (default  
directory). If the program file was saved to another location in “Install  
With Autorun” on page 2-11, select this location instead.  
NOTE  
Only one version of Rosemount User Interface Software can run at a time.  
Log into the Software  
To log on to Rosemount User Interface for Windows software:  
1. Connect the 3095FC to the Local Operator Interface (LOI) port and  
launch Rosemount User Interface Software.  
2. Enter the factory-assigned 3-character login (username): LOI.  
Enter the 4-digit password: 1000. The login is assigned using the  
security feature of the Rosemount User Interface Software (see  
“Security Configuration” on page 3-13).  
NOTE  
Login is case sensitive.  
If the login is not valid, a dialog box appears. Click OK and reenter the login  
and password. Repeat this procedure until a successful login and password is  
entered. To exit the login screen press >Esc> or click Cancel.  
When login is successful, the Configuration Tree appears on the screen. See  
“Configuration Tree” on page 2-14 for more information.  
2-12  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
ESTABLISHING  
COMMUNICATION  
Connection Methods  
When the user is logged into the Rosemount User Interface Software, the PC  
must connect to the 3095FC unit so communication can be accomplished.  
Use one of the following connection methods:  
Direct Connect - Connect to the 3095FC using the Local Port (LOI) if  
the default communication parameters apply.  
3095FC (Communications) Directory View - Double-click the Station  
Name to connect to the 3095FC using the parameters currently set for  
that 3095FC.  
NOTE  
Once connected, the Configuration Tree view becomes the active screen.  
Direct Connect  
The Direct Connect command allows the Rosemount User Interface Software  
to initiate communications with the 3095FC by performing a search of the PC  
communication ports at various baud rates. Direct Connect “locks on” to the  
first Comm Port and Baud Rate (1200, 2400, 4800, 9600, 19200, 38400, and  
57600 bps) that successfully communicate with a 3095FC.  
If unsuccessful, the program attempts to establish communications through  
the remaining COM Ports of the PC, successively, until it receives a valid  
reply.  
For the Direct Connect option to operate correctly the PC must be connected  
to the Local Operator (LOI) port of the 3095FC with communication settings  
of:  
8 Data Bits  
1 Stop Bit  
No Parity  
To use Direct Connect:  
1. Physically connect the 3095FC (see “Installation” on page 2-2).  
2. Launch and log into Rosemount User Interface Software (see  
“Getting Started with the Software” on page 2-12).  
3. Perform one of the following:  
Click on the Direct Connect icon in 3095FC Directory  
(Configuration Tree.)  
Click the Direct Connect button on the toolbar.  
4. If this is the first time connecting to the 3095FC, continue with  
“Setting the Clock” on page 3-4.  
2-13  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Connect  
When off-line, the 3095FC menu displays Connect. To use Connect:  
1. Physically connect the 3095FC (see “Installation” on page 2-2).  
2. Launch and log into Rosemount User Interface Software (see  
“Getting Started with the Software” on page 2-12).  
3. Perform one of the following:  
Select a communications port from the Device Directory and press  
the <Enter> key.  
Double-click on a communications port from the Device Directory.  
Click the Connect button on the toolbar.  
Select Device > Connect to connect to the 3095FC currently  
selected in the Device Directory. If a 3095FC is not currently  
selected, the error “No 3095FC is Currently Selected” appears.  
Remote Hardware Connection  
To connect the PC to a remote 3095FC, a serial, dial-up modem, radio,  
satellite, or other communications line should be installed. This connection is  
typically made through the host port on the 3095FC. Use the Connect  
command to connect to a serial or dial-up modem  
Disconnect from the 3095FC  
Close the screen to disconnect an on-line connection. This automatically  
closes the connection.  
CONFIGURATION TREE  
When communication is established with a 3095FC or opening a  
configuration file, the Configuration Tree appears on the screen. The  
Configuration Tree is used to perform the following:  
Add, delete, or modify communication configurations for the 3095FC  
units. The communication configurations allow the Rosemount User  
Interface Software to communicate to an individual 3095FC unit.  
Establish Groups of 3095FC units. A 3095FC Group is typically several  
units in the same geographical area or a number of units with  
something else in common. Each group contains a list of all the  
3095FC devices contained within that group.  
Assign an address for every 3095FC within a group. Each 3095FC has  
a Station Name (Tag) and unique address with which to differentiate  
each device. The Address must be different from any other host system  
that may access the communications link.  
Setup the 3095FC Comm Ports  
Use the “+” and “–” symbols to display or hide various options.  
Toggle between the Online configuration screen and the Configuration  
tree/device directory using Window > >select file>.  
2-14  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
NOTE  
Double-click the desired communications link (3095FC name) to connect to  
that 3095FC. Double-clicking an icon is the same as selecting the menu bar  
or toolbar button Direct Connect or Connect commands.  
Configuration of the PC Communication Ports to the 3095FC unit cannot be  
performed within the 3095FC unit configuration screen. Return to the 3095FC  
Directory (Configuration Tree) screen. If the user is in a configuration, select  
Window > Device Directory or View > Device Directory to view the 3095FC  
directory.  
Figure 2-4. Configuration Tree  
Screen  
Adding a Group  
Multiple 3095FC units can be organized to form Groups. Unit Groups are  
typically units in the same geographical area or units with something else in  
common. When a Group file is selected, a list of all 3095FC communication  
setups in the Group appears below the Group.  
1. Right-mouse click on the Device Root directory icon.  
2. Select Add a Group.  
3. Right-mouse click on the New Group and select Rename. Type in the  
new Group name.  
4. Press <Enter>.  
5. The 3095FC can now be added to the Group.  
Deleting a Group  
1. Right-mouse click on the group to be deleted.  
2. Select Delete Group.  
3. Click Yes.  
2-15  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Adding a 3095FC transmitter  
1. Right-mouse click on the Device Root directory icon.  
2. Select Add a Device  
.
3. Right-mouse click on the New Device and select Rename. Type in the  
new device name.  
4. Press <Enter>.  
5. Configure the 3095FC communication parameters.  
NOTE  
Place a 3095FC connection under a Group by selecting the Group before  
adding the 3095FC Connection.  
Deleting a 3095FC transmitter  
1. Right-mouse click on the device to be deleted.  
2. Select Delete Device.  
3. Click Yes.  
Deleting all 3095FC transmitters  
1. Right-mouse click on the Device Root directory icon.  
2. Select Delete All Devices.  
3. Click Yes in the Confirm Delete Message dialog box.  
Renaming a Group or 3095FC  
1. Right click on the Device or Group to be renamed.  
2. Select Rename.  
3. Type the new name.  
4. Press <Enter>.  
2-16  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Section 3  
Configuration  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-1  
Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-1  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-4  
Custom Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3-54  
OVERVIEW  
The Rosemount 3095FC has parameters that must be configured before it is  
calibrated and placed into operation. Configuration must be performed using  
Rosemount User Interface Software. Configuration can be performed either  
onsite using the LOI port or off-line and later loaded into the unit.  
Default values for all parameters exist in the firmware of the 3095FC. The  
following parameters should be verified and configured:  
“Setting the Clock” on page 3-4  
“Configuring the System Flags” on page 3-5  
“3095FC Communications Ports Configuration” on page 3-8  
“Security Configuration” on page 3-13  
“LCD User List Configuration” on page 3-15  
“Analog Input (AI) Configuration” on page 3-16  
“Meter Run Configuration” on page 3-25 and “Gas Quality Tab” on  
page 3-28.  
“History Points Configuration” on page 3-32  
BASIC FUNCTIONS  
Begin the configuration process with “Setting the Clock” on page 3-4.  
The following functions are used throughout the configuration process. They  
are provided at the beginning of the section so they can be easily referenced.  
Select TLP Options  
Throughout Rosemount User Interface Software, the Select TLP dialog can  
be accessed by clicking the browse button with three dots. The Select TLP  
dialog allows the user to assign specific inputs and outputs to parameters.  
Rosemount User Interface Software uses Point Type (T), Logical Number (L),  
and Parameter (P) to define point locations.  
The display field at the bottom of the Select TLP dialog displays the numeric  
point location of the TLP point or a text abbreviation, depending on the  
Display setting (see “Display TLP Options").  
Display TLP Options  
Select Tools > Options to set whether the TLP displays as text or numbers in  
TLP display fields throughout the Rosemount User Interface Software.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Duplicating a Configuration  
Duplicate the configuration of a 3095FC using these instruction.  
1. File > Save Configuration to save the configuration to a specified file.  
2. Establish Communications with the second unit (see page 2-13).  
3. File > Download loads the configuration into the unit.  
4. After loading the configuration data into the second 3095FC (Step 3),  
save the configuration to a unique disk file by repeating Step 1.  
Using Copy and Paste  
Use Copy and Paste to copy data from one configuration screen to another of  
the same type.  
1. Configure the point that is to be duplicated.  
2. Click Apply.  
3. Click Copy.  
4. Select the next Point Number or go to the appropriate screen.  
5. Click Paste.  
6. Click Update.  
New Configuration File  
Create a configuration file off-line using the following instructions.  
1. Select File > New.  
2. The Type parameter indicates the type of 3095FC unit.  
3. The number of orifice meters will be 1.  
4. Save the configuration file.  
5. Establish an on-line connection to the 3095FC unit.  
6. Configure as necessary.  
Open File  
The Open option opens an existing configuration file. Configuration files are  
created using the Save Configuration function. To open a configuration file:  
1. Establish an on-line connection to the 3095FC (see “Establishing  
Communication” on page 2-13).  
2. Select File > Open.  
3. Select the configuration file name. The extension must be .800.  
4. Configure as necessary.  
Once the configuration file is opened it automatically becomes active and may  
be edited offline. The configuration file may also be loaded into a 3095FC  
using the “Download File" function (see page 3-3).  
Save File  
The Save option saves the current configuration of a connected 3095FC to a  
disk file. Once a backup configuration file is created it can be loaded into a  
3095FC using the “Download File" function (see page 3-3).  
1. Select File > Save Configuration. The Save As dialog box appears.  
2. Type the desired File name of the backup file or use the default.  
3. Click Save. The file is saved in the default directory C:\Program  
Files\Rosemount\Rosemount 3095FC User Interface\User Interface  
unless another directory was selected.  
3-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Download File  
Use this function to download a previously saved configuration to a 3095FC.  
Configuration files are created using the Save Configuration function. To  
download a previously saved configuration:  
1. Select File > Download.  
2. Select the configuration file name with the extension .FCF  
3. Click Open.  
4. Select the Point Types to download. Use Select All or Deselect All to  
change multiple Point Types. Select or Deselect individual Point  
Types by selecting the configuration Point Type in the left column and  
selecting specific Point Types in the right column.  
NOTE  
The Configuration Points screen changes depending on the type of device  
that is connected.  
5. Select only the Configuration Points to download.  
6. Click Download. Downloading automatically begins.  
7. Click OK when the download is complete.  
Print Configuration  
The Print Configuration option enable specifying Point Types to Print.  
1. Select File > Print Configuration.  
2. Select the Point Types to be printed. Select the All or Deselect All  
buttons for multiple Point Types or select/deselect individual Point  
Types by using the mouse to double click on the Point Type in the left  
column and selecting specific Parameters in the right column.  
3. Click OK.  
4. When the Print Preview screen appears, choose one of the following  
buttons:  
Print to send to a local printer.  
PDF to create a .pdf (Portable Document File).  
Excel to create an .xls spreadsheet file.  
RTF to create an .rtf (Rich Text Format) file.  
HTML to create an .htm Internet browser file.  
TXT to create a .txt text file.  
5. The 3095FC Group, Address, Field, and Value information displays in  
the Print Configuration results window.  
3-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
CONFIGURATION  
Setting the Clock  
Immediately after connecting to a 3095FC for the first time, set the  
Rosemount User Interface Software Clock to ensure proper logging of history.  
The internal real-time clock provides time-stamping and control of the  
historical databases, Event Log, Alarm Log, Audit Log, and Contract Hour.  
NOTE  
The time stamp reflects the time at the end of the period. Data collected from  
0800 to 0900 is thus time-stamped 0900. This is used for the logging of  
history.  
See Figure 3-1  
1. Select Device > Clock or click the Clock icon in the toolbar.  
2. The display at the bottom of the calendar is the date and time from  
the PC clock. Continue with Step 5 if correct.  
3. If it is not correct:  
a. use the arrow buttons to select the correct Month and Year  
b. click on the desired day of the month  
c. click on the time field and type in the desired value (type A or P for  
the AM/PM field) or use the arrows.  
4. The clock can automatically compensate for daylight savings time by  
enabling this feature.  
5. Click Apply and click OK.  
Figure 3-1. Clock Screen  
3-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Configuring the System  
Flags  
Use System Flags to perform actions that affect the overall operation of the  
3095FC. From the Flags screen, a configuration can be saved to Flash  
memory and the 3095FC can be re-initialized.  
NOTE  
Certain Flags cause data to be lost, parameter values to be changed, and  
configuration memory to be cleared. Confirm Flag function before changing.  
General Tab  
Figure 3-2 on page 3-6  
After a Warm Start, the 3095FC is initialized from SRAM memory if the  
configuration is valid. If valid, the databases remain intact. If the memory does  
not have a valid configuration, the configuration that was last saved to Flash  
memory is used. To save a valid configuration, use the Save Configuration  
button.  
In a Cold Start, the 3095FC is initialized from the restart configuration saved in  
the Flash memory. If the configuration memory does not have a valid  
configuration written in it, the factory defaults are used.  
NOTE  
Perform a Cold Start after setting the clock and BEFORE setting any other  
parameters to ensure the 3095FC memory is cleared before configuration  
begins.  
Cold Start reloads all restart configuration data and may also clear logs and  
displays. In addition, it may cause output changes, load new accumulator  
values, and disable user program tasks and User Data Types. Generally, a  
Cold Start should not be used on a 3095FC that is actively gathering data or  
performing control. Save or document all required data and parameter values  
that could be affected before performing the Cold Start.  
The following may occur when performing a Cold Start:  
Cold Start restores a configuration from default values stored in Flash  
memory.  
Cold Start & Clear ALL restores a configuration from default values  
stored in Flash memory and clears all History, Alarm Log/Event Log,  
and displays.  
Cold Start & Clear Alarms/Events restores a configuration from default  
values stored in Flash memory and clears the Alarm Log/Event Log.  
Cold Start & Clear Displays restores a configuration from default values  
stored in Flash memory and clears the 3095FC Displays.  
Cold Start & Clear History Data restores a configuration from default  
values stored in Flash memory and clears all History database files.  
3-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
The Clear Flash Memory procedure clears all saved restart configuration data  
contained in Flash memory. Only factory defaults are retained. To return the  
3095FC to the original factory default settings:  
1. Select Device > Flags > General Tab  
2. Select the Clear button and click Yes.  
3. Perform a Cold Start using the Cold Start & Clear ALL button.  
4. Click Yes, Apply, and OK.  
NOTE  
The Status field displays the current status of the save or clear flash memory  
function.  
To save configuration settings to Flash memory, use the Flash Memory Save  
Configuration function in the 3095FC Flags screen. It is possible to backup  
the working configuration from SRAM to Flash memory. In the event of  
operating problems, the working configuration can be restored by performing  
a Cold Start. To save the current configuration to Flash memory:  
1. Select Device > Flags.  
2. Select Save Configuration. Click Yes, Apply, and OK.  
NOTE  
Depending on the communications type and speed, the user may have to  
reconnect to the 3095FC after this procedure.  
Figure 3-2. 3095FC System  
Flags General Tab  
3-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Advanced Tab  
Use the following instructions to configure the Advanced System Flags tab.  
See Figure 3-3.  
1. Select Device > Flags > Advanced Tab.  
2. Enable CRC Check to perform CRC (Cyclical Redundancy Check)  
check on 3095FC protocol communications.  
3. Enable I/O Scanning so the I/O is in normal scan mode. When  
Disabled, all I/O scanning stops and the last values are used until  
scanning is resumed.  
4. Select a Pass Through Mode communications option to send Pass  
Through messages. Using any of the communications ports, Pass  
Through Mode allows data to be received by one unit and then  
passed through to other devices connected on any other  
communications port. For example, the host communicates using a  
radio on its LOI port. Other 3095FC units can then be connected to  
the EIA-485 (RS-485) port of the first unit. All units can use the one  
radio to communicate to the host.  
NOTE  
COM2 may only use a Dial-up modem if it is receiving Pass Through  
messages. It cannot transmit to other field devices via Dial-up modem.  
5. Select the respective port (LOI, COM 1, or COM 2) for the Set RTS to  
High for 30 Sec option and click Apply to activate the RTS  
(Request-to-Send) signal. The RTS signal turns on for 30 seconds.  
Figure 3-3. 3095FC System  
Flags Advanced Tab  
3-7  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
3095FC Communications  
Ports Configuration  
The communication ports of the 3095FC provide a link to a PC, such as one  
running Rosemount User Interface Software or a host PC. The 3095FC can  
have up to three communication ports.  
General Tab  
See Figure 3-4.  
1. Select Device > Comm Ports > General Tab  
1. Select the Port that the 3095FC is using to communicate. Enter the  
10-character Comm Tag name for identification of the  
communications port.  
2. Select the transmit and receive data Baud Rate in bits per second.  
3. Select the Parity radio button if checks are to be performed by the  
communications controller.  
4. Select the number of Data Bits contained in an asynchronous byte, or  
character. This number is typically 8.  
5. Select the number of Stop Bits contained in an asynchronous byte, or  
character. This number is typically 1.  
6. Select if the RTS/CTS Handshaking is enabled.  
7. Enter the Key On Delay to define the number of seconds to delay  
after turning the RTS signal on before beginning transmission. For  
older radios, the Key On Delay may need to be set as high as 0.2  
seconds. For radios designed for data transmission, no more than  
0.02 second should be required.  
8. Enter the Key Off Delay intervals defining the period to delay before  
turning the RTS signal off once a valid message has been sent. The  
default of 0.01 seconds should be sufficient for most radios.  
9. Enter the Valid Receive Ctc (Counter) to log the number of valid  
OpCodes received by the device on the communication port. The  
value in the counter can be preset or cleared.  
Figure 3-4. Device Comm Port  
General Tab Screen  
3-8  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
RBX Tab  
To configure the RBX, a modem must be present and appropriately  
configured. Use the following steps to configure the RBX tab.  
See Figure 3-5 on page 3-10.  
1. Configure the Device > Comm Ports > General Tab (see “General  
Tab” on page 3-8).  
2. Select Device > Comm Ports > RBX Tab.  
3. Enable RBX Mode. The RBX (Report-by-Exception) feature allows  
the 3095FC to call in to a host PC when a configured alarm occurs.  
4. Enter the RBX Host Address and Group number. The defaults of “1”  
and “0” are used by most host driver software.  
5. Set the Delay to define the time, in seconds, between attempts to  
transmit an RBX message. There is a Delay parameter associated  
with each Retry Count parameter, allowing the user to identify  
different length delays for each entry.  
6. The RBX Attempts #1 - 3 (Retry Count) is the number of attempts a  
message is repeated if a valid response is not obtained on the first  
attempt. Attempts include the initial message plus the retries. The  
three Retry Count parameters each have an associated Delay  
parameter. Selecting Fixed Number allows the user to enter a value  
for how many times a message is retried after the first unsuccessful  
attempt. Note that a “0” entry causes no retries. Selecting Continuous  
causes continuous retries that can only be stopped when the host  
clears the RBX alarm.  
For example: If setting the Retry Count #1 to “2”, Delay #1 to “10”,  
Retry Count #2 to “1” and Delay #2 to “20”, then after the first  
unsuccessful attempt to communicate with the host, the 3095FC tries  
two more times after waiting 10 seconds each time, and once more  
after waiting 20 seconds.  
7. Enabling the Extra Key On Delay to add an additional amount of time  
to delay transmitting an RBX message after turning the RTS signal  
on. The amount of time is fixed. This parameter is used for radio  
communications.  
8. RBX ACK Timeout - This is a message from the Device. If the ACK  
fails to be received within the timeout period the 3095FC retries the  
RBX.  
NOTE  
The RBX Alarm Index indicates alarms currently being reported through the  
RBX. The RBX Status parameter indicates the status of RBX messaging,  
either Active or Inactive. Active indicates that an SRBX alarm is being  
processed.  
9. After configuring the RBX function, use Device > Flags > Flash  
Memory Save Configuration to save the configuration to the Flash  
Memory in case a Cold Start must be performed.  
3-9  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-5. Device Comm Port  
RBX Tab Screen  
3095FC Device  
Configuration /  
Information  
This step establishes the Station Name, Address, Group, and other global  
variables that differentiate a 3095FC. Other system variables set in the  
information screen must be established for a particular application.  
General Tab  
See Figure 3-6 on page 3-11.  
Use the following instructions to configure the Device Information General  
tab.  
1. Select Device > Information > General Tab.  
2. Enter the Station Name to be logged with the historical database for  
site identification.  
3. Enter a unique Address to differentiate each device in a  
communications group. The Address can be assigned a value from 1  
to 255. The System Default Address of 240 should not be used.  
4. Enter a Group to identify a set of 3095FC units for communication  
purposes, typically to a host that polls the 3095FC. The station Group  
can be assigned a value from 1 to 255. All of the 3095FCs addressed  
as an area in the host have the same station Group.  
5. Set the Contract Hour to indicate when the values are totaled for a  
single day of production, accumulators are cleared, and data is  
logged to the Daily History database. The Contract Hour is based on  
a 24-hour clock with midnight as the “0” hour.  
6. Select Force End of Day to reset the daily and hourly accumulators.  
Click Apply to cause the daily and hourly values to be logged into  
memory for all historical data totals.  
7. Select either U.S. or Metric Units for calculations. All calculations will  
be performed to reflect the selected preference.  
8. Use Device > Flags > Flash Memory Save Configuration to save the  
configuration to the Flash Memory in case a Cold Start must be  
performed.  
NOTE  
The Device Type field displays the type of 3095FC being configured.  
3-10  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-6. 3095FC  
Differentiation / Information  
General Screen  
Points Tab  
The Points screen allows the user to change the number of certain points that  
will be active.  
1. Select Device > Information > Points Tab  
Figure 3-7. 3095FC  
Differentiation / Information point  
Tab Screen  
3-11  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Other Information Tab  
This tab displays information about the firmware (Version Name, Part  
Number, ID, and Time Created), the boot firmware (Version Name, Part  
Number, and Time Created), the processor (loading), amount of RAM  
installed, and the ROM (customer name and serial number).  
Figure 3-8. 3095FC  
Differentiation / Information  
Other Information Screen  
Revision Info Tab  
This screen displays information about the firmware or accessory software  
installed in the 3095FC. The first field displays the name of an accessory if  
one is installed. For example, this field may say I/O Expansion Board or  
Turbine Interface. When the field displays Not Used, there are no additional  
accessories installed. The part number and version control number may also  
be displayed.  
Figure 3-9. 3095FC  
Differentiation / Information  
Revision Info Screen  
3-12  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Security Configuration  
The 3095FC has two types of security.  
Rosemount User Interface Security - Enables access to the  
Rosemount User Interface Software and what menu items the user can  
access.  
3095FC Security - Enables communication to the transmitter.  
Rosemount User Interface Security - Menu and Log On  
See Figure 3-10 on page 3-14.  
Use Operator ID and Password controls who can log on to Rosemount User  
Interface Software and the Access Level controls access to menus and  
screens. Up to 21 different users are permitted.  
1. Select Utilities > 3095FC User Interface Security.  
2. Enter the 3 alphanumeric characters for each operator I.D. (login).  
Each operator I.D. must be unique. The I.D.is case sensitive. The  
default is LOI.  
3. Assign the four numeric characters between 0000 and 9999 to define  
the password for each operator I.D (login). Users can have the same  
password. The default is 1000.  
4. Assign an access level for each user  
Level 0: only allows access to several options in the File and  
Display menus, plus all options in the Help menu.  
Level 1: allows access to the menu options of Level 0 and several  
options in the View menu.  
Level 2: allows access the menu options of all lower level options,  
Collect Data, EFM reports, and Meter menu.  
Level 3: allows access the menu options of all lower level options,  
several options in the Device and File menu, and the  
Configuration menu.  
Level 4: allows access the menu options of all lower level options  
and several options in the Utilities menu.  
Level 5 (system administrator level: allows access to all menus  
and options.  
NOTE  
To prevent unauthorized users from accessing the software, delete the default  
factory-assigned login (username) LOI and the password 1000 after the  
security parameters are established.  
Ensure that someone has Level 5 Access prior to deleting LOI 1000.  
3-13  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-10. Security Access  
Level Screen  
3095FC Security  
See Figure 3-11.  
The 3095FC Security controls access to the device Comm Ports. When  
enabled, login is required to use the communication ports. Each  
communication port can be enabled or disabled separately.  
The Access Level provides security for the 3095FC communication ports  
depending on the value of the Comm Port Security parameter as defined by  
the Comm Ports screen.  
Disabled - All login requested accepted. Access Level is ignored.  
Enabled - Login required (setup Operator ID and Password in  
“Rosemount User Interface Security - Menu and Log On” on  
page 3-13). Upon successful login, full read and write access is  
allowed. Access Level is ignored.  
User Access Level Enabled - Login required (setup Operator ID and  
Password in “Rosemount User Interface Security - Menu and Log On”  
on page 3-13). Rejects a login request when the Access Level is  
greater than the Access Level stored in the Utilities > 3095FC Security  
Interface Security screen. This ensures the user is limited to the  
Access Level configured in Rosemount User Interface.  
Figure 3-11. Security Enable  
Screen  
3-14  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
LCD User List  
Configuration  
LCD User List Setup allows the user to assign up to 16 parameters to be  
displayed on the LCD. Each parameter is displayed for three seconds before  
continuing to the next.  
1. Select Configure > LCD User List Setup.  
2. Use the drop-down list box to select the desired LCD User List  
Number (List No.) to configure.  
3. Click the Point Definition TLP button to define the desired point  
parameters to view on the LCD display. “Undefined” indicates that no  
parameter has been specified.  
4. Define up to 16 Data Point definitions to be displayed in the User List.  
Enter the 10-character Description (Text) of the parameter.  
I/O Configuration  
Configuring the 3095FC is a matter of establishing points and then configuring  
various parameters. Each input and output has a unique Point Number to  
identify the input or output. Each I/O point parameter must be individually  
configured. The point number indicates the location of the point on the  
termination board. It is automatically assigned and cannot be edited.  
Each Point Number is given a Tag, which includes up to 10 characters to  
identify the Point Number being defined in the I/O screen. Any alphanumeric  
characters, including spaces, may be used.  
NOTE  
Units is a user-defined 10-character description for the engineering units  
assigned to the I/O. For example: PSIG, MCF, degrees F, mA, or volts.  
The I/O can be configured through either the Configure > I/O menu or the I/O  
list on the Configuration Tree.  
A1 - DP  
A2 - SP  
A3 - RTD  
B1 - Aux AI  
E1 - Logic Voltage  
E2 - Bat Voltage  
E3 - Spare  
E4 - Spare  
E5 - Brd Temp  
Scanning Disabled versus Scanning Enabled  
If scanning is set to disabled, the transmitter stops updating values for each  
point number and values may be manually entered. Scanning Enabled allows  
the transmitter to continuously update the parameters.  
I/O Monitor  
I/O Monitor displays all installed and active I/O points and flow calculation  
information. The I/O Monitor screen shows the requested point information,  
such as field I/O values or calculated flow values. These on-screen values are  
automatically updated by Rosemount User Interface Software.  
3-15  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Analog Input (AI)  
Configuration  
Analog Inputs are analog signals generated by measurement devices, such  
as pressure and temperature transmitters, including RTD probes.  
The following tabs are available as part of the AI configuration:  
AI General tab  
AI Advanced tab  
AI Calibration tab (see “Analog Input (AI) Calibration” on page 4-3)  
AI Alarms tab  
AI General Tab  
The AI General Table sets the basic parameters for the Analog Input point.  
Use the following steps to configure the AI General Tab.  
See Figure 3-12  
1. Select Device > I/O > AI Points > General Tab  
2. Select the Analog Input.  
3. Enter a 10-character Tag for identification of this Point Number.  
4. Enter the Value and Units.  
5. Select the Scanning option.  
When Scanning is set to Enabled, Value automatically displays  
the last Analog Input scan in engineering units.  
When Scanning is set to Disabled (manual mode), the value is no  
longer updated by the 3095FC. If Scanning is set to Disabled,  
enter a value to override the input. If Alarming is Enabled, an  
alarm generates when Scanning is set to Disabled.  
6. Set the Alarming option. The Active Alarms field indicates any alarms  
that are active for this point. For example, when Alarming is Enabled,  
the limit alarms (such as Low Alarm and Rate Alarm) that are active  
appear. Even if Alarming is Disabled, the Point Fail (hardware reports  
a malfunction) alarm and Manual (Scanning Disabled) indicators can  
still appear.  
7. Enter the Scan Period as the amount of time between updates of the  
filter value. All Analog Inputs are updated based on their individual  
Scan Periods. The default value is 1 second. The minimum Scan  
Period allowed is 50 msec.  
8. Enter the Low Reading EU (engineering unit) corresponding to 0%  
input. Enter the High Reading EU corresponding to 100% input.  
For example: If a temperature transmitter is connected to the Analog  
Input with a range of -40 °F to 212 °F, the Low Reading EU would be  
set to -40 and the High Reading EU would be set to 212.  
9. To complete point configuration click Apply.  
10. Use Device > Flags > Flash Memory Save Configuration to save the  
configuration to the Flash Memory in case a Cold Start must be  
performed.  
3-16  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-12. AI General Tab  
Screen  
AI Advanced Tab  
The AI Advanced tab enables the user to configure features, such as filtering,  
A/D conversions, and clipping for the selected Analog Input. Use the following  
steps to configure the AI Advanced Tab.  
See Figure 3-13 on page 3-18.  
1. Select Device > I/O > AI Points > Advanced  
2. Enter a Filter value, which is a weighted sample using a percentage  
of the last value plus a percentage of the new value. The entered data  
is the percentage of the last value used. The Filter is calculated every  
Scan Period by the formula:  
(Last Value × Entered %) + (New Value × (100 - Entered %)) = Filtered Value  
3. Enter the Adjusted A/D 0%, which is the calibrated Analog-to-Digital  
(A/D) reading that corresponds to 0%input. In the Calibrate function,  
this value is altered to set the 0% input exactly at the Low Reading  
EU value to eliminate transmitter and system errors.  
4. Enter the Adjusted A/D 100%, which is the calibrated A/D reading  
corresponding to 100% input. This value is used to convert the input  
to engineering units. In the Calibrate function, this value is altered to  
set the 100% input exactly at the High Reading EU value.  
NOTE  
Raw A/D Input displays the current reading directly from the analog-to-digital  
converter. Actual Scan displays the actual amount of time in seconds that  
passes between scans. This number should be the same as shown for the  
Scan Period parameter if the system is not overloaded.  
5. The Enable Average Raw Values calculates and averages the raw  
readings during the Scan Period. Use the outcome as the Raw A/D  
Input during calculations. For example: When Enabled, an Analog  
Input point configured with a Scan Period of 1.0 seconds obtains a  
new value from the A/D every 50 milliseconds. During the Scan  
Period, 20 values are obtained from the A/D and summed together. At  
EU Value calculation, the values summed are divided by the number  
of samples taken during the scan period and are used as the Raw  
A/D Input. Disable this function to acquire instantaneous values.  
3-17  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
6. When Temp Compensation is Enabled, a temperature compensation  
curve is applied to the Analog Input using the board temperature of  
the 3095FC as a reference. Use this feature to improve the A/D  
conversion accuracy at temperature extremes for modular Analog  
Inputs only; built-in Analog Inputs already have temperature  
compensation. When using this feature, be sure to perform a  
calibration after it is Enabled.  
7. When Clipping is Enabled, the 3095FC forces the Filtered EUs to stay  
within the range defined by the cut off limits. Set the cut off limits by  
using the LoLo Alarm and HiHi Alarm parameters (see “AI Alarms  
Tab” on page 3-19).  
8. To complete point configuration click Apply.  
9. Use Device > Flags > Flash Memory Save Configuration to save the  
configuration to the Flash Memory in case a Cold Start must be  
performed.  
Figure 3-13. AI Advanced Tab  
Screen  
3-18  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
AI Alarms Tab  
See Figure 3-14 on page 3-20.  
The AI Alarms tab sets the alarm parameters for the AI point.  
1. Select Device > I/O > AI Points > Alarms  
2. Set the values for the different alarms. There are six different alarms:  
Low Alarm: The limit value, in engineering units, to which the I/O  
must fall to generate a Low Alarm.  
High Alarm: The limit value, in engineering units, to which the I/O  
must rise to generate a High Alarm.  
LoLo Alarm: The limit value, in engineering units, to which the I/O  
must fall to generate a LoLo Alarm. The value is set lower than the  
Low Alarm.  
HiHi Alarm: The limit value, in engineering units, to which the I/O  
must rise to generate a HiHi Alarm. The value is set higher than  
the High Alarm.  
Rate Alarm: The value, in engineering units, that represents the  
maximum amount of change permitted between updates. If the  
change is equal to, or greater than this value, an alarm is  
generated. To disable the Rate Alarm without disabling the other  
alarms, the Rate Alarm value must be set greater than the Span of  
the Analog Input or TDI.  
Alarm Deadband - The value, in engineering units, is an inactive  
zone above the Low Alarm limits and below the High Alarm limits.  
The purpose of the Alarm Deadband is to prevent the alarm from  
being continuously set and cleared when the input value is  
oscillating around the alarm limit. This prevents the Alarm Log  
from being over-filled with data.  
3. Select RBX Alarming  
Disabled if limit alarms are not necessary for this point. Even if  
Alarming is Disabled, the Point Fail (hardware reports a  
malfunction) alarm and Manual (Scanning Disabled) indicators  
can still occur. To conserve Alarm Log space, only Enable  
Alarming when necessary.  
If the host PC is configured to receive field-initiated calls, a  
Report-by-Exception (RBX) option is available.  
On Alarm Set - When the point enters an alarm condition, the  
3095FC generates a RBX message.  
On Alarm Clear - When the point leaves an alarm condition,  
the 3095FC generates a RBX message.  
On Alarm Set and Clear - When point enters and leaves an  
alarm condition, the 3095FC generates a RBX message.  
4. To complete point configuration click Apply.  
5. Use Device > Flags > Flash Memory Save Configuration to save the  
configuration to the Flash Memory in case a Cold Start must be  
performed.  
3-19  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-14. AI Alarms Tab  
Screen  
Soft Points Configuration  
Softpoints are data storage areas that can be used by any 3095FC  
application. Softpoints consist of a Tag identifier, one integer value, and  
twenty floating values. Softpoints consist of:  
tag identifier (10 character string)  
20 floats (floating point values)  
1 integer value (16 bit)  
2 longs (32-bit)  
10 shorts (16-bit)  
10 bytes (8-bit). Select:  
Use the following steps to configure the soft points  
See Figure 3-15.  
1. Select Configure > I/O > Soft Points.  
2. Select the Softpoint to be configured or viewed.  
3. Enter the Tag identification name (10-character).  
4. The Integer Flag is a 16-bit unsigned integer value used as a flag to  
denote the validity of the floating point data or as a counter.  
5. Enter the Float number (1 - 20 parameters). These parameters  
provide storage for IEEE floating point values.  
6. To complete point configuration click Apply.  
7. Use Device > Flags > Flash Memory Save Configuration to save the  
configuration to the Flash Memory in case a Cold Start must be  
performed.  
3-20  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-15. Soft Point Screen  
Opcode  
Opcode (operation code) is an instruction from a host system that informs a  
slave device what actions to take. Table 3-1 contains a summary and brief  
description of each Opcode. In some cases the number of data bytes returned  
for an Opcode varies. For example, Opcode 0, a full update, always returns  
certain input/output (I/O) information along with optionally specified data.  
Table 3-1. Summary of  
Opcodes  
Opcode Description  
0
6
Send general update such as I/O update, gas flows, and control loop status.  
Send device configuration with 20 data bytes defining device configuration.  
Send current time and date  
7
8
Set new time and date  
10  
11  
17  
18  
24  
80  
103  
Send data from configurable Opcode tables.  
Set data in configuration Opcode tables  
Set operator identification  
Log event.  
Store and forward  
Reserved  
Send system information such as on/off times, manual/alarm status, firmware  
version, and current time and date.  
105  
Send history point definition, min/max data, and current values for specified history  
point.  
107  
120  
121  
122  
123  
124  
126  
128  
130  
Send tag and current history period for specified history points.  
Send pointer for alarm, even, and history logs  
Send specified number of alarms starting at specified alarm pointer  
Send specified number of events starting at specified event pointer  
Read user template data  
Read user Program Memory Allocation Information  
Send last 60 minutes of data for specified history point.  
Send archived daily and hourly data for the currently selected day and month  
Send archived hourly and daily data for specified history point starting at specified  
history pointer  
131  
132  
133  
148  
149  
160  
Send specified number of event sequence numbers starting at specified pointer(1)  
Clear specified number of event sequence number starting at specified pointer(1)  
Send number of writable events(1)  
Reads 240 bytes of data from a specified judgment: offset address  
Reserved  
Sends the entire structure for a specified Function Sequence Table (FST)  
3-21  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Opcode Description  
162  
165  
166  
167  
180  
181  
Sets a single parameter  
Set or send current configurable historical data  
Set specified contiguous block of parameters  
Send specified contiguous block of parameters  
Send specified parameters  
Set specified parameters  
190/195 Reserved  
224  
225  
255  
Send Spontaneous Report-by-Exception (SRBX or RBX) message to host  
Acknowledge Spontaneous Report-by-Exception message from device  
Error messages transmitted by device in response to a request with invalid  
parameters or format.  
(1) Industry Canada  
Certain Opcodes only send data and do not receive data from the device. For  
example, Opcode 8 requests the device to set the time and date. The device  
resets the time and date and sends back an acknowledgement in which the  
Opcode is repeated, but no data bytes are transmitted back. All  
acknowledgements are 8-byte messages that repeat the Opcode received,  
but do not transmit any data bytes.  
Opcode 255 is an error message indicator. This is also an 8-byte message  
with no data bytes included. The Opcode is set to 255 to indicate the  
message received by the device had Cyclical Redundancy Error, but  
contained invalid parameters. For example, if a request was made for the  
information on Analog input #9, but the device only has 8 Analog inputs (0–7),  
the device would respond back with the 8-byte message with the opcode  
equal to 255 (error).  
Opcode Table Configuration  
Use the Opcode Table to group data for more efficient communication.  
Parameters from different point types can be assigned to the Opcode table  
data points, substantially reducing the number of polls from a host PC.  
See Figure 3-16 on page 3-23  
1. Select Configure > Opcode Table.  
2. Select the Table Number for the Opcode Screen.  
3. If the configuration has changed, update the version number. The  
version number field attaches a version number to an Opcode table  
configuration. It is a floating point number.  
NOTE  
Each Opcode Data point has a TLP box for mapping TLP values into the  
Opcode Table Data point. If a host PC asks for a specific Opcode Data point,  
the 3095FC returns the value that is referred by the mapped TLP.  
Once the parameters have been configured in the Opcode Table:  
1. Opcodes 10 and 11 can be used to read and write data directly  
without specifying the Point Type, Logical Number, or Parameter  
Number (TLP).  
2. Opcodes 180 and 181 can be used to read and write the parameter  
data and do not include the parameter definition.  
3-22  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-16. Opcode Table  
Screen  
Radio Power Control  
Configuration  
Radio Power Control conserves battery power to a radio or any other  
communicating device. Radio power is controlled either by the DTR signal or  
by a Discrete Output (DO). Because there are separate Radio Control points  
for COM1 and COM2, radio power cycling for COM1 can be configured  
differently from that for COM2, including independent timer values and  
separate output controls using the Output Definitions options.  
For each Radio Power Control point, the power cycling can be configured to  
automatically change three times a day. During each of these three periods  
(Zone 1, Zone 2, and Zone 3), the ON and OFF times can be setup to operate  
at various intervals. Figure 3-17 is a graphical depiction of how the power  
control operates within each time “zone.”  
Figure 3-17. Radio Power  
Control Timing  
Time = N  
Zone 2  
Time = N  
Zone 1  
Zone 3  
On Time  
Off Time  
On Time Hold Time Off Time  
On Time  
Host Communication Detected  
During the ON time:  
During the OFF time:  
The DO is switched to ON.  
Communication may occur.  
The DO is set to OFF.  
Communication does not occur.  
If communications occur during the ON time, the time is extended by the Hold  
Time. The DO remains ON and receives interrupts remain enabled for the  
duration of the Hold Time. When the Radio Power Control parameter is  
Enabled, radio power cycling is activated. The Low Battery Shutoff parameter  
allows power cycling to be automatically disabled whenever the input voltage  
to the 3095FC falls below the specified threshold.  
See Figure 3-18 on page 3-25.  
1. Select Configure > Control > Radio Power Control.  
2. Select the Radio Power Control point to be configured. Enter the Tag  
(10-character) to identify this point.  
3-23  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
3. Enter the The Radio Power Status, which indicates the current status  
of the Power Control function of ON, OFF, or RBX. The Active Zone  
indicates which zone is currently activated for determining the Start  
Time, On Time, and Off Time. Some of the On Time is also used by  
the radio during power-up initialization of the receiver, causing part of  
the On Time to be unavailable for receiving requests.  
4. Select Radio Power Control Enabled to activate the Radio Power  
Control function.  
5. Use the radio buttons to select Seconds and Minutes. In Seconds  
mode, the time base for the timers is in 0.1 second increments,  
primarily used with radios. In Minutes mode, the time base for the  
timers is in one-minute increments, primarily used with cellular  
telephones.  
6. Enter the Zone parameters to indicate when Radio Power Control is  
active/inactive.  
Start Time that the respective Zone begins, in hours and minutes  
(HHMM). Time is expressed in local time, 24-hour clock. For  
example: “1500” under Zone 2 means that the associated On  
Time and Off Time are used beginning at 3:00 p.m.  
On Time during a power cycle when the output is in the ON state.  
Off Time during a power cycle that the output is in the OFF state.  
7. Enter the Hold Time that the output remains ON after detection of  
communications activity (in seconds, unless the Minutes mode has  
been enabled). This value applies to all Zones. When  
communications occur during the On Time, the On Time is extended  
by the Hold Time.  
8. Enter the Low Battery Deadband. The Low Battery Deadband value  
is added to the Low Battery Shutoff to determine when the Radio  
Power Control function is enabled and allows the DO to turn ON as  
needed.  
9. Enter a Low Battery Shutoff value that specifies the voltage at which  
Power Control is automatically disabled. The voltage being sensed is  
the System AI Battery Input voltage (0-1). The Low Battery Shutoff  
parameter allows power cycling to be automatically disabled  
whenever the input voltage to the 3095FC falls below the specified  
threshold. The default value is 11 Volts.  
10. Select the Power Timer, which counts down the amount of time (On  
Time, Off Time, or Hold Time) that the Radio Control is currently  
using. The value is the number of seconds remaining.  
11. Select which DO point the signal will send along.  
12. Enter the On Counter, which indicates the cumulative time that the  
Power Control has been in the ON state. The Off Counter value  
indicates the cumulative time that the Power Control has been in the  
OFF state.  
3-24  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
NOTE  
If a Report By Exception (RBX) message needs to be sent to the host PC, the  
radio power on DO will come on and allow the message to be sent. The hold  
time should be long enough to allow the 3095FC to receive a response back  
from the host.  
13. Click Apply when configuration is complete. Save the configuration  
using Device > Flags > Flash Configuration Memory Save.  
Figure 3-18. Radio Power  
Control Screen  
Meter Run Configuration  
The Meter Setup screens allows configuring the AGA calculation point for the  
connected 3095FC. The Meter Setup screens are used to configure the  
computation of gas flow through a meter (Orifice AGA3)  
Each meter run must be uniquely identified to ensure proper configuration and  
allows the host to acquire the required data.  
Each meter run Point Number is given a unique Meter ID of up to 10  
characters to label the meter run for which this flow calculation is performed.  
Use the Meter Description field to enter up to 30 characters to further identify  
this meter run or provide information about the run.  
The 3095FC uses AGA3 (1992) for flow calculation in orifice metering.  
Additionally, the AGA8 compressibility method is used as well. The AGA8  
method calculates the compressibility factor based on the physical chemistry  
of the gasses at specified temperatures and pressures. The AGA8 method  
provides extended capabilities for accurate computation of compressibility  
factors beyond the temperature, pressure, and composition ranges of NX19.  
3-25  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
General Tab  
The General tab sets the basic parameters for the meter.  
See Figure 3-19 on page 3-26  
1. Select Meter > Setup.  
2. Select the Point number to be configured. Enter the meter tag. Enter  
a unique Meter Description for the meter.  
3. Select the Meter Type. Orifice is the default.  
4. Select the Calculation Standard and Edition.  
5. Select if Alarming is enabled or disabled.  
6. Enter the inside Pipe Diameter (orifice) of the pipe, The U.S. units are  
inches and the Metric units are millimeters.  
7. Enter the Orifice Diameter (orifice) of the orifice. The U.S. units are  
inches and the Metric units are millimeters.  
8. Enter the Low Flow Cutoff (orifice) when the DP value of the metering  
device is less than the Low Flow Cutoff value, the calculated flow is  
set equal to zero. No Flow is recorded in the Alarm Log if Alarming is  
Enabled. For the Orifice AGA3 calculation method, this value is in  
inH O (U.S.) or kPa (Metric).  
2
9. Enter the Integral Multiplier Period (IMP) to indicate the frequency of  
calculation in minutes of the Integral Multiplier Value (IMV) to be used  
in the flow equation. The Integral Value (IV) portion of the flow  
equation is calculated once per second. The value must be an integer  
divider of 60, such as 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, or 60.  
Figure 3-19. Meter Setup  
General Tab Screen  
3-26  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
AGA Meter Inputs Tab  
See Figure 3-20 on page 3-27.  
The Inputs tab screen defines the field inputs, including DP and SP to be used  
in the flow calculation.  
To setup the meter inputs used in the flow calculation:  
1. Select Meter > Setup >Input tab.  
2. Click the Differential Pressure TLP button to assign the input that  
senses the DP (high DP, if Stacked Dp is Enabled). The input units  
are inH O (U.S.) or kPa (Metric).  
2
NOTE  
If Manual appears, the Values field can be used to enter a value for the meter  
input. Otherwise, the Values field indicates the current input value.  
3. Click the Static Pressure TLP button to assign the input that senses  
the SP. The input units are psig (U.S.) or kPa (Metric).  
4. Click the Temperature TLP button to assign the input that senses the  
temperature of the flowing gas. The input units are degrees  
Fahrenheit (U.S.) or degrees Celsius (Metric).  
Figure 3-20. Meter Setup Inputs  
Tab Screen  
3-27  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Gas Quality Tab  
See Figure 3-21 on page 3-28  
Gas Quality defines the mole percentage of twenty gas components, the  
Heating Value Basis, the Heating Value, and the Specific Gravity.  
NOTE  
Entering Hexane+ (C +) and the mole percent of hexane+ will automatically  
6
distribute among hexane, heptane, octane, nonane, and decane as specified  
by the heavy gas distribution parameters under the Advanced tab (“Advanced  
Meter Setup Tab” on page 3-29.  
1. Select Meter > Setup > Gas Quality tab.  
2. Enter the mole percent of each Gas Component, or use the default  
values of 96% methane, 3% ethane, and 1% nitrogen. The Total Mole  
% should equal 100%. If changes are applied to the device when the  
Total Mole % does not equal 100%, the composition will be adjusted  
based on the Normalization Type selected.  
3. Select Log Methane Adjust Enabled if the percentages are  
automatically adjusted to total 100.  
4. Select the Heating Value Basis. If Dry or Wet is selected, select  
Calculate for the Heating Value parameter (the heating value is  
always calculated on a dry basis). If As Delivered is selected, select  
Enter for the Heating Value parameter and provide the value.  
5. Select either Calculate or Enter for the capacity Heating Value of a  
specified quantity of gas. If Calculate is chosen, the Heating Value is  
calculated from the gas composition data. If Enter is chosen, the  
value entered will be used in the heating value calculation. Use the  
units button to toggle between volume or mass measurement U.S  
units are BTU/Cf or BTU/Lb and the metric unit are MJ/m3 or MJ/Kg.  
6. Select either Calculate or Enter for the Specific Gravity to specify the  
ratio of the molar mass of the gas to the molar mass of air. If  
Calculate is selected, the specific gravity is calculated from the gas  
composition data at standard conditions of 14.73 PSIA and 60 °F. If  
Enter is selected, the value entered for standard conditions is used.  
Figure 3-21. Meter Setup Gas  
Quality Tab Screen  
3-28  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Advanced Meter Setup Tab  
See Figure 3-22 on page 3-30  
The Meter Setup advanced tab contains a number of additional parameters  
that affect the flow calculation.  
1. Select Meter > Setup > Advanced tab.  
2. Select the FPV Method of calculating the compressibility factor under  
the 1992 AGA scheme. The three methods are:  
Detailed - Requires the natural gas composition in mole percent to  
be entered.  
Gross I - Uses the density of the natural gas, its heating value, and  
the quantity of non-hydrocarbon components as follows:  
Specific Gravity  
Real gas gross heating value per unit volume  
The mole % of CO  
2
Gross II - Uses the density of the natural gas as well as the  
quantity of non-hydrocarbon components as follows:  
Specific Gravity  
The mole % of CO  
The mole % of N  
2
2
NOTE  
If either Gross Method is chosen, manually enter the Specific Gravity and  
Heating Value in the Gas Quality screen. For Gross Method II, the heating  
value is required only for calculating the gas energy flow.  
3. Select the units (U.S. or metric)  
4. Select either Calculate or Enter Atmospheric Pressure for the value of  
the atmospheric pressure (absolute) at the metering location. If  
Calculate is selected, the value is calculated from other parameters. If  
Enter is selected, type a value greater than zero for the pressure. The  
units of measurement are in psia (U.S.) or kPa (metric).  
5. Enter the flow measurement Base Pressure specified in the gas  
contract. The pressure units are in psia (U.S.) or kPa (metric).  
6. Enter the flow measurement Base Temperature specified in the gas  
contract. The temperature units are in degrees Fahrenheit (U.S.), or  
degrees Celsius (metric).  
7. Enter the Elevation or altitude of the metering location. The units are  
in feet (U.S.) or meters (metric) is selected.  
8. Enter the geographic Latitude of the metering location. The units are  
in degrees (U.S.) and minutes separated by a decimal point (metric).  
For example: 46.15.  
9. Select the Pressure Tap used in the meter run.  
Select Gauge or Absolute as the way of measuring pressure at the  
SP tap. The selection must be consistent with the type of pressure  
measured by the sensor (absolute or gauge).  
10. Select the Force Recalculation Set and click Apply to cause a full  
recalculation of the flow without waiting for the next normal  
recalculation.  
3-29  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
NOTE  
Normal recalculation periods are established in Meter Set-up screen using  
Integral Multiplier period or the Base Multiplier Period. Upon forcing a  
recalculation, the accumulations are zeroed and the flow value is logged as a  
new entry. The Force Recalculation parameter is automatically set to Clear  
after the recalculation.  
Figure 3-22. Meter Setup  
Advanced Tab Screen  
Instrument Calibration Tab  
See Figure 3-23 on page 3-30.  
The 3095FC Instrument Calibration options allow setting the calibration  
parameters for the Analog Inputs of the flow calculation.  
1. Select Meter > Setup > Instrument Calib tab.  
2. Dead Weight Calibration - If a deadweight tester is used to calibrate  
the DP or the SP, select the respective Yes option. Enter the  
Calibrated Grav. Accel. value.  
3. Enter the User Correction Factor value that is multiplied by the base  
volume flow equation, allowing the user to make any desired  
adjustment to the flow. When using the default value 1, no correction  
is applied.  
Figure 3-23. Meter Setup  
Instrument Calibration Tab  
Screen  
3-30  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Meter Setup Alarms Tab  
See Figure 3-24 on page 3-32.  
Meter Setup Alarms allows setting the alarm limits, configure RBX Alarming,  
and view active alarms for the selected meter run. Alarms can be configured  
for the individual meter runs and/or the stations, generating meter-specific  
and /or station-wide alarm conditions.  
For enable alarms, the alarms can be configured using the Alarms tab in the  
Meter Set-up screen and are logged to the Alarm Log. To conserve log space,  
alarms should be enabled only when necessary. For alarm disable, no alarm  
is generated for a point, regardless of the Alarm configuration. Alarm  
conditions display in the Active Alarm fields located in the Meter Configuration  
screen.  
NOTE  
Even if alarms are not used, check and adjust the alarm value to prevent false  
alarms.  
Use the following steps to set the alarm values.  
1. Go to Select Meter > Setup > General tab. Set the Alarming to Enable  
(see “General Tab” on page 3-26).  
2. Go to Select Meter > Setup > Alarms tab.  
3. Enter the Low Alarm limit value, in engineering units, within the  
calculated flow value resides to generate a Low Alarm. The default  
value is 1000 MCF/day (U.S.) or km3/day (metric).  
4. Enter the High Alarm limit value, in engineering units, within the  
calculated flow value resides to generate a High Alarm. The input  
units are 10000 MCF/day (U.S.) or km3/day (metric). The Active  
Alarms field on the General tab indicates any alarm currently  
activated. For example, Low indicates that the calculated flow is  
below the Low Alarm limit.  
5. Select the RBX Alarming option.  
On Alarm Set - When the point enters an alarm condition, the  
3095FC generates a RBX message.  
On Alarm Clear - When the point leaves an alarm condition, the  
3095FC generates a RBX message.  
On Alarm Set and Clear - When point enters and leaves an alarm  
condition, the 3095FC generates a RBX message.  
NOTE  
RBX Alarming requires the communications port to be properly configured.  
3-31  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-24. Meter Setup Alarms  
Tab Screen  
History Points  
Configuration  
The History option allows data stored in the current value database to be  
copied and stored for up to a month in the historical database. The historical  
database can be configured to log only the values that need to be logged. The  
values are logged in the standard (minute-hourly-daily) time base.  
NOTE  
The time stamp used for standard logging reflects the time at the end of the  
period, not at the beginning. For example: Data collected from 8:00 to 9:00 is  
stamped 9:00.  
The 3095FC also maintains a 10-minute historical database.  
Four types of historical databases are maintained:  
Min/Max Database (see “Meter History")  
Minute Database (see “General History")  
Hourly Database (see “General History")  
Daily Database (see “General History")  
Meter History  
The Min/Max Database is for viewing only and cannot be saved to a disk file.  
A total of fifteen history points may be accessed. For an AGA3 meter run, the  
first eight (out of fifteen) history points are pre-configured for flow metering  
history and cannot be changed. They are configured as follows:  
1. Flowing Minutes Today (Accumulate archive type)  
2. DP (Average)  
3. Static or Line Pressure (Average)  
4. Flowing Temperature (Average)  
5. C´ or Integral Multiplier Value (IMV)  
6. Pressure Extension or Integral Value (IV) (Average)  
7. Instantaneous Flow (Accumulate)  
8. Instantaneous Energy (Accumulate)  
3-32  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
History Point 2, History Point 3, History Point 4, and History Point 6 are all  
setup as an Average Archive Type that employs one of the following  
techniques:  
Flow dependent time-weighted linear averaging (default)  
Flow dependent time-weighted formulaic averaging  
Flow-weighted linear averaging  
Flow-weighted formulaic averaging  
Averaging Technique  
The averaging technique is selected using Rosemount User Interface  
Software. The user-configurable history points, 9-15, may be configured using  
Rosemount User Interface Software. In the Meter > Setup > Inputs tab, select  
the desired Averaging Technique. The selected Averaging Technique is  
applied to the meter inputs.  
History point archival includes:  
Archival of minute data from the last 60 minutes for 15 points.  
Archival of 60 days of 10-minute data for 4 points.  
Archival of 35 days of hourly data for 15 points.  
Archival of 35 days of daily data for 15 points.  
Archival of minimum / maximum historical data for today and yesterday.  
Log Types  
The following are logs that are available through the History Points data.  
Minute Historical Log: The 3095FC has a 60-minute historical log for  
each history point. The Minute Historical Log stores the last 60 minutes  
of data from the current minute. Each history point has Minute  
Historical Log entries.  
10-Minute Historical Log: The 3095FC has a 10-minute historical log  
for up to four (4) history points that stores 60 days of 10-minute data.  
The four (4) 10-Minute history points include DP, SP, flowing  
temperature, and an auxiliary Analog Input.  
Hourly Historical Log: The 3095FC has a total of 35 days of hourly  
historical logs available for every history point. The Hourly Historical  
Log is also called the Periodic database. Normally, the Hourly Log is  
recorded at the beginning of every hour. The time stamp for periodic  
logging consists of the month, day, hour, and minute.  
Daily Historical Log: The 3095FC has a total of 35 daily historical logs  
for every history point. The Daily Log is recorded at the configured  
contract hour every day with a time stamp that is the same as the  
Hourly Log. Each history point has daily historical log entries.  
Min / Max Historical Log: The Min / Max database displays the  
minimum and the maximum values for the database points over a  
24-hour period for today and yesterday. The Min / Max historical log  
can be viewed, but not saved to disk.  
3-33  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Alarm Log: The Alarm Log contains the change in the state of any  
alarm signal that has been enabled for alarms. The system Alarm Log  
has the capacity to maintain and store up to 240 alarms in a “circular”  
log. The Alarm Log has information fields that include time and date  
stamp, alarm clear or set indicator, and either the Tag name or a  
14-byte detail string in ASCII format.  
In addition to providing functionality for appending new alarms to the  
log, the Alarm Log allows host packages to request the index of the  
most recently logged alarm entry. Alarm Logs are not stored to the flash  
ROM during the Save Configuration function in Rosemount User  
Interface Software.  
The Alarm Log operates in a circular fashion with new entries  
overwriting the oldest entry when the buffer is full. The Alarm Log  
provides an audit history trail of past alarms. The Alarm Log is stored  
separately to prevent recurring alarms from overwriting configuration  
audit data.  
Event Log: The Event Log contains changes to any parameter within  
the 3095FC made through the protocol. This Event Log also contains  
other 3095FC events, such as power cycles, cold starts, and disk  
configuration downloads. The Event Log provides an audit history trail  
of past operation and changes.  
The system Event Log has the capacity to maintain and store up to 240  
events in a circular log. The Event Log has information fields that  
includes point type, parameter number, time and date stamp, point  
number if applicable, the operator identification, and either the  
previous, current parameter values, and either the Tag name or a  
14-byte detail string in ASCII format.  
In addition to providing functionality for appending new events to the  
log, the Event Log allows host packages to request the index of the  
most recently logged event entry.  
Event Logs are not stored to Flash memory when Save Configuration is  
issued in Rosemount User Interface Software. The Event Log operates  
in a circular fashion with new entries overwriting the oldest entry when  
the buffer is full. The Event Log provides an audit trail history of past  
operation and changes. The Event Log is stored separately to prevent  
recurring alarms from overwriting configuration audit data.  
3-34  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
General History  
The Configure > History option allows data to be stored in the historical  
database. Hourly and daily values are stored for up to 35 days. The historical  
database can be configured to log only the values that need to be logged.  
NOTE  
History points setup in the Meter > History screen override history points  
setup in the Configure > History screen. When configuring history points  
ensure that the point is not already defined in Meter History.  
1. Select Configure > History Points.  
2. Select the desired history point to be configured in Select History  
Point. The parameter currently configured (if any) for this history point  
appears in the Value to Archive field.  
NOTE  
The first eight history points are reserved for use as Meter History; begin  
selecting history points with History Pt. #9.  
3. Click the TLP Value to Archive label to specify a point type and  
parameter to be archived.  
4. Select the Point Type to archive. To prevent this history point from  
logging values, select Undefined as the Point Type.  
5. Select the Logical Number. For example, select Analog Input AIN A 2.  
6. Select the specific Parameter to log.  
7. Click OK.  
8. Choose the Select Archive Type to specify the exact archive type of  
the history point. The archive type affects how the logged value is  
calculated.  
Undefined – Point not configured  
Disabled - Point not configured  
Average - Minute values are averaged to compute the hourly  
value. The flow inputs (such as DP) allow the user to select among  
four types of averaging for calculating flow quantities or for  
providing values. Refer to the Select Average Type parameter.  
Accumulate - The flow, energy, or uncorrected flow values are  
summed over a specified time period to compute the value based  
on what is selected in the Select Accumulation Time Basis. The  
accumulation technique is used to acquire accurate accumulated  
counts from an input for a specified time period.  
Current Value - Current sampled value is used for the hourly  
value.  
3-35  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Totalize - The difference between the current value and last hour's  
current value is used for point values polled or received as  
accumulated values. The Totalization technique assumes that the  
value being archived is zeroed out by something else at Contract  
Hour and that no rollover of the value occurs. Totalization occurs  
at the Minute Historical Log and is summed up for the Hourly and  
Daily Historical Logs. A minute after Contract Hour, the current  
value is archived. All other minutes are the difference between the  
current value and the previous minute's archived value.  
Select Average Type -The Select Average Type parameter is set  
to Average, this list appears at the bottom of the screen. Choose  
one of the following options to determine how the average value is  
calculated.  
Flow Dependant Linear - This is the default method for  
calculating the average for the flow input. It is the simplest and  
most commonly used method. This method discards samples  
for periods when there is no measurable flow and performs a  
straightforward (linear) average of the remaining samples to  
compute the minute and hour values. The value specified in  
the Low Flow Cutoff of the Meter setup determines the values.  
When no flow occurs, all values are sampled.  
Flow Dependant Formulaic - Like the Flow-Dependent Linear  
method, this method discards samples for periods when there  
is no flow. However, in calculating the average, this method  
typically takes the square root of each sample before  
averaging the samples together and then squares the result.  
This formulaic method produces a slightly lower value than the  
linear method.  
Flow Weighted Linear - This method does not discard any  
samples. Instead, it “weights” each sample by multiplying it by  
a flow value (square root of the DP measured during the  
sample period), and then performs a linear average by dividing  
the sum of the flow-weighted sample by the sum of the flow  
values. This results in minute and hourly values that are more  
reflective of short periods of high flow.  
Flow Weighted Formulaic - This method combines the  
flow-weighting action with the formulaic averaging technique,  
both of which were described previously.  
9. Select Accumulation Time Basis - When the Selected Archive Type is  
Accumulate, this list appears at the bottom of the screen. Choose one  
of the following options to determine how the accumulated values are  
computed:  
Per Sec - Values summed to compute the second value.  
Per Min - Values summed to compute the minute value.  
Per Hour - Values summed to compute the hourly value.  
Per Day - Values summed to compute the daily value.  
3-36  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
History, Alarm, Event,  
and Audit Log Reports  
History, Alarm, Event, and Audit Log can be viewed from the View menu.  
History can viewed from an on-line Rosemount User Interface Software,  
3095FC, or from a disk file. History and log files work in a circular fashion; the  
newest data overrides the oldest data when the log is full.  
Once a selected history log has been displayed, the following options are  
available:  
Select New - Return to the Select History points screen and make a  
new selection.  
Save - Save the history archives to a file.  
Print Preview - Show a preview of what will be sent to the printer and  
allow printing of the history log.  
Close - Close the screen. View the History Logs from the View menu.  
Once the alarms are displayed the following options are available:  
Save - Save the alarm log to a file.  
Print Preview - Show a preview of what will be sent to the printer and  
allow printing of the alarm log.  
Close - Close the screen. View the Alarm Logs from the View menu.  
Once the events are displayed the following options are available:  
Save - Save the event log to a file.  
Print Preview - Show a preview of what will be sent to the printer and  
allow printing of the event log.  
Close - Close the screen. View the Event Logs from the View menu.  
A report is generated based on the Search Criteria from the 3095FC.  
1. Select View menu > History, Alarm, or Event > From 3095FC.  
2. Select the History Points in the Search Criteria field (History only).  
Select, Deselect All, and Select All allow the user to mass select or  
deselect History Points. The Search Criteria selections change  
depending on the Frequency.  
3. Select the Frequency to be viewed (History only). The Minute, Hourly  
(Hour), Daily (Day), or Minimum and Maximum (Min/Max) values can  
be view.  
4. Click Upload.  
A report is generated based on the Search Criteria from a disk file.  
1. Select View menu > History, Alarm, or Event Log > From File.  
2. Select the file and click Open.  
3. Perform one of the following:  
Select New - Return to the Select History points to be shown  
screen and perform a new search.  
Invert - View the log in reverse order (default is newest to oldest).  
This changes the time order of the Alarm, or Event Log.  
Save - Save the report to a file.  
Print Preview - Print the report.  
Close - Close the screen.  
3-37  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Collect Data  
Select 3095FC > Collect Data to save various 3095FC data to disk files.  
Select the values to be saved for later generating into a report(s). This screen  
may only be accessed when the user is on-line with the already configured  
3095FC from which data will be gathered.  
Use Save As and the Browse button to either accept the default File name or  
enter a new File name. The files are saved in the default directory C:/Program  
Files/Rosemount User Interface for Windows/Data unless another directory  
was selected. When selecting EFM Report Data, the Collect Data function  
saves all the values for EFM parameters. The files has the .efm extension.  
The EFM Reports utility uses the flow data that was gathered using either the  
“EFM Report Data” or the “All” option. The “All” function retrieves Rosemount  
User Interface Software data including the EFM Report Data and stores it in  
disk files identified with various extensions. The “EFM Report” function  
retrieves just the detailed flow data needed for an EFM report and stores it in  
disk files with an .AGA extension.  
NOTE  
EFM Reports can be created, using this data, by selecting View >EFM Report.  
Configure History for  
EFM Reporting  
Electronic Flow Measurement (EFM) Reports  
The Rosemount User Interface Software has the ability to create an EFM  
report file that contains all the configuration, alarms, events, and history logs  
associated with the stations and meter runs. This file becomes the custody  
transfer audit trail. To collect the periodic and daily history logs required for the  
EFM report file, a specific list of station and meter run parameters must be  
configured for historical archiving.  
For Orifice meters, the following history points must be configured for EMF  
reports.  
Table 3-2. Orifice Meter Run History Points  
Description  
Archive Type  
Point Type  
Parameter  
Flowing Minutes  
DP  
Totalize  
Orifice Meter Run Values  
Orifice Meter Run Configuration  
Minutes Accumulated  
DP  
Avg (Flow Dependent Linear)  
Avg (Flow Dependent Formulaic)  
Avg (Flow Weighted Linear)  
Avg (Flow Weighted Formulaic)  
Avg (Flow Dependent Linear)  
Avg (Flow Dependent Formulaic)  
Avg (Flow Weighted Linear)  
Avg (Flow Weighted Formulaic)  
Avg (Flow Dependent Linear)  
Avg (Flow Dependent Formulaic)  
Avg (Flow Weighted Linear)  
Avg (Flow Weighted Formulaic)  
Avg (Flow Dependent Linear)  
Avg (Flow Dependent Formulaic)  
Avg (Flow Weighted Linear)  
Avg (Flow Weighted Formulaic)  
Avg (Flow Dependent Linear)  
Avg (Flow Dependent Formulaic)  
Avg (Flow Weighted Linear)  
Avg (Flow Weighted Formulaic)  
Totalize  
SP  
Orifice Meter Run Configuration  
Orifice Meter Run Configuration  
Orifice Meter Run Configuration  
Orifice Meter Run Configuration  
SP  
Temperature  
Pressure Extension  
Multiplier Value  
TMP  
Pressure Extension  
Multiplier Value  
Volume  
Energy  
Orifice Meter Run Configuration  
Orifice Meter Run Configuration  
Flow Accumulated  
Energy Accumulated  
Totalize  
3-38  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Selecting View > EFM Reports opens the initial screen. The utility program is  
used in conjunction with the AGA flow calculation capabilities of the 3095FC  
to display or print previously collected flow data. EFM Reports generate  
printed and on-screen reports of the historical flow data for a meter point.  
Selecting EFM Reports causes the Rosemount User Interface Software to  
suspend operation and load the EFM Reports Utility.  
The flow data is contained in an EFM Report file, which includes the  
operational characteristics of all the meter runs configured in the 3095FC. The  
operational characteristics consist of Configuration Parameters, Hourly and  
Daily History, Events, and Alarms associated with each measured meter run.  
The Audit Log events are also included for Industry Canada custody transfer.  
To create the EFM Report disk file, use Device > Collect Data and select  
either the “EFM Report” or “All” option (“Configure History for EFM Reporting”  
on page 3-38). Once the disk file is created, a report can be generated  
anytime thereafter and connection/communication with the Rosemount User  
Interface Software is no longer necessary. The EFM Reports utility formats  
this report for a single meter run covering a specified period of time. The user  
can choose to view the report or print the report.  
NOTE  
In order for the EFM Reports utility to work, the historical database in the  
Rosemount User Interface Software or 3095FC must be configured so that  
certain flow calculation values can be retrieved from memory.  
1. Select View > EFM Reports.  
2. Click the EFM Report File button to display a lists the names of all the  
files that have the .AGA extension previously created by using the  
Collect Data function (see “Configure History for EFM Reporting” on  
page 3-38).  
3. Select the desired file and click Open.  
4. Use the Enter meter run drop-down list box to select the meter run for  
which to create a report.  
5. Enter the Start date and End date. Any alarms, events, hourly history,  
and daily history records that occur between these dates will be  
included in the report. Click Next.  
6. Under the Available sections list select the Data files to be included in  
the report. Use the arrows to scroll through the selections.  
7. Click Next.  
8. Select the Available Subsections to include in the report. Use the  
arrows to scroll through the selections.  
9. Click Next.  
10. Select the Point Types and Fields to include in the report.  
11. Click Finish. The EFM Report displays.  
3-39  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Modbus Configuration  
The 3095FC has the ability to communicate using Modbus protocol. This  
makes it possible to integrate with Modbus devices into the same Host/Slave  
system. The 3095FC can act as a Slave device.  
The LOI, Comm 1, and Comm 2 ports all support Modbus communications.  
The Modbus mapping on the Modbus Registers screen and Modbus History  
Access Registers screen will affect Modbus communication on all of the  
3095FC comm ports.  
The 3095FC point types and parameters for Function Codes 1, 2, 3, 4, 5, 6,  
15, and 16 are configured using the Rosemount User Interface Software.  
Table 3-3 provides details of the Function Codes supported by the 3095FC.  
Table 3-3. Modbus Function  
Codes  
Code Meaning  
Action  
01  
02  
03  
04  
05  
06  
15  
16  
Read Logic Coil Status  
Obtain current status (ON/OFF) of a group of  
logic coils (outputs)  
Obtain current status (ON/OFF) of a groups of  
Discrete Inputs  
Obtain current binary value in one or more  
holding requests  
Obtain current binary value in one or more binary  
registers  
Force logic coil to a state of ON or OFF.  
Acknowledge Alarm or Event request  
Place a specific binary value into a holding  
register  
Force a series of consecutive logic output coils  
to defined ON or OFF states.  
Read Discrete Input Status  
Read Output Registers (Holding)  
Read Input Registers  
Force Single Logic Coil  
Preset Single Holding Register  
Force Multiple Logic Coils  
Preset Multiple Holding Registers  
Place specific binary values into a series of  
consecutive holding registers.  
General Tab  
The General tab sets the basic communication parameters.  
See Figure 3-25 on page 3-42  
1. Select Configure > Modbus > Configuration > General tab  
2. Select the Modbus Type. The Modbus protocol supports two modes  
of transmission ASCII and RTU. All devices in the same  
communications must be configured with the same mode of  
transmission.  
American Standard Code for Information Interchange (ASCII) –  
allows additional time intervals of up to one second to occur  
between characters without causing an error. This allows the  
messages to be read with the use of a dumb terminal. Each  
character is divided into two 4-bit parts that are represented by  
their hexadecimal equivalent. The ASCII mode uses twice as  
many characters as the RTU mode. Each character sent is  
composed of a Start bit, 8 or 7 Data bits, and one or two Stop bits  
with Even, Odd, or No parity. ASCII mode uses Longitudinal  
Redundancy Checking (LRC) error checking  
3-40  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Remote Terminal Unit (RTU)– Allows for greater character density  
and better data throughput than ASCII for the same baud rate.  
Each message is transmitted in a continuous stream. Data is sent  
in 8-bit binary characters. In the ASCII mode, each RTU character  
is divided into two 4-bit parts that are represented by their  
hexadecimal equivalent. RTU mode uses Cyclic Redundancy  
Check (CRC) error checking. By default, RTU is enabled.  
In either mode, ASCII or RTU, a Modbus message is placed by the  
transmitting device into a frame that has a known beginning and  
ending point.  
Table 3-4. Message Framing  
ASCII Message Framing  
Begin of  
Frame  
LRC Error  
Check  
Address  
Function  
Data  
End  
:
2 characters 2 characters N characters 2 Characters CRLF  
RTU Message Framing  
Begin of  
Frame  
CRC Error  
Check  
Address  
Function  
Data  
End  
T1-T2-T3-T4 1 Byte  
1 Byte  
N * 1 Byte 2 Bytes  
T1-T2-T3-T4  
3. Select Log Modbus Events Enabled to log all Modbus parameter  
changes to the Event Log or select Disabled to allow Modbus  
parameter changes to occur without being logged. By default, Log  
Modbus Events is Enabled.  
4. Select the Byte Order of data bytes in a transmission or request can  
be reversed by the selection made in these check boxes. This only  
affects the Data field of a Modbus message, has no effect on the data  
for Function Codes 01, 02, and 05, and only applies to floating points.  
Least Significant Byte First - Selecting this check box places the  
least significant byte first. This is the default value.  
Most Significant Byte First - Selecting this check box places the  
most significant byte first.  
5. Select EFM Modbus Enable to use an implementation of Modbus  
protocol with EFM extensions. This causes the Hourly (Periodic) and  
Daily indices to be returned as floating point values instead of the  
standard integer and character values. In addition, the history index is  
adjusted to accommodate a one-based index (1 to 840), and the date  
stamp (MMDDYY) is returned before the time stamp (HHMM), which  
does not include seconds.  
6. The “status” field displays the status codes returned from the modem.  
3-41  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-25. Configure Modbus  
General Tab Screen  
Scale Values Tab  
The Scale Value tab allows the user to enter low and high floating point and  
integer values for converting between integer and floating point numbers.  
See Figure 3-26 on page 3-43  
1. Select Configure > Modbus > Configuration > Scale Values tab.  
2. Enter the Integer Scale values. In the 3095FC, the endpoints of the  
Analog Inputs and the Analog Outputs are used to scale or calibrate  
the range of the input or output signal. Because each I/O point can  
have different scaling, the raw values from the Analog I/O points are  
normalized to the values defined by the Integer Scale Low Value and  
Integer Scale High Value fields.  
3. Enter the Low Value that contains the 0% value for all analog data  
(Type 3, Parameter 17 and Type 4, Parameter 9) registers. Enter the  
High Value that contains the 100% value for all analog data (Type 3,  
Parameter 17 and Type 4, Parameter 9) registers.  
NOTE  
The High and Low Value fields are signed integers, so they can range from  
zero to 32767. These data fields can also be used to scale the Analog I/O to  
integer values with an implied decimal point. For example: All Analog I/O Raw  
values can be transmitted with 0 to 1000 values (0 to 100.0, decimal point  
implied) by setting the values in this field to 0 for the Integer Scale Low Value  
and 1000 for the Integer Scale High Value.  
3-42  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
4. Enter the Float Scale # in the Low Value Float Scale and High Value  
Float Scale fields used when the Host is not able to process floating  
point numbers.  
In Host systems that do not accept floating point numbers, eight sets  
of floating point ranges for values can be specified. This allows  
floating point values, such as PID Setpoints, to be read and set by the  
Host as integer values. The 3095FC floating point values are  
converted to integers by configuring a register or range of registers  
with the Conversion field set in the Modbus Registers Definition  
configuration.  
The equations used to convert floating point values to integer values  
to enable the reading of floating point values are:  
Float Range = High Value Float Scale - Low Value Float Scale  
Integer Range = High Value Integer Scale - Low Value Integer Scale  
Adjusted Reading = Float Reading - Low Value Float Scale  
Integer = (Integer Range × Adjusted Reading)/(Float Range) + Low Value  
Integer Scale  
The equations used to convert integers to floating point values are:  
Float Range = High Value Float Scale - Low Value Float Scale  
Integer Range = High Value Integer Scale - Low Value Integer Scale  
Adjusted Integer = Integer Sent - Low Value Integer Scale  
Float Value = (Adjusted Integer × Float Range)/(Integer Range) + Low  
Value Float Scale  
Figure 3-26. Configure Modbus  
Scaled Values Tab Screen  
3-43  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Modbus - History Collection  
The Modbus protocol sends the Hourly (periodic) and Daily History. Refer to  
“History Access Registers Tab” on page 3-44. Each record contains a time  
and date stamp and all of the history archives for which the Register Number  
is configured. The Modbus Function Code 03 and the History Archive  
Register are used to collect the archived data. Two Modbus registers indicate  
the current Hourly and Daily history index as selected in the Archive Type  
field. These can be configured in the Hourly History Index Register and the  
Daily History Index Register. These indexes identify the current history  
archive at which data was last logged.  
To collect the Hourly and Daily history a standard Modbus Function Code 03  
is used. The Register Number field is used to address the individual History  
Archive Register. The Daily Index, Hourly Index, and Event/Alarm data fields  
are used to address a history index number. The response message contains  
two floating point values for the time and date stamp of the history archive  
(time stamp = HHMMSS and date stamp = MMDDYY) and floating point  
values for each of the defined history points for that History Archive Register.  
The date stamp for history uses the current year and does not figure the  
number of years since 1980.  
NOTE  
When in Modbus with EFM extensions mode, the time stamp is in the HHMM  
format. In addition, the date time stamp is returned before the time stamp.  
History Access Registers Tab  
See Figure 3-27 on page 3-45  
The History Archive Register is a single register that can contain one or more  
history points for retrieval of the Event Log, Alarm Log, and Historical  
Archives. Historical data is contained in Point Type 55 up to 35 days of hourly  
data for each of its history points can be stored. The points mapped on the  
history tab are configured on the Configure > History Points screen.  
1. Enter Configure > Modbus > Configuration > History Access  
Registers tab.  
2. Enter the modbus Register Number used to acquire the Daily Index  
values.  
3. Enter the Modbus Register Number used to acquire the Hourly Index  
values.  
4. Enter the Modbus Register Number used to acquire the Events/Alarm  
logs.  
5. Enter the Modbus Register Number used to acquire the group of  
history points defined in the Starting History Point and Ending History  
Point fields without having to define each history point separately.  
6. Enter the Starting History Point to acquire a group of history points  
without having to define each history point separately, enter values in  
the Starting History Point and Ending History Point fields. The Starting  
History Point value is the first history point to be retrieved.  
7. Enter the Ending History Point to acquire a group of history points  
without having to define each history point separately, enter values in  
the Starting History Point and Ending History Point fields. Then  
Ending History Point is the last history point to be retrieved.  
3-44  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
NOTE  
The Starting History Point and Ending History Point values must be different  
with the Starting History Point value being the smaller of the two. The group of  
history points is specified by the Modbus register value set in the Register  
Number field.  
8. Enter the Archive Type to archive either Hourly or Daily values.  
9. Enter the Conversion field to specify the type of conversion required,  
if any, on the data before it is sent to the Host or before it is written to  
the 3095FC. The conversions are used to allow integer values  
instead of floating point values to be transmitted and received.  
Table 3-5 summarizes the applicable function calls and their  
associated register and data fields.  
Figure 3-27. Modbus History  
Access Registers Screen  
Modbus - Events / Alarms Functionality  
The record formats for the Event log and Alarm log are the same size and  
have similar contents. The first word in a record is a bit map in which bit 9  
indicates if the log record is an Event (1) or an Alarm (0). The meanings of the  
other bits are specific to either the event or the alarm log records. The Event  
and Alarm log record consists of the bytes shown in Table 3-6. A breakdown  
of the bit map in the first byte is given in the table immediately after the record  
table.  
3-45  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table 3-5. History, Event, and  
Alarm Functionality  
Function  
Code  
Register Field  
Data Field  
Description  
3
3
3
7160 – Daily Index  
7161 – Hourly Index  
Ignored  
Ignored  
Ignored  
Response contains current daily index  
Response contains current hourly index  
32 – Event/Alarm Register  
Response contains Events and Alarm records. Maximum number of bytes  
returned is 240 (12 records of 20 bytes each). Events are returned before  
Alarms are returned. The format is displayed in Table 3-6.  
5
3
32 – Event/Alarm Register  
703 – 7160 – Daily History  
Ignored  
After Events and Alarms have been returned, there must e an  
acknowledgement made so that the same Events and Alarms are not returned  
on the next request.  
History Archive  
Response contains two floating point values for the time and date stamp of the  
Register (0 to 34) history archive (time stamp = HHMMSS and date stamp = MMDDYY) and  
floating point values for each of the defined history point for that History Archive  
Register.  
3
704 – Hourly Index  
History Archive  
Register (0 to  
8.39)  
Response contains two floating point values for the time and date stamp of the  
history archive (time stamp = HHMMSS and date stamp = MMDDYY) and  
floating point values for each of the defined history point for that History Archive  
Register.  
The 3095FC supports the Modbus with EFM extensions method for retrieving  
alarms, events, and history. When a Function code 3 request referencing  
defined Events/Alarms Register (usually 32) is received, it begins to collect  
records from first the Event Log and then the Alarm Log, starting where the  
last poll left off. The 3095FC will collect records until either there are not any  
more new events/alarms or the maximum of twelve records have been  
collected. The 3095FC sends the information back to the host, which in return  
replies with Function Code 5, referencing the same Events/Alarms Register,  
indicating that the points have been received and that the host is ready for the  
next twelve records.  
When the 3095FC receives a Function Code 3 request referencing one of the  
user-defined Periodic History Registers or Daily History Registers, the  
number of registers field is interrupted as an index into the specific history log.  
The reply message contains the date and time stamp and historical values  
configured for the specified for that index.  
Reading Events / Alarms Register  
The Modbus request to read the Event/Alarm log (see Table 3-6) uses the  
standard read Function Code 03 and the Event/Alarm Register (parameter  
#0) in the Modbus Special Function Table (point type 39). In this request,  
the number of registers is included to maintain format compatibility but is  
ignored by the receiving 3095FC unit. For the date stamp in the events  
and alarms returned, the year (YY) is really the number of years since  
1980 (for example, the current year is 1997, so the year (YY) for the date  
stamp would be 17).  
Acknowledging Events / Alarms  
The Modbus request to acknowledge the event/alarm log uses Function  
Code 05 and the Event/Alarm Register (parameter #0) in the Modbus  
Special Function Table (point type 39). In this request, the number of  
registers is always one (1).  
3-46  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table 3-6. Modbus Events and  
Alarms Log Content  
Byte  
Content of Event Log Record  
Contents of Alarm Log Record  
1 – 2  
Operator change bit map (16-bit)  
Alarm change bit map (16-bit integer)  
3 – 4  
Modbus register number of variable (16-bit integer)  
Time Stamp (HHMMSS; 32-bit floating point)  
Date Stamp (HHMMSS; 32-bit floating point)  
Previous value of variable (32-bit floating point)  
Current (new) value of variable ((32-bit floating point  
Modbus register number of variable (16-bit integer)  
Time Stamp (HHMMSS; 32-bit floating point)  
5 –8  
9 – 12  
13 – 16  
17 – 20  
Date Stamp (HHMMSS; 32-bit floating point)  
Current (alarmed) value of variable (32-bit floating point)  
Unused at the current time (zero filled when transmitted to the master)  
Bit  
Operator Change Bit Map  
Alarm Changed Bit Map  
0
Fixed value - change to an EU value on an I/O point in Manual mode  
Zero scale - change to the 0% Adjusted on an AI  
Full scale - change to the 100% Adjusted on an AI  
Operator entry work value - change to any parameter other than those described  
Fixed / variable flag - change to manual mode for an I/O point  
Table entry change - change to Modbus Function Tables  
System command change - events logged by system (power up)  
Not used  
Not used  
1
Not used  
2
Not used  
3
Not used  
5
Manual alarm  
Status change alarm  
No flow alarm  
Point fail alarm  
Operator change even identifier bit  
LoLo Alarm  
6
7
8
9
Operator change event identifier bit  
10  
11  
12  
13  
14  
15  
LoLo Limit - change to LoLo alarm parameter  
Low Limit - change to Low alarm parameter  
HiHi Limit - change to HiHi alarm parameter  
High Limit - change to High alarm parameter  
Rate of change limit - change to Rate Alarm parameter  
Not used  
Low Alarm  
HiHi Alarm  
High Alarm  
Rate Alarm  
Set/clear alarm (1=set, 0=clear)  
Modbus - Detailed Point / Parameter Information  
The Modbus Special Function Table (point type 39) returns the Event Log,  
Alarm Log, and the Historical Archives. The Event/Alarm Register (parameter  
#0), Hourly (periodic) History Index Register (parameter #1), and the Daily  
History Index Register (parameter #2) can be configured to the desired  
Register Number. The History Archive Register is a single register, which can  
contain one or more history points for retrieval. The Starting History Point field  
contains the Starting History Point for the History Archive Register, while the  
Ending History Point is the last history point to be included in the History  
Archive Register. All history points in between the Starting History Point and  
the Ending History Point are included in the History Archive Register. The  
Type of History Archive can only be one of two choices: Hourly or Daily. The  
Conversion Code can be used to convert the history values. However, the  
Conversion Code does not affect the time and date stamp.  
Configure Modbus  
Registers  
The Modbus register configuration tables are used to associate Modbus  
register numbers with 3095FC point data. When a Modbus request is  
received, the Modbus user program searches the function table for the  
Modbus function requested, starting with the first table entry down to the last.  
If a register number match is found, it builds a response based on the point  
type and parameter configured in the table. If no register number match is  
located, an error message is returned. The user program locates a register as  
long as it matches the Starting Register number, the Ending Register number,  
or any number in between for that particular entry in the table.  
3-47  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Register numbers should be unique for a given communication port.  
Registers may be duplicated as long as they are assigned to separate port or  
located in a separate Modbus configuration table. If a register number is  
duplicated within the same Modbus function table, the first occurrence is  
used. In addition, it is best to number the table from the smallest register  
number to the largest register number, especially when using two table entries  
to configure a continuous group of registers. Up to fifteen different lines can  
be configured for Modbus Functions 4 and 16. Up to thirty different lines can  
be configured for Modbus Function 3, split into tables 3A and 3B. By making  
the registers continuous, meaning the Starting Register address of a new line  
is one greater than the Ending Register address of the previous line, a  
continuous data table can be created up for Modbus Function 3, 4, or 16 up to  
the limit of 240 bytes. This type of data table allows access to all its data with  
one request.  
Up to fifteen different lines can also be configured for Modbus Function Codes  
1, 2, 5, 6, and 15. For Function Codes 1, 2, 5, and 15, the parameter specified  
should be a single-byte parameter type, preferably a status parameter (only  
bit 0 is used), because this function packs the data into a binary format for  
transmission. Each address span must be unique within the function for  
proper operation. If not, the first valid address is used.  
Modbus Register tables allow the user to map Modbus Registers to 3095FC  
Point Type, Logical, and Parameter (TLP) numbers. One line in the Modbus  
Register table can be used to map more than one register-TLP pair by using  
either Point Indexing or Parameter Indexing.  
Point Indexing means that the Start Register is mapped to the selected TLP.  
Subsequent registers, through the End Register, are mapped to the same  
point type and parameter and increment as the point logical number.  
Parameter Indexing means that the Start Register is mapped to the selected  
TLP. Subsequent registered, through the End Register, are mapped to the  
same point type and point logical number, and increment the parameter  
number.  
Once a register is mapped, it can be referenced by any Modbus request,  
providing the data type of the TLP is appropriate for the Function Code. If the  
native 3095FC data type does not me the requirements of the Modbus host  
device, conversion codes are available to convert data to the required data  
type. The user can select to have the mapping apply to all 3095FC  
communication ports or on a selected port only.  
Use the following steps to Configure the Modbus Registers.  
See Figure 3-28 on page 3-51.  
1. Select Configure > Modbus > Modbus Registers. (See Table 3-7 on  
page 3-49).  
2. Select the Function Index to which the maps are to be registered.  
There are 9 function indexes available, each corresponding to a  
Function Code displayed in the Function name field. Refer to Table  
3-2 on page 3-38 for a detailed description of supported Modbus  
Function Codes.  
3. Enter a Function Name up to 20 characters to distinguish between  
the different Modbus Register tables.  
3-48  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table 3-7. Modbus Registers  
Function  
Code  
Starting  
Ending  
Row  
Register Register Device Parameter (s)  
Indexing Conversion  
1
2
3
1
1
1
2
3
4
1070  
0
1070  
0
N/A  
Point  
Point  
0
0
0
0
0
0
N/A  
7052  
7100  
7103  
7108  
7059  
7102  
7107  
7127  
Filtered EUs (Analog Inputs 1-8)  
Point  
DP, P, Temp  
Param  
Param  
Param  
Meter Flow Values - Starting with “Flow Rate/Day,” Ending with “hwPf”  
Meter Flow Values - Starting with “Flow Today,” Ending with  
“Uncorrected Accumulated”  
5
7262  
7288  
Meter Config Parameters - Starting with “Atmospheric Pressure,”  
Ending with “Carbon Monoxide”  
Param  
0
4
5
6
1
1
1
2
3
4
0
0
N/A  
Point  
Point  
0
0
0
0
0
0
1070  
7052  
7100  
7103  
7108  
1070  
7059  
7102  
7107  
7127  
N/A  
Filtered EUs (Analog Inputs 1-8)  
Point  
DP, P, Temp  
Param  
Param  
Param  
Meter Flow Values - Starting with “Flow Rate/Day,” Ending with “hwPf”  
Meter Flow Values - Starting with “Flow Today,” Ending with  
“Uncorrected Accumulated”  
5
7262  
7288  
Meter Config Parameters - Starting with “Atmospheric Pressure,”  
Ending with “Carbon Monoxide”  
Param  
0
15  
16  
0
1
0
0
N/A  
Point  
0
0
8000  
8053  
Meter Config Parameters - Starting with “Point Tag ID,” Ending with  
“Low Flow Cutoff”  
Param  
2
8054  
8063  
All Meter Calibration Parameters - Starting with “Calibration Options)  
Param  
0
4. Enter a Starting Register to represent the first data register in the  
address span. Any number from 0 to 65535 is valid. Register  
numbers can be duplicated as long as they are in separate Modbus  
Function configuration tables. The tables should be numbered from  
smallest to largest. For example, the Host device requests the  
Starting Register 500 through Ending Register 700. The Starting  
Register is 400 and the Ending Register is 700. All register numbers  
requested by the Host (500 through 700) are valid and would be  
responded because the requested register numbers fall between the  
Start and Ending Register numbers (400 through 700).  
5. Specify that the Ending Register address is a number representing  
the last location of a point's data. The value for this number is  
computed by: Ending Register address = (Starting Register address +  
Number of Functions) - 1  
6. The Device Parameter field denotes the type of data associated with  
an address (Starting through Ending Register). When the Host  
requests a valid range of register numbers, the Function Code tells  
the Slave what to do and between which registers (Starting Register  
through Ending Register). The Rosemount User Interface Software  
Parameter defines what data is collected or which parameter is set.  
3-49  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
For example: When using Point Indexing the configuration of:  
Starting  
Register  
Ending  
Register  
Device  
Parameter(s)  
Indexing  
Conversion  
100  
103  
AIN, 4-1, EU  
Point  
0
Specifies four Registers (100, 101, 102, and 104) that are mapped to  
a group of Analog Input (AIN) values in engineering units (EU)  
starting at the Analog Input in the forth module location, first position  
(4-1).  
Register 100 - EU of AIN point in location 4-1  
Register 101 - EU of AIN point in location 4-2  
Register 102 - EU of AIN point in location 4-3  
Register 103 - EU of AIN point in location 4-4  
For example: When using Parameter Indexing the configuration of:  
Starting  
Register  
Ending  
Register  
Device  
Parameter(s)  
Indexing  
Conversion  
7100  
7102  
AGANEW1,  
CUR DP  
Parameter  
0
Specifies three Registers (7100, 7101, and 7102) that are mapped to  
a group of AGA parameters starting at CUR DP.  
Register 7100 - CUR DP (hw - differential pressure)  
Register 7101 - CUR SP (Pf - static pressure)  
Register 7102 - CUR TP (Tf - temperature)  
7. Select the type of Indexing to define the block of Register values for  
the Point Types or the Parameters without having to define each  
separately.  
Select Point to define the Register values as Point Types. If  
multiple Registers are used (Starting and Ending Register values  
are different), each successive Register increments to the next  
logical point number of the same Point Type.  
Select Param to define the Register values as Parameters. If  
multiple Registers are used (Starting and Ending Register values  
are different), each successive Register increments to the next  
logical Parameter of the Point Types to be set or acquire data. Be  
aware of the different data types (Character, Integer, Long, Float)  
and the size of the data types. Use the TLP button to select  
parameters.  
8. Specify the type of Conversion required, if any, on the data before it is  
sent to the host or written to the 3095FC. The conversions are used  
to allow integer values to be transmitted and received instead of  
floating point values. Table 3-8 lists the Convert Codes used with the  
Modbus Protocol Emulation program. Conversion codes affect  
Function Codes 3, 4, 6, 8, and 16.  
3-50  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 3-28. Modbus Registers  
Configuration Screen  
Modbus Conversion  
Conversion codes convert the data into a format that is compatible to a  
Modbus device.  
Select the Conversion field, on the Modbus Registers or Modbus History  
screen, (Configure > Modbus > Modbus Register) to specify the type of  
conversion required, if any, on the data before it is sent to the host or before it  
is written to the 3095FC. The conversions are used to account for differences  
in data types between the master and slave devices. Table 3-8 lists the  
Convert Codes used.  
Conversion Codes 65 to 72 allows a four-byte IEEE formatted floating point  
number to be sent or received in two Modbus registers with the byte orders  
configurable. A check is made to ensure that an even number of registers is  
requested, that the Start Register number does not begin in the middle of a  
register pair, and that the number of registers does not exceed the number of  
registers configured.  
3-51  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Table 3-8. Modbus Conversion  
Codes  
Convert  
Slave  
Code  
Description  
Function  
Definition  
0
No Conversion  
1
Float to Integer, Float Scale 1  
Float to Integer, Float Scale 2  
Float to Integer, Float Scale 3  
Float to Integer, Float Scale 4  
Float to Integer, Float Scale 5  
Float to Integer, Float Scale 6  
Float to Integer, Float Scale 7  
Float to Integer, Float Scale 8  
No Conversion  
3, 4  
The Float to Integer conversion changes floating point data to an integer for  
transmission to the host. The number of the Convert Code specifies which  
floating point scaling value is to be used for the conversion  
2
3, 4  
3
3, 4  
4
3, 4  
5
3, 4  
6
3, 4  
7
3, 4  
8
3, 4  
9 to 16  
17  
6, 16  
6, 16  
6, 16  
6, 16  
6, 16  
6, 16  
6, 16  
6, 16  
6, 16  
Integer to Float, Float Scale 1  
Integer to Float, Float Scale 2  
Integer to Float, Float Scale 3  
Integer to Float, Float Scale 4  
Integer to Float, Float Scale 5  
Integer to Float, Float Scale 6  
Integer to Float, Float Scale 7  
Integer to Float, Float Scale 8  
No Conversion  
The Integer to Float conversion changes a transmitted integer value to a  
floating point value. The number of the Convert Code specifies which floating  
point scaling value is to be used for the conversion. If no fractional part is  
coming through on conversion from integer to float, use a float conversion that  
more closely fits the range of integer to be converted, such as float range 0 to  
10 instead of 0 to 1000.  
18  
19  
20  
21  
22  
23  
24  
30 to 32  
33  
Character to Integer  
3, 4  
The Character to Integer conversion changes a character data type to an  
integer for transmitter to the host.  
34  
35  
36  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Integer to Character  
Long to Integer  
6, 16  
3, 4  
The Integer to Character conversion changes a transmitted integer value to a  
character data type.  
The Long to Integer conversion changes a long data type to an integer for  
transmission to the host.  
Integer to Long  
6, 16  
The Integer to Long conversion changes a transmitter integer value to a long  
data type.  
Float to Integer, No Scaling  
Integer to Float, No Scaling  
Float to Byte, No Scaling  
Byte to Float, No Scaling  
Float to Long, No Scaling  
Long to Float, No Scaling  
Float to Byte  
3, 4  
The Float to Integer conversion changes a floating point data type to an  
integer for transmitter to the host.  
3, 4, 6, 16  
3, 4  
The Integer to Float conversion changes a transmitted integer value to a  
floating point data type.  
The Float to Byte conversion changes a floating point data type to a byte for  
transmission to the host.  
3, 4, 6, 16  
3, 4  
The Byte to Float conversion changes a transmitted byte value to a floating  
point data type  
The Float to Long conversion changes a floating point data type to a Long  
Integer for transmission to the host.  
3, 4, 6, 16  
6, 16  
The Long to Float conversion changes a transmitted Long Integer value to a  
floating point data type.  
he Float to Byte Unsigned Character conversion changes a transmitted  
floating point value to an unsigned character data type.  
Float to Unsigned Integer  
Float to Unsigned Long  
No Conversion  
6, 16  
The Float to Unsigned Integer conversion changes a transmitted floating point  
value to an unsigned integer data type.  
6, 16  
The Float to Unsigned Long conversion changes a transmitted floating point  
value to an unsigned long data type.  
3-52  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Convert  
Slave  
Code  
Description  
Function  
Definition  
49  
Deadband, Float Scale 1  
Deadband, Float Scale 2  
Deadband, Float Scale 3  
Deadband, Float Scale 4  
Deadband, Float Scale 5  
Deadband, Float Scale 6  
Deadband, Float Scale 7  
Deadband, Float Scale 8  
No Conversion  
3, 4, 6, 16  
3, 4, 6, 16  
3, 4, 6, 16  
3, 4, 6, 16  
3, 4, 6, 16  
3, 4, 6, 16  
3, 4, 6, 16  
3, 4, 6, 16  
The Deadband to Float Scale conversion changes the Deadband pint data to  
an integer for transmission to the host. The number of the Convert Code  
specifies which floating point scaling value is to be used for the conversion.  
50  
51  
52  
53  
54  
55  
56  
57 to 64  
65  
IEEE Floating Point Number  
3, 4, 16  
Places byte 0 an byte 1 in register xxxxx; bye 2 and bye 3 are placed in  
register xxxxx + 1. this places a 4-byte floating point value into two, 2-byte  
registers to allow integer values to be transmitted. Code 66 does the same as  
Coded 65 regardless of the Byte Order field in the Modbus Configuration  
screen. Register xxxxx byte 0, byte 1 register xxxxx + 1 byte 2, byte 3.  
66  
IEEE Floating Point Number  
3, 4, 16  
67  
68  
IEEE Floating Point Number  
IEEE Floating Point Number  
3, 4, 16  
3, 4, 16  
Code 67 reverses byte 0 and byte 1 order in register xxxxx; reverses byte 2  
and byte 3 order in register xxxxx + 1. This places a 4-byte floating point value  
into two, 2-byte registers to allow integer values to be transmitter. Code 68  
does the same as Code 67 regardless of the Byte Order field in the Modbus  
Configuration screen. Register xxxxx byte 1, byte 0 Register xxxxx + 1 byte 3,  
byte 2.  
69  
70  
IEEE Floating Point Number  
IEEE Floating Point Number  
3, 4, 16  
3, 4, 16  
Code 69 places byte 2 and byte 3 in register xxxxx; byte 0 and byte 1 are  
placed in register xxxxx + 1. This places a 4-byte floating point value into two,  
2-byte registers to allow integer values to be transmitted. Code 70 does the  
same as Code 69 regardless of the Byte Order field in the Modbus  
Configuration screen. Register xxxxx byte 2, byte 3 Register xxxxx + 1 byte 0,  
byte 1.  
71  
72  
IEEE Floating Point Number  
IEEE Floating Point Number  
3, 4, 16  
3, 4, 16  
Code 67 reverses byte 2 and byte 3 order in register xxxxx; reverses byte 0  
and byte 1 order in register xxxxx + 1. This places a 4-byte floating point value  
into two, 2-byte registers to allow integer values to be transmitter. Code 72  
does the same as Code 71 regardless of the Byte Order field in the Modbus  
Configuration screen. Register xxxxx + 1byte 1, byte 0.  
73  
74  
IEEE Floating Point Number  
IEEE Floating Point Number  
3, 4, 6, 16  
3, 4, 6, 16  
Convert Codes 73 and 74 send the IEEE formatted floating point number as  
four bytes with a single register request. Only the byte order is changed:  
Function Code 73 loads register xxxxx in byte 2, byte 3, byte 0, byte 1 order.  
Function code 74 does the same as Function Code 73 regardless of the Byte  
Order field in the Modbus Configuration screen.  
75 to 255  
No Conversion  
3-53  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
CUSTOM DISPLAYS  
This section describes the Custom Display option. The Custom Display option  
allows the creation of customized “live” displays, loading a display from a disk  
file, and monitoring flow and I/O points. Display options are located under the  
View menu. The 3095FC stores displays to disk.  
New Display  
A new display must be created while connected to the 3095FC and then  
saved either to a disk file or to display memory in the 3095FC. The display  
can incorporate “live” data, as well as other information to be conveyed. One  
example is a graphical representation of the application that a 3095FC is  
monitoring and controlling.  
Use the following instructions to create a new display.  
1. Select View > Display > New.  
2. If the Properties box does not appear, select the Properties button  
from the toolbar.  
3. Enter the name of the display in the Properties: Form Display Name  
field.  
4. Select to Enable or Disable the Logical Point Number Selection List.  
When Enabled, enter a Point Type. When selecting a TLP, the  
Logical Number (L) comes from the logical listing selection box for  
those parameters that have the Point Type (T) match the Point  
Type entered in this screen.  
When Disabled, the display is in What You See Is What You Get  
(WYSIWYG) mode and the user selects the TLP to view.  
5. Place the cursor where the display element is to appear. Right-click  
on the mouse and select an element.  
Add Frame - Place like elements in a Frame to group user  
selections. Once Frame is in place, drag and drop elements onto  
the Frame.  
Add Label - Use labels to mark other elements.  
Add Text Box - Data entry fields.  
Add Check Box - Multiple selection box.  
Add Option Button - Radio button to limit input to a single selection.  
NOTE  
Create elements in the main Form before dragging and dropping them into a  
Frame.  
6. Enter or select the desired data in the Properties Form. The items in  
the Properties box depend on the added object.  
7. Many elements can be created and placed anywhere on the edit  
screen. Option buttons should be placed within a frame. Element  
properties can be edited at any time.  
8. After creating elements to display, click Save to save the display to a  
disk file located on the PC or floppy drive. Enter the desired File name  
of the disk file, or use the default. The .DSP extension will  
automatically be added.  
3-54  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
9. Press the Test button to display the screen as it will appear in use.  
Use the Update, Autoscan, Stop Scan, Edit, Save, and Close buttons  
at the bottom of the screen to perform the following functions:  
Update - Use this button to update all TLP (live data) information  
with the current reading from the 3095FC. The message “Reading  
Data” appears in the Status Line.  
Apply - Applies changes made to fields in display which display is  
not in Autoscan.  
Autoscan - Provides an automatic update on intervals lasting one  
to three seconds.  
Stop Scan - Stops Autoscan.  
Edit Display - Change currently selected display.  
Character Set - Show the Character Set currently selected for  
building the display. This button toggles between viewing and not  
viewing Character Sets. Eight different character sets are  
supported: two for upper and lower case alphabetical characters,  
and six for various types of graphical characters.  
TLP Box - Enter live data from the Rosemount User Interface  
Software or 3095FC. To use the TLP Box, first determine the Point  
Type to use as a flow input by highlighting it. Next, select the exact  
Logical Number. For example, an Analog Input Point Type that the  
user might select is AIN A 2. Finally, select the specific Parameter  
to use. For example, an Analog Input is typically Filtered EUs.  
Save - If the display is new, this push button saves the current  
display to a disk file located on the PC. If the display already  
exists, this saves the display back to where it had been saved  
before. The extension .DSP (display) is added to the specified file  
name. Refer to “Save Displays” on page 3-55.  
Save As - Saves the current display to a disk file under a different  
name to a file or to internal Display1 or Display2. The  
extension.DSP (display) is applied to the name of the file.  
Close - Close the selected display screen with option to save.  
NOTE  
Use the mouse or >Alt+F6> keys to move between the buttons. Cut, Copy,  
and Paste can also be used when creating custom Displays.  
Save Displays  
After creating a display, store the current display to:  
Disk file located on the PC or floppy drive.  
Display1.  
Display2 (if available in the device).  
To save a Display:  
1. Click Save and proceed to Step 4. Click Save As to save either to a  
file or to display memory.  
2. Click To Rosemount User Interface Software or To File.  
3. If To Rosemount User Interface Software is selected, select Display1  
or Display2.  
4. If To File is selected, enter the desired File name of the disk file, or  
use the default. The .DSP extension will automatically be added.  
3-55  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
3-56  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Section 4  
Calibration  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-1  
Calibrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-1  
Verify Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4-6  
OVERVIEW  
Once startup is successful and configuration is complete, it is necessary to  
calibrate the 3095FC to meet the requirements of the application. The  
following section details the procedure for calibrating the 3095FC and the I/O.  
Once calibration is complete the 3095FC can be placed into operation.  
NOTE  
When the enclosure end caps are unscrewed, local calibration or monitoring  
of the 3095FC through its LOI port must be performed in a non-hazardous  
area. Performance of these procedures in a hazardous area could result in  
personal injury or property damage.  
CALIBRATE  
3095FC  
Use the Rosemount User Interface Software to calibrate as follows:  
1. Launch the Rosemount User Interface Software and connect to the  
3095FC.  
2. Select the Meter > Calibration. The current reading displays under  
each meter input as the Freeze Value. The 3095FC uses these  
values in the flow calculations while calibrating the points.  
3. Click Freeze. If necessary, create a calibration file.  
4. Isolate the device from the process by opening the by-pass valve on  
the valve manifold prior to isolating the device from the process (to  
protect the sensor module). This keeps one side of the differential  
sensor from being subjected to high pressure while the other side has  
no pressure applied. This is required when calibrating either DP or  
SP. See Figure 4-1.  
5. To calibrate the pressure input, setup the pressure calibrator and  
make the necessary connections to the device.  
6. To calibrate the temperature input, disconnect the RTD sensor and  
connect a decade box (or comparable equipment) to the RTD  
terminals of the 3095FC.  
7. Click Calibrate under the desired input to calibrate DP, SP, or  
Temperature. This displays the Set Zero calibration window.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Figure 4-1. Removing the  
Device from Service  
Bleed  
Bleed  
High  
Pressure  
Remains  
2
3
1
Shutdown Sequence  
Operating  
8. Apply the low (zero) value. For a pressure input, this would typically  
be open to atmosphere.  
9. Enter the applied value in the Dead Weight / Tester Value field of the  
Set Zero dialog. For SP on an absolute-pressure device, enter the  
actual current atmospheric pressure.  
NOTE  
Apply pressure to both the high and low sides of the transmitter when  
calibrating SP.  
10. When the displayed Live Reading is stable, click Set Zero to calibrate  
the zero reading. The Set Span window then appears  
11. Apply the desired high value to the input (the top end of the expected  
operating range).  
12. Enter the applied value in the Dead Weight / Tester Value field of the  
Set Span dialog.  
For SP on an absolute-pressure device, add the actual  
atmospheric pressure, such as 300 + 14.73.  
13. When the Live Reading is stable, click Set Span to calibrate the high  
reading. The window advances to the Set Midpoint 1 window.  
14. To perform a two-point calibration, click Done to complete calibration.  
15. To calibrate midpoints, apply the desired pressure or temperature and  
enter the applied value in the Dead Weight / Tester Value field.  
Midpoint can be calibrated in any order.  
16. When the Live Reading is stable, click Set Mid 1 to calibrate the  
reading. The display advances to the Set Midpoint 2 window.  
17. To perform a three-point calibration, click Done to complete  
calibration.  
18. To calibrate additional midpoints, apply the desired pressure or  
temperature and enter the applied value in the Dead Weight / Tester  
Value field.  
19. When the Live Reading is stable, click Set Mid 2 to calibrate this  
reading. The display advances to the Set Midpoint 3 window.  
20. To perform a four-point calibration, click Done to complete calibration.  
21. To calibrate a third midpoint, apply the desired pressure or  
temperature and enter the applied value in the Dead Weight / Tester  
Value field.  
4-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
22. When the Live Reading is stable, click Set Mid 3 to calibrate the  
reading. The display returns to the Meter Calibration window.  
23. When the calibration for a selected point is complete, another input  
can be calibrated or complete the calibration. If calibration is  
complete return the device to service.  
NOTE  
Do NOT close the by-pass valve on the valve manifold until after process  
pressure has been reapplied, to protect the sensor module. This keeps one  
side of the differential sensor from being subjected to high pressure while the  
other side has no pressure applied. See Figure 4-2.  
Figure 4-2. Returning the  
Sensor Module to Service  
1a  
1b  
4
3
2
Pre-Startup  
Shutdown Sequence  
NOTE:  
If calibrating the DP input, refer to “Zero Shift” on page 4-5 before completing  
the last step.  
24. Finally, click Done to cause the calibration window to close, cancel  
freeze values (unfrozen), and enable live readings for use in the flow  
calculations. The Event Log records all calibration settings that were  
changed.  
Analog Input (AI)  
Calibration  
Select Utilities > AI Calibration Value to view the calibration values for a  
specific Analog Input point.  
NOTE  
Deadweight calibration may be performed from the Calibration tab in the AI  
Configuration screen. The Calibration Freeze Value field displays the value  
received from the AI when the Update button was last pressed.  
Use the drop-down list box to select the AI Point to be viewed. The Tag for  
that point displays. Not all of the following parameters apply to each point.  
Raw Value #1 to 5 - Raw Value 1 is the lowest calibrated Raw A/D  
input, Raw Value 5 is the highest calibrated Raw A/D input.  
EU Value #1 to 5 - The five calibration settings in Engineering Units  
Values, converted from the Raw Values, based on the Low Reading EU  
and High Reading EU defined for the point. EU Value 1 is the Zero  
value, EU Value 5 is the Span value, and the rest are Midpoint values.  
4-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Press Effect is the Zero Shift adjustment value; it is used as an offset to  
the calibrated EU Values to compensate for the working SP effect on a  
DP transmitter that was calibrated at atmospheric pressure.  
Set EU Value is the Tester Value specified for the last calibration value  
that was set. Manual EU is the Live Reading for the last calibration  
value that was set.  
The Timer field shows the last inactivity count-down in seconds  
(starting from 3600 seconds) that occurred during the last calibration  
session. Had the countdown reached 0, time-out would have taken  
place, causing the calibration mode to end.  
Mode indicates:  
0 = Use Current Calibration  
1 = Start Calibration  
2 = Calibrate  
3 = Restore Previous Calibration  
4 = Stop Calibration.  
NOTE  
No event is logged for the Mode Read-Only parameter.  
Type indicates which calibration value is currently being set:  
0 = Inactive (no value)  
1 = Zero  
2 = Span  
3 = Midpoint 1  
4 = Midpoint 2  
5 = Midpoint 3  
6 = Zero Shift  
Figure 4-3. AI Calibration Values  
Screen  
4-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Calibration Report  
The Calibration Report details which parameters were set during calibration.  
1. Select View > Calibration Report.  
2. Select the Calibration Report to be viewed. The file has the extension  
*.800 and is located in the default directory C:/Program  
Files/Rosemount User Interface for Windows/Data directory unless  
the directory location was changed when the Calibration Report was  
created.  
3. Click Open.  
Calibration Value  
Select Utilities > Calibration Value to view the calibration values for a specific  
analog input point.  
NOTE  
Remove/restore the device from/to working pressure during calibration.  
Failure to follow recommendations may cause sensor damage.  
Zero Shift  
To check or adjust for Zero Shift, leave the sensor by-pass valve open (to  
simulate a no-flow condition), with either line pressure or a normal operating  
SP from the calibrator applied to the sensor. This applies the same pressure  
to both sides of the DP diaphragm to give a zero DP reading.  
Perform the following steps:  
1. Connect the Rosemount User Interface Software to the 3095FC and  
run the calibration procedure.  
2. Select Meter > Calibration > Freeze.  
3. Under the Diff Press input, click Zero Shift to open the Set Zero Shift  
window.  
4. Verify Reading to determine if a Zero Shift correction is required.  
5. If the reading is not zero, click Set Zero Shift to adjust the Zero and  
click Done. If the reading is zero, click Done.  
6. Click Done to close the calibration window and cancel the freeze  
values to begin using live readings for the flow calculations.  
4-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
VERIFY CALIBRATION  
Rosemount User Interface Software can verify the calibration to check if the  
device requires re-calibration. To verify, perform the following steps:  
1. Launch the Rosemount User Interface Software. Connect the  
3095FC.  
2. Select the Meter > Calibration.  
3. Click Freeze. This opens the Meter Calibration window. The current  
reading displays under each meter input as the Freeze Value. The  
3095FC uses these values in the flow calculations while verifying the  
points.  
NOTE  
Open the by-pass valve on the valve manifold prior to isolating the device  
from the process, to protect the sensor module. This keeps one side of the  
sensor from being subjected to high pressure while the other side has no  
pressure applied. This is required when calibrating either DP or SP.  
4. While observing the previous Note, apply the desired pressure setting  
to the input.  
NOTE  
Apply pressure to both the high and low sides of the transmitter when  
verifying SP.  
5. Click Verify listed under the input to be calibrated.  
6. To log the Tester Value and the Live Reading to the Event Log as a  
record of the verification, click Log Verify.  
7. Click Done.  
8. Continue to verify all required pressures/values.  
9. When complete, connect the 3095FC back to the process.  
NOTE  
Do NOT close the by-pass valve on the valve manifold until after process  
pressure has been reapplied, to protect the device. This keeps one side of the  
differential sensor from being subjected to high pressure while the other side  
has no pressure applied.  
10. Click Done to close the calibration window, to cancel the freeze  
values, and to begin using live readings for the flow calculations.  
Figure 4-4. Meter Calibration  
Screen  
4-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Section 5  
Troubleshooting and  
Maintenance  
Backup Configuration Information . . . . . . . . . . . . . . . . . . page 5-1  
Communication Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5-2  
Resetting the 3095FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5-3  
After Installing Components . . . . . . . . . . . . . . . . . . . . . . . page 5-4  
Replacing the Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5-5  
Changing the Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 5-5  
The following tools are required for troubleshooting:  
IBM-compatible PC  
Rosemount User Interface Software  
BACKUP  
CONFIGURATION  
INFORMATION  
Perform backup procedure before removing power to the 3095FC for repairs,  
troubleshooting, removing or adding components, or upgrades. This  
procedure preserves the current flow PC configuration and log data held in  
RAM.  
NOTE  
When installing equipment in a hazardous area, ensure that all components  
are approved for use in such areas. Check the product labels. Change  
components only in an area known to be non-hazardous. Performing these  
procedures in a hazardous area could result in personal injury or property  
damage.  
To avoid circuit damage when working inside the unit, use appropriate  
electrostatic discharge precautions, such as wearing a grounded wrist strap.  
1. Log into the Rosemount User Interface Software.  
2. Save the configuration in flash memory Click Device > Flags > Save  
Flash Memory Configuration. This saves all configuration settings,  
including the current states of the flags and calibration values.  
3. Select Device > Collect Data. Click OK to save event logs (.evt),  
alarm logs (.alm), report data (.det), hourly logs (.pdb), and daily  
(.day) logs. Specify the desired file name and path.  
4. Backup the 10-minute history file.  
5. Select File > Save.  
6. Type the desired File name for the backup file.  
7. Click Save. The file is saved in the default directory C:/Program  
Files/Rosemount/Rosemount User Interface Data, unless the  
directory has been changed.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
COMMUNICATION  
ERRORS  
Several events can cause a connection failure:  
If the Direct Connect communication link fails, use the Connect feature  
to establish a connection to the 3095FC. The Configuration Tree option  
allows the user to change the communications port, time-out settings,  
and other variables used when establishing a communications link to  
the PC.  
A communications failure can also occur if Rosemount User Interface  
Software stands idle for too long and exceeds the timeout value for a  
device. In this case, simply log back into Rosemount User Interface  
Software using Direct Connect or the Configuration Tree connect  
feature.  
Enter an Operator and Password for each user who connects to a  
3095FC in the 3095FC security options located under the 3095FC  
menu.  
Communication Problems  
The PC communications options may need to be altered if communicating  
problems occur.  
1. If not currently active, select 3095FC Directory from the View or  
Window menu.  
2. Select the desired Station Name of the 3095FC device.  
3. Right-mouse click and select Properties.  
4. Specified the correct 3095FC Address and 3095FC Group of the  
3095FC with which communicate is being established. If  
communicating through the LOI port of the device, set the 3095FC  
Address to 240 and Group Address to 240, which is the universal  
address.  
5. Click the Advanced tab.  
6. Try increasing the Time Out and/or Tx Delay.  
7. Click Apply, and then OK.  
8. Click the General tab, and click Connect.  
9. If communication problems still occur, try increasing the Number of  
Retries field in the Advanced tab screen. Contact an Emerson  
Process Management representative for additional assistance.  
Debug Communications  
Select Utilities > Debug Communications to open a Diagnostics window,  
which displays the data bytes (in hex format) sent and received from the  
3095FC during any operation. Bytes sent are shown in black; bytes received  
are shown in red. Right-click on the display to Copy highlighted data, Clear All  
data, or Unselect. Copied data can be pasted in a file for analyzing.  
5-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
RESETTING THE 3095FC  
Warm Start  
If problems occur that appear to be software related, try resetting with a Warm  
Start, Cold Start, or Jumper Reset.  
The re-initialization is performed by setting a parameter in the Rosemount  
User Interface Software Flags. The re-initialization includes the Tasks,  
Database, Communication Ports, sensor module, and I/O. It does not change  
the current configuration of any parameters.  
1. Log into the Rosemount User Interface Software.  
2. Connect the PC to the 3095FC.  
3. Perform “Backup Configuration Information” on page 5-1.  
4. Select 3095FC > Flags  
5. Click on Warm Start  
6. Apply to save the change.  
Cold Start  
The re-initialization is performed by setting a parameter in the Rosemount  
User Interface Software Flags, called Cold Start. The re-initialization includes  
the Tasks, Database, Communication Ports, Sensor, I/O, and restoring the  
saved configuration, if there is one. It also includes resetting or clearing other  
items, based upon the selection made in the Options screen.  
1. Log into the Rosemount User Interface Software.  
2. Connect the PC to the 3095FC.  
3. Perform “Backup Configuration Information” on page 5-1.  
4. Select 3095FC > Flags.  
5. Click on Cold Start.  
6. Apply to save the change.  
Jumper Reset  
The Reset jumper located on the LCD (if installed) or on the Battery Charger  
Board can be used to perform a special type of cold start. The jumper permits  
a power-up reset to re-establish a known operating point. It includes  
re-initializing the Communication Ports to the factory default configuration.  
The cold start does not include any of the clearing options available in a Cold  
Start performed using Rosemount User Interface Software.  
NOTE:  
This type of reset restores the communications ports to the factory  
configuration defaults. Some user-entered configuration parameters may be  
lost. Therefore, back up any required data before performing the reset.  
1. Perform “Backup Configuration Information” on page 5-1.  
2. Unscrew the front end cap cover (LCD end).  
3. Place the reset jumper (located on the LCD if installed or on the  
Battery Charger Board at J2) in the Reset position.  
4. Cycle the power.  
5. Remove the reset jumper and install it in the normal (NORM) position.  
6. Replace the front end cap cover (LCD end).  
7. Perform the “After Installing Components” on page 5-4.  
The reset procedure loads the factory default values into the communication  
ports.  
5-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
AFTER INSTALLING  
COMPONENTS  
After removing power to the 3095FC and installing components as needed,  
perform the following steps to start the 3095FC and reconfigure the data.  
NOTE  
Ensure all input devices, output devices, and processes remain in a safe state  
upon restoring power. An unsafe state could result in property damage.  
When installing equipment in a hazardous area, ensure that all components  
are approved for use in such areas. Check the product labels. Change  
components only in an area known to be non-hazardous. Performing these  
procedures in a hazardous area could result in personal injury or property  
damage.  
1. Reconnect power to the 3095FC by inserting the CHG+ / CHG-  
power terminal.  
2. Launch Rosemount User Interface Software, log in, and connect to  
the 3095FC.  
3. Verify that the configuration is correct. If it is not, continue by  
configuring the required items. If major portions or the entire  
configuration needs to be reloaded, perform the remaining steps.  
4. Select File > Download.  
5. From the Open dialog box, select the backup configuration file (has  
extension *.800).  
6. Select the portions of the configuration to download (restore).  
7. Click Download to restore the configuration.  
5-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
REPLACING THE  
BATTERIES  
The battery pack contains three D-size lead-acid batteries providing 2.5  
Amp-hours of current at 6.2 volts nominal.  
NOTE  
When installing equipment in a hazardous area, ensure that all components  
are approved for use in such areas. Check the product labels. Change  
components only in an area known to be non-hazardous. Performing these  
procedures in a hazardous area could result in personal injury or property  
damage. To avoid circuit damage when working inside the unit, use  
appropriate electrostatic discharge precautions, such as wearing a grounded  
wrist strap.  
To replace the battery pack.  
1. Unscrew the front end cap cover.  
2. Remove the LCD display (if applicable).  
3. Place the power jumper (located at J1 on the Battery Charger Board)  
in the OFF position.  
4. Remove the four screws from the Battery Charger Board.  
5. Remove the ribbon cable from the Battery Charger Board to the  
Backplane Board.  
6. Remove the Battery Charger Board.  
7. Replace the Battery Charger Board.  
8. Replace the ribbon cable from the Backplane Board to the Battery  
Charger Board.  
9. Replace the four screws from the Battery Charger Board.  
10. Reinstall the LCD display (if applicable).  
11. Place the power jumper in the ON position.  
12. Replace the front end cap cover.  
CHANGING THE PLATE  
The Plate Change option allows the user to change the size of an orifice plate.  
1. Select Plate Change from the Meter menu to record an orifice plate  
change.  
2. Select Yes if the plate change occurs during flowing conditions. Click  
No for non-flowing conditions.  
3. After selecting the appropriate Meter ID, click Freeze. If performing  
the Plate Change under flowing conditions, the dialog box shows the  
Freeze Value of each meter input (for purposes of data logging) while  
the change is being made. All I/O values are held in Manual mode at  
the current value. The values are returned to an active state after  
clicking OK in the Plate Change dialog box.  
4. Enter the new exact size for the Orifice Diameter (Inches or  
Millimeters) in the new plate.  
5. Click Apply to record the change creating a record in the Event Log  
and restarts the flow calculation using the new orifice size data.  
6. Click OK.  
5-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
5-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Appendix A Specifications and Reference  
Data  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page A-1  
Dimensional Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . page A-7  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page A-9  
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page A-11  
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page A-11  
SPECIFICATIONS  
Functional  
Specifications  
Service  
Gas or liquid  
Input  
Single input for a 2- or 3-wire RTD  
Differential Sensor  
Limits  
• Code 2: –250 to 250 inH O (-622,70 to 622,7mbar)  
2
• Code 3: –1000 to 1000 inH O (-2,49 to 2,49 bar)  
2
Absolute Sensor  
Limits  
• Code 3: 0 to 800 psia (0 to 55158,1 mbar)  
• Code 4: 0 to 3,626 psia (0 to 250,0 bar)  
Gage Sensor  
Limits  
• Code C: 0 to 800 psig (0 to 55158,1 bar)  
• Code D: 0 to 3,626 psig (0 to 250,0 bar)  
Over Pressure Limit  
0 psia to two times the absolute pressure sensor range with a maximum of  
3,626 psia.  
Static Pressure Limit  
Operates within specifications between static line pressures of 0.5 psia and  
the URL of the absolute pressure sensor.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Power  
• Transmitter: operates on terminal voltage of 8 - 28 Vdc  
• Input current: 5mA nominal, 9.5 mA at 100% duty cycle (battery charging  
not included)  
• Internal battery: rechargeable, Nominal 6.2 Vdc (2.5 Amp/hr)  
• Maximum power consumption: 19 watts  
• Solar panel input: nominal 8 V to 200 mA  
• Solar panel output: 2 watts, 9 V nominal  
• External charging input: 12 Vdc max (8 - 10 Vdc nominal)  
RS-485 Signal Wiring  
2-wire half-duplex RS-485 MODBUS with 8 data bits, 1 stop bit,  
and no parity  
Bus Terminations  
Standard RS-485 bus terminations required per EIA-485.  
Failure Mode Alarm  
If self-diagnostics detect a gross transmitter failure, non-latched status bits  
are set in the transmitter alarm registers.  
Humidity Limits  
0–95%, non condensing  
Communications  
User Interface: EIA-232 (RS-232C) format  
Baud Rate: 600 to 19200 bps User selectable  
Host: RS-485 / RS-232  
Rosemount User Interface Software and Hardware Requirements:  
• IBM-compatible PC  
• 1 MB of RAM  
• Pentium-grade processor: 233 MHz or faster  
• Microsoft Windows 98 or higher operating system  
• CD-ROM drive  
Temperature Limits  
Process (at transmitter isolator flange for atmospheric pressures and above):  
• –40 to 212 °F (–40 to 100 °C)  
• Inert fill sensor: 0 to 185 °F (-18 to 85 °C).  
• Process temperatures above 185 °F (85 °C) requires derating the ambient  
limits by a 1.5:1 ratio.  
Ambient:  
• –40 to 167 °F (–40 to 75 °C)  
• with integral meter: -4 to 167 °F (-20 to 75 °C)  
Storage:  
• –50 to 185 °F (–46 to 85 °C)  
• with integral meter: -40 to 185 °F (-40 to 85 °C)  
A-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Turn-on Time  
Process variables will be within specifications less than 4 seconds after power  
is applied to transmitter.  
Real Time Clock  
• Year /month / day / hour / minute / second  
• Battery Packed  
Serial Card – EIA-232D Card  
Standards  
• Meets EIA-232 standard for single-ended data transmission over  
distances of up to 50 ft (15 m).  
Data Rate  
• Selectable from 1200 to 19200 bps  
Format  
• Asynchronous, 7 or 8-bit (software selectable with full handshaking)  
Parity  
• None, odd, or even (software selectable)  
Performance  
Specifications  
(Zero-based spans, reference conditions, silicone oil fill, 316 SST isolating  
diaphragms, and digital trim values equal to the span end points.)  
Differential Pressure  
Range 2  
• 0–2.5 to 0–250 inH O (0–6,2 to 0–622,7 mbar)  
2
(100:1 rangeability is allowed)  
Range 3  
• 0–10 to 0–1000 inH O(0–0,025 to 0–2,49 bar)  
2
(100:1 rangeability is allowed)  
Accuracy (including Linearity, Hysteresis, Repeatability)  
• ±0.075% of span for spans from 1:1 to 10:1 URL for spans less than 10:1  
rangedown  
URL  
Span  
-------------  
Accuracy = 0.03 + 0.0075  
% of span  
Ambient Temperature Effect per 50 °F (28 °C)  
• ±(0.025% URL + 0.125% span) spans from 1:1 to 30:1  
• ±(0.035% URL + 0.175% span) spans from 30:1 to 100:1  
Static Pressure Effects  
• Zero error = ±0.05% of URL per 1,000 psi (68.9 bar)  
• Span error = ±0.20% of reading per 1,000 psi (68.9 bar)  
Stability  
• ±0.125% URL for five years for ±50 °F (28 °C) ambient temperature  
changes, and up to 1000 psi (6,9MPa) line pressure.  
Absolute/Gage Pressure (AP)(GP)  
Range 3 (absolute), Range C (gage)  
• 0–8 to 0–800 psi (0–0,55 to 0–55,2 bar)  
(100:1 rangeability is allowed)  
A-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Range 4 (absolute)/ Range D (gage)  
• 0–36.26 to 0–3,626 psi (0–2,5 to 0–250,0 bar)  
(100:1 rangeability is allowed)  
Accuracy (including Linearity, Hysteresis, Repeatability)  
• ±0.075% of span for spans from 1:1 to 6:1 of URL  
• For spans less than 6:1 rangedown,  
URL  
Span  
-------------  
Accuracy = 0.03 + 0.0075  
% of span  
Ambient Temperature Effect per 50 °F (28 °C)  
• ±(0.05% URL + 0.125% of span) spans from 1:1 to 30:1  
±(0.06% URL – 0.175% of span) spans from 30:1 to 100:1  
Stability  
• ±0.125% URL for five years for ±50 °F (28 °C) ambient temperature  
changes, and up to 1000 psi (6,9MPa) line pressure.  
Process Temperature (RTD)  
Specification for process temperature is for the transmitter portion only.  
Sensor errors caused by the RTD are not included. The transmitter is  
compatible with any PT100 RTD conforming to IEC 751 Class B, which has a  
nominal resistance of 100 ohms at 0 °C and = 0.00385. Examples of  
compatible RTDs include the Rosemount Series 68 and 78 RTD Temperature  
Sensors.  
Sensing Range  
• –40 to 212 °F (–40 to 100 °C)  
Accuracy (including Linearity, Hysteresis, Repeatability)  
• ±1.0 °F (0.56 °C)  
Ambient Temperature Effects per 50 °F (28 °C)  
• ±0.90 °F (0.50 °C) for process temperatures from –40 to 212 °F (–40 to  
100°C)  
Stability  
• ±1.0 °F (0.56 °C) for one year  
Physical Specifications  
Electrical Connections  
½–14 NPT 3/4-14 NPT, CM 20, PG-13.5  
RTD Process Temperature Input:  
100-ohm platinum RTD per IEC-751 Class B  
Process Connections  
• Transmitter: ¼–18 NPT on 21/8-in. centers  
• RTD: RTD dependent (see ordering information)  
Battery  
Lead-acid  
A-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Process Wetted Parts  
Isolating Diaphragms  
• 316L SST or Hastelloy C-276®  
Drain/Vent Valves  
• 316 SST or Hastelloy C®  
Flanges  
• Plated carbon steel, 316 SST, or Hastelloy C  
Wetted O-rings  
• Glass-Filled TFE  
Non-Wetted Parts  
Electronics Housing  
• Low copper aluminum  
Bolts  
• Plated carbon steel per ASTM A449, Grade 5; or austenitic 316 SST  
Fill Fluid  
• Silicone oil  
• Inert oil (available for gage pressure ranges only)  
Paint  
• Polyurethane  
O-rings  
• Buna-N  
Weight  
Weight in lb. (kg)  
Components  
3095FC  
3095 Transmitter  
LCD Meter  
12.4 (5.6)  
0.5 (0.2)  
1.0 (0.5)  
2.0 (0.9)  
1.3 (0.6)  
SST Mounting Bracket  
Battery / Solar Panel  
Battery Backup  
A-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Memory Specifications  
Programmable Memory  
2 MB x 8 flash EPROM  
Data Memory  
512 kB 5 RAM  
Boot Memory  
128 kB flash EPROM  
Data Logging  
Archival  
• 60 days of 10 minutes data  
• 35 days of hourly data  
• 35 days of daily data  
• minimum/maximum values for a single data  
Memory Logging  
• 240 alarms before rollover  
• 240 events before rollover  
Flow Specifications  
Flow Calculation:  
• Computed in accordance with ANSI/API 2530-92 (AGA 3, 1992), API 14.2  
(AGA 8, 1992), and API 21.1. Detail Gross I, Gross II.  
A-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
DIMENSIONAL DRAWINGS  
3095FC  
Side View  
7.50 (191)  
Front View  
Meter Cover  
Optional  
10.71 (272)  
1.2 (30.5)  
Clearance  
Required to  
remove cover  
3/4-in.–14 NPT  
Conduit Plug  
Terminal  
Block  
6.4 (163)  
Dimensions are in inches (millimeters)  
3095FC with Solar Panel Assembly  
Side View  
Front View  
6.24 (159)  
Solar Panel  
Assembly  
(optional)  
4.48 (114)  
17 (732)  
10.71 (272)  
Dimensions are in inches (millimeters)  
A-7  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Mounting Configurations for 3095FC Transmitter  
Panel Mount  
Pipe Mount  
7.50 (191)  
2.0 (51)  
3/4–14 NPT  
Conduit Plug  
10.25  
(260)  
Terminal Block  
6.40  
1.10 (28)  
(163)  
2.81 (71)  
6.40 (163)  
3.70  
(93)  
5.26 (134)  
Dimensions are in inches (millimeters)  
A-8  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
ORDERING INFORMATION  
• Available  
— Not available  
3095FB 3095FC  
Code  
3095F  
Code  
Product Description  
MultiVariable Transmitter  
Output  
B
C
Process Variable Measurement: Modbus RS-485  
Process Variable Measurement: Mass Flow and Data Logging: Modbus RS-485  
Differential Pressure Range  
Code  
2
3
0 – 2.5 to 0 – 250 inH O (0 – 6,23 to 0 – 623 mbar)  
2
0 – 10 to 0 – 1000 inH2O (0 – 0,025 to 0 – 2,49 bar)  
Code  
Absolute/Gage Pressure Ranges  
3
0–8 to 0–800 psia (0–0,55 to 0–55,1 bar)  
0–36.26 to 0–3,626 psia (0–2,5 to 0–250 bar)  
0–8 to 0–800 psig (0–0,55 to 0–55,1 bar)  
0–36.26 to 0–3,626 psig (0–2,5 to 0–250 bar)  
4
C
D
Code  
Isolator Material  
Fill Fluid  
A
316L Stainless Steel (SST)  
Hastelloy C-276  
316L SST  
Silicone  
Silicone  
Inert  
B(1)  
J(2)  
K(1)(2)  
Hastelloy C-276  
Flange Style  
Inert  
Code  
Material  
A
B
C
0
Coplanar  
CS  
Coplanar  
SST  
Hastelloy C(2)  
Coplanar  
None (Required for Option Codes S3 or S5)  
Drain/Vent Material  
SST  
Code  
A
C(1)  
SST  
Hastelloy C  
0
None (Required for Option Codes S3 or S5)  
Code  
1
O-ring  
Glass-filled TFE  
Code  
Process Temperature Input (RTD ordered separately)  
No RTD Cable(3)  
0
1
2
3
4
7
8
A
B
C
RTD Input with 12 ft. (3.66 m) of Shielded Cable  
RTD Input with 24 ft. (7.32 m) of Shielded Cable  
RTD Input with 12 ft. (3.66 m) of Armored, Shielded Cable  
RTD Input with 24 ft. (7.32 m) of Armored, Shielded Cable  
RTD Input with 75 ft. (22.86 m) of Shielded Cable  
RTD Input with 75 ft. (22.86 m) of Armored, Shielded Cable  
RTD Input with 12 ft. (3.66 m) of CENELEC Flameproof Cable  
RTD Input with 24 ft. (7.32 m) of CENELEC Flameproof Cable  
RTD Input with 75 ft. (22.86 m) of CENELEC Flameproof Cable  
Code  
Transmitter Housing Material  
Conduit Entry Size  
A
E
B
C
J
Polyurethane-covered Aluminum  
1/2–14 NPT  
Adapter  
Polyurethane-covered Aluminum  
3/4–14 NPT  
Adapter  
Adapter  
Polyurethane-covered Aluminum  
M20 x 1.5 (CM20)  
PG 13.5  
1/2–14 NPT  
Polyurethane-covered Aluminum  
SST  
SST  
SST  
K
L
M20 x 1.5 (CM20)  
PG 13.5  
A-9  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
• Available  
— Not available  
3095FB 3095FC  
Code  
Terminal Block  
A
B
C
Standard  
With Integral Transient Protection  
CE MARK / Compliant with EMC – Transient Protection Included  
Code  
Meter  
0
1
None  
LCD Meter  
Bracket  
Code  
0
1
2
3
4
5
6
7
8
9
None  
Coplanar SST Flange Bracket for 2-in. Pipe or Panel Mount, SST Bolts  
Traditional Flange Bracket for 2-in. Pipe Mounting, CS Bolts  
Traditional Flange Bracket for panel Mounting, CS Bolts  
Traditional Flange Flat Bracket for 2-in. Pipe Mounting, CS Bolts  
Traditional Flange Bracket for 2-in. Pipe Mounting, SST Bolts  
Traditional Flange Bracket for panel Mounting, SST Bolts  
Traditional Flange Flat Bracket for 2-in. Pipe Mounting, SST Bolts  
SST Traditional Flange Bracket for 2-in. Pipe Mounting, SST Bolts  
SST Traditional Flange Flat Bracket for 2-in. Pipe Mounting, SST Bolts  
Bolts  
Code  
0
1
N
Carbon Steel bolts  
Austenitic 316 SST bolts  
None (required for Options code S5)  
Product Certifications  
Code  
0
None  
A
C
H
M
Factory Mutual (FM) Explosion-Proof  
Canadian Standards Associate (CSA) Explosion Proof  
ATEX Flame-proof  
Canadian Standards Association (CSA) U.S. and Canada Explosion-Proof  
Engineered Measurement Solution (EMS)  
Code  
N
C(3)  
Process Variable Measurement: MODBUS  
Mass Flow with Process Variable Measurement and Data Logging: MODBUS  
Code  
Options  
S5  
C1  
Assemble to 305 Integral Manifold (requires integral manifold model number)  
Custom Flow Configuration (requires completed Configuration Data Sheet (see document number  
00813-0100-4716))  
A3  
Mast with Solar Panel Assembly: includes 12 Vdc Batteries  
Hydrostatic Testing  
P1  
P2  
Cleaning for Special Services  
Q4  
Q8  
DF(4)  
A1  
Calibration Certificate  
Material Traceability Certification per EN 10204 3.1B  
1/2–14 NPT Flange Adapter, Carbon Steel, Stainless Steel, Hastelloy C  
Additional RS-232 Communication Board  
12 Vdc System with Batteries  
A2  
Typical Model Number: 3095F  
B
2
3
A
B
A
1
1
A
B
0
1
0
A
N
(1) Materials of Construction meet NACE material recommendation per MR 01-75. Environmental limits apply to certain materials. Consult standard for details.  
(2) Only available with C or D Gage Sensor Modules.  
(3) Required for 3095FC.  
(4) Material determined by Flange Style material selection.  
A-10  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
OPTIONS  
Standard Configuration  
Unless otherwise specified, the transmitter is shipped as follows:  
Engineering units:  
Differential  
inH2O  
Absolute/gage  
Output:  
psi (all ranges)  
Modbus RTU protocol signal  
Specified model code option  
Specified model code option  
Specified model code option  
Specified model code option  
Factory default  
Flange type:  
Flange material:  
O-ring material:  
Drain/vent:  
Flow Configuration Parameters:  
Software tag:  
(Blank)  
Custom Configuration  
(Option Code C1)  
If Option Code C1 is ordered, the user-specified information for the 3095F  
Modbus Transmitter in addition to the standard configuration parameters are  
factory configured.  
Message, descriptor, slave address, baud rate, upper and lower trim points for  
each process variable, damping for each process variable, units for each  
process variable, upper and lower operation limits. Unspecified parameters  
will remain at the factory default settings.  
Tagging  
Three customer tagging options are available:  
• Standard SST tag is wired to the transmitter. Tag character height is 0.125  
in. (3,18 mm),  
85 characters maximum.  
Tag may be permanently stamped on transmitter nameplate upon request.  
Tag character height is 0.0625 in. (1,59 mm),  
65 characters maximum.  
Tag may be stored in transmitter memory. Software tag is left blank unless  
specified.  
• Software tag is left blank unless specified.  
Optional 305 Integral Manifolds  
The Rosemount 3095FC Transmitter with 305RC (or 305AC, 305BC) Integral  
Manifold are fully assembled, calibrated, and seal tested by the factory. Refer  
to PDS 00813-0100-4733 for additional information.  
ACCESSORIES  
Rosemount User Interface Software Packages  
The Rosemount User Interface Software package is available with or without  
the converter and connecting cables. All configurations are packaged  
separately.  
Windows 98 or higher  
3095FC  
• Part Number 03095-5136-0001: Windows User Interface Software–Single  
PC License, and Cable.  
• Part Number 03095-5135-0001: Windows User Interface Software–Single  
PC License.  
• Part Number 03095-5135-0002: Windows User Interface Software– Site  
License.  
• Part Number 03095-5106-0003: 10 foot (3.05 m) 9-pin Serial Cable  
A-11  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
A-12  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Appendix B Product Certifications  
Approved Manufacturing Locations . . . . . . . . . . . . . . . . . page B-1  
European Directive Information . . . . . . . . . . . . . . . . . . . . page B-1  
Hazardous Locations Certifications . . . . . . . . . . . . . . . . . page B-1  
APPROVED  
Rosemount Inc. — Chanhassen, Minnesota USA  
MANUFACTURING  
LOCATIONS  
EUROPEAN DIRECTIVE  
INFORMATION  
The EC declaration of conformity for all applicable European directives for this  
product can be found on the Rosemount website at www.rosemount.com. A  
hard copy may be obtained by contacting our local sales office.  
ATEX Directive (94/9/EC)  
Emerson Process Management complies with the ATEX Directive.  
European Pressure Equipment Directive (PED) (97/23/EC)  
3095F_2/3,4/D Flow Transmitters — QS Certificate of Assessment - EC  
No. PED-H-20 Module H Conformity Assessment  
All other 3095_ Transmitters/Level Controller — Sound Engineering  
Practice  
Transmitter Attachments: Process Flange - Manifold — Sound  
Engineering Practice  
Electro Magnetic Compatibility (EMC) (89/336/EEC)  
3095F Flow Transmitters — EN 50081-1: 1992; EN 50082-2:1995; EN  
61326-1:1997 – Industrial  
HAZARDOUS  
LOCATIONS  
North American Certifications  
2, Groups A, B, C, and D. Install per Rosemount drawing 03095-1025.  
CERTIFICATIONS  
Canadian Standards Association (CSA) Approvals  
M
Explosion-Proof for Class I, Division 1, Groups C and D. Optional solar  
panel: mast option: Explosion-Proof for Class I, Division 2, Groups A, B,  
C, D, and T3. CSA Enclosure Type 4.  
ISSeP  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
B-2  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Appendix C Rosemount User  
Interface Software  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page C-1  
Point Type Parameter Definitions . . . . . . . . . . . . . . . . . . . page C-1  
OVERVIEW  
To configure the 3095FC, you must be familiar with the structure of the  
database. The database is broken into individual parameters and each  
database parameter is uniquesly associated by Parameter Number and Point  
Type.  
POINT TYPE  
PARAMETER  
DEFINITIONS  
A list of all Point Types is provided in Table 3 1 on page 3-1. For each of the  
configurable point types (0 through 59), a parameter table is given in Table 3 5  
through Table 3 48. Note that the parameter tables each have a point type  
name and five columns:  
Parameter # - Identifies the specific parameter associated with the Point  
Type.  
Read-Write - Indicates if the parameter can be read and written to (R/W)  
or if the parameter is read-only (R/O).  
Data Type - Table C-1 defines the Data Types found in the parameters  
table.  
Table C-1. Data Types  
Data Type  
Definition  
Byte Length  
AC  
BIN  
ASCII character (groups of 10, 20, or 30 characters)  
Binary  
1 per character  
1
FLP  
Floating Point - IEEE Format  
Signed Integer - number of bits follows  
Not applicable  
4
INT 8, 16, 32  
N/A  
1, 2, or 4  
3
TLP  
Point Type, Logical or Point Number, and Parameter  
Number  
UINT 8, 16, 32 Unsigned Integer - number of bits follows  
1, 2, or 4  
Length - The byte length of the parameter is indicated in this column.  
Description - A brief description of each parameter is provided in this  
column.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Point Type 0 Information  
Table 3 5 lists the parameters for the Configurable Opcode Point Type found  
in the 3095FC. The parameters for this Point Type consist of a sequence  
number and 44 device parameter identifications (Point Type, Logical Number,  
and Parameter Number - TLP). After the TLPs have been configured in Point  
Type 0:  
Opcodes 10 and 11 can be used to read and write data directly without  
specifying the Point Type, Logical Number, or Parameter Number.  
Opcodes 180 and 181 can be used to read and write the parameter  
data and do not include the parameter definition.  
Table C-2. Point Type 0 - Configurable Opcode  
Parameter  
Number  
Read-Write  
Data Type  
Length  
Description  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Sequence / Revision Number  
Data 1  
1
2
Data 2  
3
Data 3  
4
Data 4  
5
Data 5  
6
Data 6  
7
Data 7  
8
Data 8  
9
Data 9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
Data 10  
Data 11  
Data 12  
Data 13  
Data 14  
Data 15  
Data 16  
Data 17  
Data 18  
Data 19  
Data 20  
Data 21  
Data 22  
Data 23  
Data 24  
Data 25  
Data 26  
Data 27  
Data 28  
Data 29  
Data 30  
Data 31  
Data 32  
Data 33  
Data 34  
Data 35  
Data 36  
Data 37  
Data 38  
C-2  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-Write  
Data Type  
Length  
Description  
39  
40  
41  
42  
43  
44  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
3
3
3
3
3
3
Data 39  
Data 40  
Data 41  
Data 42  
Data 43  
Data 44  
Device Point Types  
The tables in the rest of this section list the parameters for each of the Point  
Types.  
Table C-3. Point Type 3 - Analog Input  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AC  
AC  
10  
10  
2
Point Tag Identification  
Units  
TAG  
UNITS  
SCANPR  
FILTER  
MINRAW  
MAXRAW  
MINEU  
MAXEU  
LOAL  
2
UINT 16  
UINT 16  
INT 16  
INT 16  
FLP  
Scan Period (50 millisecond intervals)  
Filter (50 millisecond intervals)  
Adjusted A/D 0%  
Adjusted A/D 100%  
Low Reading EU  
High Reading EU  
Low Alarm EU  
3
2
4
2
5
2
6
4
7
FLP  
4
8
FLP  
4
9
FLP  
4
High Alarm EU  
HIAL  
10  
11  
12  
13  
14  
15  
FLP  
4
Low Low Alarm EU  
Hi Hi Alarm EU  
LOLOAL  
HIHIAL  
RATEAL  
ALDBND  
EU  
FLP  
4
FLP  
4
Rate Alarm EU  
FLP  
4
Alarm Deadband  
Filtered EUs  
FLP  
4
BIN  
1
Mode:  
BIN  
Bit 7 – Manual Mode  
0 = Normal Scan  
1 = Manual Scan  
Bit 6 – RBX on Set  
0 = Disabled  
1 = Active  
Bit 5 – RBX on Clear  
0 = Disabled  
1 = Active  
Bit 4 – Alarm Enable  
0 = Disabled  
1 = Log Alarm  
Bit 3 – Not Used  
Bit 2 – Not Used  
Bit 1 – Clipping  
0 = Disable  
1 = Clipping Enable  
Bit 0 – Fault Handling  
0 = Retain Last EU Value  
1 = Set EU Value to Fault EU Value (Parameter 19)  
C-3  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
16  
R/O  
BIN  
1
Alarm Code:  
ALARM  
Bit 7 – Manual Mode  
Bit 6 – Point Fail  
Bit 5 – Not Used  
Bit 4 – Rate Alarm  
Bit 3 – High High Alarm  
Bit 2 – High Alarm  
Bit 1 – Low Low Alarm  
Bit 0 – Low Alarm  
17  
18  
19  
R/O  
R/O  
R/W  
INT 16  
UINT 16  
FLP  
2
2
4
Raw A/D Input  
Actual Scan Time  
Fault EU Value  
CURRAW  
SCAN  
FAULTVAL  
Table C-4. Point Type – AGA Flow Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
3
R/W  
R/W  
R/W  
R/W  
AC  
FLP  
FLP  
BIN  
10  
4
Point Tag Identification  
Latitude  
TAG  
LAT  
4
Elevation  
ELAVTN  
METHOD  
1
Calculation Method:  
Bit 7 – Manual Mode  
0 = Normal  
1 = Manual  
Bit 6 – RBX Set  
0 = Disabled  
1 = Active  
Bit 5 – RBX on Clear  
0 = Disabled  
1 = Active  
Bit 4 – ALM Enable  
0 = Disabled  
1 = Log Alarms  
Bit 3 – US or Metric  
0 = US Units  
1 = Metric Units  
Bit 2 – AGA3 Algorithm  
1 = 1992 Algorithm  
Bit 1 – Flow Calculation Method  
0 = AGA3  
Bit 0 – Compressibility Method  
1 = AGA8  
C-4  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
4
R/W  
BIN  
1
AGA Configuration – Options:  
Bit 7 – Log Methane Adjustment  
0 = Yes  
OPTION  
1 = No  
Bit 6 – Heating Value  
0 = Mass  
1 = Volume Basis  
Bit 5 – Gravitational Acceleration  
0 = Calculate  
1 = Enter Acceleration  
Bit 4 – Heating Capacity  
0 = Calculate  
1 = Enter Heating Value  
Bit 3 – Static Pressure Value  
0 = Gauge  
1 = Absolute Static Press  
Bit 2 – Static Pressure Value  
0 = Downstream  
1 = Upstream Static Press  
Bit 1 – Specific Gravity  
0 = Calculate  
1 = Enter Specific Gravity  
Bit 0 – Tap  
0 = Flange Tap  
5
6
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
FLP  
FLP  
4
4
Specific Gravity  
SPGR  
GASHV  
GRAVIT  
SCANPR  
PIPDIA  
ORFDIA  
TMEAS  
OR_MAT  
DESC  
Heating Value  
7
FLP  
4
Gravity Acceleration Correction  
Scan Period  
8
UINT 16  
FLP  
2
9
4
Pipe Diameter  
10  
11  
12  
13  
14  
FLP  
4
Orifice Diameter  
FLP  
4
Orifice Measured (Reference) Temperature  
Orifice Material  
UINT 8  
AC  
1
30  
1
Meter Run (Point) Identification  
BIN  
Alarm Code:  
ALARM  
Bit 7 – Manual Mode  
Bit 6 – No Flow  
Bit 2 – High Alarm  
Bit 0 – Low Alarm  
Bits 5, 4, 3, and 1 – Not Used  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Low Alarm EU – Flow  
High Alarm EU – Flow  
Viscosity  
LOAL  
HIAL  
VISCOS  
SPHTRA  
BASEPR  
BASETP  
MINDP  
Specific Heat Ratio  
BBase Pressure  
Base Temperature  
Low Differential Pressure (hw) Cutoff  
Fpwl – Gravitational User Correction Factor  
N2 – Nitrogen  
FPWL  
NITROG  
CARBDI  
HYDSUL  
WATER  
HELIUM  
METHAN  
ETHANE  
PROPAN  
NBUTAN  
CO2 – Carbon Dioxide  
H2S – Hydrogen Sulfide  
H2O – Water  
He – Helium  
CH4 – Methane  
C2H6 – Ethane  
C3H8 – Propane  
C4H10 – n-Butane  
C-5  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
UINT 8  
4
4
4
4
4
4
4
4
4
4
4
1
C4H10 – i-Butane  
C5H12 – n-Pentane  
C5H12 – i-Pentane  
C6H14 – n-Hexane  
C7H16 – n-Heptane  
C8H18 – n-Octane  
C9H20 – n-Nonane  
C10H22 – n-Decane  
O2 – Oxygen  
IBUTAN  
NPENTA  
IPENTA  
NHEXAN  
NHEPTA  
NOCTAN  
NNONAN  
NDECAN  
OXYGEN  
CARBMO  
HYDROG  
FLOUNITS  
CO – Carbon Monoxide  
H2 – Hydrogen  
Calculation Units (  
0 = MCF (km3) / MMBTU (GJoules)  
1 = CCF (100 m3) / MBTU (MJoules)  
2 = 10 MCF (10 km3) / MMMBTU (TJoules)  
Enable Stacked Differential Pressure (hw)  
Low Differential Pressure (hw) Input  
Differential Pressure (hw) Input  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
TLP  
TLP  
TLP  
TLP  
FLP  
FLP  
FLP  
FLP  
FLP  
1
3
3
3
3
4
4
4
4
4
DPSTEN  
LO_TYP  
DP_TYP  
FP_TYP  
TP-TYP  
LODPSP  
HIDPSP  
CURDP  
CURFP  
CURMP  
Static Pressure Input – Pf  
Temperature Input – Tf  
Low Differential Pressure (hw) Setpoint  
High Differential Pressure (hw) Setpoint  
Meter Value Differential Pressure (hw)  
Static Flowing Pressure Value – Pf  
Flowing Temperature Value – Tf  
Table C-5. Point Type 8 – History Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
TLP  
TLP  
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
Point Tag Identification TLP  
History Log Point Number 1  
Archive Type  
TAG  
HST#1  
ARCH1  
AVG#1  
TAG#2  
HIST#2  
ARCH2  
AVG#2  
TAG#3  
HIST#3  
ARCH3  
AVG#3  
TAG#4  
HIST#4  
ARCH4  
AVG#4  
TAG#5  
HIST#5  
ARCH5  
AVG#5  
TAG#6  
HIST#6  
2
UINT 8  
UINT 8  
TLP  
3
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 2  
Archive Type  
4
5
TLP  
6
UINT 8  
UINT 8  
TLP  
7
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 3  
Archive Type  
8
9
TLP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 4  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 5  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 6  
TLP  
C-6  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
TLP  
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
Archive Type  
ARCH6  
AVG#6  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 7  
Archive Type  
TAG#7  
TLP  
HIST#7  
ARCH7  
AVG#7  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 8  
Archive Type  
TAG8  
TLP  
HIST#8  
ARCH  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 9  
Archive Type  
AVG#8  
TAG#9  
TLP  
HIST#9  
ARCH9  
AVG#9  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 10  
Archive Type  
TAG#10  
HIST#10  
ARCH10  
AVG#10  
TAG#11  
HIST#11  
ARCH11  
AVG#11  
TAG#12  
HIST#12  
ARCH12  
AVG#12  
TAG#13  
HIST#13  
ARCH13  
AVG#13  
TAG#14  
HIST#14  
ARCH14  
AVG#14  
TAG#15  
HIST#15  
ARCH15  
AVG#15  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 11  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 12  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 13  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 14  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point Number 15  
Archive Type  
TLP  
UINT 8  
UINT 8  
Averaging or Rate Type  
Table C-6. Point Type 10 – AGA Flow Calculation Values  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
3
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
hw – Meter Differential Pressure Value (Inches H2O or kPa)  
Pf – Static Flowing Pressure Value (psi or kPa)  
Tf – Flowing Temperature Value (°F or °C)  
CURDP  
CURFP  
CURTMP  
CURFLO  
Instantaneous Flow (Flow rate per Day) – MCF/Day or  
km3/Day  
4
R/O  
FLP  
4
Instantaneous Energy (Energy rate per Day) –  
MMBTU/Day or GJ/Day  
ENERGY  
5
6
R/O  
R/O  
FLP  
FLP  
4
4
Flow Today – MCF or km3  
TDYFLO  
TDYENG  
Energy Today – MMBTU or GJ  
C-7  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
7
8
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
Flow Yesterday – MCF or km3  
Energy Yesterday – MMBTU or GJ  
Pressure Extension – hwPf  
YDYFLO  
YDYENG  
HWPF  
9
10  
IMV (Integral Multiplier Value) – called C prime (C') in  
AGA3 1985  
IMV  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
4
4
4
4
4
4
Sample Time  
SAMPLE  
EXPFTR  
FR  
Orifice: Expansion Factor (Y)  
Fr – AGA 1992  
Ftf  
FTF  
Fpv – Compressibility  
FPV  
Fgr  
FGR  
FB  
Cd – Orifice AGA 1992 (Coefficient of discharge)  
Fpb  
Ftb  
FPB  
FTB  
Fa – AGA 1985  
Ev – AGA 1992  
FA  
Table C-7. Point Type 12 – Clock  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
R/O  
R/O  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UNIT 8  
UINT 8  
UINT 8  
1
1
1
1
1
1
1
1
6
1
1
Seconds  
SECOND  
MINUTE  
HOUR  
Minutes  
2
Hours  
3
Day  
DAY  
4
Month  
MONTH  
YEAR  
5
Year  
6
Leap Year  
LEAPYR  
DAYOWK  
TIME  
7
Day of Week  
8
Time: Seconds, Minutes, Hour, Day, Month, and Year  
9
Century  
CENT  
10  
Daylight Savings Enable  
DLSTEN  
Table C-8. Point Type 13 – System Flags  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/W  
UINT 8  
UINT 8  
1
1
CRC Check  
CRCCHK  
FLAG1  
System Mode Flag :  
Bit 0 to 6 = Not Used  
Bit 7:  
0 = Lowest Power Mode  
1 = No sleep – Communications Always On  
2
3
4
5
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
1
1
1
1
User Calc Program 1 Enable (FloBoss 100-Series)  
User Operator Port Enable  
FLAG2  
FLAG3  
FST / Display Clear  
FLAG4  
User COM1 Enable  
Flag 5 (RegFlo)  
COM1EN  
6
7
8
9
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
1
1
1
1
User COM2 Enable  
COM2EN  
USRCEN  
RTSROI  
RTSCM1  
User Calc Program 1 Enable  
RTS Operator Interface (LOI) Port  
RTS Communications Port 1  
C-8  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
10  
11  
12  
13  
14  
15  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
1
1
1
1
1
1
RTS Communications Port 2  
Clear Config Memory  
I/O Scan Enable  
RTSCM2  
CLREEP  
IOSCAN  
AUX2  
Auxiliary Output 2 On  
Auxiliary Output 1 On  
AUX1  
Cold (Hard) Start options:  
0 = None  
COLD  
1 = Restore config from flash / defaults  
2 = Restore config and clear alarm / event logs  
3 = Restore config and clear ROC displays  
4 = Restore config and clear FSTs  
5 = Restore config and clear history  
6 = Restore config and clear all of above  
16  
17  
18  
19  
20  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
1
1
1
1
1
Warm Start  
WARM  
IOREAD  
WRITE  
Read I/O  
Write to Config Memory  
Config Memory Write Complete  
COMPLT  
EVTFLAG  
Event Log Flag (FloBoss 100-series and FloBoss  
500-series)  
Init History (FloBoss 407 and ROC300-series with a  
FlashPAC)  
21  
22  
23  
24  
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
1
1
1
1
LOI Security On  
LOISEC  
COM1SEC  
COM2SEC  
FLAG24  
Comm Port 1 Security On  
Comm Port 2 Security On  
Termination Type Installed:  
1 = 4 point I/O – DI, DO, AI, AO Installed  
2 = 4 point I/O – No I/O Installed  
3 = 6 point I/O – I/O Installed  
4 = 6 point I/O – No I/O Installed  
25  
R/W  
UINT 8  
1
Comm Port Pass Through Mode:  
0 = No Pass Through.  
1 = LOI to COM1  
FLAG25  
2 = COM1 to LOI  
3 = LOI to COM2  
4 = COM2 to LOI  
5 = COM1 to COM2  
6 = COM2 to COM1  
26  
R/W  
UINT 8  
1
6 Point I/O Setup Flag:  
FLAGE26  
Bit 0:  
0 = AI1  
1 = DI1  
Bit 1:  
0 = AI2  
1 = DI2  
Bit 2:  
0 = AO  
1 = DO1  
Bit 4:  
0 = PI1  
1 = DI3  
Bit 5:  
0 = PI2  
1 = DI4  
Bits 3, 6 and 7 – Not Used  
27  
28  
29  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
1
1
1
Flag 27  
Flag 28  
Flag 29  
FLAG27  
FLAGE28  
FLAG29  
C-9  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-9. Point Type 14 – Communication Ports  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
3
4
R/W  
R/W  
R/W  
R/W  
R/W  
AC  
10  
2
Tag Identification  
Baud Rate  
Stop Bits  
TAG  
BAUD  
SBITS  
DBITS  
PARITY  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
1
1
Data Bits  
1
Parity:  
0 = None  
1 = Odd  
2 = Even  
5
R/O  
BIN  
1
Status:  
STATUS  
Bit 7 – User Status Bits 6 through 2 – Not Used  
Bit 1 – RBX Status  
0 = RBX Inactive  
1 = RBX Active for this port  
Bit 0 – No Port Installed  
0 = Comm Board Present  
1 = No Comm Cards Installed  
6
R/W  
BIN  
1
Mode:  
MODE  
Bit 7 – User Flag  
0 = Reset  
1 = Set  
Bit 6 – User Flag  
0 = Reset  
1 = Set  
Bit 5 – Store and Forward Port  
0 = Same  
1 = Opposite  
Bit 4 – Not Used  
Bit 3 – Enable RTS / CTS  
0 = Disabled  
1 = Enabled  
Bit 2 – Enable Extra Key-On  
0 = Disabled  
1 = Enabled  
Bit 1 = Enable RBX  
0 = RBX Disabled  
1 = RBX Enabled  
Bit 0 – Not Used  
7
8
9
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
1
1
1
Key On Delay  
KEY  
TURN  
Key Off Delay – Turnaround  
Optional Interface Board Type:  
Bit 5 through 7 – Not Used  
Bit 4 – Radio Logic  
RCOUNT  
Bit 3 – Reserved  
Bit 2 – Dial-up Modem  
Bit 1 – EIA-232 (RS-232)  
Bit 0 – None  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
R/W  
R/O  
R/O  
R/O  
R/W  
R/O  
R/W  
R/W  
R/W  
R/W  
UINT 16  
UINT 16  
UINT 16  
UINT 16  
UINT 16  
UINT 8  
UINT 8  
FLP  
2
2
Host Retry Time  
Alarm Pointer  
XKEYON  
ALMPTR  
COPY  
2
Receive Counter Copy  
Retry Counter  
2
RCNTR  
2
Valid Receive Counter  
Modem Status  
VALRCV  
MDMSTS  
MDMTYP  
CONNTM  
CFGCMD  
CONNCMD  
1
1
Modem Type  
4
Connect Time  
AC  
40  
40  
Configuration Command  
Connect Command  
AC  
C-10  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLP  
4
4
4
1
4
1
4
1
1
1
1
1
1
1
1
1
Disconnect Time  
Inactivity Time  
DISCTM  
INACTM  
FLP  
FLP  
RBX Time Base #1  
RBX Retry Count #1  
RBX Time Base #2  
RBX Retry Count #2  
RBX Time Base #3  
RBX Retry Count #3  
RBX Address  
RBXTB#1  
RBXRC#1  
RBXTB#2  
RBXRC#2  
RBXTB#3  
RBXRC#4  
RBXADR  
RBXGRP  
UINT 8  
FLP  
UINT 8  
FLP  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
RBX Group  
Store and Forward Address #1 (Not Used for RegFlo)  
Store and Forward Group #1 (Not Used for RegFlo)  
Store and Forward Address #2 (Not Used for RegFlo)  
Store and Forward Group #2 (Not Used for RegFlo)  
Store and Forward Address #3 (Not Used for RegFlo)  
Store and Forward Group #3 (Not Used for RegFlo)  
SFADR#1  
SFG#1  
SFADR#2  
SFG#2  
SFADR#3  
SFG#4  
Table C-10. Point Type 15 – System Variables (Device Information)  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
UINT 8  
UINT 8  
AC  
1
1
Device Address  
ROCADR  
ROCGRP  
STNNAME  
#PIDS  
Device Group  
2
20  
1
Station Name  
3
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
AC  
Active PIDs  
4
1
Active AGA Meter Runs  
Not used  
#AGAS  
5
1
FSTINST  
#RAM0  
6
1
Number of Standard History Points  
Number of Extended History Points  
Number of RAM2 Database Points  
Force End of Day  
7
1
#RAM1  
8
1
#RAM2  
9
1
FORCE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
Contract Hour  
CONTRC  
VERSION  
VENDORID  
CREATETM  
ROMSN  
20  
20  
20  
12  
20  
1
Version Name – Part Number  
Hardware Identification Number  
Time Created  
AC  
AC  
AC  
ROM Serial Number  
Customer Name  
AC  
CUSTNAME  
MAXPIDS  
MAXAGAS  
MAXTANKS  
MAXFSTS  
RAM  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
BIN  
Maximum PIDs  
1
Maximum AGA Meter Runs  
Maximum Tanks  
1
1
FSTs Possible  
1
RAM Installed – Memory Assignments:  
Bit 7 – E0000-FFFFF  
Bit 6 – C0000-DFFFF  
Bit 5 – A0000-BFFFF  
Bit 4 – 80000-9FFFF  
Bit 3 – 60000-7FFFF  
Bit 2 – 40000-5FFFF  
Bit 1 – 20000-3FFFF  
Bit 0 – 00000-1FFFF  
C-11  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
21  
R/O  
BIN  
1
ROM Installed – Memory Assignments:  
Bit 7 – E0000-FFFFF  
Bit 6 – C0000-DFFFF  
Bit 5 – A0000-BFFFF  
Bit 4 – 80000-9FFFF  
ROM  
Bit 3 – 60000-7FFFF  
Bit 2 – 40000-5FFFF  
Bit 1 – 20000-3FFFF  
Bit 0 – 00000-1FFFF  
22  
23  
R/O  
R/O  
FLP  
BIN  
4
1
MPU Loading  
MPU  
UTIL  
Utilities:  
Bit 7 – Industry Canada Unit  
Bit 6 – Not Used  
Bit 5 – Not Used  
Bit 4 – User Calculation Program Allowed  
Bit 3 – COM2 User Program Allowed  
Bit 2 – COM1 User Program Allowed  
Bit 1 – LCD Installed  
Bit 0 – AGA Data archived  
24  
25  
R/O  
R/W  
UINT 16  
UINT 8  
2
1
Type of device:  
3095 = Rosemount 3095  
ROCTYPE  
UNITS  
Units Flag  
0 = English  
1 = Metric (kPa)  
2 = Metric (bar)  
Table C-11. Point Type 17 – Soft Point Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AC  
UINT 16  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
10  
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Point Tag Identification  
Integer Flag  
Data #1  
TAG  
INT1  
2
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DATA16  
DATA17  
DATA18  
DATA19  
DATA20  
3
Data #2  
4
Data #3  
5
Data #4  
6
Data #5  
7
Data #6  
8
Data #7  
9
Data #8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Data #9  
Data #10  
Data #11  
Data #12  
Data #13  
Data #14  
Data #15  
Data #16  
Data #17  
Data #18  
Data #19  
Data #20  
C-12  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-12. Point Type 19 – Database Parameters  
NOTE  
Point Type 19 is used by Opcode 165 to configure history points and  
create events.  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
3
4
5
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
FLP  
4
1
1
1
1
4
Pointer to Tag  
TAGPNTR  
ARCHTYPE  
TYPE  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
FLP  
Archive Type  
Point Type  
Point / Logical Number  
Parameter Number  
Yesterday’s Total  
LOGICAL  
PARAM  
YDYTOTAL  
Table C-13. Point Type 41 – Run Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
R/W  
R/W  
R/W  
AC  
FLP  
BIN  
10  
4
Point Tag Identification  
Atmospheric Pressure  
TAG  
ATMPRS  
METHOD  
1
Calculation Method II:  
Bits 7 through 5 – Not Used  
Bit 4 – BTU Dry or Wet Override  
0 = See Bit 3  
1 = BTU as Delivered  
Bit 3 – BTU Dry or Wet  
0 = BTU Dry  
1 = BTU Wet  
Bit 2 – Calculated or Manual Value  
0 = Calculated  
1 = Enter Atmospheric Pressure – AGA 1992  
Bit 1 – Gross Method  
0 = Gross Method II  
1 = Gross Method I  
Bit 0 – Detail Level  
0 = Detailed Method  
1 = Gross Method  
3
4
5
R/O  
R/W  
R/W  
TLP  
FLP  
3
4
1
Not Used  
PIPEREFT  
PIPEMAT  
FB  
Pipe Reference Temperature – AGA1992  
UINT 8  
Pipe Material – AGA1992:  
0 = SS (Stainless Steal)  
1 = Monel  
2 = Carbon steel  
6
7
8
R/O  
R/O  
R/O  
UINT 8  
FLP  
1
4
4
Not Used  
FR  
FY  
Cd – AGA 1992  
FLP  
Fr – AGA 1985  
FPB  
Reynolds Number – AGA 1992  
9
R/O  
FLP  
4
Y – Expansion Factor – Orifice  
Fpm – Turbine  
FTB  
10  
11  
12  
13  
14  
R/O  
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
4
Fpb Factor  
FPB  
FTB  
FTF  
FGR  
FPV  
Ftb Factor  
Ftf Factor  
Fgr Factor  
Fpv – Super-compressibility Factor  
C-13  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
TLP  
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
1
1
3
4
History Point 1  
RollUp  
HISTPT1  
ROLLUP1  
TLP1  
TLP  
FLP  
Conversion  
History Point 2  
RollUp  
CONV1  
HISTPT2  
ROLLUP2  
TLP2  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 3  
RollUp  
CONV2  
HISTPT3  
ROLLUP3  
TLP3  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 4  
RollUp  
CONV3  
HISTPT4  
ROLLUP4  
TLP4  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 5  
RollUp  
CONV4  
HISTPT5  
ROLLUP5  
TLP5  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 6  
RollUp  
CONV5  
HISTPT6  
ROLLUP6  
TLP6  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 7  
RollUp  
CONV6  
HISTPT7  
ROLLUP7  
TLP7  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 8  
RollUp  
CONV7  
HISTPT8  
ROLLUP8  
TLP8  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 9  
RollUp  
CONV8  
HISTPT9  
ROLLUP9  
TLP9  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
History Point 10  
RollUp  
CONV9  
HISTPT10  
ROLLUP10  
TLP10  
UINT 8  
UINT 8  
TLP  
TLP  
FLP  
Conversion  
CONV10  
C-14  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-14. Point Type 42 – Extra Run Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
AC  
10  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Point Tag Identification  
TAG  
1
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
Flow Today – MCF (km3)  
Flow Yesterday – MCF (km3)  
Flow Month – MCF (km3)  
FLOTDY  
FLODY  
FLOMTH  
2
3
4
Flow Previous Month – MCF (km3)  
Flow Accumulated – MCF (km3)  
Minutes Today  
FLOPRV  
FLOACC  
MINTDY  
MINYDY  
MINMTH  
MINPRV  
MINACC  
ENGTDY  
ENGYDY  
ENGMTH  
ENGPRV  
ENGACC  
UCCTDY  
UCCYDY  
UCCMTH  
UCCPRV  
UCCACC  
ORIF_D  
PIPE_D  
BETA  
5
6
7
Minutes Yesterday  
8
Minutes Month  
9
Minutes Previous Month  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Minutes Accumulated  
Energy Today – MMBTU (GJ)  
Energy Yesterday – MMBTU (GJ)  
Energy Month – MMBTU (GJ)  
Energy Previous Month – MMBTU (GJ)  
Energy Accumulated – MMBTU (GJ)  
Uncorrected Today – MCF (km3)  
Uncorrected Yesterday – MCF (km3)  
Uncorrected Month – MCF (km3)  
Uncorrected Previous Month – MCF (km3)  
Uncorrected Accumulated – MCF (km3)  
Orifice Plate Bore Diameter – d  
Meter Tube (Pipe) Internal Diameter – D  
Beta – Diameter Ratio  
Ev (Velocity of approach) – AGA 1992  
Cd (Coefficient of discharge) – AGA 1992  
Reynolds Number  
EV  
CDISCH  
REYNLD  
U_PRSR  
MLWGHT  
Upstream Static Pressure  
Molecular Weight  
Table C-15. Point Type 43 – User List Parameters  
Read-  
Parameter Number  
Write  
Data Type  
Length  
Description  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
AC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Text 1  
Text 2  
Text 3  
Text 4  
Text 5  
Text 6  
Text 7  
Text 8  
Text 9  
Text 10  
Text 11  
Text 12  
Text 13  
Text 14  
Text 15  
Text 16  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
C-15  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Read-  
Parameter Number  
Write  
Data Type  
Length  
Description  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
TLP  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data 10  
Data 11  
Data 12  
Data 13  
Data 14  
Data 15  
Data 16  
Table C-16. Point Type 44 – Power Control Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/O  
AC  
10  
2
Point Tag Identification  
TAG  
INT 16  
Status:  
STATUS  
0 = Power off  
1 = Power on  
2
R/W  
INT 16  
2
Enable:  
ENABLE  
0 = Disabled  
1 = Second mode  
2 = Minute mode  
3
4
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
R/W  
R/W  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
FLP  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
Valid RX (Receive)  
Start Time #1  
VALRX  
STTM1  
5
Start Time #2  
STTM2  
6
Start Time #3  
STTM3  
7
On Time #1  
ONTM1  
ONTM2  
ONTM3  
OFFTM1  
OFFTM2  
OFFTM3  
AZONE  
HLDTM  
PWRTMR  
LOGDO  
LOBAT  
8
On Time #2  
9
On Time #3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Off Time #1  
Off Time #2  
Off Time #3  
Active Time Zone  
Hold Time (100 millisecond intervals)  
Power Timer (100 millisecond intervals)  
Discrete Output Number  
Low Battery  
UINT 32  
UINT 32  
On Counter  
ONCNT  
OFFCNT  
Off Counter  
C-16  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-17. Point Type 45 – Meter Calibration and Sampler  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
R/W  
BIN  
1
Calibration Options:  
OPTION  
Bit 5 through 7 – Not Used  
Bit 4 – Orifice Thermal Expansion Factor – 1985  
Requires Parameters 11 and 12 of Point Type  
46 be set.  
Bit 3 – Differential Pressure Water Manometer  
Calibrator, Requires Parameters 4 and 5 of  
Point Type 45 and Parameters 20, 21, and 22  
of Point Type 46 be set.  
Bit 2 – Differential Pressure Deadweight Calibrator  
Requires Parameter 3 of Point Type 45 and  
Parameters 20, 21, and 22 of Point Type 46  
be set.  
Bit 1 – Static Pressure Deadweight Calibrator  
Requires Parameter 3 of Point Type 45 and  
Parameters 20, 21, and 22 of Point Type 46  
be set.  
Bit 0 – Mercury Manometer  
Requires Parameters 1 and 2 of Point Type 45  
be set.  
Note: Either Bit 2 or Bit 3 can be set, but not both. If  
both bits are set, Bit 3 is cleared and Bit 2 is used.  
1
2
3
4
5
6
7
8
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLP  
FLP  
4
4
4
4
4
4
1
4
4
Ambient Temperature of Mercury  
Temperature of Mercury when Calibrated  
Calculated Weights Gravitational Acceleration  
Water Temperature when Calibrated  
Air Temperature when Calibrating  
User Correction Factor  
AMBTMP  
MTPCAL  
CALWGT  
WTPCAL  
ATPCAL  
CORFAC  
SPLENA  
VOLACC  
SPLDUR  
FLP  
FLP  
FLP  
FLP  
UINT 8  
FLP  
Sampler Enable  
Sampler Volume Accumulation  
Sampler Duration  
FLP  
Table C-18. Point Type 46 – Meter Configuration Parameters  
C-17  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
R/W  
R/W  
R/W  
AC  
AC  
10  
30  
1
Point Tag Identification  
Point Description  
TAG  
DESC  
CMTHI  
BIN  
Calculation Method:  
Bit 7 – Manual Mode  
0 = Normal  
1 = Manual Calculation Standard  
0 = AGA  
1 = ISO  
Bit 6 – RBX on Set  
0 = Disable RBX on Set  
1 = Enable RBX on Set  
Bit 5 – RBX on Clear  
0 = Disable RBX on Clear  
1 = Enable RBX on Clear  
Bit 4 – Alarming  
0 = Disabled  
1 = Enabled  
Bit 3 – Units of Measurement  
0 = English Units  
1 = Metric Units  
Bit 2 – Calculation Version  
0 = 1985  
1 = 1992  
Bit 2 – AGA Limits Events  
0 = Disable  
1 = Enable  
Bit 1 – Calculation Type  
0 = Orifice  
Bit 0 – Fpv Method  
1 = AGA8  
3
R/W  
BIN  
1
Calculation Method II:  
Bit 7 – Not Used  
CMTHII  
Bit 6 – Reserved  
Bit 5 – Gas Quality  
0 = Constant  
1 = Live Data (Not Logged)  
Bit 4 – Heating Value Basis  
0 = Ignore  
1 = Heating Value as Delivered  
Bit 3 – Heating Value Basis  
0 = Heating Value Dry  
1 = Heating Value Wet  
Bit 2 – Atmospheric Press  
0 = Calculate Atmospheric Pressure  
1 = Enter Atmospheric Pressure  
Bit 1 – Fpv Method  
0 = AGA8 Gross Method II  
1 = AGA Gross Method I  
Bit 0 – Fpv Method  
0 = AGA8 Detail / ISO 12213-2  
1 = AGA8 Gross (1992)  
C-18  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
4
R/W  
BIN  
1
Options:  
AGACFG  
Bit 7 – Log Methane Adjust  
0 = Log Normalization  
1 = Do Not Log Normalization  
Bit 6 – Heating Value Basis  
0 = Mass Basis Heating Value  
1 = Volume Basis Heating Value  
Bit 5 – Gravitational Acceleration  
0 = Calculate Gravity  
1 = Enter Gravity  
Bit 4 – Heating Value  
0 = Calculate Heating Value  
1 = Enter Heating Value  
Bit 3 – Press Tap  
0 = Gauge Static Pressure  
1 = Absolute Static Pressure  
Bit 2 – Press Tap  
0 = Downstream Static Pressure  
1 = Upstream Static Pressure  
Bit 1 – Gravitational Acceleration  
0 = Calculate Specific Gravity  
1 = Enter Specific Gravity  
Bit 0 – Press Tap  
0 = Flange Tap  
5
6
7
8
9
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
FLP  
1
4
4
4
1
Contract Hour  
CTHOUR  
IMP  
Integral Multiplier Period  
Pipe Diameter (In. or mm)  
Pipe Reference Temperature – AGA 1992  
FLP  
PIPDIA  
PIPERT  
ALPH  
FLP  
UINT 8  
Pipe Material – AGA 1992:  
0 = SS (Stainless Steel)  
1 = Monel  
2 = Carbon steel  
10  
11  
12  
R/W  
R/W  
R/W  
FLP  
FLP  
4
4
1
Orifice Diameter (inches or millimeters)  
Orifice Reference Temperature  
ORFDIA  
TMEAS  
ORMAT  
UINT 8  
Orifice Material:  
0 = SS (Stainless Steel)  
1 = Monel  
2 = Carbon steel  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Base or Contract Pressure (psia or kPa)  
Base or Contract Temperature (degrees F or C)  
Atmospheric Pressure (psia or kPa)  
Specific Gravity  
PBASE  
TBASE  
ATMPRS  
SPGR  
Heating Value  
GASHV  
VISCOS  
SPHTRA  
ELEVAT  
LATUDE  
GRAVIT  
NITROG  
CARBDI  
HYDSUL  
WATER  
HELIUM  
METHAN  
ETHANE  
PROPAN  
NBUTAN  
Viscosity (lbm/ft-sec or cP)  
Specific Heat Ratio  
Elevation (ft or m)  
Latitude  
Local Gravitational Acceleration (ft/sec2 or M/sec2)  
N2 Nitrogen  
CO2 Carbon Dioxide  
H2S Hydrogen Sulfide  
H2O Water  
He Helium  
CH4 Methane  
C2H6 Ethane  
C3H8 Propane  
C4H10 n-Butane  
C-19  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
UINT 8  
TLP  
TLP  
TLP  
TLP  
FLP  
FLP  
FLP  
BIN  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
3
3
3
3
4
4
4
1
C4H10 i-Butane  
IBUTAN  
NPENTA  
IPENTA  
C5H12 n-Pentane  
C5H12 i-Pentane  
C6H14 n-Hexane  
NHEXAN  
NHEPTA  
NOCTAN  
NNONAN  
NDECAN  
OXYGEN  
CARBMO  
HYDROG  
LOFLOW  
LODPSP  
HIDPSP  
STDPEN  
LO_TYP  
DP_TYP  
FP_TYP  
TP_TYP  
CURDP  
C7H16 n-Heptane  
C8H18 n-Octane  
C9H20 n-Nonane  
C10H22 n-Decane  
O2 Oxygen  
CO Carbon Monoxide  
H2 Hydrogen  
Low hw Cutoff  
High hw Setpoint – Differential Pressure  
Low hw Setpoint – Differential Pressure  
Enable Stacked hw – Differential Pressure  
Low hw TLP – Differential Pressure  
hw TLP  
Pf TLP  
Tf TLP  
hw – Orifice Differential Pressure  
Pf – Flowing Pressure  
CURSP  
Tf – Flowing Temperature (degrees F or C)  
CURTP  
ALARM  
Alarm Code:  
Bit 7 – Manual Mode  
0 = No Alarm Present  
1 = Alarm Present  
Bit 6 – No Flow  
0 = No Alarm Present  
1 = Alarm Present  
Bit 5 – Flow Rate Register Discrepancy  
0 = No Alarm Present  
1 = Alarm Present  
Bit 4 – Total Counts Register Discrepancy  
0 = No Alarm Present  
1 = Alarm Present  
Bit 3 – Not Used  
Bit 2 – High Alarm  
0 = No Alarm Present  
1 = Alarm Present  
Bit 1 – Not Used  
Bit 0 – Low Alarm  
0 = No Alarm Present  
1 = Alarm Present  
55  
56  
57  
58  
R/W  
R/W  
R/W  
R/W  
FLP  
FLP  
4
4
1
1
Low Alarm Flow (1000 ft3/day or m3/day)  
High Alarm Flow (1000 ft3/day or m3/day)  
Averaging Technique  
LOALM  
HIALM  
UINT 8  
UINT 8  
AVGTYP  
FUCALL  
Full Recalculation Flag  
C-20  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-19. Point Type 47 – Meter Flow Values  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
3
4
5
6
7
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
4
4
4
4
Flow rate per day (MCF or km3)  
Energy rate per day (MMBTU or GJoules)  
Flow rate per hour (CF or M3)  
Energy rate per hour (BTU or MJoules)  
Pressure Extension (hwPf)  
FLOWDY  
ENGDAY  
FLOWHR  
ENGHR  
HWPF  
EXPFTR  
FR  
Expansion Factor – Orifice  
CdFT – AGA 1992  
Fn – Orifice AGA 1992 (FloBoss 100-series and FloBoss  
500-series Backward Compatibility)  
FB  
8
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Fpb  
FPB  
FTB  
9
Ftb  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
Ftf  
FTF  
Fgr  
FGR  
Fpv  
FPV  
Zs – AGA 1992  
FA  
Zb  
ZB  
Zf1 – AGA 1992  
ZF  
IMV – AGA 1992  
IMV  
Orifice Plate Bore Diameter (d) (inches or millimeter)  
Meter Tube Internal Diameter (D) (inches or millimeter)  
Diameter Ratio (Beta)  
Velocity of Approach (Ev) – AGA 1992  
Average hw\  
BORIDA  
TUBDIA  
BETA  
VELAPP  
AVGDP  
AVGAP  
AVGTP  
DENS  
Average Pf – used during IMV calculation in psia  
Average Tf – used during IMV calculation in Rankin  
Density  
Base Density  
BASDEN  
REYNLD  
UPSPR  
MOLWGT  
FAM  
Reynolds Number  
Upstream Static Pressure (PSIG, psia or kPa)  
Molecular Weight  
Fam  
Fwt  
FWT  
Fwl  
FWL  
Fpwl (Static)  
FPWLSP  
FPWLDP  
FHGM  
Fpwl (Differential)  
Fhgm  
Fhgt  
FHGT  
Flow Today (MCF or km3)  
Flow Yesterday (MCF or km3)  
Flow Month (MCF or km3)  
Flow Previous Month (MCF or km3)  
Flow Accumulated (MCF or km3)  
Minutes Today  
FLOTDY  
FLOOYDY  
FLOMTH  
FLOPRV  
FLOACC  
MINTDY  
MINYDY  
MINMTH  
MINPRV  
MINACC  
ENGTDY  
ENGYDY  
ENGMTH  
ENGPRV  
Minutes Yesterday  
Minutes Month  
Minutes Previous Month  
Minutes Accumulated  
Energy Today (MMBTU or GJoules)  
Energy Yesterday (MMBTU or GJoules)  
Energy Month (MMBTU or GJoules)  
Energy Previous Month (MMBTU or GJoules)  
C-21  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
50  
51  
52  
53  
54  
55  
56  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
FLP  
FLP  
4
4
4
4
4
4
1
Energy Accumulated (MMBTU or GJoules)  
Uncorrected Today (MCF or km3)  
Uncorrected Yesterday (MCF or km3)  
Uncorrected Month (MCF or km3)  
Uncorrected Previous Month (MCF or km3)  
Uncorrected Accumulated (MCF or km3)  
Partial Recalculation Flag  
ENGACC  
UCCTDY  
UCCYDY  
UCCMTH  
UCCPRV  
UCCACC  
PACALC  
FLP  
FLP  
FLP  
FLP  
UINT 8  
Table C-20. Point Type 53 – Modbus Configuration Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
R/W  
BIN  
1
Options:  
OPTIONS  
Bits 4 through 7 – Not Used  
Bit 3 – Modbus Type  
0 = Standard  
1 = Modbus with EFM Extensions  
Bit 2 – Byte Order  
0 = Least Significant Byte (LSB)  
1 = Most Significant Byte (MSB)  
Bit 1 – Log Modbus Events  
0 = Log to Event Log  
1 = No Logging  
Bit 0 – Modbus Type  
0 = RTU  
1 = ASCII  
1
2
R/O  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
INT 16  
INT 16  
FLP  
1
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Status  
STATUS  
HIGHINT  
LOINT  
HFLT1  
LFLT1  
HFLT2  
LFLT2  
HFLT3  
LFLT3  
HFLT4  
LFLT4  
HFLT5  
LFLT5  
HFLT6  
LFLT6  
HFLT7  
LFLT7  
HFLT8  
LFLT8  
High Integer Scale  
Low Integer Scale  
High Float Scale #1  
Low Float Scale #1  
High Float Scale #2  
Low Float Scale #2  
High Float Scale #3  
Low Float Scale #3  
High Float Scale #4  
Low Float Scale #4  
High Float Scale #5  
Low Float Scale #5  
High Float Scale #6  
Low Float Scale #6  
High Float Scale #7  
Low Float Scale #7  
High Float Scale #8  
Low Float Scale #8  
3
4
5
FLP  
6
FLP  
7
FLP  
8
FLP  
9
FLP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
FLP  
C-22  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-21. Point Type 54 – Modbus Function Table  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AC  
20  
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
3
1
2
2
Point Tag Identification  
Start Register #1  
End Register #1  
Parameter(s)  
TAG  
START1  
END1  
1
UINT 16  
UINT 16  
TLP  
2
3
PARA1  
CONV1  
START2  
END2  
4
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #2  
End Register #2  
Parameter(s)  
5
6
7
PARA2  
CONV2  
START3  
END3  
8
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #3  
End Register #3  
Parameter(s)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
PARA3  
CONV3  
START4  
END4  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #4  
End Register #4  
Parameter(s)  
PARA4  
CONV4  
START5  
END5  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #5  
End Register #5  
Parameter(s)  
PARA5  
CONV5  
START6  
END6  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #6  
End Register #6  
Parameter(s)  
PARA6  
CONV6  
START7  
END7  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #7  
End Register #7  
Parameter(s)  
PARA7  
CONV7  
START8  
END8  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #8  
End Register #8  
Parameter(s)  
PARA8  
CONV8  
START9  
END9  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #9  
End Register #9  
Parameter(s)  
PARA9  
CONV9  
START10  
END10  
PARA10  
CONV10  
START11  
END11  
PARA11  
CONV11  
START12  
END12  
PARA12  
CONV12  
START13  
END13  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #10  
End Register #10  
Parameter(s)  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #11  
End Register #11  
Parameter(s)  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #12  
End Register #12  
Parameter(s)  
UINT 8  
UINT 16  
UINT 16  
Conversion Code  
Start Register #13  
End Register #13  
C-23  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TLP  
3
1
2
2
3
1
2
2
3
1
Parameter(s)  
PARA13  
CONV13  
START14  
END14  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #14  
End Register #14  
Parameter(s)  
PARA14  
CONV14  
START15  
END15  
UINT 8  
UINT 16  
UINT 16  
TLP  
Conversion Code  
Start Register #15  
End Register #15  
Parameter(s)  
PARA15  
CONV15  
UINT 8  
Conversion Code  
Table C-22. Point Type 55 – Modbus Special Function Table  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
R/W  
R/W  
R/W  
R/O  
R/O  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 16  
UINT 16  
UINT 16  
UINT 16  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
2
2
2
2
1
2
1
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
Event / Alarm Register  
Periodic History Index Register  
Daily History Index Register  
Spare  
EVTALRM  
PERIODIC  
DAILY  
1
2
3
SPARE  
4
History Format  
FORMAT  
ARCREG1  
START1  
END1  
5
History Archive Register #1  
Start History Point  
6
7
End History Point  
8
Type of History Archive  
Conversion Code  
TYPE1  
9
CONV1  
ARCREG2  
START2  
END2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
History Archive Register #2  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE2  
CONV2  
ARCREG3  
START3  
END3  
History Archive Register #3  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE3  
CONV3  
ARCREG4  
START4  
END4  
History Archive Register #4  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE4  
CONV4  
ARCREG5  
START5  
END5  
History Archive Register #5  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE5  
CONV5  
ARCREG6  
START6  
END6  
History Archive Register #6  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE6  
CONV6  
ARCREG7  
START7  
History Archive Register #7  
Start History Point  
C-24  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
UINT 16  
UINT 8  
UINT 8  
UINT 8  
UINT 8  
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1
1
1
1
End History Point  
END7  
TYPE7  
Type of History Archive  
Conversion Code  
CONV7  
ARCREG8  
START8  
END8  
History Archive Register #8  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE8  
CONV8  
ARCREG9  
START9  
END9  
History Archive Register #9  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE9  
CONV9  
ARCREG10  
START10  
END10  
History Archive Register #10  
Start History Point  
End History Point  
Type of History Archive  
Conversion Code  
TYPE10  
CONV10  
Table C-23. Point Type 56 – Analog Input Calibration Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/O  
R/W  
R/O  
R/O  
R/W  
R/W  
AC  
INT 16  
INT 16  
INT 16  
INT 16  
INT 16  
FLP  
10  
2
2
2
2
2
4
4
4
4
4
4
4
4
2
1
1
Point Tag Identification  
Raw Value 1  
Raw Value 2  
Raw Value 3  
Raw Value 4  
Raw Value 5  
EU Value 1  
EU Value 2  
EU Value 3  
EU Value 4  
EU Value 5  
Press Effect  
Set EU Value  
Manual EU  
Timer  
TAG  
RAW1  
RAW2  
RAW3  
RAW4  
RAW5  
EU1  
2
3
4
5
6
7
FLP  
EU2  
8
FLP  
EU3  
9
FLP  
EU4  
10  
11  
12  
13  
14  
15  
16  
FLP  
EU5  
FLP  
PRESSEFF  
SETVAL  
MANUAL  
TIMER  
MODE  
TYPE  
FLP  
FLP  
UINT 16  
UINT 8  
UINT 8  
Mode  
Type  
C-25  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Table C-24. Point Type 58 – Revision Information  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
1
2
3
R/O  
R/O  
R/O  
R/O  
AC  
AC  
20  
10  
10  
1
Device Firmware Description  
Part Number  
DESC  
PART#  
AC  
Version  
VERSION  
PRESENT  
UINT 8  
Information Present Flag  
Table C-25. Point Type 86 – Extended History Parameters  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
0
R/O  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
UINT 8  
TLP  
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
Maximum number of Extended History Points  
Sample Log Interval – Units in Minutes  
Point Tag Identification TLP  
Extended History Log Point #1  
Archive Type  
MAXPTS  
INTERVAL  
TAG#1  
HST#1  
ARCH1  
AVG#1  
TAG#2  
HST#2  
ARCH2  
AVG#2  
TAG#3  
HST#3  
ARCH3  
AVG#3  
TAG#4  
HST#4  
ARCH4  
AVG#4  
TAG#5  
HST#5  
ARCH5  
AVG#5  
TAG#6  
HST#6  
ARCH6  
AVG#6  
TAG#7  
HST#7  
ARCH7  
AVG#7  
TAG#8  
HST#8  
ARCH8  
AVG#8  
TAG#9  
HST#9  
ARCH9  
AVG#9  
TAG#10  
HST#10  
ARCH10  
1
2
3
TLP  
4
UINT 8  
UINT 8  
TLP  
5
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #2  
6
7
TLP  
8
UINT 8  
UINT 8  
TLP  
Archive Type  
9
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #4  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #5  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #6  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #7  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #8  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #9  
TLP  
UINT 8  
UINT 8  
TLP  
Archive Type  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #10  
Archive Type  
TLP  
UINT 8  
C-26  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
Parameter  
Number  
Read-  
Write  
Data Type  
Length  
Description  
Abbr.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UINT 8  
TLP  
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
3
3
1
1
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #11  
Archive Type  
AVG#10  
TAG#11  
HST#11  
ARCH11  
AVG#11  
TAG#12  
HST#12  
ARCH12  
AVG#12  
TAG#13  
HST#13  
ARCH13  
AVG#13  
TAG#14  
HST#14  
ARCH14  
AVG#14  
TAG#15  
HST#15  
ARCH15  
AVG#15  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #12  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #13  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #14  
Archive Type  
TLP  
UINT 8  
UINT 8  
TLP  
Averaging or Rate Type  
Point Tag Identification TLP  
History Log Point #15  
Archive Type  
TLP  
UINT 8  
UINT 8  
Averaging or Rate Type  
C-27  
Reference Manual  
00809-0100-4832, Rev AA  
March 2004  
Rosemount 3095FC  
C-28  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Glossary  
A
A/D - Analog to Digital  
AGA - American Gas Association.  
AI - Analog Input.  
AO - Analog Output.  
Analog - Analog data is represented by a continuous variable, such as an electrical current signal.  
AP - Absolute Pressure.  
ASCII - American (National) Standard Code for Information Interchange.  
Attribute - A parameter that provides information about an aspect of a database point. For example, the alarm  
attribute is an attribute that uniquely identifies the configured value of an alarm.  
B
Built-in I/O - I/O channels that are fabricated into the 3095FC and do not require a separate option. Also called  
“on-board” I/O.  
C
COMM - Abbreviation for communications. Most commonly used as comm port, referring to the communication  
port of the 3095FC.  
Configuration - Typically, the software setup of a device, such as a 3095FC, that can often be defined and changed  
by the user. Can also mean the hardware assembly scheme.  
Configuration Tree - When a configuration file is open in Rosemount User Interface Software, the Configuration  
Tree View menu appears.  
CRC - Cyclical Redundancy Check  
CSA - Canadian Standards Association.  
CTS - Clear To Send modem communications signal.  
D
DB - Database.  
dB - Decibel. A unit for expressing the ratio of the magnitudes of two electric signals on a logarithmic scale.  
DCD - Data Carrier Detect modem communications signal.  
Deadband - A value that is an inactive zone above the low limits and below the high limits. The purpose of the  
deadband is to prevent a value such as an alarm from being set and cleared continuously when the input value is  
oscillating around the specified limit. This also prevents the logs or data storage location from being overfilled with  
data.  
Directory View - The Communication Directory tree provides a tree style means of navigating through the PC  
Comm Ports and the 3095FC Comm Ports setup screens.  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Discrete - Input or output that is non-continuous, typically representing two levels such as on/off.  
DP - Differential Pressure.  
DSR - Data Set Ready modem communications signal.  
DTR - Data Terminal Ready modem communications signal.  
Duty Cycle - Proportion of time during a cycle that a device is activated. A short duty cycle conserves power for I/O  
channels, radios, and such.  
DVM - Digital voltmeter.  
Sensor Module - Dual-Variable Sensor. Provides static and DP inputs to a 3095FC.  
E
EFM - Electronic Flow Metering or Measurement./  
EIA-232 - Serial Communications Protocol using three or more signal lines, intended for short distances. Also  
referred to as RS-232.  
EIA-422 - Serial Communication Protocol using four signal lines. Also referred to as the RS-422 standard.  
EIA-485 - Serial Communications Protocol requiring only two signal lines. Can allow up to 32 devices to be  
connected together in a daisy-chained fashion. Also referred to as RS-485.  
EMI - Electro-magnetic interference.  
ESD - Electronic Static Discharge.  
EU - Engineering Units.  
F
Firmware - Internal software that is factory-loaded into a form of ROM. In the 3095FC, the firmware supplies the  
software used for gathering input data, converting raw input data calculated values, storing values, and providing  
control signals.  
Flash ROM - A type of read-only memory that can be electrically re-programmed. It is a form of permanent memory  
and requires no backup power.  
FSK - Frequency shift keyed.  
G
GFA - Ground fault analysis.  
GND - Electrical ground, such as used by the 3095FC power supply.  
GP - Gauge Pressure.  
H
HistoryLink Utility - HistoryLink utility allows the user to access and retrieve the 10-Minute History from the  
3095FC. The HistoryLink utility supplements Rosemount User Interface for Windows Software.  
Holding Register - Analog output number value to be read.  
hw - DP.  
Glossary-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
I, J  
IC - Industry Canada, more recently know an Measurement Canada, which grants custody transfer approvals on  
certain 3095FC units. IC can also mean integrated circuit.  
ID - Identification  
IEC - Industrial Electrical Code.  
IEEE - Institute of Electrical and Electronic Engineers. the Open System Interconnection (OSI) reference model  
and an international standard for the organization of local area networks (LANs) established by the INternational  
Standards Organization (ISO) and the IEEE.  
IMV - Integral Multiplier Value.  
Input - Digital input, a bit to be read.  
Input Register - Input numeric value to be read.  
I/O - Input/Output.  
IRQ - Interrupt Request. Hardware address oriented.  
ISO - Organization internationale de normalisation (International Standards Organization)  
IV - Integral Value  
K
KB - Kilobytes.  
kHz - Kilohertz.  
L
LCD - Liquid Crystal Display. Display only device used for reading data.  
LED - Light-emitting diode.  
LOI - Local Operator Interface. Refers to the serial (RS-232) port on the 3095FC through which local  
communications are established, typically for configuration software running on a PC.  
LRC - Longitudinal Redundancy Checking error checking.  
M
mA - Milliamp(s); one thousandth of an ampere.  
Manual Mode - Scanning is disabled.  
Modbus - A device communications protocol developed by Gould-Modicon.  
mW - Milliwatts, or 0.001 watt.  
mV - Millivolts, or 0.001 volt.  
N
NEC - National Electrical Code.  
NEMA - National Electrical Manufacturer's Association.  
O
OH - Off-Hook modem communications signal.  
Off-line - Accomplished while the target device is not connected (by a communications link). For example, off-line  
configuration is configuring a 3095FC in an electronic file that is later loaded into the 3095FC.  
Ohms - Units of electrical resistance.  
Glossary-3  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
On-line - Accomplished while connected (by a communications link) to the target device. For example, on-line  
configuration is configuring a Rosemount User Interface Software while connected to it, so that current parameter  
values are viewed and new values can be loaded immediately.  
OP - Operator Port; see LOI.  
Opcode - Type of message protocol used by the 3095FC to communicate with Rosemount User Interface  
Software, as well as host PC with Rosemount User Interface Software driver software.  
P, Q  
Parameter - A property of a point that typically can be configured or set by the user. For example, the Point Tag ID  
is a parameter of an Analog Input point. Parameters are normally edited by using configuration software running on  
a PC.  
Pf - Flowing pressure.  
PC - Personal computer.  
P/PD - Pressure / DP  
PI - Pulse Input. Also referred to as PIN.  
Point - Software-oriented term for an I/O channel or some other function, such as a flow calculation. Points are  
defined by a collection of parameters.  
Point Number - The number of an I/O point as installed in the 3095FC system.  
Point Type - The point type attribute defines the database point to have one of the possible types of pints available  
to the system. The point type determines the basic functions of a point.  
Preset - Number value previously determined for a register.  
PRI - Primary PID control loop.  
Protocol - A set of standards that enables communication or file transfers between two PCs. Parameters include  
baud rate, parity, data bits, stop bit, and the type of duplex.  
PSTN - Public Switched Telephone Network.  
PT - Process Temperature.  
PTI - Periodic Timer Interrupt  
PTC - Positive Temperature Coefficient.  
PTT - Push-to-Talk signal.  
Pulse - Transient variation of a signal whose value is normally constant.  
PV - Process variable or process value.  
R
RAM - Random Access Memory. In a 3095FC, it is used to store history, data, most user programs, and additional  
configuration data.  
RBX - Report-by-exception. In a 3095FC, it always refers to spontaneous RBX, in which the 3095FC contacts the  
host to report an alarm condition.  
RFI - Radio frequency interference.  
RI - Ring Indicator modem communications signal.  
User Interface Software - Remote Operations Controller is a microprocessor-based unit that provides remote  
monitoring and control.  
Rosemount User Interface Software - Configuration software used to configure 3095FC units.  
Glossary-4  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
ROM - Read-only memory. Typically used to store firmware.  
RTC - Real-time clock.  
RTD - Resistance Temperature Detector.  
RTS - Ready to Send modem communications signal.  
RTU - Remote Terminal Unit.  
RXD - Received Data communications signal.  
S
Script - An uncompiled text file (such as keystrokes for a macro) that is interpreted by a program to perform certain  
functions. Typically, scripts can be easily created or edited by the end-user to customize the software.  
Soft Points - A type of point with generic parameters that can be configured to hold data as desired by the user.  
SP - Setpoint, or Static Pressure.  
SPI - Slow Pulse Input.  
SPK - Speaker.  
SRAM - Static Random Access Memory. Stores data as long as power is applied; typically backed up by a lithium  
battery or super capacitor.  
SRBX - Spontaneous Report-by-Execution. Refer to RBX.  
SVA - Signal Value Analog. Stored in the Results Register.  
SVD - Signal Value Discrete. Stored in the Compare Flag.  
T-Z  
Tf - Flowing temperature.  
TLP - Type (of point), Logical (or point) number, and Parameter number.  
TXD - Transmitted Data communications signal.  
Glossary-5  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Glossary-6  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
Index  
Configuration  
Analog Input . . . . . . . . . . .3-16  
Modbus - History Collection .  
3-44  
A
Accessories . . . . . . . . . . . 1-3, A-11  
After Installing Components . . . . 5-4  
Apply Power . . . . . . . . . . . . . 2-10  
Approved Manufacturing Locations .  
B-1  
AI Advanced Tab . . . .3-17  
AI Alarms Tab . . . . . .3-19  
AI General Tab . . . . . .3-16  
CD User List . . . . . . . . . . .3-15  
Collect Data . . . . . . . . . . .3-38  
Communications Ports  
Configuration . . . . .3-8  
General Tab . . . . . . . . .3-8  
RBX Tab . . . . . . . . . . .3-9  
Configure History for EFM  
Reporting . . . . . .3-38  
EFM Reports . . . . . . .3-38  
Device Configuration / Information  
3-10  
General Tab . . . . . . . .3-10  
Other Information Tab .3-12  
Points Tab . . . . . . . . . 3-11  
Revision Info Tab . . . .3-12  
History Points . . . . . . . . . .3-32  
Averaging Technique .3-33  
General History . . . . .3-35  
Log Types . . . . . . . . .3-33  
Meter History . . . . . . .3-32  
History, Alarm, Event, and Audit  
Log Reports . . . . .3-37  
I/O . . . . . . . . . . . . . . . . . .3-15  
I/O Monitor . . . . . . . . .3-15  
Scanning Disabled vs  
Parameter Information 3-47  
Scale Values Tab . . . . 3-42  
Modbus Conversion . . . . . 3-51  
Modbus Registers . . . . . . 3-47  
Opcode . . . . . . . . . . . . . . 3-21  
Opcode Table Configuration  
3-22  
Automatic Tests . . . . . . . . . . . . 1-3  
B
Overview . . . . . . . . . . . . . . 3-1  
Radio Power Control . . . . . 3-23  
Security . . . . . . . . . . . . . . 3-13  
3095FC . . . . . . . . . . . 3-14  
Menu and Log On . . . 3-13  
Setting the Clock . . . . . . . . 3-4  
Soft Points . . . . . . . . . . . . 3-20  
System Flags . . . . . . . . . . . 3-5  
Advanced Tab . . . . . . . 3-7  
General Tab . . . . . . . . 3-5  
Considerations  
Backup Configuration Information 5-1  
Basic Functions . . . . . . . . . . . . 3-1  
Display TLP . . . . . . . . . . . 3-1  
Download File . . . . . . . . . . 3-3  
Duplicating a Configuration . 3-2  
New Configuration File . . . . 3-2  
Open File . . . . . . . . . . . . . 3-2  
Print Configuration . . . . . . . 3-3  
Save File . . . . . . . . . . . . . 3-2  
Select TLP . . . . . . . . . . . . 3-1  
Using Copy and Paste . . . . 3-2  
Enclosure . . . . . . . . . . . . . 1-5  
Environmental . . . . . . . . . . 1-5  
Mounting . . . . . . . . . . . . . . 1-5  
Power . . . . . . . . . . . . . . . . 1-5  
Rosemount User Interface  
C
Calibrate  
3095FC . . . . . . . . . . . . . . 4-1  
Analog Input (AI) . . . . . . . . 4-3  
Calibration Report . . . . 4-5  
Calibration Value . . . . . 4-5  
Zero Shift . . . . . . . . . . 4-5  
Verify . . . . . . . . . . . . . . . . 4-6  
Changing the Plate . . . . . . . . . . 5-5  
Communication Errors . . . . . . . 5-2  
Communication Problems . . 5-2  
Debug Communications . . . 5-2  
Software . . . . . . . . 1-6  
Site . . . . . . . . . . . . . . . . . . 1-6  
Wiring . . . . . . . . . . . . . . . . 1-6  
Custom Displays . . . . . . . . . . . 3-54  
New Display . . . . . . . . . . . 3-54  
Save Displays . . . . . . . . . 3-55  
Enabled . . . .3-15  
Meter Run . . . . . . . . . . . .3-25  
Advanced Meter Setup Tab  
3-29  
D
Dimensional Drawings . . . . . . . .A-7  
AGA Meter Inputs Tab 3-27  
Gas Quality Tab . . . . .3-28  
General Tab . . . . . . . .3-26  
Instrument Calibration Tab .  
3-30  
E
Enclosure Considerations . . . . . 1-5  
Environmental Considerations . . 1-5  
European Directive Information .B-1  
Meter Setup Alarms Tab 3-31  
Modbus . . . . . . . . . . . . . .3-40  
Detailed Point . . . . . . .3-47  
General Tab . . . . . . . .3-40  
History Access Registers Tab  
3-44  
F
Firmware . . . . . . . . . . . . . . . . . 1-3  
Functions . . . . . . . . . . . . . . . . . 1-4  
Modbus - Events / Alarms  
Functionality .3-45  
www.rosemount.com  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
Rosemount 3095FC  
G
P
W
Glossary . . . . . . . . . . . Glossary-1  
Grounding . . . . . . . . . . . . . . . . 2-8  
Earth . . . . . . . . . . . . . . . . 2-8  
Pipelines With Cathodic Protection  
. . . . . . . . . . . . . . 2-8  
Power Considerations . . . . . . . .1-5  
Power Supply . . . . . . . . . . . . . .2-9  
Applying . . . . . . . . . . . . . .2-10  
Batteries . . . . . . . . . . . . . .2-9  
Wiring . . . . . . . . . . . . . . . . . . . 2-4  
Communications . . . . . . . . 2-6  
EIA-232 . . . . . . . . . . . 2-7  
EIA-485 . . . . . . . . . . . 2-7  
Local Operator Interface 2-6  
Ground the Transmitter . . . . 2-8  
Power Supply . . . . . . . . . . . 2-5  
RTD . . . . . . . . . . . . . . . . . 2-5  
Wiring Considerations . . . . . . . . 1-6  
Pipelines Without Cathodic  
R
Protection . . . . . . 2-9  
Replacing the Batteries . . . . . . .5-5  
Resetting the 3095FC . . . . . . . .5-3  
Cold Start . . . . . . . . . . . . . .5-3  
Jumper Reset . . . . . . . . . . .5-3  
Warm Start . . . . . . . . . . . . .5-3  
Rosemount User Interface Software  
Adding a 3095FC transmitter 2-16  
Adding a Group . . . . . . . .2-15  
Deleting a 3095FC transmitter .  
2-16  
H
Hardware . . . . . . . . . . . . . . . . 1-2  
Hazardous Locations Certifications .  
B-1  
North American Certifications B-1  
I
Installation . . . . . . . . . . . . . . . . 2-2  
Rosemount 3095FC . . . . . . 2-2  
Orifice Plate . . . . . . . . 2-2  
Pipestand . . . . . . . . . . 2-2  
Rosemount User Interface  
Software . . . . . . 2-11  
Deleting a Group . . . . . . . .2-15  
Deleting all 3095FC transmitters  
2-16  
Device Point Types . . . . . . C-3  
Establishing Communication  
Configuration Tree . . .2-14  
Connection . . . . . . . .2-13  
Installation . . . . . . . . . . . . 2-11  
with Autorun . . . . . . . . 2-11  
Without Autorun . . . . .2-12  
Log in . . . . . . . . . . . . . . .2-12  
Overview . . . . . . . . . . . . . 2-11  
Point Type 0 . . . . . . . . . . . C-2  
Point Type Parameter Definitions  
C-1  
Renaming a Group or 3095FC .  
2-16  
Requirements . . . . . . . . . . .1-6  
Run the Software . . . . . . .2-12  
stall  
With Autorun . . . . . . . 2-11  
Without Autorun . . . . 2-12  
Solar Panels . . . . . . . . . . . 2-3  
Sizing . . . . . . . . . . . . 2-3  
L
Low Power Mode . . . . . . . . . . . 1-4  
M
Modbus  
Configuration . . . . . . . . . . 3-40  
Conversion . . . . . . . . . . . 3-51  
Register Configuration . . . 3-47  
Mounting . . . . . . . . . . . . . . . . . 2-1  
Mounting Considerations . . . . . 1-5  
Uninstalling . . . . . . . .2-12  
S
O
Site Considerations . . . . . . . . . .1-6  
Solar Panels  
Sizing . . . . . . . . . . . . . . . .2-3  
Specifications  
Options . . . . . . . . . . . . . . . . . A-11  
Custom Configuration . . . A-11  
Standard Configuration . . . A-11  
Ordering Information . . . . . . . . . A-9  
Overview . . . . . . . . . . . . . . . . . 1-1  
3095FC . . . . . . . . . . . . . . 1-1  
3095FC Functions . . . . . . . 1-4  
Accessories . . . . . . . . . . . 1-3  
Automatic Tests . . . . . . . . . 1-3  
Calibration . . . . . . . . . . . . 4-1  
Configuration . . . . . . . . . . . 3-1  
Firmware . . . . . . . . . . . . . 1-3  
Hardware . . . . . . . . . . . . . 1-2  
Low Power Mode . . . . . . . . 1-4  
Flow . . . . . . . . . . . . . . . . A-6  
Functional . . . . . . . . . . . . A-1  
Memory . . . . . . . . . . . . . . A-6  
Performance . . . . . . . . . . . A-3  
Physical . . . . . . . . . . . . . . A-4  
Index-2  
Reference Manual  
00809-0100-4832, Rev AA  
October 2004  
This product powers  
PlantWeb through  
diagnostics including  
device temperature limit  
and low battery voltage.  
Rosemount and the Rosemount logotype are registered trademarks of Rosemount Inc.  
PlantWeb is a registered trademark of one of the Emerson Process Management group of companies.  
All other marks are the property of their respective owners.  
Emerson Process Management  
Rosemount Inc.  
Fisher-Rosemount GmbH & Co. Emerson Process Management Asia  
Beijing Rosemount Far East  
Instrument Co., Limited  
No. 6 North Street,  
8200 Market Boulevard  
Chanhassen, MN 55317 USA  
T (U.S.) 1 800 999 9307  
T (International) (952) 906 8888 Tel 49 (8153) 9390  
F (952) 949 7001  
Argelsrieder Feld 3  
82234 Wessling  
Germany  
Pacific Private Limited  
1 Pandan Crescent  
Singapore 128461  
T (65) 6777 8211  
Hepingli, Dong Cheng District  
Beijing 100013, China  
Fax 49 (8153) 939172  
F (65) 6777 0947  
T (86) (10) 6428 2233  
AP.[email protected] F (86) (10) 6422 8586  
www.rosemount.com  
00809-0100-4832  
© 2004 Rosemount Inc. All rights reserved.  

Braun 9 Jul User Manual
Brother MFC 1770 User Manual
Bryant Legacy Line 124A User Manual
Friedrich Air Conditioner XQ10 User Manual
Friedrich M09CF User Manual
Friedrich S24YF User Manual
Friedrich WALLMASTER 2009 User Manual
Goodman Mfg ARUF303016CA User Manual
Haier HSU 24HD0307 User Manual
Hisense Group KF 346GWE User Manual