| CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   FLEx18™ 3.3V 64K/128K x 36 and   128K/256K x 18 Synchronous Dual-Port RAM   Features   Functional Description   ■ True Dual-Ported Memory Cells that Allow Simultaneous   Access of the Same Memory Location   The FLEx18™ family includes 512 Kbit, 1 Mbit, 2 Mbit, 4 Mbit,   and 9 Mbit pipelined, synchronous, true dual port static RAMs   that are high speed, low power 3.3V CMOS. Two ports are   provided, permitting independent, simultaneous access to any   location in memory. The result of writing to the same location by   more than one port at the same time is undefined. Registers on   control, address, and data lines allow for minimal setup and hold   time.   ■ ■ ■ ■ ■ ■ Synchronous Pipelined Operation   Family of 512 Kbit, 1 Mbit, 2 Mbit, 4 Mbit, and 9 Mbit Devices   Pipelined Output Mode Allows Fast Operation   0.18 micron CMOS for Optimum Speed and Power   High Speed Clock to Data Access   During a Read operation, data is registered for decreased cycle   time. Each port contains a burst counter on the input address   register. After externally loading the counter with the initial   address, the counter increments the address internally (more   details to follow). The internal Write pulse width is independent   of the duration of the R/W input signal. The internal Write pulse   is self-timed to allow the shortest possible cycle times.   3.3V Low Power   ❐ Active as Low as 225 mA (typ)   Standby as Low as 55 mA (typ)   ❐ ■ ■ ■ ■ ■ ■ ■ ■ ■ Mailbox Function for Message Passing   Global Master Reset   A HIGH on CE0 or LOW on CE1 for one clock cycle powers down   the internal circuitry to reduce the static power consumption. One   cycle with chip enables asserted is required to reactivate the   outputs.   Separate Byte Enables on Both Ports   Commercial and Industrial Temperature Ranges   IEEE 1149.1 Compatible JTAG Boundary Scan   144-Ball FBGA (13 mm × 13 mm) (1.0 mm pitch)   120 TQFP (14 mm x 14 mm x 1.4 mm)   Pb-Free Packages Available   Additional features include: readback of burst-counter internal   address value on address lines, counter-mask registers to   control the counter wrap around, counter interrupt (CNTINT)   flags, readback of mask register value on address lines,   retransmit functionality, interrupt flags for message passing,   JTAG for boundary scan, and asynchronous Master Reset   (MRST).   Counter Wrap Around Control   The CY7C0833AV device in this family has limited features. See   for details.   ❐ ❐ ❐ Internal Mask Register Controls Counter Wrap Around   Counter-Interrupt Flags to Indicate Wrap Around   Memory Block Retransmit Operation   ■ ■ ■ Counter Readback on Address Lines   Mask Register Readback on Address Lines   Dual Chip Enables on Both Ports for Easy Depth Expansion   Table 1. Product Selection Guide   512 Kbit   1 Mbit   2 Mbit   4 Mbit   9 Mbit   Density   (32K x 18)   CY7C0837AV   167   (64K x 18)   (128K x 18)   (256K x 18)   (512K x 18)   Part Number   CY7C0830AV   CY7C0831AV   Maximum Speed (MHz)   167   4.0   167   4.0   167   4.0   133   4.4   133   4.7   Maximum Access Time -   Clock to Data (ns)   4.0   Typical Operating   Current (mA)   225   225   225   225   225   270   Package   144 FBGA   120 TQFP   144 FBGA   120 TQFP   144 FBGA   120 TQFP   144 FBGA   120 TQFP   144 FBGA   Note   1. CY7C0832AV and CY7C0832BV are functionally identical.   Cypress Semiconductor Corporation   Document #: 38-06059 Rev. *S   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised March 03, 2009   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Pin Configurations   Figure 1. 144-Ball BGA (Top View)   CY7C0837AV / CY7C0830AV / CY7C0831AV / CY7C0832AV / CY7C0833AV   1 2 3 4 5 6 7 DQ9   NC   8 9 10   11   12   A B C D E F DQ17   DQ16   DQ14   DQ12   DQ13   DQ10   DQ9   DQ10   DQ12   DQ13   INT   DQ14   DQ16   DQ17   R L L L L L L L L R R R R R R R A0   L A1   L DQ15   CE1   DQ11   MRST   DQ11   DQ15   CE1   A1   R A0   R L R ADS   L [8]   ADS   [8]   CNTINTL   CNTINTR   L R R A2   L A3   L INT   L A3   R A2   R R [7]   [7]   CE0   [8]   CE0   [8]   L R A4   L A5   L NC   NC   VDD   VDD   VSS   VSS   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VDD   TMS   VDD   VDD   VSS   VSS   VDD   VDD   NC   A5   R A4   R A6   L A7   L B1   VSS   VSS   VSS   VSS   VDD   TCK   NC   NC   B1   A7   R A6   R L R A8   L A9   L C NC   C A9   R A8   R L R A10   A11   L B0   NC   NC   B0   A11   A10   R G H J L L L R R A12   A14   A13   OE   NC   NC   OE   A13   A12   A14   L L L R R R R A15   [3]   A15   [3]   RW   NC   NC   RW   R L L L R R A16   [4]   A17   [5]   A17   [5]   A16   [4]   CNT/MSKL   [7]   CNTRSTL   CNTRSTR   CNT/MSKR   L R TDO   DQ4   TDI   DQ4   K L A18   [6]   A18   [6]   CNTENL   CNTENR   [8]   L R NC   DQ6   L DQ2   L DQ2   R DQ6   R NC   L R M DQ8   DQ7   DQ5   L DQ3   DQ1   L DQ0   L DQ0   R DQ1   R DQ3   DQ5   R DQ7   DQ8   R L L L R R Notes   3. Leave this ball unconnected for CY7C0837AV.   4. Leave this ball unconnected for CY7C0837AV and CY7C0830AV.   5. Leave this ball unconnected for CY7C0837AV, CY7C0830AV and CY7C0831AV.   6. Leave this ball unconnected for CY7C0837AV, CY7C0830AV, CY7C0831AV, and CY7C0832AV.   7. These balls are not applicable for CY7C0833AV device. They must be tied to VDD.   8. These balls are not applicable for CY7C0833AV device. They must be tied to VSS.   9. These balls are not applicable for CY7C0833AV device. They must not be connected.   Document #: 38-06059 Rev. *S   Page 3 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Pin Configurations   Figure 2. 120-Pin Thin Quad Flat Pack (TQFP) (Top View)   CY7C0830AV / CY7C0831AV / CY7C0832AV / CY7C0832BV   A 90   89   2L   1 2 A A V 2R   3R   SS   A 3L   V V SS   88   87   3 4 DD   V A A A A DD   4R   A 86   85   84   83   4L   5L   6L   5 6 7 8 A A 5R   6R   7R   A CE   B 7L   1L   0L   1L   82   81   9 10   CE   1R   B B 0R   1R   B 80   79   78   11   12   13   OE   L OE   R CE   V 0L   CE   0R   77   76   DD   14   15   V V R/W   R DD   SS   V SS   R/W   75   74   73   16   17   18   L L CLK   V CLK   MRST   ADS   R SS   ADS   L L L L 72   71   19   20   R CNTEN   CNTEN   R CNTRST   70   69   68   67   21   22   23   24   CNTRST   CNT/MSK   R CNT/MSK   A R 8L   9L   A A 8R   A 9R   A A A 10L   11L   12L   66   65   25   26   A A A V V A 10R   11R   12R   SS   64   63   62   61   27   28   29   30   V SS   V DD   DD   A 13L   13R   Notes   10. Leave this pin unconnected for CY7C0830AV.   11. Leave this pin unconnected for CY7C0830AV and CY7C0831AV.   Document #: 38-06059 Rev. *S   Page 4 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Pin Definitions   Left Port   Right Port   Description   [2]   [2]   A0L–A18L   A0R–A18R   Address Inputs.   [8]   [8]   ADSL   ADSR   Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW for   the part using the externally supplied address on the address pins and for loading this address   into the burst address counter.   [8]   CE0L   CE0R   CE1R   CLKR   Active LOW Chip Enable Input.   [7]   CE1L   Active HIGH Chip Enable Input.   CLKL   Clock Signal. Maximum clock input rate is fMAX.   [8]   [8]   CNTENL   CNTENR   Counter Enable Input. Asserting this signal LOW increments the burst address counter of its   respective port on each rising edge of CLK. The increment is disabled if ADS or CNTRST are   asserted LOW.   [7]   [7]   CNTRSTL   CNTRSTR   Counter Reset Input. Asserting this signal LOW resets to zero the unmasked portion of the   burst address counter of its respective port. CNTRST is not disabled by asserting ADS or   CNTEN.   [7]   [7]   CNT/MSKL   CNT/MSKR   Address Counter Mask Register Enable Input. Asserting this signal LOW enables access to   the mask register. When tied HIGH, the mask register is not accessible and the address counter   operations are enabled based on the status of the counter control signals.   DQ0L–DQ17L   OEL   DQ0R–DQ17R   OER   Data Bus Input/Output.   Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ data   pins during Read operations.   INTL   INTR   Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The   upper two memory locations are used for message passing. INTL is asserted LOW when the   right port writes to the mailbox location of the left port, and vice versa. An interrupt to a port is   deasserted HIGH when it reads the contents of its mailbox.   [9]   [9]   CNTINTL   CNTINTR   Counter Interrupt Output. This pin is asserted LOW when the unmasked portion of the counter   is incremented to all ‘1s.’   R/WL   R/WR   Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from the dual port   memory array.   B0L–B1L   B0R–B1R   Byte Select Inputs. Asserting these signals enables Read and Write operations to the corre-   sponding bytes of the memory array.   MRST   Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting   MRST LOW performs all of the reset functions as described in the text. A MRST operation is   required at power up.   TMS   JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State   machine transitions occur on the rising edge of TCK.   TDI   TCK   TDO   JTAG Test Data Input. Data on the TDI input is shifted serially into selected registers.   JTAG Test Clock Input.   JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally   three-stated except when captured data is shifted out of the JTAG TAP.   VSS   VDD   Ground Inputs.   Power Inputs.   Byte Select Operation   Control Pin   Effect   B0   B1   DQ0–8 Byte Control   DQ9–17 Byte Control   Document #: 38-06059 Rev. *S   Page 5 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   The counter register contains the address used to access the   RAM array. It is changed only by the Counter Load, Increment,   Counter Reset, and by master reset (MRST) operations.   Master Reset   The FLEx18 family devices undergo a complete reset by taking   its MRST input LOW. The MRST input can switch asynchro-   nously to the clocks. An MRST initializes the internal burst   counters to zero, and the counter mask registers to all ones   (completely unmasked). MRST also forces the Mailbox Interrupt   (INT) flags and the Counter Interrupt (CNTINT) flags HIGH.   MRST must be performed on the FLEx18 family devices after   power up.   The mask register value affects the Increment and Counter   Reset operations by preventing the corresponding bits of the   counter register from changing. It also affects the counter   interrupt output (CNTINT). The mask register is changed only by   the Mask Load and Mask Reset operations and by the MRST.   The mask register defines the counting range of the counter   register. It divides the counter register into two regions: zero or   more ‘0s’ in the most significant bits define the masked region,   one or more ‘1s’ in the least significant bits define the unmasked   region. Bit 0 may also be ‘0,’ masking the least significant counter   bit and causing the counter to increment by two instead of one.   Mailbox Interrupts   The upper two memory locations may be used for message   shows the interrupt operation for both ports of CY7C0833AV.   The highest memory location, 7FFFF is the mailbox for the right   to set the INTR flag, a Write operation by the left port to address   7FFFF asserts INTR LOW. At least one byte has to be active for   a Write to generate an interrupt. A valid Read of the 7FFFF   location by the right port resets INTR HIGH. At least one byte   must be active for a Read to reset the interrupt. When one port   Writes to the other port’s mailbox, the INT of the port that the   mailbox belongs to is asserted LOW. The INT is reset when the   owner (port) of the mailbox Reads the contents of the mailbox.   The interrupt flag is set in a flow-through mode (that is, it follows   the clock edge of the writing port). Also, the flag is reset in a   flow-through mode (that is, it follows the clock edge of the   reading port).   The mirror register is used to reload the counter register on   contains the value last loaded into the counter register, and is   changed only by the Counter Load, and by the MRST instruc-   registers and the required input control signals. The MRST   control signal is asynchronous. All the other control signals in   synchronized to the port’s CLK. All these counter and mask   operations are independent of the port’s chip enable inputs (CE0   and CE1).   Counter enable (CNTEN) inputs are provided to stall the   operation of the address input and use the internal address   generated by the internal counter for fast, interleaved memory   applications. A port’s burst counter is loaded when the port’s   address strobe (ADS) and CNTEN signals are LOW. When the   port’s CNTEN is asserted and the ADS is deasserted, the   address counter increments on each LOW to HIGH transition of   that port’s clock signal. This reads and writes one word from and   to each successive address location until CNTEN s deasserted.   The counter can address the entire memory array, and loops   back to the start. Counter reset (CNTRST) is used to reset the   unmasked portion of the burst counter to I/0s. A counter-mask   register is used to control the counter wrap.   Each port can read the other port’s mailbox without resetting the   interrupt. And each port can write to its own mailbox without   setting the interrupt. If an application does not require message   passing, INT pins should be left open.   Address Counter and Mask Register Operations [16]   This section describes the features only apply to 512 Kbit,1 Mbit,   2 Mbit, and 4 Mbit devices. It does not apply to 9 Mbit device.   Each port of these devices has a programmable burst address   counter. The burst counter contains three registers: a counter   register, a mask register, and a mirror register.   FUNCTION   LEFT PORT   RIGHT PORT   R/WL   CEL   L A0L–A18L   3FFFF   X INTL   X R/WR   CER   X A0R–A18R   INTR   Set Right INTR Flag   L X X H L X H L X 3FFFF   3FFFE   X L H X X L Reset Right INTR Flag   Set Left INTL Flag   X X L X X L L Reset Left INTL Flag   Set Right INTR Flag   L 3FFFE   3FFFF   H X X X L X X X Notes   12. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK and   0 1 can be deasserted after that. Data is out after the following CLK edge and is three-stated after the next CLK edge.   13. OE is “Don’t Care” for mailbox operation.   14. At least one of BE0, BE1 must be LOW.   15. A18x is a NC for CY7C0832AV/CY7C0832BV, therefore the Interrupt Addresses are 3FFFF and 3FFFE. A18x and A17x are NC for CY7C0831AV, therefore the Interrupt   addresses are 1FFFF and 1FFFE; A18x, A17x and A16x are NC for CY7C0830AV, therefore the Interrupt Addresses are FFFF and FFFE;A18x, A17x, A16x and A15x   are NC for CY7C0837AV, therefore the Interrupt Addresses are 7FFF and 7FFE.   16. This section describes the CY7C0832AV/CY7C0832BV, CY7C0831AV, CY7C0830AV and CY7C0837AV having 18, 17, 16 and 15 address bits.   17. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.   Document #: 38-06059 Rev. *S   Page 6 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   address counter is then loaded with an initial value of 8h. The   base address bits (in this case, the 6th address through the 16th   address) are loaded with an address value but do not increment   after the counter is configured for increment operation. The   counter address starts at address 8h. The counter increments its   internal address value until it reaches the mask register value of   3Fh. The counter wraps around the memory block to location 8h   at the next count. CNTINT is issued when the counter reaches   its maximum value   Counter Reset Operation   All unmasked bits of the counter are reset to ‘0.’ All masked bits   remain unchanged. The mirror register is loaded with the value   of the burst counter. A Mask Reset followed by a Counter Reset   resets the counter and mirror registers to 00000, as does master   reset (MRST).   Counter Load Operation   The address counter and mirror registers are both loaded with   the address value presented at the address lines.   Counter Hold Operation   The value of all three registers can be constantly maintained   unchanged for an unlimited number of clock cycles. Such   operation is useful in applications where wait states are needed,   or when address is available a few cycles ahead of data in a   shared bus interface.   Counter Increment Operation   When the address counter register is initially loaded with an   external address, the counter can internally increment the   address value, potentially addressing the entire memory array.   Only the unmasked bits of the counter register are incremented.   The corresponding bit in the mask register must be a ‘1’ for a   counter bit to change. The counter register is incremented by 1   if the least significant bit is unmasked, and by 2 if it is masked. If   all unmasked bits are ‘1,’ the next increment wraps the counter   back to the initially loaded value. If an Increment results in all the   unmasked bits of the counter being ‘1s,’ a counter interrupt flag   (CNTINT) is asserted. The next Increment returns the counter   register to its initial value, which was stored in the mirror register.   The counter address can instead be forced to loop to 00000 by   results in one or more of the unmasked bits of the counter being   ‘0’ deasserts the counter interrupt flag. The example in Figure 4   on page 10 shows the counter mask register loaded with a mask   value of 0003Fh unmasking the first 6 bits with bit ‘0’ as the LSB   and bit ‘16’ as the MSB. The maximum value the mask register   can be loaded with is 3FFFFh. Setting the mask register to this   value allows the counter to access the entire memory space. The   Counter Interrupt   The counter interrupt (CNTINT) is asserted LOW when an   increment operation results in the unmasked portion of the   counter register being all ‘1s.’ It is deasserted HIGH when an   Increment operation results in any other value. It is also   de-asserted by Counter Reset, Counter Load, Mask Reset and   Mask Load operations, and by MRST.   Counter Readback Operation   The internal value of the counter register can be read out on the   address lines. Readback is pipelined; the address is valid tCA2   after the next rising edge of the port’s clock. If address readback   occurs while the port is enabled (CE0 LOW and CE1 HIGH), the   block diagram of the operation.   CLK MRST CNT/MSK   CNTRST   ADS   CNTEN   Operation   Description   X L X X X X Master Reset   Reset address counter to all 0s and mask   register to all 1s.   H H H H L X L X L Counter Reset   Counter Load   Reset counter unmasked portion to all 0s.   H Load counter with external address value   presented on address lines.   H H H L H Counter Readback Read out counter internal value on address   lines.   H H H H H H H H L Counter Increment Internally increment address counter value.   H Counter Hold   Constantly hold the address value for multiple   clock cycles.   H H L L L X L X L Mask Reset   Mask Load   Reset mask register to all 1s.   H Load mask register with value presented on   the address lines.   H H L L H H L H X Mask Readback   Reserved   Read out mask register value on address   lines.   H Operation undefined   Notes   18. Counter operation and mask register operation is independent of chip enables.   19. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.   Document #: 38-06059 Rev. *S   Page 7 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Retransmit   Mask Readback Operation   Retransmit is a feature that allows the Read of a block of memory   more than once without the need to reload the initial address.   This eliminates the need for external logic to store and route   data. It also reduces the complexity of the system design and   saves board space. An internal mirror register is used to store   the initially loaded address counter value. When the counter   unmasked portion reaches its maximum value set by the mask   register, it wraps back to the initial value stored in this mirror   register. If the counter is continuously configured in increment   mode, it increments again to its maximum value and wraps back   to the value initially stored into the mirror register. Thus, the   repeated access of the same data is allowed without the need   for any external logic.   The internal value of the mask register can be read out on the   address lines. Readback is pipelined; the address is valid tCM2   after the next rising edge of the port’s clock. If mask readback   occurs while the port is enabled (CE0 LOW and CE1 HIGH), the   block diagram of the operation.   Counting by Two   When the least significant bit of the mask register is ‘0,’ the   counter increments by two. This may be used to connect the x18   devices as a 36-bit single port SRAM in which the counter of one   port counts even addresses and the counter of the other port   counts odd addresses. This even-odd address scheme stores   one half of the 36-bit data in even memory locations, and the   other half in odd memory locations.   Mask Reset Operation   The mask register is reset to all ‘1s,’ which unmasks every bit of   the counter. Master reset (MRST) also resets the mask register   to all ‘1s’.   Mask Load Operation   The mask register is loaded with the address value presented at   the address lines. Not all values permit correct increment opera-   tions. Permitted values are of the form 2n – 1 or 2n – 2. From the   most significant bit to the least significant bit, permitted values   have zero or more ‘0s,’ one or more ‘1s,’ or one ‘0.’ Thus 3FFFF,   003FE, and 00001 are permitted values, but 3F0FF, 003FC, and   00000 are not.   Document #: 38-06059 Rev. *S   Page 8 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Figure 3. Counter, Mask, and Mirror Logic Block Diagram [1]   CNT/MSK   CNTEN   ADS   Decode   Logic   CNTRST   MRST   Bidirectional   Address   Lines   Mask   Register   Counter/   Address   Register   Address   Decode   RAM   Array   CLK   Load/Increment   17   17   From   Address   Lines   Mirror   Counter   To Readback   and Address   Decode   1 0 1 0 From   Increment   Logic   Mask   Register   17   Wrap   17   17   17   Bit 0   From   Mask   From   Counter   +1   +2   Wrap   Detect   Wrap   To   1 0 17   1 0 Counter   Document #: 38-06059 Rev. *S   Page 9 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   CNTINT   H Example:   Load   Counter-Mask   Register = 3F   0 0 0s   0 1 1 1 1 1 1 216 215   26 25 24 23 22 21 20   Unmasked Address   Mask   Register   bit-0   Masked Address   Load   Address   Counter = 8   H L X X Xs   Xs   Xs   X 0 0 1 0 0 0 216 215   26 25 24 23 22 21 20   Address   Counter   bit-0   Max   Address   Register   X X X 1 1 1 1 1 1 216 215   26 25 24 23 22 21 20   Max + 1   Address   Register   H X X X 0 0 1 0 0 0 216 215   26 25 24 23 22 21 20   IEEE 1149.1 Serial Boundary Scan (JTAG) [21]   Boundary Scan Hierarchy for 9-Mbit Device   Internally, the CY7C0833AV have two DIEs. Each DIE contain all   the circuitry required to support boundary scan testing. The   circuitry includes the TAP, TAP controller, instruction register,   and data registers. The circuity and operation of the DIE   boundary scan are described in detail below. The scan chain of   each DIE are connected serially to form the scan chain of the   are connected in parallel to each DIE to drive all TAP controllers   in unison. In many cases, each DIE is supplied with the same   instruction. In other cases, it might be useful to supply different   instructions to each DIE. One example would be testing the   device ID of one DIE while bypassing the others.   The FLEx18 family devices incorporate an IEEE 1149.1 serial   boundary scan test access port (TAP). The TAP controller   functions in a manner that does not conflict with the operation of   other devices using 1149.1 compliant TAPs. The TAP operates   using JEDEC-standard 3.3V I/O logic levels. It is composed of   three input connections and one output connection required by   the test logic defined by the standard.   Performing a TAP Reset   A reset is performed by forcing TMS HIGH (VDD) for five rising   edges of TCK. This reset does not affect the operation of the   devices, and may be performed while the device is operating. An   MRST must be performed on the devices after power up.   Each pin of FLEx18 family is typically connected to multiple DIEs.   For connectivity testing with the EXTEST instruction, it is   desirable to check the internal connections between DIEs and   the external connections to the package. This is accomplished   by merging the netlist of the devices with the netlist of the user’s   circuit board. To facilitate boundary scan testing of the devices,   Cypress provides the BSDL file for each DIE, the internal netlist   of the device, and a description of the device scan chain. The   user can use these materials to easily integrate the devices into   the board’s boundary scan environment. Further information is   found in the Cypress application note Using JTAG Boundary   Scan For System in a Package (SIP) Dual-Port SRAMs.   Performing a Pause/Restart   When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the scan   chain outputs the next bit in the chain twice. For example, if the   value expected from the chain is 1010101, the device outputs a   11010101. This extra bit causes some testers to report an   erroneous failure for the devices in a scan test. Therefore the   tester should be configured to never enter the PAUSE-DR state.   Notes   20. The “X” in this diagram represents the counter upper bits   21. Boundary scan is IEEE 1149.1-compatible. See Performing a Pause/Restart on page 10 for deviation from strict 1149.1 compliance   Document #: 38-06059 Rev. *S   Page 10 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Figure 5. Scan Chain for 9 Mb Device   TDO   TDO   D2   TDI   TDO   D1   TDI   TDI   Table 4. Identification Register Definitions   Instruction Field   Revision Number (31:28)   Cypress Device ID (27:12)   Value   Description   0h   Reserved for version number.   C090h   C091h   C093h   C094h   034h   1 Defines Cypress part number for CY7C0832AV/CY7C0832BV   Defines Cypress part number for CY7C0831AV   Defines Cypress part number for CY7C0830AV   Defines Cypress part number for CY7C0837AV.   Allows unique identification of the DP family device vendor.   Indicates the presence of an ID register.   Cypress JEDEC ID (11:1)   ID Register Presence (0)   Table 5. Scan Registers Sizes   Register Name   Instruction   Bit Size   4 1 Bypass   Identification   Boundary Scan   32   n[22]   Table 6. Instruction Identification Codes   Instruction   EXTEST   Code   Description   0000   1111   1011   0111   0100   Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.   Places the BYR between TDI and TDO.   BYPASS   IDCODE   HIGHZ   Loads the IDR with the vendor ID code and places the register between TDI and TDO.   Places BYR between TDI and TDO. Forces all device output drivers to a High-Z state.   Controls boundary to 1/0. Places BYR between TDI and TDO.   CLAMP   SAMPLE/PRELOAD 1000   Captures the input/output ring contents. Places BSR between TDI and TDO.   Resets the non-boundary scan logic. Places BYR between TDI and TDO.   NBSRST   1100   RESERVED   All other codes Other combinations are reserved. Do not use other than the above.   Note   22. See details in the device BSDL file.   Document #: 38-06059 Rev. *S   Page 11 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Output Current into Outputs (LOW)............................. 20 mA   Static Discharge Voltage........................................... > 2000V   (JEDEC JESD22-A114-2000B)   Maximum Ratings   device. These user guidelines are not tested.   Latch Up Current.................................................... > 200 mA   Storage Temperature................................. –65°C to +150°C   Ambient Temperature with   Operating Range   Power Applied ............................................ –55°C to +125°C   Supply Voltage to Ground Potential................–0.5V to +4.6V   Ambient   Range   VDD   Temperature   0°C to +70°C   –40°C to +85°C   Commercial   Industrial   3.3V±165 mV   3.3V±165 mV   DC Voltage Applied to   Outputs in High-Z State ......................... –0.5V to VDD + 0.5V   Electrical Characteristics   Over the Operating Range   -167   -133   -100   Parameter   Description   Unit   Min Typ Max Min Typ Max Min Typ Max   VOH   VOL   VIH   VIL   Output HIGH Voltage (VDD = Min., IOH= –4.0 mA)   Output LOW Voltage (VDD = Min., IOL= +4.0 mA)   Input HIGH Voltage   2.4   2.4   2.4   V V 0.4   0.8   0.4   0.4   2.0   2.0   2.0   V Input LOW Voltage   0.8   10   10   0.8   10   10   V IOZ   IIX1   IIX2   ICC   Output Leakage Current   –10   –10   –0.1   10 –10   10 –10   1.0 –0.1   –10   –10   μA   μA   Input Leakage Current Except TDI, TMS, MRST   Input Leakage Current TDI, TMS, MRST   1.0 –0.1   225 300   1.0 mA   mA   Operating Current for   CY7C0837AV   225 300   (VDD = Max., IOUT = 0 mA), Outputs CY7C0830AV   Disabled   CY7C0831AV   CY7C0832AV   CY7C0832BV   CY7C0833AV   270 400   90 115   200 310 mA   [25]   ISB1   Standby Current (Both Ports TTL Level)   90 115   160 210   90   160 210 mA   55 75 mA   160 210 mA   115 mA   CEL and CER ≥ VIH, f = fMAX   [25]   ISB2   Standby Current (One Port TTL Level)   160 210   55 75   160 210   70 100   CEL | CER ≥ VIH, f = fMAX   [25]   ISB3   Standby Current (Both Ports CMOS Level)   55   75   CEL and CER ≥ VDD – 0.2V, f = 0   [25]   ISB4   Standby Current (One Port CMOS Level)   160 210   CEL | CER ≥ VIH, f = fMAX   ISB5   Operating Current (VDD = Max, IOUT CY7C0833AV   = 0 mA, f = 0) Outputs Disabled   70   100 mA   Capacitance   Part Number [26]   Parameter   Description   Test Conditions Max   Unit   CY7C0837AV/CY7C0830AV/CY7C0831AV   CY7C0832AV/CY7C0832BV   CIN   Input Capacitance   TA = 25°C,   f = 1 MHz,   VDD = 3.3V   13   pF   COUT   Output Capacitance   10   pF   CY7C0833AV   CIN   Input Capacitance   Output Capacitance   22   20   pF   pF   COUT   Notes   23. The voltage on any input or I/O pin can not exceed the power pin during power up.   24. Pulse width < 20 ns.   25. I   , I   , I   and I   are not applicable for CY7C0833AV because it can not be powered down by using chip enable pins.   SB1 SB2 SB3   SB4   26. C   also references C   . I/O   OUT   Document #: 38-06059 Rev. *S   Page 12 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Figure 6. AC Test Load and Waveforms   3.3V   Z = 50   Ω R = 50Ω   0 OUTPUT   R1 = 590   R2 = 435   Ω Ω OUTPUT   C = 10 pF   C = 5 pF   V = 1.5V   TH   (a) Normal Load (Load 1)   (b) Three-state Delay (Load 2)   3.0V   90%   10%   90%   10%   ALL INPUT PULSES   Vss   < 2 ns   < 2 ns   Switching Characteristics   Over the Operating Range   -167   -133   CY7C0837AV   CY7C0830AV   -100   CY7C0837AV   CY7C0830AV   CY7C0831AV   CY7C0832AV   Parameter   Description   CY7C0831AV CY7C0833AV CY7C0833AV Unit   CY7C0832AV   CY7C0832BV   Min   Max   Min   Max   Min   Max   Min   Max   fMAX2   tCYC2   tCH2   Maximum Operating Frequency   Clock Cycle Time   167   133   133   100   MHz   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   6.0   2.7   2.7   7.5   3.0   3.0   7.5   3.0   3.0   10   4.0   4.0   Clock HIGH Time   tCL2   Clock LOW Time   tR   Clock Rise Time   2.0   2.0   2.0   2.0   2.0   2.0   3.0   3.0   tF   Clock Fall Time   tSA   Address Setup Time   Address Hold Time   Byte Select Setup Time   Byte Select Hold Time   Chip Enable Setup Time   Chip Enable Hold Time   R/W Setup Time   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   0.6   2.3   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   0.6   2.5   2.5   0.6   2.5   0.6   NA   NA   2.5   0.6   2.5   0.6   NA   NA   NA   NA   NA   NA   NA   3.0   0.6   3.0   0.6   NA   NA   3.0   0.6   3.0   0.6   NA   NA   NA   NA   NA   NA   NA   tHA   tSB   tHB   tSC   tHC   tSW   tHW   tSD   R/W Hold Time   Input Data Setup Time   Input Data Hold Time   ADS Setup Time   tHD   tSAD   tHAD   tSCN   tHCN   tSRST   tHRST   tSCM   ADS Hold Time   CNTEN Setup Time   CNTEN Hold Time   CNTRST Setup Time   CNTRST Hold Time   CNT/MSK Setup Time   Note   27. Except JTAG signals (t and t < 10 ns [max.]).   r f Document #: 38-06059 Rev. *S   Page 13 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Characteristics (continued)   Over the Operating Range   -167   -133   CY7C0837AV   CY7C0830AV   -100   CY7C0837AV   CY7C0830AV   CY7C0831AV   CY7C0832AV   Parameter   Description   CY7C0831AV CY7C0833AV CY7C0833AV Unit   CY7C0832AV   CY7C0832BV   Min   Max   Min   Max   Min   Max   Min   Max   tHCM   tOE   CNT/MSK Hold Time   0.6   0.6   NA   NA   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   ns   Output Enable to Data Valid   OE to Low Z   4.0   4.4   4.7   5.0   tOLZ   0 0 0 0 tOHZ   OE to High Z   4.0   4.0   4.0   4.0   4.4   4.4   4.4   4.4   4.7   4.7   NA   NA   5.0   5.0   NA   NA   tCD2   tCA2   tCM2   tDC   Clock to Data Valid   Clock to Counter Address Valid   Clock to Mask Register Readback Valid   Data Output Hold After Clock HIGH   Clock HIGH to Output High Z   Clock HIGH to Output Low Z   Clock to INT Set Time   1.0   0 1.0   0 1.0   1.0   tCKHZ   4.0   4.0   6.7   6.7   5.0   5.0   4.4   4.4   7.5   7.5   5.7   5.7   4.7   4.7   7.5   7.5   NA   NA   5.0   5.0   10   tCKLZ   1.0   0.5   0.5   0.5   0.5   1.0   0.5   0.5   0.5   0.5   1.0   0.5   0.5   NA   NA   1.0   0.5   0.5   NA   NA   tSINT   tRINT   Clock to INT Reset Time   Clock to CNTINT Set Time   Clock to CNTINT Reset time   10   tSCINT   tRCINT   NA   NA   Port to Port Delays   tCCS   Clock to Clock Skew   5.2   6.0   6.0   8.0   ns   Master Reset Timing   tRS   Master Reset Pulse Width   7.0   6.0   6.0   7.5   6.0   7.5   7.5   6.0   7.5   10   8.5   10   ns   ns   ns   ns   ns   tRS   Master Reset Setup Time   tRSR   Master Reset Recovery Time   Master Reset to Outputs Inactive   tRSF   10.0   10.0   10.0   10.0   10.0   NA   10.0   NA   tRSCNTINT   Master Reset to Counter Interrupt Flag   Reset Time   Notes   28. This parameter is guaranteed by design, but is not production tested.   29. Test conditions used are Load 2.   Document #: 38-06059 Rev. *S   Page 14 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   JTAG Timing and Switching Waveforms   CY7C0837AV/CY7C0830AV   CY7C0831AV/CY7C0832AV   CY7C0832BV/CY7C0833AV   Parameter   Description   Unit   Min   Max   fJTAG   tTCYC   tTH   Maximum JTAG TAP Controller Frequency   TCK Clock Cycle Time   10   MHz   ns   ns   ns   ns   ns   ns   ns   ns   ns   100   40   40   10   10   10   10   TCK Clock HIGH Time   tTL   TCK Clock LOW Time   tTMSS   tTMSH   tTDIS   tTDIH   tTDOV   tTDOX   TMS Setup to TCK Clock Rise   TMS Hold After TCK Clock Rise   TDI Setup to TCK Clock Rise   TDI Hold After TCK Clock Rise   TCK Clock LOW to TDO Valid   TCK Clock LOW to TDO Invalid   30   0 Figure 7. JTAG Switching Waveform   tTH   tTL   Test Clock   TCK   tTCYC   tTMSS   tTMSH   Test Mode Select   TMS   tTDIS   tTDIH   Test Data-In   TDI   Test Data-Out   TDO   tTDOX   tTDOV   Document #: 38-06059 Rev. *S   Page 15 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms   Figure 8. Master Reset   tRS   MRST   tRSF   ALL   ADDRESS/   DATA   tRSS   INACTIVE   LINES   tRSR   ALL   OTHER   INPUTS   ACTIVE   TMS   CNTINT   INT   TDO   tCYC2   tCH2   tCL2   CLK   CE   tSC   tHC   tSC   tHC   tSB   tHB   BE0–BE1   R/W   tSW   tSA   tHW   tHA   ADDRESS   DATAOUT   An   An+1   An+2   An+3   tDC   1 Latency   tCD2   Qn   Qn+1   Qn+2   tOHZ   tCKLZ   tOLZ   OE   t OE   Notes   30. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.   31. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.   32. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.   IH   33. Addresses need not be accessed sequentially because ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.   IL   IH   Numbers are for reference only.   Document #: 38-06059 Rev. *S   Page 16 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   t CYC2   t t CL2   CH2   CLK   t t t HA   SA   A A 4 ADDRESS   A 5 A A A 3 (B1)   0 1 2 t HC   SC   CE   (B1)   t t t t CKHZ   t t t CD2   CD2   CD2   HC   CKHZ   SC   Q Q Q 1 3 DATA   0 OUT(B1)   t t HA   SA   t t t CKLZ   DC   DC   A A 4 A ADDRESS   A 0 A A 3 5 (B2)   1 2 t t HC   SC   CE   (B2)   t t t CD2   t CD2   CKHZ   t SC   HC   DATA   OUT(B2)   Q Q 4 2 t t CKLZ   CKLZ   tCYC2   tCH2   tCL2   CLK   CE   tSC   tHC   tSW   tHW   R/W   tSW   tHW   An   An+1   An+2   An+2   An+3   An+4   ADDRESS   DATAIN   tSD tHD   tSA   tHA   Dn+2   tCD2   tCD2   tCKHZ   Qn   Qn+3   DATAOUT   tCKLZ   READ   NO OPERATION   WRITE   READ   Notes   34. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx18 device from this data sheet. ADDRESS   (B1)   = ADDRESS   . (B2)   35. ADS = CNTEN= BE0 – BE1 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.   36. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.   37. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.   38. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.   0 1 39. CE = BE0 – BE1 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, because OE = LOW, the Write operation cannot be   0 1 completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.   Document #: 38-06059 Rev. *S   Page 17 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   tCYC2   tCH2   tCL2   CLK   CE   tSC   tHC   tHW   tSW   R/W tSW   tHW   An   An+1   An+2   An+3   An+4   An+5   ADDRESS   tSA   tHA   tSD tHD   Dn+2   DATAIN   Dn+3   tCD2   tCD2   DATAOUT   Qn   Qn+4   tOHZ   OE   READ   WRITE   READ   tCYC2   tCL2   tCH2   CLK   tSA   tHA   ADDRESS   An   tSAD   tHAD   ADS   tSAD   tHAD   CNTEN   tSCN   tHCN   tSCN   tHCN   tCD2   Qx–1   Qx   tDC   Qn   Qn+1   COUNTER HOLD   Qn+2   DATAOUT   Qn+3   READ   READ WITH COUNTER   READ WITH COUNTER   EXTERNAL   ADDRESS   Document #: 38-06059 Rev. *S   Page 18 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   tCYC2   tCL2   tCH2   CLK   tSA   tHA   An   ADDRESS   INTERNAL   ADDRESS   An   An+1   An+2   An+3   An+4   tSAD   tHAD   ADS   CNTEN   DATAIN   tSCN   tHCN   Dn   Dn+1   Dn+1   Dn+2   Dn+3   Dn+4   tSD   tHD   WRITE EXTERNAL   ADDRESS   WRITE WITH WRITE COUNTER   COUNTER HOLD   WRITE WITH COUNTER   t CYC2   t t CL2   CH2   CLK   t HA   t SA   A p A m A n ADDRESS   INTERNAL   ADDRESS   A p A x A n 1 0 A m t t HW   SW   R/W   ADS   CNTEN   CNTRST   t t HRST   SRST   t t SD   HD   DATA   IN   D 0 t t CD2   CD2   DATA   Q 0 Q n OUT   Q 1 t CKLZ   READ   ADDRESS 0   READ   ADDRESS 1   READ   ADDRESS A   COUNTER   RESET   WRITE   ADDRESS 0   READ   ADDRESS A   m n Notes   40. CE = BE0 – BE1 = LOW; CE = MRST = CNT/MSK = HIGH.   0 1 41. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.   42. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.   Document #: 38-06059 Rev. *S   Page 19 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   t CYC2   t t CL2   CH2   CLK   t or t   CM2   t t CA2   SA   HA   EXTERNAL   ADDRESS   A A n*   n A –A   0 16   INTERNAL   ADDRESS   An+4   An+1   An+2   An+3   An   t t t SAD   HAD   ADS   t SCN   HCN   CNTEN   t t t CD2   CKHZ   CKLZ   DATA   OUT   Q n+1   Q Q Q Q Qn+3   x-1   n+2   x-2   n LOAD   EXTERNAL   ADDRESS   READBACK   COUNTER   INTERNAL   ADDRESS   INCREMENT   Notes   43. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.   0 1 44. Address in output mode. Host must not be driving address bus after t   in next clock cycle.   CKLZ   45. Address in input mode. Host can drive address bus after t   . CKHZ   46. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.   Document #: 38-06059 Rev. *S   Page 20 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   tCYC2   tCL2   tCH2   CLKL   tHA   tSA   L_PORT   ADDRESS   An   tSW   tHW   R/WL   tCKHZ   tSD   tHD   tCKLZ   L_PORT   DATAIN   Dn   tCCS   tCYC2   tCL2   CLKR   tCH2   tSA   tHA   R_PORT   ADDRESS   An   R/WR   tCD2   R_PORT   DATAOUT   Qn   tDC   Notes   47. CE = OE = ADS = CNTEN = BE0 – BE1 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.   0 1 48. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t   is violated, indeterminate data is Read out.   CCS   49. If t   < minimum specified value, then R_Port is Read the most recent data (written by L_Port) only (2 * t   + t   ) after the rising edge of R_Port's clock. If t   CCS   CYC2   CD2 CCS   > minimum specified value, then R_Port is Read the most recent data (written by L_Port) (t   + t   ) after the rising edge of R_Port's clock.   CYC2   CD2   Document #: 38-06059 Rev. *S   Page 21 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   t CYC2   t t CH2   CL2   CLK   tSCM   tHCM   CNT/MSK   ADS   CNTEN   COUNTER   INTERNAL   ADDRESS   3FFFE   3FFFC   Last_Loaded   3FFFD   3FFFF   Last_Loaded +1   t t RCINT   SCINT   CNTINT   Notes   50. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.   0 1 51. CNTINT is always driven.   52. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.   53. The mask register assumed to have the value of 3FFFFh.   Document #: 38-06059 Rev. *S   Page 22 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Switching Waveforms (continued)   tCYC2   tCL2   tCH2   CLKL   tSA tHA   7FFFF   L_PORT   ADDRESS   An+1   An   An+2   An+3   tSINT   tRINT   INTR   tCYC2   tCL2   tCH2   CLKR   tSA tHA   Am   R_PORT   ADDRESS   Am+1   7FFFF   Am+3   Am+4   Inputs   Outputs   DQ0 – DQ17   High-Z   Operation   OE   CLK   CE0   CE1   R/W   X H X X Deselected   Deselected   Write   X X L X L L L L H H H X L High-Z   DIN   H X DOUT   High-Z   Read   H X Outputs Disabled   Notes   54. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.   0 1 55. Address “7FFFF” is the mailbox location for R_Port of the 9Mb device.   56. L_Port is configured for Write operation, and R_Port is configured for Read operation.   57. At least one byte enable (BE0 – BE1) is required to be active during interrupt operations.   58. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.   59. OE is an asynchronous input signal.   60. When CE changes state, deselection and Read happen after one cycle of latency.   61. CE = OE = LOW; CE = R/W = HIGH.   0 1 Document #: 38-06059 Rev. *S   Page 23 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Ordering Information   512K   × 18 (9M) 3.3V Synchronous CY7C0833AV Dual-Port SRAM   Package   Speed   (MHz)   Operating   Range   Ordering Code   Package Type   Diagram   133 CY7C0833AV-133BBC   CY7C0833AV-133BBI   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   Commercial   Industrial   100 CY7C0833AV-100BBC   CY7C0833AV-100BBI   Commercial   Industrial   256K   × 18 (4M) 3.3V Synchronous CY7C0832AV/CY7C0832BV Dual-Port SRAM   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Package Type   167 CY7C0832AV-167BBC   CY7C0832AV-167AC   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)   Commercial   Commercial   Industrial   CY7C0832AV-167AXC   133 CY7C0832AV-133BBC   CY7C0832AV-133AC   CY7C0832AV-133AXC   CY7C0832AV-133BBI   CY7C0832BV-133AI   CY7C0832AV-133AXI   128K   × 18 (2M) 3.3V Synchronous CY7C0831AV Dual-Port SRAM   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Package Type   167 CY7C0831AV-167BBC   CY7C0831AV-167AC   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch (Pb-Free)   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch (Pb-Free)   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)   Commercial   CY7C0831AV-167AXC   133 CY7C0831AV-133BBC   CY7C0831AV-133BBXC   CY7C0831AV-133AC   Commercial   CY7C0831AV-133AXC   CY7C0831AV-133BBI   CY7C0831AV-133BBXI   CY7C0831AV-133AI   Industrial   CY7C0831AV-133AXI   64K   × 18 (1M) 3.3V Synchronous CY7C0830AV Dual-Port SRAM   Speed   (MHz)   Package   Diagram   Operating   Range   Ordering Code   Package Type   167 CY7C0830AV-167BBC   CY7C0830AV-167AC   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)   Commercial   Commercial   Industrial   133 CY7C0830AV-133BBC   CY7C0830AV-133AC   CY7C0830AV-133BBI   CY7C0830AV-133AI   Document #: 38-06059 Rev. *S   Page 24 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Ordering Information   32K   × 18 (512K) 3.3V Synchronous CY7C0837AV Dual-Port SRAM   Package   Speed   (MHz)   Operating   Range   Ordering Code   Package Type   Diagram   167 CY7C0837AV-167BBC   133 CY7C0837AV-133BBC   CY7C0837AV-133BBI   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch   Commercial   Commercial   Industrial   Package Diagrams   Figure 20. 144-Ball FBGA (13 x 13 x 1.6 mm) (51-85141)   TOP VIEW   BOTTOM VIEW   Ø0.05 M C   Ø0.25 M C A B   +0.10   A1 CORNER   Ø0.50 (144X)   -0.05   1 2 3 4 5 6 7 8 9 10   11 12   12 11 10   9 8 7 6 5 3 2 1 4 A B A B C D E C D E F G F G H J H J K K L L M M 5.50   A A 1.00   13.00 0.10   B 11.00   13.00 0.10   B 0.15(4X)   DIMENSIONS IN MILLIMETERS   REFERENCE JEDEC: PUBLICATION 95   DESIGN GUIDE 4.14D   PKG. WEIGHT: 0.53 gms   SEATING PLANE   C 51-85141-*B   Document #: 38-06059 Rev. *S   Page 25 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Package Diagrams   Figure 21. 120-Pin Thin Quad Flatpack (14 x 14 x 1.4 mm) (51-85100)   51-85100-**   Document #: 38-06059 Rev. *S   Page 26 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Document History Page   Document Title: CY7C0837AV/CY7C0830AV/CY7C0831AV/CY7C0832AV/CY7C0832BV/CY7C0833AV, FLEx18™ 3.3V   64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM   Document Number: 38-06059   Orig. of   Change   Submission   Date   Rev.   ECN No.   Description of Change   **   111473   111942   DSG   JFU   11/27/01   12/21/01   Change from Spec number: 38-01056 to 38-06059   *A   Updated capacitance values   Updated switching parameters and ISB3   Updated “Read-to-Write-to-Read (OE Controlled)” waveform   Revised static discharge voltage   Revised footnote regarding ISB3   *B   113741   KRE   04/02/02   Updated Isb values   Updated ESD voltage   Corrected 0853 pins L3 and L12   *C   *D   *E   *F   *G   114704   115336   122307   123636   126053   KRE   KRE   RBI   04/24/02   07/01/02   12/27/02   1/27/03   Added discussion of Pause/Restart for JTAG boundary scan   Revised speed offerings for all densities   Power up requirements added to Maximum Ratings Information   Revise tcd2, tOE, tOHZ, tCKHZ, tCKLZ for the CY7C0853V to 4.7 ns   KRE   SPN   08/11/03   Separated out 4M and 9M data sheets   Updated Isb and ICC values   *H   *I   129443   231993   RAZ   YDT   11/03/03   See ECN   Updated Isb and ICC values   Removed “A particular port can write to a certain location while another port is   reading that location.” from Functional Description.   *J   231813   WWZ   See ECN   Removed x36 devices (CY7C0852/CY7C0851) from this datasheet. Added   0.5M, 1M and 9M x18 devices to it. Changed title to FLEx18 3.3V   32K/64K/128K/256K/512K x18 Synchronous Dual-Port RAM. Changed   datasheet to accommodate the removals and additions. Removed general   JTAG description. Updated JTAG ID codes for all devices. Added 144FBGA   package for all devices. Updated selection guide table and moved to the front   page. Updated block diagram to reflect x18 configuration. Added preliminary   status back due to the addition of the new devices.   *K   *L   311054   329111   RYQ   SPN   See ECN   See ECN   Minor Change: Correct the revision indicated on the footer.   Updated Marketing part numbers   Updated tRSF   *M   *N   330561   375198   RUY   YDT   See ECN   See ECN   Added Byte Select Operation Table   Removed Preliminary status   Added ISB5   Changed tRSCNTINT to 10ns   *O   *P   391525   414109   SPN   LIJ   See ECN   See ECN   Updated Counter reset section to reflect what is loaded into the mirror register   Corrected Ordering Codes for 0831 devices in the 133 Mhz speed bin.   Added CY7C0833AV-133BBI.   *Q   461113   YDT   SEE ECN   Changed VDDIO to VDD (typo)   Added lead(Pb)-free parts   Corrected typo in DC table   *R   *S   2544945 VKN/AESA   2668478 VKN/PYRS   07/29/08   02/04/09   Updated Template. Updated ordering information   Added CY7C0832BV part   Added footnote #1   Updated Ordering information table   Document #: 38-06059 Rev. *S   Page 27 of 28   CY7C0837AV, CY7C0830AV   CY7C0831AV, CY7C0832AV   CY7C0832BV, CY7C0833AV   Sales, Solutions, and Legal Information   Worldwide Sales and Design Support   Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office   closest to you, visit us at cypress.com/sales.   Products   PSoC   PSoC Solutions   General   psoc.cypress.com   clocks.cypress.com   wireless.cypress.com   memory.cypress.com   image.cypress.com   psoc.cypress.com/solutions   psoc.cypress.com/low-power   psoc.cypress.com/precision-analog   psoc.cypress.com/lcd-drive   psoc.cypress.com/can   Clocks & Buffers   Wireless   Low Power/Low Voltage   Precision Analog   LCD Drive   Memories   Image Sensors   CAN 2.0b   USB   psoc.cypress.com/usb   © Cypress Semiconductor Corporation, 2001-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use   of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used   for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use   as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support   systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),   United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,   and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress   integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without   the express written permission of Cypress.   Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not   assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where   a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer   assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Use may be limited by and subject to the applicable Cypress software license agreement.   Document #: 38-06059 Rev. *S   Revised March 03, 2009   Page 28 of 28   FLEx18 is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.   |