| 	
		 CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					72-Mbit (2M x 36/4M x 18/1M x 72)   
					Flow-Through SRAM with NoBL™ Architecture   
					Features   
					Functional Description   
					■ No Bus Latency™ (NoBL™) architecture eliminates dead   
					cycles between write and read cycles   
					The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25   
					are 2.5V, 2M x 36/4M x 18/1M x 72 synchronous flow through   
					burst SRAMs designed specifically to support unlimited true   
					back-to-back read or write operations without the insertion of   
					wait states. The CY7C1471BV25, CY7C1473BV25, and   
					CY7C1475BV25 are equipped with the advanced No Bus   
					Latency (NoBL) logic required to enable consecutive read or   
					write operations with data transferred on every clock cycle. This   
					feature dramatically improves the throughput of data through the   
					SRAM, especially in systems that require frequent write-read   
					transitions.   
					■ Supports up to 133 MHz bus operations with zero wait states   
					■ Data transfers on every clock   
					■ Pin compatible and functionally equivalent to ZBT™ devices   
					■ Internally self timed output buffer control to eliminate the need   
					to use OE   
					■ Registered inputs for flow through operation   
					All synchronous inputs pass through input registers controlled by   
					the rising edge of the clock. The clock input is qualified by the   
					Clock Enable (CEN) signal, which when deasserted suspends   
					operation and extends the previous clock cycle. Maximum   
					access delay from the clock rise is 6.5 ns (133-MHz device).   
					■ Byte Write capability   
					■ 2.5V IO supply (V   
					) 
					DDQ   
					■ Fast clock-to-output times   
					❐ 6.5 ns (for 133-MHz device)   
					Write operations are controlled by two or four Byte Write Select   
					■ Clock Enable (CEN) pin to enable clock and suspend operation   
					■ Synchronous self timed writes   
					(BW ) and a Write Enable (WE) input. All writes are conducted   
					X 
					with on-chip synchronous self timed write circuitry.   
					Three synchronous Chip Enables (CE , CE , CE ) and an   
					1 
					2 
					3 
					■ Asynchronous Output Enable (OE)   
					asynchronous Output Enable (OE) provide easy bank selection   
					and output tri-state control. To avoid bus contention, the output   
					drivers are synchronously tri-stated during the data portion of a   
					write sequence.   
					■ CY7C1471BV25, CY7C1473BV25 available in   
					JEDEC-standard Pb-free 100-pin TQFP, Pb-free and   
					non-Pb-free 165-ball FBGA package. CY7C1475BV25   
					available in Pb-free and non-Pb-free 209-ball FBGA package.   
					For best practice recommendations, refer to the Cypress appli-   
					cation note AN1064, SRAM System Guidelines.   
					■ Three Chip Enables (CE , CE , CE ) for simple depth   
					1 
					2 
					3 
					expansion.   
					■ Automatic power down feature available using ZZ mode or CE   
					deselect.   
					■ IEEE 1149.1 JTAG Boundary Scan compatible   
					■ Burst Capability - linear or interleaved burst order   
					■ Low standby power   
					Selection Guide   
					Description   
					Maximum Access Time   
					133 MHz   
					100 MHz   
					8.5   
					Unit   
					ns   
					6.5   
					305   
					120   
					Maximum Operating Current   
					275   
					mA   
					mA   
					Maximum CMOS Standby Current   
					120   
					Cypress Semiconductor Corporation   
					Document #: 001-15013 Rev. *E   
					• 
					198 Champion Court   
					• 
					San Jose, CA 95134-1709   
					• 
					408-943-2600   
					Revised February 29, 2008   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Logic Block Diagram – CY7C1475BV25 (1M x 72)   
					ADDRESS   
					REGISTER   
					A0, A1,   
					A 
					0 
					A1   
					A0   
					A1'   
					A0'   
					D1   
					D0   
					Q1   
					Q0   
					BURST   
					LOGIC   
					MODE   
					C 
					ADV/LD   
					CLK   
					CEN   
					C 
					WRITE ADDRESS   
					WRITE ADDRESS   
					REGISTER   
					1 
					REGISTER   
					2 
					O 
					U 
					T 
					O 
					U 
					T 
					P 
					U 
					T 
					S 
					E 
					N 
					S 
					E 
					P 
					U 
					T 
					D 
					A 
					T 
					A 
					ADV/LD   
					BW   
					BW   
					BW   
					BW   
					BW   
					BW   
					BW   
					a 
					R 
					E 
					G 
					I 
					MEMORY   
					ARRAY   
					B 
					U 
					F 
					DQ s   
					WRITE   
					DRIVERS   
					b 
					c 
					S 
					T 
					E 
					E 
					R 
					I 
					A 
					M 
					P 
					DQ Pa   
					DQ Pb   
					DQ Pc   
					DQ Pd   
					DQ Pe   
					DQ Pf   
					DQ Pg   
					DQ Ph   
					WRITE REGISTRY   
					AND DATA COHERENCY   
					CONTROL LOGIC   
					F 
					S 
					T 
					E 
					R 
					S 
					d 
					e 
					E 
					R 
					S 
					S 
					f 
					N 
					G 
					g 
					E 
					E 
					BW   
					h 
					WE   
					INPUT   
					REGISTER 1   
					INPUT   
					REGISTER 0   
					E 
					E 
					OE   
					CE1   
					CE2   
					CE3   
					READ LOGIC   
					Sleep Control   
					ZZ   
					Document #: 001-15013 Rev. *E   
					Page 3 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Pin Configurations   
					Figure 1. 100- Pin TQFP Pinout   
					DQPC   
					DQC   
					DQC   
					VDDQ   
					VSS   
					80   
					79   
					78   
					77   
					76   
					75   
					74   
					73   
					72   
					71   
					70   
					69   
					68   
					67   
					66   
					65   
					64   
					63   
					62   
					61   
					60   
					59   
					58   
					57   
					56   
					55   
					54   
					53   
					52   
					51   
					1 
					DQPB   
					DQB   
					DQB   
					VDDQ   
					VSS   
					2 
					3 
					4 
					5 
					DQC   
					6 
					DQB   
					DQB   
					DQB   
					DQB   
					VSS   
					BYTE C   
					BYTE B   
					DQC   
					DQC   
					DQC   
					VSS   
					7 
					8 
					9 
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					VDDQ   
					DQC   
					DQC   
					NC   
					VDDQ   
					DQB   
					DQB   
					VSS   
					CY7C1471BV25   
					VDD   
					NC   
					NC   
					VDD   
					ZZ   
					VSS   
					DQD   
					DQD   
					VDDQ   
					VSS   
					DQA   
					DQA   
					VDDQ   
					VSS   
					DQD   
					DQA   
					DQA   
					DQA   
					DQA   
					VSS   
					DQD   
					BYTE D   
					BYTE A   
					DQD   
					DQD   
					VSS   
					VDDQ   
					DQD   
					DQD   
					DQPD   
					VDDQ   
					DQA   
					DQA   
					DQPA   
					Document #: 001-15013 Rev. *E   
					Page 4 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Pin Configurations (continued)   
					Figure 2. 100-Pin TQFP Pinout   
					NC   
					1 
					NC   
					2 
					NC   
					3 
					VDDQ   
					4 
					VSS   
					5 
					NC   
					6 
					NC   
					7 
					DQB   
					8 
					80   
					79   
					78   
					77   
					76   
					75   
					74   
					73   
					72   
					71   
					70   
					69   
					68   
					67   
					66   
					65   
					64   
					63   
					62   
					61   
					60   
					59   
					58   
					57   
					56   
					55   
					54   
					53   
					52   
					51   
					A 
					NC   
					NC   
					VDDQ   
					VSS   
					NC   
					DQPA   
					DQA   
					DQA   
					VSS   
					VDDQ   
					DQA   
					DQA   
					VSS   
					NC   
					DQB   
					9 
					VSS   
					VDDQ   
					DQB   
					DQB   
					NC   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					BYTE A   
					VDD   
					NC   
					CY7C1473BV25   
					BYTE B   
					VDD   
					ZZ   
					VSS   
					DQB   
					DQB   
					VDDQ   
					VSS   
					DQA   
					DQA   
					VDDQ   
					VSS   
					DQA   
					DQA   
					NC   
					DQB   
					DQB   
					DQPB   
					NC   
					NC   
					VSS   
					VSS   
					VDDQ   
					NC   
					VDDQ   
					NC   
					NC   
					NC   
					NC   
					NC   
					Document #: 001-15013 Rev. *E   
					Page 5 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Pin Configurations (continued)   
					165-Ball FBGA (15 x 17 x 1.4 mm) Pinout   
					CY7C1471BV25 (2M x 36)   
					1 
					2 
					A 
					3 
					CE1   
					4 
					BWC   
					5 
					BWB   
					6 
					CE   
					7 
					CEN   
					8 
					9 
					A 
					10   
					A 
					11   
					NC   
					NC/576M   
					NC/1G   
					DQPC   
					DQC   
					ADV/LD   
					A 
					B 
					C 
					D 
					3 
					CE2   
					VDDQ   
					VDDQ   
					CLK   
					VSS   
					VSS   
					A 
					A 
					NC   
					A 
					BWD   
					VSS   
					BWA   
					VSS   
					VSS   
					WE   
					VSS   
					VSS   
					OE   
					VSS   
					VDD   
					NC   
					DQC   
					VDDQ   
					VDDQ   
					NC   
					DQPB   
					DQB   
					VDD   
					DQB   
					DQC   
					DQC   
					DQC   
					NC   
					DQC   
					DQC   
					DQC   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					DQB   
					DQB   
					DQB   
					NC   
					DQB   
					DQB   
					DQB   
					ZZ   
					E 
					F 
					G 
					H 
					J 
					DQD   
					DQD   
					DQD   
					DQD   
					DQD   
					DQD   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					DQA   
					DQA   
					DQA   
					DQA   
					DQA   
					DQA   
					K 
					L 
					DQD   
					DQPD   
					DQD   
					NC   
					A 
					VDDQ   
					VDDQ   
					A 
					VDD   
					VSS   
					A 
					VSS   
					NC   
					VSS   
					NC   
					A1   
					VSS   
					NC   
					VDD   
					VSS   
					A 
					VDDQ   
					VDDQ   
					A 
					DQA   
					NC   
					A 
					DQA   
					DQPA   
					M 
					N 
					P 
					NC/144M   
					TDI   
					TDO   
					NC/288M   
					A0   
					MODE   
					A 
					A 
					A 
					TMS   
					TCK   
					A 
					A 
					A 
					A 
					R 
					CY7C1473BV25 (4M x 18)   
					1 
					NC/576M   
					NC/1G   
					NC   
					2 
					A 
					3 
					CE1   
					4 
					BWB   
					5 
					NC   
					6 
					CE   
					7 
					CEN   
					8 
					9 
					A 
					10   
					A 
					11   
					A 
					ADV/LD   
					A 
					B 
					C 
					D 
					3 
					A 
					CE2   
					VDDQ   
					VDDQ   
					NC   
					VSS   
					VDD   
					CLK   
					VSS   
					VSS   
					A 
					A 
					NC   
					BWA   
					VSS   
					VSS   
					WE   
					VSS   
					VSS   
					OE   
					VSS   
					VDD   
					NC   
					DQB   
					VDDQ   
					VDDQ   
					NC   
					NC   
					DQPA   
					DQA   
					NC   
					NC   
					NC   
					DQB   
					DQB   
					DQB   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VSS   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDD   
					VDDQ   
					VDDQ   
					VDDQ   
					NC   
					NC   
					NC   
					DQA   
					DQA   
					DQA   
					ZZ   
					E 
					F 
					NC   
					NC   
					G 
					H 
					J 
					NC   
					NC   
					DQB   
					DQB   
					DQB   
					NC   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					VDDQ   
					DQA   
					DQA   
					DQA   
					NC   
					NC   
					NC   
					K 
					L 
					NC   
					NC   
					DQB   
					DQPB   
					NC   
					NC   
					A 
					VDDQ   
					VDDQ   
					A 
					VDD   
					VSS   
					A 
					VSS   
					NC   
					VSS   
					NC   
					A1   
					VSS   
					NC   
					VDD   
					VSS   
					A 
					VDDQ   
					VDDQ   
					A 
					DQA   
					NC   
					A 
					NC   
					NC   
					M 
					N 
					P 
					NC/144M   
					TDI   
					TDO   
					NC/288M   
					A0   
					MODE   
					A 
					A 
					A 
					TMS   
					TCK   
					A 
					A 
					A 
					A 
					R 
					Document #: 001-15013 Rev. *E   
					Page 6 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Pin Configurations (continued)   
					209-Ball FBGA (14 x 22 x 1.76 mm) Pinout   
					CY7C1475BV25 (1M × 72)   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					11   
					DQb   
					DQb   
					DQb   
					DQb   
					DQg   
					DQg   
					DQg   
					DQg   
					A 
					CE   
					A 
					ADV/LD   
					WE   
					A 
					A 
					CE   
					A 
					DQb   
					DQb   
					A 
					B 
					2 
					3 
					BWS   
					BWS   
					NC   
					BWS   
					BWS   
					NC   
					BWS   
					f 
					c 
					g 
					b 
					e 
					DQg   
					DQg   
					BWS   
					BWS NC/576M CE   
					NC   
					NC   
					BWS   
					a 
					DQb   
					DQb   
					C 
					h 
					d 
					1 
					DQg   
					DQPg   
					DQc   
					DQg   
					DQPc   
					DQc   
					V 
					NC   
					NC/1G   
					OE   
					V 
					SS   
					D 
					E 
					SS   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					DD   
					DDQ   
					DDQ   
					DDQ   
					DQPf   
					DQf   
					DQPb   
					DQf   
					DDQ   
					DD   
					DD   
					F 
					V 
					V 
					V 
					V 
					V 
					NC   
					NC   
					NC   
					NC   
					CEN   
					NC   
					NC   
					V 
					SS   
					SS   
					SS   
					SS   
					SS   
					SS   
					G 
					H 
					J 
					DQc   
					DQc   
					V 
					DQc   
					V 
					V 
					V 
					V 
					V 
					DD   
					DDQ   
					DDQ   
					DQf   
					DQf   
					DD   
					DDQ   
					DQf   
					DDQ   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					DQc   
					DQc   
					NC   
					SS   
					SS   
					SS   
					SS   
					SS   
					SS   
					DQf   
					DQf   
					NC   
					V 
					DQc   
					NC   
					V 
					V 
					V 
					V 
					DDQ   
					DD   
					DD   
					DDQ   
					DDQ   
					DDQ   
					DQf   
					NC   
					K 
					L 
					CLK   
					V 
					V 
					NC   
					SS   
					SS   
					DD   
					NC   
					NC   
					DQh   
					DQh   
					DQh   
					V 
					V 
					V 
					V 
					DDQ   
					V 
					V 
					DDQ   
					DD   
					DDQ   
					DQa   
					DQa   
					DQa   
					DDQ   
					M 
					N 
					P 
					R 
					T 
					V 
					V 
					V 
					V 
					V 
					SS   
					DQh   
					DQh   
					DQh   
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					SS   
					DQa   
					DQa   
					DQa   
					V 
					V 
					DQh   
					DQh   
					DQPd   
					DQd   
					DQd   
					V 
					V 
					V 
					NC   
					ZZ   
					DD   
					DD   
					DDQ   
					DDQ   
					DDQ   
					DDQ   
					DQa   
					DQa   
					DQPa   
					DQe   
					DQe   
					V 
					V 
					V 
					V 
					V 
					V 
					SS   
					SS   
					SS   
					SS   
					DD   
					SS   
					SS   
					V 
					V 
					V 
					V 
					V 
					DQPh   
					DQd   
					DQd   
					DQd   
					DQd   
					V 
					V 
					DDQ   
					DD   
					DDQ   
					DDQ   
					DDQ   
					DD   
					DQPe   
					DQe   
					DQe   
					DQe   
					DQe   
					V 
					NC   
					A 
					V 
					NC   
					A 
					NC   
					A 
					NC   
					A 
					MODE   
					A 
					SS   
					SS   
					U 
					V 
					W 
					NC/288M   
					NC/144M   
					A 
					A 
					A1   
					A 
					DQd   
					DQd   
					A 
					A 
					A 
					A 
					DQe   
					DQe   
					TDI   
					TDO   
					TCK   
					A0   
					A 
					TMS   
					Document #: 001-15013 Rev. *E   
					Page 7 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 1. Pin Definitions   
					Name IO   
					A , A , A   
					Description   
					Input-   
					Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge   
					0 
					1 
					Synchronous   
					of the CLK. A   
					are fed to the two-bit burst counter.   
					[1:0]   
					BW , BW ,   
					Input-   
					Synchronous   
					Byte Write Inputs, Active LOW. Qualified with WE to conduct writes to the SRAM. Sampled   
					on the rising edge of CLK.   
					A 
					B 
					BW , BW ,   
					C 
					D 
					BW , BW ,   
					E 
					F 
					BW , BW   
					G 
					H 
					WE   
					Input-   
					Synchronous   
					Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW.   
					This signal must be asserted LOW to initiate a write sequence.   
					ADV/LD   
					Input-   
					Synchronous   
					Advance/Load Input. Used to advance the on-chip address counter or load a new address.   
					When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a   
					new address can be loaded into the device for an access. After being deselected, ADV/LD must   
					be driven LOW to load a new address.   
					CLK   
					Input-   
					Clock   
					Clock Input. Captures all synchronous inputs to the device. CLK is qualified with CEN. CLK is   
					only recognized if CEN is active LOW.   
					CE   
					CE   
					CE   
					Input-   
					Synchronous   
					Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction   
					1 
					2 
					3 
					with CE and CE to select or deselect the device.   
					2 
					3 
					Input-   
					Synchronous   
					Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction   
					with CE and CE to select or deselect the device.   
					1 
					3 
					Input-   
					Synchronous   
					Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction   
					with CE and CE to select or deselect the device.   
					1 
					2 
					OE   
					Input-   
					Asynchronous   
					Output Enable, Asynchronous Input, Active LOW. Combined with the synchronous logic   
					block inside the device to control the direction of the IO pins. When LOW, the IO pins are enabled   
					to behave as outputs. When deasserted HIGH, IO pins are tri-stated, and act as input data pins.   
					OE is masked during the data portion of a write sequence, during the first clock when emerging   
					from a deselected state, when the device has been deselected.   
					CEN   
					ZZ   
					Input-   
					Synchronous   
					Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the   
					SRAM. When deasserted HIGH the clock signal is masked. Because deasserting CEN does   
					not deselect the device, CEN can be used to extend the previous cycle when required.   
					Input-   
					Asynchronous   
					ZZ “Sleep” Input. This active HIGH input places the device in a non-time-critical “sleep”   
					condition with data integrity preserved. For normal operation, this pin must be LOW or left   
					floating. ZZ pin has an internal pull down.   
					IO-   
					Bidirectional Data IO Lines. As inputs, they feed into an on-chip data register that is triggered   
					by the rising edge of CLK. As outputs, they deliver the data contained in the memory location   
					specified by the addresses presented during the previous clock rise of the read cycle. The   
					direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs.   
					DQ   
					s 
					Synchronous   
					When HIGH, DQ and DQP are placed in a tri-state condition.The outputs are automatically   
					s 
					X 
					tri-stated during the data portion of a write sequence, during the first clock when emerging from   
					a deselected state, and when the device is deselected, regardless of the state of OE.   
					IO-   
					Bidirectional Data Parity IO Lines. Functionally, these signals are identical to DQ . During   
					DQP   
					s 
					X 
					Synchronous   
					write sequences, DQP is controlled by BW correspondingly.   
					X 
					X 
					MODE   
					Input Strap Pin   
					Mode Input. Selects the Burst Order of the Device.   
					When tied to Gnd selects linear burst sequence. When tied to V or left floating selects inter-   
					DD   
					leaved burst sequence.   
					V 
					V 
					V 
					Power Supply   
					Power Supply Inputs to the Core of the Device.   
					DD   
					IO Power Supply Power Supply for the IO Circuitry.   
					Ground Ground for the Device.   
					JTAG serial output Serial Data Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If the JTAG   
					DDQ   
					SS   
					TDO   
					Synchronous   
					feature is not used, this pin must be left unconnected. This pin is not available on TQFP   
					packages.   
					Document #: 001-15013 Rev. *E   
					Page 8 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 1. Pin Definitions (continued)   
					Name IO   
					Description   
					TDI   
					JTAG serial input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is   
					Synchronous   
					not used, leave this pin floating or connected to V through a pull up resistor. This pin is not   
					DD   
					available on TQFP packages.   
					TMS   
					JTAG serial input Serial Data In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is   
					Synchronous   
					JTAG-Clock   
					- 
					not used, this pin can be disconnected or connected to V . This pin is not available on TQFP   
					packages.   
					DD   
					TCK   
					NC   
					Clock Input to the JTAG Circuitry. If the JTAG feature is not used, connect this pin to V   
					. 
					SS   
					This pin is not available on TQFP packages.   
					No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are address   
					expansion pins and are not internally connected to the die.   
					deselected at clock rise by one of the chip enable signals, the   
					output is tri-stated immediately.   
					Functional Overview   
					The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25   
					are synchronous flow through burst SRAMs designed specifi-   
					cally to eliminate wait states during write read transitions. All   
					synchronous inputs pass through input registers controlled by   
					the rising edge of the clock. The clock signal is qualified with the   
					Clock Enable input signal (CEN). If CEN is HIGH, the clock signal   
					is not recognized and all internal states are maintained. All   
					synchronous operations are qualified with CEN. Maximum   
					Burst Read Accesses   
					The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25   
					has an on-chip burst counter that enables the user the ability to   
					supply a single address and conduct up to four reads without   
					reasserting the address inputs. ADV/LD must be driven LOW to   
					load a new address into the SRAM, as described in the Single   
					Read Access section. The sequence of the burst counter is   
					determined by the MODE input signal. A LOW input on MODE   
					selects a linear burst mode, a HIGH selects an interleaved burst   
					sequence. Both burst counters use A0 and A1 in the burst   
					sequence, and wraps around when incremented sufficiently. A   
					HIGH input on ADV/LD increments the internal burst counter   
					regardless of the state of chip enable inputs or WE. WE is latched   
					at the beginning of a burst cycle. Therefore, the type of access   
					(read or write) is maintained throughout the burst sequence.   
					access delay from the clock rise (t   
					device).   
					) is 6.5 ns (133-MHz   
					CDV   
					Accesses are initiated by asserting all three Chip Enables (CE ,   
					1 
					CE , CE ) active at the rising edge of the clock. If CEN is active   
					2 
					3 
					LOW and ADV/LD is asserted LOW, the address presented to   
					the device is latched. The access is either a read or write   
					operation, depending on the status of the Write Enable (WE).   
					Use Byte Write Select (BW ) to conduct Byte Write operations.   
					X 
					Write operations are qualified by the WE. All writes are simplified   
					with on-chip synchronous self- timed write circuitry.   
					Single Write Accesses   
					Write accesses are initiated when these conditions are satisfied   
					at clock rise:   
					Three synchronous Chip Enables (CE , CE , CE ) and an   
					1 
					2 
					3 
					asynchronous Output Enable (OE) simplify depth expansion. All   
					operations (reads, writes, and deselects) are pipelined. ADV/LD   
					must be driven LOW after the device is deselected to load a new   
					address for the next operation.   
					■ CEN is asserted LOW   
					■ CE , CE , and CE are ALL asserted active   
					1 
					2 
					3 
					■ WE is asserted LOW.   
					Single Read Accesses   
					The address presented to the address bus is loaded into the   
					Address Register. The write signals are latched into the Control   
					Logic block. The data lines are automatically tri-stated   
					regardless of the state of the OE input signal. This allows the   
					A read access is initiated when the following conditions are   
					satisfied at clock rise:   
					■ CEN is asserted LOW   
					external logic to present the data on DQs and DQP .   
					X 
					■ CE , CE , and CE are ALL asserted active   
					1 
					2 
					3 
					On the next clock rise the data presented to DQs and DQP (or   
					X 
					
					
					device and the write is complete. Additional accesses   
					(read/write/deselect) can be initiated on this cycle.   
					■ WE is deasserted HIGH   
					■ ADV/LD is asserted LOW.   
					The address presented to the address inputs is latched into the   
					Address Register and presented to the memory array and control   
					logic. The control logic determines that a read access is in   
					progress and allows the requested data to propagate to the   
					output buffers. The data is available within 6.5 ns (133-MHz   
					device) provided OE is active LOW. After the first clock of the   
					read access, the output buffers are controlled by OE and the   
					internal control logic. OE must be driven LOW to drive out the   
					requested data. On the subsequent clock, another operation   
					(read/write/deselect) can be initiated. When the SRAM is   
					The data written during the write operation is controlled by BW   
					X 
					signals.   
					The   
					CY7C1471BV25,   
					CY7C1473BV25, and   
					CY7C1475BV25 provide Byte Write capability that is described   
					
					with the selected BW input selectively writes to only the desired   
					x 
					bytes. Bytes not selected during a Byte Write operation remain   
					unaltered. A synchronous self timed write mechanism is   
					provided to simplify the write operations. Byte Write capability is   
					Document #: 001-15013 Rev. *E   
					Page 9 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					included to greatly simplify read/modify/write sequences, which   
					can be reduced to simple byte write operations.   
					Table 2. Interleaved Burst Address Table   
					(MODE = Floating or V   
					) 
					DD   
					Because the CY7C1471BV25, CY7C1473BV25, and   
					CY7C1475BV25 are common IO devices, data must not be   
					driven into the device while the outputs are active. The OE can   
					be deasserted HIGH before presenting data to the DQs and   
					First   
					Second   
					Address   
					A1: A0   
					Third   
					Address   
					A1: A0   
					Fourth   
					Address   
					A1: A0   
					Address   
					A1: A0   
					00   
					01   
					10   
					11   
					01   
					00   
					11   
					10   
					10   
					11   
					00   
					01   
					11   
					10   
					01   
					00   
					DQP inputs. This tri-states the output drivers. As a safety   
					X 
					precaution, DQs and DQP are automatically tri-stated during   
					X 
					the data portion of a write cycle, regardless of the state of OE.   
					Burst Write Accesses   
					The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25   
					have an on-chip burst counter that makes it possible to supply a   
					single address and conduct up to four Write operations without   
					reasserting the address inputs. Drive ADV/LD LOW to load the   
					initial address, as described in the Single Write Access section.   
					When ADV/LD is driven HIGH on the subsequent clock rise, the   
					Table 3. Linear Burst Address Table   
					(MODE = GND)   
					First   
					Address   
					A1: A0   
					Second   
					Address   
					A1: A0   
					Third   
					Address   
					A1: A0   
					Fourth   
					Address   
					A1: A0   
					Chip Enables (CE , CE , and CE ) and WE inputs are ignored   
					1 
					2 
					3 
					and the burst counter is incremented. You must drive the correct   
					00   
					01   
					10   
					11   
					01   
					10   
					11   
					00   
					10   
					11   
					00   
					01   
					11   
					00   
					01   
					10   
					BW inputs in each cycle of the Burst Write to write the correct   
					X 
					data bytes.   
					Sleep Mode   
					The ZZ input pin is an asynchronous input. Asserting ZZ places   
					the SRAM in a power conservation “sleep” mode. Two clock   
					cycles are required to enter into or exit from this “sleep” mode.   
					While in this mode, data integrity is guaranteed. Accesses   
					pending when entering the “sleep” mode are not considered valid   
					nor is the completion of the operation guaranteed. You must   
					select the device before entering the “sleep” mode. CE , CE ,   
					1 
					2 
					and CE , must remain inactive for the duration of t   
					after the   
					3 
					ZZREC   
					ZZ input returns LOW.   
					ZZ Mode Electrical Characteristics   
					Parameter   
					Description   
					Sleep mode standby current   
					Device operation to ZZ   
					Test Conditions   
					ZZ > V – 0.2V   
					Min   
					Max   
					120   
					Unit   
					mA   
					ns   
					I 
					t 
					t 
					t 
					t 
					DDZZ   
					DD   
					ZZ > V – 0.2V   
					2t   
					ZZS   
					DD   
					CYC   
					ZZ recovery time   
					ZZ < 0.2V   
					2t   
					ns   
					ZZREC   
					ZZI   
					CYC   
					ZZ active to sleep current   
					ZZ Inactive to exit sleep current   
					This parameter is sampled   
					This parameter is sampled   
					2t   
					ns   
					CYC   
					0 
					ns   
					RZZI   
					Document #: 001-15013 Rev. *E   
					Page 10 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 4. Truth Table   
					
					The truth table for CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25 follows.   
					Address   
					Operation   
					Deselect Cycle   
					CE CE   
					ZZ ADV/LD   
					WE   
					BW   
					X 
					OE   
					CEN CLK   
					DQ   
					CE   
					1 
					2 
					3 
					Used   
					None   
					H 
					X 
					X 
					X 
					L 
					X 
					X 
					L 
					X 
					H 
					X 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					X 
					X 
					X 
					X 
					H 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L->H   
					L->H   
					L->H   
					L->H   
					Tri-State   
					Tri-State   
					Tri-State   
					Tri-State   
					Deselect Cycle   
					None   
					Deselect Cycle   
					None   
					Continue Deselect Cycle   
					None   
					X 
					H 
					Read Cycle   
					External   
					L->H Data Out (Q)   
					(Begin Burst)   
					Read Cycle   
					(Continue Burst)   
					Next   
					External   
					Next   
					X 
					L 
					X 
					H 
					X 
					H 
					X 
					H 
					X 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					H 
					L 
					X 
					H 
					X 
					L 
					X 
					X 
					X 
					L 
					L 
					H 
					H 
					X 
					X 
					X 
					X 
					L 
					L 
					L 
					L 
					L 
					L 
					L 
					L->H Data Out (Q)   
					NOP/Dummy Read   
					(Begin Burst)   
					L->H   
					L->H   
					Tri-State   
					Tri-State   
					Dummy Read   
					(Continue Burst)   
					X 
					L 
					X 
					L 
					H 
					L 
					Write Cycle   
					(Begin Burst)   
					External   
					Next   
					L->H Data In (D)   
					L->H Data In (D)   
					Write Cycle   
					(Continue Burst)   
					X 
					L 
					X 
					L 
					H 
					L 
					X 
					L 
					L 
					NOP/Write Abort   
					(Begin Burst)   
					None   
					H 
					H 
					L->H   
					L->H   
					Tri-State   
					Tri-State   
					Write Abort   
					Next   
					X 
					X 
					H 
					X 
					(Continue Burst)   
					Ignore Clock Edge (Stall)   
					Sleep Mode   
					Current   
					None   
					X 
					X 
					X 
					X 
					X 
					X 
					L 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					X 
					H 
					X 
					L->H   
					X 
					- 
					H 
					Tri-State   
					Notes   
					1. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BW = L signifies at least one Byte Write Select is active, BW = Valid signifies that the desired Byte Write Selects   
					X 
					X 
					
					
					X 
					3. When a write cycle is detected, all IOs are tri-stated, even during byte writes.   
					4. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.   
					X 
					5. CEN = H, inserts wait states.   
					6. Device powers up deselected with the IOs in a tri-state condition, regardless of OE.   
					7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = tri-state when OE is inactive   
					X 
					or when the device is deselected, and DQs and DQP = data when OE is active.   
					X 
					Document #: 001-15013 Rev. *E   
					Page 11 of 30   
					
					 
					 
					 
					 
					 
					 
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 5. Truth Table for Read/Write   
					
					The read-write truth table for CY7C1471BV25 follows.   
					Function   
					WE   
					H 
					L 
					BW   
					BW   
					X 
					BW   
					X 
					BW   
					X 
					A 
					B 
					C 
					D 
					Read   
					X 
					H 
					L 
					Write No bytes written   
					H 
					H 
					L 
					H 
					H 
					H 
					L 
					H 
					H 
					H 
					H 
					L 
					Write Byte A – (DQ and DQP )   
					L 
					A 
					A 
					Write Byte B – (DQ and DQP )   
					L 
					H 
					H 
					H 
					L 
					B 
					B 
					Write Byte C – (DQ and DQP )   
					L 
					H 
					H 
					L 
					C 
					C 
					Write Byte D – (DQ and DQP )   
					L 
					H 
					L 
					D 
					D 
					Write All Bytes   
					L 
					L 
					Table 6. Truth Table for Read/Write   
					
					The read-write truth table for CY7C1473BV25 follows.   
					Function   
					WE   
					H 
					L 
					BW   
					X 
					BW   
					a 
					b 
					Read   
					X 
					H 
					L 
					Write – No Bytes Written   
					H 
					Write Byte a – (DQ and DQP )   
					L 
					H 
					a 
					a 
					Write Byte b – (DQ and DQP )   
					L 
					L 
					H 
					L 
					b 
					b 
					Write Both Bytes   
					L 
					L 
					Table 7. Truth Table for Read/Write   
					
					The read-write truth table for CY7C1475BV25 follows.   
					Function   
					WE   
					H 
					BW   
					X 
					x 
					Read   
					Write – No Bytes Written   
					Write Byte X − (DQ and DQP   
					L 
					H 
					L 
					L 
					x 
					x)   
					Write All Bytes   
					L 
					All BW = L   
					Note   
					8. This table is only a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write is based on which byte write is active.   
					X 
					Document #: 001-15013 Rev. *E   
					Page 12 of 30   
					
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Test Access Port (TAP)   
					IEEE 1149.1 Serial Boundary Scan (JTAG)   
					Test Clock (TCK)   
					The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25   
					incorporate a serial boundary scan Test Access Port (TAP). This   
					port operates in accordance with IEEE Standard 1149.1-1990   
					but does not have the set of functions required for full 1149.1   
					compliance. These functions from the IEEE specification are   
					excluded because their inclusion places an added delay in the   
					critical speed path of the SRAM. Note that the TAP controller   
					functions in a manner that does not conflict with the operation of   
					other devices using 1149.1 fully compliant TAPs. The TAP   
					operates using JEDEC-standard 2.5V IO logic levels.   
					The test clock is used only with the TAP controller. All inputs are   
					captured on the rising edge of TCK. All outputs are driven from   
					the falling edge of TCK.   
					Test Mode Select (TMS)   
					The TMS input gives commands to the TAP controller and is   
					sampled on the rising edge of TCK. You can leave this ball   
					unconnected if the TAP is not used. The ball is pulled up inter-   
					nally, resulting in a logic HIGH level.   
					The CY7C1471BV25, CY7C1473BV25, and CY7C1475BV25   
					contain a TAP controller, instruction register, boundary scan   
					register, bypass register, and ID register.   
					Test Data In (TDI)   
					The TDI ball serially inputs information into the registers and is   
					connected to the input of any of the registers. The register   
					between TDI and TDO is chosen by the instruction that is loaded   
					into the TAP instruction register. For information about loading   
					
					TDI is internally pulled up and can be unconnected if the TAP is   
					unused in an application. TDI is connected to the most significant   
					
					Disabling the JTAG Feature   
					It is possible to operate the SRAM without using the JTAG   
					feature. To disable the TAP controller, tie TCK LOW (V ) to   
					SS   
					prevent clocking of the device. TDI and TMS are internally pulled   
					up and may be unconnected. They may alternately be connected   
					to V through a pull up resistor. TDO must be left unconnected.   
					DD   
					During power up, the device comes up in a reset state, which   
					does not interfere with the operation of the device.   
					Test Data Out (TDO)   
					The TDO output ball serially clocks data out from the registers.   
					The output is active depending upon the current state of the TAP   
					state machine. The output changes on the falling edge of TCK.   
					TDO is connected to the least significant bit (LSB) of any register.   
					(See Tap Controller State Diagram.)   
					Figure 3. TAP Controller State Diagram   
					TEST-LOGIC   
					1 
					RESET   
					0 
					1 
					1 
					1 
					RUN-TEST/   
					IDLE   
					SELECT   
					DR-SCAN   
					SELECT   
					IR-SCAN   
					0 
					Figure 4. TAP Controller Block Diagram   
					0 
					0 
					1 
					1 
					CAPTURE-DR   
					CAPTURE-IR   
					0 
					0 
					0 
					Bypass Register   
					SHIFT-DR   
					0 
					SHIFT-IR   
					0 
					2 
					1 
					0 
					0 
					0 
					1 
					1 
					Selection   
					Circuitry   
					Selection   
					Circuitry   
					Instruction Register   
					31 30 29   
					Identification Register   
					TDI   
					TDO   
					1 
					1 
					EXIT1-DR   
					EXIT1-IR   
					. 
					. 
					. 
					2 
					1 
					0 
					0 
					PAUSE-DR   
					0 
					PAUSE-IR   
					1 
					0 
					x 
					. 
					. 
					. 
					. 
					. 
					2 
					1 
					1 
					Boundary Scan Register   
					0 
					0 
					EXIT2-DR   
					1 
					EXIT2-IR   
					1 
					UPDATE-DR   
					UPDATE-IR   
					TCK   
					1 
					0 
					1 
					0 
					TAP CONTROLLER   
					TM S   
					The 0/1 next to each state represents the value of TMS at the   
					rising edge of TCK.   
					Performing a TAP Reset   
					A RESET is performed by forcing TMS HIGH (V ) for five rising   
					DD   
					edges of TCK. This RESET does not affect the operation of the   
					SRAM and may be performed while the SRAM is operating.   
					During power up, the TAP is reset internally to ensure that TDO   
					comes up in a High-Z state.   
					Document #: 001-15013 Rev. *E   
					Page 13 of 30   
					
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					The TAP controller used in this SRAM is not fully compliant to the   
					1149.1 convention because some of the mandatory 1149.1   
					instructions are not fully implemented.   
					TAP Registers   
					Registers are connected between the TDI and TDO balls and   
					enable the scanning of data into and out of the SRAM test   
					circuitry. Only one register is selectable at a time through the   
					instruction register. Data is serially loaded into the TDI ball on the   
					rising edge of TCK. Data is output on the TDO ball on the falling   
					edge of TCK.   
					You cannot use the TAP controller to load address data or control   
					signals into the SRAM and you cannot preload the IO buffers.   
					The SRAM does not implement the 1149.1 commands EXTEST   
					or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;   
					rather, it performs a capture of the IO ring when these instruc-   
					tions are executed.   
					Instruction Register   
					Three-bit instructions can be serially loaded into the instruction   
					register. This register is loaded when it is placed between the TDI   
					and TDO balls as shown in the “TAP Controller Block Diagram”   
					on page 13. During power up, the instruction register is loaded   
					with the IDCODE instruction. It is also loaded with the IDCODE   
					instruction if the controller is placed in a reset state as described   
					in the previous section.   
					Instructions are loaded into the TAP controller during the Shift-IR   
					state when the instruction register is placed between TDI and   
					TDO. During this state, instructions are shifted through the   
					instruction register through the TDI and TDO balls. To execute   
					the instruction after it is shifted in, the TAP controller must be   
					moved into the Update-IR state.   
					EXTEST   
					When the TAP controller is in the Capture-IR state, the two least   
					significant bits are loaded with a binary ‘01’ pattern to enable fault   
					isolation of the board-level serial test data path.   
					EXTEST is a mandatory 1149.1 instruction which is executed   
					whenever the instruction register is loaded with all 0s. EXTEST   
					is not implemented in this SRAM TAP controller making this   
					device not compliant with 1149.1. The TAP controller does   
					recognize an all-0 instruction.   
					Bypass Register   
					To save time when serially shifting data through registers, it is   
					sometimes advantageous to skip certain chips. The bypass   
					register is a single-bit register that can be placed between the   
					TDI and TDO balls. This shifts the data through the SRAM with   
					When an EXTEST instruction is loaded into the instruction   
					register, the SRAM responds as if a SAMPLE/PRELOAD   
					instruction is loaded. There is one difference between the two   
					instructions. Unlike the SAMPLE/PRELOAD instruction,   
					EXTEST places the SRAM outputs in a High-Z state.   
					minimal delay. The bypass register is set LOW (V ) when the   
					SS   
					BYPASS instruction is executed.   
					Boundary Scan Register   
					IDCODE   
					The boundary scan register is connected to all the input and   
					bidirectional balls on the SRAM.   
					The IDCODE instruction causes a vendor specific, 32-bit code to   
					load into the instruction register. It also places the instruction   
					register between the TDI and TDO balls and enables the   
					IDCODE for shifting out of the device when the TAP controller   
					enters the Shift-DR state.   
					The boundary scan register is loaded with the contents of the   
					RAM IO ring when the TAP controller is in the Capture-DR state   
					and is then placed between the TDI and TDO balls when the   
					controller is moved to the Shift-DR state. The EXTEST,   
					SAMPLE/PRELOAD and SAMPLE Z instructions can be used to   
					capture the contents of the IO ring.   
					The IDCODE instruction is loaded into the instruction register   
					during power up or whenever the TAP controller is in a test logic   
					reset state.   
					The Boundary Scan Order tables show the order in which the bits   
					are connected. Each bit corresponds to one of the bumps on the   
					SRAM package. The MSB of the register is connected to TDI and   
					the LSB is connected to TDO.   
					SAMPLE Z   
					The SAMPLE Z instruction connects the boundary scan register   
					between the TDI and TDO pins when the TAP controller is in a   
					Shift-DR state. It also places all SRAM outputs into a High-Z   
					state.   
					Identification (ID) Register   
					The ID register is loaded with a vendor specific, 32-bit code   
					during the Capture DR state when the IDCODE command is   
					loaded in the instruction register. The IDCODE is hardwired into   
					the SRAM and can be shifted out when the TAP controller is in   
					the Shift DR state. The ID register has a vendor code and other   
					information described in “Identification Register Definitions” on   
					
					SAMPLE/PRELOAD   
					SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The   
					PRELOAD portion of this instruction is not implemented, so the   
					device TAP controller is not fully 1149.1 compliant.   
					When the SAMPLE/PRELOAD instruction is loaded into the   
					instruction register and the TAP controller is in the Capture-DR   
					state, a snapshot of data on the inputs and bidirectional balls is   
					captured in the boundary scan register.   
					TAP Instruction Set   
					Overview   
					Be aware that the TAP controller clock only operates at a   
					frequency up to 20 MHz, while the SRAM clock operates more   
					than an order of magnitude faster. Because there is a large   
					difference in the clock frequencies, it is possible that, during the   
					Capture-DR state, an input or output may undergo a transition.   
					The TAP may then try to capture a signal while in transition   
					(metastable state). This does not harm the device, but there is   
					Eight different instructions are possible with the three-bit   
					instruction register. All combinations are listed in “Identification   
					
					RESERVED and are not for use. The other five instructions are   
					described in this section in detail.   
					Document #: 001-15013 Rev. *E   
					Page 14 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					no guarantee as to the value that is captured. Repeatable results   
					may not be possible.   
					Note that since the PRELOAD part of the command is not imple-   
					mented, putting the TAP to the Update-DR state while performing   
					a SAMPLE/PRELOAD instruction has the same effect as the   
					Pause-DR command.   
					To guarantee that the boundary scan register captures the   
					correct signal value, make certain that the SRAM signal is stabi-   
					lized long enough to meet the TAP controller’s capture setup plus   
					BYPASS   
					hold time (t plus t ).   
					CS   
					CH   
					When the BYPASS instruction is loaded in the instruction register   
					and the TAP is placed in a Shift-DR state, the bypass register is   
					placed between the TDI and TDO balls. The advantage of the   
					BYPASS instruction is that it shortens the boundary scan path   
					when multiple devices are connected together on a board.   
					The SRAM clock input might not be captured correctly if there is   
					no way in a design to stop (or slow) the clock during a   
					SAMPLE/PRELOAD instruction. If this is an issue, it is still   
					possible to capture all other signals and simply ignore the value   
					of the CLK captured in the boundary scan register.   
					Reserved   
					After the data is captured, it is possible to shift out the data by   
					putting the TAP into the Shift-DR state. This places the boundary   
					scan register between the TDI and TDO balls.   
					These instructions are not implemented but are reserved for   
					future use. Do not use these instructions.   
					Figure 5. TAP Timing   
					1 
					2 
					3 
					4 
					5 
					6 
					Test Clock   
					(TCK)   
					t 
					t 
					t 
					TH   
					CYC   
					TL   
					t 
					t 
					t 
					t 
					TM SS   
					TDIS   
					TM SH   
					Test M ode Select   
					(TM S)   
					TDIH   
					Test Data-In   
					(TDI)   
					t 
					TDOV   
					t 
					TDOX   
					Test Data-Out   
					(TDO)   
					DON’T CARE   
					UNDEFINED   
					Document #: 001-15013 Rev. *E   
					Page 15 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					TAP AC Switching Characteristics   
					
					Over the Operating Range   
					Parameter   
					Clock   
					Description   
					Min   
					Max   
					Unit   
					t 
					t 
					t 
					t 
					TCK Clock Cycle Time   
					TCK Clock Frequency   
					TCK Clock HIGH Time   
					TCK Clock LOW Time   
					50   
					ns   
					MHz   
					ns   
					TCYC   
					TF   
					20   
					20   
					20   
					TH   
					ns   
					TL   
					Output Times   
					t 
					t 
					TCK Clock LOW to TDO Valid   
					TCK Clock LOW to TDO Invalid   
					10   
					ns   
					ns   
					TDOV   
					TDOX   
					0 
					Setup Times   
					t 
					t 
					t 
					TMS Setup to TCK Clock Rise   
					TDI Setup to TCK Clock Rise   
					Capture Setup to TCK Rise   
					5 
					5 
					5 
					ns   
					ns   
					ns   
					TMSS   
					TDIS   
					CS   
					Hold Times   
					t 
					t 
					t 
					TMS Hold after TCK Clock Rise   
					TDI Hold after Clock Rise   
					5 
					5 
					5 
					ns   
					ns   
					ns   
					TMSH   
					TDIH   
					CH   
					Capture Hold after Clock Rise   
					Figure 6. 2.5V TAP AC Output Load Equivalent   
					2.5V TAP AC Test Conditions   
					1.25V   
					Input pulse levels.................................................V to 2.5V   
					SS   
					Input rise and fall time .....................................................1 ns   
					Input timing reference levels......................................... 1.25V   
					Output reference levels ................................................ 1.25V   
					Test load termination supply voltage ............................ 1.25V   
					50Ω   
					TDO   
					ZO= 50Ω   
					20pF   
					TAP DC Electrical Characteristics And Operating Conditions   
					
					(0°C < T < +70°C; V = 2.375 to 2.625 unless otherwise noted)   
					A 
					DD   
					Parameter   
					Description   
					Test Conditions   
					Min   
					2.0   
					2.1   
					Max   
					Unit   
					V 
					V 
					V 
					V 
					V 
					V 
					V 
					Output HIGH Voltage   
					Output HIGH Voltage   
					Output LOW Voltage   
					Output LOW Voltage   
					Input HIGH Voltage   
					Input LOW Voltage   
					Input Load Current   
					I 
					I 
					I 
					I 
					= –1.0 mA, V   
					= –100 µA, V   
					= 2.5V   
					= 2.5V   
					OH1   
					OH   
					OH   
					OL   
					OL   
					DDQ   
					DDQ   
					V 
					OH2   
					OL1   
					OL2   
					IH   
					= 1.0 mA, V   
					= 100 µA, V   
					= 2.5V   
					= 2.5V   
					0.4   
					0.2   
					V 
					DDQ   
					DDQ   
					V 
					V 
					V 
					= 2.5V   
					= 2.5V   
					1.7   
					–0.3   
					–5   
					V 
					+ 0.3   
					V 
					DDQ   
					DDQ   
					DD   
					0.7   
					5 
					V 
					IL   
					I 
					GND < V < V   
					µA   
					X 
					IN   
					DDQ   
					Notes   
					9.t and t refer to the setup and hold time requirements of latching data from the boundary scan register.   
					CS   
					CH   
					10.Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.   
					R 
					F 
					11.All voltages refer to V (GND).   
					SS   
					Document #: 001-15013 Rev. *E   
					Page 16 of 30   
					
					 
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 8. Identification Register Definitions   
					Instruction Field   
					CY7C1471BV25 CY7C1473BV25 CY7C1475BV25   
					Description   
					(2MX36)   
					(4MX18)   
					(1MX72)   
					Revision Number (31:29)   
					Device Depth (28:24)   
					000   
					000   
					000   
					Describes the version number   
					Reserved for internal use   
					01011   
					001001   
					01011   
					01011   
					001001   
					110100   
					Architecture/Memory Type(23:18)   
					Bus Width/Density(17:12)   
					Cypress JEDEC ID Code (11:1)   
					001001   
					Defines memory type and architecture   
					Defines width and density   
					100100   
					010100   
					00000110100   
					00000110100   
					00000110100 Allows unique identification of SRAM   
					vendor   
					ID Register Presence Indicator (0)   
					1 
					1 
					1 
					Indicates the presence of an ID register   
					Table 9. Scan Register Sizes   
					Register Name   
					Bit Size (x36)   
					Bit Size (x18)   
					Bit Size (x72)   
					Instruction   
					3 
					1 
					3 
					1 
					3 
					1 
					Bypass   
					ID   
					32   
					71   
					- 
					32   
					52   
					- 
					32   
					- 
					Boundary Scan Order – 165FBGA   
					Boundary Scan Order – 209BGA   
					110   
					Table 10. Identification Codes   
					Instruction   
					Code   
					Description   
					EXTEST   
					000   
					Captures IO ring contents. Places the boundary scan register between TDI and TDO.   
					Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.   
					IDCODE   
					001   
					010   
					Loads the ID register with the vendor ID code and places the register between TDI   
					and TDO. This operation does not affect SRAM operations.   
					SAMPLE Z   
					Captures IO ring contents. Places the boundary scan register between TDI and TDO.   
					Forces all SRAM output drivers to a High-Z state.   
					RESERVED   
					011   
					100   
					Do Not Use: This instruction is reserved for future use.   
					SAMPLE/PRELOAD   
					Captures IO ring contents. Places the boundary scan register between TDI and TDO.   
					Does not affect SRAM operation. This instruction does not implement 1149.1 preload   
					function and is therefore not 1149.1 compliant.   
					RESERVED   
					RESERVED   
					BYPASS   
					101   
					110   
					111   
					Do Not Use: This instruction is reserved for future use.   
					Do Not Use: This instruction is reserved for future use.   
					Places the bypass register between TDI and TDO. This operation does not affect   
					SRAM operation.   
					Document #: 001-15013 Rev. *E   
					Page 17 of 30   
					
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 11. Boundary Scan Exit Order (2M x 36)   
					Bit #   
					1 
					165-Ball ID   
					C1   
					Bit #   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					40   
					165-Ball ID   
					R3   
					Bit #   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					53   
					54   
					55   
					56   
					57   
					58   
					59   
					60   
					165-Ball ID   
					J11   
					Bit #   
					61   
					62   
					63   
					64   
					65   
					66   
					67   
					68   
					69   
					70   
					71   
					165-Ball ID   
					B7   
					B6   
					A6   
					B5   
					A5   
					A4   
					B4   
					B3   
					A3   
					A2   
					B2   
					2 
					D1   
					P2   
					K10   
					J10   
					3 
					E1   
					R4   
					4 
					D2   
					P6   
					H11   
					G11   
					F11   
					E11   
					D10   
					D11   
					C11   
					G10   
					F10   
					E10   
					A9   
					5 
					E2   
					R6   
					6 
					F1   
					R8   
					7 
					G1   
					F2   
					P3   
					8 
					P4   
					9 
					G2   
					J1   
					P8   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					P9   
					K1   
					P10   
					R9   
					L1   
					J2   
					R10   
					R11   
					N11   
					M11   
					L11   
					M10   
					L10   
					K11   
					M1   
					N1   
					B9   
					K2   
					A10   
					B10   
					A8   
					L2   
					M2   
					R1   
					B8   
					R2   
					A7   
					Table 12. Boundary Scan Exit Order (4M x 18)   
					Bit #   
					1 
					165-Ball ID   
					Bit #   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					165-Ball ID   
					R4   
					Bit #   
					27   
					28   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					165-Ball ID   
					L10   
					Bit #   
					40   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					165-Ball ID   
					B10   
					A8   
					D2   
					E2   
					F2   
					G2   
					J1   
					2 
					P6   
					K10   
					J10   
					3 
					R6   
					B8   
					4 
					R8   
					H11   
					G11   
					F11   
					A7   
					5 
					P3   
					B7   
					6 
					K1   
					L1   
					P4   
					B6   
					7 
					P8   
					E11   
					A6   
					8 
					M1   
					N1   
					R1   
					R2   
					R3   
					P2   
					P9   
					D11   
					C11   
					A11   
					B5   
					9 
					P10   
					R9   
					A4   
					10   
					11   
					12   
					13   
					B3   
					R10   
					R11   
					M10   
					A9   
					A3   
					B9   
					A2   
					A10   
					B2   
					Document #: 001-15013 Rev. *E   
					Page 18 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Table 13. Boundary Scan Exit Order (1M x 72)   
					Bit #   
					1 
					209-Ball ID   
					A1   
					Bit #   
					29   
					30   
					31   
					32   
					33   
					34   
					35   
					36   
					37   
					38   
					39   
					40   
					41   
					42   
					43   
					44   
					45   
					46   
					47   
					48   
					49   
					50   
					51   
					52   
					53   
					54   
					55   
					56   
					209-Ball ID   
					T1   
					Bit #   
					57   
					58   
					59   
					60   
					61   
					62   
					63   
					64   
					65   
					66   
					67   
					68   
					69   
					70   
					71   
					72   
					73   
					74   
					75   
					76   
					77   
					78   
					79   
					80   
					81   
					82   
					83   
					84   
					209-Ball ID   
					U10   
					T11   
					Bit #   
					85   
					209-Ball ID   
					B11   
					B10   
					A11   
					A10   
					A7   
					2 
					A2   
					T2   
					86   
					3 
					B1   
					U1   
					T10   
					R11   
					R10   
					P11   
					P10   
					N11   
					N10   
					M11   
					M10   
					L11   
					87   
					4 
					B2   
					U2   
					88   
					5 
					C1   
					C2   
					D1   
					D2   
					E1   
					V1   
					89   
					6 
					V2   
					90   
					A5   
					7 
					W1   
					W2   
					T6   
					91   
					A9   
					8 
					92   
					U8   
					9 
					93   
					A6   
					10   
					11   
					12   
					13   
					14   
					15   
					16   
					17   
					18   
					19   
					20   
					21   
					22   
					23   
					24   
					25   
					26   
					27   
					28   
					E2   
					V3   
					94   
					D6   
					F1   
					V4   
					95   
					K6   
					F2   
					U4   
					96   
					B6   
					G1   
					G2   
					H1   
					H2   
					J1   
					W5   
					V6   
					L10   
					97   
					K3   
					P6   
					98   
					A8   
					W6   
					V5   
					J11   
					99   
					B4   
					J10   
					100   
					101   
					102   
					103   
					104   
					105   
					106   
					107   
					108   
					109   
					110   
					B3   
					U5   
					H11   
					H10   
					G11   
					G10   
					F11   
					C3   
					J2   
					U6   
					C4   
					L1   
					W7   
					V7   
					C8   
					L2   
					C9   
					M1   
					M2   
					N1   
					N2   
					P1   
					U7   
					B9   
					V8   
					F10   
					E10   
					E11   
					D11   
					D10   
					C11   
					C10   
					B8   
					V9   
					A4   
					W11   
					W10   
					V11   
					V10   
					U11   
					C6   
					B7   
					P2   
					A3   
					R2   
					R1   
					Document #: 001-15013 Rev. *E   
					Page 19 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					DC Input Voltage ................................... –0.5V to V + 0.5V   
					Maximum Ratings   
					DD   
					Current into Outputs (LOW) ........................................ 20 mA   
					Exceeding maximum ratings may impair the useful life of the   
					device. These user guidelines are not tested.   
					Static Discharge Voltage........................................... >2001V   
					(MIL-STD-883, Method 3015)   
					Storage Temperature ................................. –65°C to +150°C   
					Latch Up Current.................................................... >200 mA   
					Ambient Temperature with   
					Power Applied ............................................ –55°C to +125°C   
					Operating Range   
					Supply Voltage on V Relative to GND........–0.5V to +3.6V   
					DD   
					Ambient   
					Range   
					V 
					V 
					DDQ   
					DD   
					Temperature   
					0°C to +70°C   
					–40°C to +85°C   
					Supply Voltage on V   
					Relative to GND.......–0.5V to +V   
					DD   
					DDQ   
					Commercial   
					Industrial   
					2.5V –5%/+5% 2.5V–5% to   
					DC Voltage Applied to Outputs   
					in Tri-State ...........................................–0.5V to V   
					V 
					+ 0.5V   
					DD   
					DDQ   
					Electrical Characteristics   
					
					Over the Operating Range   
					Parameter   
					Description   
					Power Supply Voltage   
					IO Supply Voltage   
					Test Conditions   
					Min   
					2.375   
					2.375   
					2.0   
					Max   
					Unit   
					V 
					V 
					2.625   
					DD   
					DDQ   
					OH   
					OL   
					IH   
					V 
					V 
					V 
					V 
					V 
					I 
					For 2.5V IO   
					For 2.5V IO, I = –1.0 mA   
					V 
					V 
					DD   
					Output HIGH Voltage   
					Output LOW Voltage   
					V 
					OH   
					For 2.5V IO, I = 1.0 mA   
					0.4   
					V 
					OL   
					
					Input HIGH Voltage   
					For 2.5V IO   
					For 2.5V IO   
					GND ≤ V ≤ V   
					1.7   
					–0.3   
					–5   
					V 
					+ 0.3V   
					0.7   
					V 
					DD   
					
					Input LOW Voltage   
					V 
					IL   
					Input Leakage Current   
					except ZZ and MODE   
					5 
					μA   
					X 
					I 
					DDQ   
					Input Current of MODE Input = V   
					Input = V   
					–30   
					–5   
					μA   
					μA   
					SS   
					DD   
					SS   
					DD   
					5 
					Input Current of ZZ   
					Input = V   
					Input = V   
					μA   
					30   
					5 
					μA   
					I 
					I 
					Output Leakage Current GND ≤ V ≤ V   
					Output Disabled   
					–5   
					μA   
					OZ   
					I 
					DDQ,   
					
					V 
					Operating Supply   
					V 
					f = f   
					= Max, I   
					= 0 mA,   
					6.5 ns cycle, 133 MHz   
					8.5 ns cycle, 100 MHz   
					6.5 ns cycle, 133 MHz   
					8.5 ns cycle, 100 MHz   
					305   
					275   
					170   
					170   
					mA   
					mA   
					mA   
					mA   
					DD   
					DD   
					DD   
					OUT   
					CYC   
					Current   
					= 1/t   
					MAX   
					I 
					I 
					I 
					I 
					Automatic CE   
					Power Down   
					Current—TTL Inputs   
					V = Max, Device Deselected,   
					DD   
					SB1   
					SB2   
					SB3   
					SB4   
					V 
					≥ V or V ≤ V   
					IN   
					IH IN IL   
					f = f   
					, inputs switching   
					MAX   
					Automatic CE   
					Power Down   
					Current—CMOS Inputs f = 0, inputs static   
					V 
					V 
					= Max, Device Deselected,   
					≤ 0.3V or V > V – 0.3V,   
					All speeds   
					120   
					mA   
					DD   
					IN   
					IN   
					DD   
					Automatic CE   
					Power Down   
					Current—CMOS Inputs f = f   
					V 
					V 
					= Max, Device Deselected, or 6.5 ns cycle, 133 MHz   
					170   
					170   
					mA   
					mA   
					DD   
					≤ 0.3V or V > V – 0.3V   
					IN   
					IN   
					DDQ   
					8.5 ns cycle, 100 MHz   
					, inputs switching   
					MAX   
					Automatic CE   
					Power Down   
					Current—TTL Inputs   
					V 
					V 
					= Max, Device Deselected,   
					All Speeds   
					135   
					mA   
					DD   
					≥ V – 0.3V or V ≤ 0.3V,   
					IN   
					DD IN   
					f = 0, inputs static   
					Notes   
					12. Overshoot: V (AC) < V +1.5V (pulse width less than t   
					/2). Undershoot: V (AC) > –2V (pulse width less than t /2).   
					CYC   
					IH   
					DD   
					CYC   
					IL   
					13. T   
					: assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   
					< V   
					. 
					Power-up   
					DD   
					IH   
					DD   
					DDQ   
					DD   
					14. The operation current is calculated with 50% read cycle and 50% write cycle.   
					Document #: 001-15013 Rev. *E   
					Page 20 of 30   
					
					 
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Capacitance   
					Tested initially and after any design or process change that may affect these parameters.   
					100 TQFP 165 FBGA 209 FBGA   
					Parameter   
					Description   
					Test Conditions   
					Unit   
					Max   
					Max   
					Max   
					C 
					C 
					C 
					C 
					C 
					Address Input Capacitance   
					Data Input Capacitance   
					Control Input Capacitance   
					Clock Input Capacitance   
					Input-Output Capacitance   
					T = 25°C, f = 1 MHz,   
					6 
					5 
					8 
					6 
					5 
					6 
					5 
					8 
					6 
					5 
					6 
					5 
					8 
					6 
					5 
					pF   
					pF   
					pF   
					pF   
					pF   
					ADDRESS   
					DATA   
					CTRL   
					CLK   
					A 
					V 
					V 
					= 2.5V   
					DD   
					= 2.5V   
					DDQ   
					IO   
					Thermal Resistance   
					Tested initially and after any design or process change that may affect these parameters.   
					100 TQFP 165 FBGA 209 FBGA   
					Parameter   
					Description   
					Test Conditions   
					Unit   
					Package   
					Package   
					Package   
					Θ 
					Thermal Resistance   
					(Junction to Ambient)   
					Test conditions follow   
					24.63   
					16.3   
					15.2   
					°C/W   
					JA   
					standard test methods and   
					procedures for measuring   
					thermal impedance,   
					Θ 
					Thermal Resistance   
					(Junction to Case)   
					2.28   
					2.1   
					1.7   
					°C/W   
					JC   
					according to EIA/JESD51.   
					Figure 7. AC Test Loads and Waveforms   
					2.5V IO Test Load   
					R = 1667Ω   
					2.5V   
					OUTPUT   
					ALL INPUT PULSES   
					90%   
					VDDQ   
					OUTPUT   
					90%   
					10%   
					Z = 50Ω   
					0 
					R = 50Ω   
					10%   
					L 
					GND   
					5 pF   
					R = 1538Ω   
					≤ 1 ns   
					≤ 1 ns   
					V = 1.25V   
					L 
					INCLUDING   
					JIG AND   
					SCOPE   
					(c)   
					(a)   
					(b)   
					Document #: 001-15013 Rev. *E   
					Page 21 of 30   
					
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Switching Characteristics   
					Over the Operating Range. Timing reference level is 1.25V when V   
					Waveforms” on page 21 unless otherwise noted.   
					
					DDQ   
					133 MHz   
					100 MHz   
					Parameter   
					Description   
					Unit   
					Min   
					Max   
					Min   
					Max   
					t 
					1 
					1 
					ms   
					POWER   
					Clock   
					t 
					t 
					t 
					Clock Cycle Time   
					Clock HIGH   
					7.5   
					2.5   
					2.5   
					10   
					3.0   
					3.0   
					ns   
					ns   
					ns   
					CYC   
					CH   
					Clock LOW   
					CL   
					Output Times   
					t 
					t 
					t 
					t 
					t 
					t 
					t 
					Data Output Valid After CLK Rise   
					Data Output Hold After CLK Rise   
					6.5   
					8.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					CDV   
					DOH   
					CLZ   
					2.5   
					3.0   
					2.5   
					3.0   
					
					Clock to Low-Z   
					
					Clock to High-Z   
					3.8   
					3.0   
					4.5   
					3.8   
					CHZ   
					OEV   
					OELZ   
					OEHZ   
					OE LOW to Output Valid   
					
					OE LOW to Output Low-Z   
					OE HIGH to Output High-Z   
					0 
					0 
					
					3.0   
					4.0   
					Setup Times   
					t 
					t 
					t 
					t 
					t 
					t 
					Address Setup Before CLK Rise   
					ADV/LD Setup Before CLK Rise   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					1.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					AS   
					ALS   
					WES   
					CENS   
					DS   
					WE, BW Setup Before CLK Rise   
					X 
					CEN Setup Before CLK Rise   
					Data Input Setup Before CLK Rise   
					Chip Enable Setup Before CLK Rise   
					CES   
					Hold Times   
					t 
					t 
					t 
					t 
					t 
					t 
					Address Hold After CLK Rise   
					ADV/LD Hold After CLK Rise   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					0.5   
					ns   
					ns   
					ns   
					ns   
					ns   
					ns   
					AH   
					ALH   
					WEH   
					CENH   
					DH   
					WE, BW Hold After CLK Rise   
					X 
					CEN Hold After CLK Rise   
					Data Input Hold After CLK Rise   
					Chip Enable Hold After CLK Rise   
					CEH   
					Notes   
					15. This part has a voltage regulator internally; t   
					is the time that the power is supplied above V (minimum) initially, before a read or write operation can be initiated.   
					DD   
					POWER   
					16. t   
					, t   
					,t   
					, and t   
					are specified with AC test conditions shown in part (b) of “AC Test Loads and Waveforms” on page 21. Transition is measured ±200 mV   
					CHZ CLZ OELZ   
					OEHZ   
					from steady-state voltage.   
					17. At any supplied voltage and temperature, t   
					is less than t   
					and t   
					is less than t   
					to eliminate bus contention between SRAMs when sharing the same data   
					OEHZ   
					OELZ   
					CHZ   
					CLZ   
					bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve   
					High-Z before Low-Z under the same system conditions.   
					18. This parameter is sampled and not 100% tested.   
					Document #: 001-15013 Rev. *E   
					Page 22 of 30   
					
					 
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Switching Waveforms   
					
					Figure 8 shows read-write timing waveform.   
					Figure 8. Read/Write Timing   
					t 
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					CYC   
					t 
					CLK   
					t 
					t 
					t 
					t 
					t 
					CENS   
					CES   
					CENH   
					CEH   
					CL   
					CH   
					CEN   
					CE   
					ADV/LD   
					W E   
					BW   
					X 
					A1   
					A2   
					A4   
					A3   
					A5   
					A6   
					A7   
					ADDRESS   
					DQ   
					t 
					CDV   
					t 
					t 
					AS   
					AH   
					t 
					t 
					t 
					t 
					CHZ   
					DOH   
					OEV   
					CLZ   
					D(A1)   
					t 
					D(A2)   
					D(A2+1)   
					Q(A3)   
					Q(A4)   
					Q(A4+1)   
					D(A5)   
					Q(A6)   
					D(A7)   
					t 
					OEHZ   
					t 
					DS   
					DH   
					t 
					DOH   
					t 
					OELZ   
					OE   
					COM M AND   
					W RITE   
					D(A1)   
					W RITE   
					D(A2)   
					BURST   
					W RITE   
					READ   
					Q(A3)   
					READ   
					Q(A4)   
					BURST   
					READ   
					W RITE   
					D(A5)   
					READ   
					Q(A6)   
					W RITE   
					D(A7)   
					DESELECT   
					D(A2+1)   
					Q(A4+1)   
					DON’T CARE   
					UNDEFINED   
					Notes   
					For this waveform ZZ is tied LOW.   
					19.   
					20. When CE is LOW, CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH, CE is HIGH, CE is LOW or CE is HIGH.   
					1 
					2 
					3 
					1 
					2 
					3 
					21. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.   
					Document #: 001-15013 Rev. *E   
					Page 23 of 30   
					
					 
					 
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Switching Waveforms (continued)   
					
					
					Figure 9. NOP, STALL and DESELECT Cycles   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					CLK   
					CEN   
					CE   
					ADV/LD   
					WE   
					BW [A:D]   
					ADDRESS   
					A1   
					A2   
					A3   
					A4   
					A5   
					t 
					CHZ   
					D(A1)   
					Q(A2)   
					Q(A3)   
					D(A4)   
					Q(A5)   
					DQ   
					t 
					DOH   
					COMMAND   
					WRITE   
					D(A1)   
					READ   
					Q(A2)   
					STALL   
					READ   
					Q(A3)   
					WRITE   
					D(A4)   
					STALL   
					NOP   
					READ   
					Q(A5)   
					DESELECT   
					CONTINUE   
					DESELECT   
					DON’T CARE   
					UNDEFINED   
					Note   
					22. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.   
					Document #: 001-15013 Rev. *E   
					Page 24 of 30   
					
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Switching Waveforms (continued)   
					
					Figure 10 shows ZZ Mode timing waveform.   
					Figure 10. ZZ Mode Timing   
					CLK   
					t 
					t 
					ZZ   
					ZZREC   
					ZZ   
					t 
					ZZI   
					I 
					SUPPLY   
					I 
					DDZZ   
					t 
					RZZI   
					ALL INPUTS   
					(except ZZ)   
					DESELECT or READ Only   
					Outputs (Q)   
					High-Z   
					DON’T CARE   
					Notes   
					23. Device must be deselected when entering ZZ mode. See “Truth Table” on page 11 for all possible signal conditions to deselect the device.   
					24. DQs are in high-Z when exiting ZZ sleep mode.   
					Document #: 001-15013 Rev. *E   
					Page 25 of 30   
					
					 
					 
					 
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Ordering Information   
					Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   
					
					Speed   
					(MHz)   
					Package   
					Diagram   
					Operating   
					Range   
					Part and Package Type   
					Ordering Code   
					133 CY7C1471BV25-133AXC   
					CY7C1473BV25-133AXC   
					CY7C1471BV25-133BZC   
					CY7C1473BV25-133BZC   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					Commercial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1471BV25-133BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					CY7C1473BV25-133BZXC   
					CY7C1475BV25-133BGC   
					CY7C1475BV25-133BGXC   
					CY7C1471BV25-133AXI   
					CY7C1473BV25-133AXI   
					CY7C1471BV25-133BZI   
					CY7C1473BV25-133BZI   
					CY7C1471BV25-133BZXI   
					CY7C1473BV25-133BZXI   
					CY7C1475BV25-133BGI   
					CY7C1475BV25-133BGXI   
					100 CY7C1471BV25-100AXC   
					CY7C1473BV25-100AXC   
					CY7C1471BV25-100BZC   
					CY7C1473BV25-100BZC   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					lndustrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					Commercial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					CY7C1471BV25-100BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					CY7C1473BV25-100BZXC   
					CY7C1475BV25-100BGC   
					CY7C1475BV25-100BGXC   
					CY7C1471BV25-100AXI   
					CY7C1473BV25-100AXI   
					CY7C1471BV25-100BZI   
					CY7C1473BV25-100BZI   
					CY7C1471BV25-100BZXI   
					CY7C1473BV25-100BZXI   
					CY7C1475BV25-100BGI   
					CY7C1475BV25-100BGXI   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   
					lndustrial   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   
					51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   
					51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   
					209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   
					Document #: 001-15013 Rev. *E   
					Page 26 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Package Diagrams   
					Figure 11. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050   
					16.00 0.20   
					14.00 0.10   
					1.40 0.05   
					100   
					81   
					80   
					1 
					0.30 0.08   
					0.65   
					TYP.   
					12° 1°   
					(8X)   
					SEE DETAIL   
					A 
					30   
					51   
					31   
					50   
					0.20 MAX.   
					1.60 MAX.   
					R 0.08 MIN.   
					0.20 MAX.   
					0° MIN.   
					SEATING PLANE   
					STAND-OFF   
					0.05 MIN.   
					0.15 MAX.   
					NOTE:   
					1. JEDEC STD REF MS-026   
					0.25   
					GAUGE PLANE   
					2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   
					MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   
					R 0.08 MIN.   
					0.20 MAX.   
					BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   
					3. DIMENSIONS IN MILLIMETERS   
					0°-7°   
					0.60 0.15   
					0.20 MIN.   
					1.00 REF.   
					51-85050-*B   
					DETAIL   
					A 
					Document #: 001-15013 Rev. *E   
					Page 27 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Package Diagrams (continued)   
					Figure 12. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165   
					PIN 1 CORNER   
					BOTTOM VIEW   
					TOP VIEW   
					Ø0.05 M C   
					PIN 1 CORNER   
					Ø0.25 M C A B   
					Ø0.45 0.05(165X)   
					1 
					2 
					3 
					4 
					5 
					6 
					7 
					8 
					9 
					10   
					11   
					11 10   
					9 
					8 
					7 
					6 
					5 
					4 
					3 
					2 
					1 
					A 
					B 
					A 
					B 
					C 
					D 
					C 
					D 
					E 
					E 
					F 
					F 
					G 
					G 
					H 
					J 
					H 
					J 
					K 
					K 
					L 
					L 
					M 
					M 
					N 
					P 
					R 
					N 
					P 
					R 
					A 
					1.00   
					5.00   
					10.00   
					B 
					15.00 0.10   
					0.15(4X)   
					SEATING PLANE   
					C 
					51-85165-*A   
					Document #: 001-15013 Rev. *E   
					Page 28 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Package Diagrams (continued)   
					Figure 13. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167   
					51-85167-**   
					Document #: 001-15013 Rev. *E   
					Page 29 of 30   
					
				CY7C1471BV25   
					CY7C1473BV25, CY7C1475BV25   
					Document History Page   
					Document Title: CY7C1471BV25/CY7C1473BV25/CY7C1475BV25, 72-Mbit (2M x 36/4M x 18/1M x 72)   
					Flow-Through SRAM with NoBL™ Architecture   
					Document Number: 001-15013   
					Issue   
					Date   
					Orig. of   
					Change   
					REV.   
					ECN NO.   
					Description of Change   
					**   
					1024500   
					1274731   
					1562503   
					1897447   
					2082487   
					2159486   
					See ECN VKN/KKVTMP New Data Sheet   
					*A   
					*B   
					*C   
					*D   
					*E   
					See ECN   
					See ECN   
					See ECN   
					See ECN   
					See ECN   
					VKN/AESA Corrected typo in the “NOP, STALL and DESELECT Cycles” waveform   
					VKN/AESA Removed 1.8V IO offering from the data sheet   
					VKN/AESA Added footnote 14 related to IDD   
					VKN   
					Converted from preliminary to final   
					VKN/PYRS Minor Change-Moved to the external web   
					© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use   
					of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used   
					for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use   
					as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support   
					systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   
					Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),   
					United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,   
					and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress   
					integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without   
					the express written permission of Cypress.   
					Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES   
					OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not   
					assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where   
					a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer   
					assumes all risk of such use and in doing so indemnifies Cypress against all charges.   
					Use may be limited by and subject to the applicable Cypress software license agreement.   
					Document #: 001-15013 Rev. *E   
					Revised February 29, 2008   
					Page 30 of 30   
					NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc. All products and company names mentioned in this   
					document may be the trademarks of their respective holders.   
					
				 |