Crown Boiler BSI103 User Manual

D
E
S
I
G
N
E
D
T
O
L
E
A
D
BSI Series  
Gas-Fired Natural Draft Steam Boilers  
INSTALLATION INSTRUCTIONS  
These instructions must be affixed on or adjacent to the boiler  
Models:  
WARNING: Improper installation,  
adjustment, alteration, service or  
maintenance can cause property  
damage, injury, or loss of life. For  
assistance or additional informa-  
tion, consult a qualified installer,  
service agency or the gas  
BSI207  
BSI241  
BSI276  
BSI310  
BSI345  
BSI379  
BSI069  
BSI103  
BSI138  
BSI172  
supplier. Read these instructions  
carefully before installing.  
Manufacturer of Hydronic Heating Products  
P.O. Box 14818 3633 I. Street  
Philadelphia, PA 19134  
II Specifications  
FIGURE1:BSIBOILERS-GENERALCONFIGURATION  
TABLE 1: BSI SPECIFICATIONS  
BASIC  
NUMBER  
OF  
SECTIONS  
HEATING  
CAPACITY  
(MBH)  
I=B=R NET RATING,  
STEAM  
WATER  
VOL. **  
(Gal)  
BOILER  
MODEL  
BSI069S  
BSI069E  
BSI103S  
BSI103E  
BSI138S  
BSI138E  
BSI172S  
BSI172E  
BSI207S  
BSI207E  
BSI241S  
BSI241E  
BSI276S  
BSI276E  
BSI310S  
BSI310E  
BSI345S  
BSI345E  
BSI379S  
BSI379E  
INPUT  
(MBH)  
AFUE  
(%)  
DIMENSIONS (in.)  
(Sq. ft)  
(MBH)  
"A"  
"B"  
"C"  
"D"  
4
80.0  
81.9  
80.0  
82.0  
80.3  
82.0  
80.6  
82.1  
80.9  
82.1  
80.0  
82.2  
80.3  
82.2  
3
4
69  
57  
179  
43  
12 3/4  
28  
40 7/16  
5.1  
6.5  
103  
138  
172  
207  
241  
276  
310  
345  
379  
85  
267  
354  
446  
533  
621  
708  
800  
892  
979  
64  
16  
28  
28  
28  
30  
30  
30  
30  
30  
30  
40 7/16  
40 7/16  
40 7/16  
40 7/16  
40 7/16  
40 7/16  
45 7/16  
45 7/16  
45 7/16  
5
6
6
7
7
8
8
9
9
5
113  
142  
171  
199  
227  
255  
284  
312  
85  
19 1/4  
22 1/2  
25 3/4  
29  
7.9  
6
107  
128  
149  
170  
192  
214  
235  
9.3  
7
10.7  
12.1  
13.5  
14.9  
16.3  
17.7  
8
9
32 1/4  
35 1/2  
38 3/4  
42  
10  
11  
12  
82.5*  
82.5*  
82.5*  
*Combustion efficiency  
** Volume to normal water line  
NOTE: BSI345 and BSI379 not available for use with LP gas.  
Suffix E = Intermittent Ignition, Suffix S = Standing Pilot. Add Suffix N for Natural Gas or Suffix L for Propane Gas to basic BSI model  
number (example: BSI207SN, BSI207SL)  
2
III Before Installing  
1) Safe, reliable operation of this boiler depends upon installation by a professional heating contractor in strict accordance  
with this manual and the requirements of the authority having jurisdiction.  
In the absence of an authority having jurisdiction, installation must be in accordance with this manual and the  
National Fuel Gas Code, ANSI Z223.1-latest edition.  
Where required by the authority having jurisdiction, this installation must conform to the Standard for Controls and  
Safety Devices for Automatically Fired Boilers (ANSI/ASME CSD-1)-latest edition.  
Warning  
This Product Must be Installed ByALicensed Plumber Or Gas Fitter  
when Installed Within The Commonwealth Of Massachusetts  
2) Make sure that a properly sized chimney is available which is in good condition. Consult the authority having jurisdiction,  
Part VI of this manual, and the National Fuel Gas Code for additional information on venting requirements.  
3) Make sure that the boiler is correctly sized. Use an industry accepted sizing method such as the I=B=R Installation  
Guide for Residential Hydronic Heating Systems (Pub. #200) and I=B=R Heat Loss Calculation Guide (Pub. #H21 or  
#H22) published by the Hydronics Institute in Berkeley Heights NJ.  
4) Make sure that the boiler received is configured for the correct gas (natural or LP). The BSI345 and BSI379 may only be  
used with natural gas.  
5) Boilers installed at altitudes above 2000 ft. require different burners and main burner orifice than those at sea level. Make  
sure that the boiler is configured for use at the correct altitude.  
6) If this boiler was received as a knockdown boiler, follow the instructions in Appendix A to assemble the boiler.  
IV Locating the Boiler  
1) Clearances:  
Observe the minimum clearances shown below. These clearances apply to all combustible construction, as well as  
noncombustible walls, ceilings and doors. Also see Figure 2.  
Front – 18”  
Right Side – 18”  
Left Side – 6”  
Rear – 6”  
Top – 17”  
A 24” service clearance from the jacket is recommended on the left, right, and front of the boiler. These clearances  
may be reduced to those shown in Figure 2, however servicing the boiler will become increasingly difficult as these  
service clearances are reduced.  
If the right side 24” service clearance is reduced, adequate clearance must be maintained to easily read and access the  
controls. Alternatively, access may be provided using a door  
2) This boiler may be installed directly over a non-carpeted combustible floor.  
3) The boiler must be installed on a hard level surface.  
3
FIGURE2:BSI BOILERS-CLEARANCESTOALL  
TYPESOFCOMBUSTIBLECONSTRUCTIONAND  
NONCOMBUSTIBLE CEILINGS, WALLS, AND  
DOORS.  
4) Do not install this boiler in a location where gasoline or other flammable vapors or liquids will be stored or used. Do not  
install this boiler in an area where large amounts of airborne dust will be present, such as a workshop.  
5) The boiler should be located as close to the chimney as possible.  
6) Do not install this boiler directly on a surface that may get wet. Raise the boiler on a pad.  
V Air for Combustion and Ventilation  
Sufficient fresh air must be supplied for combustion, ventilation and flue gas dilution. Provisions for combustion, ventilation  
and flue gas dilution air for gas utilization equipment vented by natural draft must be made in accordance with local building  
codes or, in absence of such codes, in accordance with sections 5.3.3 and 5.3.4 (“Air for Combustion and Ventilation”) of the  
National Fuel Gas Code, NFPA 54/ANSI Z223.1.  
To ensure an adequate supply of combustion, ventilation and flue gas dilution air supply, start by determining whether the  
boiler is to be installed in a building of unusually tight construction. A good definition of a building of unusually tight  
construction is one which has all of the following features:  
Walls and ceilings exposed to outside atmosphere have a continuous water vapor retarder with a rating of 1 perm or  
less with openings gasketed and sealed  
Weather stripping has been added on openable windows and doors  
Caulking and sealants are applied to areas such as joints around window and door frames, between sole plates and  
floors, between wall-ceiling joints, between wall panels, at penetrations for plumbing, electrical, and gas lines, and at  
other openings.  
4
ForBuildingsofOtherthanUnusuallyTightConstruction  
1) Determine whether the boiler is to be installed in a confined space - A confined space is defined by the National Fuel  
Gas Code as having a volume less than 50 cubic feet per 1000 BTU/hr input of all appliances installed in that space. To  
determine whether the boiler room is a confined space:  
a. Total the input of all appliances in the boiler room in thousands of BTU/hr. Round the result to the next highest 1000  
BTU/hr.  
b. Find the volume of the room in cubic feet. The volume of the room in cubic feet is:  
Length (ft) x width (ft) x ceiling height (ft)  
In calculating the volume of the boiler room, consider the volume of adjoining spaces only if no doors are installed  
between them. If doors are installed between the boiler room and an adjoining space, do not consider the volume of the  
adjoining space, even if the door is normally left open.  
c. Divide the volume of the boiler room by the input in thousands of BTU/hr. If the result is less than 50, the boiler room is a  
confined space.  
Example:  
A BSI172EN and a water heater are to be installed in a room measuring 6 ft - 3 in x 7 ft with an 8 ft ceiling. The water heater  
has an input of 30000 BTU/hr:  
TotalinputinthousandsofBTU/hr=(172000BTU/hr+30000BTU/hr)/1000=202  
Volumeofroom=6.25ftx7ftx8ft=350ft3  
350/202 = 1.73. Since 1.73 is less than 50, the boiler room is a confined space.  
2) Unconfined Space - Natural infiltration into the boiler room will normally provide adequate air for combustion and  
ventilation without additional louvers or openings into boiler room.  
3) Confined Space - Provide two openings into the boiler room, one near the floor and one near the ceiling. The top edge of  
the upper opening must be within 12” of the ceiling and the bottom edge of the lower opening must be within 12” of the  
floor(Figure3).  
Each opening must have a free area of 1 square inch per 1000 BTU/hr input of all gas burning appliances in the boiler  
room. The minimum opening dimension is 3 inches. Minimum opening free area is 100 square inches per opening.  
If the total volume of both the boiler room and the room to which the openings connect is less than 50 cubic feet per 1000  
BTU/hr of total appliance input, install a pair of identical openings into a third room. Connect additional rooms with  
openings until the total volume of all rooms is at least 50 cubic feet per 1000 BTU/hr of input.  
The “free area” of an opening takes into account the blocking effect of mesh, grills, and louvers. Where screens are used,  
they must be no finer than ¼” (4 x 4) mesh.  
If providing openings into adjacent rooms is undesirable, combustion and ventilation air can be brought into the boiler  
room from outdoors. See the instructions under “For Buildings of Unusually Tight Construction”.  
ForBuildingsofUnusuallyTightConstruction  
1) Openings must be installed between the boiler room and the outdoors or a ventilated space, such as an attic or crawl  
space, which communicates directly with the outdoors.  
2) Two openings are required. The top edge of the upper opening must be within 12 inches of the ceiling. The bottom edge  
of the lower opening must be within 12 inches of the floor.  
3) Size openings and ducts as follows:  
Vertical ducts or openings directly outdoors (Figure 4, Figure 5, and Figure 6) - Each opening must have a free cross  
sectional area of 1 square inch per 4000 BTU/hr of the total input of all gas-fired appliances in the boiler room but not less  
than 100 square inches. Minimum opening size is 3 inches.  
Openings to outdoors via horizontal ducts (Figure 7) - Each opening must have a free cross sectional area of 1 square  
inch per 2000 BTU/hr of the total input of all gas fired appliances in the boiler room but not less than 100 square inches.  
Minimum opening size is 3 inches.  
The “free area” of an opening takes into account the blocking effect of mesh, grills, and louvers. Where screens are used,  
they must be no finer than ¼” (4 x 4) mesh.  
5
FIGURE3:BOILERINSTALLEDINCONFINEDSPACE,  
ALL AIR FROM INSIDE  
FIGURE4: ALLAIRFROMOUTDOORS,  
VENTILATED CRAWL SPACE AND ATTIC  
FIGURE5: ALLAIRFROMOUTDOORS,  
VIA VENTILATED ATTIC  
6
FIGURE6:ALLAIRFROMOUTDOORS,USING  
OPENINGSINTOBOILERROOM  
FIGURE7:ALLAIRFROMOUTDOORS,USING  
HORIZONTAL DUCTS INTO BOILER ROOM  
7
VI Venting  
Vent installation must be in accordance with local building codes, or the local authority having jurisdiction, or the National  
Fuel Gas Code, NFPA 54/ANSI Z 223.1.  
A typical vent installation is illustrated by Figure 8. The components of vent installation are the vent damper (if used), vent  
connector and chimney.  
1) Acceptable Chimneys - The following chimneys may be used to vent BSI series boilers:  
Listed Type B or L gas vent - Install in accordance with the manufacturer’s instructions, the terms of its listing, and  
applicable codes.  
Masonry Chimney - The masonry chimney must be constructed in accordance with the Standard for Chimneys,  
Fireplaces, Vents, and Solid Fuel Burning Appliances (NFPA 211) and lined with a clay liner or other listed lining  
system. Do not vent a BSI series boiler into an unlined chimney.  
2) Acceptable Vent Connectors - The following may be used for vent connectors:  
Listed type B or L Gas Vent  
Single Wall Galvanized Pipe - Use 0.018” (26 gauge or heavier). The size and location of the chimney may not permit  
the use of a single wall connector in some cases. See the National Fuel Gas Code. Do not use single wall pipe for  
vent connectors in attics.  
Other Vent Connectors Permitted by the National Fuel Gas Code.  
3) Chimney and Vent Connector Sizing - Size the chimney and vent connector in accordance with the National Fuel Gas  
Code.  
4) Exterior Chimneys - An exterior chimney has one or more sides exposed to the outdoors below the roof line. There are two  
conditions under which an exterior chimney may be used:  
In some very restrictive cases, BSI series boilers may be vented into an exterior ceramic lined masonry chimney. See  
the National Fuel Gas Code for information on when exterior chimneys may be used.  
An exterior masonry chimney may be used if it is lined with B vent or a listed chimney lining system.  
5) This boiler may be vented using a listed power venter. The power venter must be sized and installed in accordance with  
the power venter manufacturer’s instructions, the terms of the power venter listing, and applicable codes. The boiler must  
be electrically interlocked with the power venter to prevent boiler operation if the power venter fails to operate. Before  
deciding to use a power venter, make certain that the flue gas exiting the power venter will not damage adjacent  
construction or other structures. Also make certain that the power venter terminal will not be subjected to winds which  
could effect power venter operation.  
6) Do not connect the vent of this appliance into any portion of a mechanical vent system operating under positive  
pressure.  
7) Do not connect the boiler into a chimney flue serving an open fireplace or other solid fuel appliance.  
8) Prior to boiler installation, inspect chimney for obstructions or other defects and correct as required. Clean chimney as  
necessary.  
9) Vent pipe should slope upward from draft diverter not less than one inch in four feet. No portion of vent pipe should run  
downward or have sags. Vent pipe must be securely supported.  
10) The vertical section of vent pipe coming off the boiler should be as tall as possible, while still maintaining the proper  
clearance from the horizontal vent connector to combustibles and the proper pitch called for in (9) above.  
11) Vent pipe should be installed above the bottom of the chimney to prevent blockage.  
12) Vent pipe must be inserted flush with inside face of the chimney liner and the space between vent pipe and chimney  
sealed tight.  
13) Do not install the vent damper in any portion of the vent system which is used by appliances other than the boiler being  
installed.  
8
14) Vent damper installation is mandatory on all sizes from the BSI069 to BSI276. The BSI310 through BSI379 may be ordered  
with or without vent damper. If supplied, install vent damper (see Figure 9) as follows:  
a) Open vent damper carton and remove installation instructions. Read the instructions thoroughly before proceeding.  
Verify that vent damper is same size as draft diverter outlet. See Figure 1. Unpack vent damper carefully. Do not force  
closed damper blade. Forcing vent damper closed may result in damaged gear train and void warranty.  
b) Vent damper is factory shipped having approximately ¾” diameter hole in the vent damper blade, which must be left  
open for boilers equipped with standing pilot, and should be plugged on boilers with an intermittent pilot system,  
using the plug supplied with the damper.  
Mount the vent damper on the flue collar without modification to either and secure with sheet metal screws. Make  
sure screws do not interfere with damper blade operation. Vent damper blade position indicator must be visible to  
users.  
c) The damper wire harness is shipped wired into the boiler junction box. Plug the loose end of this harness into the  
damper and secure the flexible conduit to the damper using a connector nut provided.  
d) Install vent connector pipe and vent fittings from vent damper outlet to chimney or gas vent. Secure with sheet metal  
screws and support as required.  
RemovinganExistingBoilerfromaCommonChimney  
In some cases, when an existing boiler is removed from a common chimney, the common venting system may be too large for  
the remaining appliances. At the time of removal of an existing boiler the following steps shall be followed with each appliance  
remaining connected to the common venting system placed in operation, while the other appliances remaining connected to  
the common venting system are not in operation.  
a) Seal any unused opening in the common venting system.  
b) Visually inspect the venting system for proper size and horizontal pitch and determine there is no blockage or  
restriction, leakage, corrosion and other deficiencies which could cause an unsafe condition.  
c) Insofar as practical, close all building doors and windows and all doors between the space in which all the appliances  
remaining connected to the common venting system are located and other spaces of the building. Turn on clothes  
dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range  
hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close  
fireplacedampers.  
d) Place in operation the appliance being inspected. Follow the lighting instructions. Adjust thermostat so the appliance  
will operate continuously.  
e) Test for spillage at the draft hood relief opening after five (5) minutes of main burner operation. Use the flame of a  
match or candle, or smoke from a cigarette, cigar, or pipe.  
f) After it has been determined that each appliance remaining connected to the common venting system properly vents  
when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas-burning  
appliances to their previous condition of use.  
g) Any improper operation of the common venting system should be corrected so the installation conforms with the  
National Fuel Gas Code, ANSI Z223.1. When resizing any portion of the common venting system, the common  
venting system should be resized to approach the minimum size as determined using the appropriate tables in the  
NationalFuelGasCode,ANSIZ223.1.  
9
FIGURE8: BSI BOILERTYPICALVENTSYSTEM  
INSTALLATION AND COMPONENTS  
RIGHT SIDE VIEW  
FIGURE 9: VENTDAMPERINSTALLATIONDETAILS  
10  
VII Gas Piping  
Gas piping to the boiler must be sized to deliver adequate gas for the boiler to fire at the nameplate input at a line pressure  
between the minimum and maximum values shown on the rating plate. For more information on gas line sizing, consult the  
utility or Chapter 2 of the National Fuel Gas Code.  
Figure 10 shows typical gas piping connection to the BSI boiler. A sediment trap must be installed upstream of all gas  
controls. Install a manual shut-off valve outside the jacket and ground joint union as shown.  
The boiler and its gas connection must be leak tested before placing the boiler in operation. When doing this, the boiler  
and its individual shut-off must be disconnected from the rest of the system during any pressure testing of that system at  
pressures in excess of 1/2 psi. When pressure testing the gas system at pressures of 1/2 psi or less, isolate the boiler from the  
gas supply system by closing its individual manual shut-off valve.  
*
* State of Massachusetts Requires Manual  
Shut-offValve to be “T” Handle Type  
FIGURE10: GASCONNECTIONTOBOILER  
11  
VIII System Piping  
CAUTION  
INSTALL BOILER SO THAT THE GAS IGNITION SYSTEM COMPONENTS ARE PROTECTED  
FROM WATER (DRIPPING, SPRAYING, RAIN, ETC.) DURING APPLIANCE OPERATION AND SERVICE  
(CIRCULATOR REPLACEMENT, ETC.).  
OPERATION OF THIS BOILER INASYSTEM HAVING SIGNIFICANT AMOUNTS OF DISSOLVED OXYGEN  
CAN CAUSE SEVERE HEAT EXCHANGER CORROSION DAMAGE.  
General Piping Notes  
Figure 11 shows recommended near boiler piping for most common types of gravity return steam systems. Additional  
information on steam system design may be found in Installation Guide for Residential Hydronic Heating Systems (Pub.  
#200) published by the Hydronics Institute in Berkeley Heights NJ.  
One of the primary purposes of this near boiler piping is to separate tiny water droplets from the steam exiting the boiler so  
that “dry” steam is sent to the system. If the near boiler piping is not correct, wet steam will enter the system and the  
following problems may occur:  
Short cycling on low water  
Boiler or system Flooding  
Hammering  
Failure to heat one or more radiators  
Avoid the three common piping mistakes shown in Figure 12. This applies even if the existing boiler has one of the piping  
mistakes shown in Figure 12 and appears to be working. If two or more steam mains must be connected to the boiler, connect a  
separate take-off for each main into the header between the riser(s) and equalizer. Also note the following points:  
1) A size reduction must be made to connect the header to the equalizer. This reduction must be made in the equalizer line. Do  
not make this size reduction in the horizontal header.  
2) One pipe steam systems require air vents on each radiator, as well as at the end of each main. For the system to work  
properly, these vents must be properly installed, sized, and be in good condition. Inspect and replace any defective vents. If  
there are no vents at the ends of the mains, install them.  
3) Do not attempt to manifold multiple BSIs with gravity returns.  
4) For installations with condensate or boiler feed pumps, follow the pump manufacturer’s piping instructions. Such systems  
generally do not require Hartford loops.  
5) Do not use a check valve in place of, or in addition to, a Hartford loop on a gravity return system.  
6) Pipe the fill connection from a clean source of cold water. When the water supply is from a well, make sure that a strainer is  
installed in the well system.  
7) Piping with a Chiller - If the boiler is used in conjunction with a chiller, pipe the boiler in parallel with chiller. Use isolation  
valves to prevent chilled water from entering the boiler.  
12